TW201112456A - Fabricating method of photoelectric device, packaging structure and packaging apparatus thereof - Google Patents

Fabricating method of photoelectric device, packaging structure and packaging apparatus thereof Download PDF

Info

Publication number
TW201112456A
TW201112456A TW98131846A TW98131846A TW201112456A TW 201112456 A TW201112456 A TW 201112456A TW 98131846 A TW98131846 A TW 98131846A TW 98131846 A TW98131846 A TW 98131846A TW 201112456 A TW201112456 A TW 201112456A
Authority
TW
Taiwan
Prior art keywords
ceramic substrate
photovoltaic element
mold
photovoltaic
layer
Prior art date
Application number
TW98131846A
Other languages
Chinese (zh)
Other versions
TWI385833B (en
Inventor
Chester Kuo
Hung-Chin Lin
Original Assignee
Advanced Optoelectronic Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Optoelectronic Tech filed Critical Advanced Optoelectronic Tech
Priority to TW98131846A priority Critical patent/TWI385833B/en
Publication of TW201112456A publication Critical patent/TW201112456A/en
Application granted granted Critical
Publication of TWI385833B publication Critical patent/TWI385833B/en

Links

Landscapes

  • Photovoltaic Devices (AREA)
  • Led Device Packages (AREA)

Abstract

The invention discloses a method for fabricating a photoelectric device. A ceramic substrate is first provided, and then a plurality of the photoelectric dies is disposed on the top surface of the ceramic substrate. Next, a first packaging layer is formed on the top surface of the photoelectric dies, and the ceramic substrate is located between an upper mold and a lower mold. A buffer layer is disposed between the lower mold and the ceramic substrate. Finally, a plurality of lens is formed on the top surface of the first packaging layer by using injection molding or transfer molding steps.

Description

201112456 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種光電元件的製造方法、封裝結構及 其封裝裝置,尤係關於一種採用陶瓷基板作為基底之光電 元件的製造方法、封裝結構及其封襞裝置。 【先前技術】 光電元件中的發光二極體(light emitting diode ; LED )由於具有低耗電、高亮度、體積小及使用壽命長等優點 ’因此被認為是次世代綠色節能照明的最佳光源。如果將 透鏡(lens)附加於一發光一極體的發光面,其可有效地減 少全反射現象和波導效應,進一步提升發光二極體的發光 效率。圖1係美國第US 7,458,703號專利之一具有雙透鏡結 構之發光.一極體封裝結構100之透視圖。該封裝結構1〇〇包 含一較低結構110、一下透鏡160和一上透鏡180。該較低結 構110包含一封裝本體130和一導腳120。在封裝時,該下透 鏡16 0係結合該上透鏡1 8 0以形成一沙漏形狀之結構,藉以 橫向地發射所有來自發光二極體晶粒之光線。然而,該下 透鏡160和該上透鏡180在封裝前需先獨立塑膜,因此製作 成本南且大I製造時需要額外的製程和人力以進行組裝。 據此,有必要提供一種能大量製造具有透鏡結構之光 電元件的製造方法、封裝結構及封裝裝置,並且該些光電 元件係採用一高導熱係數之陶瓷基板作為基底,從而提昇 散熱效果《該方法及裝置可有效改善陶瓷基板封裝時易碎 裂的問題’藉以提高光電元件生產時的可靠度及良率。 201112456 【發明内容】 本發明係提供一種光電元件的製造方法及其封裝裝置 ’尤係關於一種採用陶瓷基板作為基底之光電元件的製造 方法及其封裝裝置。該方法及裝置可有效改善陶瓷基板封 裝時易碎裂的問題,藉以提高光電元件生產時的可靠度及 良率。 本發明揭示一種光電元件之製造方法。首先提供一陶 兗基板’接著設置複數個光電元件晶粒於該陶瓷基板之上 表面。接著形成一第一封裝層於該等光電元件晶粒之上表 面’和定位該陶瓷基板於一下模具和一上模具之間,於該 下模具及該陶究基板間並放置一緩衝層。最後藉由射出成 型或轉注成型之方式以形成複數個透鏡於該第一封裝層之 上表.面。 本發明揭示一種光電元件之製造方法。首先提供一陶 瓷基板’接著設置複數個光電元件晶粒於該陶瓷基板之上 表面。接著形成一第一封裝層於該等光電元件晶粒之上表 面’和定位該陶瓷基板於第一模具和第二模具之間,其中 該第一模昊具有位置對應該等光電元件晶粒之複數個模穴 。再將透明材料分別注入該等模穴内。待該透明材料固化 後,移除第二模具以形成複數個透鏡於該第一封裝層之上 表面。 本發明揭示一種光電元件之製造方法。首先提供一陶 究基板’接著設置複數個光電元件晶粒於該陶瓷基板之上 表面。接著形成一第一封裝層於該等光電元件晶粒之上表 201112456 面。將該陶变基板和第-模具結合。提供—具有位置對應 該等光電元件晶粒之複數個模穴之第二模具,再以透明材 料分別注人該等模穴内。使該封裝層和該透明材料接觸, 待該透明㈣固化後,移除第二模具以形成複數個透鏡於 該第一封裝層之上表面。 本發明揭示一種光電元件之封裝裝置,係用於形成以 陶瓷基板為基底之光電元件之透鏡,纟中複數個光電元件 晶粒設置於一陶瓷基板之上表面,該等光電元件晶粒之上 表面具有一封裝層和複數個反射杯。該封裝裝置包含第一 模具、-緩衝層和第二模具。該第—模具設置於該陶竞基 板之下表面。而該第二模具具有一成型面,且該成型面係 根據所需成型之透鏡形狀而設計,其設置於該封裝層之上 表面。 本發明揭示一種光電元件之封裴裝置,係用於形成以 陶竟基板為基底之光電^件之透鏡,纟中複數個光電元件 晶粒設置於一陶瓷基板之上表面,該等光電元件晶粒之上 表面具有一封裝層和複數個反射杯,該封裝裝置包含一第 一模具和復數個第二模具。該第一模具設置於該陶瓷基板 之下表面,而該等第二模具設置於該等反射杯的間隔之間 以形成複數個容置空,間。 本發明揭示一種光電元件封裝結構。該光電元件封裝 結構,包含一陶瓷基板、一散熱層、一光電元件晶粒、一 電極層、一第—封裝層、複數個反射杯和一透鏡結構。該 散熱層設置於該陶竞基板之下表面,j·該光電s件晶粒設 201112456 置於該散熱層之上表面。該電極層設置於該陶瓷基板之上 表面,且該第-封裝層設置於該光電元件晶粒之上表面。 該等反射杯設置於該第一電極層之上表面,藉以形成一容 置空間。且該透鏡結構固定於該容置空間内。 上述光電元件封裝結構另包含一第二封裝層。該第二 封裝層设置於該容置空間内,並介於該透鏡結構及該第一 封裝層之間。 【實施方式】 圖2係根據本發明一實施例之光電元件封裝架構2〇之 剖面示意圖。該光電元件封裝架構2〇係採用一陶瓷基板21〇 為其基底。該陶瓷基板210可以為一高溫共燒陶瓷(HighBACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method, a package structure, and a package apparatus for a photovoltaic element, and more particularly to a method and a package structure for a photovoltaic element using a ceramic substrate as a substrate Its sealing device. [Prior Art] The light emitting diode (LED) in the photoelectric element has the advantages of low power consumption, high brightness, small size, and long service life, so it is considered to be the best light source for the next generation of green energy-saving lighting. . If a lens is attached to the light-emitting surface of a light-emitting body, it can effectively reduce the total reflection phenomenon and the waveguide effect, and further improve the light-emitting efficiency of the light-emitting diode. Figure 1 is a perspective view of a one-pole package structure 100 in which one of the U.S. Patent No. 7,458,703 has a two-lens structure. The package structure 1 includes a lower structure 110, a lower lens 160 and an upper lens 180. The lower structure 110 includes a package body 130 and a lead pin 120. When packaged, the lower lens 16 is coupled to the upper lens 180 to form an hourglass-shaped structure for laterally emitting all of the light from the light-emitting diode dies. However, the lower lens 160 and the upper lens 180 need to be separately molded before packaging, so that the manufacturing cost is large and the manufacturing process requires an additional process and manpower for assembly. Accordingly, it is necessary to provide a manufacturing method, a package structure, and a packaging device capable of mass-producing a photovoltaic element having a lens structure, and the photovoltaic element uses a ceramic substrate having a high thermal conductivity as a substrate to improve heat dissipation. And the device can effectively improve the problem of fragility when the ceramic substrate is packaged, so as to improve the reliability and yield of the photovoltaic element production. SUMMARY OF THE INVENTION The present invention provides a method of manufacturing a photovoltaic element and a packaging apparatus thereof, and more particularly to a method of manufacturing a photovoltaic element using a ceramic substrate as a substrate and a packaging apparatus therefor. The method and device can effectively improve the problem of fragility when the ceramic substrate is packaged, thereby improving the reliability and yield of the photovoltaic element during production. The present invention discloses a method of manufacturing a photovoltaic element. First, a ceramic substrate is provided. Then, a plurality of photovoltaic element crystal grains are disposed on the upper surface of the ceramic substrate. Then, a first encapsulation layer is formed on the surface of the photovoltaic element die and a ceramic substrate is positioned between the lower mold and an upper mold, and a buffer layer is disposed between the lower mold and the ceramic substrate. Finally, a plurality of lenses are formed on the upper surface of the first encapsulation layer by injection molding or transfer molding. The present invention discloses a method of manufacturing a photovoltaic element. First, a ceramic substrate is provided. Then, a plurality of photovoltaic element crystal grains are disposed on the upper surface of the ceramic substrate. Forming a first encapsulation layer on the upper surface of the optoelectronic device die and positioning the ceramic substrate between the first mold and the second mold, wherein the first mold has a position corresponding to the optoelectronic component die Multiple mold holes. The transparent material is then separately injected into the cavities. After the transparent material is cured, the second mold is removed to form a plurality of lenses on the surface of the first encapsulation layer. The present invention discloses a method of manufacturing a photovoltaic element. First, a ceramic substrate is provided. Then, a plurality of photovoltaic element crystal grains are disposed on the upper surface of the ceramic substrate. Then, a first encapsulation layer is formed on the surface of the photovoltaic element crystal grains. The ceramic substrate and the first mold are combined. Providing a second mold having a plurality of cavities corresponding to the crystal grains of the photovoltaic elements, and respectively injecting the transparent materials into the cavities. The encapsulating layer is brought into contact with the transparent material, and after the transparent (iv) is cured, the second mold is removed to form a plurality of lenses on the upper surface of the first encapsulating layer. The invention discloses a packaging device for a photovoltaic element, which is used for forming a lens of a photovoltaic element based on a ceramic substrate, wherein a plurality of photovoltaic element crystal grains are disposed on a surface of a ceramic substrate, and the photoelectric element is above the crystal grain The surface has an encapsulation layer and a plurality of reflective cups. The package includes a first mold, a buffer layer, and a second mold. The first mold is disposed on the lower surface of the Tao Jing base plate. The second mold has a molding surface which is designed according to the shape of the lens to be formed, and which is disposed on the upper surface of the encapsulation layer. The invention discloses a sealing device for a photoelectric element, which is used for forming a lens of a photoelectric element based on a ceramic substrate, wherein a plurality of photovoltaic elements are arranged on a surface of a ceramic substrate, and the photoelectric elements are The upper surface of the grain has an encapsulation layer and a plurality of reflective cups, and the packaging device comprises a first mold and a plurality of second molds. The first mold is disposed on a lower surface of the ceramic substrate, and the second molds are disposed between the intervals of the reflective cups to form a plurality of accommodation spaces. The invention discloses a photovoltaic element package structure. The photovoltaic device package structure comprises a ceramic substrate, a heat dissipation layer, a photovoltaic element die, an electrode layer, a first encapsulation layer, a plurality of reflective cups and a lens structure. The heat dissipation layer is disposed on the lower surface of the Tao competition substrate, and the photoelectric s die is disposed on the upper surface of the heat dissipation layer. The electrode layer is disposed on an upper surface of the ceramic substrate, and the first encapsulation layer is disposed on an upper surface of the photovoltaic element die. The reflecting cups are disposed on the upper surface of the first electrode layer to form an accommodating space. And the lens structure is fixed in the accommodating space. The above-mentioned photovoltaic device package structure further includes a second encapsulation layer. The second encapsulation layer is disposed in the accommodating space and is interposed between the lens structure and the first encapsulation layer. [Embodiment] FIG. 2 is a schematic cross-sectional view showing a photovoltaic element package structure 2A according to an embodiment of the present invention. The photovoltaic device package structure 2 uses a ceramic substrate 21 as its substrate. The ceramic substrate 210 can be a high temperature co-fired ceramic (High

Temperature Cofired Ceramics,HTCC),或為一低溫共燒陶 瓷(Low Temperature Cofired Ceramics,LTCC)。該陶瓷基板 10最常使用的材料為氧化鋁,而其他常用替代之陶瓷材料 ,包含:氮化鋁(A1N)、氧化鈹(BeO)、碳化矽(SiC)、氧化 ^ 铭(A10)、玻璃或鑽石(Diamond)等。 參照圖2 ’該光電元件封裝架構20包含一散熱層212、 一 P型電極層214和一 N型電極層21 6。該散熱層212可包含各 種導熱材質,例如金屬,而一光電元件晶粒218係設置於該 散熱層212之上表面。該卩型和N型電極層214和216係使用半 導體製程(例如蒸鍍或濺鍍、光學微影、電鍍或化鍍、蝕刻 等)以形成其電極圖樣。一反射結構230,其材料可為金屬 材質(以減鐘(sputtering)方式形成)或非金屬材質(以鑄模 (molding)方式形成),係形成於該散熱層212之上表面和該 201112456 陶瓷基板21 0之中間孔洞内’藉以增加該光電元件晶粒2工8 之光線反射率。該光電元件晶粒21 8係以一晶粒接合、打線 接合或是覆晶接合之方式設置於該陶究基板21〇之散熱層 212之該上表面’其中導線220係用以電性連接該光電元件 晶粒218之焊墊(pad)至該些電極層214和216。 在接合製程後,一第一封裝層222填充於該些反射結構 230所形成的一容置空間内和該光電元件晶粒218之上表面 ’用以包覆該光電元件晶粒218。該第一封裝層222可以為 環氧樹脂’也可以為環氧樹脂與螢光粉之混合物。該螢光 粉吸收光電元件晶粒218之原始光線後,會產生不同波長之 二次光線。一反射杯224形成於該陶瓷基板210之該上表面 ,該反射杯224通常由不透明或具有高反射率的樹脂所製成 。該反射杯224上更可包含一形成在其上的高反射率之金屬 膜226,以增加光線的反射率。此外,在反射杯224中形成 一第二封裝層228藉以包覆該第一封裝層222和導線220,以 進一步保護光電元件晶粒218不受外力或環境之損害。又透 鏡結構240係直接形成於反射杯224之容置空間内,因此可 以解決習知技術中透鏡需要組裝及對位之問題。 圖3顯示根據本發明一實施例之光電元件之製造方法 之步驟示意圖。在步驟S31中,提供一陶瓷基板;在步驟S32 中’設置複數個光電元件晶粒於該陶瓷基板之上表面;在 步驟S33中,形成至少一個封裝層於該等光電元件晶粒之上 表面;在步驟S34中,定位該陶瓷基板於一下模具和一上模 具之間,並於該下模具及該陶瓷基板間並放置一緩衝層, 201112456 用以均勻化該下模具施加於該陶瓷基板之表面之壓力;在 步驟S3 5中,形成複數個透鏡於該至少一個封裝層之上表面 。步驟831至83 3已於先前描述。以下配合圖4八至圖4(:說明 根據本發明一實施例之光電元件之製造方法之細節。 圖4A至圖4C顯示根據本發明一實施例之使用射出成 型(injection molding)以形成該光電元件之透鏡結構之步驟 示意圖。圖4A中的一陶瓷基板412之上表面具有複數個反射 杯422和一封裝層426,且該等反射杯422之間係設置複數個 塊體424。為了在該陶兗基板412之上表面以模製方式形成 一透鏡結構,在圖4A中,一緩衝層410需要形成或放置於該 下模具414之上表面。其後,該陶瓷基板412定位於一下模 具414和一上模具416之間。該上模具414包含一成型面418 和複數個相應於該等塊體424之注入通道420,其中該成型 面418係根據所需成型之透鏡形狀而設計。 接者,.該下模具414和該上模具416.進行合模及注膠步 驟。參照圖4B,一注入裝置43 〇自該等注入通道420以多個 ✓主射管432注入一液態材料。由於合模及注膠時,下模具々μ 直接施壓於陶竟基板412之下表面,若陶竟基板412稱有不 平整’則會遭成局部應力過大。雖然陶竟基板412之硬度高 ’但其為脆性材料’故很容易被彎曲應力(bending stress )破壞而脆裂。緩衝層410可以解決陶瓷基板412之不平整 問題’或是下模具414之不平整問題,從而均勻化該下模具 414施加於該陶瓷基板412之表面之壓力。待該液態材料流 動於該上模具416和該封裝層426之空隙且冷卻及固化後, 201112456 jTemperature Cofired Ceramics (HTCC), or a Low Temperature Cofired Ceramics (LTCC). The most commonly used material for the ceramic substrate 10 is alumina, and other commonly used ceramic materials include: aluminum nitride (A1N), beryllium oxide (BeO), tantalum carbide (SiC), oxidation (A10), glass. Or diamonds, etc. Referring to Fig. 2', the photovoltaic device package structure 20 includes a heat dissipation layer 212, a P-type electrode layer 214, and an N-type electrode layer 216. The heat dissipation layer 212 may include various heat conductive materials such as metal, and a photovoltaic element die 218 is disposed on the upper surface of the heat dissipation layer 212. The 卩-type and N-type electrode layers 214 and 216 are formed using a semiconductor process (e.g., evaporation or sputtering, optical lithography, electroplating or plating, etching, etc.) to form an electrode pattern thereof. a reflective structure 230, the material of which may be a metal material (formed by a sputtering method) or a non-metal material (formed by a molding method) formed on the upper surface of the heat dissipation layer 212 and the 201112456 ceramic substrate In the middle hole of the 21 0', the light reflectance of the photocell 2 is increased. The photo-electric element die 218 is disposed on the upper surface of the heat dissipation layer 212 of the ceramic substrate 21 by a die bonding, wire bonding or flip chip bonding, wherein the wires 220 are electrically connected A pad of the photo-element die 218 is applied to the electrode layers 214 and 216. After the bonding process, a first encapsulation layer 222 is filled in an accommodating space formed by the reflective structures 230 and an upper surface ‘ of the photo-element die 218 is used to cover the photo-element die 218. The first encapsulation layer 222 may be an epoxy resin or a mixture of an epoxy resin and a phosphor powder. After the phosphor absorbs the original light of the crystal element 218, secondary light of different wavelengths is generated. A reflective cup 224 is formed on the upper surface of the ceramic substrate 210, and the reflective cup 224 is typically made of a resin that is opaque or has high reflectivity. The reflector cup 224 may further include a high reflectivity metal film 226 formed thereon to increase the reflectivity of the light. In addition, a second encapsulation layer 228 is formed in the reflective cup 224 to encapsulate the first encapsulation layer 222 and the wires 220 to further protect the optoelectronic device die 218 from external forces or the environment. The lens structure 240 is directly formed in the accommodating space of the reflector cup 224, so that the problem of assembly and alignment of the lens in the prior art can be solved. Fig. 3 is a view showing the steps of a method of manufacturing a photovoltaic element according to an embodiment of the present invention. In step S31, a ceramic substrate is provided; in step S32, a plurality of photovoltaic element crystal grains are disposed on the upper surface of the ceramic substrate; and in step S33, at least one encapsulation layer is formed on the upper surface of the photovoltaic element crystal grains. In step S34, the ceramic substrate is positioned between the lower mold and an upper mold, and a buffer layer is placed between the lower mold and the ceramic substrate, and 201112456 is used to homogenize the lower mold applied to the ceramic substrate. The pressure of the surface; in step S35, a plurality of lenses are formed on the upper surface of the at least one encapsulation layer. Steps 831 through 83 3 have been previously described. 4 to 4 (description of the method of manufacturing a photovoltaic element according to an embodiment of the present invention. Fig. 4A to Fig. 4C show the use of injection molding to form the photovoltaic according to an embodiment of the present invention. A schematic diagram of the steps of the lens structure of the component. The upper surface of a ceramic substrate 412 in FIG. 4A has a plurality of reflective cups 422 and an encapsulation layer 426, and a plurality of blocks 424 are disposed between the reflective cups 422. The upper surface of the ceramic substrate 412 is molded to form a lens structure. In FIG. 4A, a buffer layer 410 needs to be formed or placed on the upper surface of the lower mold 414. Thereafter, the ceramic substrate 412 is positioned in the lower mold 414. And an upper mold 416. The upper mold 414 includes a molding surface 418 and a plurality of injection channels 420 corresponding to the blocks 424, wherein the molding surface 418 is designed according to the shape of the lens to be formed. The lower mold 414 and the upper mold 416 are subjected to a mold clamping and glue injection step. Referring to Fig. 4B, an injection device 43 is injected from the injection passages 420 into the liquid material by a plurality of ✓ main injection tubes 432. When the mold and the glue are injected, the lower mold 々μ is directly pressed against the lower surface of the ceramic substrate 412. If the ceramic substrate 412 is said to have unevenness, the local stress is too large. Although the hardness of the ceramic substrate 412 is high, It is a brittle material, so it is easily broken and cracked by the bending stress. The buffer layer 410 can solve the unevenness problem of the ceramic substrate 412 or the unevenness of the lower mold 414, thereby homogenizing the lower mold 414. The pressure applied to the surface of the ceramic substrate 412. After the liquid material flows in the gap between the upper mold 416 and the encapsulation layer 426 and is cooled and solidified, 201112456 j

I 進行一脫模步驟以移除該下模具414、該上模具416和該緩 衝層410。該緩衝層410之設置係用以降低合模及注膠時之 t ! 壓力’使得該陶瓷基板412在模製過程中可以避免受力時易 碎裂的問題,從而提高光電元件生產時的可靠度及良率。 在脫模後,具有透鏡結構440的光電元件於焉完成。接 著’在圖4C中,根據以雷射或開模的方式在陶瓷基板412 上形成的切割線434,並使用鑽石刀、雷射或水刀沿著該些 丨· 切割線434切割,或是利用剝、折的步驟以獲得獨立的光電 元件(如圖2之封裝架構20)。 在上述實施例中’該等塊體424係設置於該等反射杯 422之間以形成複數個具有透鏡結構440的光電元件。在另 一實施例中,一膜層(未繪出;或參見圖5D中膜層524)係形 成於該等反射杯422之間,藉以保護該陶瓷基板412上的電 極層(未繪出)避免合模及注膠時可能的損害。該膜層可利用 剝離之方式以脫離該陶竟基板412,同時該膜層上之殘膠或 • 膠道(runner)内形成之膠塊亦可藉此一併移除,以於該陶 瓷基板412上形成複數個分離之透鏡結構44〇。 圖5 A至圖5D顯示根據本發明一實施例之使用轉注成 型(transfer molding)以形成該光電元件之透鏡結構之步驟 示意圖。圖5八中的一陶瓷基板512之上表面具有複數個反射 杯522和一封裝層526,且一膜層524係形成於該等反射杯 522之間。該膜層524之設置係用以保護該陶瓷基板512上的 電極層(未繪出)避免合模及注膠時可能的損害。同樣地,為 了在該陶瓷基板5 12之上表面以模製方式形成一透鏡結構 201112456 ,在圖5A中,一缓衝層51〇需要形成於該下模具5i4之上表 面。其後,該陶瓷基板512定位於一下模具514和一上模具 516之間。該上模具514包含一成型面518和一側向之注入通 道520,其中該成型面518係根據所需成型之透鏡形狀而設 計。 參照圖5A,一假模530係設置於該陶瓷基板512和該上 模具516之間,該假模53〇具有一成型面,而該成型面係根 ^ 據所需成型之透鏡形狀而設計。該假模530之成型面可以設 計為相異於該上模具514之成型面518,藉以對透鏡結構之 外形進行調整。或者,該假模53〇之成型面之形狀可以與該 上模具514之成型面518完全相同,使得透鏡結構成型時的 外型更加平滑。當然,若該上模具514之成型面518經由表 面處理亦可以達到平滑之效果,例如:電鍍拋光等。參照 圖5B,當該下模具514、該上模具516和該假模53〇進行合模 時,該封裝層526之上表面會形成複數個彼此連接之空隙。 • 接著’一注入裝置(未繪出)自該注入通道520注入一液 態材料°待該液態材料流動於該等彼此連接之空隙且冷卻 及固化後,移除該下模具514、該緩衝層510、該上模具516 和該假模530。該膜層524可利用剝離之方式以脫離該陶瓷 基板512’同時該膜層.524上之殘膠或穆·道(runner )内形成 之膠塊都會一併移除,就會於陶瓷基板512上形成複數個分 離之透鏡結構540 ’如圖5D所示。另外,該膜層524亦有緩 衝之效果,可以吸收上模具516施加於該陶瓷基板412之表 面之壓力。在脫模後’具有透鏡結構的光電元件於焉完成 201112456 。最後’根據以雷射或開模的方式在陶瓷基板512上形成的 切割線,使用鑽石刀、雷射或水刀切割該些切割線,或是 利用剝、折的步驟以獲得獨立的光電元件。 圖6A至圖6D顯示根據本發明一實施例之使用印刷技 術以形成該光電元件之透鏡結構之步驟示意圖。圖6八中的 一陶瓷基板612之上表面具有複數個反射杯622和一封裝層 626。為了在該陶瓷基板612之上表面形成一透鏡結構,將 該陶瓷基板612定位於一下模具614和一上模具616之間。該 上模具616係設置於該等反射杯622的間隔之間以隔離該些 光電元件晶粒600,且該上模具616具有一高度以形成多個 圍繞該光電元件封裝架構之容置空間。 參照圖6B,一注入裝置63 0以多個對應於該些容置空間 的注射管632注入一液態材料。待該液態材料填滿該些容置 空間且冷卻及固化後,移除該上模具616和該下模具614, 如圖0C和6D所示。在脫模後’由於該材料的内聚力效應, 留存於該容置空間中的材料會形成一透鏡結構640於該光 電元件晶粒600上方。最後’根據以雷射或開模的方式在陶 瓷基板612上形成的切割線,使用鑽石刀、雷射或水刀切割 該些切割線,或是利用剝、折的步驟以獲得獨立的光電元 件。 圖7 A至圖7C顯示根據本發明一實施例之使用浸入及 冷卻方式以形成該光電元件之透鏡結構之步驟示意圖。圖 7A中的一陶瓷基板712之上表面具有複數個反射杯722和一 封裝廣726 »為了在該陶瓷基板712之上表面形成一透鏡結 -12· 201112456 稱,將該陶瓷基板7!2定位於一下模具714和一上模具7i6 之間。該上模具716包含-成型面718,其中該成型面7i8 係根據所需成型之透鏡形狀而設計,且該成型面上裝載一 液態材料720。 參照圖7B,當該下模具714和該上模具716進行合模時 ,該封裝層726會浸入該上模具716所裝載之液態材料72〇 中。待該液態材料720冷卻且固化後,將該下模具714提起 並移除該上模具716,如圖7C所示。在脫模後,具有透鏡結 構740的光電元件於焉完成。最後,根據以雷射或開模的方 式在陶瓷基板712上形成的切割線,使用鑽石刀、雷射或水 刀切割該些切割線,或是利用剝、折的步驟以獲得獨立的 光電元件》 本發明之技術内容及技術特點已揭示如上,然而熟悉 本項技術之人士仍可能基於本發明之教示及揭示而作種種 不背離本發明精神之替換及修部。因此,本發明之保護範 圍應不限於實施例所揭示者,而應包括各種不背離本發明 之替換及修飾,並為以下之申請專利範圍所涵蓋。 【圖式簡要說明】 圖1係美國第US 7,458,703號專利之一具有雙透鏡結構 之發光二極體封裝結構之透視圖; 圖2係根據本發明一實施例之光電元件封裝架構之剖 面示意圖; 圖3顯示根據本發明一實施例之光電元件之製造方法 之步驟示意圖; -13- 201112456 j ! 圖4A至圖4C顯不根據本發明一實施例之使用射出成I performs a demolding step to remove the lower mold 414, the upper mold 416, and the buffer layer 410. The buffer layer 410 is arranged to reduce the pressure at the time of clamping and injection molding, so that the ceramic substrate 412 can avoid the problem of being easily broken when subjected to force during the molding process, thereby improving the reliability of the production of the photovoltaic element. Degree and yield. After demolding, the optoelectronic component having the lens structure 440 is completed in 焉. Next, in FIG. 4C, the cutting line 434 formed on the ceramic substrate 412 in a laser or mold opening manner is cut along the 切割·cutting line 434 using a diamond knife, a laser or a water jet, or The steps of stripping and folding are utilized to obtain individual photovoltaic elements (such as package architecture 20 of Figure 2). In the above embodiment, the blocks 424 are disposed between the reflective cups 422 to form a plurality of photovoltaic elements having lens structures 440. In another embodiment, a film layer (not shown; or see film layer 524 in FIG. 5D) is formed between the reflective cups 422 to protect the electrode layer on the ceramic substrate 412 (not shown). Avoid possible damage during mold clamping and injection. The film layer can be detached from the ceramic substrate 412 by using a peeling method, and the adhesive layer formed on the film layer or the glue formed in the runner can also be removed together for the ceramic substrate. A plurality of separate lens structures 44 are formed on 412. 5A to 5D are views showing the steps of using a transfer molding to form a lens structure of the photovoltaic element, in accordance with an embodiment of the present invention. The upper surface of a ceramic substrate 512 in FIG. 5 has a plurality of reflective cups 522 and an encapsulation layer 526, and a film layer 524 is formed between the reflective cups 522. The film layer 524 is disposed to protect the electrode layer (not shown) on the ceramic substrate 512 from possible damage during mold clamping and injection molding. Similarly, in order to form a lens structure 201112456 on the upper surface of the ceramic substrate 5 12, in Fig. 5A, a buffer layer 51 is required to be formed on the upper surface of the lower mold 5i4. Thereafter, the ceramic substrate 512 is positioned between the lower mold 514 and an upper mold 516. The upper mold 514 includes a forming surface 518 and a lateral injection channel 520, wherein the forming surface 518 is designed according to the shape of the lens to be formed. Referring to Fig. 5A, a dummy mold 530 is disposed between the ceramic substrate 512 and the upper mold 516. The dummy mold 53 has a molding surface which is designed according to the shape of the lens to be formed. The molding surface of the dummy mold 530 can be designed to be different from the molding surface 518 of the upper mold 514 to adjust the shape of the lens structure. Alternatively, the shape of the molding surface of the dummy mold 53 may be identical to that of the molding surface 518 of the upper mold 514, so that the shape of the lens structure during molding is smoother. Of course, if the molding surface 518 of the upper mold 514 is treated by surface treatment, a smoothing effect such as electroplating polishing or the like can be achieved. Referring to FIG. 5B, when the lower mold 514, the upper mold 516, and the dummy mold 53 are clamped, a plurality of voids connected to each other are formed on the upper surface of the encapsulation layer 526. • An 'injection device (not shown) then injects a liquid material from the injection channel 520. After the liquid material flows into the interconnected spaces and is cooled and solidified, the lower mold 514, the buffer layer 510 is removed. The upper mold 516 and the dummy mold 530. The film layer 524 can be detached from the ceramic substrate 512 ′ while the residual glue on the film layer 524 or the glue block formed in the runner is removed, and the ceramic substrate 512 is removed. A plurality of separate lens structures 540' are formed thereon as shown in FIG. 5D. In addition, the film layer 524 also has a buffering effect and can absorb the pressure applied to the surface of the ceramic substrate 412 by the upper mold 516. After the demolding, the photovoltaic element having the lens structure was completed in 201112456. Finally, according to the cutting line formed on the ceramic substrate 512 by laser or mold opening, the cutting lines are cut using a diamond knife, a laser or a water jet, or the steps of peeling and folding are used to obtain independent photoelectric elements. . 6A through 6D are diagrams showing the steps of using a printing technique to form a lens structure of the photovoltaic element, in accordance with an embodiment of the present invention. The upper surface of a ceramic substrate 612 in Fig. 6 has a plurality of reflective cups 622 and an encapsulation layer 626. In order to form a lens structure on the upper surface of the ceramic substrate 612, the ceramic substrate 612 is positioned between the lower mold 614 and an upper mold 616. The upper mold 616 is disposed between the spaces of the reflective cups 622 to isolate the photovoltaic element crystal grains 600, and the upper mold 616 has a height to form a plurality of accommodation spaces surrounding the photovoltaic element package structure. Referring to Fig. 6B, an injection device 63 0 injects a liquid material into a plurality of injection tubes 632 corresponding to the accommodation spaces. After the liquid material fills the accommodating spaces and is cooled and solidified, the upper mold 616 and the lower mold 614 are removed, as shown in Figs. 0C and 6D. After demolding, the material remaining in the accommodating space forms a lens structure 640 over the photo-electric element die 600 due to the cohesive force effect of the material. Finally, according to the cutting line formed on the ceramic substrate 612 by laser or mold opening, the cutting lines are cut using a diamond knife, a laser or a water jet, or the steps of peeling and folding are used to obtain independent photoelectric elements. . 7A through 7C are schematic views showing the steps of forming a lens structure of the photovoltaic element using immersion and cooling in accordance with an embodiment of the present invention. A ceramic substrate 712 has a plurality of reflective cups 722 and a package 726 on the upper surface of the ceramic substrate 712. In order to form a lens junction on the upper surface of the ceramic substrate 712, the ceramic substrate 7! 2 is positioned. Between the mold 714 and an upper mold 7i6. The upper mold 716 includes a molding surface 718, wherein the molding surface 7i8 is designed according to the shape of the lens to be formed, and the molding surface is loaded with a liquid material 720. Referring to FIG. 7B, when the lower mold 714 and the upper mold 716 are closed, the encapsulation layer 726 is immersed in the liquid material 72〇 loaded by the upper mold 716. After the liquid material 720 is cooled and solidified, the lower mold 714 is lifted and the upper mold 716 is removed, as shown in Fig. 7C. After demolding, the optoelectronic component having the lens structure 740 is completed in 焉. Finally, according to the cutting line formed on the ceramic substrate 712 by laser or mold opening, the cutting lines are cut using a diamond knife, a laser or a water jet, or the steps of peeling and folding are used to obtain independent photoelectric elements. The technical content and technical features of the present invention have been disclosed above, but those skilled in the art can still make various alternatives and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of the present invention is not limited by the scope of the invention, and the invention is intended to cover various alternatives and modifications. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a light emitting diode package structure having a double lens structure in one of US Pat. No. 7,458,703; FIG. 2 is a schematic cross-sectional view of a photovoltaic element package structure according to an embodiment of the present invention; 3 is a schematic view showing the steps of a method of manufacturing a photovoltaic element according to an embodiment of the present invention; -13- 201112456 j ! FIG. 4A to FIG. 4C show the use of an injection according to an embodiment of the present invention.

I 型以形成該光電元件之透鏡結構之步驟示意圖; ; 圖5A至圖5D顯示根據本發明—實施例之使用轉注成 | I 型以形成該光電元件之透鏡結構之步驟示意圖; { t | 圖6A至圖6D顯示根據本發明一實施例之使用印刷技 術以形成該光電元件之透鏡結構之步驟示意圖;以及 圖7A至圖7C顯示根據本發明一實施例之使用浸入及 ] ι 冷卻方式以形成該光電元件之透鏡結構之步碑示意圖。 丨鲁 【主要元件符號說明】 1 100發光一極體封裝結構 丨 110 較低結構 120 導腳 130 封裝本體 I 160 下透鏡FIG. 5A to FIG. 5D are schematic diagrams showing the steps of forming a lens structure of the photovoltaic element according to the embodiment of the present invention using an embodiment of the present invention; { t | 6A to 6D are diagrams showing steps of using a printing technique to form a lens structure of the photovoltaic element according to an embodiment of the present invention; and FIGS. 7A to 7C are diagrams showing formation using an immersion and an ι cooling method according to an embodiment of the present invention. A schematic diagram of the step structure of the lens structure of the photovoltaic element.丨鲁 [Main component symbol description] 1 100 light-emitting diode package structure 丨 110 lower structure 120-lead 130 package body I 160 lower lens

I 180 上透鏡 20 光電元件封裝架構 # 210陶瓷基板 212 散熱層 214 P型電極層 216 N型電極層 21 8 光電元件晶粒 220 導線 222 第一封裝層 224 反射杯 226 金屬膜 201112456I 180 Upper lens 20 Photovoltaic device package architecture # 210 Ceramic substrate 212 Heat dissipation layer 214 P-type electrode layer 216 N-type electrode layer 21 8 Photoelectric element die 220 Wire 222 First encapsulation layer 224 Reflective cup 226 Metal film 201112456

228 第二封裝層 230 反射結構 240 透鏡結構 S31~ S35步驟 410 緩衝層 412 陶瓷基板 414 下模具 416 上模具 418 成型面 420 注入通道 422 反射杯 424 塊體 426 封裝層 430 注入裝置 432 注射管 434 切割線 440 透鏡結構 510 緩衝層 512 陶瓷基板 514 上模具 516 上模具 518 成型面 520 注入通道 522 反射杯 524 膜層 201112456228 second encapsulation layer 230 reflective structure 240 lens structure S31~ S35 step 410 buffer layer 412 ceramic substrate 414 lower mold 416 upper mold 418 molding surface 420 injection channel 422 reflective cup 424 block 426 encapsulation layer 430 injection device 432 injection tube 434 cutting Line 440 Lens Structure 510 Buffer Layer 512 Ceramic Substrate 514 Upper Mold 516 Upper Mold 518 Forming Surface 520 Injection Channel 522 Reflecting Cup 524 Film Layer 201112456

526 封裝層 530 假模 540 透鏡結構 610 缓衝層 612 陶瓷基板 614 下模具 616 上模具 622 反射杯 626 封裝層 630 注入裝置 632 注射管 640 透鏡結構 710 緩衝層 712 陶瓷基板 714 下模具 716 上模具 718 成型面 720 液癌材料 722 反射杯 726 封裝層 740 透鏡結構526 encapsulation layer 530 dummy mold 540 lens structure 610 buffer layer 612 ceramic substrate 614 lower mold 616 upper mold 622 reflective cup 626 encapsulation layer 630 injection device 632 injection tube 640 lens structure 710 buffer layer 712 ceramic substrate 714 lower mold 716 upper mold 718 Molding surface 720 liquid cancer material 722 reflective cup 726 encapsulation layer 740 lens structure

Claims (1)

201112456 七、申請專利範圍: 1. 一種光電元件之製造方法,包含下列步驟: 提供一陶瓷基板; 設置複數個光電元件晶粒於該陶瓷基板之上表面; 形成一第一封裝層於該等光電元件晶粒之上表面; 定位該陶瓷基板於一下模具和一上模具之間;以及 形成複數個透鏡於該第一封裝層之上表面。 2_根據請求項1之光電元件之製造方法,其中更包含形成一 ^ I熱層於該陶竟基板之下表面,以及形成-電極層於該陶 瓷基板之上表面,並形成一反射結構於該陶瓷基板之孔洞 内。 3·根據請求項2之光電元件之製造方法,其中該等光電元件 曰曰曰粒係以晶片接合或是覆晶接合之方式設置於該陶兗基 板之該散熱層之上表面,又該散熱層之部分係位於該陶曼 基板之孔洞内。 根據請求項丨之光電元件之製造方法,其另包含於該第 封裝層之上表面覆蓋-第二封裝屬之步驟,且該第—封 層為環氧樹脂與螢光粉之混合物。 根據請求項!之光電元件之製造方法,其中更包含形成 放置-緩衝層於該下模具之上表面,該複數個透鏡係藉 射出成型或轉注成型之方式形成。 ' 根據請求項5之光電元件之製造方法,其中該陶竟基板 面具有複數個反射杯’且有複數個塊體係設她 寻反射杯之間。 4. 5. -17- 6. i 201112456 • 丨 7.根據請求項6之光電元件之製造方法,其中該上模具包含 i 一成型面和複數個相應於該等塊體之注入通道,該成型面 係根據所需成型之透鏡形狀而設計。 8. 根據請求項7之光電元件之製造方法,其更包含該下模具 和該上模具之壓合、注膠、固化、脫模和分離該陶究基板 以獲得獨立的光電元件之步驟。 9. 根據請求項5之光電元件之製造方法,其中該陶究基板之 該上表面具有複數個反射杯且一臈層係形成於該等反射 零 杯之間。 10·根據請求項9之光電元件之製造方法,其中該上模具包含 -成型面和-側向之注入通道’其中該成型面係根據所需 成型之透鏡形狀而設計。201112456 VII. Patent application scope: 1. A method for manufacturing a photovoltaic element, comprising the steps of: providing a ceramic substrate; and providing a plurality of photovoltaic elements on the upper surface of the ceramic substrate; forming a first encapsulation layer on the photoelectric An upper surface of the element die; positioning the ceramic substrate between the lower mold and an upper mold; and forming a plurality of lenses on the upper surface of the first encapsulation layer. 2) The method of manufacturing a photovoltaic element according to claim 1, further comprising forming a thermal layer on a lower surface of the ceramic substrate, and forming an electrode layer on an upper surface of the ceramic substrate, and forming a reflective structure on the surface Inside the hole of the ceramic substrate. 3. The method of manufacturing a photovoltaic element according to claim 2, wherein the photovoltaic element is disposed on the upper surface of the heat dissipation layer of the ceramic substrate by wafer bonding or flip chip bonding, and the heat dissipation Portions of the layer are located within the holes of the Tauman substrate. According to the method of manufacturing the optoelectronic component of claim 1, the method further comprises the step of covering the surface of the first encapsulation layer with the second encapsulation, and the first encapsulation layer is a mixture of epoxy resin and phosphor powder. According to the request item! The method of manufacturing a photovoltaic element, further comprising forming a placement-buffer layer on an upper surface of the lower mold, the plurality of lenses being formed by injection molding or transfer molding. The method of manufacturing a photovoltaic element according to claim 5, wherein the ceramic substrate has a plurality of reflective cups and a plurality of block systems are disposed between the reflective cups. 4. The method of manufacturing the photovoltaic element according to claim 6, wherein the upper mold comprises i a molding surface and a plurality of injection channels corresponding to the blocks, the molding The surface is designed according to the shape of the lens to be molded. 8. The method of manufacturing a photovoltaic element according to claim 7, further comprising the step of pressing, gluing, curing, demolding, and separating the lower mold and the upper mold to obtain a separate photovoltaic element. 9. The method of manufacturing a photovoltaic element according to claim 5, wherein the upper surface of the ceramic substrate has a plurality of reflective cups and a layer of tantalum is formed between the reflective cups. 10. The method of manufacturing a photovoltaic element according to claim 9, wherein the upper mold comprises a molding surface and a lateral injection channel, wherein the molding surface is designed according to a lens shape to be molded. 11. 根據請求項10之光電元件之製造方法,其更包含設置一假 模於該陶曼基板和該上模具之間,以在該封裝層之上表面 形成複數個彼此連接之空隙,其中該假模具有一成型面, 且該成型面係根據所需成型之透鏡形狀而設計。 12. 根據請求項U之光電元件之製造方法,其中更包含該下模 具和該上模具之壓合、注膠、固化、脫模、移除該膜層以 及分離該陶瓷基板以獲得獨立的光電元件之步驟。 13. 根據請求項丨之光電元件之製造方法,其中該"基板之 該上表面具有複數減射杯,㈣上模具錢置㈣等反 射杯的間隔之間以形成複數個容置空間。 根據請求項之光電元件之製造方法,其中更包含以—液 態材料填充該等容置空間之步驟。 14. 201112456 15. 根據請求項14之光電元件之製造方法,其中更包含固化、 脫模以及分離該陶瓷基板以獲得獨立的光電元件之步驟。 16. 根據請求項!之光電元件之製造方法,其中該上模具包含 包含一成型面,該成型面係根據所需成型之透鏡形狀而設 計’且該成型面上裝載一液態材料。 根據請求項16之光電元件之製造方法其中更包含該下模 具和該上模具之壓合、固化、脫模以及分離該陶瓷基板以 獲得獨立的光電元件之步驟。 18.根據請求項16之光電元件之製造方法,其中該液態材料係 先填充該等成型面空間,並將該上模具和該下模具相互壓 合,待該液態材料固化後再自該陶瓷基板脫離該上模具和 該下模具。 19· 一種光電元件之封裝裝置,係用於形成以陶瓷基板為基底 之光電元件之透鏡,其中複數個光電元件晶粒設置於該陶 竟基板之上表面,該等光電元件晶粒之上表面具有一封裝 層和複數個反射杯,該封裝裝置包含: 一第一模具’设置於該陶竞基板之下表面;以及 一第二模具,具有一成型面,該成型面係根據所需成 型之透鏡形狀而設計,其設置於該封裝層之上表面。 20. 根據請求項19之光電元件之封裝裝置,其中更包含一緩衝 層,其形成於該第一模具之上表面。 21. 根據請求項20之光電元件之封裝裝置,其中該陶究基板之 該上表面具有複數個設置於該等反射杯之間的塊體,而該 第二模具更包含複數個相應於該等塊體之注入通道。 201112456 22. 根據請求項21之光電元件之封裝裝置,其更包含一注入裝 置,用以自該等注入通道注入一液態材料。 23. 根據請求項2〇之光電元件之封裝裝置,其更包含—設置於 該等反射杯之間的膜層,且該第二模具更包含一側向之注 入通道。 24·根據請求項23之光電元件之封裝裝置,其中更包含一設置 於該陶瓷基板和該第二模具之間之假模,該假模具有一成 • 型面,該成型面係根據所需成型之透鏡形狀而設計。 2 5 ·根據請求項2 4之光電元件之封裝裝置,其中更包含一注入 裝置,用以自該注入通道注入一液態材料。 %·根據請求項19之光電元件之封裝裝置,其中該第二模具之 成型面係用於裝載一液態材料。 27· —種光電兀件之封裝裝置,係用於形成以陶瓷基板為基底 之光電το件之透鏡,其中複數個光電元件晶粒設置於該陶 瓷基板之上表面,該等光電元件晶粒之上表面具有一封裝 • 層和複數個反射杯,該封裝裝置包含: .一第一模具,設置於該陶瓷基板之下表面;以及 複數個第二模具,其設置於該等反射杯的間隔之間以 形成複數個容置空間。 28. 根據請求項27之光電元件之封裝裝置,其中更包含一注入 裝置,用以注入一液態材料至該等容置空間。 29, —種光電元件封裝結構,包含: 一陶瓷基板; 一散熱層,設置於該陶瓷基板之下表面; 201112456 一光電元件晶粒,設置於該散熱層之上表面; 一電極層,設置於該陶瓷基板之上表面; 一第一封裝層,設置於該光電元件晶粒之上表面; 複數個反射杯’設置於該第一電極層之上表面,藉以 形成一容置空間;以及 一透鏡結構,固定於該容置空間内。 30.根據請求項29之光電元件封裝結構,其中該電極層包含一 P型電極層和一N型電極層。 31_根據請求項29之光電元件封裝結構,其另包含一覆蓋於該 第一封裝層之上表面的第二封裝層。 32.根據請求項29之光電元件封裝結構,其中該光電元件晶粒 係以晶片接合或是覆晶接合之方式固定於於該陶瓷基板 上。 33·根據請求項29之光電元件封裝結構,其另包含至少一導 線,其中該光電元件晶粒係藉由該導線電性連接至該電極 層。 34.根據請求項29之光電元件封裝結構,其中更包含一反射鈐 構’其形成於該散熱層之上表面和該陶瓷基板之孔洞中。 35·根據請求項34之光電元件封裝結構,其中該散熱層之部分 係位於該陶瓷基板之孔洞中,該光電元件晶粒亦位於該陶 曼基板之孔洞中。 36.根據請求項29之光電元件封裝結構,其中更包含一反射獏 形成於該反射杯之表面。 ' 37·根據請求項29之光電元件封裝結構,其中該第一封裝層為 -21 . 201112456 38. 環氣樹脂與螢光粉之混合物。 d項29之光電元件封裝結構,其中該透鏡結構係 成1 4成型、—印刷技術或—浸入及冷卻 程所形成。 以 製 39. 根據請求項29之光電元株私壯 〜电疋件封裝結構,其中該陶瓷基板為 尚溫共燒陶曼基板,或A 一狀、 尺馬一低溫共燒陶瓷基板。 -22-11. The method of manufacturing a photovoltaic element according to claim 10, further comprising: providing a dummy mold between the Tauman substrate and the upper mold to form a plurality of interconnected spaces on the surface of the encapsulation layer, wherein The dummy mold has a molding surface, and the molding surface is designed according to the shape of the lens to be molded. 12. The method of manufacturing a photovoltaic element according to claim U, further comprising: laminating, injecting, curing, demolding, removing the film and separating the ceramic substrate to obtain an independent photoelectric film of the lower mold and the upper mold. The steps of the component. 13. The method according to claim 1, wherein the upper surface of the substrate has a plurality of subtraction cups, and (4) an interval between the counter cups of the upper mold and the dummy (4) to form a plurality of accommodation spaces. The method of manufacturing a photovoltaic element according to the claim, further comprising the step of filling the accommodating spaces with a liquid material. 14. The method of manufacturing a photovoltaic element according to claim 14, further comprising the step of curing, demolding, and separating the ceramic substrate to obtain a separate photovoltaic element. 16. According to the request! A method of manufacturing a photovoltaic element, wherein the upper mold comprises a molding surface which is designed according to a shape of a lens to be formed, and the molding surface is loaded with a liquid material. The method of manufacturing a photovoltaic element according to claim 16, further comprising the step of press-bonding, solidifying, demolding, and separating the lower mold and the upper mold to obtain a separate photovoltaic element. 18. The method of manufacturing a photovoltaic element according to claim 16, wherein the liquid material first fills the molding surface spaces, and presses the upper mold and the lower mold to each other, and the liquid material is cured from the ceramic substrate. The upper mold and the lower mold are separated. 19. A device for packaging a photovoltaic element, wherein a lens for forming a photovoltaic element based on a ceramic substrate, wherein a plurality of photovoltaic elements are disposed on an upper surface of the ceramic substrate, and a surface of the upper surface of the photovoltaic element Having an encapsulation layer and a plurality of reflective cups, the packaging device comprises: a first mold disposed on a lower surface of the ceramic substrate; and a second mold having a molding surface, the molding surface being formed according to a desired shape The shape of the lens is designed to be disposed on the upper surface of the encapsulation layer. 20. The package of photovoltaic element according to claim 19, further comprising a buffer layer formed on the upper surface of the first mold. 21. The package device of claim 20, wherein the upper surface of the ceramic substrate has a plurality of blocks disposed between the reflective cups, and the second mold further comprises a plurality of corresponding ones The injection channel of the block. The package device of the photovoltaic element of claim 21, further comprising an injection device for injecting a liquid material from the injection channels. 23. The package of photovoltaic elements according to claim 2, further comprising: a film layer disposed between the reflective cups, and the second mold further comprises a side-injecting channel. The package device of the photovoltaic element according to claim 23, further comprising a dummy mold disposed between the ceramic substrate and the second mold, the dummy mold having a molding surface formed according to a desired shape Designed for the shape of the lens. The package of photovoltaic elements according to claim 2, further comprising an injection device for injecting a liquid material from the injection channel. The package of photovoltaic elements according to claim 19, wherein the molding surface of the second mold is for loading a liquid material. A package device for forming a photoelectric element, wherein the plurality of photovoltaic element crystal grains are disposed on an upper surface of the ceramic substrate, and the photoelectric element is patterned The upper surface has a package layer and a plurality of reflective cups, and the packaging device comprises: a first mold disposed on the lower surface of the ceramic substrate; and a plurality of second molds disposed at intervals of the reflective cups To form a plurality of accommodation spaces. 28. The package of photovoltaic elements according to claim 27, further comprising an injection device for injecting a liquid material into the accommodating spaces. 29, a photovoltaic device package structure, comprising: a ceramic substrate; a heat dissipation layer disposed on the lower surface of the ceramic substrate; 201112456 a photovoltaic element die disposed on the upper surface of the heat dissipation layer; an electrode layer disposed on a surface of the ceramic substrate; a first encapsulation layer disposed on the upper surface of the photovoltaic element; a plurality of reflective cups disposed on the upper surface of the first electrode layer to form an accommodating space; and a lens The structure is fixed in the accommodating space. The photovoltaic element package structure according to claim 29, wherein the electrode layer comprises a P-type electrode layer and an N-type electrode layer. 31. The photovoltaic device package structure of claim 29, further comprising a second encapsulation layer overlying an upper surface of the first encapsulation layer. The photovoltaic element package structure according to claim 29, wherein the photovoltaic element die is fixed to the ceramic substrate by wafer bonding or flip chip bonding. 33. The photovoltaic device package structure of claim 29, further comprising at least one conductive wire, wherein the photovoltaic device die is electrically connected to the electrode layer by the wire. The photovoltaic element package structure of claim 29, further comprising a reflective structure formed in the upper surface of the heat dissipation layer and the hole in the ceramic substrate. The photovoltaic element package structure according to claim 34, wherein a portion of the heat dissipation layer is located in a hole of the ceramic substrate, and the photovoltaic element die is also located in a hole of the Tauman substrate. 36. The photovoltaic element package of claim 29, further comprising a reflective ridge formed on a surface of the reflective cup. 37. The photovoltaic device package structure according to claim 29, wherein the first encapsulation layer is -21. 201112456 38. A mixture of a ring gas resin and a phosphor powder. The photovoltaic element package structure of item d, wherein the lens structure is formed by a molding process, a printing technique, or an immersion and cooling process. According to claim 29, the photovoltaic cell is a privately-packed structure, wherein the ceramic substrate is a co-fired Tauman substrate, or an A-shaped, a-horse-temperature co-fired ceramic substrate. -twenty two-
TW98131846A 2009-09-22 2009-09-22 Fabricating method of photoelectric device and packaging structure TWI385833B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98131846A TWI385833B (en) 2009-09-22 2009-09-22 Fabricating method of photoelectric device and packaging structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98131846A TWI385833B (en) 2009-09-22 2009-09-22 Fabricating method of photoelectric device and packaging structure

Publications (2)

Publication Number Publication Date
TW201112456A true TW201112456A (en) 2011-04-01
TWI385833B TWI385833B (en) 2013-02-11

Family

ID=44909285

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98131846A TWI385833B (en) 2009-09-22 2009-09-22 Fabricating method of photoelectric device and packaging structure

Country Status (1)

Country Link
TW (1) TWI385833B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8809083B2 (en) 2012-03-13 2014-08-19 Advanced Optoelectronics Technology, Inc. Method of manufacturing light emitting diode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230280B2 (en) * 2004-05-27 2007-06-12 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Collimating light from an LED device
US7452737B2 (en) * 2004-11-15 2008-11-18 Philips Lumileds Lighting Company, Llc Molded lens over LED die

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8809083B2 (en) 2012-03-13 2014-08-19 Advanced Optoelectronics Technology, Inc. Method of manufacturing light emitting diode

Also Published As

Publication number Publication date
TWI385833B (en) 2013-02-11

Similar Documents

Publication Publication Date Title
US8093078B2 (en) Photoelectric device, method of fabricating the same and packaging apparatus for the same
US9478722B2 (en) Light emitting device and method for manufacturing same
CN102549783B (en) reflective substrate for LED
JP6203759B2 (en) LED chip manufacturing method
JP5208414B2 (en) LED power package
US8089089B2 (en) Side-emitting LED package and manufacturing method of the same
TWI463701B (en) Underfill process for flip-chip leds
US9040353B2 (en) Method for manufacturing semiconductor light emitting device
US20130309789A1 (en) Batwing LED with Remote Phosphor Configuration
JP5497469B2 (en) Light emitting device and manufacturing method thereof
US10461227B2 (en) Method for manufacturing light emitting device, and light emitting device
US8936953B2 (en) Light emitting diode thermally enhanced cavity package and method of manufacture
TW201104929A (en) LED with remote phosphor layer and reflective submount
TW201344987A (en) Manufacturing method for LED package
TW201342672A (en) Method for manufacturing LED package
TWI543410B (en) Method for producing a light emitting device
US20090023234A1 (en) Method for manufacturing light emitting diode package
US20160172554A1 (en) Pc led with optical element and without ssubstrate carrier
JP5702481B2 (en) Light emitting device and manufacturing method thereof
TWI385833B (en) Fabricating method of photoelectric device and packaging structure
TWI412163B (en) Led package structure and the method of manufacturing the same
KR102017730B1 (en) Method of manufacturing preformed sealant for semiconductor light emitting device
KR20120079667A (en) Light emitting device package and manufacturing method thereof
KR102051478B1 (en) Semiconductor light emitting device and method of manufacturing the same
KR102022460B1 (en) Semiconductor light emitting device and method of manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees