TW201113528A - A tapping mode atomic force microscope with a constant force fuzzy controller - Google Patents

A tapping mode atomic force microscope with a constant force fuzzy controller Download PDF

Info

Publication number
TW201113528A
TW201113528A TW98134637A TW98134637A TW201113528A TW 201113528 A TW201113528 A TW 201113528A TW 98134637 A TW98134637 A TW 98134637A TW 98134637 A TW98134637 A TW 98134637A TW 201113528 A TW201113528 A TW 201113528A
Authority
TW
Taiwan
Prior art keywords
signal
probe
atomic force
voltage
amplitude
Prior art date
Application number
TW98134637A
Other languages
Chinese (zh)
Inventor
Yuan-Jay Wang
Original Assignee
Yuan-Jay Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuan-Jay Wang filed Critical Yuan-Jay Wang
Priority to TW98134637A priority Critical patent/TW201113528A/en
Publication of TW201113528A publication Critical patent/TW201113528A/en

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

A tapping mode atomic force microscope with a constant force fuzzy controller comprises a central control and process unit, a sinusoidal signal generator, a dynamic signal amplifier, a tip actuator, a tip, a laser diode, a four-quadrant position sensitive photo detector, a current-to-voltage converter, a first-stage amplifier, a band-pass filter, a root-mean-square value converter, a dynamic signal magnitude compensator, a digital-to-analog converter, a signal subtraction operator, a fuzzy controller, a high-voltage operation amplifier, and a piezoelectric tube scanner. The main contribution of this invention is to use a fuzzy controller to automatically schedule the controller efforts of a constant force feedback control system of a tapping mode atomic force microscope. The advantages of this invention are that the self-scheduling feedback control mechanism can be used to replace the manual tuning method in conventional atomic force microscope, and the user-friendly control interface can significantly reduce the training time for new microscope users. Besides, the invention with an intelligent fuzzy controller demonstrates high adaptability and can be readily applied to different tips manufactured by different company. Finally, the transient response and the overshoot of the constant force feedback control system can be significantly improved. These improvements enhance scanning speed and accuracy.

Description

201113528 九、發明說明: 【發明所屬之技術領域】 本發明係屬於-韻密量戦制之光麵㈣統,工作原理為藉由 激振-雙極性之壓電晶體,使與壓電晶體·之探針得明定振幅虚固定 5頻率工作於其雌頻率,於實際進行樣品檢測時,量測探針之即時振幅與 相位訊號之改變量,藉以推測探針周圍之物理量如作用力、溫度、濕度、、 與氣壓之改變。此-量測之機制與方法廣泛的應用於奈米級的量測盘生醫 檢測儀器,如掃描探針顯微鏡、原子力顯微鏡、掃描電容式顯微鏡、掃描 0 電阻式顯微鏡、與精密溫度與濕度量測系統。 W【先前技術】 先前之技術專利如中華民國專利第1〇8558號專利提出一種掃描探針 顯微鏡,此-專利僅粗略的呈現掃描探針顯微鏡之裝a,並未閣明其使用 方法。其次如中華民國專利第1293682劇提出一種適用於空氣令、水溶 液中、與真空中之泛用型微懸臂樑感罐敏度控制裝置,此—專利亦未揭 15露如本_所提之較軒力模输制祕。此外先前之技術如中華民國 專利第I267627號載明一種掃描探針資料儲存及顯微放大技術,此一專利 絲提及如何操絲統以維持探針與樣品間定原子侧力之_。再則, >巾華民國專辦請絲〇9513σ735號提出了—種義雜臂樑量測方 法此方法主要應用於掃描探針顯微術,然此一專利申請案亦未揭露如 2〇何調適掃描探針顯微術中探針與樣品之關係。而如中華民國專利第 廳’酬揭露_飾娜針顯職及其壓電雜m利之主要 裝置為由壓電片、—底座、—延伸管、及-探針模組構成-壓電掃描器, 又,該壓電掃描器sei合—外框架、—具避震效果之内框架、及—組行程由 數i米至數百奈米的步進驗成—掃描探針顯微鏡 ’此一專利亦未述及本 25發明所提之定料力難㈣^裝置。糾,揭示於巾華民國專利第 86號之專利技術則涉及一種測量樣品表面原子級輪廓形貌之原子力 8 201113528 顯微鏡及其操作方法,其系統襄置包括探針、電子控制系統 統、光電檢測系統及曲面校正系統,此一專利所提之操处二 針之操控翻完整的料。 、’亦未對於探 综合言之,上述之已輯過或公開之專利發明_ 5鏡之部繼㈣_ ’絲簡她数 子力模糊控制器之輕敲式原子力顯微鏡相同或相關之技術與裝置^有疋原 【發明内容】 ^。包括=原:Γ微鏡已經應用於奈米技術和奈辦^ 〇 雜、雜、辟、化學、生物、㈣购之研究和 失…”、、、‘』於維_敲式原子力舰鏡之探針與樣品定原子力之 統為傳統之HD控制系統,其潛在缺點在於掃描的速度慢、需要^强 手動回饋增益調整、與操作人㈣練時間長,因此為了得到較好 的樣σ°影像往往需要很多之操作時間。 '二:輕敲式原子力顯微鏡之使用者非一定具備自動控制理論之背景,因此 可田的調整PID控制器之增益值,以 ζ探針雄_谢細, 0 丨練過程。此外,當顯微鏡於實際樣品掃_,使用者常常必巧再 °0 ::rr:!-— * —^ 往往感,因此儀器者需具備耐心、信心、與毅力,這 微鏡二;:===都大大_ 了輕 雇以⑽社顧之日及性與便繼。因此-個⑽_自動探針定 乃作用是_貝=制系統’用以動態的維持掃圖時探針與樣品間一個固定的原子力 =明提出_種具蚊軒力_糊器之域式原子力顯纖之創作, 之核。概念在於採用控制領域發展相當成熟之模糊控制理論藉以自動 201113528 ’使4木針與樣品間能維持固 且即時調整定原子力回饋控制系統之控制器輸出量 定之原子力作用。 本發明的解決方案是-種具有定原子力模糊控制器之輕敲式原子力顯微 鏡,包括有: 5 K如圖1所示之中央控制與處理單元⑴,用以決定以探針⑶與進行樣品掃圖 時之工作振幅與頻率’同時將此一工作頻率轉換成對應性之數位控制訊 號’再將此-數位控制訊號饋人弦波訊號產生糊產生輕敲式原子力顯微 鏡系統運作之固定振幅與鮮之料職;此—巾央控做處理單元 Q〇⑴並肋決林發明所提之定原子力回饋控·統之定原子力設定值,並 〇將^軒力設紐賴麟躲之触化峨,再饋人触·比轉換器 (13);上述中央控做處理單元⑴獅以控制祕訊號振幅補健⑽之放 大倍率。 15 〇 20 2·如圖i所示之弦波訊號產生器(2),接收中央控制與處理單元⑴所饋入之數 位控制峨ϋ鮮麟度直接產錄狀軒力舰舰行樣品檢 測時所需之蚊辭與特賴幅之錄簡,此—錢峨產生方式較先 前已揭露發明技狀優點在於其控翁式較解、贿峨之頻率解析度 高0 3.如圖i所示之動態訊號放大器⑶,接收中央控制與處理單元⑴所饋入之數 ,控制訊號以罐放大器之放A料,㈣動_補償上賴波訊號產生 的)所產生之卫作職波訊號之振幅,關應不同驅動靈敏度之探 益(4)與探針(5)。 所示之探針驅動器(4)以雙極性之壓電晶片元件極板做為其機械結構 料運用壓電材料之逆機電原理,接收上述經動態訊號放大器(3)補償 2工作職波峨產线雜之賴,藉轉動探邪)產錄敲式原子 力=微鏡鱗針(5)進行樣品檢測時戦之蚊解與蚊振幅之振動。 .㈣1所不之探針(5)於樣品檢測時,受探針(5)與待測樣品間之原子作用力 影響,將產生對應性之縱向形變與振幅改變。 25 201113528 6.如圖丨所示之雷射二極體⑹產生樣品檢測所須之雷射光束,將上述雷射光 束聚紐投射至以固定頻率與振幅振動之探針(5)背面,探針(5)背面之反射 訊號將呈現於四象限光⑺,雷射光點將於四象限光侧器⑺之四個 正交象限呈現與探針(5)同步之固定頻率與振幅運動。 5 7.如圖i所示之四象限光偵測器⑺接收探針⑶背面之雷射反射訊號,採用光 電效應將雷射光訊號轉換成對應之電流訊號。 8·如圖丨所示之電流至電壓轉換器⑻將上述之四象限光綱器⑺所偵測之 雷射光點電流訊號,賴成職性之電壓峨,此—電麵態之量測弦波 Λ號將同步於探針(5)之振幅訊號,藉由即時偵測此一量測弦波訊號之改變 〇°可以快速且即時的_探針(5)受橫向與縱向之原子力作用後,所產生之對 應性形變與振幅改變。 9. 如圖1所示之第—級放大器_以將上述電流至電壓轉換器⑻輸出之量 測弦波訊魏行有效之放大,明細、分析、無號處理。 10. 如圖1所示之帶通滤波器(10),可以遽除第一級放大器⑼輸出端之量測弦 I5 波訊號之低頻與高頻雜訊成份。 11. 如圖1所示之方均根值轉換器(11)用以將帶通濾波器(1〇)輸出端之量測弦 波訊號轉換餘對狀直流電壓峨,如此可⑽量_波減之振幅以 〇 $均根之形式轉換成為相對應之錢電壓訊號,S此當探針⑶受外在作 用力改變而產生振!)¾改變’此時量測弦波訊號之振幅將同步改變,而方均 20 根值轉換器01)輸出端之直流電壓訊號亦將產生對應性之改變。 12. 如圖1所示之動態訊號振幅補償器(12),接收中央控制與處理單元之數 位控制訊號縦動態職振幅補償即2)之放大倍率,藉崎態的補償方 均根值轉換器(11)輸出端之電壓訊號強度,以利觀測、分析、與訊號處理。 13. 如圖i所示之數位至類比轉換器(13)接收中央控制與處理單元⑴之所饋 25 入之數位控制訊號產生對應性之額定類比電壓輸出訊號,此-額定類比電 壓輸出峨與輕敲式原子力顯微鏡於樣品掃圖時之定原子力有相關,當額 定類比電壓輸出訊號較大則探針(5)與待測樣品間之作用力較小,當額定 201113528 類比電壓輸出訊號較小則探針(5)與待測樣品間之作用力較大。 14.如圖i鮮之訊賊法H⑽,肋將上述之祕減振幅截器⑽輸 出之訊號與數位至類比轉換器⑼輸出之額定類比電壓輪出訊號進行相 減之運算’產生之訊號稱為誤差訊號,再將此一誤差訊號饋入模糊控制琴 5 (15)。 。 如圖i與圖2所示之模糊控制器(15)包含—個模糊化裝置(⑸)、一個推論 引擎庫〇52)、-個解模糊化裝置_、與—模糊推論法則庫⑽運作原 理為先將訊賴法器(14)所饋入之誤差訊號以模糊化裝置(i5i)進行訊號 模糊化’再將模糊化後之誤差訊號饋入推論引擎庫(152),以推論引擎庫 〇〇 〇52)内建之模糊推論法則庫㈣進行輸出訊號之推論,最後將推論引擎 庫(I52)之推論結果輸出至解模糊化⑽)裝置,進行解模糊化之運算,用 以將推論值對應到模糊控制器(15)之實際輸出電壓訊號;根據上述之方法 可以利用訊號減法器(14)所饋入之誤差訊號,經模糊控制器⑽内部之模 糊化、模糊推論、與解模糊化之過程,自動的計算出使概式原子力顯微 15 鏡之探針(5)回到定原子力作用值所需的模糊控制器⑽輸出量,此-方法 採用模糊理論’於樣品檢測之過程令,透過輸入之誤差訊號以不斷自動計 算且修正模糊控制_)之輸出量,從而達到提高定原子力回饋控制系統 應速度之效果。此一以模糊控制器⑽自動推論所需控制器輸出量之技 2〇 術與觀念為本案所提技術之重心’相較傳統以人工方式手動調整PID控 2〇 制器增益之方式’本案所提之方法較簡單、省時、精顧高、為全自動且 L應調王之機制、且對於非控制領域背景之儀器使用者將更具親和力。 16·如圖丨所示之高電壓運算放大器⑽用以接收模糊控制器⑼之輸出訊 號,並進行同步的訊號放大再馈入壓電陶瓷管(17)。 25 7·如圖1所7F之壓電陶絲(17)用以接收高電壓運算放大器⑽之輸出電壓 訊號’利用壓電陶究管⑼之逆壓電效應,以於垂直轴產生對應性之形變, 此對應性之形變將同步帶動待測樣品進行垂直面之上下運動 ,如此藉以 維持探針(5)與樣品間定原子力之作用。 12 201113528 【實施方式】 以下藉由具體實施例,配合附圖對本發明做詳細說明: 如圖1所示: 1. 參照圖1 ’由中央控制與處理單元⑴決定探針(5)與進行樣品掃圖時之工 作振與頻率〜,將上述工作頻率^職^轉換成對應性 之數位控制職,再將此—數健觀號饋域波喊產生^⑺以產生 頻率為邮之弦波訊號/l 0) = COS〇reTOmw〆)。 2. 參照圖1,將弦波訊號產生器⑺之輸出訊號饋入動態訊號放大器⑺,動 _號放大_將接收巾央控制與處理單元(1)_人之數位控制訊號 〇 並調整放大11之放大倍率,用以雜_償上述弦波訊號產生器(2)所產 生之弦波訊號之振幅,以因應不同驅動靈敏度之探針驅動器(4)與探針(5) 並符合中央控制與處理單元⑴所預期之工作振幅4偷之要求,動態訊 號放大器(3)之輸出訊號為· = ,此一弦波訊號用 以作為輕敲式原子力顯微鏡之探針(5)進行量測纟卜在物理量改變時之工作 15 用弦波訊號。 3·參照圖1,探針驅動器(4)接收動態訊號放大器(3)輸出為 /2⑺-cos〇rey〇W£m〆)之訊號,採用壓電材料之逆機電原理產生對 紐之職,細麟探邪)產生輕敲式原子力顯微鏡崎針⑶進行樣 品檢測所需之固定頻率吟伽麵r與固定振幅(咖之振動。 2〇 4.參照圖卜於樣品檢測時探針(5)將呈現固定頻率〜_與固定振幅 之振動,若樣品表面有起伏,探針(5)與樣品之間距將產生變化並 影響探針(5)與待測樣品間之原子作用力,此時探針(5)將產生對應性之縱 向形變與振幅改變。 5·參照® 1,由雷射二極體⑹產生樣品檢測所須之雷射絲,將上述雷射 25 光束聚焦並投射至以固定頻率與振幅振動之探針(5)背面,探針(5)背面之 雷射光束反射訊號將呈現於四象限光偵測器(7)。 13 201113528 6. 參照圖卜由四象限光偵測器(7)接收探針(5)背面之雷射光束反射訊號, 並應將雷射光訊號轉換成對應之電流訊號。 7. 參照圖卜由電流至電壓轉換器(8)將上述之四象限光偵測器⑺所债測之 雷射光點電流訊號,轉換成對應性之量測弦波訊號 5 ·/)«(’)= j/w + Δ^ι)。 8. 參照圖1,由第一級放大器(9)將上述電流至電壓轉換器⑻輸出之量測弦 波訊號進行有效之放大,放大後之訊號為 /w⑴=尺1為《 + Δθι),其中尺1為第一級放大器(9)之放大倍 率。 〇0 9.參照圖1 ’由帶通遽波器(10》慮除第一級放大器(9)輸出端之量測弦波訊號 之低頻與高頻雜訊成份。 10. 參照圖1,由方均根值轉換器(11)用以將帶通濾波器(10)輸出端之量測弦 波訊號/w⑺=尺1為„ C0S(6>res_以+ △ q)轉換成相對應之直流電壓訊號 力2猶0),如此可以將量測弦波訊號之振幅以方均根之形式轉換成為相對 15 應之直流電壓訊號/rms⑴。 11. 參照圖1 ’由動態訊號振幅補償器(12)接收中央控制與處理單元(!)之數位 控制訊號’調整動態訊號振幅補償器(12)之放大倍率,藉以動態的補償方 〇 均根值轉換器(11)輸出端之電壓訊號強度,經動態振幅補償後之動態訊號 振幅補償器(12)之輸出訊號為尺^/^狐⑴,其中尺2為動態訊號振幅補償 20 器(12)之放大倍率。 12. 參照圖1,由中央控制與處理單元(1)決定回饋控制系統之定原子力值, 並將此一定原子力值轉換為相對應之電壓訊號/5e^〇int,再由中央控制與 處理單元⑴將/如押int轉換為相對應之數位化訊號後饋入數位至類比轉 換器(13),數位至類比轉換器(π)之輸出端將產生對應性之額定類比電壓 輸出讯號/叫p〇int ’此一額定類比電壓輸出訊號與輕敲式原子力顯微鏡於 樣品掃圖時之定原子力值有相關。 201113528 13.參照ϋ 1 ’由訊號減法器(14)將動態訊號振幅補償器(12)輸出之訊號與數 位至類比轉換器(13)輸出之額定類比電壓輸出訊號進行相減之運算,產生 之訊號稱為誤差峨⑼,再將此—誤差訊號⑼饋人模_制器⑽。 M·參照圖1與圖2 ’由模糊控制器(15)内部之模糊化、模糊推論、與解模糊 5 化之雜’自動的計算丨餘敲絲"f力顯纖之探針⑶回狀原子力 作用值所需之模糊控制器⑽輸出量,再將此一輸出量輸出至高電壓運算 放大器(16)。 ^ 15.參照圖卜由高電壓運算放大器⑽將模糊控制器(15)之輸出訊號進行同 步之訊號放大後再饋入壓電陶瓷管(17)。201113528 IX. Description of the invention: [Technical field to which the invention pertains] The present invention belongs to a smooth surface (four) system of rhyme-density, and the working principle is to make a piezoelectric crystal by exciting-bipolar piezoelectric crystal. The probe has a fixed amplitude and a fixed frequency of 5 frequencies at its female frequency. When the sample is actually detected, the instantaneous amplitude and phase signal of the probe are measured, thereby estimating the physical quantity around the probe such as force, temperature, Humidity, and changes in air pressure. This-measurement mechanism and method are widely used in nanometer-scale measuring disc biomedical testing instruments, such as scanning probe microscope, atomic force microscope, scanning capacitance microscope, scanning 0 resistance microscope, and precise temperature and humidity Measurement system. W [Prior Art] A prior art patent, such as the Republic of China Patent No. 1558, proposes a scanning probe microscope, which is only a rough representation of the scanning probe microscope, and is not used. Secondly, as in the Republic of China Patent No. 1293682, a general-purpose micro-cantilever sensor tank sensitivity control device suitable for air-conditioning, aqueous solution, and vacuum is proposed, and the patent is not disclosed. Xuan Limo loses secrets. In addition, prior art, such as the Republic of China Patent No. I267627, discloses a scanning probe data storage and micro-amplification technique, and this patent mentions how to operate the wire to maintain the atomic side force between the probe and the sample. Furthermore, >Women's Republic of China, please ask silk 〇9513σ735 to propose a method for measuring the miscellaneous beam. This method is mainly applied to scanning probe microscopy, but this patent application has not been disclosed as 2〇 How to adjust the relationship between the probe and the sample in the scanning probe microscopy. For example, the main device of the Republic of China Patent Office, 'Remove Exposure _ 娜娜针显职 and its piezoelectric hybrids, consists of piezoelectric sheets, bases, extension tubes, and probe modules. - Piezoelectric scanners Moreover, the piezoelectric scanner sei-external frame, the inner frame with the suspension effect, and the step-by-step test of the group stroke from several meters to several hundred nanometers - scanning probe microscope 'this patent It is also not mentioned that the fixing force (4) of the present invention is difficult. Correction, disclosed in the towel of the Republic of China patent No. 86 patent technology involves an atomic force measuring the atomic contour of the surface of the sample 8 201113528 microscope and its operation method, its system includes probe, electronic control system, photoelectric detection System and surface correction system, the operation of the two-handed control of this patent turns the complete material. , 'There is no comprehensive explanation for the above, the above-mentioned patents that have been edited or published _ 5 The Ministry of Mirrors (4) _ 'Silk Jane's number of force fuzzy controllers of the same or related techniques and devices ^ There is a 疋原 [invention content] ^. Including = original: Γ micromirror has been applied to nanotechnology and Naiyong ^ noisy, miscellaneous, chemistry, biology, (four) purchase research and loss...",,,,,,,,,,,,,,,,,,,,,,,, The atomic force of the probe and the sample is the traditional HD control system. The potential disadvantages are that the scanning speed is slow, the manual manual feedback gain adjustment is required, and the operator (4) has a long training time, so in order to obtain a better sample σ° image. It often takes a lot of operation time. 'Two: The user of the tapping atomic force microscope does not necessarily have the background of the automatic control theory, so the field can adjust the gain value of the PID controller to ζ probe male_thank, 0 丨In addition, when the microscope scans the actual sample, the user often has to feel °0:rr:!--*-^ often feels, so the instrument needs patience, confidence, and perseverance. ;:=== are all greatly _ lightly employed (10) the day of the community and the nature and convenience. Therefore - a (10) _ automatic probe is the role of the _ shell = system 'to maintain the scan time dynamically A fixed atomic force between the needle and the sample = Ming proposed _ species with mosquito Xuanli _ The concept of the domain-type atomic force display fiber, the core is the use of the control field to develop a fairly mature fuzzy control theory to automatically control the controller of the fixed-atom force feedback control system The output of the atomic force is determined. The solution of the present invention is a tapping atomic force microscope with a fixed atomic force fuzzy controller, comprising: 5 K as shown in Figure 1 of the central control and processing unit (1) for determining The needle (3) and the working amplitude and frequency of the sample scan are simultaneously converted into a corresponding digital control signal, and the digital control signal is fed to the sine wave signal to generate a tapping atomic force microscope system. The fixed amplitude of the operation and the fresh material job; this - the central control unit of the towel is the processing unit Q〇(1) and the fixed atomic force setting value of the fixed atomic force feedback control system proposed by the ribs of the forest, and Lin hides the touch, and then feeds the human-to-converter converter (13); the above-mentioned central control unit (1) lion to control the amplification of the amplitude of the secret signal (10). 15 〇20 2· The sine wave signal generator (2) shown in Figure i, receives the digital control fed by the central control and processing unit (1), and directly detects the samples of the Xuanli ship. The required mosquitoes and the specials are recorded. This is the way in which the money is produced. The advantage of the invention is that the control of the Weng style is better than that of the bribe. The frequency of the bribe is high. The dynamic signal amplifier (3) receives the amplitude fed by the central control and processing unit (1), the control signal is outputted by the tank amplifier, and (4) the amplitude of the servo wave signal generated by the dynamic _compensation signal is generated. The probe driver (4) shown with the bipolar piezoelectric chip component plate as the mechanical material of the piezoelectric material Electromechanical principle, receiving the above-mentioned dynamic signal amplifier (3) compensation 2 work occupation wave production line miscellaneous, by rotating the evil spirits) production of knocking atomic force = microscopic scale needle (5) for sample detection when the mosquito solution Vibration with the amplitude of mosquitoes. (4) One probe (5) is affected by the atomic force between the probe (5) and the sample to be tested when the sample is detected, and the longitudinal deformation and amplitude change of the correspondence are generated. 25 201113528 6. The laser diode (6) shown in Figure 产生 produces the laser beam required for sample detection. The laser beam is projected onto the back of the probe (5) with a fixed frequency and amplitude. The reflected signal on the back of the needle (5) will appear in the four-quadrant light (7), and the laser spot will exhibit a fixed frequency and amplitude motion synchronized with the probe (5) in the four orthogonal quadrants of the four-quadrant side (7). 5 7. The four-quadrant photodetector (7) shown in Figure i receives the laser reflection signal on the back of the probe (3), and uses the photo-electric effect to convert the laser signal into a corresponding current signal. 8. The current-to-voltage converter (8) shown in Figure 将 is the laser spot current signal detected by the above-mentioned four-quadrant illuminator (7), which is the voltage of the job. The wave number will be synchronized with the amplitude signal of the probe (5). By detecting the change of the sine wave signal in real time, the 〇 probe can be quickly and instantaneously subjected to the horizontal and vertical atomic forces. , the resulting deformation and amplitude changes. 9. The first-stage amplifier _ shown in Figure 1 is used to amplify, detail, analyze, and unnumber the sine wave of the above-mentioned current-to-voltage converter (8). 10. The bandpass filter (10) shown in Figure 1 can remove the low frequency and high frequency noise components of the chord I5 wave signal at the output of the first stage amplifier (9). 11. The rms converter (11) shown in Figure 1 is used to convert the measured sine wave signal at the output of the bandpass filter (1〇) to the residual DC voltage 峨, so that (10) _ wave is reduced. The amplitude is converted into the corresponding money voltage signal in the form of 〇$ even root, so that when the probe (3) is changed by the external force, the vibration is generated!) 3⁄4 change 'At this time, the amplitude of the measured sine wave signal will change synchronously. The DC voltage signal at the output of the average 20-value converter 01) will also change the correspondence. 12. The dynamic signal amplitude compensator (12) shown in Figure 1 receives the digital control signal of the central control and processing unit, the dynamic amplitude compensation, ie 2) the magnification, and the compensated square root value converter (11). The voltage signal strength at the output for observation, analysis, and signal processing. 13. The digital-to-analog converter (13) shown in Figure i receives the rated analog voltage output signal corresponding to the digital control signal fed by the central control and processing unit (1), and the rated analog voltage output is The tapping atomic force microscope is related to the fixed atomic force of the sample sweeping. When the rated analog voltage output signal is larger, the force between the probe (5) and the sample to be tested is smaller. When the analog 201113528 analog voltage output signal is smaller. Then the force between the probe (5) and the sample to be tested is large. 14. As shown in Figure i, the fresh thief method H (10), the rib will subtract the signal from the output of the above-mentioned secret-reducing amplitude interceptor (10) and the digital analog-to-digital converter (9) output analog analog voltage round-off signal. For the error signal, this error signal is fed into the fuzzy control piano 5 (15). . The fuzzy controller (15) shown in FIG. 1 and FIG. 2 includes a fuzzy device ((5)), a deductive engine library 52), a defuzzification device _, and a fuzzy inference algorithm library (10) operating principle. In order to first embed the error signal fed by the signal processor (14) with the fuzzing device (i5i), the error signal is fed into the inference engine library (152) to infer the engine library. 〇〇52) The built-in fuzzy inference rule library (4) carries out the inference of the output signal, and finally outputs the inference result of the inference engine library (I52) to the defuzzification (10) device, and performs the defuzzification operation to use the inference value. Corresponding to the actual output voltage signal of the fuzzy controller (15); according to the above method, the error signal fed by the signal subtractor (14) can be utilized, and the fuzzy, fuzzy inference, and defuzzification are performed inside the fuzzy controller (10). In the process, the output of the fuzzy controller (10) required to return the probe of the atomic force microscopy 15 (5) to the value of the fixed atomic force is automatically calculated. This method uses the fuzzy theory to process the sample. Through the input error signal Continuously and automatically calculates the correction Fuzzy Control _) of the output, so as to improve the effect of the force feedback control system shall be given atom speed. This method uses the fuzzy controller (10) to automatically infer the required controller output. The skill and concept of the technology proposed in this case are compared with the traditional manual adjustment of the PID control 2 controller gain method. The method is simpler, time-saving, high-quality, fully automatic and the mechanism of L should be adjusted, and the instrument users in the non-control field background will have more affinity. 16. The high voltage operational amplifier (10) shown in Fig. 用以 is used to receive the output signal of the fuzzy controller (9), and to perform synchronous signal amplification and feed into the piezoelectric ceramic tube (17). 25 7. The piezoelectric ceramic wire (17) of 7F in Fig. 1 is used to receive the output voltage signal of the high voltage operational amplifier (10), using the inverse piezoelectric effect of the piezoelectric ceramic tube (9) to produce a correspondence with the vertical axis. Deformation, the deformation of this correspondence will synchronously drive the sample to be tested to move up and down the vertical plane, so as to maintain the atomic force between the probe (5) and the sample. 12 201113528 [Embodiment] Hereinafter, the present invention will be described in detail by way of specific embodiments with reference to the accompanying drawings: FIG. 1: 1. Referring to FIG. 1 'The probe (5) and the sample are determined by the central control and processing unit (1) The working vibration and frequency of the sweeping map~, the above-mentioned working frequency ^ job ^ is converted into the corresponding digital control position, and then the number of the number of the observation field is shouted to generate ^ (7) to generate the frequency of the string signal /l 0) = COS〇reTOmw〆). 2. Referring to Figure 1, the output signal of the sine wave signal generator (7) is fed into the dynamic signal amplifier (7), and the dynamic _ number amplification _ will receive the towel control and processing unit (1) _ human digital control signal 〇 and adjust the amplification 11 The magnification of the sine wave signal generated by the sine wave signal generator (2) is used to compensate the probe driver (4) and the probe (5) for different driving sensitivities and conform to the central control and The processing unit (1) expects the working amplitude 4 stealing request, and the output signal of the dynamic signal amplifier (3) is · = , and the chord signal is used as a probe of the tapping atomic force microscope (5) for measurement. When the physical quantity changes, the work 15 uses a sine wave signal. 3. Referring to FIG. 1, the probe driver (4) receives the signal of the dynamic signal amplifier (3) output as /2(7)-cos〇rey〇W£m〆), and uses the inverse electromechanical principle of the piezoelectric material to generate the position of the new button.细麟探邪) produces a tapping atomic force microscope Saki needle (3) for the fixed frequency required for sample detection Sangha surface r and fixed amplitude (coffee vibration. 2 〇 4. Refer to Figure for probe detection (5) Will exhibit a fixed frequency ~ _ and a fixed amplitude of vibration, if the surface of the sample is undulating, the distance between the probe (5) and the sample will change and affect the atomic force between the probe (5) and the sample to be tested, then explore The needle (5) will produce a corresponding longitudinal deformation and amplitude change. 5. Refer to ® 1, generate a laser for the sample detection by the laser diode (6), focus and project the above-mentioned laser beam 25 to fix On the back of the probe for frequency and amplitude vibration (5), the laser beam reflection signal on the back of the probe (5) will appear in the four-quadrant photodetector (7). 13 201113528 6. Refer to Figure 4 by four-quadrant light detection The device (7) receives the laser beam reflection signal on the back of the probe (5) and converts the laser light signal into Corresponding current signal 7. Refer to Figure b. The current-to-voltage converter (8) converts the laser spot current signal measured by the four-quadrant photodetector (7) into a corresponding sine wave signal 5 · /)«(')= j/w + Δ^ι). 8. Referring to FIG. 1, the first-stage amplifier (9) effectively amplifies the sine wave signal outputted by the current-to-voltage converter (8), and the amplified signal is /w(1)=foot 1 is "+ Δθι", The ruler 1 is the magnification of the first stage amplifier (9). 〇0 9. Refer to Figure 1 'The low-frequency and high-frequency noise components of the sine wave signal measured by the band-pass chopper (10) at the output of the first-stage amplifier (9). The rms converter (11) is used to convert the sine wave signal /w(7)=foot 1 of the output of the band pass filter (10) to „C0S(6>res_+ Δq) to the corresponding DC voltage. The signal force 2 is still 0), so that the amplitude of the measuring sine wave signal can be converted into a relative voltage signal / rms(1) in the form of a square root. 11. Refer to Figure 1 'Receiving the center by the dynamic signal amplitude compensator (12) The digital control signal of the control and processing unit (!) adjusts the amplification factor of the dynamic signal amplitude compensator (12), thereby dynamically compensating the voltage signal intensity at the output of the square root value converter (11), and is compensated by dynamic amplitude. The output signal of the subsequent dynamic signal amplitude compensator (12) is the ruler ^/^ fox (1), wherein the ruler 2 is the magnification of the dynamic signal amplitude compensation 20 (12). 12. Referring to Figure 1, the central control and processing unit (1) Determining the fixed atomic force value of the feedback control system and converting the certain atomic force value into Corresponding voltage signal /5e^〇int, and then the central control and processing unit (1) converts the int to the corresponding digitized signal and then feeds the digit to the analog converter (13), the digit to analog converter (π) The output of the output will produce a corresponding rated analog voltage output signal / called p〇int 'This rated analog voltage output signal is related to the atomic force value of the tapping atomic force microscope in the sample scan. 201113528 13. ϋ 1 'The signal subtracted by the signal subtractor (14) is subtracted from the signal output from the digital signal amplitude compensator (12) and the digital analog-to-digital converter (13) output. The resulting signal is called error.峨(9), and then the error signal (9) is fed to the modulo controller (10). M·Refer to Figure 1 and Figure 2 'Fuzzy, fuzzy inference, and defuzzification within the fuzzy controller (15) Automatically calculate the output of the fuzzy controller (10) required for the value of the atomic force of the probe (3), and output the output to the high-voltage operational amplifier (16). Refer to Figure Bu by high voltage operation to enlarge ⑽ the fuzzy controller output signal (15) for the same signal after amplification steps piezoelectric ceramic feed tube (17).

Oo I6.參照圖1,由壓電陶竟管(17)接收高電壓運算放大器⑽之輸出電壓訊 號,再利用壓電陶竟管(17)之逆壓電效應,以於垂直轴產生對應性之形 變’此-對應性之形變將同步帶動待測樣品進行垂直面之上下運動,如 此藉以維持探針與樣品間定原子力之作用。 Π.參照® 1 ’於樣品_触巾’職減賴晴連_執行動態訊號振 15 ㈣補償器(12)之輸出訊號與數位至類比轉換H(13)輸出之額定類比電壓 輸出訊號械之運算’並即時的將誤差喊⑼饋人模她㈣(15),模 糊控制器(15)採用模糊理論,在樣品檢測之過程中,將透過誤差訊號冲) Ο 以不斷的自树算且修正獅㈣H (15)之輸ib i:,從而物提高定原子 力回饋控制系統響應速度之效果,模糊控制器⑽自動推論所需控制器輸 2〇 出量之技術與觀念為本細提技術之重心、,減傳統以人工^式手動調 整PID控制器增益之方式,採用模糊控制器之優點在於操作簡單、節省 人工調整時間、精確度高、為全自動且自適應調整之機制、且對於非控 制領域背景之儀ϋ使用者將更具親和力。 ' 15 25 201113528 【圖式簡單說明】 圖1、具有定原子力模糊控制器之輕敲式原子力顯微鏡系統架構圖。 圖2、模糊控制器之基礎架構圖。 5 【主要元件符號說明】 1:中央控制與處理單元。 2:弦波訊號產生器。 10 3:動態訊號放大器。 4:探針驅動器。 5:探針。 Q 6:雷射二極體。 7:四象限光偵測器。 15 8:電流至電壓轉換器。 9:第一級放大器。 10:帶通濾波器。 11:方均根值轉換器。 12:動態訊號振幅補償器。 20 13:數位至類比轉換器。 14:訊號減法器。 15:模糊控制器。 16:高電壓運算放大器。 17:壓電陶瓷管。 〇 151:模糊化裝置。 152:推論引擎庫。 153:解模糊化裝置。 154:模糊推論法則庫。 30 16Oo I6. Referring to Figure 1, the piezoelectric ceramic tube (17) receives the output voltage signal of the high voltage operational amplifier (10), and then uses the inverse piezoelectric effect of the piezoelectric ceramic tube (17) to produce a correspondence with the vertical axis. The deformation of this - the corresponding deformation will simultaneously drive the sample to be tested to move up and down the vertical plane, so as to maintain the role of the atomic force between the probe and the sample. Π. Refer to ® 1 'In the sample _ touch towel' job minus Lai Qinglian _ perform dynamic signal vibration 15 (four) compensator (12) output signal and digital to analog conversion H (13) output rated analog voltage output signal device Operation 'and immediately call the error (9) to feed the model (4) (15), the fuzzy controller (15) uses the fuzzy theory, in the process of sample detection, will pass the error signal )) 不断 to constantly calculate and correct Lion (4) H (15) loses ib i:, thus the effect of increasing the response speed of the fixed atomic force feedback control system, the fuzzy controller (10) automatically infers the technology and concept of the required controller to reduce the amount of technology. The method of manually adjusting the gain of the PID controller by manual mode is advantageous in that the operation is simple, the manual adjustment time is saved, the accuracy is high, the mechanism is fully automatic and adaptively adjusted, and the control is non-control. The user of the field background will be more affable. ' 15 25 201113528 [Simple diagram of the diagram] Figure 1. Schematic diagram of a tapping atomic force microscope system with a fixed atomic force fuzzy controller. Figure 2. Infrastructure diagram of the fuzzy controller. 5 [Description of main component symbols] 1: Central control and processing unit. 2: Sine wave signal generator. 10 3: Dynamic signal amplifier. 4: Probe driver. 5: Probe. Q 6: Laser diode. 7: Four-quadrant light detector. 15 8: Current to voltage converter. 9: First stage amplifier. 10: Bandpass filter. 11: Square root mean value converter. 12: Dynamic signal amplitude compensator. 20 13: Digital to analog converter. 14: Signal subtractor. 15: Fuzzy controller. 16: High voltage operational amplifier. 17: Piezoelectric ceramic tube. 〇 151: Obfuscation device. 152: Inference engine library. 153: Defuzzification device. 154: Fuzzy inference law library. 30 16

Claims (1)

201113528 十、申請專利範圍: 一種具有定原子力模糊控制器之輕敲式原子力顯微鏡 -中央控做處理單元,用叫魏針 ⑽. 用以決定本發明所提之定原子力回饋控制;時之工作振幅與頻率; 動態訊毅^之放大鲜象軒力奴制以決定 徑制動態讯號振幅補償器之放大倍率; -弦波訊號產生器’與中央控顺處理單元連接㈣接收中央控制 ^^所饋人讀健觀號1 —高解解析度直生純式好 顯微鏡進行樣品檢測時所需之特定頻率與特定振幅之弦波訊號. Ο 10 15201113528 X. Patent application scope: A tapping atomic force microscope with a fixed atomic force fuzzy controller - central control processing unit, called Wei needle (10). Used to determine the fixed atomic force feedback control proposed by the present invention; And frequency; dynamic Xunyi ^ magnified fresh as Xuan Li slave to determine the magnification of the dynamic signal amplitude compensator; - Sine wave signal generator 'connected with the central control processing unit (four) to receive the central control ^ ^ Feeding the Jian Guan No. 1 - High resolution resolution Straight-line pure spectroscopy signal for specific frequency and specific amplitude required for sample detection. Ο 10 15 20 -動態訊號放大^,與紐職產生料接,接收巾央控做處理單元所 獻之控親砂義碰敎^放大鲜,糾_的猶上述弦波 訊號產生器所產生之弦波訊號之振幅; -探針驅動II,與動態訊號放大器連接,用以接收上述經動態訊號放大器 麵過之功職波贿並產生對舰之形變,藉以驅動探針產生輕敲式 原子力顯織崎雌行樣^_時所冑之敗辭細紐幅之振動; -探針’與探針驅動器連接’用以接收探針驅動器之輸出訊號產生對應性之 縱向形變與振巾§改變;上述探針受探針與制樣品間之原子作用力影響,亦 將產生對應性之縱向形變與振幅改變; -雷射二極體’用以產生樣品檢測賴之雷射光束,將上述雷射光束聚焦並 投射至以固定頻率與振幅振動之探針背面; 一四象限光偵測器,用以接收探針背面之雷射反射訊號,採用光電效應將雷 射光束訊號轉換成對應之電流訊號; 一電流至電壓轉換器’與四象限光偵測器連接,用以將四象限光偵測器所 偵測之雷射光點電流訊號,轉換成對應性之電壓訊號; 一第一級放大器’與電流至電壓轉換器連接,用以對電流至電壓轉換器輸 出之量測弦波訊號進行有效之放大; 一帶通遽波器,與第一級放大器連接,用以濾除第一級放大器輸出端之量 17 25 201113528 測弦波訊號之低*頻與高頻雜訊; 一方均根值轉換器’與帶通濾波器連接,用以將帶通濾波器輸出端之量測 弦波訊號轉換成相對應之直流電壓訊號,如此可以將量測弦波訊號之捃俨 以方均根之形式轉換成為相對應之直流電壓訊號; 田 5 —動態訊號振幅補償器,與方均根值轉換器連接,用以接收中央控制與處 理單元所送之數位控制訊號,並調整動態訊號振幅補償器之放大倍率,、藉 以動態的補償方均根值轉換器輸出端之電壓訊號強度; -數位至類比轉換n,與巾央㈣減理單元連接,肋接收中央控制與 處理單元之所饋入之數位控制訊號產生對應性之額定類比電壓輸出訊號; ° —職減法^ ’與數位至紙轉換ϋ及動態遽振幅婦ϋ連接,用以執 仃動態訊舰巾!猶H触之峨與數位至触轉換雜丨之败類比電 壓輸出訊號相減之運算,產生誤差訊號並饋入模糊控制器; -模糊控制器’與訊號減法器連接,包含—麵糊化裝置、_個推論引擎 15庫、一鑛模糊化裝置、與一麵糊推論法則庫;用以自動的計算出2輕敲 式原子力顯微鏡之探針回到定原子力作用值所需之控制器輸出量; 「高電壓運算放大^與模糊湖^連接,㈣接賴魅彻之輸出訊 號,並進行同步之訊號放大再饋入壓電陶瓷管; 〇 —壓電喊官’與高電壓運算放大器連接,用以接收高電壓運算放大器輸 2出賴訊號’利用管之逆I電效應,以於垂直轴產生對應性= 20變,此-對應性之形變將帶動待測樣品進行垂直面的上下運動,藉以動態 的調整探針與樣品間之距離,轉探針與樣品間絲子力之作用。 2·如申請補_第丨項所述之__種具有定原子力模糊控·之輕敲式原子 力顯微鏡,其中上述模糊控制器,包括: 25 馳化錢’與城減法11雜,肖崎簡;減法騎饋人之誤差訊號 以模糊化裝置進行喊模糊化,再賴糊化後之誤差訊魏碌論引擎庫; i論引擎庫,顏糊化裝置連接,用以將模糊化裝置所饋人模糊化後之 誤差訊號以推論引擎庫内建之模糊推論法則庫進行輸出訊號之推論; 201113528 一解模糊化裝置,與推論引擎庫連接,用以將推論引擎庫之推論結果進行 解模糊化之運算,並對應到模糊控制器之實際輸出電壓訊號; 一模糊推論法則庫,與推論引擎庫連接,利用模糊法則與模糊化後之誤差 訊號,自動推論計算出使輕敲式原子力顯微鏡之探針回到定原子力作用值 5 所需之控制器輸出量。20 - Dynamic signal amplification ^, and the new job produces the material connection, the receiving towel control unit provides the control unit to control the sand control touch 敎 ^ magnify fresh, correct _ the sine wave signal generated by the above sine wave signal generator The amplitude of the probe is connected to the dynamic signal amplifier for receiving the above-mentioned dynamic signal amplifier and the deformation of the ship, thereby driving the probe to generate a tapping atomic force. When the sample is ^_, the vibration of the defect is changed; - the probe 'connects with the probe driver' is used to receive the output signal of the probe driver to generate the corresponding longitudinal deformation and the vibration § change; the above probe Affected by the atomic force between the probe and the sample, it will also produce a corresponding longitudinal deformation and amplitude change; - a laser diode is used to generate a laser beam for sample detection, and the laser beam is focused and Projecting to the back of the probe vibrating at a fixed frequency and amplitude; a four-quadrant photodetector for receiving the laser reflection signal on the back of the probe, and converting the laser beam signal into a corresponding current signal by using a photoelectric effect; The flow-to-voltage converter is connected to the four-quadrant photodetector for converting the laser spot current signal detected by the four-quadrant photodetector into a corresponding voltage signal; a first-stage amplifier' and current a voltage converter connection for effectively amplifying the sine wave signal outputted by the current to voltage converter; a bandpass chopper connected to the first stage amplifier for filtering out the output of the first stage amplifier Amount 17 25 201113528 The low frequency and high frequency noise of the sine wave signal; the one-seven root value converter' is connected with the band pass filter to convert the measured sine wave signal at the output of the band pass filter into phase Corresponding DC voltage signal, which can convert the measured chord signal into a corresponding DC voltage signal in the form of a square root; Field 5 - dynamic signal amplitude compensator, connected to the rms converter for receiving the central Controlling and processing the digital control signal sent by the processing unit, and adjusting the amplification factor of the dynamic signal amplitude compensator, thereby dynamically compensating the voltage at the output of the rms converter No. intensity; - digital to analog conversion n, connected with the towel (four) reduction unit, the rib receives the digital analog signal of the corresponding digital control signal fed by the central control and processing unit; ° - occupational subtraction ^ ' It is connected with the digital-to-paper conversion and dynamic 遽 amplitude ϋ , , , , , , 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹 犹Feeding fuzzy controller; - Fuzzy controller' is connected with signal subtractor, including - battering device, _ inference engine 15 library, a mine fuzzification device, and a paste inference rule library; used to automatically calculate 2 The tapping atomic force microscope probe returns the controller output required to determine the atomic force value; "High voltage operation amplification ^ is connected with the fuzzy lake ^, (4) depends on the output signal of the charm, and the signal amplification is synchronized. Feeding into the piezoceramic tube; 〇-Piezo singer' is connected to a high-voltage operational amplifier to receive the high-voltage operational amplifier. The straight axis produces the correspondence = 20 change. The deformation of this-correspondence will drive the sample to be tested to move up and down the vertical plane, so as to dynamically adjust the distance between the probe and the sample, and the effect of the filament between the probe and the sample. . 2. If the application of the supplementary _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The subtraction rider's error signal is fuzzified by the fuzzification device, and then the error is transmitted to the Weilu on the engine library; i is on the engine library, and the gelatinization device is connected to feed the fuzzification device. The error signal after the person's fuzzification is inferred from the fuzzy inference algorithm library built into the engine library; 201113528 A fuzzification device is connected with the inference engine library to defuzzify the inference result of the inference engine library. The operation, and corresponds to the actual output voltage signal of the fuzzy controller; a fuzzy inference rule library, connected with the inference engine library, using the fuzzy law and the fuzzy error signal, automatically inferring and calculating the tapping atomic force microscope The needle returns to the amount of controller output required to determine the atomic force value of 5. 1919
TW98134637A 2009-10-13 2009-10-13 A tapping mode atomic force microscope with a constant force fuzzy controller TW201113528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98134637A TW201113528A (en) 2009-10-13 2009-10-13 A tapping mode atomic force microscope with a constant force fuzzy controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98134637A TW201113528A (en) 2009-10-13 2009-10-13 A tapping mode atomic force microscope with a constant force fuzzy controller

Publications (1)

Publication Number Publication Date
TW201113528A true TW201113528A (en) 2011-04-16

Family

ID=44909654

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98134637A TW201113528A (en) 2009-10-13 2009-10-13 A tapping mode atomic force microscope with a constant force fuzzy controller

Country Status (1)

Country Link
TW (1) TW201113528A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560737B (en) * 2013-12-16 2016-12-01 Dcg Systems Inc A system for analyzing a sample, in particular a system scanning an integratedcircuit, and method for analyzing a sample
US9891280B2 (en) 2013-06-24 2018-02-13 Fei Efa, Inc. Probe-based data collection system with adaptive mode of probing controlled by local sample properties
US10539589B2 (en) 2014-06-25 2020-01-21 Fei Efa, Inc. Through process flow intra-chip and inter-chip electrical analysis and process control using in-line nanoprobing
TWI730578B (en) * 2020-01-06 2021-06-11 精浚科技股份有限公司 Atomic force microscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9891280B2 (en) 2013-06-24 2018-02-13 Fei Efa, Inc. Probe-based data collection system with adaptive mode of probing controlled by local sample properties
TWI560737B (en) * 2013-12-16 2016-12-01 Dcg Systems Inc A system for analyzing a sample, in particular a system scanning an integratedcircuit, and method for analyzing a sample
US10539589B2 (en) 2014-06-25 2020-01-21 Fei Efa, Inc. Through process flow intra-chip and inter-chip electrical analysis and process control using in-line nanoprobing
TWI730578B (en) * 2020-01-06 2021-06-11 精浚科技股份有限公司 Atomic force microscope

Similar Documents

Publication Publication Date Title
TW201113528A (en) A tapping mode atomic force microscope with a constant force fuzzy controller
JP2003028791A (en) Optical imaging device
JPWO2008029562A1 (en) Atomic force microscope
CN107219379B (en) Multi-frequency scanning probe acoustic microscope system and implementation method thereof
JP4197339B2 (en) 3D shape measuring device
JP4756024B2 (en) 3D shape measuring device
US9261349B2 (en) Optical imaging apparatus, optical imaging method, apparatus for setting characteristics of a light source, and method for setting characteristics of a light source
CN103207035B (en) Force spectrometer for measuring intermolecular forces
JP2017101923A (en) Scanning probe microscope and sample measurement method using the microscope
CN100582738C (en) Atomic force microscopic imaging method and device based on piezoelectric scanning tube dynamic property
TWI293682B (en) Multipurpose micro cantilever sensing sensitivity control device
US11156632B2 (en) Measuring device for a scanning probe microscope and method for scanning probe microscopy of a measurement sample by means of a scanning probe microscope
JP3451620B2 (en) Signal processing method and scanning probe microscope
JP2016023952A (en) Scanning probe microscope
TW201118379A (en) A constant force fuzzy controller for contact mode atomic force microscopes
JP2016004230A (en) Sample observation device
CN103472266B (en) Based on the atomic force microscope dynamic imaging methods of piezoelectric scanning pipe step response curve
Sartore et al. Controlled-atmosphere chamber for atomic force microscopy investigations
JP6706519B2 (en) Scanning probe microscope, measuring range adjusting method of scanning probe microscope, and measuring range adjusting program
JP2005291720A (en) Fluorescent detecting device, and contrasting density information correcting method and program
JP4564266B2 (en) Scanning laser microscope
JP5232681B2 (en) Scanning probe microscope and operation method thereof
KR20110061009A (en) The apparatus and method of controller circuit analysis and scan generation moulation for enhancing sem image
JP2024520387A (en) AFM imaging with creep correction
Scheuring et al. Self-optimizing and adaptive digital signal processor based algorithms in scanning tunneling microscopy