TW201112432A - Solar cell apparatus with light-modulating function - Google Patents

Solar cell apparatus with light-modulating function Download PDF

Info

Publication number
TW201112432A
TW201112432A TW98132235A TW98132235A TW201112432A TW 201112432 A TW201112432 A TW 201112432A TW 98132235 A TW98132235 A TW 98132235A TW 98132235 A TW98132235 A TW 98132235A TW 201112432 A TW201112432 A TW 201112432A
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
photovoltaic element
superparamagnetic
transparent substrate
Prior art date
Application number
TW98132235A
Other languages
Chinese (zh)
Inventor
Chen Hsu
Lin Tau
Original Assignee
Chen Hsu
Lin Tau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen Hsu, Lin Tau filed Critical Chen Hsu
Priority to TW98132235A priority Critical patent/TW201112432A/en
Publication of TW201112432A publication Critical patent/TW201112432A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The invention provides a solar cell apparatus including a photovoltaic device and a super-paramagnetic layer. The photovoltaic device includes a p-n junction for converting sun light energy at a first wavelength into an electric energy. The super-paramagnetic layer is formed so that sun light passes through the super-paramagnetic layer and then projects towards the p-n junction. In particular, sun light energy at a second wavelength is modulated by the super-paramagnetic layer into energy at the first wavelength.

Description

201112432 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種太陽能電池裝置(solar cell apparatus), 並且特別地,本發明係關於一種具有光調變功能 modulating function)的太陽能電池震置。 【先前技術】 將光能轉換成電能的太陽能電池已廣泛被運用在發電系 • 統以及電子產品上。以典型的矽基太陽能電池為例,太陽能 電池的原理係光子進入矽基材並且由該矽基材吸收,以轉移 光子的能量給原為鍵結狀態(共價鍵)的電子,並且藉此釋放 原為鍵結狀態的電子成游離的電子。此種可移動的電子,以 及其所遺留下原在共價鍵處的電洞(此種電洞也是可移動 的),可以造成電流從該太陽能電池流出。為了貢獻該電流, 上述的電子以及電洞不可以重新結合,反而是由與矽基材内 p-n接面(p-n junction)處之電場所分離。 由於矽基太陽能電池具有特定能隙(band gap)的材料特 性,理論上能量等於或高於矽基太陽能電池材料的能隙之光 子皆能被吸收轉換成電能。但是,實務上因種種複雜的因 素,石夕基太陽能電池對於太陽光的吸收光谱皆有出現峰值的 現象。也就是說,矽基太陽能電池主要吸收太陽光中特定波 長頻段的能量,將其轉換成電能。即便新興的太陽能電池材 料,續被開發,例如,染料敏化太陽能電池、非晶矽與微晶 矽薄膜太陽能電池、化合物太陽能電池,等,各種太陽能電 池材料也都具有主要吸收太陽光巾特定波長舰之能量的特 性0BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell apparatus, and in particular, to a solar cell sensor having a modulating function. [Prior Art] Solar cells that convert light energy into electrical energy have been widely used in power generation systems and electronic products. Taking a typical bismuth-based solar cell as an example, the principle of a solar cell is that photons enter and are absorbed by the ruthenium substrate to transfer the energy of the photons to electrons that are originally in a bonded state (covalent bond), and thereby The electrons that were originally in the bonded state are released into free electrons. Such movable electrons, and the holes left in the covalent bond (the holes are also movable), can cause current to flow from the solar cell. In order to contribute to this current, the above-mentioned electrons and holes cannot be recombined, but instead are separated from the electric field at the p-n junction in the crucible substrate. Since the ruthenium-based solar cell has a material characteristic of a specific band gap, a photon whose energy is equal to or higher than the energy gap of the ruthenium-based solar cell material can be absorbed and converted into electric energy. However, in practice, due to various complicated factors, the Shihji solar cell has a peak in the absorption spectrum of sunlight. That is to say, the samar-based solar cell mainly absorbs energy in a specific wavelength band of sunlight and converts it into electric energy. Even emerging solar cell materials continue to be developed, for example, dye-sensitized solar cells, amorphous germanium and microcrystalline germanium thin film solar cells, compound solar cells, etc., and various solar cell materials also have a specific wavelength for absorbing sunlight. The characteristics of the ship's energy 0

1CHENHSU/200903TW 3 201112432 為了擴大太陽能電池對太陽光所能利用的波長頻段,在 堆叠式結構的太陽能電池領域遂有p-i-n接面、n-i-p接面、雙 接面(tandem junction)以及多重接面(multi-junction)的發展。然 而,上述堆疊式結構的太陽能電池製造上極為困難,衍生出 製造成本過高的問題。上述堆疊式結構的太陽能電池仍會遭 遇到未利用的太陽光換成熱的衝擊。熱對於各種太陽能電 池’皆會降低太陽能電池的轉換效率。此外,熱以及未利用 到的紫外光對於一些太陽能電池,會逐漸劣化其本身的材 料。 因此’本發明之一範疇即在提供一種具有光調變功能之 太陽能發電裝置,以將原未利用之某一波長頻段的光能調變 成能被太陽能發電裝置之光伏元件(photovoltaic device)轉換成 電能之波長頻段的光能。 【發明内容】 根據本發明之一較佳具體實施例之太陽能電池裝置,其 包含一光伏元件以及一超順磁性層(super-paramagnetic layer)。該光伏元件包含一 p_n接面。該p_n接面用以轉換太 陽光中位於一第一波長頻段的能量成一電能。該超順磁性層 係形成致使太陽光先行穿過該超順磁性層再射向該p_n接 面。特別地,當太陽光通過該超順磁性層時,太陽光中位於 一第二波長頻段的能量被該超順磁性層調變成位於該第一波 長頻段的能量,進而被該p-n接面轉換成電能。 於實際應用中,該超順磁性層係由一順磁性材料所形 成’例如,MnZn鐵氧體、NiZn鐵氧體、NiZnCu、Ni-Fe-Mo 合金、鐵基非晶材料、鐵錄基非晶材料、銘基非晶材料、超 微晶合金、鐵粉心材料、超導材料、ZnO、A1203、GaN、1CHENHSU/200903TW 3 201112432 In order to expand the wavelength band that solar cells can use for sunlight, there are pin junctions, nip junctions, tandem junctions, and multiple junctions in the field of stacked solar cells. -junction) development. However, the solar cells of the above stacked structure are extremely difficult to manufacture, and the problem of excessive manufacturing cost is derived. The solar cells of the above stacked structure are still subject to the impact of the use of unused sunlight to heat. Heat will reduce the conversion efficiency of solar cells for all types of solar cells. In addition, heat and unused ultraviolet light will gradually degrade its own materials for some solar cells. Therefore, one aspect of the present invention is to provide a solar power generation device having a light modulation function to convert light energy of a wavelength band not originally utilized into a photovoltaic device that can be converted into a photovoltaic device by a solar power generation device. Light energy in the wavelength band of electrical energy. SUMMARY OF THE INVENTION A solar cell device according to a preferred embodiment of the present invention comprises a photovoltaic element and a super-paramagnetic layer. The photovoltaic element comprises a p_n junction. The p_n junction is used to convert the energy in the first wavelength band of the sunlight into a power. The superparamagnetic layer is formed such that sunlight passes through the superparamagnetic layer and is directed toward the p_n junction. In particular, when sunlight passes through the superparamagnetic layer, energy in a second wavelength band of the sunlight is modulated by the superparamagnetic layer into energy in the first wavelength band, and is converted into the pn junction. Electrical energy. In practical applications, the superparamagnetic layer is formed of a paramagnetic material, for example, MnZn ferrite, NiZn ferrite, NiZnCu, Ni-Fe-Mo alloy, iron-based amorphous material, iron-based non-metallic Crystal material, Ming-based amorphous material, ultra-fine crystal alloy, iron powder core material, superconducting material, ZnO, A1203, GaN,

GalnN、GalnP、Si02、Si3N4、AIN、BN、Zr203、Au、GalnN, GalnP, SiO2, Si3N4, AIN, BN, Zr203, Au,

4 1CHENHSU/200903TW 2011124324 1CHENHSU/200903TW 201112432

Ag、Cu或Fe......,等。此外,該超順磁性層具有由多個奈 米尺度的孔洞或多個奈米尺度的突出體所構成之一圖案。 於一具體實施例中,該光伏元件包含一抗反射層(ami_ reflection layer)。該超順磁性層係形成於該抗反射層上或形成 在該抗反射層與該p-n接面之間。 於另一具體實施例中,根據本發明之太陽能電池裝置 進一步包含一聚焦透鏡。該聚焦透鏡係安置在該光伏元件之 上。該聚焦透鏡用以將太陽光聚焦至該光伏元件上。該超順 磁性層係形成在該聚焦透鏡之一平滑表面上 於另一具體實施例中,根據本發明之太陽能電池裝置 進一步包含一透明基底。該超順磁性層係被覆於該透明基底 上。該被覆超順磁性層之透明基底係貼附於該光 安置在該光伏元件之上。 、於另一具體實施例中,根據本發明之太陽能電池裝置 包,—聚焦透鏡以及—透明基底。該聚焦透鏡係安置 該光伏元件之上,用以將太陽光聚焦至該光伏元件上。該 =磁性祕㈣職透紅。雜覆綱雜層之透 明基底係貼附於該聚焦透鏡之一平滑表面上。 關於本發明之優點與精神可以藉由以下的發明詳述及 所附圖式得到進一步的瞭解。 【實施方式】 以:料述本㈣之錄碰實施例,藉 發明之特徵、精神及優點。 4Ag, Cu or Fe..., etc. Further, the superparamagnetic layer has a pattern composed of a plurality of nano-scale holes or a plurality of nano-scale protrusions. In one embodiment, the photovoltaic element comprises an ami_reflecting layer. The superparamagnetic layer is formed on the anti-reflective layer or between the anti-reflective layer and the p-n junction. In another embodiment, the solar cell device according to the present invention further comprises a focusing lens. The focusing lens is disposed on the photovoltaic element. The focusing lens is used to focus sunlight onto the photovoltaic element. The superparamagnetic layer is formed on a smooth surface of one of the focusing lenses. In another embodiment, the solar cell device according to the present invention further comprises a transparent substrate. The superparamagnetic layer is coated on the transparent substrate. The transparent substrate coated with the superparamagnetic layer is attached to the light disposed on the photovoltaic element. In another embodiment, a solar cell device package in accordance with the present invention, a focusing lens and a transparent substrate. The focusing lens is disposed over the photovoltaic element for focusing sunlight onto the photovoltaic element. The = magnetic secret (four) job red. A transparent substrate of the hybrid layer is attached to a smooth surface of one of the focusing lenses. The advantages and spirit of the present invention will be further understood from the following detailed description of the invention. [Embodiment] The characteristics, spirit and advantages of the invention are described by the embodiment of recording (4). 4

4參閱圖-’圖-係緣示根據本發明之一較佳具體實施 1CHENHSU/200903TW 5 201112432 例之太陽能電池裝置1之一截面視圖。特別地,該太陽能電 池裝置1具有光調變功能。 如圖一所示,該太陽能電池裝置1包含一光伏元件10以 及一超順性層12。該光伏元件10包含一 p-n接面102。該p- n接面用以轉換太陽光中位於一第一波長頻段的能量成一電 能。 巧實際應用中,光伏元件10可以是各種太陽能電池,例 如:單晶矽太陽能電池、多晶矽太陽能電池、非晶矽與微晶 矽薄膜太陽能電池、染料敏化太陽能電池、化合物太陽能電 池、銅錮硒化鎵(CIGS)太陽能電池,等。 該超順磁性層12係形成致使太陽光先行穿過該超順磁性 層再射向該p-n接面102。特別地,當太陽光通過該超順磁性 層12時,太陽光中位於一第二波長頻段的能量被該超順磁性 層12調變成位於該第一波長頻段的能量,進而被該p_n接面 102轉換成電能。 於一具體實施例t,如圖一所示,該光伏元件1〇並且 包含一抗反射層104。該超順磁性層12係形成於該抗反射層 104 上。 於另一較佳具體實施例中,如圖二所示,該光伏元件 10並且包含一抗反射層104。該超順磁性層12係形成在該抗 反射層104與該p-n接面1〇2之間。圖二中元件符號與圖一 中元件符號相同者,即為先前已詳述的各個結構,其作用也 相同,在此不多做贅述。 於另一較佳具體實施例中,如圖三所示,根據本發明 之太陽能電池裝置1進一步包含一聚焦透鏡14。該聚焦透 鏡14係安置在該光伏元件1〇之上,用以將太陽光聚焦至該4 is a cross-sectional view of a solar cell device 1 according to a preferred embodiment of the present invention. 1 CHENHSU/200903TW 5 201112432. In particular, the solar battery device 1 has a light modulation function. As shown in FIG. 1, the solar cell device 1 includes a photovoltaic element 10 and a super-compliant layer 12. The photovoltaic element 10 includes a p-n junction 102. The p-n junction is used to convert energy in a first wavelength band of sunlight into a power. In practical applications, the photovoltaic element 10 can be various solar cells, such as: single crystal germanium solar cells, polycrystalline germanium solar cells, amorphous germanium and microcrystalline germanium thin film solar cells, dye-sensitized solar cells, compound solar cells, copper germanium selenium Gallium (CIGS) solar cells, etc. The superparamagnetic layer 12 is formed such that sunlight passes through the superparamagnetic layer and is directed toward the p-n junction 102. In particular, when sunlight passes through the superparamagnetic layer 12, energy in a second wavelength band of sunlight is modulated by the superparamagnetic layer 12 into energy in the first wavelength band, and is further connected by the p_n 102 is converted into electrical energy. In a specific embodiment t, as shown in FIG. 1, the photovoltaic element 1 〇 includes an anti-reflective layer 104. The superparamagnetic layer 12 is formed on the anti-reflection layer 104. In another preferred embodiment, as shown in FIG. 2, the photovoltaic element 10 also includes an anti-reflective layer 104. The superparamagnetic layer 12 is formed between the anti-reflection layer 104 and the p-n junction 1〇2. The component symbols in Fig. 2 are the same as those in Fig. 1, that is, the structures which have been described in detail above, and their functions are also the same, and will not be described here. In another preferred embodiment, as shown in FIG. 3, the solar cell device 1 according to the present invention further includes a focus lens 14. The focusing lens 14 is disposed above the photovoltaic element 1 to focus the sunlight onto the

1CHENHSU/200903TW 6 201112432 光伏元件10上。該超順磁性層12係形成在該聚焦透鏡14之 一平滑表面上。圖三中元件符號與圖一中元件符號相同者, 即為先前已詳述的各個結構,其_也姻,在此不多做贊 述0 於另一較佳具體實施例中,如圖四所示,根據本發明 之太陽能電池裝置1進-步包含—透明基底16。該超順磁 性層12係被气於該透明基底π上。該被覆超順磁性層丨2之 透明基底16係貼附於該光伏元件1〇上。實務上,該透明基 底16可以由一高分子材料或一玻璃材料來製成。於另一具& 實施例中,該被覆超順磁性層12之透明基底π係安置在該 光伏元件10之上,如圖五所示。圖四及圖五中元件符號與圖 一中元件符號相同者,即為先前已詳述的各個結構,其^用 也相同’在此不多做贅述。 於另一較佳具體實施例中,如圖六所示,根據本發明 之太陽能電池裝置1進一步包含一聚焦透鏡14以及一透明 基底=。該聚焦透鏡η係安置在該光伏元件1〇之上,用以 將太陽光聚焦至該光伏元件10上。該超順磁性層12係被覆 於该透明基底16上。該被覆超順磁性層12之透明基底係 貼附於該聚焦透鏡14之一平滑表面上。實務上,該透明基底 16可以由一高分子材料或一玻璃材料來製成。圖六中元件符 號與圖一中元件符號相同者,即為先前已詳述的各個結構, 其作用也相同,在此不多做贅述。 在此需強調的是,根據本發明之超順磁性層係對太陽光 中某一波長頻段的光造成磁光效應,直接調變該波長頻段 光之頻率(波長)。 於實際應用中,該超順磁性層12係由一順磁性材料 (paramagnetic material)所形成,例如,MnZn鐵氧體(例如, Γ1CHENHSU/200903TW 6 201112432 Photovoltaic element 10 on. The superparamagnetic layer 12 is formed on one of the smooth surfaces of the focus lens 14. The component symbols in FIG. 3 are the same as those in FIG. 1, which are the various structures that have been described in detail above, and are not singularly described herein. In another preferred embodiment, FIG. 4 As shown, the solar cell device 1 according to the present invention further comprises a transparent substrate 16. The superparamagnetic layer 12 is gas on the transparent substrate π. The transparent substrate 16 coated with the superparamagnetic layer 2 is attached to the photovoltaic element 1''. In practice, the transparent substrate 16 can be made of a polymeric material or a glass material. In another & embodiment, the transparent substrate π of the coated superparamagnetic layer 12 is disposed over the photovoltaic element 10, as shown in FIG. The component symbols in Fig. 4 and Fig. 5 are the same as those in Fig. 1, that is, the respective structures which have been described in detail above, and the same applies to the same 'details' will not be repeated here. In another preferred embodiment, as shown in Fig. 6, the solar cell device 1 according to the present invention further comprises a focusing lens 14 and a transparent substrate =. The focusing lens η is disposed above the photovoltaic element 1 聚焦 for focusing sunlight onto the photovoltaic element 10. The superparamagnetic layer 12 is coated on the transparent substrate 16. The transparent substrate covering the superparamagnetic layer 12 is attached to a smooth surface of the focusing lens 14. In practice, the transparent substrate 16 can be made of a polymer material or a glass material. The component symbols in Fig. 6 are the same as those in Fig. 1, which are the structures which have been described in detail above, and their functions are also the same, and will not be described here. It should be emphasized here that the superparamagnetic layer according to the present invention causes a magneto-optical effect on light of a certain wavelength band in sunlight, and directly modulates the frequency (wavelength) of light in the wavelength band. In practical applications, the superparamagnetic layer 12 is formed of a paramagnetic material, such as MnZn ferrite (e.g., germanium).

7 1CHENHSU/200903TW 2011124327 1CHENHSU/200903TW 201112432

MnZnFeO 肥粒鐵(MnZnFe ferrite))、NiZn 鐵氧體、NiZnCu、MnZnFeO MnZnFe ferrite), NiZn ferrite, NiZnCu,

Ni-Fe-Mo合金、鐵基非晶材料、鐵鎳基非晶材料、鈷基非晶 材料、超微晶合金、鐵粉心材料、超導材料、Zn〇、Al2〇3、Ni-Fe-Mo alloy, iron-based amorphous material, iron-nickel-based amorphous material, cobalt-based amorphous material, ultrafine crystal alloy, iron powder core material, superconducting material, Zn〇, Al2〇3,

GaN、GalnN、GalnP、Si02、Si3N4、AIN、BN、Zr203、GaN, GalnN, GalnP, SiO 2 , Si 3 N 4 , AIN, BN, Zr 203,

Au、Ag、Cu或Fe……,等。此外,該超順磁性層12具有由 多個奈米尺度的孔洞(nano-scaled hole)或多個奈米尺度的突出 體(nano-scaled protrusion)所構成之一圖案。上述孔洞的孔徑 或突出體的外徑之特定範圍,僅對特定頻率的光具有響應。 以從紫外光至紅光為例,上述孔洞的孔徑或突出體的^彳^的 是當範圍為數十奈米至數百奈米。在製造過程+,微調上述 孔洞的孔徑或突出體的外徑’經調變光的頻率即會改變。因 此,根據本發明之超順磁性層12,其上孔洞的孔徑(或突出體 2外徑)需視欲被調變光之頻率以及欲獲得調變光的頻率而 定。 顏2 Ϊ超順雜層12僅有在航的厚度細才具有超 且維持超順磁特性之厚度範圍取決於形成該層 的順磁性材料’ -般適當的厚度範圍為數奈米至數 磁性層12之厚度也财量到料辟太陽光的讀光 置马佳。 於雜層的製衫法,可⑽衫種傳統沈 二及ί 、CVD *M0CVD ’並酉己合微顯影製程 以及乾式蝕刻製程或濕式蝕刻製程即可達成。 製造明另揭露一種無需藉由微顯影製程而能成功 所奴綱磁性層。需先聲明,以下所舉案例僅 iis本發Γ具體實施性,並非—完整的太陽能電池裝 氮化鎵層上ΐ由恭ΐΐΐ石基材上沈積氮化鎵層。接著,在 曰日包子濺射(dectron sputtering)製程沉積鋁層,Au, Ag, Cu or Fe..., etc. Further, the superparamagnetic layer 12 has a pattern composed of a plurality of nano-scaled holes or a plurality of nano-scaled protrusions. The specific range of the aperture of the above hole or the outer diameter of the protrusion only responds to light of a specific frequency. Taking ultraviolet light to red light as an example, the aperture of the above-mentioned hole or the protrusion of the protrusion is in the range of several tens of nanometers to several hundred nanometers. In the manufacturing process +, fine-tuning the aperture of the above-mentioned hole or the outer diameter of the protrusion 'the frequency of the modulated light changes. Therefore, according to the superparamagnetic layer 12 of the present invention, the aperture of the upper hole (or the outer diameter of the protrusion 2) depends on the frequency of the light to be modulated and the frequency at which the modulated light is to be obtained. The Yan 2 Ϊ super-smooth layer 12 has only a small thickness in the voyage and has a thickness range that maintains superparamagnetic properties depending on the paramagnetic material forming the layer' - a suitable thickness range from several nanometers to several magnetic layers The thickness of 12 is also the amount of money to read the light of the sun to read Ma Jia. The method of making the miscellaneous layer can be achieved by (10) traditional casting and CVD, CVD*M0CVD', and a micro-developing process as well as a dry etching process or a wet etching process. The manufacturing also discloses a magnetic layer that can be successfully used without a micro-developing process. It is necessary to declare that the following examples are only for the specific implementation of the iis, not the complete solar cell mounted on the gallium nitride layer. The gallium nitride layer is deposited on the Christine stone substrate. Next, an aluminum layer is deposited on a dectron sputtering process.

1CHENHSU/200903TW 8 201112432 再對鋁層進行陽極氧化處理,進而形成奈米孔陽極氧化鋁1CHENHSU/200903TW 8 201112432 The anodized aluminum layer is then anodized to form nanoporous anodized aluminum oxide

(nano-porous anodic alumina oxide,AAO)層。本案例的 AAO 層之一知瞄式電子顯微鏡表面結構請見圖七A所示。需聲 明’ ^此AAO層即做為一模版,無需移除。接著,在从〇 層上藉由旋轉析出法(in_situ technique)形 成 MnZaFeO 肥粒鐵(MnZnFe ferrite)層。MnZnFe ferrite 的製 備乃是調製 0.5M 的 MnC12、ZnC12、Fe203,以 0.5 : 0.5 : 1 之比例混合在一起後攪拌均勻。另調配2M的NaOH液體作 為共沉反應即可以旋轉析出法,以交互滴定得到 ferrite層。本案例的MnZnFeO肥粒鐵層之一掃瞄式電子顯微 鏡表面結構請見圖七B所示。如圖七B所示,該MnZnFeO 肥粒鐵層具有奈米尺度的孔洞。以超導量子干涉元件(Squid) 量測MnZnFeO肥粒鐵層的磁性’其量測結果請見圖七c。圖 七C所示之量測結果其磁化率增加,殘磁量甚小、績頑磁力 甚低’足以證明MnZnFeO肥粒鐵層呈現超順磁的現象。 根據上述各製程製備三種試片,分別為: AAO/GaN/Sapphire 多層結構、45MnZnFe ferrite(析出時間: 45 #')/AAO/GaN/Sapphire 多層結構以及 9〇MnZnFe ferrite(析 出時間:90秒)/AAO/GaN/Sapphire多層結構。採用325的(nano-porous anodic alumina oxide, AAO) layer. The surface structure of one of the AAO layers in this case is shown in Figure 7A. Need to declare ' ^ This AAO layer is used as a template, no need to remove. Next, a MnZaFeO MnZnFe ferrite layer was formed on the ruthenium layer by an in_situ technique. The preparation of MnZnFe ferrite is to prepare 0.5M MnC12, ZnC12, and Fe203, and mix them in a ratio of 0.5:0.5:1 and stir them evenly. Another 2M NaOH liquid is prepared as a co-precipitation reaction, which can be rotated and precipitated to obtain a ferrite layer by mutual titration. The surface structure of the scanning electron microscope of one of the MnZnFeO ferrite layers in this case is shown in Figure 7B. As shown in Fig. 7B, the MnZnFeO ferrite layer has nanometer-scale pores. The magnetic properties of the MnZnFeO ferrite layer were measured by a superconducting quantum interference element (Squid). The measurement results are shown in Figure 7c. The measurement results shown in Fig. 7C increase the magnetic susceptibility, the residual magnetism is very small, and the coercive force is very low, which is enough to prove that the MnZnFeO ferrite layer is superparamagnetic. Three test pieces were prepared according to the above processes: AAO/GaN/Sapphire multilayer structure, 45MnZnFe ferrite (precipitation time: 45 #')/AAO/GaN/Sapphire multilayer structure and 9〇MnZnFe ferrite (precipitation time: 90 seconds) /AAO/GaN/Sapphire multilayer structure. Using 325

He-Cd雷射作為激發的光源,能量為313eV,對上述三種試 片進行激發。並且,利用透鏡組收集激發出之螢光,再聚焦 至光譜儀内,經光譜儀内之光栅分光後由光電倍增管债測芎 (PMT)偵測,再透過電腦將光譜繪製,其結果請見圖七 如圖七D所示之螢光光譜’其藍光峰值強度隨著Mn7nFft ferrite離心析出時間增加而減弱,另產生波長約為55〇nm的 次峰值。由於AAO結構層經SQUID量測,證實其也具有超 順磁性,因此激發AAO/GaN/Sapphire多層結構試片&螢光 即出現藍光峰值減弱的現象。但是,由圖七D所呈現的結果 可證實該紅位移(red shift)峰值(次峰值)主要是因為The He-Cd laser was used as an excitation source with an energy of 313 eV to excite the above three samples. Moreover, the excited fluorescent light is collected by the lens group, and then focused into the spectrometer. After being separated by the grating in the spectrometer, it is detected by a photomultiplier tube (PMT), and then the spectrum is drawn through a computer. The result is shown in the figure. Seven, the fluorescence spectrum shown in Figure 7D's blue peak intensity decreases as the Mn7nFft ferrite centrifugal precipitation time increases, and produces a sub-peak with a wavelength of about 55 〇 nm. Since the AAO structural layer was measured by SQUID, it was confirmed to be superparamagnetic, so that the AAO/GaN/Sapphire multilayer structure test piece & fluorescence was attenuated. However, the results presented in Figure 7D confirm that the red shift peak (secondary peak) is mainly due to

1CHENHSU/200903TW 9 201112432 ferrite層的超順磁性對原發射光調 光的光學性質,例如,峰值的波 =” ’ _變 曾皆可以读讲制你'見*等’這些光學性 賈白叮以透過製程來控制魔响〇 ferrk 洞f突_的幾何錄,例㈣_卜徑 而達到所欲調變光的光學性質。 ㈣导進 此外,根據上述各製程製備三種試片’分 fe^ite/AAO/Sappl^ 多層結構編號。的 =n^ femte/AA0/Sapphire多層結構以及編號m 0/Sapphire多層結構。上述三種試片不同 處在於其超順磁性層上奈米結構的孔彳i,依序為 不米;)< Df(約數十奈米} < £>3(約上百奈米〕。利用紫外光雷射 照射上述三種試片的表面,並且量測其反射光光譜,其結果 請見圖八。MnZnFe ferrite/AAO/Sapphire 多層結構。八 所示,反射光光譜中,D卜D2及D3三試片皆明顯地對紫外 光造成紅位移。超順磁性層上奈米結構之孔徑最小的D1試 片,其反射光光谱之峰值出現在波長約為斗⑴聰。超順磁性 層上奈米結構之孔徑次大的D2試片,其反射光光譜之峰值 出現在波長約為425nm。超順磁性層上奈米結構之孔徑最大 的D3試片,其反射光光譜之峰值出現在波長約為45〇nm。 圖八的結果再次證實皆可以透過製程來控制超順磁性層上奈 米結構(孔洞或突出體)的幾何參數,例如,孔徑(外徑)、排 列…等,可以達到所欲調變光的光學性質。 相較於先前技術’根據本發明之太陽能電池裝置其應用 超順磁性層對太陽光中原未利用之一波長頻段的光能調變成 能被光伏元件轉換成電能之波長頻段的光能。藉此,提升太 陽能電池裝置的轉換效能’也減緩由未運用到之光能所轉換 的熱對太陽能電池裝置造成不良的效應。—1CHENHSU/200903TW 9 201112432 The superparamagnetism of the ferrite layer modulates the optical properties of the original emitted light, for example, the peak wave = " ' _ can be read and read, you see, etc. Through the process to control the geometric record of the magic 〇ferrk hole f, the optical properties of the desired modulated light are achieved by the method (4) _ 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 /AAO/Sappl^ Multi-layer structure number. =n^ femte/AA0/Sapphire multi-layer structure and number m 0/Sapphire multi-layer structure. The above three kinds of test pieces differ in the hole structure i of the nanostructure on the superparamagnetic layer. In order, it is not rice;) < Df (about tens of nanometers) <£> 3 (about hundreds of nanometers). The surface of the above three test pieces is irradiated with ultraviolet light, and the reflected light is measured. The spectrum, the results are shown in Figure 8. MnZnFe ferrite / AAO / Sapphire multi-layer structure. Eight, in the reflected light spectrum, D Bu D2 and D3 three test strips all significantly red shift to ultraviolet light. Superparamagnetic layer The D1 test piece with the smallest aperture of the nanostructure has a peak of the reflected light spectrum. At the wavelength of about D (1) Cong. The D2 test piece with the second largest aperture of the nanostructure on the superparamagnetic layer has a peak of the reflected light spectrum at a wavelength of about 425 nm. The maximum pore size of the nanostructure on the superparamagnetic layer For the D3 test piece, the peak of the reflected light spectrum appears at a wavelength of about 45 〇 nm. The results in Figure 8 again confirm that the geometry of the nanostructure (hole or protrusion) on the superparamagnetic layer can be controlled by the process, for example. , aperture (outer diameter), arrangement, etc., can achieve the optical properties of the desired modulated light. Compared to the prior art 'the solar cell device according to the present invention, the superparamagnetic layer is applied to one of the wavelengths of sunlight. The light energy in the frequency band is modulated into light energy in a wavelength band that can be converted into electrical energy by the photovoltaic element. Thereby, the conversion performance of the solar cell device is improved, and the heat converted by the unutilized light energy is also slowed down, causing damage to the solar cell device. Effect.—

10 1CHENHSU/200903TW 201112432 體實施例來對本發明之範疇加以限:十路 之專利範圍的範,内。因此,本發明所申請之專 範疇應該根據上述的說明作最寬廣的解釋,以致使其涵蓋 所有可能的改變以及具相等性的安排。The 10 CHENHSU/200903TW 201112432 embodiment is intended to limit the scope of the invention: the scope of the patent scope of the tenth road. Therefore, the scope of the invention as claimed should be construed broadly so that the invention may be

11 1CHENHSU/200903TW 201112432 【圖式簡單說明】 圖一係繪示根據本發明之一較佳具體實施例之太陽能電 池裝置之戴面視圖。 圖二係繪示根據本發明之另一較佳具體實施例之太陽能 電池裝置之截面視圖。於圖二中,該光伏元件並且包含一抗 反射層。 圖三係繪示根據本發明之另一較佳具體實施例之太陽能 電池裝置之截面視圖。於圖三中,該太陽能電池裝置進一步 包含一聚焦透鏡。 ^圖四係繪示根據本發明之另一較佳具體實施例之太陽能 電池裝置讀面涵。_四+,該超順雜層係被覆於該 透明基底上。 係ί示根據本發明之另—較佳具體實施例之太陽能 基底^安置在元中’該被覆超順磁性層之透明 電池本發明之另一較佳具體實施例之纖 基底係貼附覆超順磁性層之透明 層之=奈係:本陽發 結構圖。 知田式電子顯微鏡表面 圖七Β為析出在奈米孔陽極11 1CHENHSU/200903TW 201112432 [Brief Description of the Drawings] Fig. 1 is a perspective view showing a solar battery device according to a preferred embodiment of the present invention. Figure 2 is a cross-sectional view showing a solar cell device in accordance with another preferred embodiment of the present invention. In Figure 2, the photovoltaic element also includes an anti-reflective layer. Figure 3 is a cross-sectional view showing a solar cell device in accordance with another preferred embodiment of the present invention. In Figure 3, the solar cell device further includes a focusing lens. Figure 4 is a diagram showing a solar cell device reading face culvert according to another preferred embodiment of the present invention. _四+, the super-smooth layer is coated on the transparent substrate. The invention relates to a solar cell according to another preferred embodiment of the present invention. The transparent cell of the superparamagnetic layer is disposed in the element. The fiber substrate of the other preferred embodiment of the present invention is super-attached. The transparent layer of the paramagnetic layer = nai: the structure of the positive hair. The surface of the electron microscope is known.

粒鐵層之一掃晦式電子顯微鏡表=^圖層上之MnZnFeO肥 1CHENHSU/200903TW 12 201112432 圖七C為以超導量子干涉元件量測MnZnFeO肥粒鐵層 的磁性所得量測結果。 圖七D為AAO/GaN/Sapphire多層結構試片以及兩種 MnZnFe ferrite/AAO/GaN/Sapphire多層結構試片其經激發後 之螢光光譜。 圖八為三種不同孔徑MnZnFe ferrite/AAO/Sapphire多層 結構試片其經紫外線雷射照射後的反射光光譜。 【主要元件符號說明】 1 :太陽能電池裝置 102 : p-n接面 12 :超順磁性層 10 :光伏元件 104 :抗反射層 14 :聚焦透鏡 16 :透明基底One of the granular iron layers is a bronzing electron microscope table = MnZnFeO fertilizer on the layer 1CHENHSU/200903TW 12 201112432 Fig. 7C is a measurement result obtained by measuring the magnetic properties of the MnZnFeO ferrite layer by a superconducting quantum interference element. Figure 7D shows the fluorescence spectrum of the AAO/GaN/Sapphire multilayer structure test piece and the two MnZnFe ferrite/AAO/GaN/Sapphire multilayer structure test pieces after excitation. Figure VIII shows the spectra of three different aperture MnZnFe ferrite/AAO/Sapphire multilayer structures after UV irradiation. [Main component symbol description] 1 : Solar cell device 102 : p-n junction 12 : superparamagnetic layer 10 : photovoltaic element 104 : anti-reflection layer 14 : focusing lens 16 : transparent substrate

13 1CHENHSU/200903TW13 1CHENHSU/200903TW

Claims (1)

201112432 七、申請專利範圍: 1、 一種太陽能電池裝置(solar cell apparatus),包含: 一光伏元件(photovoltaic device) ’該光伏元件包含一p_n接 面(p-n junction),該p-n接面用以轉換太陽光中位於一第 一波長頻段的能量成一電能;以及 一超順磁性層(super-paramagnetic layer) ’該超順磁性層係 形成致使太陽光先行穿過該超順磁性層再射向該p_n接 面,其中當太陽光通過該超順磁性層時,太陽光中位 於一第二波長頻段的能量被該超順磁性層調變成位於 該第一波長頻段的能量。‘ 2、 如申請專利範圍第1項所述之太陽能電池裝置,其中該超順 磁性層係由一順磁性材料(paramagnetic material)所形成。 3、 如申請專利範圍第2項所述之太陽能電池裝置,其中該順磁 材料係由MnZn鐵氧體、NiZn鐵氧體、NiZnCu、Ni-Fe-Mo 合金、鐵基非晶材料、鐵鎳基非晶材料、鈷基非晶材料、超 微晶合金、鐵粉心材料、超導材料、ZnO、A1203、GaN、 GalnN、GalnP、Si02、Si3N4、AIN、BN、Zr203、Au、 Ag、Cu以及Fe所組成之一群組中之其一。 4、 如申請專利範圍第2項所述之太陽能電池裝置,其中該超順 磁性層具有由多個奈米尺度的孔洞(nano-scaled hole)或多個 奈米尺度的突出體(nano-scaled protrusion)所構成之一圖案。 5、 如申請專利範圍第2項所述之太陽能電池裝置,其中該光伏 元件包含一抗反射層(anti-reflection layer),該超順磁性層係 形成於該抗反射層上或形成在該抗反射層與該p-n接面之 間0 14 1CHENHSU/200903T W 201112432 6、 如申請專利範圍第2項所述之太陽能電池裝置,進一步包 含: 一聚焦透鏡’該聚焦透鏡係安置在該光伏元件之上,該 聚焦透鏡用以將太陽光聚焦至該光伏元件上,其中該 超順磁性層係形成在該聚焦透鏡之一平滑表面上。 7、 如申請專利範圍第2項所述之太陽能電池裝置,進一步包 含: 一透明基底,該超順磁性層係被覆於該透明基底上,該 被覆超順磁性層之透明基底係貼附於該光伏元件上或 安置在該光伏元件之上。 8、 如申請專利範圍第2項所述之太陽能電池裝置,進一步包 含: 一聚焦透鏡,該聚焦透鏡係安置在該光伏元件之上,該 聚焦透鏡用以將太陽光聚焦至該光伏元件上;以及 一透明基底,該超順磁性層係被覆於該透明基底上,該 被覆超順磁性層之透明基底係貼附於該聚焦透鏡之一 平滑表面上。 15 1CHENHSU/200903TW201112432 VII. Patent application scope: 1. A solar cell apparatus comprising: a photovoltaic device [The photovoltaic element comprises a p_n junction (pn junction), the pn junction is used to convert the sun The energy in the first wavelength band of the light becomes an electric energy; and a super-paramagnetic layer is formed to cause the sunlight to pass through the superparamagnetic layer and then to the p_n a surface, wherein when sunlight passes through the superparamagnetic layer, energy in a second wavelength band of the sunlight is modulated by the superparamagnetic layer into energy in the first wavelength band. The solar cell device of claim 1, wherein the superparamagnetic layer is formed of a paramagnetic material. 3. The solar cell device according to claim 2, wherein the paramagnetic material is made of MnZn ferrite, NiZn ferrite, NiZnCu, Ni-Fe-Mo alloy, iron-based amorphous material, iron nickel. Amorphous material, cobalt-based amorphous material, ultrafine crystal alloy, iron powder core material, superconducting material, ZnO, A1203, GaN, GalnN, GalnP, SiO 2 , Si 3 N 4 , AIN, BN, Zr 203, Au, Ag, Cu And one of the groups formed by Fe. 4. The solar cell device of claim 2, wherein the superparamagnetic layer has a plurality of nano-scaled holes or a plurality of nano-scale protrusions (nano-scaled). Protrusion). 5. The solar cell device of claim 2, wherein the photovoltaic element comprises an anti-reflection layer formed on or formed on the anti-reflective layer. Between the reflective layer and the pn junction, the solar cell device of claim 2, further comprising: a focusing lens disposed on the photovoltaic element The focusing lens is for focusing sunlight onto the photovoltaic element, wherein the superparamagnetic layer is formed on a smooth surface of the focusing lens. 7. The solar cell device of claim 2, further comprising: a transparent substrate, the superparamagnetic layer is coated on the transparent substrate, and the transparent substrate coated with the superparamagnetic layer is attached to the transparent substrate The photovoltaic element is placed on or above the photovoltaic element. 8. The solar cell device of claim 2, further comprising: a focusing lens disposed on the photovoltaic element, the focusing lens for focusing sunlight onto the photovoltaic element; And a transparent substrate, the superparamagnetic layer is coated on the transparent substrate, and the transparent substrate coated with the superparamagnetic layer is attached to a smooth surface of the focusing lens. 15 1CHENHSU/200903TW
TW98132235A 2009-09-24 2009-09-24 Solar cell apparatus with light-modulating function TW201112432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98132235A TW201112432A (en) 2009-09-24 2009-09-24 Solar cell apparatus with light-modulating function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98132235A TW201112432A (en) 2009-09-24 2009-09-24 Solar cell apparatus with light-modulating function

Publications (1)

Publication Number Publication Date
TW201112432A true TW201112432A (en) 2011-04-01

Family

ID=44909275

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98132235A TW201112432A (en) 2009-09-24 2009-09-24 Solar cell apparatus with light-modulating function

Country Status (1)

Country Link
TW (1) TW201112432A (en)

Similar Documents

Publication Publication Date Title
Enrichi et al. Plasmonic enhanced solar cells: Summary of possible strategies and recent results
Spinelli et al. Plasmonic light trapping in thin-film Si solar cells
Sivasubramaniam et al. Inverted nanopyramid texturing for silicon solar cells using interference lithography
Catchpole et al. Plasmonics and nanophotonics for photovoltaics
Zhu et al. Nanostructured photon management for high performance solar cells
Woolf et al. Heterogeneous metasurface for high temperature selective emission
Voroshilov et al. Light-trapping and antireflective coatings for amorphous Si-based thin film solar cells
US20130327928A1 (en) Apparatus for Manipulating Plasmons
US20090308441A1 (en) Silicon Nanoparticle Photovoltaic Devices
Krishnan et al. Efficient light harvesting in hybrid quantum dot–interdigitated back contact solar cells via resonant energy transfer and luminescent downshifting
Yin et al. Light absorption enhancement for ultra-thin Cu (In1− xGax) Se2 solar cells using closely packed 2-D SiO2 nanosphere arrays
Tan et al. Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells
Tu et al. Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array
Wang et al. Effect of nanoparticle size distribution on the performance of plasmonic thin-film solar cells: Monodisperse versus multidisperse arrays
Weiss et al. Nanoimprinting for diffractive light trapping in solar cells
Pahud et al. Stencil-nanopatterned back reflectors for thin-film amorphous silicon nip solar cells
CN104553221A (en) High-performance spectral selectivity wave-absorbing element and solar heat photovoltaic system
Almenabawy et al. Comparison of random upright pyramids and inverted pyramid photonic crystals in thin crystalline silicon solar cells: An optical and morphological study
WO2021139742A1 (en) Electrically driven optical antenna light source and manufacturing method therefor
TW201112432A (en) Solar cell apparatus with light-modulating function
WO2011091587A1 (en) Solar cell apparatus having light-modulating function
Solodovnyk et al. Luminescent down-shifting layers with Eu2+ and Eu3+ doped strontium compound particles for photovoltaics
Nia et al. Efficient luminescence extraction strategies and anti-reflective coatings to enhance optical refrigeration of semiconductors
Nasser et al. Advanced light trapping interface for a‐Si: H thin film
Roy Circular nanocavity in ultrathin c-Si solar cell for efficient light absorption