TW201111780A - A device for detection by biomolecule self assembly - Google Patents

A device for detection by biomolecule self assembly Download PDF

Info

Publication number
TW201111780A
TW201111780A TW98132418A TW98132418A TW201111780A TW 201111780 A TW201111780 A TW 201111780A TW 98132418 A TW98132418 A TW 98132418A TW 98132418 A TW98132418 A TW 98132418A TW 201111780 A TW201111780 A TW 201111780A
Authority
TW
Taiwan
Prior art keywords
dna
detection
patent application
self
biochemical
Prior art date
Application number
TW98132418A
Other languages
Chinese (zh)
Inventor
Dar-Bin Shieh
Jing-Tang Yang
Miao-Hsing Hsu
Ho-Jun Lu
Original Assignee
Dar-Bin Shieh
Jing-Tang Yang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dar-Bin Shieh, Jing-Tang Yang filed Critical Dar-Bin Shieh
Priority to TW98132418A priority Critical patent/TW201111780A/en
Publication of TW201111780A publication Critical patent/TW201111780A/en

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Using self-assembled monolayers to fabricate with controllable wettability. DNA molecules were terminal-linked on substrate surface to form a biomolecular film. The DNA sequence specific pairing nature of DNA molecule enabled specific control and detection of the contents through fluorescence labeled DNA and gold nanoparticle. Integration of the technology with other biological chip design could improve the engineering, fabrication and detection of biochips.

Description

201111780 四、指定代表圖: (一) 本案指定代表圖為:第(2)圖。 (二) 本代表圖之元件符號簡單說明: 201 ITO 202 probe DNA ; 203 螢光染料; 204 與 probe DNA 互補的 target DNA ; 205 金奈米粒子; 206 激發光源; 207 probe DNA與互補target DNA雜交後螢光淬熄; 208 與 probe DNA 不互補的 target DNA ; 的化學式: 五、本案若有化學式時,請揭示最能顯示發明特徵 六、發明說明: 【發明所屬之技術領域】 以生物分子自組裝技術,製作特殊生化分子層,利用螢光祕與夺米 金球的淬媳現象,並經由適當的安排設計,此—技術可應·生醫晶片上, 進行DNA序列檢測、判斷,將可大大提⑧檢測疾病的速度與準確性,減少 檢驗疾病所需的時間及成本。 【先前技術】 中華民國專利(1312419)偵測物質間交互作用之偵測表面、配備憤測 201111780 表面之感應器晶片及感應裝置及偵測方法。一種能夠偵測物質間交互作用 的偵測表面。此表面包括與其一端部固定至該偵測表面之單股0!^八形成鍵 結的雙股DNA,致使該雙股DNA在對該交互作用感應下解離為單股 DNA ’此發明能夠精確測篁低分子夏物質問交互作用的一感應器技術。中 華民國專利(1306119)將分析物檢出的生物感應器與方法。該專利為一種 藉由時間解析(time-resolved)的發光測量而偵測分析物之生物感應器。然 而以上的專利在晶片表面上的製作程序較為複雜,且偵測量有限。本專利 鲁提出以奈米自組裝的化學合成技術,形成一特殊表面薄膜,利用螢光染料 與奈米金球的淬熄現象,進一步提供給生物晶片上,以簡單的光學特性作 為訊號的偵測。本技術之詳細具體實施例將在後文陳述。 【發明内容】 根據化學分子的特性並利用自組裝技術於矽晶圓表面上製作生化薄 膜,並利用化學方法接合具螢光標記的去氧核醣核酸(DNA),再與另一股 # 帶有奈米金球的互補股雜交,藉由螢光染料與奈米金球的淬熄現象,以進 一步開發生物性感測裝置。 下文藉由具體實施例配合所附的圖式詳加說明’更容易瞭解本發明的目 的、技術内容、特點及其所達成的功效。 【實施方式】 本發明提出一分子自組裝製作生化薄膜之方法,主要提出二個最佳實 施例。第一個實施例的結構示意圖,如圖1所示。 201111780 首先利用將矽烷類分子(102)自組裝於矽晶圓(1〇1)上。在此,選用 10-imdecenyldimethylchlorosilane (udCS)做為自組裝分子。此分子結構 中’一端為甲氧基’可與石夕晶圓表面進行汕肪㈤丨加,另一端為具有稀基的 長碳鏈,此稀基可進-步氧化形成舰基,再與修飾胺基的去氧核釀核酸 (DNA) (103)作鍵結。此單股DNA為探針,其序列與所要 偵測的標的(target)DNA(l〇4)互補,在其末端修飾上胺基,是為了與矽晶 圓表面外露出羧酸基官能基做反應,形成共價鍵胜肽鍵(amideb〇nd);此反 應高在催化劑 N-(3-Dimethylaminopropyl)_N-ethylcarbodiimide 下進行;此反 應速率極快且相當完全’而且在低溫下,如4 〇c亦可進行反應,為其優點, 是其它需要加熱催化的化學反應所無法取代的,很適合應用於生物分子之 間的結合(conjugation)反應1著,再將另一股互補的加入, 進行雜交反應(Hybridization) ’此股DNA除了與pr〇be DNA互補外,在其 尾知具有修飾硫醇(SH)官能基,進行與target DNA雜交的步驟後,再進 行鹽梯度的步驟;最後再接上金奈米粒子(1〇5),此方法能使DNA最緊密 地、均勻地和專一性地排列在基材表面上。若將pr〇be DNA之末端帶有螢 光染料(106),而其所放射出的螢光,剛好可被奈米金球所吸收掉;反之, 若為不互補之targetDNA金球,則pr〇be DNA末端螢光仍在。 第二個實施例的結構示意圖,如圖2所示。將矽晶圓改為銦錫氧化物 (ITO)薄膜電極(201),將帶有螢光染料(2〇3)之pr〇beDNA(2〇2)接在 〇上將待測target DNA接上奈米金球(2〇5),分別放入與pr〇be DNA 互補之 target DNA (204)及與 pr〇be DNA 不互補之 target DNA (208),藉 由激發光源(206)激發,互補雜交後’螢光會被淬熄(2〇7);反之,兩者則 201111780 分開,螢光仍在。 【圖式簡單說明】 圖式說明. 第1圖以DNA結合於晶圓片上之設計示意圖 第2圖以DNA結合於ITO上之設計示意圖 【主要元件符號說明】 圖示符號說明201111780 IV. Designated representative map: (1) The representative representative of the case is: (2). (2) A brief description of the symbol of the representative figure: 201 ITO 202 probe DNA; 203 fluorescent dye; 204 target DNA complementary to probe DNA; 205 gold nanoparticles; 206 excitation light source; 207 probe DNA hybridization with complementary target DNA Post-fluorescence quenching; 208 target DNA not complementary to probe DNA; chemical formula: 5. If there is a chemical formula in this case, please reveal the characteristics of the invention. 6. Description of the invention: [Technical field of invention] Biomolecules Assembly technology, the production of special biochemical molecular layer, the use of fluorescence secret and quenching phenomenon of the rice ball, and through appropriate arrangement design, this technology can be applied to the biomedical wafer, DNA sequence detection, judgment, will be Greatly mention the speed and accuracy of detecting diseases and reduce the time and cost of testing diseases. [Prior Art] The Republic of China Patent (1312419) detects the surface of the interaction between substances, and is equipped with sensor chips and sensing devices and detection methods for the 201111780 surface. A detection surface that detects the interaction between substances. The surface comprises a double-stranded DNA with a single strand of 0!^8 bonded to one end of the detection surface, such that the double-stranded DNA dissociates into a single strand of DNA under the interaction induction. A sensor technique that degrades the interaction of molecular summer matter. The Republic of China patent (1306119) uses biosensors and methods for analyte detection. This patent is a biosensor that detects analytes by time-resolved luminescence measurements. However, the above patents have a complicated production process on the surface of the wafer, and the detection amount is limited. This patent proposes a chemical synthesis technique using nano-self-assembly to form a special surface film, which is further provided to the bio-wafer by the quenching phenomenon of fluorescent dye and nano-gold sphere, with simple optical characteristics as the signal detection. Measurement. Detailed embodiments of the present technology will be set forth hereinafter. SUMMARY OF THE INVENTION According to the characteristics of chemical molecules and self-assembly techniques, biofilms are formed on the surface of germanium wafers, and fluorescently labeled DNA is chemically bonded to another strand. The complementary strands of nanogold spheres are hybridized, and the biosensing device is further developed by quenching of fluorescent dyes and nanogold spheres. The objects, technical features, features, and effects achieved by the present invention will become more apparent from the detailed description of the embodiments. [Embodiment] The present invention proposes a method for self-assembly of a biochemical film by a molecule, and mainly proposes two preferred embodiments. A schematic structural view of the first embodiment is shown in FIG. 201111780 First, self-assembly of the decane molecule (102) onto the germanium wafer (1〇1). Here, 10-imdecenyldimethylchlorosilane (udCS) was selected as the self-assembling molecule. In the molecular structure, 'the end is methoxy' can be used to carry out the fat (five) addition on the surface of the Shixi wafer, and the other end is a long carbon chain with a thin base, which can be further oxidized to form a ship base, and then The modified amino-based deoxyribonucleic acid (DNA) (103) is used as a bond. The single-stranded DNA is a probe whose sequence is complementary to the target DNA (l〇4) to be detected, and the amine group is modified at the end thereof to expose the carboxylic acid functional group to the surface of the ruthenium wafer. The reaction forms a covalent bond peptide (amideb〇nd); this reaction is carried out under the catalyst N-(3-Dimethylaminopropyl)_N-ethylcarbodiimide; the reaction rate is extremely fast and quite complete' and at low temperatures, such as 4 〇 c can also carry out the reaction, which has the advantage that it cannot be replaced by other chemical reactions that require heating and catalysis, and is suitable for the conjugation reaction between biomolecules, and then another complementary addition is carried out. Hybridization 'Hybridization of this strand of DNA, except that it is complementary to pr〇be DNA, after it has a modified thiol (SH) functional group, and after performing a step of hybridizing with target DNA, a step of salt gradient is performed; Attached to the gold nanoparticles (1〇5), this method enables the DNA to be most closely, uniformly and specifically arranged on the surface of the substrate. If the end of the pr〇be DNA is provided with a fluorescent dye (106), the fluorescent light emitted by it can be absorbed by the nanogold sphere; otherwise, if it is a non-complementary target DNA golden sphere, then pr 〇be DNA ends are still fluorescent. A schematic structural view of the second embodiment is shown in FIG. 2. Change the germanium wafer to indium tin oxide (ITO) film electrode (201), connect pr〇beDNA (2〇2) with fluorescent dye (2〇3) to the crucible and connect the target DNA to be tested. Nanogold spheres (2〇5), respectively placed into target DNA (204) complementary to pr〇be DNA and target DNA (208) not complementary to pr〇be DNA, excited by excitation source (206), complementary After hybridization, the fluorescence will be quenched (2〇7); otherwise, the two are separated by 201111780, and the fluorescence is still there. [Simple diagram of the diagram] Schematic description. Figure 1 is a schematic diagram of the design of DNA binding on a wafer. Figure 2 is a schematic diagram of the design of DNA binding to ITO. [Description of main components] Description of the symbols

101 晶圓片; 102 矽烷類分子; 103 probe DNA ; 104 target DNA ; 105 金奈米粒子; 106 螢光染料;101 wafer; 102 decane molecule; 103 probe DNA; 104 target DNA; 105 gold nanoparticles; 106 fluorescent dye;

201 ITO 202 probe DNA ; 203 螢光染料; 204 與 probe DNA 互補的 target DNA ; 205 金奈米粒子; 206 激發光源; 201111780 207 208 probe DNA與互補target DNA雜交後螢光淬媳; 與 probe DNA 不互補的 target DNA ;201 ITO 202 probe DNA; 203 fluorescent dye; 204 target DNA complementary to probe DNA; 205 gold nanoparticles; 206 excitation light; 201111780 207 208 probe DNA hybridized with complementary target DNA after fluorescence quenching; Complementary target DNA ;

Claims (1)

201111780 七、申請專利範圍: 1. 一種利用生化自組裝技術製作生化薄琪之感測裝置,包括. 生化分子薄膜之製備方法及感測技術與裝置。 如申請專利範圍第1項所述之實施方式,其表面分子薄膜的製作是以化 學合成技術或生物自組裝技術,製作出具有化學或生物分子或内含奈米 粒子之結構。 3. 如申請專利範圍第i項所述之實施方式,以磁場或外部能量的作用,進 • 而調控DNA之螢光反應。 4. 如申請專利範圍第丨項所述之裝置,構成基材之材料可树晶圓、玻 璃、金屬、高分子材料等之任-種或其組合。 5·如申請專利範圍第1項所述,其DNA結合基材之方法。 6.蝴__第丨項所述之妓,磁場、電場或能量裝置能夠提供一 乍用场’其場作用影響DNA的厚度範圍介於100微米至3奈米之間; 而寬度範圍涵蓋整個晶片。201111780 VII. Patent application scope: 1. A sensing device for biochemical thinning using biochemical self-assembly technology, including: preparation method and sensing technology and device for biochemical molecular film. According to the embodiment described in the first aspect of the patent application, the surface molecular film is produced by a chemical synthesis technique or a biological self-assembly technique to produce a structure having chemical or biomolecules or nanoparticles containing nanoparticles. 3. As in the embodiment described in the scope of patent application, the fluorescence reaction of DNA is regulated by the action of a magnetic field or external energy. 4. The device constituting the substrate according to the invention of claim 3, wherein the material constituting the substrate is any one or a combination of a wafer, a glass, a metal, a polymer material, or the like. 5. A method of binding a DNA to a substrate as described in claim 1 of the patent application. 6. According to the _ 丨 丨 丨 妓 妓 妓 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场 磁场.
TW98132418A 2009-09-25 2009-09-25 A device for detection by biomolecule self assembly TW201111780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98132418A TW201111780A (en) 2009-09-25 2009-09-25 A device for detection by biomolecule self assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98132418A TW201111780A (en) 2009-09-25 2009-09-25 A device for detection by biomolecule self assembly

Publications (1)

Publication Number Publication Date
TW201111780A true TW201111780A (en) 2011-04-01

Family

ID=44909005

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98132418A TW201111780A (en) 2009-09-25 2009-09-25 A device for detection by biomolecule self assembly

Country Status (1)

Country Link
TW (1) TW201111780A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520151A (en) * 2011-12-09 2012-06-27 东南大学 Method for producing quasi three dimensional biological chip
CN102520148A (en) * 2011-12-09 2012-06-27 东南大学 Method for preparing plane biological/chemical sensing device with convex pattern microarray

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520151A (en) * 2011-12-09 2012-06-27 东南大学 Method for producing quasi three dimensional biological chip
CN102520148A (en) * 2011-12-09 2012-06-27 东南大学 Method for preparing plane biological/chemical sensing device with convex pattern microarray
CN102520148B (en) * 2011-12-09 2014-01-01 东南大学 Method for preparing plane biological/chemical sensing device with convex pattern microarray

Similar Documents

Publication Publication Date Title
Babamiri et al. Highly sensitive bioaffinity electrochemiluminescence sensors: Recent advances and future directions
KR101059896B1 (en) Detection of biochemicals using surface enhanced Raman scattering
Luo et al. Visual simultaneous detection of hepatitis A and B viruses based on a multifunctional molecularly imprinted fluorescence sensor
Eivazzadeh-Keihan et al. Recent advances on nanomaterial based electrochemical and optical aptasensors for detection of cancer biomarkers
Nie et al. Applications of gold nanoparticles in optical biosensors
Singh et al. Biosensors for pathogen detection: A smart approach towards clinical diagnosis
Tang et al. An ultrasensitive electrochemiluminescence assay for Hg2+ through graphene quantum dots and poly (5-formylindole) nanocomposite
Asefa et al. Recent advances in nanostructured chemosensors and biosensors
Shao et al. Signal-amplified near-infrared ratiometric electrochemiluminescence aptasensor based on multiple quenching and enhancement effect of graphene/gold nanorods/G-quadruplex
Agasti et al. Nanoparticles for detection and diagnosis
Rampazzo et al. Nanoparticles in metal complexes-based electrogenerated chemiluminescence for highly sensitive applications
Yang et al. Gold nanoparticle based signal enhancement liquid crystal biosensors for DNA hybridization assays
Vlăsceanu et al. Versatile graphene biosensors for enhancing human cell therapy
Gao et al. Microfluidic chip for multiple detection of miRNA biomarkers in breast cancer based on three-segment hybridization
US20180246084A1 (en) Heterogeneous microarray based hybrid upconversion nanoprobe/nanoporous membrane system
Roy et al. Strategies for sensitivity enhancement of point-of-care devices
WO2013119793A1 (en) Chemiluminescent nanoparticles and uses thereof
Chen et al. An electrochemical aptasensing platform for carbohydrate antigen 125 based on the use of flower-like gold nanostructures and target-triggered strand displacement amplification
Tang et al. Luminol-based ternary electrochemiluminescence nanospheres as signal tags and target-triggered strand displacement reaction as signal amplification for highly sensitive detection of Helicobacter pylori DNA
Ramalingam et al. Impact of nanotechnology on conventional and artificial intelligence-based biosensing strategies for the detection of viruses
KR20130106043A (en) Method for detecting analytes inducing enlargement of gold nanoparticles
Wang et al. pH-responsive magnetic I-motif container coupled with DNA walker for construction of dual-signal electrochemical biosensor
Rabiee et al. Metallic nanostructure-based aptasensors for robust detection of proteins
Qiu et al. Ultrasensitive plasmonic photothermal immunomagnetic bioassay using real-time and end-point dual-readout
TW201111780A (en) A device for detection by biomolecule self assembly