TW201111696A - Customizable, long lasting, thermally efficient, environmentally friendly, solid-state lighting apparatuses - Google Patents

Customizable, long lasting, thermally efficient, environmentally friendly, solid-state lighting apparatuses Download PDF

Info

Publication number
TW201111696A
TW201111696A TW99125195A TW99125195A TW201111696A TW 201111696 A TW201111696 A TW 201111696A TW 99125195 A TW99125195 A TW 99125195A TW 99125195 A TW99125195 A TW 99125195A TW 201111696 A TW201111696 A TW 201111696A
Authority
TW
Taiwan
Prior art keywords
solid state
mcpcb
power supply
light source
lighting device
Prior art date
Application number
TW99125195A
Other languages
Chinese (zh)
Inventor
Shirish Devidas Deshpande
Prafulla Madhukar Thote
Original Assignee
Shirish Devidas Deshpande
Prafulla Madhukar Thote
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shirish Devidas Deshpande, Prafulla Madhukar Thote filed Critical Shirish Devidas Deshpande
Publication of TW201111696A publication Critical patent/TW201111696A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Abstract

The invention provides lighting apparatuses which are power efficient, environment friendly and long lasting and can be manufactured with high degree of speed, accuracy and flexibility. The lighting apparatuses are easily serviceable and can be produced, transported economically and have higher economical value even on completion of life term of the lighting apparatuses. The present invention reduce the waste of raw material thereby utilizing maximum percentage raw material for produce solid state lighting fixtures using CAD and CNC process and provides retrofitting lighting apparatuses which can be replaced without making considerable changes in existing infrastructure.

Description

201111696 六、發明說明: L明戶斤屬时名貝】 發明領域 本發明係有關於環境友善的一般照射裝置。本發明特 別有關於生怨友善、持久、高能量效率、固態照明震置。 發明背景 關於現今所使用的白熾燈及高壓鈉蒸氣燈之消耗功率 量、引申來說包括由於此功率消耗所釋出的大氣C〇2量, 係已經引起全球關切。並且,白熾燈具有較短的壽命長度 並使用有害材料,故引發高維護成本並對於生態系不友善 且本質上不具永續性。因此,以固態為基礎的照射技術已 受矚目作為一種未來之最適節能、生態友善的光源。 為了克服習見白熾燈具及CFL(密實螢光燈)相關聯的 經濟、環境與健康議題,照射用途的替代性解決方案係利 用以智慧式使用固態照明器件為基礎之環境友善一般性照 射設備。 固態照明有潛力徹底革新照明產業。發光二極體 (LED)—常用在號誌、、信號及顯示器中—係快速演進提供一 般照射用的光源。此技術係有前途可具有較低能量消耗及 減少維護。 固態照明的特徵利益係包括·· 1.長壽命一LED可提供50,〇〇〇小時或更大壽命,相較來 說,一白熾燈泡持續約1,000小時。 201111696 2. 節能一最好的商用白色LED照明系統提供超過兩倍 之白熾照明的發亮效力(流明每瓦)。因為不需要濾器,有色 LED尤其有利於有色照明應用。 3. 更好品質的光輸出一LED具有最小值紫外及紅外輻 射。 4. 本質上安全一LED系統係為低電壓且一般為冷涼可 供碰觸。 5. 較小具彈性的燈設備一LED的較小尺寸係使其可用 來照明窄緊空間。 6. 耐久一LED不具有會破裂的燈絲並可承受振動。比起 任何習見光源更持久。 7. 降低的維護成本及能源成本。 8. 聚焦的照明導引式光,以供增高的系統效率,方向 性導致高度可控制式光學系統。 9. 沒有活動元件,不會破裂、斷折、破碎、洩漏或污 染環境。 10. 綠色科技一其不發射紫外線,紅外熱量,且不含汞 或錯。 11. 其長壽命及小尺寸代表較少浪費。 12. 低電壓電流驅動式固態器件以低達3VDC電壓操 作。 13. 能夠冷起動,在寒冷環境中並無點燃問題一即使低 達-40°C。 SSL器件係以半導體二極體為基礎,當二極體被正向偏 4 201111696 壓(切成開通),電子能夠復合於電洞並以光形式釋放能量。 此欵應稱為電致發光,且光色取決於半導體的能隙。使用 SSL的一項主要挑戰係在於從接面二極體消散的熱量之管 理。LED的效率大致依據其散熱而定。周遭環境的環室溫 度係由於導致其自我發熱而對於LED效能具有效應。若在 -高環室溫度使其過載,係可能對其發光產能具有不利效 應。當LED中的半導體晶粒發熱,LED的光輪出係減小因 此降低其效率。因此,LED的過熱可能導致器件失效。 補償LED自我發熱效應的可能途徑係以使其盡可能消 散大量熱量的方式來設計LED照明器件的設備面板之體 P。可藉由其上安裝有固態照明器件之照明設備面板的材 料及設計來達成最大值散熱。 【發明内容】 發明概要 本發月之主要目的係在於提供高功率效率、環境友善 且持久並可以高程度的速度、精確度與彈性被客製之照明 解決方案。 、 本發明另—顯著目的係在於提供可利用一電源供應單 凡達成>〇.98的功率因子比值(power factor ratio)以降低反 應性功率之固態照明裝置。 本發明另—目的係提供可藉由安裝一透鏡於固態照明 源上在所想要區域中達成大於90%的光藉此防止不需要區 域中的光散射之固態照明裝置。進入不想要平面中之光量 係為極小的0.01至20%。 201111696 本發明另一目的係提供高程度的彈性以利用CAD及 CNC製程使設備的設计根據效用而作s周適。 本發明另一目的係降低原料的浪費藉以使用CAD及 CNC製程利用最大值的百分比原料來產生固態照明設備。 本發明的又另一目的係提供輕重量照明裝置,其可被 經濟地生產及運送益且即使照明裝置的壽命期限完成時仍 具有一較高的經濟廢料價值。 本發明的再另一目的係提供可容易檢修之固態照明裝 置,其中電源供應單元係為獨立組件且可在失效時更換。 本發明另一目的係以一種使設備的整體體部作為高效 率排熱器之方式來設計該等設備,其中由於位於從0.5至 6mm範圍中之設備的厚度(2軸)故在設備的側向方向於x,y 座標中具有最大值散熱,且設備由至少一導熱性金屬片製 成且金屬片材料選自下列各物組成的組:鋁、鐵、鋼、銅 或是其合金或組合。 本發明又另一目的係在於藉由曝露x&y軸中之設備的 底及頂側上之最大絲Φ積來糾較域肖散固態 照明裝置中的熱量。 本發明再另-目的係藉由將設備的一或多個平面、包 括設備的基底平面傾向成所想要角度、該角度可位於從0至 360度的範圍來達成最適j >、, 句質性的發免測光術(luminous photometry) 0 本發明的又一目 電源之光感測器部件 的係在於提供一耦合於AC或DC輸入 °亥光感測器部件係組構為選擇性控 6 201111696 制對於固態照明裝置的電源輸入,其中光感測器部件可為 曰光感測器或南精確度〗辰室光感測器。 本發明再另一目的係提供翻新的照明裝置,其町被更 換而既有基礎建設不需作顯著改變。其設計態樣並不需要 製作實體基礎建設的特殊包圍件。以路燈為例,藉由客製 建造的翻新設計,燈柱不需改變,而是所提出的照明裝置 之翻新設計可取代既有的覆罩。 本發明又另一目的係提供可承受包括下雨、沙塵暴、 降雪、風及炎熱等天氣極端狀況之照明裝置。 本發明另一目的係對於照明裝置提供藉由其設計所遠 成的所想要位準之防水(入侵保護)。 本發明再另一目的係提供具有陽極化體部以達成無腐 姓及磨刮表面以供平順熱量流之照明裝置。 本發明另一目的係保護設備的頂側散熱區域、包括炙 要排熱器及次要排熱器及散熱面板不受到任何種類的烏糞 及/或任何其他落糞。 在描述本裝置及方法的施行之前,請瞭解本發明不眼 於所描述的特定裝置及方法體系,本發明可具有多種可能 實施例且其未明示於本揭示或圖式中。亦瞭解本描述的用 語只用來說明特定版本或實施例,而無意限制只由申請專 利範圍界定之本發明的範圍。 本發明係提供高功率效率'環境友善且持久之照明解 決方案,且其可以高程度的速度、精確度及彈性被客製。 本發明的照明設備亦容易作檢修。 201111696 根據本發明的-實施例,具有可客製設計之持久、高 能量效率、固態照明裝置,其中該裝置包含一具有炱少一 安裝表面之設備,選用性地—或多個開縫、孔或雜片,被 選擇性衝設在設備的安裝表面切達成額外散熱並盡量減 小對於風的阻力。包括該設備的基底平面之設備的〆或多 個平面係可被可調整賴斜以達成所想要的測光術。 上述該設備係由至少一導熱金屬片製成,其中導熱金 屬片選自下列各物組成的群組:㉟,鐵,鋼,銅或是其合 金或組合。設備係由電腦數值控制(CNC)製程所製造;該設 備之特徵在於具有: I. 设備的整個體部作為主要排熱器,其中係以由於設備 的最適化厚度(z軸)維持位於從〇 5至6111爪範圍中使得散熱 在設備側向的X,y座標中為最大值之方式來設計設備; II. 用於防止腐蝕及磨刮之陽極化,藉以增加熱傳導率; ill.—電源供應單元,其被包圍在設備的一殼體中,其 中電源供應單元提供所需要的DC或AC電壓至一或多個固 癌、發光源’其中所需要的DC或AC電壓可從AC或DC輸入電 源產生; ιν·最適化設計係能夠在所需要區域中具有最大值光分 散。 至少一金屬核心印刷電路板(MCPCB)係安裝在安裝表 面上’且至少一固態發光源係安裝在該MCPCB上。選用性 地’一或多個透鏡係安裝在一或多個固態發光源上以防止 不需要區域中之光散射並藉此將光導引至所想要區域中。 8 201111696 選用性地,一或多個保護性透明或半透明片係覆蓋—或多 個固態發光源以防止昆蟲進入照明裝置,其中保護性透明 或半透明片的材料可選自玻璃及/或無色聚碳酸g旨。選用性 地’一經塗覆/經鍍覆層的銅被嵌夾於主要排熱器與mcpcb 之間,其中此層可進一步具有一用於防止腐蝕之部件。該 固態發光源可選自下列各物組成的群組:低功率或高功率 LED,包括LED、OLED、PLED。一或多層的熱性介面材 料(譬如矽橡膠)放置在主要排熱器及MCPCB暨主要排熱器 及次要排熱器及兩或更多個次要排熱器之間。 照明裝置進一步包含一或多個散熱面板,作為安裝在 設備的前或反側上之次要排熱器,選用性地具有—或多個 開縫'孔或鰭片,選擇性地衝設於次要排熱器上以達成額 外散熱並盡量減小對於風的阻力,且其中此次要排熱器由 選自下列各物組成的組之至少一導熱材料製成:鋁,鐵, 鋼,銅或是其組合或合金。—或多層的熱性介面材料(譬如 石夕橡約放置在主要排熱器及MCPCB暨主要排熱器及次要 排熱器及兩或更多個次要排熱器之間。 並且’照明裝置係當用於公共照明用途時裝設有一光 感,則器二件及/或動作感測器部件’―光感測器部件及/或動 作感i :。卩件輕合於AC或DC輸人電源或電源供應單元,該 光感測[5件及/或動作感測器部件係組構為選擇性地控 制對於固態照明裝置的電源輸入,其中光感測器部件可: 曰光感測器或高精確度環室光感測器。並且,照明裝置能 夠達成人侵保護標準,其中標準可為ιρ65、ιρ66、及㈣ 201111696 或歐洲電技術標準化委員會(Eur〇pean 加hr201111696 VI. INSTRUCTIONS OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to a general illumination device that is environmentally friendly. The present invention is particularly directed to loyal, long lasting, high energy efficiency, solid state lighting. BACKGROUND OF THE INVENTION The power consumption of incandescent lamps and high pressure sodium vapor lamps used today, including, in addition, the amount of atmospheric C〇2 released by this power consumption, has caused global concern. Moreover, incandescent lamps have a short life span and use hazardous materials, resulting in high maintenance costs and are not friendly to the ecosystem and are inherently non-sustainable. Therefore, solid-based irradiation technology has attracted attention as a light source of optimal energy conservation and ecological friendliness in the future. To overcome the economic, environmental and health issues associated with incandescent luminaires and CFLs, dense alternatives for illuminating applications are environmentally friendly general-purpose illuminators based on intelligent use of solid-state lighting devices. Solid-state lighting has the potential to revolutionize the lighting industry. Light-emitting diodes (LEDs)—used in slogans, signals, and displays—are rapidly evolving to provide a source of general illumination. This technology is promising for lower energy consumption and reduced maintenance. The characteristics of solid-state lighting include: 1. Long-life LEDs can provide 50 hours or more of life. In comparison, an incandescent bulb lasts about 1,000 hours. 201111696 2. Energy Saving One of the best commercial white LED lighting systems offers more than twice the luminous efficacy of incandescent lighting (lumen per watt). Colored LEDs are especially advantageous for colored lighting applications because filters are not required. 3. Better quality light output - LED has minimum UV and IR radiation. 4. Essentially safe - An LED system is low voltage and is generally cool for touch. 5. Smaller flexible lamp equipment The smaller size of an LED makes it possible to illuminate tight spaces. 6. Durable One LED does not have a filament that can rupture and can withstand vibration. More durable than any light source. 7. Reduced maintenance costs and energy costs. 8. Focused illumination-guided light for increased system efficiency and directionality results in a highly controllable optical system. 9. There are no moving parts and will not break, break, break, leak or pollute the environment. 10. Green Technology does not emit ultraviolet light, infrared heat, and does not contain mercury or fault. 11. Its long life and small size represent less waste. 12. Low voltage current driven solid state devices operate at voltages as low as 3 VDC. 13. It can be cold started, and there is no ignition problem in a cold environment, even if it is as low as -40 °C. The SSL device is based on a semiconductor diode. When the diode is positively biased (cut-off), electrons can be combined in the hole and release energy in the form of light. This 欵 should be called electroluminescence, and the color of the light depends on the energy gap of the semiconductor. One of the main challenges in using SSL is the management of heat dissipated from the junction diode. The efficiency of LEDs is roughly based on their heat dissipation. The ambient temperature of the surrounding environment has an effect on LED performance due to its self-heating. If it is overloaded at a high-ring temperature, it may have an adverse effect on its luminous capacity. When the semiconductor die in the LED heats up, the LED's light wheel is reduced, thereby reducing its efficiency. Therefore, overheating of the LED may cause device failure. A possible way to compensate for the self-heating effect of the LED is to design the body P of the device panel of the LED lighting device in such a way as to dissipate as much heat as possible. The maximum heat dissipation can be achieved by the material and design of the luminaire panel on which the solid state lighting device is mounted. SUMMARY OF THE INVENTION The main purpose of this month is to provide a lighting solution that is highly power efficient, environmentally friendly, and durable, and that can be customized to a high degree of speed, precision, and flexibility. Another significant object of the present invention is to provide a solid state lighting device that can utilize a power supply to achieve a power factor ratio of > 98 to reduce reactive power. Another object of the present invention is to provide a solid state lighting device that can achieve greater than 90% of the light in a desired area by mounting a lens on a solid state illumination source to thereby prevent light scattering in the unwanted area. The amount of light entering the unwanted plane is as small as 0.01 to 20%. 201111696 Another object of the present invention is to provide a high degree of flexibility to utilize CAD and CNC processes to tailor the design of the device to its effectiveness. Another object of the invention is to reduce waste of raw materials by using CAD and CNC processes to produce solid state lighting using a maximum percentage of raw materials. Still another object of the present invention is to provide a lightweight lighting device that can be economically produced and shipped and that has a high economic waste value even when the life of the lighting device is completed. Still another object of the present invention is to provide a solid state lighting device that can be easily overhauled, wherein the power supply unit is a separate component and can be replaced in the event of a failure. Another object of the present invention is to design such devices in such a way that the overall body of the device is used as a high efficiency heatsink, wherein the device is on the side of the device due to the thickness (2 axes) of the device in the range from 0.5 to 6 mm. The direction has a maximum heat dissipation in the x,y coordinates, and the device is made of at least one thermally conductive metal sheet and the sheet metal material is selected from the group consisting of aluminum, iron, steel, copper or alloys or combinations thereof. . Still another object of the present invention is to correct the heat in a domain sinusoidal solid state lighting device by exposing the maximum filament Φ product on the bottom and top sides of the device in the x&y-axis. Still another object of the present invention is to achieve an optimum j> by one or more planes of the apparatus, including the base plane of the apparatus, at a desired angle, which may range from 0 to 360 degrees. Qualitative photometric measurement 0 Another aspect of the present invention is to provide a light sensor component that is coupled to an AC or DC input. 201111696 For the power input of solid state lighting devices, the light sensor component can be a neon sensor or a south precision chamber light sensor. Still another object of the present invention is to provide a refurbished lighting device in which the town is replaced and the existing infrastructure does not need to be significantly changed. Its design does not require the creation of special enclosures for physical infrastructure. Taking streetlights as an example, the retrofit design built by the customer does not need to be changed, but the retrofit design of the proposed lighting device can replace the existing cover. Still another object of the present invention is to provide a lighting device that can withstand extreme weather conditions including rain, sandstorms, snowfall, wind and heat. Another object of the present invention is to provide the lighting device with a desired level of waterproofing (intrusion protection) that is designed by its design. Still another object of the present invention is to provide an illumination device having an anodized body portion for achieving a non-corrosive and scratched surface for smoothing heat flow. Another object of the present invention is to protect the top side heat dissipating area of the apparatus, including the main heat dissipator and the secondary heat dissipator, and the heat dissipating panel from any type of faeces and/or any other droppings. Before the present invention is described, it is to be understood that the present invention is not limited to the particular device and methodologies described. The invention may have various possible embodiments and is not shown in the present disclosure or the drawings. It is also understood that the terminology of the present invention is intended to be limited to the specific embodiments or embodiments, and is not intended to limit the scope of the invention The present invention provides a high power efficiency 'environmentally friendly and long lasting lighting solution, and it can be customized with a high degree of speed, precision and flexibility. The lighting device of the present invention is also easy to overhaul. 201111696 According to an embodiment of the invention, a durable, high energy efficient, solid state lighting device having a custom design, wherein the device comprises a device having a mounting surface that is reduced, optionally - or a plurality of slits, holes Or the chip, which is selectively punched on the mounting surface of the device to achieve additional heat dissipation and minimize the resistance to wind. The 〆 or plurality of planar systems of the device comprising the base plane of the device can be adjusted to achieve the desired photometry. The apparatus described above is made of at least one thermally conductive metal sheet, wherein the thermally conductive metal sheet is selected from the group consisting of: 35, iron, steel, copper or alloys or combinations thereof. The equipment is manufactured by a computer numerical control (CNC) process; the device is characterized by: I. The entire body of the device acts as the primary heat sink, which is maintained at a position due to the optimum thickness of the device (z-axis) 〇5 to 6111 in the range of the claws so that the heat dissipation is designed to maximize the X,y coordinates in the lateral direction of the device; II. Used to prevent corrosion and scratching anodization, thereby increasing the thermal conductivity; ill.—Power supply a supply unit that is enclosed in a housing of the device, wherein the power supply unit provides the required DC or AC voltage to one or more solid cancer, illumination sources. The DC or AC voltage required therein can be from AC or DC Input power generation; ιν·Optimization design is capable of having maximum light dispersion in the desired area. At least one metal core printed circuit board (MCPCB) is mounted on the mounting surface' and at least one solid state light source is mounted on the MCPCB. Optionally, one or more lens systems are mounted on one or more solid state light sources to prevent light scattering in unwanted areas and thereby direct light into the desired area. 8 201111696 Optionally, one or more protective transparent or translucent sheets cover - or a plurality of solid state light sources to prevent insects from entering the illumination device, wherein the protective transparent or translucent sheet material may be selected from glass and/or Colorless polycarbonate. Optionally, the coated/coated copper is sandwiched between the primary heat sink and the mpcb, wherein the layer further has a component for preventing corrosion. The solid state light source can be selected from the group consisting of low power or high power LEDs including LEDs, OLEDs, PLEDs. One or more layers of thermal interface material (such as ruthenium rubber) are placed between the primary heat sink and the MCPCB and the primary heat eliminator and the secondary heat eliminator and two or more secondary heat eliminators. The illuminating device further includes one or more heat dissipating panels as a secondary heat dissipator mounted on the front or the opposite side of the device, optionally having - or a plurality of slitted holes or fins, selectively slid over The secondary heat exchanger is used to achieve additional heat dissipation and minimize the resistance to wind, and wherein the heat exchanger is made of at least one heat conductive material selected from the group consisting of aluminum, iron, steel, Copper or a combination or alloy thereof. - or multiple layers of thermal interface materials (such as Shi Xi rubber placed between the main heat exchanger and MCPCB and the main heat exchanger and secondary heat exchanger and two or more secondary heat exchangers. And 'lighting device When used for public lighting purposes, there is a light perception, then two pieces and/or motion sensor parts' - light sensor parts and / or action sense i:. The pieces are lightly coupled to AC or DC input A power or power supply unit that is configured to selectively control power input to the solid state lighting device, wherein the light sensor component can: a neon sensor Or a high-accuracy toroidal light sensor. Moreover, the lighting device can meet the protection standards for human intrusion, the standard can be ιρ65, ιρ66, and (4) 201111696 or the European Committee for Electrotechnical Standardization (Eur〇pean plus hr

Electro Technical Standardization)所頒布的任何其他入侵保 護標準。 又” 根據本發明的另一實施例,持久、高能量效率、固態 照明裝置具有可客製設計,其中該裝置包含一具有至少— 女裝表面之s又備,選用性地一或多個開縫、孔或韓片,被 選擇性衝设於設備的安裝表面上以達成額外散熱及盡量減 小對於風的阻力。上述該設備係由至少一導熱金屬片製 成,其中導熱金屬片選自下列各物組成的組:鋁,鐵,鋼, 銅或疋其合金或組合。設備係由電腦數值控制(CNC)製裎所 製造;該設備之特徵在於具有; i.設備的整個體部作為第一主要排熱器,其中以由於設 備的最適化厚度(z軸)維持位於從〇 5至6mm範圍中使得散 熱在设備側向的x,y座標中為最大值之方式來設計設備; II. 用於防止腐姓及磨刮之陽極化,藉以增加熱傳導率; III. 一電源供應單元,其被包圍在設備的一殼體中,其 中電源供應單元提供所需要的DC或AC電壓至一或多個固 態發光源; iv.最適化設計係能夠在所需要區域中具有最大值光分 散。 至少一金屬核心印刷電路板(MCPCB)係安裝在安裝表 面上,且至少一固態發光源係安裝在該]^(:^(:6上且該固態 發光源可選自下列各物組成的群組:低功率或高功率 LED,包括LED、〇LED、PLED,具有熱絕緣片及/或緩衝 201111696 間隔件之第二主要排熱器係放置在設備的後側上且來自第 一主要排熱器上所安裝的MCPCB之至少一固態發光源係 藉由金屬性熱性介面及經過第一主要排熱器中所設置的切 出開口之絕緣器被熱性連接至此排熱器。 上述該裝置的設備係利用包含下列步驟之C N C製程製 造: a. 選擇一金屬片,其中該金屬片可選自下列各物組成的 組:鋁,鐵,鋼,銅或是其組合或合金; b. 將金屬片插入一 CNC機中,其中經程式化的指令係 使CNC機中的處理器能夠根據一或多個設備的經饋給設計 來衝壓金屬片及 c. 選用性地利用C N C機在一或多個地方彎折經衝壓的 設備。 一用於製造具有可客製設計的持久、高能量效率、固 態照明裝置之方法係包含下列步驟: a. 將設備的至少一設計連同一金屬片饋給至一 CNC機 中; b. 根據該設計衝壓金屬片以達成一或多個設備; c. 選用性地在一或多個地方彎折經衝壓的設備; d. 將設備予以陽極化以達成無腐蝕及磨刮表面; e. 將螺母/插入件/鉚釘螺帽(硬體)氣動式固定至設備 内; f. 將其上已安裝有至少一固態發光源之至少一金屬核 心印刷電路板(MCPCB)安裝在設備上;及 11 201111696 g.將一或多個電源供應單元安裝於設備的一殼體中。 該方法進一步包含將具有熱絕緣片及/或緩衝間隔件 之第二主要排熱器放置在設備的後側上,並藉由金屬性熱 性介面及經過第一主要排熱器中所設置的切出開口之絕緣 器將至少一固態發光源從安裝在第一主要排熱器上的 MCPCB熱性連接至第二主要排熱器;將經塗覆層的銅放置 在主要排熱器&MCPCB之間,其中此經塗覆層可進一步具 有一用於防止腐蝕之部件;及將一或多個散熱面板(次要排 熱器)安裝在設備的前或反側上。 並且’該方法包含選用性地安裝一光感測器部件及/或 一動作感測器於設備的前及/或後側中;選用性地安裝一或 多個透鏡於一或多個固態發光源上;選用性地覆蓋一或多 個保護性透明或半透明片於一或多個固態發光源上;及放 置一層的熱性介面材料於主要排熱器&MCPCB暨主要排 熱器及次要排熱器之間及兩或更多個次要排熱器之間。 圖式簡單說明 連同圖式閱讀時將更加瞭解上文的概述、暨較佳實施 例的下文詳細描述。為了示範本發明,圖中顯示本發明的 範例構造;然而,本發明不限於所揭露的特定裝置及方法。 圖中: 第1圖顯示根據本發明的一示範性實施例之使用於路 燈應用之固態照明裝置的前視圖; 第2圖顯示根據本發明的一示範性實施例之使用於路 燈應用之固態照明裝置的背視圖; 12 201111696 第3圖顯示根據本發明的一示範性實施例之使用於路 燈應用之固態照明裝置的等角前視圖; 第4圖顯示根據本發明另一示範性實施例之使用於棚 燈(bay light)應用之固態照明裝置的俯視圖; 第5圖顯示根據本發明另一示範性實施例之使用於棚 燈應用之固態照明裝置的仰視圖; 第6圖顯示根據本發明另一示範性實施例之使用於棚 燈應用之固態照明裝置的俯視圖; 第7圖顯示根據本發明的一示範性實施例之使用於泛 光燈(flood light)應用之固態照明裝置的等角前視圖; 第8圖顯示根據本發明另一示範性實施例之使用於高 桅杆(High Mast)應用之固態照明裝置的等角前視圖; 第9圖顯示根據本發明另一示範性實施例之使用於高 桅杆應用之固態照明裝置的等角背視圖; 第10圖顯示根據本發明的一示範性實施例之使用於室 内筒燈(Indoor down light)應用之固態照明裝置的等角前視 圖; 第11圖顯示根據本發明的一示範性實施例之使用於室 内筒燈應用之固態照明裝置的等角背視圖; 第12圖顯示根據本發明的一實施例之具有第一位準的 熱量管理系統之固態照明裝置的橫剖視圖; 第13圖顯示根據本發明另一實施例之具有經增強第二 位準的熱量管理系統之固態照明裝置的橫剖視圖; 第14圖顯示根據本發明的一實施例之具有經增強第三 13 201111696 位準的熱量管理系統之固態照明裝置的橫剖視圖; 第15圖顯示根據本發明另一實施例之具有經增強第四 位準的熱量管理系統之固態照明裝置的橫剖視圖; 第16圖顯示根據固態照明設備的IES LM 79-08之光學 及電性實驗資料; 第17圖顯示根據以IESNA照明器具分類系統為基礎之 固態照明裝置的通量分配圖。 I:實施方式3 發明的詳細描述 現將詳細討論其中顯示其全部特徵構造之本發明的部 分實施例。 “包含”、“具有”、“含有”及“包括’’用語及其他形式係因 下列理由而預定具有均等及開放意義:位於這些用語任一 者後的一或多個項目未必即是此一或多個項目的窮舉清 單、或僅受限於所列出的一或多個項目。 亦必須注意,除非另外指明,此處及申請專利範圍所 用的單數形式“一(a)”、“一(an)”及“該(the)”係包括複數形指 涉。雖然可利用此處所描述的任何裝置或方法或均等物來 實行或測試本發明的實施例,現在將描述較佳的裝置及方 法。 排熱器:一設計成藉由消散其接點處所產生的過多熱 量來降低與其連接之電子/半導體器件的溫度之組件。其常 為鰭片狀,且由諸如鋁、銅等散熱較快的金屬製成。現今 案例中,設備的整體體部係作為一排熱器且排熱器以金屬 14 201111696 片形式使用。 設備:除非本發明中另外界定,“設備,,係指一包含連 同其他電丨±/電子及非紐子組件被安裝在金屬性框架 上的一或多個固態照明器件之系統。 固態發光源(SSL):係指使用發光二極體(LED)、有機 發光二極體(OLED)、或聚合物發光二極體(pLED)作為照射 源之一類型的低功率或高功率照明器件。 本發明提供南功率效率、;裒境友善且持久且可以高程 度的速度、精確度及彈性被客製之照明解決方案。本發明 的照明設備亦容易檢修。 第卜2及3圖顯示根據本發明的一示範性實施例之使用 於路燈應用之固態照明裝置的前視圖、背視圖及等角前視 圖 具有可客製设计之持久、高能量效率、固態照明裝 置,其中該裝置係包含一具有兩安裝表面1〇4之設備1〇2, 亦即一左側安裝表面104a及一右側安裝表面1〇4b,選用性 地一或多個開縫108、孔110或韓片112,其選擇性衝設於設 備102的安裝表面1〇4上以達成額外散熱並盡量減小對於風 的阻力。該開縫108、孔110或鰭片112可以需求為基礎具有 任何形狀。設備102的一或多個平面、包括設備的基底平面 係被可調整式傾斜成所想要角度以達成所想要的測光術; 該角度可位於從0至360度的範圍中。 上述該設備102由至少一導熱金屬片製成,其中導熱金 屬片選自下列各物組成之組:鋁’鐵,鋼,銅,或是其組 合或合金。該設備102由電腦數值控制(CNC)製程製造;該 15 201111696 設備之特徵係在於具有: i. 設備102的整個體部作為主要排熱器,其中係以由於 設備102的厚度(z軸)位於從0.5至6mm範圍中使得散熱在設 備側向的x,y座標中為最大值之方式來設計設備; ii. 用於防止腐蝕及磨刮之陽極化,藉以增加熱傳導率; iii. 一電源供應單元116(未顯示於圖中),其被包圍在設 備102的一殼體114中,其中電源供應單元116提供所需要的 DC或AC電壓至一或多個固態發光源; iv. 最適化設計能夠在所需要區域中具有最大值光分 散。 設備102的基底平面係支撐固態照明裝置100的各元 件。一金屬核心印刷電路板(MCPCB) 118係安裝在設備102 的中央安裝表面上,選用性地一經塗覆層的銅168(未顯示 於圖中)被嵌夾於主要排熱器102及MCPCB 118之間,且兩 高強烈度固態發光源120係安裝在MCPCB 118及其邊緣 上,其上係固接有中央安裝表面104,且該固態發光源120 可選自下列各物組成的群組:低功率或高功率LED,包括 LED、OLED及PLED,其中保護性透明片124或透鏡122(未 顯示於圖中)係安裝在高強烈度固態發光源120上以防止不 需要區域中的光散射並藉此將光導引至所想要區域中。 兩個MCPCB 118係安裝在安裝表面104a及104b的左及 右側上,且一陣列的固態發光源120安裝在MCPCB 118上。 採用兩個保護性透明片124來覆蓋住固態發光源120以防止 昆蟲進入照明裝置,根據本發明的一實施例,保護性透明 16 201111696 片124的材料可選自玻璃及/或無色聚碳酸酯。 上述該MCPCB 118係包括三層,亦即底層,中間(絕緣) 層及頂層(未顯示於圖中)。底層由選自下列各物組成的組之 至少一導熱材料構成:鋁,鐵,鋼,銅或是其組合或合金。 底層係以一熱性介面層連接於設備1〇2的安裝表面104。中 間層由電性絕緣材料製成並用來從MCPCB 118的頂層傳導 熱量且不容許電力從頂層傳導至底層。頂層係由銅或是比 銅具有更好熱及電傳導性的任何其他金屬、譬如鑛金的銅 構成。至少一固態發光源12〇上係安裝有MCPCB 118的頂 層。 在作為次要排熱器之兩個散熱面板126(未顯示於圖中) 上係安裝有(左及右側,分別各有一者)設備1〇2的反側,其 中次要排熱器126由選自下列各物組成的組之至少一導熱 材料製成:鋁,鐵,鋼,銅或是其組合或合金。選用性地, 一或多個開縫108、孔110或鰭片112係選擇性衝設於設備 102的安裝表面1〇4上,以達成額外散熱及盡量減小對於風 的阻力。該開缝108、孔11〇或鰭片112可以需求為基礎具有 任何形狀。 頂側散熱區域上的次要排熱器126係藉由一金屬覆蓋 物128所覆蓋’其上附裝有設備102以保護底下的元件且其 中金屬覆蓋物128防止上散熱區域的塗覆物不受鳥翼及任 何其他的落糞’這些落糞降低了設備⑽的頂側散熱區域之 散熱能力。 一殼體114上係固接有設備1〇2的遠端。一電源供應單 17 201111696 元116安裝在該殼體114内側,固態照明裝置1〇〇可容易檢 修,其中電源供應單元係為獨立組件且可在失效時更換。 電源供應單元116藉由從電源供應單元〖16延伸至固態發光 源120的連接導線被電性連接至固態發光源⑽各者。該電 源供應單元116達成>G_98的-料目子細降低反應性功 率。所需要的DC或AC電壓可從AC4DC輸入電源產生。 AC/DC輸入電源供應可根據需求利用AC至Dc轉換器、或 DC至DC轉換器被轉換成所需要的沉電源供應以供固態發 光源120的操作。 進一步的固態照明裝置100係當用於公共照明用途時 裝設有一光感測器部件134及/或動作感測器部件172(未顯 示於圖中)’ 一光感測器部件134及/或動作感測器部件172 耦合於AC或DC輸入電源或電源供應單元,該光感測器部件 134及動作感測器部件丨72係組構為選擇性地控制對於固態 照明裝置1〇〇的電源輸入,其中光感測器部件134可為曰光 感測器或高精確度環室光感測器。 動作感測器部件172可以兩方式工作以節省能量,一操 作方式係以感測動作為基礎,其中動作感測器部件組構 為可控制電源輸入將固態照明裝置100切成開通(0N)。若動 作感測器部件I72未感泰,丨動作,藉此組構為控制電源輸入 將固態照明裝置1〇〇切成關斷(〇FF)。第二操作方式係以感 測動作為基礎’其中偵測到動作時,動作感測器部件172組 構為容許100%電源輸入至固態發光源12〇以改良光強,列产 達100%。若動作感測器部件172未感測到動作,對於固熊 18 201111696 發光源120的電源輸入係降低以減少光強烈度最高達9〇%。 根據本發明的一實施例,固態照明裝置1〇〇裝設有一耗 合於AC或DC輸入電源之計時器174(未顯示於圖中),該計 時器部件係組構為選擇性控制對於固態照明裝置的電源輸 入。計時器174可以數種方式工作以選擇性控制固態照明裝 置100的電源供應以切成開通或關斷並藉由控制供應至裝 置100的電源來控制光強烈度。 一在c-通路138中具有兩孔之裝置接合部件136係提供 對於設備102作角度性調整之能力藉以沿著路寬度來調整 光的測光術。並且’該裝置100係能夠達成入侵保護標準, 其中標準可為IP65、IP66、及IP67等。 第4圖顯示根據本發明另一示範性實施例之使用於高 棚燈應用之固態照明裝置的俯視圖。固態照明裝置200具有 五個分離的設備202,其以螺絲250作輔助利用連接部件 256a、256b被連接形成一設備200。設備202由至少一導熱 材料製成,且導熱材料選自下列各物組成的組:鋁,鐵, 鋼,銅,或是其組合或合金。 各設備具有一或多個開缝208(未顯示於圖中)或轉片 212,其選擇性衝設於各設備202的安裝表面204上以達成額 外散熱並盡量減小對於風的阻力。開縫208或鰭片212可^ 需求為基礎具有任何形狀。 上述該設備202由至少一導熱金屬片製成,其中導熱金 屬片選自下列各物組成的組:鋁,鐵,鋼,銅,或是其級 合或合金。該設備係由電腦數值控制(CNC)製程製造;該言是 19 201111696 備之特徵係在於具有: 丄.四個分離的設備202係連接以形成—設備观,藉以對 於四個設備各者暨巾央設備達成敎㈣量管理系統; ii.設備202的整個體部作為主要排熱器,其中以由於設 備202的最適化厚度㈣)位於從〇.5至6_範圍中使得散熱 在設備側向的x,y座標中為最大值之方式來設計設備; 111.用於防止腐蝕及磨刮之陽極化,藉以增加熱傳導率; iv. 最適化設計能夠在所想要區域中具有最大值光分 散; v. 設備202的一或多個平面、包括設備的基底平面可被 可調整地傾斜成為所想要角度以達成所想要的測光術;該 角度可位於從0至360度的範圍中; vi·將選用性地以放置在固態發光源上之不同透鏡的組 合來達成光分散/拋投。 一鉤258係被附接於設備202的頂部以使該照明裝置 200固定於所需要的物體。 第5圖顯示根據本發明另一示範性實施例之使用於棚 燈應用之固態照明裝置的仰視圖。五個金屬核心印刷電路 板(MCPCB) 218(未顯示於圖中)係安裝在五個設備202的各 安裝表面上,選用性地一經塗覆層的銅268(未顯示於圖中) 被嵌夾在主要排熱器202及MCPCB 218之間,且一陣列的固 態發光源220安裝在MCPCB 218上。採用透明片224覆蓋住 固態發光源220以防止昆蟲進入照明裝置,根據本發明的一 實施例,保護性透明片的材料可選自玻璃及/或無色聚碳酸 20 201111696 s旨。 上述該MCPCB 218係包括三層,亦即底層,中間(絕緣) 層及頂層(未顯示於圖中)。底層由選自下列各物組成的組之 至少一導熱材料構成:鋁,鐵,鋼,銅或是其組合或合金。 底層係以一熱性介面層連接於設備202的安裝表面204(未 顯示於圖中)。中間層由電性絕緣材料製成並用來從MCpcb 218的頂層傳導熱量且不容許電力從頂層傳導至底層。頂層 係由銅或是比銅具有更好熱及電傳導性的任何其他金屬、 譬如鐘金的銅構成。至少一固態發光源220上係安裝有 MCPCB 218的頂層。 選用性地’作為次要排熱器的五個散熱面板226(未顯 示於圖中)上係安裝有設備202的反側,其中散熱面板226由 選自下列各物組成的組之至少一導熱材料製成:鋁,鐵, 鋼,銅或是其組合或合金。選用性地,一或多個開縫2〇8、 或鰭片212係選擇性衝設於設備2〇2的安裝表面2〇4上,以達 成額外散熱並盡量減小對於風的阻力。該開縫208、或鰭片 212可以需求為基礎具有任何形狀。兩層的熱性介面材料 (未顯示於圖中)270放置在主要排熱器202及MCPCB 218暨 主要排熱器202及次要排熱器226之間將熱量從主要排熱芎 202傳導至次要排熱器226。該層的熱性介面材料可為矽橡 膠片。一電源供應單元216(未顯示於圖中)安裝在固態照明 裝置200的内側,其可容易檢修,其中電源供應單元係為一 獨立組件並可在失效時更換。 該電源供應單元216達成>0.98的一功率因子藉以降低 21 201111696 反應性功率。所需要的DC或AC電壓可從八(:或£)(:輸入電源 產生。AC/DC輸入電源可根據需求利用八(:至]:)(:轉換器、或 DC至DC轉換器被轉換成DC電源供應以供固態發光源的操 作。並且,該裝置200能夠達成入侵保護標準,其中標準可 為 IP54、IP65、IP66及 IP67 等。 第6圖顯示根據本發明的一示範性實施例之使用於泛 光燈應用之固態照明裝置的俯前視圖。固態照明裝置3〇〇包 含-設備302。設備3〇2的-或多個平面、包括設備的基底 平面係可被可調整地傾斜成所想要角度以達成所想要的測 光術,该角度可位於從〇至360度的範圍中。設備3〇2包含兩 個電源供應單元360。 上述該設備302由至少一導熱金屬片製成,其中導熱金 屬片選自下列各物組成的組:鋁,鐵,鋼,銅,及其組合 或合金。該設備係由電腦數值控制(CNC)製程製造;該設備 之特徵係在於具有: i. 設備302的整個體部係作為—主要排熱器,其中以由 於設備302的厚度(z軸)位於從2至6mm範圍中使得散熱在設 備側向的x,y座標中為最大值之方式來設計設備; ii. 用於防止腐姓及磨刮之陽極化,藉以增加熱傳導率; iii. 設備302的一或多個電源供應單元36〇,其中電源供 應單元360將所需要的DC或AC電壓提供至一或多個固態發 光源; iv. 最適化設計係能夠在所想要區域中具有最大值光分 散/拋投; 22 201111696 ν·選用性地以放置在固態發光源320上之不同透鏡的組 合來達成光分散/拋投。 固態照明裝置300的基底平面,一金屬核心印刷電路板 (MCPCB)係安裝在設備302的基底平面上,選用性地_經塗 覆層的銅368(未顯示於圖中)被欲失在基底平面(主要排熱 器)302及MCPCB 318之間,且一陣列的固態發光源32〇安裝 在MCPCB 318上。採用保護性透明片324覆蓋住固態發光源 320。根據本發明的一實施例,透明片的材料可選自玻璃及 /或無色聚碳酸S旨。固態照明裝置300中所使用的固·離、#光 源320係可選自下列各物組成的群組:高功率led,包括 LED、OLED、及 PLED。 上述該MCPCB 318係包含三層,亦即底層,中間(絕緣) 層及頂層(未顯示於圖中)。底層由選自下列各物組成的組之 至少一導熱材料構成:铭,鐵,鋼,銅或是其組合或合金。 底層係連接於設備的安裝表面。中間層由絕緣材料製成並 用來從MCPCB 318的頂層傳導熱量且不容許電力從頂層傳 導至底層。頂層係由銅或是比銅具有更好熱及電傳導性的 任何其他金屬、譬如鍍金的銅構成。至少一固態發光源32〇 上係安裝有MCPCB 318的頂層。 電源供應單元360係安裝_在該設備3〇2内側,固態照 明裝置300可容易檢修,其中電源供應單元廳係為一獨立 、·且件且可在失效時更換。設備3〇2係藉由一覆蓋板328所覆 蓋。該電源供應單元360達成>0·98的—功率因子藉以降低 反應性功率。所需要的DC或AC電壓可從AC或DC輸入電源 23 201111696 產生。AC/DC輸入電源可根據需求利用AC至DC轉換器、或 D C至D C轉換器被轉換成D C電源供應以供固態發光源的操 作0 根據本發明的一示範性實施例,覆蓋板328(顯示於第7 圖)係放置在設備302的頂側散熱區域上以保護其不受任何 種類的鳥糞及/或任何其他落糞。 第7圖顯示根據本發明的一示範性實施例之使用於泛 光燈應用之固態照明裝置的等角前視圖。 第8圖顯示根據本發明另一示範性實施例之使用於高 桅杆應用之固態照明裝置的等角前視圖。固態照明裝置4〇〇 係包含一設備402。選用性地’ 一或多個開縫408被選擇性 衝設於設備402上以達成額外散熱並盡量減小對於風的阻 力。该開縫408可以需求為基礎具有任何形狀。一或多個平 面、包括設備402的基底平面可被可調整地傾斜成所想要的 角度以達成所想要的測光術;該角度可位於從〇至360度的 範圍中。 上述該設備402由至少一導熱金屬片製成,其中導熱金 屬片選自下列各物組成的組:鋁,鐵,鋼,銅,或是其組 合或合金。設備402係由電腦數值控制(CNC)製程製造;該 設備之特徵係在於具有: i. 設備402的整個體部係作為一主要排熱器,其中以由 於設備402的厚度(z軸)位於從〇.5至6mm範圍中使得散熱在 設備側向的x,y座標中為最大值之方式來設計設備; ii. 用於防止腐姓及磨刮之陽極化,藉以增加熱傳導率; 24 201111696 m.—或多個電源供應單元416(未顯示於圖中)被固定 於設備402内側’其中電源供應單元416將所需要的Dc或AC 電壓提供至一或多個固態發光源; iv. 最適化設計係能夠在所想要區域中具有最大值光分 散/拋投; v. 選用性地以放置在固態發光源420上之不同透鏡的組 合來達成光分散/拋投; vi. 短範圍光拋投平面456a及長範圍光拋投平面456b之 組合將達成所想要的測光術及地面上的覆蓋。 至少一金屬核心印刷電路板(MCPCB)係安裝在短範圍 光拋投平面456a上,且一陣列的固態發光源420被安裝在 MCPCB 418上。採用保護性透明片424(未顯示於圖中)以覆 蓋固態發光源420。根據本發明的一實施例,透明片的材料 可選自玻璃及/或無色聚碳酸酯。固態發光源420係可選自 下列各物組成的群組:高功率LED,包括LED、OLED、及 PLED。 至少一金屬核心印刷電路板(MCPCB) 418係安裝在長 範圍光拋投平面456b上且高功率固態發光源420(未顯示於 圖中)安裝在MCPCB 418上’其中透鏡422被安裝在高功率 固態發光源420上以防止不需要區域中的光散射並藉此將 光導引至所想要區域中。 上述該MCPCB 418係包含三層,亦即底層,中間(絕緣) 層及頂層(未顯示於圖中)。底層由選自下列各物組成的組之 至少一導熱材料構成:鋁,鐵’鋼,銅或是其組合或合金。 25 201111696 底層係連接於設備的安裝表面。中間層由絕緣材料製成並 用來從MCPCB 418的頂層傳導熱量且不容許電力從頂層傳 導至底層。頂層係由銅或是比銅具有更好熱及電傳導性的 任何其他金屬、譬如鍵金的銅構成。至少一固態發光源420 上係安裝有MCPCB418的頂層。 電源供應單元416(未顯示於圖中)係安裝在該設備4〇2 内側,固態照明裝置400可容易檢修,其中電源供應單元416 係為一獨立組件且可在失效時更換。設備402係藉由一覆蓋 板428所覆蓋(顯示於第9圖)。該電源供應單元416達成>0.98 的一功率因子藉以降低反應性功率。所需要的DC或AC電壓 可從AC或DC輸入電源產生。AC/DC輸入電源可根據需求利 用AC至DC轉換器、或DC至DC轉換器被轉換成Dc電源供 應以供固態發光源的操作。 一裝置接合部件436係對於設備402提供角度性調整的 能力藉以調整地面上之光的測光術,其中裝置接合部件43 6 係以銷針450作辅助被附接於設備402(顯示於第9圖)。裝置 接合部件436係經由孔454以螺栓作輔助被附接至高桅杆 柱。並且,該裝置400能夠達成入侵保護標準,其中標準可 為 IP65、IP66、及IP67 等。 第9圖顯示根據本發明另一示範性實施例之使用於高 桅杆應用之固態照明裝置的等角背視圖。覆蓋板428設置於 設備402之散熱區域的頂側上以保護其不受任何種類的鳥 糞及/或任何其他落糞’其將降低設備4〇2的頂側散熱區域 之散熱能力。 26 201111696 第1 〇圖顯示根據本發明的一示範性實施例之使用於室 内筒燈應用之固態照明裝置的等角前視圖。一持久、高能 量效率、固態照明裝置具有可客製設計,其中該裝置係包 含一附有至少一安裝表面504之設備502。 上述該設備502由至少一導熱金屬片製成,其中導熱金 屬片選自下列各物組成的組:鋁,鐵,鋼,銅,或是其組 合或合金。該設備502係由電腦數值控制(CNC)製程製造; 該設備之特徵係在於具有: i. 設備502的整個體部係作為一主要排熱器,其中以由 於設備502的厚度(z軸)位於從〇·5至6mm範圍中使得散熱在 設備側向的x,y座標中為最大值之方式來設計設備; ii. 用於防止腐蝕及磨刮之陽極化,藉以增加熱傳導率; i i i ·電源供應單元516 (未顯示於圖中)被附接於設備5 〇 2 的反側,其中電源供應單元516將所需要的DC或AC電壓提 供至一或多個固態發光源; W.最適化設計係能夠在所想要區域中具有最大值光分 散; v.安裝表面504可沿著指定彎折線被彎折至所想要的傾 斜,藉以達成所想要的測光術。 設備502的基底平面係支撐固態照明裝置5〇〇的各元 件。至少一金屬核心印刷電路板(MCPCB) 518係安裝在設 備502的安裝表面504上,且至少一固態發光源520被安裝在 MCPCB 518上。該固態發光源52〇係可選自下列各物組成的 群組·低功率或高功率LED,包括LED、OLED、及PLED。 27 201111696 可採用獨立/共同保護性透明或半透明片524(未顯示於圖中) 來覆蓋固態發光源520以防止昆蟲進入照明裝置。根據本發 明的一實施例,保護性透明或半透明片524的材料可選自玻 填、無色聚碳酸酯或任何其他材料。 上述該MCPCB 518係包含三層,亦即底層,中間(絕緣) 層及頂層(未顯不於圖中)。底層由選自下列各物組成的組之 至少一導熱材料構成:鋁,鐵,鋼,銅或是其組合或合金。 底層係連接於設備的安裝表面。中間層由絕緣材料製成並 用來從MCPCB 518的頂層傳導熱量且不容許電力從頂層傳 導至底層。頂層係由銅或是比鋼具有更好熱及電傳導性的 任何其他金屬、譬如鍍金的銅構成。至少一固態發光源520 上係安裝有MCPCB 518的頂層。 一電源供應單元516係安裝在設備5〇2的反側上之保護 眭盒粕附帶排熱器528中(顯示於第11圖),固態照明裝置5〇〇 可容易檢修’其中-(多)電源供應單元516係為—獨立組件 且可在失效時更換。該電源供應單元516係達成>〇98的一 功率因子藉以降低反應性功率。所需要的DC或AC電壓可從 AC或DC輪入電源產生。AC/DC輸入電源可根據需求利用 AC至DC轉換器或〇(:至1)(::轉換器被轉換成DC電源供應以 供固態發光源52〇的操作。並且,該裝置5〇〇能夠達成所有 位準的入侵保護標準。 第11圖顯示根據本發明的一示範性實施例之使用於室 内筒燈應用之固態照明裝置的等角背視圖。 第12圖顯示根據本發明的一實施例之具有熱量管理系 28 201111696 統的第一位準之固態照明裝置的橫剖視圖。一作為主要排 熱斋602的設備係具有前側及背側。前側上,McpcB Mg 利用熱性介面622被附接以進一步增強散熱;:欠要排熱器 626係在主要排熱器6〇2背側上對於MCpCB 6丨8呈現確切相 對地設置。選用性地,次要排熱器626亦可安裝在主要排熱 器602則側上,如第12圖所示。並且次要排熱器626亦可以 需求為基礎同時在主要排熱器602兩側上工作。並且,使用 一良好設計的夾件624以螺絲628及隔離襯墊630將MCPCB 618及次要排熱器626夾固至主要排熱器6〇2,藉以達成所想 要的入侵保護。至少一固態發光源62〇係安裝在MCpCB 6 i 8 上。 第13圖顯示根據本發明另一實施例之具有熱量管理系 統的經增強第二位準之固態照明裝置的橫剖視圖。一作為 主要排熱器702的設備係具有前側及背側,且其前側係鑛覆 /塗覆有銅金屬732或比銅具有更好熱傳導率之任何其他金 屬導體,且此銅或任何其他金屬藉由適當防腐蝕導熱金屬 734(譬如,銅上的TIN鍍覆)被進一步鍍覆/塗覆。前側上, MCPCB 718利用熱性介面722被附接。為了進一步增強散 熱;次要排熱器726係在主要排熱器702背側上對於MCPCB 718呈現確切相對地設置。選用性地,次要排熱器726亦可 安裝在主要排熱器7〇2前側上,如第13圖所示。並且,一實 施例中,次要排熱器726亦可以需求為基礎同時在主要排熱 器702兩側上工作。並且,使用一良好設計的夹件724以螺 絲728及隔離襯墊73〇將MCPCB 718及次要排熱器726炎固 29 201111696 至主要排熱器702,藉以達成所想要的入侵保護。至少一固 態發光源720係安裝在MCPCB 718上。 第14圖顯示根據本發明的一實施例之具有熱量管理系 統的經增強第三位準之固態照明裝置的橫剖視圖。根據本 發明的此實施例,在設備的一最小可能面積中達成大量的 發光源之集中度。一作為第一主要排熱器802之設備係具有 前側及背側。前側上,MCPCB 818利用熱性介面822被附 接’多重數量的固態發光源被安裝在MCPCB 818上,此時 部份熱性隔離的第二主要排熱器83〇係經由熱性介面822被 附接至第一主要排熱器802。其上安裝有MCPCB 818之第一 主要排熱器802係具有與MCPCB 818面積成正比之適當尺 寸的一切出開口,故MCPCB 818的部分百分比面積並未接 觸於第一主要排熱器802。一金屬性熱性介面832係插入第 一主要排熱器802的切出開口中;該金屬性熱性介面832係 經由熱性介面822將未與第一主要排熱器802連接之 MCPCB 818的區域連接至第二主要排熱器83〇,該金屬性熱 性介面832係與第一主要排熱器8〇2熱性隔離,藉以達成將 特定百分比的熱量從MCPCB 818轉向至第二主要排熱器 830,藉以達成使固態發光源82〇集中於一最小可能面積中 而不使熱量集中於該面積之目標。 次要排熱器826係利用熱性介面822在第二主要排熱器 830背側上對於MCPCB 818呈現確切相對地設置。並且,使 用一良好設計的夾件824以螺絲828及隔離襯墊830分別將 MCPCB 818及次要排熱器826夾固至第一及第二主要排熱 30 201111696 器802及830,藉以達成入侵保護。 弟15圖顯示根據本發明另一實施例之具有熱量管理系 統的經增強第四位準之固態照明裝置的橫剖視圖。根據本 發明的此貫施例,在設備的一最小可能面積中達成大量發 光源的集中度。一作為第一主要排熱器9〇2之設備係具有前 側及背側。前側上,MCPCB 918係利用熱性介面922附接有 被安裝在MCPCB 918上之多數個固態發光源,此時完全熱 性隔離的第二主要排熱器930係經由熱隔離器934及/或緩 衝空間附接至第一主要排熱器9〇2。其上安裝有MCPCB 918 之第一主要排熱器902係具有一與MCPCB 918面積成正比 的適當尺寸之切出開口,使得MCPCB 918的部分百分比面 積未直接接觸於第一主要排熱器902。一金屬性熱性介面 932被插入第一主要排熱器902的切出開口中;該金屬性熱 性介面932係將未與第一主要排熱器902連接之MCPCB 918 的區域經由熱性介面922連接至第二主要排熱器930,該金 屬性熱性介面932係與第一主要排熱器902熱性隔離藉此達 成將特定百分比的熱量從MCPCB 918轉向至第二主要排熱 器930 ’藉以達成使固態發光源920集中於一最小可能面積 中而不使熱量集中於該面積之目的。 次要排熱器926係利用熱性介面922而與第二主要排熱 器930的背側上之MCPCB 918確切相對地設置。並且,使用 一良好設計的夾件924分別以螺絲928及隔離襯墊938將 MCPCB 918及次要排熱器926夾固至第一及第二主要排熱 器902及903,藉以達成所想要的入侵保護。 31 201111696 一實施例中,用於安裝本發明的固態發光源之設備係 由電腦數值控制製程(CNC)製造。CNC製程對於設備的設計 提供精確度並消耗較少時間與功率。並且,CNC製程能夠 使製作者大幅增高生產力並很快調適設備設計的變化藉以 產生客製的照明設備。此CNC製程係產生高位準的生產 力’故使產品能在短時間内被社會更大階層所負擔,而有 助於確保我們在更短時間内對抗全球暖化威脅。 CNC機係利用一部AC伺服馬達來驅動鎚件(免除了液 壓電源供應器及冷卻器p CNC製程的好處如下: a) 耗電小於相似液壓機的一半 b) 較高的定位速度係改良生產力 c) 空間節省式設計係省下可貴樓板空間的成本 d) 提供比機械轉塔顯著更快的衝壓速度 e) 刷台設計係提供無磨刮處理,且亦盡量減低衝壓期 間的噪音 f) 自由站立式、以PC為基礎的網路CNC控制係容許具 有彈性佈局 g) 立即存取元件程式、多媒體係有助於檔案及生產排 程 h) 強力真空丸塊拉取系統係實質地排除丸塊拉取問題 本發明係利用C N C製程作為一用於生產高熱效率設備 的完整體部之核心生產製程,其中設備的厚度受到最適化 以達成最大值熱傳導率。 使用CNC製程可達成的主要優點之一係在於免除了製 32 201111696 作(壓鑄組件所需要之)壓模所需要的投資。為了產生身為設 備的一部份之多種不同組件,既有製程係需要生成各種不 同的壓鑄且其財務投資數額將變得不合理。 一較佳實施例中,本發明的固態照明裝置係由CNC製 程製造,其提供某程度的彈性以根據需求來調適設計,而 無需不必要地投資於生成鑄造模具及壓模以供擠製用。可 能具有高程度的客製化。 CNC製程的另一好處係在於:其在部分案例中利用被 饋給至CNC機中之幾乎100%的金屬片(原料)。所以離開的 廢料係為最少且可回收,而不同於一鑄造製程之難以回收 的廢料。 另一實施例中,被饋給至CNC機中以製備照明設備之 金屬片的厚度係受到最適化以達成最大值可能的熱傳導 率。 上述該等裝置的設備係利用包含下列步驟的CNC製程 所製造: a. 選擇一金屬片,其中該金屬片可選自下列各物組成的 組:鋁,鐵,鋼,銅或是其組合或合金; b. 將金屬片插入一CNC機中,其中經程式化的指令係 使C N C機中的處理器能夠根據一或多個設備之所饋給的設 計來衝壓金屬片及 c. 選用性地利用CNC機在一或多個地方彎折經衝壓的 設備。 一用於製造具有可客製設計的持久、高能量效率、固 33 201111696 態照明裝置之方法,包含下列步驟: a. 將設備的至少一設計連同一金屬片饋給至一 CNC機 中; b. 依照該設計來衝壓金屬片以達成一或多個設備; c. 選用性地在一或多個地方彎折經衝壓的設備; d. 將設備予以陽極化以達成無腐蝕及磨刮表面; e. 將螺母/插入件/鉚釘螺帽(硬體)氣動式固定至設備 中; f. 將其上已安裝有至少一固態發光源之至少一金屬核 心印刷電路板(MCPCB)安裝在設備上;及 g. 將一或多個電源供應單元安裝於設備的一殼體中。 該方法進一步包含將第二主要排熱器以熱絕緣片及/ 或緩衝間隔放置在設備的後側上以及藉由金屬性熱性介面 及經過設置於第一主要排熱器中的切出開口之隔離器從安 裝在第一主要排熱器上的M c p c B將至少一固態發光源熱 !·生連接至第二主要排熱器;選用性地放置經塗覆層的銅 於主要排熱器與MCPCB之間,其中此經塗覆層可進一步具 有-用於防止賴之部件;及安裝_或多個散熱面板(次要 排熱器)於設備的前或反或兩側上。Any other intrusion protection standards promulgated by Electro Technical Standardization). Further, in accordance with another embodiment of the present invention, a durable, high energy efficient, solid state lighting device has a customizable design, wherein the device includes a singer having at least one of a women's surface, optionally one or more Slit, hole or Korean piece, selectively punched onto the mounting surface of the device to achieve additional heat dissipation and minimize resistance to wind. The device is made of at least one thermally conductive metal sheet, wherein the thermally conductive metal sheet is selected from A group consisting of: aluminum, iron, steel, copper or bismuth alloy or combination thereof. The equipment is manufactured by computer numerical control (CNC); the device is characterized by; The entire body of the device acts as the first primary heatsink, with the maximum in the x,y coordinates of the lateral direction of the device due to the optimum thickness (z-axis) of the device being maintained in the range from 〇5 to 6 mm Ways to design equipment; II.  It is used to prevent the anodization of the surname and the scratch, thereby increasing the thermal conductivity; III.  a power supply unit enclosed in a housing of the device, wherein the power supply unit provides the required DC or AC voltage to one or more solid state illumination sources; iv. The optimized design is capable of having maximum light dispersion in the desired area. At least one metal core printed circuit board (MCPCB) is mounted on the mounting surface, and at least one solid state light source is mounted on the group: and the solid state light source may be selected from the group consisting of the following: Group: Low-power or high-power LEDs, including LEDs, 〇LEDs, PLEDs, a second main heat extractor with thermal insulation sheets and/or buffering 201111696 spacers placed on the back side of the device and from the first main heat rejection At least one solid state light source of the MCPCB mounted on the device is thermally coupled to the heat dissipator via a metallic thermal interface and an insulator through a cut-out opening provided in the first main heat extractor. It is manufactured using a CNC process that includes the following steps: a.  Selecting a metal sheet, wherein the metal sheet may be selected from the group consisting of aluminum, iron, steel, copper or a combination or alloy thereof; b.  The metal piece is inserted into a CNC machine, wherein the programmed instructions enable the processor in the CNC machine to stamp the metal piece and c. according to the feed design of one or more devices.  Optionally, the C N C machine is used to bend the stamped equipment in one or more places. A method for fabricating a durable, high energy efficient, solid state lighting device having a custom design comprises the following steps: a.  Feeding at least one design of the device to a CNC machine with the same piece of metal; b.  Stamping a sheet of metal according to the design to achieve one or more devices; c.  Optionally bending the stamped device in one or more places; d.  Anode the device to achieve a non-corrosive and scratched surface; e.  Pneumatically secure the nut/insert/rivet nut (hardware) into the device; f.  Mounting at least one metal core printed circuit board (MCPCB) on which at least one solid state light source has been mounted on the device; and 11 201111696 g. One or more power supply units are mounted in a housing of the device. The method further includes placing a second primary heat extractor having a thermally insulating sheet and/or a buffer spacer on the rear side of the apparatus, and passing through the metallic thermal interface and passing through the first main heat extractor The open-out insulator thermally connects at least one solid-state light source from the MCPCB mounted on the first main heat-dissipator to the second main heat-dissipator; placing the coated copper on the main heat-dissipator & MCPCB In this case, the coated layer may further have a component for preventing corrosion; and one or more heat dissipation panels (secondary heat exchangers) are mounted on the front or the opposite side of the device. And the method includes selectively mounting a light sensor component and/or a motion sensor in the front and/or rear side of the device; selectively mounting one or more lenses to one or more solid state light sources Sourcely; selectively covering one or more protective transparent or translucent sheets on one or more solid state light sources; and placing a layer of thermal interface material in the main heat extractor & MCPCB & main heat extractor and Between the heat exchangers and between two or more secondary heat exchangers. BRIEF DESCRIPTION OF THE DRAWINGS The above summary, as well as the following detailed description of the preferred embodiments, In order to demonstrate the invention, the exemplary construction of the invention is shown; however, the invention is not limited to the specific apparatus and method disclosed. In the drawings: Figure 1 shows a front view of a solid state lighting device for use in a streetlight application, in accordance with an exemplary embodiment of the present invention; Figure 2 shows solid state lighting for a streetlight application, in accordance with an exemplary embodiment of the present invention. Rear view of the device; 12 201111696 FIG. 3 shows an isometric front view of a solid state lighting device for use in a streetlight application in accordance with an exemplary embodiment of the present invention; FIG. 4 shows use in accordance with another exemplary embodiment of the present invention. A top view of a solid state lighting device for a bay light application; FIG. 5 is a bottom plan view of a solid state lighting device for use in a shed light application in accordance with another exemplary embodiment of the present invention; A top view of a solid state lighting device for a shed light application of an exemplary embodiment; FIG. 7 shows an isometric front of a solid state lighting device for use in a flood light application, in accordance with an exemplary embodiment of the present invention Figure 8 shows an isometric front view of a solid state lighting device for use in a High Mast application, according to another exemplary embodiment of the present invention; An isometric rear view of a solid state lighting device for use in a high mast application is shown in accordance with another exemplary embodiment of the present invention; FIG. 10 shows an indoor down light for use in an indoor downlight in accordance with an exemplary embodiment of the present invention. An isometric front view of a solid state lighting device for use; Figure 11 shows an isometric rear view of a solid state lighting device for use in an indoor downlight application, in accordance with an exemplary embodiment of the present invention; A cross-sectional view of a solid state lighting device having a first level of thermal management system of an embodiment; FIG. 13 is a cross-sectional view of a solid state lighting device having a second level of thermal management system in accordance with another embodiment of the present invention Figure 14 shows a cross-sectional view of a solid state lighting device having a thermally managed third level 201111696 level thermal management system in accordance with an embodiment of the present invention; Figure 15 shows an enhanced first embodiment in accordance with another embodiment of the present invention. A cross-sectional view of a solid state lighting fixture with a four-level thermal management system; Figure 16 shows the light of an IES LM 79-08 based on solid state lighting And electrically experimental data; Flux of FIG IESNA solid state lighting device to a lighting fixture in accordance with the classification system based on display 17 in FIG. I: Embodiment 3 Detailed Description of the Invention A part of the embodiment of the present invention in which all of its features are shown will now be discussed in detail. "Include", "have", "include" and "including" terms and other forms are intended to be equal and open for the following reasons: one or more items located after any of these terms may not be the same An exhaustive list of items or items, or only one or more items listed. It must also be noted that the singular forms "a", "," "an" and "the" are meant to include the plural referents. While any apparatus or method or equivalents described herein can be used to carry out or test embodiments of the present invention, a preferred apparatus will now be described. And a heat exchanger: a component designed to reduce the temperature of an electronic/semiconductor device connected thereto by dissipating excess heat generated at its junction. It is often fin-shaped and is cooled by heat such as aluminum or copper. Made of faster metal. In today's case, the overall body of the device acts as a heat sink and the heat extractor is used in the form of metal 14 201111696. Equipment: Unless otherwise defined in the present invention, "equipment, A means comprising a plurality of solid state lighting device or the system is connected to the metal framework mounted with other electrical Shu ± / electronic components and non Niuzi. Solid-state light source (SSL): A type of low-power or high-power illumination using a light-emitting diode (LED), an organic light-emitting diode (OLED), or a polymer light-emitting diode (pLED) as one of the illumination sources. Device. The present invention provides a south power efficiency, a friendly and durable environment that can be customized with high speed, accuracy and flexibility. The lighting device of the present invention is also easy to overhaul. Figures 2 and 3 show front, back and isometric front views of a solid state lighting device for streetlight applications having durable, high energy efficiency, solid state lighting with customizable design, in accordance with an exemplary embodiment of the present invention. The device, wherein the device comprises a device 1〇2 having two mounting surfaces 1〇4, namely a left mounting surface 104a and a right mounting surface 1〇4b, optionally one or more slits 108, holes 110 Or the Korean piece 112, which is selectively punched on the mounting surface 1〇4 of the device 102 to achieve additional heat dissipation and minimize the resistance to wind. The slit 108, aperture 110 or fin 112 can have any shape on demand. One or more planes of device 102, including the base plane of the device, are tiltably tilted to a desired angle to achieve the desired photometry; the angle can be in the range from 0 to 360 degrees. The apparatus 102 described above is made of at least one thermally conductive metal sheet, wherein the thermally conductive metal sheet is selected from the group consisting of aluminum 'iron, steel, copper, or a combination or alloy thereof. The device 102 is manufactured by a computer numerical control (CNC) process; the 15 201111696 device is characterized by: i.  The entire body of device 102 acts as the primary heat sink, with the thickness of the device 102 (z-axis) being located from 0. In the range of 5 to 6 mm, the heat dissipation is designed in such a way that the x, y coordinates of the lateral direction of the device are the maximum; ii.  Used to prevent corrosion and scratching anodization, thereby increasing thermal conductivity; iii.  A power supply unit 116 (not shown) that is enclosed in a housing 114 of the device 102, wherein the power supply unit 116 provides the required DC or AC voltage to one or more solid state illumination sources; iv.  The optimized design has maximum light dispersion in the desired area. The base plane of device 102 supports the components of solid state lighting device 100. A metal core printed circuit board (MCPCB) 118 is mounted on the central mounting surface of device 102, and selectively coated copper 168 (not shown) is embedded in primary heat sink 102 and MCPCB 118. Between the two high-intensity solid state light sources 120 are mounted on the MCPCB 118 and its edges, with a central mounting surface 104 secured thereto, and the solid state light source 120 can be selected from the group consisting of: Low power or high power LEDs, including LEDs, OLEDs, and PLEDs, wherein a protective transparent sheet 124 or lens 122 (not shown) is mounted on the high intensity solid state light source 120 to prevent light scattering in unwanted areas. Thereby, the light is guided into the desired area. Two MCPCBs 118 are mounted on the left and right sides of the mounting surfaces 104a and 104b, and an array of solid state lighting sources 120 are mounted on the MCPCB 118. Two protective transparent sheets 124 are used to cover the solid state light source 120 to prevent insects from entering the illumination device. According to an embodiment of the invention, the protective transparent 16 201111696 sheet 124 may be selected from glass and/or colorless polycarbonate. . The MCPCB 118 described above comprises three layers, namely a bottom layer, an intermediate (insulating) layer and a top layer (not shown). The bottom layer is composed of at least one thermally conductive material selected from the group consisting of aluminum, iron, steel, copper or combinations or alloys thereof. The bottom layer is attached to the mounting surface 104 of the device 1〇2 with a thermal interface layer. The intermediate layer is made of an electrically insulating material and is used to conduct heat from the top layer of the MCPCB 118 and does not allow power to be conducted from the top layer to the bottom layer. The top layer consists of copper or any other metal that has better thermal and electrical conductivity than copper, such as gold in gold. At least one solid state light source 12 is mounted with a top layer of MCPCB 118. The two sides (left and right, respectively) of the two heat dissipation panels 126 (not shown) are mounted on the opposite side of the device 1〇2, wherein the secondary heat exchanger 126 is At least one thermally conductive material selected from the group consisting of aluminum, iron, steel, copper, or a combination or alloy thereof. Optionally, one or more slits 108, holes 110 or fins 112 are selectively punched onto the mounting surface 1〇4 of the apparatus 102 for additional heat dissipation and minimizing resistance to wind. The slit 108, the aperture 11 or the fin 112 may have any shape on demand. The secondary heat extractor 126 on the top side heat dissipating area is covered by a metal cover 128. The device 102 is attached to protect the underlying components and the metal cover 128 prevents the coating on the upper heat dissipating area. Affected by bird wings and any other droppings, these droppings reduce the heat dissipation capability of the topside heat sink of the device (10). A housing 114 is secured to the distal end of the device 1〇2. A power supply unit 17 201111696 is installed inside the housing 114, and the solid state lighting unit 1 can be easily inspected, wherein the power supply unit is a separate component and can be replaced in the event of a failure. The power supply unit 116 is electrically connected to each of the solid-state light sources (10) by a connecting wire extending from the power supply unit [16] to the solid-state light source 120. The power supply unit 116 achieves a reduction in the reactivity power of >G_98. The required DC or AC voltage can be generated from the AC4DC input supply. The AC/DC input power supply can be converted to the required sink power supply for operation of the solid state light source 120 using an AC to DC converter, or a DC to DC converter, as desired. Further solid state lighting device 100 is provided with a light sensor component 134 and/or motion sensor component 172 (not shown) for use in public lighting applications. A light sensor component 134 and/or motion The sensor component 172 is coupled to an AC or DC input power or power supply unit that is configured to selectively control power input to the solid state lighting device 1 Wherein the photo sensor component 134 can be a neon sensor or a high precision toroidal photosensor. The motion sensor component 172 can operate in two ways to conserve energy, and an operational mode is based on sensing motion, wherein the motion sensor component is configured to control the power input to cut the solid state lighting device 100 into an ON (ON). If the motion sensor component I72 is not sensible, the 丨 action, thereby configuring the solid state lighting device 1 to be turned off (〇FF). The second mode of operation is based on the sensing action. When the action is detected, the motion sensor component 172 is configured to allow 100% power to be input to the solid state light source 12 to improve the light intensity, and the column yield is 100%. If the motion sensor component 172 does not sense the motion, the power input to the fixture light source 120 is reduced to reduce the light intensity by up to 9%. In accordance with an embodiment of the present invention, the solid state lighting device 1 is provided with a timer 174 (not shown) that is consuming AC or DC input power, the timer component being configured to selectively control the solid state Power input to the lighting unit. The timer 174 can operate in a number of ways to selectively control the power supply to the solid state lighting device 100 to be turned "on" or "off" and to control the intensity of light by controlling the power supplied to the device 100. A device engagement component 136 having two apertures in the c-pathway 138 provides photometric capability for angular adjustment of the device 102 to adjust the light along the width of the road. And the device 100 is capable of achieving intrusion protection standards, wherein the standards may be IP65, IP66, and IP67. Figure 4 shows a top view of a solid state lighting device for use in a high bay light application in accordance with another exemplary embodiment of the present invention. The solid state lighting device 200 has five separate devices 202 that are connected by screws 250 as auxiliary to form a device 200 using connection members 256a, 256b. Apparatus 202 is made of at least one thermally conductive material and the thermally conductive material is selected from the group consisting of aluminum, iron, steel, copper, or combinations or alloys thereof. Each device has one or more slits 208 (not shown) or a rotor 212 that is selectively slid over the mounting surface 204 of each device 202 to achieve additional heat dissipation and minimize resistance to wind. The slit 208 or fin 212 can have any shape based on the needs. The apparatus 202 described above is made of at least one thermally conductive metal sheet, wherein the thermally conductive metal sheet is selected from the group consisting of aluminum, iron, steel, copper, or a combination or alloy thereof. The equipment is manufactured by computer numerical control (CNC) process; the statement is 19 201111696. The characteristics are: 丄. Four separate devices 202 are connected to form a device view, thereby achieving a (four) quantity management system for each of the four devices and the towel device; ii. The entire body of device 202 acts as the primary heat sink, with the optimum thickness (4) due to the device 202 being located from the top. In the range of 5 to 6_, the heat dissipation is designed in such a way that the x, y coordinates of the lateral direction of the device are the maximum; Used to prevent corrosion and scratching anodization, thereby increasing thermal conductivity; iv.  The optimized design is capable of having maximum light dispersion in the desired area; v.  One or more planes of device 202, including the base plane of the device, can be adjustably tilted to a desired angle to achieve a desired photometry; the angle can be in a range from 0 to 360 degrees; Light dispersion/projection is selectively achieved with a combination of different lenses placed on a solid state light source. A hook 258 is attached to the top of the device 202 to secure the illumination device 200 to the desired object. Figure 5 shows a bottom view of a solid state lighting device for use in a shed light application in accordance with another exemplary embodiment of the present invention. Five metal core printed circuit boards (MCPCB) 218 (not shown) are mounted on each mounting surface of five devices 202, optionally coated with a layer of copper 268 (not shown) Sandwiched between the primary heat sink 202 and the MCPCB 218, an array of solid state light sources 220 are mounted on the MCPCB 218. The solid state light source 220 is covered by a transparent sheet 224 to prevent insects from entering the illumination device. According to an embodiment of the invention, the material of the protective transparent sheet may be selected from the group consisting of glass and/or colorless polycarbonate. The MCPCB 218 described above comprises three layers, namely a bottom layer, an intermediate (insulating) layer and a top layer (not shown). The bottom layer is composed of at least one thermally conductive material selected from the group consisting of aluminum, iron, steel, copper or combinations or alloys thereof. The bottom layer is attached to the mounting surface 204 of the device 202 (not shown) with a thermal interface layer. The intermediate layer is made of an electrically insulating material and is used to conduct heat from the top layer of the MCpcb 218 and does not allow power to be conducted from the top layer to the bottom layer. The top layer consists of copper or any other metal that has better thermal and electrical conductivity than copper, such as copper. A top layer of the MCPCB 218 is mounted on at least one of the solid state light sources 220. The five heat dissipation panels 226 (not shown) that are selectively used as secondary heat sinks are mounted with the opposite side of the device 202, wherein the heat dissipation panel 226 is at least one thermally conductive from the group consisting of the following: Made of materials: aluminum, iron, steel, copper or a combination or alloy thereof. Optionally, one or more slits 2, 8, or fins 212 are selectively applied to the mounting surface 2〇4 of the device 2〇2 to achieve additional heat dissipation and minimize resistance to wind. The slit 208, or fin 212, can have any shape on demand. Two layers of thermal interface material (not shown) 270 are placed between the primary heat exchanger 202 and the MCPCB 218 and the primary heat extractor 202 and the secondary heat extractor 226 to conduct heat from the primary heat rejection port 202 to the secondary Heater 226 is required. The thermal interface material of this layer can be a ruthenium rubber film. A power supply unit 216 (not shown) is mounted on the inside of the solid state lighting device 200, which is easily accessible, wherein the power supply unit is a separate component and can be replaced in the event of a failure. The power supply unit 216 achieves >0. A power factor of 98 is used to reduce the reactive power of 21 201111696. The required DC or AC voltage can be generated from eight (: or £) (: input power. AC/DC input power can be converted according to demand using eight (: to::) (: converter, or DC to DC converter The DC power supply is supplied for operation of the solid state light source. Moreover, the device 200 can achieve intrusion protection standards, wherein the standards can be IP54, IP65, IP66, IP67, etc. Figure 6 shows an exemplary embodiment in accordance with the present invention. A front view of a solid state lighting device for use in a floodlight application. The solid state lighting device 3A includes - device 302. The substrate plane of the device 3〇2, or a plurality of planes, including the device, can be adjustably tilted to The desired angle is achieved to achieve the desired photometry, which may be in the range from 〇 to 360. The device 3〇2 comprises two power supply units 360. The device 302 described above is made of at least one thermally conductive metal sheet Wherein the thermally conductive metal sheet is selected from the group consisting of aluminum, iron, steel, copper, and combinations or alloys thereof. The apparatus is manufactured by a computer numerical control (CNC) process; the apparatus is characterized by: .  The entire body of the device 302 acts as a primary heat sink, with the way that the thickness of the device 302 (z-axis) is in the range from 2 to 6 mm such that the heat dissipation is at the maximum in the x, y coordinates of the lateral direction of the device. Design equipment; ii.  Used to prevent corrosion of the surname and scratch, in order to increase the thermal conductivity; iii.  One or more power supply units 36 of device 302, wherein power supply unit 360 provides the required DC or AC voltage to one or more solid state light sources; iv.  The optimized design is capable of having a maximum dispersion/projection in the desired region; 22 201111696 ν. Selectively combines the different lenses placed on the solid state illumination source 320 to achieve light dispersion/projection. The base plane of the solid state lighting device 300, a metal core printed circuit board (MCPCB) is mounted on the base plane of the device 302, and the selectively coated copper 368 (not shown) is lost to the substrate. A planar (primary heat extractor) 302 and MCPCB 318 are mounted, and an array of solid state light sources 32A are mounted on the MCPCB 318. The solid state light source 320 is covered with a protective transparent sheet 324. According to an embodiment of the invention, the material of the transparent sheet may be selected from the group consisting of glass and/or colorless polycarbonate. The solid-state, #光源 320 used in the solid-state lighting device 300 can be selected from the group consisting of high-power LEDs including LEDs, OLEDs, and PLEDs. The MCPCB 318 described above comprises three layers, namely an underlying layer, an intermediate (insulating) layer and a top layer (not shown). The bottom layer is composed of at least one thermally conductive material selected from the group consisting of: iron, steel, copper or a combination or alloy thereof. The bottom layer is attached to the mounting surface of the device. The intermediate layer is made of an insulating material and is used to conduct heat from the top layer of the MCPCB 318 and does not allow power to be conducted from the top layer to the bottom layer. The top layer consists of copper or any other metal that has better thermal and electrical conductivity than copper, such as gold-plated copper. At least one solid state light source 32 is mounted with a top layer of MCPCB 318. The power supply unit 360 is mounted _ inside the device 3〇2, and the solid-state lighting device 300 is easily accessible, wherein the power supply unit is an independent unit and can be replaced when it fails. The device 3〇2 is covered by a cover plate 328. The power supply unit 360 achieves a power factor of > 0·98 to reduce the reactive power. The required DC or AC voltage can be generated from an AC or DC input power source 23 201111696. The AC/DC input power source can be converted to a DC power supply for operation of the solid state lighting source using an AC to DC converter, or a DC to DC converter, as desired. 0, according to an exemplary embodiment of the present invention, the overlay 328 (display) Figure 7) is placed on the top side heat sink area of device 302 to protect it from any type of bird droppings and/or any other droppings. Figure 7 shows an isometric front view of a solid state lighting device for use in a floodlight application, in accordance with an exemplary embodiment of the present invention. Figure 8 shows an isometric front view of a solid state lighting device for use in a high mast application, in accordance with another exemplary embodiment of the present invention. The solid state lighting device 4 includes a device 402. Optionally, one or more slits 408 are selectively punched onto the device 402 to achieve additional heat dissipation and minimize resistance to wind. The slit 408 can have any shape on a demand basis. One or more planes, including the base plane of device 402, can be adjustably tilted to a desired angle to achieve the desired photometry; the angle can be in the range from 〇 to 360 degrees. The apparatus 402 described above is made of at least one thermally conductive metal sheet, wherein the thermally conductive metal sheet is selected from the group consisting of aluminum, iron, steel, copper, or a combination or alloy thereof. Device 402 is manufactured by a computer numerical control (CNC) process; the device is characterized by: i.  The entire body of device 402 acts as a primary heat sink, with the thickness (z-axis) of device 402 being located from the top. The device is designed in such a way that the heat dissipation is in the range of the x, y coordinates of the lateral direction of the device in the range of 5 to 6 mm; ii.  Used to prevent corrosion of the surname and scratch, in order to increase the thermal conductivity; 24 201111696 m. - or a plurality of power supply units 416 (not shown) are affixed to the inside of device 402 where power supply unit 416 provides the required Dc or AC voltage to one or more solid state illumination sources; iv.  The optimal design is capable of having maximum light dispersion/throwing in the desired area; v.  Optical dispersion/projection is selectively achieved by a combination of different lenses placed on solid state light source 420; vi.  The combination of the short range light throwing plane 456a and the long range light throwing plane 456b will achieve the desired photometry and coverage on the ground. At least one metal core printed circuit board (MCPCB) is mounted on the short range light throwing plane 456a and an array of solid state light source 420 is mounted on the MCPCB 418. A protective transparent sheet 424 (not shown) is employed to cover the solid state light source 420. According to an embodiment of the invention, the material of the transparent sheet may be selected from glass and/or colorless polycarbonate. The solid state light source 420 can be selected from the group consisting of high power LEDs including LEDs, OLEDs, and PLEDs. At least one metal core printed circuit board (MCPCB) 418 is mounted on the long range light throwing plane 456b and a high power solid state light source 420 (not shown) is mounted on the MCPCB 418 'where the lens 422 is mounted at high power The solid state light source 420 is placed to prevent light scattering in unwanted areas and thereby direct light into the desired area. The MCPCB 418 described above comprises three layers, namely a bottom layer, an intermediate (insulating) layer and a top layer (not shown). The bottom layer is composed of at least one thermally conductive material selected from the group consisting of aluminum, iron ' steel, copper or combinations or alloys thereof. 25 201111696 The bottom layer is attached to the mounting surface of the device. The intermediate layer is made of an insulating material and is used to conduct heat from the top layer of the MCPCB 418 and does not allow power to be conducted from the top layer to the bottom layer. The top layer consists of copper or any other metal that has better thermal and electrical conductivity than copper, such as copper. At least one solid state light source 420 is mounted with a top layer of MCPCB 418. A power supply unit 416 (not shown) is mounted inside the device 4〇2, and the solid state lighting device 400 is easily accessible, wherein the power supply unit 416 is a separate component and can be replaced in the event of a failure. Device 402 is covered by a cover 428 (shown in Figure 9). The power supply unit 416 reaches >0. A power factor of 98 is used to reduce the reactive power. The required DC or AC voltage can be generated from an AC or DC input source. The AC/DC input power supply can be converted to a Dc power supply for operation of the solid state light source using an AC to DC converter or a DC to DC converter as needed. A device engagement component 436 is a device that provides angular adjustment of the device 402 to adjust the photometry of the light on the ground, wherein the device engagement component 436 is attached to the device 402 with the pin 450 as an aid (shown in Figure 9). ). The device engagement member 436 is attached to the mast column via a hole 454 with the aid of a bolt. Moreover, the device 400 can meet the intrusion protection standard, and the standards can be IP65, IP66, and IP67. Figure 9 shows an isometric rear view of a solid state lighting device for use in a high mast application, in accordance with another exemplary embodiment of the present invention. Covering plate 428 is disposed on the top side of the heat dissipating region of device 402 to protect it from any type of bird droppings and/or any other dung, which will reduce the ability to dissipate heat from the top side heat dissipating region of device 4〇2. 26 201111696 A first perspective view shows an isometric front view of a solid state lighting device for use in an indoor downlight application, in accordance with an exemplary embodiment of the present invention. A durable, high energy efficiency, solid state lighting device has a customizable design wherein the device includes a device 502 with at least one mounting surface 504. The apparatus 502 described above is made of at least one thermally conductive metal sheet, wherein the thermally conductive metal sheet is selected from the group consisting of aluminum, iron, steel, copper, or a combination or alloy thereof. The device 502 is manufactured by a computer numerical control (CNC) process; the device is characterized by: i.  The entire body of device 502 acts as a primary heat sink with a maximum of x,y coordinates in the lateral direction of the device due to the thickness (z-axis) of device 502 being in the range from 〇·5 to 6 mm. Way to design equipment; ii.  Used to prevent corrosion and scratching anodization, thereby increasing thermal conductivity; iii. Power supply unit 516 (not shown) is attached to the opposite side of device 5 〇 2, where power supply unit 516 will be needed DC or AC voltage is provided to one or more solid state light sources; W. The optimized design is capable of having maximum light dispersion in the desired area; v. Mounting surface 504 can be bent to the desired tilt along a specified bend line to achieve the desired photometry. The base plane of device 502 supports the components of solid state lighting device 5〇〇. At least one metal core printed circuit board (MCPCB) 518 is mounted on the mounting surface 504 of the device 502 and at least one solid state light source 520 is mounted on the MCPCB 518. The solid state light source 52 can be selected from the group consisting of low power or high power LEDs including LEDs, OLEDs, and PLEDs. 27 201111696 A separate/common protective transparent or translucent sheet 524 (not shown) may be employed to cover the solid state light source 520 to prevent insects from entering the lighting device. According to an embodiment of the invention, the material of the protective transparent or translucent sheet 524 may be selected from the group consisting of glass filled, colorless polycarbonate or any other material. The MCPCB 518 described above comprises three layers, namely an underlying layer, an intermediate (insulating) layer and a top layer (not shown). The bottom layer is composed of at least one thermally conductive material selected from the group consisting of aluminum, iron, steel, copper or combinations or alloys thereof. The bottom layer is attached to the mounting surface of the device. The intermediate layer is made of an insulating material and is used to conduct heat from the top layer of the MCPCB 518 and does not allow power to be conducted from the top layer to the bottom layer. The top layer consists of copper or any other metal that has better thermal and electrical conductivity than steel, such as gold-plated copper. A top layer of the MCPCB 518 is mounted on at least one of the solid state light sources 520. A power supply unit 516 is mounted on the opposite side of the device 5〇2 in the protective cassette 528 (shown in Figure 11), and the solid state lighting unit 5 can be easily overhauled. The power supply unit 516 is a separate component and can be replaced when it fails. The power supply unit 516 achieves a power factor of > 〇 98 to reduce the reactive power. The required DC or AC voltage can be generated from an AC or DC turn-in power supply. The AC/DC input power supply can utilize an AC to DC converter or 〇 (: to 1) as needed (:: the converter is converted to a DC power supply for operation of the solid state light source 52A. Moreover, the device can All levels of intrusion protection criteria are achieved. Figure 11 shows an isometric rear view of a solid state lighting device for use in an indoor downlight application, in accordance with an exemplary embodiment of the present invention. Figure 12 shows an embodiment in accordance with the present invention. A cross-sectional view of a first level solid state lighting device having a thermal management system 28 201111696. A device as a primary heat sink 602 has a front side and a back side. On the front side, McpcB Mg is attached using a thermal interface 622 Further enhancing the heat dissipation; the underheater 626 is disposed on the back side of the main heat exhauster 6〇2 for the MCpCB 6丨8 to be exactly oppositely disposed. Alternatively, the secondary heat extractor 626 may also be installed in the main row. The heater 602 is on the side as shown in Fig. 12. The secondary heat extractor 626 can also be operated on both sides of the main heat extractor 602 on the basis of demand. Also, a well-designed clip 624 is used. 628 and isolation liner The 630 clamps the MCPCB 618 and the secondary heat extractor 626 to the primary heat extractor 6〇2 to achieve the desired intrusion protection. At least one solid state light source 62 is mounted on the MCpCB 6 i 8 . A cross-sectional view of an enhanced second level solid state lighting device having a thermal management system in accordance with another embodiment of the present invention is shown. A device as the primary heat extractor 702 has a front side and a back side, and the front side is a metallurgical cover / coated with copper metal 732 or any other metal conductor having a better thermal conductivity than copper, and this copper or any other metal is further plated by a suitable corrosion-resistant thermally conductive metal 734 (eg, TIN plating on copper) On the front side, the MCPCB 718 is attached using a thermal interface 722. To further enhance heat dissipation, the secondary heatsink 726 is present on the back side of the primary heat sink 702 for the exact relative placement of the MCPCB 718. The secondary heat exchanger 726 can also be mounted on the front side of the main heat extractor 7〇2, as shown in Fig. 13. And, in one embodiment, the secondary heat extractor 726 can also be based on the demand while being in the main row. The heater 702 operates on both sides. Moreover, a well-designed clip 724 is used to screw the MCPCB 718 and the secondary heat sink 726 to the main heat extractor 702 with screws 728 and spacer liners 73 to achieve the desired intrusion protection. A solid state light source 720 is mounted on the MCPCB 718. Figure 14 shows a cross-sectional view of an enhanced third level solid state lighting device having a thermal management system in accordance with an embodiment of the present invention. A large concentration of illumination sources is achieved in a minimum possible area of the device. A device as the first primary heat extractor 802 has a front side and a back side. On the front side, the MCPCB 818 is attached with a thermal interface 822 'multiple number of solid state light sources are mounted on the MCPCB 818, at which point a portion of the thermally isolated second primary heat extractor 83 is attached via the thermal interface 822 to The first main heat extractor 802. The first primary heatsink 802 on which the MCPCB 818 is mounted has all of the openings of the proper size proportional to the area of the MCPCB 818, so that a portion of the area of the MCPCB 818 is not in contact with the first primary heat extractor 802. A metallic thermal interface 832 is inserted into the cutout opening of the first primary heat handler 802; the metallic thermal interface 832 connects the region of the MCPCB 818 that is not connected to the first primary heat exchanger 802 via the thermal interface 822 to The second main heat extractor 83 is thermally isolated from the first main heat extractor 8〇2, thereby achieving a certain percentage of heat transfer from the MCPCB 818 to the second main heat extractor 830. A goal is achieved in which the solid state light source 82 is concentrated in a minimum possible area without concentrating heat on the area. The secondary heat exchanger 826 utilizes the thermal interface 822 to present an exact relative arrangement for the MCPCB 818 on the back side of the second primary heat sink 830. Moreover, the MCPCB 818 and the secondary heat exchanger 826 are respectively clamped to the first and second main heat exhaustors 30 201111696 802 and 830 by using a well-designed clip 824 with screws 828 and spacer 830 respectively, thereby achieving an invasion. protection. Figure 15 shows a cross-sectional view of an enhanced fourth level solid state lighting device with a thermal management system in accordance with another embodiment of the present invention. According to this embodiment of the invention, a large concentration of light sources is achieved in a minimum possible area of the device. A device as the first main heat extractor 9〇2 has a front side and a back side. On the front side, the MCPCB 918 is attached with a plurality of solid state light sources mounted on the MCPCB 918 by means of a thermal interface 922, in which case the second main heat extractor 930, which is completely thermally isolated, is passed through the thermal isolator 934 and/or the buffer space. Attached to the first main heat extractor 9〇2. The first primary heatsink 902 having the MCPCB 918 mounted thereon has a suitably sized cut-out opening that is proportional to the area of the MCPCB 918 such that a portion of the percentage area of the MCPCB 918 is not in direct contact with the first primary heat extractor 902. A metallic thermal interface 932 is inserted into the cutout opening of the first primary heat sink 902; the metallic thermal interface 932 connects the region of the MCPCB 918 that is not connected to the first primary heat exchanger 902 via the thermal interface 922 to a second primary heat vent 930 that is thermally isolated from the first primary heat vent 902 to thereby achieve a solid state transfer of a specified percentage of heat from the MCPCB 918 to the second primary heat ejector 930 The light source 920 concentrates on a minimum possible area without the purpose of concentrating heat on the area. The secondary heat exchanger 926 is disposed opposite the MCPCB 918 on the back side of the second primary heat sink 930 using the thermal interface 922. Moreover, the MCPCB 918 and the secondary heat extractor 926 are clamped to the first and second main heat exhausters 902 and 903 by screws 928 and spacer 938, respectively, using a well-designed clip 924, thereby achieving the desired Intrusion protection. 31 201111696 In one embodiment, the apparatus for mounting the solid state lighting source of the present invention is manufactured by a computer numerical control process (CNC). The CNC process provides precision and consumes less time and power for the design of the device. Moreover, CNC processes enable producers to significantly increase productivity and quickly adapt to changes in equipment design to create custom lighting. This CNC process produces a high level of productivity, so that products can be burdened by a larger segment of society in a short period of time, helping to ensure that we are fighting the global warming threat in a shorter period of time. The CNC machine uses an AC servo motor to drive the hammer (except for the hydraulic power supply and cooler p CNC process benefits are as follows: a) The power consumption is less than half of the similar hydraulic machine b) Higher positioning speed improves productivity Space-saving design saves the cost of valuable floor space d) Provides significantly faster stamping speed than mechanical turrets e) Brush table design provides no-scratch treatment, and also minimizes noise during stamping f) Free standing PC-based network CNC control system allows for flexible layout g) immediate access to component programs, multimedia system for file and production scheduling h) Powerful vacuum pellet pull system for physically eliminating pellets QUESTION OF THE INVENTION The present invention utilizes a CNC process as a core manufacturing process for a complete body for the production of high thermal efficiency equipment wherein the thickness of the apparatus is optimized to achieve a maximum thermal conductivity. One of the main advantages that can be achieved with the CNC process is the elimination of the investment required to make the stamp (which is required for die casting components). In order to create a number of different components that are part of the equipment, the process family needs to produce a variety of different die castings and the amount of financial investment will become unreasonable. In a preferred embodiment, the solid state lighting device of the present invention is manufactured by a CNC process that provides a degree of flexibility to adapt the design to the needs without unnecessarily investing in generating casting molds and stamps for extrusion. . It may have a high degree of customization. Another benefit of the CNC process is that it utilizes almost 100% of the metal sheets (raw materials) that are fed into the CNC machine in some cases. Therefore, the waste that is left is minimal and recyclable, and is different from the hard-to-recycle waste of a casting process. In another embodiment, the thickness of the metal sheet that is fed into the CNC machine to produce the illumination device is optimized to achieve the maximum possible thermal conductivity. The equipment of the above devices is manufactured by a CNC process comprising the following steps: a.  Selecting a metal sheet, wherein the metal sheet may be selected from the group consisting of aluminum, iron, steel, copper or a combination or alloy thereof; b.  The metal piece is inserted into a CNC machine, wherein the programmed instructions enable the processor in the C N C machine to stamp the metal piece and c. according to the design fed by one or more devices.  The CNC machine is used to selectively bend the stamped equipment in one or more places. A method for manufacturing a durable, high energy efficiency, solid state illumination device having a custom design comprising the following steps: a.  Feeding at least one design of the device to a CNC machine with the same piece of metal; b.  Stamping a sheet of metal in accordance with the design to achieve one or more devices; c.  Optionally bending the stamped device in one or more places; d.  Anode the device to achieve a non-corrosive and scratched surface; e.  Secure the nut/insert/rivet nut (hardware) to the device; f.  Mounting at least one metal core printed circuit board (MCPCB) on which at least one solid state light source has been mounted on the device; and g.  One or more power supply units are mounted in a housing of the device. The method further includes placing the second primary heat sink on the rear side of the device with a thermal insulation sheet and/or a buffer interval and through a metallic thermal interface and through a cut-out opening disposed in the first primary heat sink The isolator heats at least one solid-state illumination source from the Mcpc B mounted on the first main heat-dissipator to the second main heat-dissipator; selectively places the coated copper on the main heat-dissipator Between the MCPCB and the MCPCB, wherein the coated layer may further have - a component for preventing the immersion; and mounting _ or a plurality of heat dissipating panels (secondary heat extractors) on the front or the opposite side of the device.

進步的方去係包含選用性地安褒一光感測器部件及 /或一動作感測器於設備的後/前側上;選用性地安裝一或多 個透鏡於-或多個固態發統上;選祕地覆蓋—或多個 固態發光源上的—或多個保護性透明或半透明片及選用性 地放置-或多層的熱性介面材料於主㈣熱器及McpcB 34 201111696 暨主要排熱器及次要排熱器及兩或更多個次要排熱器之 間。 測試結果及實驗資料 範例1 使用於路燈應用之固態照明裝置的技術規格係如下 列: 型號 SL001A032 AL SL001B 036 AL SL001C040 AL SL001D48 AL 參數 輸入電壓 85-265 VAC 頻率範圍 47-63 Hz 功率因子 >0.98 總諧波失真(THD) <15% 功率效率 85% LED消耗 32W 36W 40W 48W 總功率消耗 37W 42W 46W 56W LED發亮效率 112 lm/w至 130 lm/w 色溫(CCT) 超白:6500K 色指數(CRI) 0.8 光源 1瓦特LED 最大值光強烈度角度 120度水平軸線;70度垂直軸線 接面溫度(Tj) 60°C+10%(Ta=25 °C)/140°F± 10%(Ta=77〇F) 工作溫度 -40°C 至+55°C/-40°F至 131°F 工作濕度 10% 至 90% RH 工作奇命 >50,000小時 燈殼體材料 鋁 維度(mm) 435(L)x453(W) x84(H) 435(L)x453(W) x84(H) 435(L)x453(W) x84(H) 435(L)x453(W) x84(H) 淨重 4.5Kg 4.5Kg 5.5Kg 5.5Kg IP評級 ΙΡ65/ΓΡ66/ΙΡ67 35 201111696 使用於棚燈應用及泛光燈應用之固態照明裝置的特徵 構造及優點與路燈應用之不同處係在於並沒有用於自動 ΟΝ/OFF之扭鎖光電管且其具有使用於路燈應用之固態照明 裝置的所有其他特徵構造及優點。下表顯示高壓力鈉燈(HPS) 及本發明的使用於路燈應用之固態照明裝置之間的比較: 項目 高壓力鈉燈 LED路燈 測光效能 不良:马一圓形燈,所產生流明 $2/3經由反射器落在地面上造 成較低的勒克斯(luxj。亦具較低 色溫。導致不良的可視性及兩‘ 之間的陰暗小區。 高效率LED驅動器所支持的優 良士程化係確保均句之光分散 务中心聚焦。具優良的測光效 能。 輻射器效能 不良:HPS燈生成超過572F的埶 量。HPS的色譜生成紫外/紅环 射線· _竽艮,(LED色譜並未輻射紫外 $ ’無紅外射線,無熱量,且無 輻射產生。) 電效能 小良:南損失’低功準因子,高 失真 馒艮:高功^因子係消除損失, 低失真<系避Φ结锻名各敎 工作壽命 短(<5,000小時) 很尚(>50,000小時) 工作電壓範圍 窄(±7%) 寬(±45%) 功率消耗 很向 很低(80%至90%功率節省) 起動速度 相當慢(超過10分鐘) 立刻 頻閃器(功率供應器) 交流電驅動 直流電驅動 光學效率 低(<60%) 尚(>90%) 色指數/區分特徵構造 不良,Ra<35(物體顏色看起來暗 淡,無趣且不良) ’ Ra>8〇(物體顏色係新鮮, 清楚可識別且具有酷效桌) 色溫 相當低(黃或琥珀色,沉悶感) 2000K 理想色溫5500至6500kK之間冷 白色 眩光 強眩光 無眩光(冷且舒適) 光污染 ^高污染 &污染 熱量產生 很高(>572°F) 冷光源(<140°1〇 燈罩轉暗 高吸塵性容易改變燈罩顏色 啓#電不會累積灰塵。燈具保持 新鮮 燈罩老化轉黃 报快 不需要燈罩 防震效能 錯/汽油污染 無污染 維護成本 很高’頻繁更換燈具,整流器電 路及從燈罩清理/移除死蟲 很低,LED壽命>50,000小時》 kED光譜會驅斥昆蟲,燈具看起 來總是替#浩准 產品容積 很大 小(細痩外觀) 成本效益 高維護及高功率消耗使得HPS 成為使用10年以上的昂貴提案 很低維謾及很低功率消耗使得 ^ED成為具優良成本效益的照明 解決方案 轉換至太陽能路燈 不可能 輕易可能 整體效能 不良 優良 36 201111696 範例2 下表顯示高壓力鈉燈(HPS)與使用於本發明的路燈應 用之固態照明裝置之間的成本分析及能量節省比較: 250瓦特的HPS路燈vs.68瓦特的固態路燈。 燈源/項目 HPSV路燈 LED路燈 附記 光源(瓦特) 250 68 功 率 消 燈功率消耗⑻(瓦特) 250 76.16 電性分佈(b)(瓦特) 整流器 以SMPS為基礎的 切換功率 0 11.424 全面性線纜損失 (6%)(c)(瓦特) 15 4.5696 國際標準:5% 變壓器損失(3%)⑼ (瓦特) 7.5 2.2848 對於100KVA 變壓器之最低 位準為3% 反應性功率補償(e) (P.F.) 0.7 0.997 小計燈具的功率消耗 0)(瓦特) 389.286 (a+b+c+d)/(e)=f 94.72 (a+b+c+d)/(e)=f 12 每曰消耗(Kwh) 4.67 1.137 (=f/1000x 上述) 以每日使用小 時數作計算 10年消耗(小計)(Kwh) 17050.71429 4148.848465 10年節省的功率消耗 (Kwh) 12901.86582 能量節省的百分比 75.67 *未考慮維護的節省值,*未考慮經由碳額度的盈餘。 範例3 150瓦特的HPS路燈vs.48瓦特的固態路燈。 37 201111696 燈源/項目 HPSV路燈 LED路燈 附記 光源(瓦特) 150 48 功 率 消 耗 燈功率消耗(a)(瓦特) 150 53.76 電性分佈(b)(瓦特) 整流器 以SMPS為基礎的 切換功率 0 8.064 全面性線纜損失 (6%Kc)(瓦特) 9 3,2256 國際標準:5% 變壓器損失(3%)(d) (瓦特) 4.5 1.6128 對於100KVA 變壓器之最低 位準為3% 反應性功率補償 (e)(P.F.) 0.7 0.997 小計燈具的功率消耗 (0 (瓦特) 233.571 (a+b+c+d)/(e)=f 66.86 (a+b+c+d)/(e)=f 12 每曰消耗(Kwh) 2.80 0.802 (=t/1000x 上述) 以每日使用小 時數作計糞 1〇年消耗(小計)(Kwh) 17050.71429 2928.598917 10年節省的功率消耗 (Kwh) - 7301.829655 能量節省的百分比 71.37 *未考慮維護的節省值,*未考慮經由碳額度的盈餘。 範例4 關於在往上及往下方向的通量分佈之所執行的實驗結 果係如下述 材料及方法 型錄編號:68瓦特LED路燈 照明器具:經成形及機械加工的銘殼體,無色玻璃包 圍件。 燈具:62白色LED—60個具有無色塑料光學件及2個 具有無色玻璃光學件位於下方 LED電源供應器:一SSL/DR/01/80W 電性數值:120.0VAC,0.7302A,87.53W,PF=0.999 38 201111696 照明器具效力:64.3流明/瓦特 請注意:利用絕對測光術之經校準的光偵測器方法來 進行此測試* *利用絕對測光術之經校準的光偵測器方法來獲得資 料。使用一UDT型號#211光偵測器及udt型號#S370視力計 組合作為標準。以光偵測器的頻譜響應率(spectral responsivity)及測試主體的頻譜功率分佈為基礎使用一頻 譜不匹配矯正因子。 通量分佈 流明 往下 往上 總計 房屋側 2397.72 0.01 2397.73 街路側 3218.86 15.85 3234.71 總計 5616.58 15.86 5632.44 範例5 照明器具測試規格及報告 型錄編號:68瓦特LED路燈 照明器具:經擠製及機械加工的鋁殼體,無色玻璃包 圍件。 燈具:62白色LED—60個具有無色塑料光學件及2個具 有無色玻璃光學件。 LED電源供應器:一SSL/DR/01/80W 照明器具效力:66.0流明/瓦特 其他細節顯示於第16及17圖。 39 201111696The progressive means includes selectively mounting a light sensor component and/or a motion sensor on the rear/front side of the device; selectively mounting one or more lenses to - or a plurality of solid state systems Selectively cover—or multiple solid-state light sources—or multiple protective transparent or translucent sheets and selectively place—or multiple layers of thermal interface materials in the main (four) heat exchanger and McpcB 34 201111696 cum main row Between the heat exchanger and the secondary heat exchanger and two or more secondary heat exchangers. Test Results and Experimental Data Example 1 The specifications for solid-state lighting devices used in streetlight applications are as follows: Model SL001A032 AL SL001B 036 AL SL001C040 AL SL001D48 AL Parameter input voltage 85-265 VAC Frequency range 47-63 Hz Power factor >0.98 Total Harmonic Distortion (THD) <15% Power Efficiency 85% LED Consumption 32W 36W 40W 48W Total Power Consumption 37W 42W 46W 56W LED Brightness Efficiency 112 lm/w to 130 lm/w Color Temperature (CCT) Ultra White: 6500K Color Index (CRI) 0.8 Light source 1 watt LED Maximum light intensity angle 120 degree horizontal axis; 70 degree vertical axis junction temperature (Tj) 60 °C + 10% (Ta = 25 °C) / 140 °F ± 10% (Ta=77〇F) Operating temperature -40°C to +55°C/-40°F to 131°F Operating humidity 10% to 90% RH Working oddity> 50,000 hours Lamp housing material Aluminum dimension (mm 435(L)x453(W) x84(H) 435(L)x453(W) x84(H) 435(L)x453(W) x84(H) 435(L)x453(W) x84(H) Net weight 4.5Kg 4.5Kg 5.5Kg 5.5Kg IP rating ΙΡ65/ΓΡ66/ΙΡ67 35 201111696 Features and advantages of solid-state lighting devices for shed light applications and floodlight applications and street lighting applications The same thing is that there is no twist-lock photocell for automatic ΟΝ/OFF and it has all the other features and advantages of solid state lighting for streetlight applications. The following table shows the comparison between high pressure sodium lamps (HPS) and the solid state lighting devices used in streetlight applications of the present invention: Project high pressure sodium lamp LED street light metering performance is poor: horse a round lamp, generating lumens $2/3 via reflection The device falls on the ground causing a lower lux (luxj. It also has a lower color temperature. This leads to poor visibility and a dark neighborhood between the two. The high-efficiency LED driver supports the excellent taxi system to ensure the light of the sentence Decentralized service center focus. Excellent metering performance. Radiator performance is poor: HPS lamps generate more than 572F. HPS chromatograms generate UV/red ring radiation · _竽艮, (LED chromatography does not radiate UV $ ' no infrared Radiation, no heat, and no radiation.) Electrical efficiency is small: South loss 'low power factor, high distortion 馒艮: high power ^ factor system to eliminate loss, low distortion < Short life (<5,000 hours) Very good (> 50,000 hours) Operating voltage range is narrow (±7%) Width (±45%) Power consumption is very low (80% to 90% power saving) Starting speed is quite slow (exceed 10 minutes) Immediately stroboscopic (power supply) AC drive DC drive is low in optical efficiency (<60%) (>90%) Color index/differentiation feature is poorly constructed, Ra<35 (object color looks dim, Uninteresting and bad) 'Ra>8〇(The object color is fresh, clearly identifiable and has a cool table) The color temperature is quite low (yellow or amber, dull) 2000K ideal color temperature between 5500 and 6500kK cold white glare strong glare Glare (cold and comfortable) Light pollution ^ High pollution & Contamination heat generation is high (>572 °F) Cold light source (<140°1 〇 lampshade turns dark High vacuuming easily changes lamp shade color# Electricity does not accumulate dust Lamps keep fresh lampshade aging turn yellow report fast need no lampshade shockproof performance error / gasoline pollution no pollution maintenance cost is high 'frequent replacement of lamps, rectifier circuit and cleaning / removal of dead insects from the lampshade is very low, LED life> 50,000 hours The kED spectrum will drive out insects, and the luminaires will always look like the size of the product. The cost-effective maintenance and high power consumption make HPS With more than 10 years of expensive proposals, very low dimensionality and low power consumption make ^ED a cost-effective lighting solution. Switching to solar street lights is not likely to be possible. Overall poor performance 36 201111696 Example 2 The following table shows high pressure sodium lamps Cost analysis and energy savings comparison between (HPS) and solid state lighting devices used in streetlight applications of the present invention: 250 watt HPS street light vs. 68 watt solid state street light. Light source/project HPSV street light LED street light with attached light source (Watt) 250 68 Power consumption lamp power consumption (8) (Watt) 250 76.16 Electrical distribution (b) (Watt) Rectifier based SMPS-based switching power 0 11.424 Comprehensive cable loss (6%)(c)(Watt) 15 4.5696 International Standard: 5% Transformer Loss (3%) (9) (Watt) 7.5 2.2848 The lowest level for 100KVA transformer is 3% Reactive Power Compensation (e) (PF) 0.7 Power consumption of 0.997 subtotal luminaires 0) (Watt) 389.286 (a+b+c+d)/(e)=f 94.72 (a+b+c+d)/(e)=f 12 Consumption per ton (Kwh) 4.67 1.137 (=f/1000x above) Calculated in hours of daily use 10 years of consumption (subtotal) (Kwh) 17050.71429 4148.848465 10 years of power savings (Kwh) 12901.86582 Percentage of energy savings 75.67 *Saving savings not considered , * did not consider the surplus through the carbon credit. Example 3 150 watt HPS street light vs. 48 watt solid state street light. 37 201111696 Light source/project HPSV street light LED street light with attached light source (Watt) 150 48 Power consumption lamp power consumption (a) (Watt) 150 53.76 Electrical distribution (b) (W) Rectifier based SMPS-based switching power 0 8.064 Full Cable loss (6%Kc) (Watt) 9 3,2256 International standard: 5% Transformer loss (3%) (d) (Watt) 4.5 1.6128 For the 100KVA transformer, the lowest level is 3% Reactive power compensation ( e) (PF) 0.7 0.997 Subtotal luminaire power consumption (0 (Watt) 233.571 (a+b+c+d)/(e)=f 66.86 (a+b+c+d)/(e)=f 12 Consumption per ton (Kwh) 2.80 0.802 (=t/1000x above) Calculated by the number of hours of daily use 1 year of consumption (subtotal) (Kwh) 17050.71429 2928.598917 10 years of power savings (Kwh) - 7301.829655 Energy saving Percentage 71.37 *The maintenance savings are not considered, *The surplus through the carbon credit is not considered. Example 4 The experimental results performed on the flux distribution in the up and down directions are as follows. Watt LED street lighting fixture: shaped and machined case , colorless glass envelops. Lamps: 62 white LEDs - 60 with colorless plastic optics and 2 with colorless glass optics located below the LED power supply: one SSL/DR/01/80W Electrical value: 120.0VAC, 0.7302 A, 87.53W, PF=0.999 38 201111696 Lighting Effectiveness: 64.3 lumens/watt Please note: This test is performed using a calibrated photodetector method with absolute photometry* * Calibrated optical detection using absolute photometry The detector method is used to obtain the data. A UDT model #211 photodetector and udt model #S370 dynamometer combination are used as the standard. Based on the spectral responsivity of the photodetector and the spectral power distribution of the test subject. Use a spectrum mismatch correction factor. Flux distribution lumens down to the total house side 2397.72 0.01 2397.73 Street side 3218.86 15.85 3234.71 Total 5616.58 15.86 5632.44 Example 5 Lighting equipment test specifications and report catalog number: 68 watt LED street lighting: Extruded and machined aluminum housing with colorless glass surround. Lamps: 62 white LEDs - 60 with colorless plastic optics and 2 with colorless glass optics. LED Power Supply: One SSL/DR/01/80W Lighting Effectiveness: 66.0 lumens/watt Other details are shown in Figures 16 and 17. 39 201111696

照明器具 照明器具 流明 流明 前光 3219 57.1 FL(0° 至 30°) 773 13.7 FM(30° 至 60°) 1647 29.2 FH(60° 至 80°) 688 12.2 FVH(80° 至 90°) 111 2.0 背光 2398 42.6 BL(0° 至 30°) 847 15.0 BM(30。至 60。) 1217 21.6 BH(60° 至 80°) 326 5.8 BVH(80° 至 90°) 9 0.2 上光 16 0.3 UL(90° 至 100。) 16 0.3 UH(100。至 180。) 0 0.0Luminaire Lighting Lumens Lumens Front Light 3219 57.1 FL (0° to 30°) 773 13.7 FM (30° to 60°) 1647 29.2 FH (60° to 80°) 688 12.2 FVH (80° to 90°) 111 2.0 Backlight 2398 42.6 BL (0° to 30°) 847 15.0 BM (30 to 60.) 1217 21.6 BH (60° to 80°) 326 5.8 BVH (80° to 90°) 9 0.2 Polishing 16 0.3 UL (90 ° to 100.) 16 0.3 UH (100. to 180.) 0 0.0

困陷光 ΝΑ NATrapped light ΝΑ NA

範例6 A 所執行的另一實驗係顯示一20瓦特LED照明器件以及 40瓦特的管燈在不同角度的發亮效率之比較。Example 6 A Another experiment performed showed a comparison of the luminous efficiency of a 20 watt LED lighting device and a 40 watt tube lamp at different angles.

20瓦特LED的路燈之配合 40瓦特的管燈之配合 角度 3公尺距離 6公尺距離 10公尺距離 3公尺距離 6公尺距離 10公尺距離 直線 連接 14勒克斯 (lux) 7勒克斯 3勒克斯 6勒克斯 3勒克斯 1勒克斯 45度 配合 11勒克斯 7勒克斯 3勒克斯 NA NA NA 90度 配合 11勒克斯 7勒克斯 3勒克斯 NA NA NA 40 20111169620 watt LED street light with 40 watt tube light matching angle 3 meters distance 6 meters distance 10 meters distance 3 meters distance 6 meters distance 10 meters distance straight line connection 14 lux (lux) 7 lux 3 lux 6 lux 3 lux 1 lux 45 degree with 11 lux 7 lux 3 lux NA NA NA 90 degree with 11 lux 7 lux 3 lux NA NA NA 40 201111696

範例6B 所執行的另一實驗係顯示一 45瓦特LED照明器件以及 250瓦特的鈉燈在不同角度的發亮效率之比較。 45瓦特LED的路燈之配合 250瓦特的鈉燈之配合 角度 3公尺距離 6公尺距離 10公尺距離 3公尺距離 6公尺距離 10公尺距離 直線 連接 26勒克斯 (lux) 17勒克斯 6勒克斯 22勒克斯 13勒克斯 6勒克斯 45度 配合 26勒克斯 14勒克斯 5勒克斯 6勒克斯 13勒克斯 5勒克斯 90度 配合 10勒克斯 8勒克斯 3勒克斯 6勒克斯 5勒克斯 財務利益: 1. 67%至72%的耗電節省。 2. 最小值維護費用。 已經由估計發現若全球所有地方皆施行LED路燈,利 益將如下: 1) 節省電力1·9χ1〇2〇焦耳(Joule) 2) 顯著地減少耗電 3) 財務上節省1.83兆元 4) 防止環境增加10.68十億'頓(Gigaton)的二氧化碳 5) 照明路燈所使用之約280個發電中心產生的電力可 使用於其他用途。 範例7 執行另一 f蟀,其顯示高壓力鈉燈(HPS)以及我們的固態照 知妓置之簡的比較結果。 41 201111696 型號 48瓦特LED路燈vs.255 H.P.鈉蒸氣燈 參照的測試程序 T-EQP/035 使用的測試設施: 名稱 製造商/型號 SI.號碼 1)單及三相分析器 英弗鐵克(Infratek)/106A_3/0.05 01054012 2)功率品質分析器 福錄克(Fluke)/434 DM910008 3)數位照射計 橫河(Yogogawa)/510 02 020191 測試結果 編號 測試參數 測試方法/要求 觀察 1 功率消耗 當LED燈以額定電壓230伏特交流 電及額定頻率50Hz操作時,將測 量總功率消耗 50.04瓦特 2 輸入功率因子 將在額定電壓230伏特交流電及額 定頻率50Hz測量輸入功率因子 0.997 3 輸入電壓範圍 當LED燈以從最小值至最大值操 作範圍的輸入電壓範圍操作時,將 在近似5叹高度測量輸出勒克斯 45伏特-200勒克斯 96伏特-550勒克斯 230伏特-560勒克斯 263伏特-560勒克斯 4 失真位準(輸 入電流的總諧 波失真) 當LED燈在其額定電壓230伏特交 流電及額定頻率50Hz操作時,將 測量輸入電流的總諧波失真 18.2% 編號 測試參數 測試方法/要求 觀察 1 功率消耗 當HPS燈以額定電壓230伏特交流 電及額定頻率5〇Hz操作,將浪j 量總功率消耗 255瓦特 2 輸入功率因子 蔣在額定電壓23〇伏特交流電及額 定頻率50Hz測量輸入4率因子 0.395 3 輸入電壓範圍 當HPS燈以從最小值至最大值操 作範圍的輸入電壓範圍操作時,將 在近似5呎高度測量輸出勒克斯 183伏特-326勒克斯 230伏特-1800勒克斯 258伏特-2600勒克斯 4 失真位準(輸 入電流的總諧 波失真) ^HPS燈在其額定電壓了30伏特交 流電及額定頻率50Hz操作時,將 測量輸入電流的總諧波失真 13.0% 範例8 又另一現場裝設件實驗資料係如下述: 42 201111696 電壓:120 裝設件資料 區位 SL# 既有G Fix.類型 既有G 負荷 既有G Fc RPL. FIX. 類型 POST RPL負荷 POST~~ RPLFc 希尼街 (Sidney St.) 31442 150瓦特 HPS 2.63a 2.43 48瓦特 LED 0.52a 3.33 希尼銜 (Sidney St.) 21592 150瓦特 HPS 2.58a 2.14 48瓦特 LED 0.52a 2.62 希尼術 (Sidney St.) 25339 150瓦特 HPS 2.10a 2.76 48瓦特 LED 0.52a 2.63 本發明的固態照明裝置係可應用在包括但不限於獨立 式照明用途、工業用室内照明用途、室内家用商用用途、 路燈用途、泛光燈用途 '高栊杆用途、競赛場及其他公共 空間如機場等效用並對其作客製。 已參照本發明的不同實施例提供前文的描述。熟習本 發明相干技藝及技術者將瞭解可實行所描述裝置及操作方 法的替代物及變化而未有意義地脫離本發明的原理、精神 與範圍。 本發明的優點 所提出的發明之固態照明裝置係具有下列優點 a) 有助於節約電力。 b) 高輸入功率因子(0·98)係免除電性損失。 〇低譜波失真(謂<15%):消除由於習見燈之高位準 的譜波失真所造成之線纜發熱。 …高演色性指數(CRIM80):本發明的白色㈣路燈 之自然色譜縣許侃絲色的奸朗。這增高夜晚保 全性並且亦健具有來自保全攝影機系統之較㈣視訊影 像。 43 201111696 e) 長壽命(>50,000小時):雖然大部份習見的氣體放電 燈只可使用5000小時,本發明的LED路燈具有大於50000小 時的平均壽命長度。 f) 低熱發射及超低碳足跡:正迫切需要降低碳足跡。 未來的數十年對於地球存續而言係非常關鍵。高能量效率 的專案之導入及實行係為一項絕對必要的使命。藉由將 LED導入照射領域中’可節省大於80%的能量。習見的燈產 生大量熱量’因此空調器受到更大負荷且壓縮機以更長時 間運轉。LED有助於降低熱量並因此節省空調器的運轉時 間。轉而在此案例中間接地節省能量(室内應用)。 g) 環境友善及公認的綠色科技:本發明的LED路燈係 從原料選擇、製造製程、裝設件上之節能的功能、長壽命 開始即為環境友善,且99%的設備可在壽命長度之後被回 收。LED燈係被全球公認是綠色科技(green TECHNOLOGY)產品。 h) 無光污染:因為本發明的LED路燈可被精密地導 引’光污染極小。這不但有助於天文學家觀察夜空,亦可 保護許多動物及人類健康,且 i) 昆蟲友善性:由於本發明的LED之路燈較不會吸引 許多夜行性昆蟲,幾乎沒有昆蟲死在燈中,其亦大幅降低 清理及維護成本。 j) 生命週期終點具有顯著的廢料價值 k) 達成熔接操作以使最小的金屬顆粒結構不被擾亂。 44 201111696 【圖式簡單說明】 第1圖顯示根據本發明的一示範性實施例之使用於路 燈應用之固態照明裝置的前視圖; 第2圖顯示根據本發明的一示範性實施例之使用於路 燈應用之固態照明裝置的背視圖; 第3圖顯示根據本發明的一示範性實施例之使用於路 燈應用之固態照明裝置的等角前視圖; 第4圖顯示根據本發明另一示範性實施例之使用於棚 燈(bay light)應用之固態照明裝置的俯視圖; 第5圖顯示根據本發明另一示範性實施例之使用於棚 燈應用之固態照明裝置的仰視圖; 第6圖顯示根據本發明另一示範性實施例之使用於棚 燈應用之固態照明裝置的俯視圖; 第7圖顯示根據本發明的一示範性實施例之使用於泛 光燈(flood light)應用之固態照明裝置的等角前視圖; 第8圖顯示根據本發明另一示範性實施例之使用於高 桅杆(High Mast)應用之固態照明裝置的等角前視圖; 第9圖顯示根據本發明另一示範性實施例之使用於高 桅杆應用之固態照明裝置的等角背視圖; 第10圖顯示根據本發明的一示範性實施例之使用於室 内筒燈(Indoor down light)應用之固態照明裝置的等角前視 圖; 第11圖顯示根據本發明的一示範性實施例之使用於室 内筒燈應用之固態照明裝置的等角背視圖; 45 201111696 第12圖顯示根據本發明的一實施例之具有第一位準的 熱量管理系統之HI態照明裝置的橫刹視圖’ 第13圖顯示根據本發明另一實施例之具有經增強第一 位準的熱量管理系統之固態照明裝置的㈣視圖, 第14圖顯示根據本發明的一實施例之具有經增強第二 位準的熱量管理系統之固態照明裝置的橫剖視圖’ 第15圖顯示根據本發明另一實施例之具有經增強㈣ 位準的熱量管理系統之固態照明裝置的㈣視圖’ 第16圖顯示根據固態照明設備的IES LM 79-08之光學 及電性實驗資料; 第17圖顯示根據以_具A «'統為基礎之 固態照明裝置的通量分配圖 【主要元件符號説明 100,200,300,400,500...固態照 明裝置 102,202,302,402,502···設備 104,504…安裝表面 104a.··左側安裝表面 104b…右側安裝表面 108,208,408 …開縫 110…孔 112,212···鰭片 114…殼體 116,216,360,416,516 …電源供 應單元 118,218,318,418,518,618,718,8 18,918…金屬核心印刷電路板 (MCPCB) 120…高強烈度固態發光源 122…透鏡 124,324,424…保護性透明片 126,226…散熱面板,次要排熱器 128…金屬覆蓋物 134...光感測器部件 136,436._·裝置接合部件 138"*c-通路 168,268,368…經塗覆層的鋼 46 201111696 172…動作感測器部件 174…計時器 220,320,420,520,620 …固態發 光源 224…透明片 250,628,728,828,928 …螺絲 256a,256b…連接部件 258…鉤 270···熱性介面材料 328,428…覆蓋板 450···銷針 456a…短範圍光拋投平面 456b…長範圍光拋投平面 524…保護性透明或半透明片 528···保護性盒箱附帶排熱器 602,702…主要排熱器 622,722,822,922…熱性介面 624,724,824,924 …夾件 626,726,826,926…次要排熱器 630,730,830,938···隔離襯墊 732…銅金屬 734…防腐蚀導熱金屬 802,902…第一主要排熱器 830,930."第二主要排熱器 832,932…金屬性熱性介面 934.··熱隔離器 47Another experiment performed in Example 6B shows a comparison of the luminous efficiency of a 45 watt LED lighting device and a 250 watt sodium lamp at different angles. 45 watt LED street light with 250 watt sodium lamp with angle 3 meters distance 6 meters distance 10 meters distance 3 meters distance 6 meters distance 10 meters distance straight line connection 26 lux (lux) 17 lux 6 lux 22 Lux 13 Lux 6 Lux 45 degrees with 26 Lux 14 Lux 5 Lux 6 Lux 13 Lux 5 Lux 90 degrees with 10 Lux 8 Lux 3 Lux 6 Lux 5 Lux Financial Benefits: 1. 67% to 72% power saving. 2. Minimum maintenance cost. It has been estimated that if LED street lights are implemented in all parts of the world, the benefits will be as follows: 1) Power saving 1. 9χ1〇2〇 Joule 2) Significantly reduce power consumption 3) Financial savings of 1.83 trillion 4) Preventing the environment Increasing 10.68 billion Gigaton carbon dioxide 5) The electricity generated by about 280 power generation centers used in lighting streetlights can be used for other purposes. Example 7 performs another f蟀, which shows the comparison of the high pressure sodium lamp (HPS) and our solid state sensing device. 41 201111696 Model 48 watt LED street light vs. 255 HP sodium vapor lamp reference test procedure T-EQP/035 Test facility used: Name Manufacturer / Model SI. Number 1) Single and three phase analyzer Infratek ) /106A_3/0.05 01054012 2) Power quality analyzer Fluke / 434 DM910008 3) Digital illuminator Yogogawa / 510 02 020191 Test result number Test parameter Test method / requirement observation 1 Power consumption when LED When the lamp is operated with a rated voltage of 230 volts AC and a rated frequency of 50 Hz, the total power consumption will be measured at 50.04 watts. 2 The input power factor will be measured at a rated voltage of 230 volts AC and a nominal frequency of 50 Hz. The input power factor is 0.997. 3 Input voltage range when the LED light is The input voltage range from minimum to maximum operating range will be measured at approximately 5 sag heights and output lux 45 volts - 200 lux 96 volts - 550 lux 230 volts - 560 lux 263 volts - 560 lux 4 distortion level (input current) Total harmonic distortion) When the LED lamp is operated at its rated voltage of 230 volts AC and rated frequency 50 Hz, Measuring the total harmonic distortion of the input current 18.2% No. Test parameter test method / requirement observation 1 Power consumption When the HPS lamp is operated with a rated voltage of 230 volts AC and a rated frequency of 5 Hz, the total power consumption of the wave is 255 watts 2 input power Factor Jiang at rated voltage 23 volts AC and rated frequency 50 Hz measurement input 4 rate factor 0.395 3 Input voltage range When the HPS lamp is operated with an input voltage range from the minimum to the maximum operating range, the output will be measured at approximately 5 呎 height Lux 183 volts - 326 lux 230 volts - 1800 lux 258 volts - 2600 lux 4 distortion level (total harmonic distortion of the input current) ^HPS lamp will measure input when its rated voltage is 30 volts AC and rated frequency 50Hz operation The total harmonic distortion of the current is 13.0%. Example 8 Another field installation experimental data is as follows: 42 201111696 Voltage: 120 Installation data location SL# Existing G Fix. Type G load only G Fc RPL FIX. Type POST RPL load POST~~ RPLFc Sidney St. 31442 150 watt HPS 2.63a 2.43 48 watt LED 0.52a 3.33 Sidney St. 21592 150 watt HPS 2.58a 2.14 48 watt LED 0.52a 2.62 Sidney St. 25339 150 watt HPS 2.10a 2.76 48 watt LED 0.52a 2.63 Solid state lighting system of the present invention Can be used in, but not limited to, stand-alone lighting applications, industrial indoor lighting applications, indoor consumer and commercial applications, street lighting applications, floodlight applications, high mast applications, competition venues and other public spaces such as airport equivalents and Customized. The foregoing description has been provided with reference to various embodiments of the invention. Those skilled in the art will appreciate that alternatives and variations of the described apparatus and methods of operation may be made without departing from the spirit, scope and scope of the invention. Advantages of the Invention The solid-state lighting device of the proposed invention has the following advantages: a) Helps to save power. b) High input power factor (0·98) is exempt from electrical losses. Low spectral distortion (referred to as <15%): Eliminates cable heating due to spectral distortion of the high level of the lamp. ...High Color Rendering Index (CRIM80): The white (four) street light of the present invention. This increases nighttime security and also has a more (four) video image from the security camera system. 43 201111696 e) Long life (> 50,000 hours): Although most of the conventional gas discharge lamps can be used for 5,000 hours, the LED street lamps of the present invention have an average life length of more than 50,000 hours. f) Low heat emission and ultra-low carbon footprint: There is an urgent need to reduce the carbon footprint. The decades to come are critical to the survival of the planet. The introduction and implementation of high energy efficiency projects is an absolutely necessary mission. More than 80% of energy can be saved by introducing LEDs into the field of illumination. The light seen has produced a lot of heat', so the air conditioner is subjected to more load and the compressor is operated for a longer period of time. LEDs help to reduce heat and thus save the air conditioner's operating time. In turn, grounding in the middle of this case saves energy (indoor applications). g) Environmentally friendly and recognized green technology: The LED street light of the present invention is environmentally friendly from the selection of raw materials, the manufacturing process, the energy-saving function on the components, and the long life, and 99% of the equipment can be after the length of life. Be recycled. The LED lamp system is recognized worldwide as a green technology product. h) No light pollution: Since the LED street lamp of the present invention can be precisely guided, 'light pollution is extremely small. This not only helps astronomers observe the night sky, but also protects many animals and human health, and i) insect friendliness: since the LED street lamp of the present invention does not attract many nocturnal insects, almost no insects die in the lamp. It also significantly reduces cleaning and maintenance costs. j) The end of life cycle has a significant waste value k) A fusion operation is achieved to minimize the disruption of the metal particle structure. 44 201111696 [Simultaneous Description of the Drawings] Fig. 1 shows a front view of a solid state lighting device for use in a streetlight application according to an exemplary embodiment of the present invention; Fig. 2 shows a use according to an exemplary embodiment of the present invention. A rear view of a solid state lighting device for a streetlight application; FIG. 3 shows an isometric front view of a solid state lighting device for a streetlight application in accordance with an exemplary embodiment of the present invention; FIG. 4 shows another exemplary implementation in accordance with the present invention. A top view of a solid state lighting device for use in a bay light application; FIG. 5 is a bottom plan view of a solid state lighting device for use in a bezel light application in accordance with another exemplary embodiment of the present invention; A top view of a solid state lighting device for use in a ceiling light application in accordance with another exemplary embodiment of the present invention; FIG. 7 illustrates a solid state lighting device for use in a flood light application, in accordance with an exemplary embodiment of the present invention. An isometric front view; Figure 8 shows an isometric front of a solid state lighting device for use in a High Mast application in accordance with another exemplary embodiment of the present invention. Figure 9 shows an isometric rear view of a solid state lighting device for use in a high mast application in accordance with another exemplary embodiment of the present invention; Figure 10 shows an indoor downlight used in accordance with an exemplary embodiment of the present invention. (Indoor down light) isometric front view of a solid state lighting device; Figure 11 shows an isometric rear view of a solid state lighting device for indoor downlight applications in accordance with an exemplary embodiment of the present invention; 45 201111696 12th The figure shows a transverse brake view of a HI state lighting device having a first level thermal management system according to an embodiment of the invention. FIG. 13 shows a heat having an enhanced first level according to another embodiment of the present invention. (4) view of a solid state lighting device of a management system, FIG. 14 shows a cross-sectional view of a solid state lighting device having an enhanced second level thermal management system in accordance with an embodiment of the present invention. FIG. 15 shows another A (four) view of a solid state lighting device with an enhanced (four) level thermal management system of the embodiment 'Figure 16 shows an IES LM 79-08 according to solid state lighting equipment Optical and electrical experimental data; Figure 17 shows the flux distribution map based on solid-state lighting devices based on _A «' system [main component symbol description 100,200,300,400,500...solid state lighting devices 102,202,302,402,502...device 104,504...installation Surface 104a.··Left mounting surface 104b...Right mounting surface 108,208,408...Slit 110... Hole 112, 212···Fin 114... Housing 116, 216, 360, 416, 516 ... Power supply unit 118, 218, 318, 418, 518, 618, 718, 8 18, 918... Metal core printed circuit board (MCPCB) 120... Highly intense solid state light source 122...lens 124,324,424...protective transparent sheet 126,226...heat sink panel, secondary heat sink 128...metal cover 134...light sensor component 136,436._·device joint component 138"*c - passage 168, 268, 368... coated steel 46 201111696 172... motion sensor component 174... timer 220, 320, 420, 520, 620 ... solid state light source 224... transparent sheet 250, 628, 728, 828, 928 ... screw 256a, 256b... connecting member 258... hook 270 · · · thermal interface Material 328, 428... cover plate 450···pin 456a... short range light throwing 456b...long range light throwing plane 524...protective transparent or translucent sheet 528···protective box with heat extractor 602,702...main heat extractor 622,722,822,922...heat interface 624,724,824,924 ...clamp 626,726,826,926...secondary heat extractor 630,730,830,938···Isolation pad 732...copper metal 734...corrosion-proof heat-conducting metal 802,902...first main heat extractor 830,930."second main heat extractor 832,932...metal thermal interface 934.··thermal isolator 47

Claims (1)

201111696 七、申請專利範圍: 1. 一種持久、高能量效率、固態照明裝置,包含: 一設備,其具有一安裝表面,該設備由一導熱金屬 片製成,該設備進一步組構作為一排熱器,其中該設備 具有0.5至6.0公厘之間的一厚度; 一覆蓋該設備的經陽極化的塗覆物,該經陽極化的 塗覆物係組構為防止腐蝕且增加熱傳導率; 一金屬核心印刷電路板(MCPCB),其安裝在該安裝 表面上; 一電源供應單元,其被包圍在該設備中的一殼體 内,該電源供應單元係組構為產生一輸出電壓;及 一固態發光源,其安裝在該MCPCB上,該固態發 光源耦合至該電源供應單元。 2. 如申請專利範圍第1項之照明裝置,進一步包含一被放 置在該設備與該MCPCB間之銅的經塗覆層,其中該經 塗覆層係組構為防止腐蝕。 3. 如申請專利範圍第1項之照明裝置,其中該輸出電壓可 從一 AC或DC輸入電源產生。 4. 如申請專利範圍第1項之照明裝置,進一步包含至少一 被安裝在該設備上之散熱面板,該面板係組構為作為一 次要排熱器,其中該面板係由選自鋁,鐵,鋼,及銅的 組合中之至少一者的導熱材料製成。 5. 如申請專利範圍第1項之照明裝置,其中該安裝表面包 含一孔,該孔係組構為提供散熱及抗風性。 48 201111696 6·如申請專利範圍第4項之照明裝置,其中該面板包含一 孔’ 3玄孔係組構為提供散熱及抗風性。 7_如申請專利範圍第丨項之照明裝置,其中該設備包含一 基底平面,該基底平面具有一可調整式傾斜度。 8·如申請專利範圍第3項之照明裝置,進一步包含一被耦 合至該輸入電源或該電源供應單元之光感測器,該光感 測係組構為選擇性地控制對於該固態發光源之電源 輪送。 9.如申請專利範圍第3項之照明裝置,進一步包含一被耦 合至該輸入電源或該電源供應單元之動作感測器,該動 作感測器係組構為選擇性地控制對於該固態發光源之 電源輸送。 10·如申請專利範圍第丨項之照明裝置,進一步包含一被安 裝在該固態發光源上之透鏡,該透鏡係組構為聚焦自該 固態發光源輸出之光,且該透鏡進一步組構為防止光散 射。 11. 如申請專利範圍第i項之照明裝置,進一步包含一覆蓋 該固態發光源之保護性透明片,該片由玻璃或塑料製 成。 12. 如申請專利範圍第i項之照明裝置’其中該固態發光源 係為一 LED,OLED,或 PLED。 13. 如申請專利範圍第1項之照明裝置,其中該照明裝置係 組構為達成進入保護標準。 14·如申請專利範圍第丨項之照明裝置,其中該電源供應單 49 201111696 元係組構為達成大於0.98的一功率因子(power factor)。 15. 如申請專利範圍第1項之照明裝置,其中該導熱金屬片 係為紹,鐵,鋼,或銅。 16. 如申請專利範圍第1項之照明裝置,其中一熱性介面材 料係放置在該設備與該MCPCB之間。 17. —種持久、高能量效率、固態照明裝置,包含: 一設備,其具有一安裝表面,該設備係由從一電腦 數值控制製程所製造的一第一導熱金屬片製成,該設備 進一步組構作為一第一排熱器,其中該設備具有介於0.5 至6.0公厘之間的一厚度; 一覆蓋該設備的經陽極化的塗覆物,該經陽極化的 塗覆物係組構為防止腐蝕且增加熱傳導率; 一金屬核心印刷電路板(MCPCB),其安裝在該安裝 表面上; 一電源供應單元,其被包圍在該設備中的一殼體 内,該電源供應單元係組構為產生一輸出電壓; 一固態發光源,其安裝在該MCPCB上,該固態發 光源耦合至該電源供應單元;及 一第二排熱器,其放置在該設備上,該第二排熱器 係組構為從該固態發光源散熱。 18. —種用於製造持久、高能量效率、固態照明裝置之方 法,包含下列步驟: 在一電腦數值控制製程機具接收一設備設計及一 金屬片, 50 201111696 利用該機具根據該設備設計來衝壓該金屬片, 利用該機具彎折該金屬片; 施加一經陽極化的塗覆物至該金屬片; 女裝一具有一固態發光源之金屬核心印刷電路板 (MCPCB)至該金屬片;及 安裝一電源供應單元至該金屬片。201111696 VII. Patent application scope: 1. A durable, high energy efficiency, solid state lighting device comprising: a device having a mounting surface, the device being made of a thermally conductive metal sheet, the device further configured as a row of heat Where the apparatus has a thickness of between 0.5 and 6.0 mm; an anodized coating covering the apparatus, the anodized coating being configured to prevent corrosion and increase thermal conductivity; a metal core printed circuit board (MCPCB) mounted on the mounting surface; a power supply unit enclosed in a housing in the apparatus, the power supply unit configured to generate an output voltage; A solid state light source mounted on the MCPCB coupled to the power supply unit. 2. The illumination device of claim 1, further comprising a coated layer of copper disposed between the device and the MCPCB, wherein the coated layer is configured to prevent corrosion. 3. The lighting device of claim 1, wherein the output voltage is generated from an AC or DC input power source. 4. The lighting device of claim 1, further comprising at least one heat dissipating panel mounted on the device, the panel being configured as a primary heat dissipator, wherein the panel is selected from the group consisting of aluminum and iron Made of a thermally conductive material of at least one of a combination of steel, copper, and copper. 5. The illuminating device of claim 1, wherein the mounting surface comprises a hole configured to provide heat dissipation and wind resistance. 48 201111696 6. The illuminating device of claim 4, wherein the panel comprises a hole '3" hole structure to provide heat dissipation and wind resistance. 7. The illuminating device of claim 3, wherein the device comprises a base plane having an adjustable slope. 8. The illumination device of claim 3, further comprising a light sensor coupled to the input power source or the power supply unit, the light sensing system configured to selectively control the solid state light source The power is delivered. 9. The illumination device of claim 3, further comprising a motion sensor coupled to the input power source or the power supply unit, the motion sensor configured to selectively control illumination for the solid state Source power delivery. 10. The illuminating device of claim 2, further comprising a lens mounted on the solid state light source, the lens is configured to focus light output from the solid state light source, and the lens is further configured as Prevent light scattering. 11. The illumination device of claim i, further comprising a protective transparent sheet covering the solid state light source, the sheet being made of glass or plastic. 12. The illumination device of claim i, wherein the solid state light source is an LED, an OLED, or a PLED. 13. The lighting device of claim 1, wherein the lighting device is configured to achieve an entry protection standard. 14. The lighting device of claim 3, wherein the power supply unit 49 201111696 is configured to achieve a power factor greater than 0.98. 15. The lighting device of claim 1, wherein the thermally conductive metal sheet is sinter, iron, steel, or copper. 16. The illumination device of claim 1, wherein a thermal interface material is placed between the device and the MCPCB. 17. A durable, high energy efficiency, solid state lighting device comprising: a device having a mounting surface, the device being fabricated from a first thermally conductive metal sheet fabricated from a computer numerical control process, the device further As a first heat extractor, wherein the apparatus has a thickness of between 0.5 and 6.0 mm; an anodized coating covering the apparatus, the anodized coating system Constructed to prevent corrosion and increase thermal conductivity; a metal core printed circuit board (MCPCB) mounted on the mounting surface; a power supply unit surrounded by a housing in the device, the power supply unit Constructing to generate an output voltage; a solid state light source mounted on the MCPCB, the solid state light source coupled to the power supply unit; and a second heat sink disposed on the device, the second row The heat engine is configured to dissipate heat from the solid state light source. 18. A method for manufacturing a durable, high energy efficient, solid state lighting device comprising the steps of: receiving a device design and a metal sheet in a computer numerically controlled process tool, 50 201111696 using the tool to stamp according to the device design The metal sheet is bent by the machine; an anodized coating is applied to the metal sheet; a metal core printed circuit board (MCPCB) having a solid state light source is applied to the metal sheet; and the mounting A power supply unit to the metal sheet. 器至該金屬片之步驟。The step to the metal sheet. 銅於該金屬片與該MCPCB之間 '進一步包含施加一層的 的步驟。 51Copper between the metal sheet and the MCPCB further includes the step of applying a layer. 51
TW99125195A 2009-07-28 2010-07-28 Customizable, long lasting, thermally efficient, environmentally friendly, solid-state lighting apparatuses TW201111696A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22915209P 2009-07-28 2009-07-28

Publications (1)

Publication Number Publication Date
TW201111696A true TW201111696A (en) 2011-04-01

Family

ID=44908963

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99125195A TW201111696A (en) 2009-07-28 2010-07-28 Customizable, long lasting, thermally efficient, environmentally friendly, solid-state lighting apparatuses

Country Status (2)

Country Link
JO (1) JO3373B1 (en)
TW (1) TW201111696A (en)

Also Published As

Publication number Publication date
JO3373B1 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
US8956018B2 (en) Solid-state lighting apparatus
CN201190931Y (en) High-power LED tunnel lamp
CN103052844B (en) LED lighting module and use the illuminating lamp of this LED lighting module
US20120051048A1 (en) Retrofit for Non-LED Lighting Fixture
US9470383B2 (en) LED lighting device including module which is changeable according to power consumption and having improved heat radiation and waterproof
US9383088B2 (en) Solid state lighting device having a packaged heat spreader
CN101520145A (en) Modularization LED street lamp with adjustable angle
JP2014532976A (en) LED lighting
CN202511069U (en) Integrated novel light-emitting diode (LED) fluorescent lamp
CN201521826U (en) LED explosion-proof floodlight
CN201547550U (en) LED independent light source
CN201032082Y (en) LED module
CN202501319U (en) LED street lamp
CN101949495A (en) Integrated type LED floodlight lamp
WO2016033571A1 (en) Optical lighting system and method
CN201259154Y (en) Combination LED street lamp
SK50662009A3 (en) Compact arrangement of LED lamp and compact LED bulb
CN101776227B (en) LED light assembly and LED street light
TW201111696A (en) Customizable, long lasting, thermally efficient, environmentally friendly, solid-state lighting apparatuses
US9644829B2 (en) Systems and methods for providing a field repairable light fixture with a housing that dissipates heat
KR20130060392A (en) Led floodlight
CN101440950A (en) High power LED illumination road lamp
CN201547569U (en) Novel LED projection lamp
CN202303074U (en) LED (light emitting diode) tube light
CN211059918U (en) Projecting lamp device with novel bleeder vent