201111780 四、指定代表圖: (一) 本案指定代表圖為:第(2)圖。 (二) 本代表圖之元件符號簡單說明: 201 ITO 202 probe DNA ; 203 螢光染料; 204 與 probe DNA 互補的 target DNA ; 205 金奈米粒子; 206 激發光源; 207 probe DNA與互補target DNA雜交後螢光淬熄; 208 與 probe DNA 不互補的 target DNA ; 的化學式: 五、本案若有化學式時,請揭示最能顯示發明特徵 六、發明說明: 【發明所屬之技術領域】 以生物分子自組裝技術,製作特殊生化分子層,利用螢光祕與夺米 金球的淬媳現象,並經由適當的安排設計,此—技術可應·生醫晶片上, 進行DNA序列檢測、判斷,將可大大提⑧檢測疾病的速度與準確性,減少 檢驗疾病所需的時間及成本。 【先前技術】 中華民國專利(1312419)偵測物質間交互作用之偵測表面、配備憤測 201111780 表面之感應器晶片及感應裝置及偵測方法。一種能夠偵測物質間交互作用 的偵測表面。此表面包括與其一端部固定至該偵測表面之單股0!^八形成鍵 結的雙股DNA,致使該雙股DNA在對該交互作用感應下解離為單股 DNA ’此發明能夠精確測篁低分子夏物質問交互作用的一感應器技術。中 華民國專利(1306119)將分析物檢出的生物感應器與方法。該專利為一種 藉由時間解析(time-resolved)的發光測量而偵測分析物之生物感應器。然 而以上的專利在晶片表面上的製作程序較為複雜,且偵測量有限。本專利 鲁提出以奈米自組裝的化學合成技術,形成一特殊表面薄膜,利用螢光染料 與奈米金球的淬熄現象,進一步提供給生物晶片上,以簡單的光學特性作 為訊號的偵測。本技術之詳細具體實施例將在後文陳述。 【發明内容】 根據化學分子的特性並利用自組裝技術於矽晶圓表面上製作生化薄 膜,並利用化學方法接合具螢光標記的去氧核醣核酸(DNA),再與另一股 # 帶有奈米金球的互補股雜交,藉由螢光染料與奈米金球的淬熄現象,以進 一步開發生物性感測裝置。 下文藉由具體實施例配合所附的圖式詳加說明’更容易瞭解本發明的目 的、技術内容、特點及其所達成的功效。 【實施方式】 本發明提出一分子自組裝製作生化薄膜之方法,主要提出二個最佳實 施例。第一個實施例的結構示意圖,如圖1所示。 201111780 首先利用將矽烷類分子(102)自組裝於矽晶圓(1〇1)上。在此,選用 10-imdecenyldimethylchlorosilane (udCS)做為自組裝分子。此分子結構 中’一端為甲氧基’可與石夕晶圓表面進行汕肪㈤丨加,另一端為具有稀基的 長碳鏈,此稀基可進-步氧化形成舰基,再與修飾胺基的去氧核釀核酸 (DNA) (103)作鍵結。此單股DNA為探針,其序列與所要 偵測的標的(target)DNA(l〇4)互補,在其末端修飾上胺基,是為了與矽晶 圓表面外露出羧酸基官能基做反應,形成共價鍵胜肽鍵(amideb〇nd);此反 應高在催化劑 N-(3-Dimethylaminopropyl)_N-ethylcarbodiimide 下進行;此反 應速率極快且相當完全’而且在低溫下,如4 〇c亦可進行反應,為其優點, 是其它需要加熱催化的化學反應所無法取代的,很適合應用於生物分子之 間的結合(conjugation)反應1著,再將另一股互補的加入, 進行雜交反應(Hybridization) ’此股DNA除了與pr〇be DNA互補外,在其 尾知具有修飾硫醇(SH)官能基,進行與target DNA雜交的步驟後,再進 行鹽梯度的步驟;最後再接上金奈米粒子(1〇5),此方法能使DNA最緊密 地、均勻地和專一性地排列在基材表面上。若將pr〇be DNA之末端帶有螢 光染料(106),而其所放射出的螢光,剛好可被奈米金球所吸收掉;反之, 若為不互補之targetDNA金球,則pr〇be DNA末端螢光仍在。 第二個實施例的結構示意圖,如圖2所示。將矽晶圓改為銦錫氧化物 (ITO)薄膜電極(201),將帶有螢光染料(2〇3)之pr〇beDNA(2〇2)接在 〇上將待測target DNA接上奈米金球(2〇5),分別放入與pr〇be DNA 互補之 target DNA (204)及與 pr〇be DNA 不互補之 target DNA (208),藉 由激發光源(206)激發,互補雜交後’螢光會被淬熄(2〇7);反之,兩者則 201111780 分開,螢光仍在。 【圖式簡單說明】 圖式說明. 第1圖以DNA結合於晶圓片上之設計示意圖 第2圖以DNA結合於ITO上之設計示意圖 【主要元件符號說明】 圖示符號說明201111780 IV. Designated representative map: (1) The representative representative of the case is: (2). (2) A brief description of the symbol of the representative figure: 201 ITO 202 probe DNA; 203 fluorescent dye; 204 target DNA complementary to probe DNA; 205 gold nanoparticles; 206 excitation light source; 207 probe DNA hybridization with complementary target DNA Post-fluorescence quenching; 208 target DNA not complementary to probe DNA; chemical formula: 5. If there is a chemical formula in this case, please reveal the characteristics of the invention. 6. Description of the invention: [Technical field of invention] Biomolecules Assembly technology, the production of special biochemical molecular layer, the use of fluorescence secret and quenching phenomenon of the rice ball, and through appropriate arrangement design, this technology can be applied to the biomedical wafer, DNA sequence detection, judgment, will be Greatly mention the speed and accuracy of detecting diseases and reduce the time and cost of testing diseases. [Prior Art] The Republic of China Patent (1312419) detects the surface of the interaction between substances, and is equipped with sensor chips and sensing devices and detection methods for the 201111780 surface. A detection surface that detects the interaction between substances. The surface comprises a double-stranded DNA with a single strand of 0!^8 bonded to one end of the detection surface, such that the double-stranded DNA dissociates into a single strand of DNA under the interaction induction. A sensor technique that degrades the interaction of molecular summer matter. The Republic of China patent (1306119) uses biosensors and methods for analyte detection. This patent is a biosensor that detects analytes by time-resolved luminescence measurements. However, the above patents have a complicated production process on the surface of the wafer, and the detection amount is limited. This patent proposes a chemical synthesis technique using nano-self-assembly to form a special surface film, which is further provided to the bio-wafer by the quenching phenomenon of fluorescent dye and nano-gold sphere, with simple optical characteristics as the signal detection. Measurement. Detailed embodiments of the present technology will be set forth hereinafter. SUMMARY OF THE INVENTION According to the characteristics of chemical molecules and self-assembly techniques, biofilms are formed on the surface of germanium wafers, and fluorescently labeled DNA is chemically bonded to another strand. The complementary strands of nanogold spheres are hybridized, and the biosensing device is further developed by quenching of fluorescent dyes and nanogold spheres. The objects, technical features, features, and effects achieved by the present invention will become more apparent from the detailed description of the embodiments. [Embodiment] The present invention proposes a method for self-assembly of a biochemical film by a molecule, and mainly proposes two preferred embodiments. A schematic structural view of the first embodiment is shown in FIG. 201111780 First, self-assembly of the decane molecule (102) onto the germanium wafer (1〇1). Here, 10-imdecenyldimethylchlorosilane (udCS) was selected as the self-assembling molecule. In the molecular structure, 'the end is methoxy' can be used to carry out the fat (five) addition on the surface of the Shixi wafer, and the other end is a long carbon chain with a thin base, which can be further oxidized to form a ship base, and then The modified amino-based deoxyribonucleic acid (DNA) (103) is used as a bond. The single-stranded DNA is a probe whose sequence is complementary to the target DNA (l〇4) to be detected, and the amine group is modified at the end thereof to expose the carboxylic acid functional group to the surface of the ruthenium wafer. The reaction forms a covalent bond peptide (amideb〇nd); this reaction is carried out under the catalyst N-(3-Dimethylaminopropyl)_N-ethylcarbodiimide; the reaction rate is extremely fast and quite complete' and at low temperatures, such as 4 〇 c can also carry out the reaction, which has the advantage that it cannot be replaced by other chemical reactions that require heating and catalysis, and is suitable for the conjugation reaction between biomolecules, and then another complementary addition is carried out. Hybridization 'Hybridization of this strand of DNA, except that it is complementary to pr〇be DNA, after it has a modified thiol (SH) functional group, and after performing a step of hybridizing with target DNA, a step of salt gradient is performed; Attached to the gold nanoparticles (1〇5), this method enables the DNA to be most closely, uniformly and specifically arranged on the surface of the substrate. If the end of the pr〇be DNA is provided with a fluorescent dye (106), the fluorescent light emitted by it can be absorbed by the nanogold sphere; otherwise, if it is a non-complementary target DNA golden sphere, then pr 〇be DNA ends are still fluorescent. A schematic structural view of the second embodiment is shown in FIG. 2. Change the germanium wafer to indium tin oxide (ITO) film electrode (201), connect pr〇beDNA (2〇2) with fluorescent dye (2〇3) to the crucible and connect the target DNA to be tested. Nanogold spheres (2〇5), respectively placed into target DNA (204) complementary to pr〇be DNA and target DNA (208) not complementary to pr〇be DNA, excited by excitation source (206), complementary After hybridization, the fluorescence will be quenched (2〇7); otherwise, the two are separated by 201111780, and the fluorescence is still there. [Simple diagram of the diagram] Schematic description. Figure 1 is a schematic diagram of the design of DNA binding on a wafer. Figure 2 is a schematic diagram of the design of DNA binding to ITO. [Description of main components] Description of the symbols
101 晶圓片; 102 矽烷類分子; 103 probe DNA ; 104 target DNA ; 105 金奈米粒子; 106 螢光染料;101 wafer; 102 decane molecule; 103 probe DNA; 104 target DNA; 105 gold nanoparticles; 106 fluorescent dye;
201 ITO 202 probe DNA ; 203 螢光染料; 204 與 probe DNA 互補的 target DNA ; 205 金奈米粒子; 206 激發光源; 201111780 207 208 probe DNA與互補target DNA雜交後螢光淬媳; 與 probe DNA 不互補的 target DNA ;201 ITO 202 probe DNA; 203 fluorescent dye; 204 target DNA complementary to probe DNA; 205 gold nanoparticles; 206 excitation light; 201111780 207 208 probe DNA hybridized with complementary target DNA after fluorescence quenching; Complementary target DNA ;