201113080 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種二氧化矽粒子或二氧化鈽(氧化姉 )粒子用的分散劑、含有該分散劑之硏磨劑,尤其,有關 可用於化學機械硏磨(以下,稱爲「CMP」)之硏磨劑, 屬於分散劑、硏磨劑及CMP硏磨劑之技術領域者。 【先前技術】 以往,二氧化矽粒子或二氧化鈽粒子之分散劑已知有 丙烯酸或其鹽之單獨聚合物、水溶性胺基羧酸系聚合物、 或丙烯酸酯之(共)聚物、與溶劑之分散劑。於此等之分 散劑所含有的聚合物,係吸附於二氧化矽粒子或二氧化铈 粒子,於粒子間產生立體障礙,可賦予反撥作用,可形成 安定之分散液。 上述構成之二氧化矽分散液係可使用於製紙用途、金 屬加工用途、纖維用途、塗料用途、光學材料用途及後述 之CMP用途。又,二氧化铈分散液係可使用於排氣淨化 觸媒用途、氣體感測器用途、光學材料用途及CMP用途 〇 所謂CMP例如於半導體裝置之製造步驟用以使實施 曝光之層平坦的技術。 CMP中係於硏磨固定盤上貼黏硏磨墊,硏磨墊之表 面以硏磨劑被覆之方式,連續供給含有二氧化矽粒子或二 氧化铈粒子之硏磨劑,以押住加壓被硏磨面之狀態施轉硏 201113080 磨固定盤,藉由硏磨劑與被硏磨體之凸 去凸部,平坦化。或,以硏磨劑浸入已 上之硏磨墊表面,以押住加壓被硏磨面 定盤,藉由硏磨劑與被硏磨體之凸部的 部,平坦化。 此CMP之硏磨劑係使用分散劑而 二氧化鈽粒子分散者爲已知。 有關二氧化矽粒子或二氧化铈粒子 此等粒子之硏磨劑或CMP硏磨劑,係 聚合物者很有效,如以下之提案。 例如,於專利文獻1中係已揭示一 鹽或聚丙烯酸胺鹽之分散劑。又,於專 一種含有水溶性胺基羧酸系聚合物之分 獻3中係揭示一種含有碳數2〜4之環氧 )丙烯酸酯的(共)聚物之分散劑。又 係已揭示一種含有含亞胺基二醋酸基之 物之分散劑。 [先前技術文獻] [專利文獻] [專利文獻1]特開2005-167271號 [專利文獻2]特開2005-116563號 [專利文獻3 ]特開2 0 0 4 - 0 5 1 7 5 6號 [專利文獻4]特開2005-347579號 部的機械摩擦而除 貼黏於硏磨固定盤 之狀態施轉硏磨固 機械摩擦而除去凸 使二氧化矽粒子或 之分散劑、或分散 含有上述丙烯酸系 種含有聚丙烯酸銨 利文獻2中已揭示 散劑。又,專利文 烷加成物的(甲基 ,於專利文獻4中 甲基丙烯酸酯聚合 公報 公報 公報 公報 201113080 【發明內容】 [發明之槪要] [發明欲解決之課題] 但,在近年,與習知比較而可使用二氧化矽粒子或二 氧化铈粒子爲2重量%以上之分散液,在如此之情形,粒 子間之相互作用變強,故粒子間易隨時間凝集。若使用如 此地凝集之分散液作爲CMP硏磨劑,於被硏磨體易產生 硏磨刮傷。 對於如此之要求,如示於上述之習知技術的分散劑中 ,分散液之黏度隨時間變高,又,粒子易凝集,若使用來 作爲硏磨劑,有於被硏磨體產生硏磨刮傷之問題。 如此,習知之分散劑係對於使用來作爲硏磨劑時之硏 磨刮傷,並非充分滿足者。 [用以解決課題之手段] 本發明人等係發現在二氧化砂粒子或二氧化铈粒子用 之分散劑中,即使二氧化矽粒子或二氧化铈粒子爲高濃度 的分散液,亦未隨時間變成高黏度,或凝集之分散劑,以 及,發現爲含有二氧化矽粒子或二氧化鈽粒子之硏磨劑, 於被硏磨體未產生硏磨刮傷之硏磨劑,故進行專心硏究。 本發明人等係爲解決前述課題,發現倂用(甲基)丙 烯酸或其鹽之共聚物與特定醇之分散劑很有效,使用此而 分散二氧化矽粒子或二氧化铈粒子之硏磨劑很有效,終完 201113080 成本發明。 本發明係如以下般。 1. 一種二氧化矽粒子或二氧化铈粒子用分散劑,其 係含有(A)成分與(B)成分之二氧化矽粒子或二氧化 铈粒子用分散劑,其特徵在於: 上述(A)成分係具有由(甲基)丙烯酸及其鹽選出 之至少一種的單體(A-1)所構成的構成單體單元、及烷 基之碳數爲4~8的(甲基)丙烯酸烷基酯(A-2)所構成 的構成單體單元之丙烯酸系共聚物’ 上述(Β)成分係碳數爲4〜8個的醇’ 上述(Β)成分之含量係相對於上述(Α)成分’爲 1,000〜30,0〇〇 重量 ppm。 2. 如上述1項之二氧化矽粒子或二氧化铈粒子用分 散劑,其中上述(A )成分爲以上述(A-1 )及上述(A-2 )之合計作爲100重量%時,使上述(A-1)及上述(A-2 )分別以60~95重量%及5〜40重量%之量比使用所得到 的共聚物。 3. 如上述1項或2項之二氧化矽粒子或二氧化鈽粒 子用分散劑,其中上述(A)成分之重量平均分子量爲 2,000〜1〇,〇〇〇 〇 4. 如上述1〜3項中任一項之二氧化矽粒子或二氧化 铈粒子用分散劑,其係上述(A)成分及上述(B)成分 之水溶液。 5. 如上述4項之二氧化矽粒子或二氧化鈽粒子用分 -8 · 201113080 散劑,其中pH在於2〜9的範圍。 6. 一種分散液,其特徵爲含有二氧化矽粒子或二氧 化铈粒子、與如上述1 ~5項中任一項之二氧化矽粒子或二 氧化铈粒子用分散劑。 7. 如上述6項之分散液,其中相對於二氧化矽粒子 或二氧化铈粒子100重量份,上述(A)成分爲0.01〜2.0 重量份。 8. 如上述6項或7項之分散液,其中以〇·1〜5〇重量 %之比例含有二氧化矽粒子或二氧化铈粒子。 9. 如上述6~8項中任一項之分散液,其中二氧化矽 粒子的平均粒徑爲〇.〇〇5~〇.5"111。 10. 如上述6〜8項中任一項之分散液’其中二氧化铈 粒子的平均粒徑爲〇.〇l~l.〇em。 1 1 .—種硏磨劑,其特徵爲含有如上述6~ 1 0項中任 一項之分散液。 12. —種化學機械拋光用硏磨劑,其特徵爲含有如上 述1 1項的硏磨劑。 [發明之效果] 若依本發明之分散劑’在使二氧化矽粒子或二氧化铈 分散時可抑制凝集’亦可隨時間抑制分散液之凝集。 又,在使用本發明之分散液作爲硏磨劑時’若具有凝 集物,成爲硏磨刮傷之原因’但本發明之硏磨劑係可抑制 隨時間的凝集,藉此’可改善硏磨劑之保存安定性’可聿交 -9 - 201113080 習知更長期間的保管。 本發明之分散劑顯現前 但與習知之分散劑比較,推 散液中之粒子,同時並非因 【實施方式】 [用以實施發明之形態] 以下,詳細說明本發明 本發明之二氧化矽粒子 下亦僅稱爲「分散劑」), 成分之二氧化矽粒子或二氧 於: 上述(A)成分係具有 之至少一種的單體(A-1). 基之碳數爲4~8個的(甲3 成的構成單體單元之丙烯酸 上述(B )成分係碳數;| 上述(B)成分之含量 1,000~30,000 重量 ppm。又 或甲基丙烯酸表示爲(甲基 以下’說明有關構成矣 份。 述效果之理由的內容係不明, 斷本發明之分散劑係吸附於分 於粒子間賦予滑性。 或二氧化铈粒子用分散劑(以 其係含有(A)成分與(B) 化铈粒子用分散劑,其特徵在 由(甲基)丙烯酸及其鹽選出 所構成的構成單體單元、及烷 S )丙烯酸烷基酯(A-2 )所構 系共聚物, 爵4〜8個的醇, 係相對於上述(A )成分,爲 ,在本案說明書中,使丙烯酸 )丙烯酸。 卜散劑之(A )成份及(B )成 1 . ( A )成分 -10- 201113080 作爲必須構成 (A )成分之 有的羧基被中 (A)成分係以單體(A-l )及(a_2) 單體單兀ό勺(甲基)丙烯酸系共聚物。又, 丙稀酸系共聚物係亦包含丙_系共聚物具 和’丙嫌酸系共聚物成爲鹽之形態者。 因此 (A )成分係例示以下之 二)含有由(甲基)丙嫌酸(A·"所構成之構成單 體單元(以下,稱爲(p - i )單元卜與由(甲基)丙烧 酸烷酯(A-2 )所構成之構成單體單元(以下,稱爲(p_3 )單71:)之共聚物。 含有由(甲基)丙稀酸鹽(Aq)所構成之構成 單體單元(以下,稱爲(p-2 )單元)、與(p_3 )單元) 之共聚物。 (3)含有(Ρ-1)單元、(Ρ-2)單元、及(ρ_3)單 元之共聚物。 單體(Α-1)係由(甲基)丙烯酸及其鹽選出之至少 一種的單體。 單體(Α-1)可舉例如僅(甲基)丙烯酸、(甲基) 丙烯酸之一部分被中和之鹽及(甲基)丙烯酸的全部被中 和的鹽。 此等之中,可使用丙烯酸或/及丙烯酸之一部分被中 和之鹽作爲(A-1 ),就製造(A )成分時之聚合性優異 ,所得到之(A )成分的水溶性優異,佳。 上述(甲基)丙烯酸鹽可舉例如(甲基)丙烯酸之銨 -11 - 201113080 鹽、有機胺、鹼金屬鹽等。 在上述有機胺鹽之有機胺可舉例如三乙胺 屬鹽中之鹼金屬可舉例如氫氧化鈉及氫氧化鉀 此等之中,爲銨鹽,(A )成分於分散性 分散劑作爲硏磨劑時,於被硏磨物之污染少之 單體(A-2 )係烷基酯部之烷基的碳數爲 甲基)丙烯酸烷基酯,宜爲烷基的碳數爲4〜6 )丙烯酸烷基酯。 單體(A-2 )的具體例可舉例如(甲基) 酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸 (甲基)丙烯酸戊酯、(甲基)丙烯酸己酯、 烯酸庚酯、(甲基)丙烯酸2-乙基己酯及( 酸環己酯等。 此等之中宜爲(甲基)丙烯酸正丁酯、( 酸異丁酯及(甲基)丙烯酸第三丁酯之(甲基 酯,尤宜爲(甲基)丙烯酸正丁酯。 藉由使用烷基的碳數爲4個以上之(甲基 基酯,調製含有所得到之分散劑與二氧化矽粒 鈽之分散液時,可防止分散液隨時間增黏而凝 數爲3以下之(甲基)丙烯酸烷基酯時,推斷 滑性賦予性很小。另外,藉由使用烷基之碳數 之(甲基)丙烯酸烷基酯,可防止分散液之分 定者。 單體(A-1)及(A-2)之共聚合比例就重 等。在鹼金 等。 優者,使用 點,佳。 4〜8個之( 個之(甲基 丙烯酸正丁 第三丁酯、 (甲基)丙 甲基)丙烯 甲基)丙烯 )丙烯酸丁 )丙烯酸烷 子或二氧化 集。此係碳 於粒子間之 爲8個以下 離,形成安 量比,使單 -12- 201113080 體(A-l)及單體(A-2)之合計爲100重量%時,(A-l )及(A-2 )之比例分別宜爲60〜95重量%及5~40重量% ,更宜爲70〜90重量%及10〜30重量%。 單體(A- 1 )之共聚合比例爲60重量%以上,使(A )成分於水溶性優異者,可形成分散安定性優異者,另外 ’形成95重量%以下,可抑制分散液之黏度上昇。 (A )成分係(a )成分中之羧基的全部可直接爲未 中和之羧基’但羧基之10〜100莫耳%尤其15-100莫耳% 被鹼中和’成爲鹽之形態,(A )成分之水溶性增加,分 散安定化效果變高,故佳。 實際之(A )成分中的羧基之中和度很難測定,故羧 基之中和度的簡便測定方法,宜控制(A )成分水溶液的 pH。具體上’就相當於上述羧基之中和範圍者,以(a) 成分之水溶液的pH成爲2〜9,尤其3〜8的範圍之比例羧 基被鹼中和’ (A )成分之水溶性變高,分散安定化效果 變高,故佳。 用以製造(A )成分之聚合前及聚合階段中係以(甲 基)丙烯酸之羧基的至少40莫耳% (40〜1〇〇莫耳% )爲 未中和的狀悲' 而進行聚合’於聚合後使用鹼性化合物而( A)成分之羧基的10莫耳%以上,進一步使15莫耳%以 上形成鹽之形態’用以製造(A )成分的聚合反應順利地 進行,故佳。 (A )成分係以單體(a - 1 )及(A -2 )作爲必要構成 單體者,但依需要而可使能與此等共聚合之單體 -13- 201113080 及(A-2 )以外之單體(以下,稱爲「其他之單體」)共 聚合。 上述其它之單體可舉例如馬來酸及衣康酸等之不飽和 酸或其鹽、馬來酸酐及衣康酸酐等之不飽和酸酐、2-丙烯 醯胺-2 -甲基丙烷磺酸及苯乙烯磺酸等之不飽和磺酸或其 鹽、(甲基)丙烯酸羥基烷基酯、丙烯醯胺、聚環氧烷骨 架包含於酯之(甲基)丙烯酸酯等。 其他之單體可單獨使用,亦可倂用2種類以上。 其他之單體的共聚合比例相對於單體(A-1 )及(A-2 )之合計量100重量份宜爲〇~ 10重量份,更宜爲〇〜5重 量份。藉由使其他之單體的共聚合比例爲10重量份以下 ,可防止分散液之增黏。 (A )成分之製造方法並無特別限定,宜爲水溶液聚 合法。若依水溶液聚合法,可形成均一的溶液而得到分散 劑。 上述水溶液聚合之聚合溶劑宜使用水及有機溶劑之混 合液。 上述聚合溶劑若只使用水,因單體(A-2 )很難溶解 於水中,有時反應性差。又,若只以有機溶劑作爲聚合溶 劑,從依(A )成分之製造所得到的聚合溶液(反應液) 得到分散劑時,除去有機溶劑等之後,必須將有機溶劑取 代成水。 因此,藉由使用上述混合液作爲聚合溶劑,可改善只 使用水作爲溶劑時之單體(A - 2 )很難溶解之問題。又, -14 - 201113080 相較於只使用有機溶劑之情形,可容易地進行有機溶劑對 水之取代,可解決成本與麻煩之問題。 在上述混合液中之較佳的有機溶劑可舉例如異丙醇等 之醇類、丙酮等之酮類。此等係可1種單獨或組合2種以 上而使用。此等之中,宜爲醇類,尤宜爲異丙醇。 又’在上述混合液中之水及有機溶劑之混合比率,使 混合液全量爲1 〇〇重量%時,水及有機溶劑之和宜分別爲 2 0-8 0重量%及20〜80重量%,更宜爲30〜70重量%及 3 0~70 重量 %。 以下,說明使用上述混合液之(A )成分的製造方法 。在聚合反應中係可使用公知之聚合起始劑,但尤宜使用 自由基聚合起始劑。 自由基聚合起始劑可舉例如過硫酸鈉、過硫酸鉀及過 硫酸銨等之過硫酸鹽類、氫過氧化第三丁基等之氫過氧化 物類、過氧化氫等之水溶性過氧化物、過氧化甲乙酮、過 氧化環己酮等之酮過氧化物類、過氧化二第三丁基、過氧 化第三丁基枯基等之二烷基過氧化物等之油溶性的過氧化 物、2,2’-偶氮雙(2-甲基丙脒)二氫氯化物等之偶氮化合 物等。 上述之過氧化物系的自由基聚合起始劑係可只使用1 種類或倂用2種以上。 上述過氧化物系的自由基聚合起始劑中,可容易地進 行分子量之控制,故宜爲過硫酸鹽類或偶氮化合物,尤宜 爲過硫酸銨。 -15- 201113080 上述自由基聚合起始劑使用量並無特別限制,但依據 (A)成分之全單體的合計重量,宜以0.1〜15重量%,尤 宜以0.5〜10重量%之比例使用。藉由使此比例爲0.1重 量%以上,可提昇共聚合率,藉由形成15重量%以下, 提昇(A )成分之安定性,作爲分散劑之性能優異者。 又,依情況,(A )成分可使用水溶性氧化還原系聚 合起始劑而製造。上述氧化還原系聚合起始劑可舉例如氧 化劑(例如上述之過氧化物)、重亞硫酸鈉、重亞硫酸銨 、亞硫酸鈉、氫硫酸鈉等之還原劑、或鐵明礬、鉀明礬等 之組合。 在(A)成分之製造中,爲調整分子量,可適當添加 鏈移動劑於聚合系中。鏈移動劑可舉例如亞磷酸鈉、次亞 磷酸鈉、重亞硫酸鈉、氫硫基醋酸、氫硫基丙酸、2-丙烷 硫醇、2-氫硫基乙醇及硫酚等。 製造(A )成分之時的聚合溫度並無特別限制,但聚 合溫度宜在60〜100°C下進行。 使聚合溫度爲60 °C以上,成爲聚合反應順利地進行 ,且生產性優異者,以1 0 0 °c以下,可抑制製品之著色。 又,上述聚合反應亦可在加壓或減壓下進行,但必須 用以形成加壓或減壓反應用之設備的成本,故宜在常壓下 實施。聚合時間宜爲2〜20小時,尤宜爲3〜10小時左右。 (A)成分之平均分子量就重量平均分子量宜爲 2,000〜10,000 ,更宜爲 3,000~8,000 。 重量平均分子量爲2,000以上時,調製含有所得到之 -16- 201113080 分散劑與二氧化矽粒子或二氧化鈽粒子之分散液時’可抑 制因源自分散液中之二氧化矽粒子或二氧化鈽粒子的成分 (A)之脫黏造成的分散液增黏。另外’形成1〇,〇〇〇以下 ,可防止分散劑本身使分散液之黏度上昇,並可降低分散 液之黏度。 又,在本發明中重量平均分子量意指藉GPC (凝膠滲 透色層分析)所測定之平均分子量,依據聚丙烯酸之標準 試料,所換算出之値。 從上述所得到之含有(A )成分的聚合溶液,除去於 混合溶液所含有的有機溶劑後,依需要而以鹼性化合物中 和。 於中和所使用之上述鹼性化合物可舉例如氨水、有機 胺(例如三乙胺等)、鹼金屬之氫氧化物等。其中,爲氨 水,從避免分散性與對被硏磨物之污染,佳。 中和之程度’如前述般,10〜100莫耳% ,尤其 1 5〜1 00莫耳%被鹼中和,宜成爲鹽之形態的丙烯酸系共 聚物。 如前述般’有時實際之(A )成分中的羧基之中和度 很難測度,故宜控制(A )成分水溶液之pH。具體上,宜 使(A)成分之水溶液的pH爲2~9,更宜爲3〜8。 2- ( B)成分 (B )成分係碳數爲4〜8個的醇,宜碳數爲4〜6個的 醇。 -17- 201113080 (B)成分係可例示正丁醇、異丁基醇、第三丁基醇 、戊醇、正己醇、庚醇、辛醇、2 -乙基己醇。在此等之中 從作爲分散劑之性能的面,宜爲正丁醇、異丁基醇及第三 丁基醇,尤宜爲正丁醇。 藉由使用碳數爲4個以上的醇,可抑制分散液之黏度 ,另外,藉由使用碳數爲8個以下,可抑制分散劑之分離 3 ·二氧化矽粒子或二氧化铈粒子用分散劑 本發明之分散劑係以前述(A )及(B )成分作爲必 要成分。 本發明之分散劑係相對於(A )成分1 00重量%,以 1,000〜3 0,000重量ppm之比例含有(B)成分者,宜爲 1,500〜20,000重量卩卩111,尤宜爲2,000〜1 5,000重量??111。 藉由使(B)成分之比例爲1,000重量ppm以上及 3 0,000重量PPm以下,可抑制粒子之凝集。 分散劑之製造方法可舉例如於(A )成分中添加混合 (B )成分之方法等。 以上述之方法製造(A )成分時,有時於含有所得到 之共聚物的聚合溶液中含有源自原料單體(A-2)的構造 之醇。亦即,有時從以下述通式(1 )所示之原料的單體 (A-2 ),形成相當於以下述通式(2 )所示之成分(B ) 的醇。因此,以氣體色層分析等之方法定量(B)成分, (B)成分之含量相對於(A)成分,以成爲 -18- 201113080 1,000〜30,000重量ppm之方式,藉由添加(B)成分,可 製造分散劑。 /R1 H2C二C\ ⑴ 〆、 , 0 0—R2 (式中’ R1表示氫原子或甲基,R2表示碳數爲4~8的院 基) R2—OH (2) (式中,R2表示碳數爲4~8的烷基)。 本發明之分散劑宜爲(A)成分及(B)成分之水溶 液的形態。 此時,宜於水中就(A )成分及(B )成分之合計量 含有30〜50重量%,更宜爲35〜45重量%。 本發明之分散劑係可適宜使用於金屬氧化物粒子之二 氧化矽粒子或二氧化姉粒子的分散。 4.分散液 本發明之分散液係二氧化矽粒子或二氧化铈粒子與上 述二氧化砂粒子或二氧化鈽粒子用分散劑。 本發明之分散液係宜於水性媒體中分散二氧化矽粒子 或二氧化鈽粒子之水性分散液。又,上述水性媒體係含有 水之媒體,可只爲水,亦可含有水之混合物。 又,分散液爲水性分散液時,於水性分散液所含有的 分散劑,宜爲含有上述(A)成分及上述(B)成分之水 溶液。 -19 - 201113080 含有二氧化矽粒子及分散劑之分散液(以下, 「二氧化矽分散液」),上述(A)成分之含量相 氧化矽粒子100重量份,宜爲0.01〜2.0重量份, 0.05~1.8重量份,最宜爲0.1〜1.5重量份。 二氧化矽粒子之平均粒徑係只要依目的而適當 可,但,使用來作爲硏磨劑,尤其CMP硏磨劑時 0.005〜0.5 仁 m 〇 又,在本發明中,所謂平均粒徑謂以掃描型電 鏡所測定之各別粒徑的平均値。 使平均粒徑爲〇.〇〇5/zm以上,於CMP步驟使 液時,成爲硏磨速度大者,另外,形成〇.5//m以 抑制二氧化矽粒子之沉澱。 二氧化砂粒子之含量係使分散液之全量爲1 0 0 時,宜爲0.1〜50重量%。形成0.1重量%以上,: 步驟使用分散液時,變成硏磨速度快者,另外, 重量%以下,可抑制二氧化矽粒子之凝集。 二氧化矽分散液之pH宜爲2〜10。形成此pH 可抑制二氧化矽粒子之凝集。又,二氧化矽粒子之 以添加硝酸、磷酸、硫酸、氨水進行調整。 含有二氧化鈽及分散劑之分散液(以下,亦稱 氧化鈽分散液」)係上述(A )成分之含量相對於 鈽粒子100重量份,宜爲 〇_〇1〜2.0重量份’ 0.05〜1.8重量份,最宜爲0.1〜1.5重量份。 二氧化铈粒子之平均粒徑係只要依目的而適當 亦稱爲 對於二 更宜爲 設定即 *宜爲 子顯微 用分散 下,可 重量% 令 CMP 》成50 範圍, pH可 贵 「一 —* 二氧化 g宜爲 設定即 -20- 201113080 可,但,使用來作爲硏磨劑,尤其CMP硏磨劑時,宜爲 0 . Ο 1 ~ 1 _ 0 μ m。 使平均粒徑爲O.Olym以上,於CMP步驟使用分散 液時,成爲硏磨速度快者,另外,形成1 . 〇 # m以下,可 抑制粒子之沉澱。 二氧化鈽粒子之調配量係相對於分散液宜爲0.1〜5 0 重量%。爲〇 1重量%以上,於CMP步驟使用分散液時 ’變成硏磨速度快者,另外,形成1 0重量%以下,可抑 制粒子之凝集。 二氧化铈分散液之pH宜爲6〜10。形成此pH範圍, 可抑制二氧化鈽粒子之凝集。pH係可以與前述同樣之方 法進行調整。 前述之二氧化矽粒子之分散液係可使用於各種用途, 可舉例如製紙用途、金屬加工用途、纖維用途、塗料用途 '光學材料用途及硏磨劑等。 又,前述之二氧化鈽粒子的分散液係可使用於各種之 用途,可舉例如排氣淨化觸媒用途、氣體感測器用途、光 學材料用途及硏磨劑等。 此等用途之中,二氧化矽粒子或二氧化鈽粒子之分散 液’尤其分散液係較佳可使用於硏磨劑者。以下詳細說明 有關硏磨劑。 -21 - 1 ·硏磨劑 本發明之硏磨劑係含有前述二氧化矽粒子或二氧化铈 201113080 粒子之分散液者。 又,本發明之硏磨劑係可進一步含有機酸、無機酸、 氧化劑、保護膜形成劑及界面活性劑等。 上述有機酸可舉例如醋酸、草酸、檸檬酸、蘋果酸及 乳酸等。無機酸可舉例如硝酸、硫酸及磷酸等。若於硏磨 劑含有此等之酸,可提高硏磨作用。 上述氧化劑可舉例如過氧化氫'過硫酸鹽、過醋酸、 過安息香酸、氫過氧化第三丁基等。若使此等之氧化劑添 加於硏磨齊!I,可提高硏磨速度。 上述保護膜形成劑可舉例如苯並三唑、三唑。若於硏 磨劑含有此等之保護膜形成劑,可保護硏磨墊不接觸之被 硏磨體的凹部,可充分硏磨平坦性。 上述界面活性劑可舉例如月桂基碟酸銨等之陰離子性 界面活性劑、聚氧乙烯月桂基醚等之非離子性界面活性劑 、硬脂基胺乙酸酯等之陽離子性界面活性劑及月桂基甜菜 鹼等之兩性界面活性劑。若於硏磨劑含有此等之界面活性 劑,可改善硏磨刮傷。 本發明之硏磨劑係可更宜使用來作爲c Μ P硏磨劑。 使用本發明之CMP用硏磨劑而進行化學機械硏磨( CMP )時’係可使用具有保持被硏磨體之支撐體與貼有硏 磨布(Pad)之固定盤的硏磨製置。硏磨布係可使用發泡 聚胺基甲酸酯、不織布等。固定盤之旋轉速度宜爲 200rpm以下’硏磨壓力宜爲硏磨中係以硏磨 劑被覆硏磨布之表面’宜爲連續供給硏磨劑。硏磨後,洗 -22- 201113080 淨除去殘留於被硏磨體上之硏磨劑或硏磨屑等。 本發明之硏磨劑係可硏磨於半導體基板上所形成之氧 化矽膜、氮化矽等之無機絕緣膜、ITO等之無機導電膜、 磁碟用玻璃基板、光學玻璃及磁頭等。 [實施例] 以下,舉出比較例及實施例,更具體地說明本發明。 又’在以下之各例中「%」意指重量%, 「ppm」意指重 量 ppm。 實施例1 (分散劑的製造) 於具備攪拌機、冷凝器之槽型反應器,饋入去離子水 170kg'異丙醇25 0kg,保持於80°C。 於此反應器花5小時而供給(滴下)混合有丙烯酸( 以下’稱爲「AA」)255kg、丙烯酸正丁酯(以下,稱爲 「nBA」)75kg之單體3 3 0kg、及15%過硫酸銨水溶液 6〇kg。滴下終了後,在8〇°C下保持反應液i小時。 然後,一邊投入去離子水一邊減壓餾去異丙醇。其後 ’使餾去異丙醇之反應液保持於5 0。(:下,供給2 5 %氨水 而中和’得到中和反應液。 此處’若以氣體色層分析分析中和反應液,檢測出正 丁醇(以下,稱爲「nBL」)30〇ppm,故投入nBL,調整 至 1500ppm。 如此做法而含有丙烯酸系共聚物((A)成分)與201113080 VI. Description of the Invention: [Technical Field] The present invention relates to a dispersant for cerium oxide particles or cerium oxide (cerium oxide) particles, a honing agent containing the same, and, in particular, A chemical mechanical honing (hereinafter referred to as "CMP") honing agent belongs to the technical field of a dispersing agent, a honing agent, and a CMP honing agent. [Prior Art] Conventionally, a dispersing agent of cerium oxide particles or cerium oxide particles is known as a single polymer of acrylic acid or a salt thereof, a water-soluble aminocarboxylic acid-based polymer, or a (co)polymer of an acrylate, Dispersing agent with solvent. The polymer contained in these dispersing agents is adsorbed to cerium oxide particles or cerium oxide particles, and causes steric hindrance between the particles, thereby imparting a backwashing action and forming a stable dispersion. The cerium oxide dispersion having the above structure can be used for papermaking applications, metal processing applications, fiber applications, coating applications, optical material applications, and CMP applications described later. Further, the cerium oxide dispersion can be used for exhaust gas purification catalyst applications, gas sensor applications, optical material applications, and CMP applications, such as CMP, for example, in a semiconductor device manufacturing process for flattening an exposed layer. . In the CMP, a viscous grinding pad is attached to the honing fixed plate, and the surface of the honing pad is continuously supplied with a honing agent containing cerium oxide particles or cerium oxide particles to hold the pressure. The state of the honed surface is transferred to 201113080. The fixed disc is flattened by the honing agent and the convex portion of the honed body. Alternatively, the honing agent is immersed in the surface of the honing pad to press the embossed surface of the honing surface, and is flattened by the honing agent and the convex portion of the object to be honed. The CMP honing agent is a dispersant and the cerium oxide particle dispersion is known. Regarding cerium oxide particles or cerium oxide particles, the honing agent or CMP honing agent of these particles is very effective as a polymer, as proposed below. For example, Patent Document 1 discloses a dispersing agent of a salt or a polyacrylamide salt. Further, in a specific composition 3 containing a water-soluble aminocarboxylic acid-based polymer, a dispersing agent of a (co)polymer containing an epoxy acrylate having 2 to 4 carbon atoms is disclosed. Further, a dispersing agent containing an imidodiacetate group has been disclosed. [Prior Art Document] [Patent Document 1] JP-A-2005-167271 [Patent Document 2] JP-A-2005-116563 [Patent Document 3] Special Opening 2 0 0 4 - 0 5 1 7 5 6 [Patent Document 4] The mechanical friction of the section No. 2005-347579 is applied to the state of honing the fixed disk, and the mechanical friction is applied to remove the convex cerium oxide particles or the dispersing agent, or the dispersion contains the above. Acrylic species contain polyacrylic acid ammonium. The powder disclosed in Document 2 has been disclosed. Further, in the case of the patented venom adduct, the methyl group is exemplified in the methacrylic acid ester copolymerization publication 201113080. [Summary of the invention] [Problems to be solved by the invention] However, in recent years, In comparison with the conventional ones, the cerium oxide particles or the cerium oxide particles may be used as a dispersion of 2% by weight or more. In this case, the interaction between the particles becomes strong, so that the particles easily aggregate with time. As a CMP honing agent, the agglomerated dispersion is liable to cause honing and scratching on the honed body. For such a requirement, as shown in the above-mentioned dispersing agent of the prior art, the viscosity of the dispersion becomes higher with time, The particles are easily agglomerated, and if used as a honing agent, there is a problem that the honing body is scratched and scratched. Thus, the conventional dispersing agent is not sufficient for honing and scratching when used as a honing agent. [Means for Solving the Problem] The present inventors have found that even in the dispersing agent for silica sand particles or cerium oxide particles, even cerium oxide particles or cerium oxide particles are highly concentrated. The liquid does not become a high viscosity or agglomerated dispersant over time, and is found to be a honing agent containing cerium oxide particles or cerium oxide particles, and a honing agent which does not cause honing and scratching on the honed body. In order to solve the above problems, the present inventors have found that a copolymer of (meth)acrylic acid or a salt thereof and a dispersing agent of a specific alcohol are effective, and the cerium oxide particles or two are dispersed by using the same. The cerium oxide particle honing agent is very effective, and the invention is completed at the end of 201113080. The present invention is as follows. 1. A dispersing agent for cerium oxide particles or cerium oxide particles, which contains (A) component and (B) The component (A) is composed of a monomer (A-1) selected from at least one selected from the group consisting of (meth)acrylic acid and a salt thereof, and a dispersing agent for the cerium oxide particles or the cerium oxide particles. The acrylic copolymer constituting the monomer unit and the alkyl group (A-2) having 4 to 8 carbon atoms in the alkyl group, and the carbon number of the above (Β) component 4 to 8 alcohols of the above (Β) ingredients The amount is from 1,000 to 30,0 〇〇ppm by weight relative to the above (Α) component. 2. The dispersant for the cerium oxide particles or the cerium oxide particles according to the above item 1, wherein the component (A) is When the total of the above (A-1) and the above (A-2) is 100% by weight, the above (A-1) and the above (A-2) are respectively 60 to 95% by weight and 5 to 40% by weight. The amount of the obtained copolymer is 3. The weight average molecular weight of the above component (A) is 2,000 to 1 Torr, as described above, in the dispersing agent for the cerium oxide particles or the cerium oxide particles. The dispersing agent for the cerium oxide particles or the cerium oxide particles according to any one of the above items 1 to 3, which is an aqueous solution of the component (A) and the component (B). 5. The above-mentioned four items of cerium oxide particles or cerium oxide particles are divided into -8 · 201113080 powders, wherein the pH is in the range of 2 to 9. A dispersion liquid comprising cerium oxide particles or cerium oxide particles, and a cerium oxide particle or a cerium oxide particle dispersing agent according to any one of items 1 to 5 above. 7. The dispersion according to the above item 6, wherein the component (A) is 0.01 to 2.0 parts by weight based on 100 parts by weight of the cerium oxide particles or the cerium oxide particles. 8. The dispersion according to the above item 6 or 7, wherein the cerium oxide particles or the cerium oxide particles are contained in a proportion of 〇·1 to 5 〇 by weight. 9. The dispersion according to any one of the above 6 to 8, wherein the cerium oxide particles have an average particle diameter of 〇.〇〇5~〇.5"111. 10. The dispersion of any one of the above 6 to 8 wherein the cerium oxide particles have an average particle diameter of 〇.〇l~l.〇em. 1 1 . A honing agent characterized by containing a dispersion according to any one of the above 6 to 10 items. 12. A honing agent for chemical mechanical polishing, characterized by comprising a honing agent as described above. [Effects of the Invention] The dispersing agent 'in accordance with the present invention can inhibit aggregation when the cerium oxide particles or cerium oxide are dispersed, and the aggregation of the dispersion can be suppressed with time. Further, when the dispersion liquid of the present invention is used as a honing agent, 'there is a cause of honing and scratching if there is an aggregate, but the honing agent of the present invention can suppress aggregation with time, thereby improving honing. Preservation stability of the agent 'can be handed over -9 - 201113080 Learn to keep it for a longer period of time. Before the dispersing agent of the present invention is used, the particles in the liquid are pushed in comparison with the conventional dispersing agent, and the present invention is not in the form of the invention. [Examples for Carrying Out the Invention] Hereinafter, the cerium oxide particles of the present invention will be described in detail. The following is also referred to as "dispersant", the component of cerium oxide particles or dioxin: the above (A) component has at least one monomer (A-1). The carbon number of the base is 4-8 (A) of the above-mentioned (B) component is a carbon number; and the content of the above-mentioned (B) component is 1,000 to 30,000 ppm by weight, or methacrylic acid is represented by (methyl or less) The content of the effect is not clear, and the dispersant of the present invention is adsorbed to impart slip property between particles. Or a dispersant for ceria particles (which contains (A) component and B) a dispersing agent for cerium particles, which is characterized by a constituent monomer unit composed of (meth)acrylic acid and a salt thereof, and a copolymer of alkyl a) alkyl acrylate (A-2). 4 to 8 alcohols, relative to the above (A) component, In the present specification, acrylic acid is used as the acrylic acid. The component (A) and (B) of the powder are formed as a component. (A) Component-10-201113080 The carboxyl group which is required to constitute the component (A) is the component (A). The monomer (Al ) and (a_2) monomers are single-spray (meth)acrylic copolymers. Further, the acrylic copolymers also include a C-based copolymer and a 'cyan acid copolymer. The substance (B) is exemplified by the following (2). a copolymer of a monomer unit (hereinafter referred to as (p_3) single 71:) composed of (meth)propionate (A-2). Containing (meth)acrylic acid salt (Aq) a copolymer of constituent monomer units (hereinafter referred to as (p-2) units) and (p_3) units. (3) Containing (Ρ-1) units, (Ρ-2) units And a copolymer of (ρ_3) unit. The monomer (Α-1) is a monomer selected from at least one of (meth)acrylic acid and a salt thereof. The monomer (Α-1) may, for example, be only (methyl) A neutralized salt of a part of acrylic acid or (meth)acrylic acid and a neutralized salt of (meth)acrylic acid. Among these, a neutralized salt of acrylic acid or/and one of acrylic acid may be used as (A) -1), the polymerizable property in the case of producing the component (A) is excellent, and the water-soluble component (A) is excellent in water solubility. The (meth)acrylic acid salt may, for example, be ammonium-11 of (meth)acrylic acid. 201113080 Salt, organic amine, alkali metal salt, etc. The organic amine in the above organic amine salt may, for example, be an alkali metal in the triethylamine salt, such as sodium hydroxide and potassium hydroxide, and is an ammonium salt. When the component (A) is used as a honing agent in a dispersing dispersant, the carbon number of the alkyl group of the monomer (A-2)-based alkyl ester moiety which is less contaminated by the honed material is methyl acrylate. Preferably, the alkyl group has a carbon number of 4 to 6% alkyl acrylate. Specific examples of the monomer (A-2) include (meth)ester, isobutyl (meth)acrylate, amyl (meth)acrylate, hexyl (meth)acrylate, and alkene. Heptyl acid ester, 2-ethylhexyl (meth)acrylate and (cyclohexyl ester), etc. Among these, n-butyl (meth)acrylate, (isobutyl acrylate and (meth)acrylic acid) Tributyl ester (methyl ester, especially n-butyl (meth) acrylate. By using an alkyl group having a carbon number of 4 or more (methyl ester, the preparation contains the obtained dispersant and dioxide In the case of the dispersion of the cerium granules, it is possible to prevent the slip impartability from being small when the number of the (meth)acrylic acid alkyl ester having a coagulation number of 3 or less is prevented from increasing with time, and the carbon of the alkyl group is used. The alkyl (meth) acrylate can prevent the dispersion of the dispersion. The copolymerization ratio of the monomers (A-1) and (A-2) is heavy, etc. in alkali gold, etc. Point, good. 4~8 ( (n-butyl methacrylate, (methyl) propylmethyl) propylene methyl) propylene) butyl acrylate Acrylic acid alkane or a dioxide group. This carbon is between 8 or less particles to form an ampoule ratio, so that the total weight of mono-12-201113080 (Al) and monomer (A-2) is 100 weight. When %, the ratio of (Al) and (A-2) is preferably 60 to 95% by weight and 5 to 40% by weight, more preferably 70 to 90% by weight and 10 to 30% by weight. Monomer (A-1) In the case where the component (A) is excellent in water solubility, the component (A) can be excellent in dispersion stability, and the formation of 95% by weight or less can suppress the increase in the viscosity of the dispersion. All of the carboxyl groups in the component (a) may be directly the unneutralized carboxyl group 'but 10 to 100 mol% of the carboxyl group, especially 15-100 mol%, neutralized by the alkali' into a salt form, and the component (A) The water solubility increases, and the dispersion stabilization effect becomes high. Therefore, the degree of neutralization of the carboxyl group in the actual (A) component is difficult to measure, so a simple method for determining the degree of neutralization of the carboxyl group is preferably controlled by the aqueous solution of the component (A). pH. Specifically, 'is equivalent to the above-mentioned range of the carboxyl group, and the pH of the aqueous solution of the component (a) is 2 to 9, especially The proportion of the carboxyl group in the range of 3 to 8 is neutralized by the alkali, and the water solubility of the component (A) is increased, and the effect of dispersing the stabilization becomes high. Therefore, it is preferred to prepare the (A) component before and during the polymerization. At least 40 mol% (40 to 1 mol%) of the carboxyl group of (meth)acrylic acid is polymerized by unneutralization, and a basic compound is used for the carboxyl group of the component (A) after polymerization. 10 mol% or more, and further, 15 mol% or more of the form of a salt is formed. The polymerization reaction for producing the component (A) proceeds smoothly, and it is preferable that the component (A) is a monomer (a - 1 ) and A - 2 ) as a constituent monomer, but a monomer other than the monomers -13,130,130,80 and (A-2) copolymerizable with these may be added as needed (hereinafter, referred to as "other monomer" ") Copolymerization. The other monomer may, for example, be an unsaturated acid such as maleic acid or itaconic acid or a salt thereof, an unsaturated acid anhydride such as maleic anhydride or itaconic anhydride, or 2-propenylamine-2-methylpropanesulfonic acid. Further, an unsaturated sulfonic acid such as styrenesulfonic acid or a salt thereof, a hydroxyalkyl (meth)acrylate, an acrylamide or a polyalkylene oxide skeleton is contained in an ester (meth)acrylate or the like. Other monomers may be used alone or in combination of two or more types. The copolymerization ratio of the other monomers is preferably from 10 to 10 parts by weight, more preferably from 5% to 5 parts by weight, per 100 parts by weight of the total of the monomers (A-1) and (A-2). By making the copolymerization ratio of the other monomers to 10 parts by weight or less, the viscosity of the dispersion can be prevented. The method for producing the component (A) is not particularly limited, and it is preferably an aqueous solution polymerization method. According to the aqueous solution polymerization method, a uniform solution can be formed to obtain a dispersant. The polymerization solvent for the aqueous solution polymerization is preferably a mixture of water and an organic solvent. When only the water is used as the polymerization solvent, the monomer (A-2) is hardly dissolved in water, and the reactivity may be poor. In addition, when the dispersing agent is obtained from the polymerization solution (reaction liquid) obtained by the production of the component (A), the organic solvent is replaced with water after the organic solvent or the like is removed. Therefore, by using the above mixed liquid as a polymerization solvent, it is possible to improve the problem that the monomer (A - 2 ) is hardly dissolved when only water is used as a solvent. Further, -14 - 201113080 The replacement of water by an organic solvent can be easily performed as compared with the case of using only an organic solvent, and the problem of cost and trouble can be solved. Preferred organic solvents in the above mixture may, for example, be an alcohol such as isopropyl alcohol or a ketone such as acetone. These may be used alone or in combination of two or more. Among these, it is preferably an alcohol, particularly preferably isopropanol. Further, when the mixing ratio of the water and the organic solvent in the mixed liquid is such that the total amount of the mixed liquid is 1% by weight, the sum of water and the organic solvent is preferably 2 to 80% by weight and 20 to 80% by weight, respectively. More preferably, it is 30 to 70% by weight and 30 to 70% by weight. Hereinafter, a method for producing the component (A) using the above mixed liquid will be described. A known polymerization initiator can be used in the polymerization, but a radical polymerization initiator is particularly preferably used. The radical polymerization initiator may, for example, be a persulfate such as sodium persulfate, potassium persulfate or ammonium persulfate, a hydroperoxide such as a third butyl hydroperoxide or a hydrogen peroxide such as hydrogen peroxide. An oil-soluble one of a ketone peroxide such as an oxide, methyl ethyl ketone peroxide or cyclohexanone peroxide, a dialkyl butyl peroxide or a dialkyl peroxide such as a tributyl cumyl peroxide. An azo compound such as an oxide or a 2,2'-azobis(2-methylpropionamidine) dihydrochloride. The above-mentioned peroxide-based radical polymerization initiator may be used alone or in combination of two or more. In the above-mentioned peroxide-based radical polymerization initiator, the molecular weight can be easily controlled, and therefore it is preferably a persulfate or an azo compound, and particularly preferably ammonium persulfate. -15- 201113080 The amount of the radical polymerization initiator to be used is not particularly limited, but it is preferably 0.1 to 15% by weight, particularly preferably 0.5 to 10% by weight, based on the total weight of the total monomers of the component (A). use. By setting the ratio to 0.1% by weight or more, the copolymerization ratio can be increased, and the stability of the component (A) can be improved by forming 15% by weight or less, and the performance as a dispersant is excellent. Further, depending on the case, the component (A) can be produced by using a water-soluble redox polymerization initiator. The redox polymerization initiator may, for example, be a reducing agent such as an oxidizing agent (for example, the above-mentioned peroxide), sodium metabisulfite, ammonium bisulfite, sodium sulfite or sodium hydrogensulfate, or a combination of iron alum, potassium alum or the like. In the production of the component (A), in order to adjust the molecular weight, a chain shifting agent may be appropriately added to the polymerization system. The chain shifting agent may, for example, be sodium phosphite, sodium hypophosphite, sodium metabisulfite, mercaptoacetic acid, mercaptopropionic acid, 2-propanethiol, 2-hydrothioethanol or thiophenol. The polymerization temperature at the time of producing the component (A) is not particularly limited, but the polymerization temperature is preferably carried out at 60 to 100 °C. When the polymerization temperature is 60 ° C or higher, the polymerization reaction proceeds smoothly, and if the productivity is excellent, the color of the product can be suppressed by 100 ° C or less. Further, the above polymerization reaction may be carried out under pressure or reduced pressure, but it must be used to form a device for pressurizing or depressurizing the reaction, and therefore it is preferably carried out under normal pressure. The polymerization time is preferably 2 to 20 hours, and particularly preferably about 3 to 10 hours. The average molecular weight of the component (A) is preferably from 2,000 to 10,000, more preferably from 3,000 to 8,000. When the weight average molecular weight is 2,000 or more, when the dispersion containing the obtained-16-201113080 dispersant and the cerium oxide particles or the cerium oxide particles is prepared, it is possible to suppress the cerium oxide particles or the oxidizing agent derived from the dispersion. The dispersion caused by the debonding of the component (A) of the cerium particles is viscous. Further, the formation of 1 〇, 〇〇〇 below, prevents the dispersant itself from increasing the viscosity of the dispersion and lowering the viscosity of the dispersion. Further, in the present invention, the weight average molecular weight means the average molecular weight measured by GPC (gel permeation chromatography), and is converted according to the standard sample of polyacrylic acid. The polymerization solution containing the component (A) obtained above is removed from the organic solvent contained in the mixed solution, and then neutralized with a basic compound as needed. The above-mentioned basic compound used in the neutralization may, for example, be ammonia water, an organic amine (e.g., triethylamine or the like), an alkali metal hydroxide or the like. Among them, ammonia is good, from avoiding dispersibility and contamination of the honed material. The degree of neutralization is as described above, and 10 to 100 mol%, especially 1 5 to 100 mol%, is neutralized by a base, and it is preferable to form an acrylic copolymer in the form of a salt. As described above, the degree of neutralization of the carboxyl group in the actual (A) component is sometimes difficult to measure, so it is preferable to control the pH of the aqueous solution of the component (A). Specifically, the pH of the aqueous solution of the component (A) is preferably from 2 to 9, more preferably from 3 to 8. 2- (B) component (B) is an alcohol having 4 to 8 carbon atoms, preferably an alcohol having 4 to 6 carbon atoms. -17- 201113080 The component (B) is exemplified by n-butanol, isobutyl alcohol, tert-butyl alcohol, pentanol, n-hexanol, heptanol, octanol, or 2-ethylhexanol. Among these, from the viewpoint of the performance as a dispersing agent, n-butanol, isobutyl alcohol and tert-butyl alcohol are preferable, and n-butanol is particularly preferable. By using an alcohol having 4 or more carbon atoms, the viscosity of the dispersion can be suppressed, and by using a carbon number of 8 or less, separation of the dispersant can be suppressed. 3. Dispersion of cerium oxide particles or cerium oxide particles The dispersant of the present invention contains the components (A) and (B) as essential components. The dispersant of the present invention is preferably contained in an amount of from 1,000 to 30,000 ppm by weight based on 100 parts by weight of the component (A), and is preferably from 1,500 to 20,000 parts by weight of the component (B), particularly preferably 2,000~1 5,000 weight? ? 111. By setting the ratio of the component (B) to 1,000 ppm by weight or more and 300% by weight or less to PPm or less, aggregation of particles can be suppressed. The method for producing the dispersant may, for example, be a method of adding the component (B) to the component (A). When the component (A) is produced by the above method, the alcohol derived from the structure of the raw material monomer (A-2) may be contained in the polymerization solution containing the obtained copolymer. In other words, an alcohol corresponding to the component (B) represented by the following formula (2) is formed from the monomer (A-2) having a starting material represented by the following formula (1). Therefore, the component (B) is quantified by gas chromatography or the like, and the content of the component (B) is added to the component (A) in an amount of -18 to 201113080 1,000 to 30,000 ppm by weight. a component that produces a dispersant. /R1 H2C二C\ (1) 〆, , 0 0—R2 (wherein R1 represents a hydrogen atom or a methyl group, and R2 represents a group having a carbon number of 4-8) R2—OH (2) (wherein R2 represents An alkyl group having a carbon number of 4 to 8). The dispersing agent of the present invention is preferably in the form of an aqueous solution of the component (A) and the component (B). In this case, it is preferred to contain 30 to 50% by weight, more preferably 35 to 45% by weight, based on the total amount of the component (A) and the component (B) in water. The dispersant of the present invention can be suitably used for the dispersion of cerium oxide particles or cerium oxide particles of metal oxide particles. 4. Dispersion The dispersion of the present invention is a cerium oxide particle or a cerium oxide particle and a dispersing agent for the above sand dioxide particles or cerium oxide particles. The dispersion of the present invention is preferably an aqueous dispersion in which cerium oxide particles or cerium oxide particles are dispersed in an aqueous medium. Further, the above aqueous medium contains a medium of water, and may be water alone or a mixture of water. Further, when the dispersion is an aqueous dispersion, the dispersant contained in the aqueous dispersion is preferably an aqueous solution containing the component (A) and the component (B). -19 - 201113080 A dispersion containing cerium oxide particles and a dispersing agent (hereinafter, "cerium oxide dispersion"), and the content of the component (A) is preferably 0.01 to 2.0 parts by weight based on 100 parts by weight of the cerium oxide particles. 0.05 to 1.8 parts by weight, most preferably 0.1 to 1.5 parts by weight. The average particle diameter of the cerium oxide particles is suitably used as the purpose, but it is used as a honing agent, especially 0.005 to 0.5 Å in the CMP honing agent. In the present invention, the average particle diameter is The average enthalpy of the respective particle sizes measured by scanning electron microscopy. When the average particle diameter is 〇.〇〇5/zm or more, when the liquid is applied in the CMP step, the honing speed is large, and 〇5/m is formed to suppress the precipitation of the cerium oxide particles. The content of the silica sand particles is preferably 0.1 to 50% by weight when the total amount of the dispersion is 100. 0.1% by weight or more is formed. When the dispersion is used, the honing speed is high, and when it is less than or equal to 9% by weight, aggregation of the cerium oxide particles can be suppressed. The pH of the cerium oxide dispersion is preferably from 2 to 10. Formation of this pH inhibits agglomeration of the cerium oxide particles. Further, the cerium oxide particles are adjusted by adding nitric acid, phosphoric acid, sulfuric acid or ammonia water. The dispersion containing the cerium oxide and the dispersing agent (hereinafter also referred to as cerium oxide dispersion) is preferably contained in the amount of the component (A) in an amount of 〇_〇1 to 2.0 parts by weight to 0.05 parts by weight based on 100 parts by weight of the cerium particles. 1.8 parts by weight, most preferably 0.1 to 1.5 parts by weight. The average particle size of the cerium oxide particles is appropriately determined according to the purpose, and is also preferably set for the second, that is, it is preferably used for submicroscopic dispersion, and the weight % can be made into 50 ranges, and the pH is valuable. The oxidation g should be set to -20-201113080. However, when used as a honing agent, especially CMP honing agent, it should be 0. Ο 1 ~ 1 _ 0 μ m. The average particle size is O.Olym. When the dispersion liquid is used in the CMP step, the honing speed is fast, and the formation of .# m or less can suppress the precipitation of particles. The amount of the cerium oxide particles is preferably 0.1 to 5 with respect to the dispersion liquid. 0% by weight, 〇1% by weight or more, when the dispersion is used in the CMP step, 'the honing speed is fast, and 10% by weight or less is formed, and aggregation of the particles can be suppressed. The pH of the cerium oxide dispersion is preferably 6 to 10. In this pH range, aggregation of the cerium oxide particles can be suppressed. The pH can be adjusted in the same manner as described above. The dispersion of the cerium oxide particles described above can be used for various purposes, for example, for papermaking purposes. , metal processing purposes, fiber Application, coating application 'optical material use, honing agent, etc. Further, the dispersion of the above-mentioned cerium oxide particles can be used for various purposes, for example, exhaust gas purification catalyst use, gas sensor use, and optics. Material use, honing agent, etc. Among these applications, the dispersion of cerium oxide particles or cerium oxide particles, especially the dispersion, is preferably used in the honing agent. The honing agent is described in detail below. 21 - 1 · honing agent The honing agent of the present invention contains the above-mentioned cerium oxide particles or a dispersion of cerium oxide 201113080 particles. Further, the honing agent of the present invention may further contain organic acid, inorganic acid, and oxidizing agent. The protective film forming agent, the surfactant, etc. The organic acid may, for example, be acetic acid, oxalic acid, citric acid, malic acid or lactic acid, etc. The inorganic acid may, for example, be nitric acid, sulfuric acid or phosphoric acid. The acid can improve the honing action. The oxidizing agent may, for example, be hydrogen peroxide 'persulfate, peracetic acid, perbenzoic acid, tert-butyl hydroperoxide or the like. If such an oxidizing agent is added For example, benzotriazole or triazole may be used as the protective film forming agent. If the honing agent contains such a protective film forming agent, the honing pad can be protected from contact. The flat portion of the honed body can sufficiently smooth the flatness. The surfactant may, for example, be an anionic surfactant such as ammonium lauryl sulphate or a nonionic surfactant such as polyoxyethylene lauryl ether or a hard surfactant. A cationic surfactant such as a lipoamine acetate or the like and an amphoteric surfactant such as lauryl betaine. If the honing agent contains such a surfactant, the honing and scratching can be improved. The agent can be preferably used as a c Μ P honing agent. When chemical mechanical honing (CMP) is performed using the CMP honing agent of the present invention, the support body having the honed body can be used and attached The honing of the fixed disc of the draped cloth (Pad). As the honing cloth, a foamed polyurethane, a non-woven fabric, or the like can be used. The rotational speed of the fixed disk is preferably 200 rpm or less. The honing pressure is preferably such that the surface of the honing cloth is coated with a honing agent in the honing. After honing, wash -22- 201113080 to remove the honing agent or honing debris remaining on the honed body. The honing agent of the present invention is an inorganic insulating film such as ruthenium oxide film or tantalum nitride formed on a semiconductor substrate, an inorganic conductive film such as ITO, a glass substrate for a magnetic disk, an optical glass, a magnetic head, or the like. [Examples] Hereinafter, the present invention will be more specifically described by way of Comparative Examples and Examples. Further, in the following examples, "%" means weight%, and "ppm" means weight ppm. Example 1 (Production of dispersant) In a tank reactor equipped with a stirrer and a condenser, 170 kg of deionized water (170 kg of isopropanol) was fed and kept at 80 °C. In the reactor, the reactor was charged (dropped) with 255 kg of acrylic acid (hereinafter referred to as "AA"), n-butyl acrylate (hereinafter referred to as "nBA"), 75 kg of monomer 3 3 0 kg, and 15%. 6 〇 kg of ammonium persulfate aqueous solution. After the completion of the dropwise addition, the reaction solution was kept at 8 ° C for 1 hour. Then, isopropanol was distilled off under reduced pressure while introducing deionized water. Thereafter, the reaction liquid for distilling off the isopropanol was kept at 50. (: Next, supply 25% ammonia water and neutralize 'to obtain a neutralization reaction liquid. Here, if the reaction liquid is neutralized by gas chromatography analysis, n-butanol (hereinafter referred to as "nBL") is detected. Ppm, so put nBL, adjust to 1500ppm. In this way, contain acrylic copolymer ((A) component) and
C -23- 201113080 nB L ( ( B )成分),得到固形分濃度((A )成分之含量 )爲40%、PH爲6,含有(B)成分1 5 00ppm (相對於( A)成分爲3 750ppm)之分散劑。 藉上述,以凝膠滲透色層分析(GPC )測定所得到之 丙烯酸系共聚物(A)成分之重量平均分子量(以下,稱 爲「Mw」)。GPC之測定條件係使用 HLC 8 020系統「 Tosoh (股)製」,管柱係連結 G4000PWxl、G3000PWxl 、G2500PWX1「Tosoh (股)製」而使用,溶離液係 0.1MNaCl +磷酸ί爱衝液(PH7 ),檢量線係使用聚丙烯酸 Na (創和科學製)而製作。測定之結果,上述之丙烯酸系 共聚物的Mw爲6000。 實施例2〜7 (分散劑之製造) 在實施例1中,除將所使用之單體變更成如表1所示 般以外’其餘係以與實施例丨同樣之方法,進行聚合、減 壓飽去及中和。 在中和後之分析,從中和反應液,分別以如下之比例 檢測(B )成分,故如以下般,於中和反應液中添加(B )成分,得到分散劑。 在實施例2中係檢測出2 -乙基己醇(以下,稱爲「 EHL」)爲100ppm。繼而,於中和反應液中進一步添加 EHL,調整至 3〇〇〇ρρπι。 在實施例3中係檢測出nBL 800ppm。繼而,於中和 反應液中未添加追加的醇((B )成分)。 -24 - 201113080 在實施例4中係檢測出nBL 500ppm。繼而,於中和 反應液中進一步添加nBL ,調整至5 000ppm。 在實施例5中係檢測出異丁醇(以下,稱爲「iBL」 )爲l〇〇Ppm。繼而,於中和反應液中進一步添加iBL, 調整至2000ppm。 在實施例6中係檢測出nBL 5OOppm。繼而,於中和 反應液中未添加追加的醇((B)成分)。 在實施例7中係檢測出nBL 5 OOppm。繼而,於中和 反應液中進一步添加nBL,調整至ll,〇〇〇ppm。 依上述實施例1〜7,對於所得到之分散劑,將測定固 形分濃度((A )成分之含量)、pH及Mw的結果表示於 表1中。 比較例1〜5 在實施例1中,除將所使用之單體變更成如表1所示 般以外,其餘係以與實施例1同樣之方法,進行聚合、減 壓餾去及中和。 在中和後之分析’從中和反應液,分別以如下之比例 檢測(B )成分或(B )成分以外之醇,故如以下般,於 中和反應液中添加(B )成分’得到分散劑。 在比較例1中係檢測出甲醇3 5 〇 p p m,但(B )成分未 被檢測出。因此’添加(B )成分之nBL,調整至 1 500ppm ° 在比較例2中係檢測出乙醇250ppm,但(b )成分未 -25- 201113080 被檢測出。因此’添加(B)成分之nBL,調整至 1500ppm 〇 在比較例4中係檢測出η B L 3 0 0 p p m。繼而,於中和 反應液中未追加添加(B)成分。 在比較例5中係檢測出nBL lOOppm。繼而,於中和 反應液中進一步添加nBL,調整至1 300ppm。 又,在比較例3中,以與實施例1同樣之方法,進行 聚合、減壓餾去及中和,但無法得到均一的液體,故未@ 行評估。 依上述比較例1〜5,對於所得到之分散劑’ % '測定固 形分濃度((A )成分之含量)、pH及Mw的結果表示於 表1中。 -26- 201113080 表1 (A)成分 (B诚分 分散劑 (A-1) 單體調配量 [kgl (A-2) 單體調配量 ikgl Mw (B)成分 種類 分散劑中 之比例 iPPm] 相對於(A) 成分之比 例[ppm] 固形分 濃度[%] pH 實 施 例 1 AA 255 nBA 75 6,000 nBL 1,500 3,750 40 6 2 AA 290 EHA 40 6,500 EHL 3,000 7,500 40 6 3 AA 230 nBA 100 5,800 nBL 800 2,000 40 6 4 AA 270 nBA 60 6,400 nBL 5,000 12,500 40 7 5 AA 290 iBA 40 6,500 iBL 2,000 5,000 40 6 6 AA 255 nBA 75 6,000 nBL 500 1,250 40 6 7 AA 255 nBA 75 6,000 nBL 11,000 27,500 40 7 比 較 例 1 AA 255 MA 75 6,300 nBL 1,500 3,750 40 6 2 AA 255 EA 75 6,100 nBL 1,500 3,750 40 6 3 AA 255 LA 75 - - - - - - 4 AA 290 nBA 40 6,500 nBL 300 750 40 6 5 AA 290 nBA 40 6,500 nBL 13,000 32,500 40 6 表1中之簡稱係以前述所定義者以外,意指下述。 EHA :丙烯酸-2-乙基己酯 iBA :丙烯酸異丁酯 -27- 201113080 ΜΑ :丙烯酸甲酯 ΕΑ :丙烯酸乙酯 LA :丙烯酸月桂酯 實施例Κ 1 於離子交換水投入及混合以上述實施例1所得到的分 散劑、及膠體二氧化矽(扶桑化學工業(股)製、製品名 「P L- 3」、以掃描型電子顯微鏡所測定之各別的粒徑之平 均値0.0 4 // m )而得到混合物。於上述混合物中添加2 5 % 氨水,使pH調整至6,而得到二氧化矽分散液。上述分 散劑於離子交換水之投入量(添加量)係在所得到之二氧 化矽分散液中,(A)成分之含量成爲1%之量。又’膠 體二氧化矽的投入量(添加量)在所得到之二氧化矽分散 液中,膠體二氧化矽的含量成爲5%之量。 對於上述所得到之二氧化矽分散液,以下述之方法所 進行的硏磨試驗進行評估。 使用於表面以1 # m之厚度形成氧化矽膜的8英寸矽 晶圓作爲被硏磨體。硏磨裝置係使用具有保持被硏磨體之 支撐體與貼有硏磨墊的固定盤之硏磨裝置。繼而,於硏磨 裝置之固定盤張貼發泡聚胺基甲酸酯樹脂製的硏磨墊,使 用上述二氧化矽分散液作爲硏磨劑,以硏磨劑被覆硏磨墊 的表面,連續供給硏磨劑,進行硏磨試驗。硏磨條件係硏 磨時間2分鐘、固定盤旋轉數50rpm、硏磨壓力30kPa、 硏磨劑供給添量5 0 m L /分。硏磨後,以純水洗淨晶圓,乾 -28- 201113080 燥。對於此硏磨面,藉電子顯微鏡觀察觀測硏磨刮傷’算 出每1 cm2的個數。 又,以50°C保管二氧化矽分散液1週後,保管後之 液體作爲硏磨劑,進行同樣的試驗。此等之結果表示於表 2中。 實施例K2〜K7 在實施例K1中,除將分散劑變更成如下述表2所示 般以外,其餘係與實施例K1同樣的方法製造硏磨劑。 使用所得到之硏磨劑’與實施例K 1同樣做法而進行 評估。其等之結果表示於表2中。 實施例K8 於離子交換水投入及混合以上述實施例1所得到的分 散劑、及二氧化铈粒子(CI化成(股)製、製品名「 NanoTek」、以掃描型電子顯微鏡所測定之各別的粒徑之 平均値0.0 3 /z m )而得到混合物。於上述分散劑於離子交 換水之投入量(添加量)係在所得到之混合物中,(A ) 成分之含量成爲1%之量。又’上述二氧化鈽粒子的投入 量(添加量)在所得到之混合物中的固形份分(濃度)成 爲5 %之量。其後,對於上述混合物’一邊攪拌一邊進行 超音波分散。以1 W m過爐器過濾此液’追加去離子水, 得到2 %之二氧化铈分散液。此液之pH爲8 〇 使用以上述所得到之二氧化铈分散液作爲硏磨劑,與 -29- 201113080 實施例1同樣做法而進行硏磨試驗,進行評估°其等之結 果表示於表2中。 實施例K9〜K14 在實施例K8中,除將分散劑變更成如下述表2所示 般以外,其餘係與實施例K8同樣的方法製造研1磨劑1 ° 使用所得到之硏磨劑,與實施例K 1同樣做法而進行 評估。其等之結果表示於表2中。 比較例K1〜K4 在實施例K1中,除將分散劑變更成如下述表2所示 般以外,其餘係與實施例K1同樣的方法製造硏磨劑。 使用所得到之硏磨劑,與實施例K 1同樣做法而進行 評估。其等之結果表示於表2中。 比較例Κ5~Κ8 在實施例Κ8中,除將分散劑變更成如下述表2所示 般以外,其餘係與實施例Κ8同樣的方法製造硏磨劑。 使用所得到之硏磨劑,與實施例Κ 1同樣做法而進行 評估。其等之結果表示於表2中。 -30 - 201113080 [表2] 分散劑 金屬氧化物粒子 分散劑調製當曰 分散劑保管後 硏磨傷(個數) 硏磨傷(個數) 實 施 例 K1 實施例1 膠體二氧化矽 0.04 0.05 K2 實施例2 膠體二氧化矽 0.06 0.08 K3 實施例3 膠體二氧化矽 0.05 0.07 K4 實施例4 膠體二氧化矽 0.03 0.04 K5 實施例5 膠體二氧化矽 0.04 0.05 K6 實施例6 膠體二氧化矽 0.07 0.09 K7 實施例7 膠體二氧化矽 0.07 0.09 K8 實施例1 二氧化矽粒子 0.05 0.06 K9 實施例2 二氧化矽粒子 0.07 0.09 K10 實施例3 二氧化矽粒子 0.05 0.07 K11 實施例4 二氧化矽粒子 0.03 0.04 K12 實施例5 二氧化矽粒子 0.05 0.06 K13 實施例6 二氧化砂粒子 0.08 0.10 K14 實施例7 二氧化矽粒子 0.08 0.10 比 較 例 K1 比較例1 膠體二氧化砂 0.41 0.62 K2 比較例2 膠體二氧化矽 0.40 0.60 K3 比較例4 膠體二氧化矽 0.43 0.71 K4 比較例5 膠體二氧化矽 0.42 0.69 K5 比較例1 二氧化矽粒子 0.44 0.65 K6 比較例2 二氧化矽粒子 0.42 0.61 K7 比較例4 二氧化矽粒子 0.49 0.83 K8 比較例5 二氧化矽粒子 0.47 0.80 ※表2中之個數係意指每lcm2的個數。 [產業上之利用可能性] 本發明之二氧化矽粒子及二氧化铈粒子用分散劑係可 使用於硏磨劑、製紙、金屬加工、纖維加工、塗料、光學 材料、排氣淨化觸媒、氣體感測器及光學材料等,尤宜使 -31 - 201113080 用來作爲硏磨劑。進一步,硏磨劑係可使用於各種之用途 ,尤宜於半導體裝置製造使用來作爲CMP硏磨劑。C -23- 201113080 nB L ((B) component), the solid content concentration (content of (A) component) is 40%, PH is 6, and (B) component is 1 500 ppm (relative to (A) component 3 750 ppm) of dispersant. The weight average molecular weight (hereinafter referred to as "Mw") of the obtained acrylic copolymer (A) component was measured by gel permeation chromatography (GPC). The GPC measurement conditions were performed using the HLC 8 020 system "Tosoh Co., Ltd.", and the column system was connected to G4000PWxl, G3000PWxl, and G2500PWX1 "Tosoh (manufactured by the company). The dissolving solution was 0.1 M NaCl + phosphoric acid (PH7). The calibration curve was produced using polyacrylic acid Na (Chuanghe Scientific). As a result of the measurement, the above-mentioned acrylic copolymer had Mw of 6,000. Examples 2 to 7 (Production of Dispersant) In Example 1, except that the monomers to be used were changed to those shown in Table 1, the polymerization was carried out under the same conditions as in Example ,. Satisfied and neutralized. In the analysis after the neutralization, the component (B) was detected in the following ratio from the neutralization reaction solution. Therefore, the component (B) was added to the neutralization reaction solution to obtain a dispersant. In Example 2, 2-ethylhexanol (hereinafter referred to as "EHL") was detected to be 100 ppm. Further, EHL was further added to the neutralized reaction solution to adjust to 3 〇〇〇ρρπι. In Example 3, nBL 800 ppm was detected. Then, no additional alcohol (component (B)) was added to the neutralization reaction solution. -24 - 201113080 In Example 4, nBL 500 ppm was detected. Further, nBL was further added to the neutralized reaction solution to adjust to 5 000 ppm. In Example 5, isobutanol (hereinafter referred to as "iBL") was detected as l〇〇Ppm. Then, iBL was further added to the neutralized reaction solution to adjust to 2000 ppm. In Example 6, nBL 5OOppm was detected. Then, no additional alcohol (component (B)) was added to the neutralized reaction solution. In Example 7, nBL 5 OOppm was detected. Further, nBL was further added to the neutralized reaction solution to adjust to ll, 〇〇〇 ppm. The results of measuring the solid concentration (the content of the component (A)), pH, and Mw in the above-mentioned Examples 1 to 7 are shown in Table 1. Comparative Examples 1 to 5 In Example 1, polymerization, decompression distillation, and neutralization were carried out in the same manner as in Example 1 except that the monomers used were changed to those shown in Table 1. In the analysis after the neutralization, the (B) component or the alcohol other than the component (B) is detected in the following ratio, and the (B) component is added to the neutralization reaction solution to be dispersed. Agent. In Comparative Example 1, methanol 3 5 〇 p p m was detected, but the component (B) was not detected. Therefore, the nBL of the component (B) was adjusted to 1 500 ppm °. In Comparative Example 2, 250 ppm of ethanol was detected, but the component (b) was not detected -25-201113080. Therefore, the nBL of the component (B) was adjusted to 1500 ppm. In Comparative Example 4, η B L 3 0 0 p p m was detected. Then, the component (B) was not added to the neutralization reaction solution. In Comparative Example 5, nBL 100 ppm was detected. Further, nBL was further added to the neutralized reaction solution to adjust to 1,300 ppm. Further, in Comparative Example 3, polymerization, distillation under reduced pressure, and neutralization were carried out in the same manner as in Example 1. However, since a uniform liquid could not be obtained, it was not evaluated. The results of measuring the solid concentration (content of (A) component), pH and Mw of the obtained dispersant '%' are shown in Table 1 in the above Comparative Examples 1 to 5. -26- 201113080 Table 1 (A) Ingredients (B Cheng Separate Dispersant (A-1) Monomer blending amount [kgl (A-2) Monomer blending amount ikgl Mw (B) Component type Dispersant ratio iPPm] Ratio relative to (A) component [ppm] Solid fraction concentration [%] pH Example 1 AA 255 nBA 75 6,000 nBL 1,500 3,750 40 6 2 AA 290 EHA 40 6,500 EHL 3,000 7,500 40 6 3 AA 230 nBA 100 5,800 nBL 800 2,000 40 6 4 AA 270 nBA 60 6,400 nBL 5,000 12,500 40 7 5 AA 290 iBA 40 6,500 iBL 2,000 5,000 40 6 6 AA 255 nBA 75 6,000 nBL 500 1,250 40 6 7 AA 255 nBA 75 6,000 nBL 11,000 27,500 40 7 Comparative Example 1 AA 255 MA 75 6,300 nBL 1,500 3,750 40 6 2 AA 255 EA 75 6,100 nBL 1,500 3,750 40 6 3 AA 255 LA 75 - - - - - - 4 AA 290 nBA 40 6,500 nBL 300 750 40 6 5 AA 290 nBA 40 6,500 nBL 13,000 32,500 40 6 The abbreviations in Table 1 are as defined above, meaning the following: EHA: 2-ethylhexyl acrylate iBA: isobutyl acrylate -27- 201113080 ΜΑ : methyl acrylate ΕΑ : acrylic acid Ethyl ester LA: Lauryl acrylate example Κ 1 Put and mix in ion exchange water as described above The dispersant obtained in Example 1 and the colloidal cerium oxide (manufactured by Fuso Chemical Industry Co., Ltd., product name "P L-3", and the average particle diameter measured by a scanning electron microscope 値 0.0 4 / m) to obtain a mixture. Adding 25 % ammonia water to the above mixture to adjust the pH to 6 to obtain a cerium oxide dispersion. The amount of the above dispersing agent in ion-exchanged water (addition amount) is obtained. In the cerium oxide dispersion, the content of the component (A) is 1%. Further, the amount of the colloidal cerium oxide (added amount) in the obtained cerium oxide dispersion, the content of the colloidal cerium oxide The amount of 5% was determined. The cerium oxide dispersion obtained above was evaluated by a honing test by the following method. An 8-inch ruthenium wafer having a yttrium oxide film formed on the surface at a thickness of 1 #m was used as the honed body. The honing device uses a honing device having a support body that holds the honed body and a fixed disk to which the honing pad is attached. Then, a honing pad made of a foamed polyurethane resin is attached to a fixed disk of the honing device, and the cerium oxide dispersion is used as a honing agent, and the surface of the honing pad is covered with a honing agent, and continuously supplied. The honing agent is subjected to a honing test. The honing conditions were honing time 2 minutes, fixed disk rotation number 50 rpm, honing pressure 30 kPa, and honing agent supply amount 50 m L /min. After honing, wash the wafer with pure water and dry it at -28-201113080. For this honing surface, the number of per cm 2 was counted by observing the honing and scratching by an electron microscope. Further, after the ceria dispersion was stored at 50 ° C for one week, the liquid after storage was used as a honing agent, and the same test was carried out. The results of these are shown in Table 2. Examples K2 to K7 In Example K1, a honing agent was produced in the same manner as in Example K1 except that the dispersing agent was changed to the following Table 2. The obtained honing agent was evaluated in the same manner as in Example K1. The results of these are shown in Table 2. Example K8 The dispersant obtained in the above Example 1 and the cerium oxide particles (manufactured by CI Chemical Co., Ltd., product name "NanoTek"), and each of which was measured by a scanning electron microscope, were introduced and mixed in ion-exchanged water. The average particle size of 値 0.0 3 /zm ) gave a mixture. The amount (addition amount) of the dispersant in the ion exchange water is the amount of the component (A) obtained in an amount of 1%. Further, the amount of the solid content (concentration) of the above-mentioned cerium oxide particles in the obtained mixture was 5%. Thereafter, the mixture was subjected to ultrasonic dispersion while stirring. The solution was filtered by a 1 W m burner to add deionized water to obtain a 2% cerium oxide dispersion. The pH of this liquid was 8 〇, and the cerium oxide dispersion obtained above was used as a honing agent, and the honing test was carried out in the same manner as in Example 1 of -29-201113080, and the evaluation was performed. in. Examples K9 to K14 In Example K8, except that the dispersing agent was changed to the following Table 2, the honing agent obtained by using the Grinding 1 Grinding Agent at 1 ° was produced in the same manner as in Example K8. Evaluation was carried out in the same manner as in Example K1. The results of these are shown in Table 2. Comparative Examples K1 to K4 In Example K1, a honing agent was produced in the same manner as in Example K1 except that the dispersing agent was changed to the following Table 2. Using the obtained honing agent, evaluation was carried out in the same manner as in Example K1. The results of these are shown in Table 2. Comparative Examples Κ5 to Κ8 In Example 8, a honing agent was produced in the same manner as in Example 8 except that the dispersing agent was changed to the following Table 2. Using the obtained honing agent, evaluation was carried out in the same manner as in Example Κ1. The results of these are shown in Table 2. -30 - 201113080 [Table 2] Dispersant metal oxide particle dispersant preparation 硏 硏 保管 保管 保管 保管 保管 保管 保管 保管 保管 保管 保管 保管 保管 保管 保管 保管 保管 保管 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施Example 2 Colloidal ceria 0.06 0.08 K3 Example 3 Colloidal ceria 0.05 0.07 K4 Example 4 Colloidal ceria 0.03 0.04 K5 Example 5 Colloidal ceria 0.04 0.05 K6 Example 6 Colloidal ceria 0.07 0.09 K7 Example 7 Colloidal cerium oxide 0.07 0.09 K8 Example 1 cerium oxide particles 0.05 0.06 K9 Example 2 cerium oxide particles 0.07 0.09 K10 Example 3 cerium oxide particles 0.05 0.07 K11 Example 4 cerium oxide particles 0.03 0.04 K12 Example 5 Cerium Oxide Particles 0.05 0.06 K13 Example 6 Sand dioxide Particles 0.08 0.10 K14 Example 7 Cerium Oxide Particles 0.08 0.10 Comparative Example K1 Comparative Example 1 Colloidal Silica Sand 0.41 0.62 K2 Comparative Example 2 Colloidal Cerium Oxide 0.40 0.60 K3 Comparative Example 4 Colloidal cerium oxide 0.43 0.71 K4 Comparative Example 5 Colloidal cerium oxide 0.42 0.69 K5 Comparative Example 1 cerium oxide particles 0.44 0.6 5 K6 Comparative Example 2 Ceria particles 0.42 0.61 K7 Comparative Example 4 Ceria particles 0.49 0.83 K8 Comparative Example 5 Ceria particles 0.47 0.80 * The numbers in Table 2 mean the number per lcm2. [Industrial Applicability] The dispersant for the cerium oxide particles and the cerium oxide particles of the present invention can be used for honing agents, paper making, metal processing, fiber processing, coatings, optical materials, exhaust gas purification catalysts, Gas sensors and optical materials, etc., especially use -31 - 201113080 as a honing agent. Further, the honing agent can be used for various purposes, and is particularly suitable for use as a CMP honing agent for semiconductor device manufacturing.