TW201111436A - Composite high heat conduction epoxy resin polymer material and substrate thereof - Google Patents

Composite high heat conduction epoxy resin polymer material and substrate thereof Download PDF

Info

Publication number
TW201111436A
TW201111436A TW98131490A TW98131490A TW201111436A TW 201111436 A TW201111436 A TW 201111436A TW 98131490 A TW98131490 A TW 98131490A TW 98131490 A TW98131490 A TW 98131490A TW 201111436 A TW201111436 A TW 201111436A
Authority
TW
Taiwan
Prior art keywords
epoxy resin
thermal conductivity
high thermal
composite
composite high
Prior art date
Application number
TW98131490A
Other languages
Chinese (zh)
Inventor
Te-Ming Chiu
Chun-Chen Yang
Yan-Tyng Lin
Shyh-Cherng Kuo
Original Assignee
Te-Ming Chiu
Cairo Circuit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Te-Ming Chiu, Cairo Circuit Co Ltd filed Critical Te-Ming Chiu
Priority to TW98131490A priority Critical patent/TW201111436A/en
Publication of TW201111436A publication Critical patent/TW201111436A/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention relates to a composite high heat conduction epoxy resin polymer material prepared by using soft epoxy resin, thermosetting epoxy resin, a curable agent, an accelerating agent, and a chemical-modified high heat conduction filler. The composite high heat conduction epoxy resin polymer material is doped with the ball milling manner to control the uniform distribution of the filler in the epoxy resin material so as to obtain the high heat conduction function. The chemical-modified formula is silicone coupling agent that can increase the interface adhesion of organic and inorganic materials and improve the problem or defect of worse heat dissipation of the conventional epoxy resin.

Description

201111436 六、發明說明: 【發明所屬之技術領域】 本發明係有關以球磨法(Ball-milled method)製備複合式高導 熱性環氧樹脂南分子材料,該複合式高導熱性環氧樹脂高分子材 料可應用在二片銅箔之間,使其導熱係數大於彳w/mK,最高可達 3_4 W/mK ’且具有可撓性及耐高溫的特性。 【先前技術】 按一般在高分子及無機材料常有混合不均勻的嚴重問題,以 致無法發揮複合材料應有的特性,尤其是熱傳導功能,其主要是 • 分散不均及許多界面(9「加boundary)的存在,使熱子(ph〇n〇n)無 法有效傳導。 因此’許多電子產品在輸入的電能中2〇〜30%會轉換成光能釋 出,其餘的80~75%則是轉變成熱能,愈高功率的電子產品產生 的熱能也愈多’譬如:發光二極體(LED)、行動電腦、pda、手機、 攝影機專電子產品。當電子產品的封裝結構無法有效地將產生的 熱能有效的排出產品外時,便會不斷地累積在元件内部,使電子 產品在使用操作時,溫度上升,導致效率降低及壽命變短的問題, 尤其疋電腦及發光一極體的散熱問題特別嚴重,如何有效的解決 # 這種問題是目前許多電子業極需解決之問題。 有關複合式尚導熱性高分子材料之開發研究,在1998年, Ishida和Rimdusit等人,在聚苯並噁嗓(po|ybenzoxazjne)中加入 78.5 vol% (或88wt·%)的氮化硼(boron nitride, BN)熱傳導係數(其 中k,q = -k(DT/dx) ’其中q為熱通量(heat flux W/m2),k為熱傳導 係數W/mK ’而dT/dx為溫度梯度)可高達32.5W/mK。其中氮化硼 的粒徑的大小包含9、45、75、225μηι,其熱傳導係數大小與填 充材料(fillers)添加量息息相關,當氮化硼為33vol%時,k值為1.5 W/mk,至54 vol%時,k值為8.56 W/mK。 在2002年’ Yu等人研究聚苯乙稀/氮化紹(p〇|ystyrene 201111436 /Aluminum nitride,PS/ΑΙΝ)複合式高分子材料的熱傳導性質, kPS=0.15 W/mK,kA|N=160 W/mK,加入 10 vol% AIN 時,PS/AIN 複合式高分子材料的熱傳導係數在0.286〜0.326 W/mK之間,但改 善成效並不大。在2002年,Weidenfeller等人(Composites)研究 PP/PE聚合物(polymer)及聚醯胺(polyamide) 6加入高熱傳導性 質的磁鐵礦(magnetite,即Fe304,粒徑為9〜180μηι,k值為9.7 W/mK)填充材料,實驗結果發現複合式高分子材料的熱傳導係數 由0.22增加至〇_93 W/mK(加入44% Fe3〇4填充材料),而理論推算 渗渡閾值(percolation threshold)為33%。 於2004年’同樣的 ’ Weidenfeller等人(Composites)研究 polypropylene(聚丙烯,PP)中加入標準高熱傳導性質的填充材 料’例如磁性材料(magnetics)、重晶石(barite)、滑石(talc),銅 (copper)、總(strontium)及玻璃纖維(glass fibres)等,實驗結果發 現複合式高分子材料的熱傳導係數由0.27增加至2.50 W/mK(加入 30%滑石填充材料)’加入太多造成互相連接(jnterconnectivity)不 佳,故熱傳導係數不能大幅提昇。 2005年’ Sim等人研究在石夕膠(silicone rubber)中加入AI2〇3及 ZnO填充材料(而其中各成份的熱傳導係數如下:kSR=0.18 W/mK ’ kAI2O3=30 W/mK,kZnO=60 W/mK),添加量0〜1〇wt.%, 實驗結果發現複合式高分子材料的熱傳導係數由0.18增加至 0.2598 W/mK。2006年,Lee等人研究環氧樹脂添加混合(hybrid) 填充材料,例如氮化鋁(AIN)、SiC、氮化硼(BN),AIN添加量 0~75vol°/〇,熱傳導係數由0.35增加至2.27 W/mK。而添加60% AIN 時,再經由鈦酸(titanate)偶合劑處理過,,熱傳導係數由2.01增 加至2_42 W/mK。加入50% BN時,熱傳導係數至3_66 W/mK。在 2007年,Zhou等人研究HDPE中加入BN (10〜30%),熱傳導係數 由0.20增加至1.20 W/mK。他們以二種不同方法製備,即使用粉 末混合(powder mixing)及炫化混合(melted mixing),並比較 201111436201111436 VI. Description of the Invention: [Technical Field] The present invention relates to a composite high thermal conductivity epoxy resin molecular material prepared by a ball-milled method, which is a composite high thermal conductivity epoxy resin polymer. The material can be applied between two copper foils with a thermal conductivity greater than 彳w/mK, up to 3_4 W/mK′ and flexibility and high temperature resistance. [Prior Art] According to the general problem that the polymer and inorganic materials often have uneven mixing, the characteristics of the composite material cannot be exerted, especially the heat conduction function, which is mainly • uneven dispersion and many interfaces (9 “plus The existence of boundary, so that the heat (ph〇n〇n) can not be effectively conducted. Therefore, 'many electronic products in the input electrical energy 2 〇 ~ 30% will be converted into light energy release, the remaining 80 ~ 75% is Turning into heat, the higher the power of electronic products, the more heat is generated, such as: LEDs, mobile computers, PDAs, mobile phones, and camera electronics. When the packaging structure of electronic products cannot be effectively produced When the heat is effectively discharged from the product, it will continuously accumulate inside the component, causing the temperature of the electronic product to rise during use, resulting in a decrease in efficiency and a shortened life, especially in the heat dissipation of the computer and the light-emitting body. Especially serious, how to solve it effectively# This kind of problem is a problem that many electronic industries need to solve now. The research on the development of composite thermal conductivity polymer materials is in 1 In 998, Ishida and Rimadusit et al. added 78.5 vol% (or 88 wt.%) boron nitride (BN) heat transfer coefficient (where k, q = -) to polybenzoxazole (po|ybenzoxazjne). k(DT/dx) 'where q is the heat flux W/m2, k is the heat transfer coefficient W/mK ' and dT/dx is the temperature gradient) up to 32.5 W/mK. The size of the diameter includes 9, 45, 75, 225 μm, and the thermal conductivity coefficient is closely related to the amount of filler added. When the boron nitride is 33 vol%, the k value is 1.5 W/mk, and 54 vol%, k The value is 8.56 W/mK. In 2002, Yu et al. studied the thermal conductivity of polystyrene/nitriding (p〇|ystyrene 201111436 /Aluminum nitride,PS/ΑΙΝ) composite polymer materials, kPS=0.15 W /mK,kA|N=160 W/mK, when 10 vol% AIN is added, the thermal conductivity of PS/AIN composite polymer material is between 0.286~0.326 W/mK, but the improvement is not very effective. In 2002 , Weidenfeller et al. (Composites) studied PP/PE polymer (polymer) and polyamide 6 to add high thermal conductivity magnetite (magnetite, ie Fe304, particle size 9~180 The μηι,k value is 9.7 W/mK). The experimental results show that the thermal conductivity of the composite polymer material increases from 0.22 to 〇_93 W/mK (adding 44% Fe3〇4 filler), and the theoretical calculation of the seepage The percolation threshold was 33%. In 2004 'the same' Weidenfeller et al. (Composites) studied the addition of standard high thermal conductivity filler materials such as magnetics, barite, talc to polypropylene (PP, PP), Copper, strontium and glass fibres, etc., the experimental results show that the thermal conductivity of composite polymer materials increased from 0.27 to 2.50 W / mK (add 30% talc filler) The jnterconnectivity is not good, so the heat transfer coefficient cannot be greatly improved. In 2005, Sim et al. studied the addition of AI2〇3 and ZnO fillers to silicone rubber (where the thermal conductivity of each component is as follows: kSR=0.18 W/mK ' kAI2O3=30 W/mK, kZnO= 60 W/mK), the addition amount is 0~1〇wt.%. The experimental results show that the thermal conductivity of the composite polymer material increases from 0.18 to 0.2598 W/mK. In 2006, Lee et al. studied epoxy resin hybrid hybrid materials, such as aluminum nitride (AIN), SiC, boron nitride (BN), AIN addition amount 0~75vol ° / 〇, heat transfer coefficient increased by 0.35 To 2.27 W/mK. When 60% AIN was added, it was treated with a titanate coupling agent, and the heat transfer coefficient was increased from 2.01 to 2_42 W/mK. When 50% BN is added, the heat transfer coefficient is 3_66 W/mK. In 2007, Zhou et al. studied the addition of BN (10~30%) to HDPE, and the heat transfer coefficient increased from 0.20 to 1.20 W/mK. They were prepared in two different ways, using powder mixing and melted mixing, and compared 201111436.

MaxweN-Eucken及Bruggeman models的預測值。 2007年’ He等人研究聚苯乙烯(Polystyrene)樹脂添加Si3N4 填充材料應用在電子封裝(e|ectronic packagjng)上,實驗結果發現 AIN添加SbN4至40wt·%時’其熱傳導係數3·00 w/mK,同時發現 有矽烷(silane)界面活性(iwt.〇/〇在乙醇中),以 NH2-(CH2)3Si-(OC2H3)3> 處理為較佳。又 2〇〇7 年,Zhou (Thermochimica acta)等人研究HDPE/ΒΝ複合式高分子材料的熱 傳導係數’實驗結果發現由〇·3〇增加至1.30 W/mK。 由前述之技術文獻觀之,其實驗結果的複合式高分子材料與 • 有機及無機材料的界面具有附著力不佳,以及散熱不良的問題或 缺點,而亟待改善。 【發明内容】 本發明主要目的在於提供一種複合式高導熱性環氧樹脂高分 子材料,其係利用^一種不同性質,例如軟型、可繞性熱固型環氧 樹脂、硬化劑、矽氧烷偶合劑,以及一高導熱性填充材料製備而 成。該複合式高導熱性環氧樹脂高分子材料是以球磨法(ba丨丨_mj丨丨ed) 來進行製備摻合可有效控制填充材料在高分子材料中的均勻分 佈,以達到高熱傳導之功能。 _ 為達成上述之目的,本案所採取之技術手段係提供一種複合 式高導熱性環氧樹脂高分子材料,其包括: 一種軟型環氧樹脂及一種可撓性熱固型環氧樹脂,其中該軟 型環氧樹脂佔該全部高分子成分之重量百分比係介於彳〇%至6〇% 之間; 一種硬化劑,係於一固化溫度下固化該熱固型環氧樹脂,其 中該硬化劑佔該高分子成分之體積百分比係介於彳%至4〇%之間 一種矽烷偶合劑,其中該偶合劑佔該高分子成分之重量百分 比係介於0.1%至1〇〇/0之間;以及 一種高導熱無機填充材料,其係均勻分散於該環氧樹脂高分 201111436 子成分中’且佔該尚導熱電絕緣填充材料之重量百分比係介於】% 至80%之間;其中該複合式高導熱性高分子材料具有均句結構, 且導熱係數係(k)大於1 W/mK。 本發明主要目的在於提供—種複合式高導紐環氧樹脂高分 其可改4過去電子產品及元狀轉基板賴不良、熱 傳導係數低、製程繁複、影響使用壽命等缺點。 一為達成上述之目的,本案所採取之技術手縣提供一種複合 式兩導熱性環氧樹脂高分子基板,其包括: 一第一金屬層; • 一第二金屬層;以及 一高導熱電絕緣高分子材騎,其透結構且導熱 係數大於1 W/mK’該高導熱電絕緣高分子材料層 一 金屬層之間並形成接合;其中該高;熱電絕ί高 分子材枓層的厚度在0.]^ mm。 -導本發明的實施’其所增益之功效在於,該複合式 同導衣氧树脂咼分子材料是以球磨法來 脂材料中的均勻分佈’從而獲得高熱傳 馨方係ΐ石夕氧二1在1Ό〜4OWmK之間。再者’該化學改質配 =^氧燒偶合劑,其可增加有機及無機材料的界面附著力, w 二二改善一般環氧樹脂散熱不良的問題或缺點’且具有可撓 性及耐南溫的特性,可應用在許多電子零件或電子產口上且右炻 佳的絕緣及_特性,尤其是優異的熱傳導功^ 具有極 【實施方式】 氧樹脂、熱_環氧難、硬化劑、加速促進劑, 高分子材料係應用球磨法 理,以接曰勒i備在间導熱填充材料上做表面化學改質處 導教性果’且藉由該球磨法可製備出具「可挽性」高 ϋϊ Γ向分子材料。本發明所採用的原料包括:軟型環 以及以偶合劑 201111436 進行表面處理過之高導熱填充材料。 本發明係將一液態軟型(含有橡膠)環氧樹脂(liquid epoxy resin,NPER-450,南亞塑膠公司產品),並加入由矽烷偶合劑 (silane coupling agent)處理完成的高導熱塡充材料,例如a丨2〇3 及氮化鋁(AIN)、硬化劑,以及熱固型環氧樹脂(DER-732, Dow化 學製品公司生產)攪拌使之均勻後,使用球磨機攪拌均勻。使用球 磨機目的在於將高導熱填充材料能夠均勻分散至樹酯中。隨即, 以塗佈機内之三滾輪進行攪拌,使之混合均勻,該滾輪攪拌目的 在於將球磨機未完全分散的顆粒,全部研磨均勻且均勻混合。 • 前述均勻分散的複合式環氧樹脂材料待一切就緒後,便進入 烘烤線做交聯聚合反應,待顏料到達作業黏度後,便將金屬箔板, 例如銅用壓合機均勻壓過,使之貼合,並用裁切機裁出適當 大小,即可完成複合式高導熱性環氧樹脂高分子基板的製備工 作,並可做熱傳係數據(k)的量測分析。 、所以藉由前述的說明,可以發現本發明以物理方法,例如 磨法製備’以應用不鏽鋼球之切割力讓高導熱塡充材料可以 ,均勻。另外以化學法改質’加人魏界面偶合娜改善界面不 2的問題。其中組成材料選擇使用軟型環氧樹脂、熱固型環氧 硬化^1速促_,以及高導熱係數的無機材料做摻^ 改質加工而製成向導熱塡充材料。 依據應用目的不同,可以使用二種性曾 二,劑、加速劑及高導熱填充材_===== =。當加人軟型環氧翻旨’環氧樹脂可改質加工製 破璃轉性高分子材料’由_實驗分析Ϊ現盆 程序、化⑽财、罐#、法 而此高導熱性環氧樹脂材料成品的熱性質、表面 201111436 數均做m分析_仙實驗實施例說 =出的複合式高導錄環氧樹郎分子材料可運用在各=子 零件及產品,例如發光一極體、行動電話、電腦中。 本發明同時發現各種高導熱性無機材料,例如Predicted values for MaxweN-Eucken and Bruggeman models. In 2007, He et al. studied the polystyrene (Polystyrene) resin and added Si3N4 filler on the electronic package (e|ectronic packagjng). The experimental results showed that AIN added SbN4 to 40wt·% when its heat transfer coefficient was 3.00 w/ mK was also found to have a silane interfacial activity (iwt.〇/〇 in ethanol), preferably NH2-(CH2)3Si-(OC2H3)3>. In another 2-7 years, Zhou (Thermochimica acta) et al. studied the heat transfer coefficient of HDPE/ΒΝ composite polymer materials. The experimental results were found to increase from 〇·3〇 to 1.30 W/mK. From the above-mentioned technical literature, the experimental results of the composite polymer material and the interface between the organic and inorganic materials have poor adhesion, and problems or disadvantages of poor heat dissipation, and need to be improved. SUMMARY OF THE INVENTION The main object of the present invention is to provide a composite high thermal conductivity epoxy resin polymer material, which utilizes a different property, such as a soft, recyclable thermosetting epoxy resin, a hardener, and a helium oxygen. An alkane coupling agent and a highly thermally conductive filler material are prepared. The composite high thermal conductivity epoxy resin polymer material is prepared by ball milling method (ba丨丨_mj丨丨ed) to effectively control the uniform distribution of the filler material in the polymer material to achieve high heat conduction. Features. _ In order to achieve the above objectives, the technical means adopted in this case is to provide a composite high thermal conductivity epoxy resin polymer material, which comprises: a soft epoxy resin and a flexible thermosetting epoxy resin, wherein The soft epoxy resin accounts for between 彳〇% and 6% by weight of the total polymer component; a hardener which cures the thermosetting epoxy resin at a curing temperature, wherein the hardening The amount of the polymer component is between 彳% and 〇%, and a decane coupling agent, wherein the coupling agent accounts for 0.1% to 1〇〇/0 by weight of the polymer component. And a highly thermally conductive inorganic filler material uniformly dispersed in the epoxy resin high score 201111436 subcomponent 'and the weight percentage of the thermally conductive electrically insulating filler material is between 5% and 80%; The composite high thermal conductivity polymer material has a uniform sentence structure, and the thermal conductivity coefficient (k) is greater than 1 W/mK. The main object of the present invention is to provide a composite high-conductivity epoxy resin high score, which can be modified in the past, such as poor electronic products and meta-transfer substrates, low heat transfer coefficient, complicated process, and long service life. In order to achieve the above objectives, the technology adopted in this case provides a composite two-layer thermal conductive epoxy polymer substrate comprising: a first metal layer; a second metal layer; and a high thermal conductivity electrical insulation. The polymer material rides through the structure and has a thermal conductivity greater than 1 W/mK'. The high thermal conductive electrically insulating polymer material layer forms a joint between the metal layers; wherein the height is high; the thickness of the thermoelectric layer of the polymer layer is 0.]^ mm. - The implementation of the present invention has the effect of gaining in that the composite gas-conducting oxime molecular material is a uniform distribution in the fat material by ball milling to obtain a high heat-transferring enamel system. Between 1Ό~4OWmK. Furthermore, 'the chemical modification is equipped with an oxygen-fired coupling agent, which can increase the interfacial adhesion of organic and inorganic materials, and the second or second to improve the problem or defect of poor heat dissipation of the general epoxy resin' and has flexibility and resistance to the south. The temperature characteristics can be applied to many electronic parts or electronic products, and the right insulation and _ characteristics are excellent, especially the excellent heat conduction work. [Embodiment] Oxygen resin, heat _ epoxy hard, hardener, acceleration Promoter, polymer material is applied by ball milling method, and the surface of the thermal conductive filling material is used to make the surface chemical modification. The ball-milling method can be used to prepare the "releasable" sorghum. Aiming at molecular materials. The raw materials used in the present invention include: a soft ring and a highly thermally conductive filler material surface-treated with a coupling agent 201111436. The invention relates to a liquid epoxy resin (NPER-450, a product of Nanya Plastics Co., Ltd.) and a high thermal conductivity filling material which is processed by a silane coupling agent. For example, a丨2〇3 and aluminum nitride (AIN), a hardener, and a thermosetting epoxy resin (DER-732, manufactured by Dow Chemical Co., Ltd.) are stirred and homogenized, and then uniformly stirred using a ball mill. The purpose of using a ball mill is to uniformly disperse the highly thermally conductive filler material into the resin. Immediately, the three rollers in the coater were stirred to uniformly mix, and the purpose of the roller agitation was to uniformly and uniformly mix the particles which were not completely dispersed in the ball mill. • After the above-mentioned uniformly dispersed composite epoxy resin material is ready, it enters the baking line for crosslinking polymerization. After the pigment reaches the working viscosity, the metal foil plate, such as copper, is uniformly pressed by the press machine. By fitting it and cutting out the appropriate size with a cutting machine, the preparation of the composite high thermal conductivity epoxy resin polymer substrate can be completed, and the thermal transmission data (k) can be measured and analyzed. Therefore, by the foregoing description, it can be found that the present invention is prepared by a physical method such as a grinding method to make the high thermal conductive filling material uniform and uniform by applying the cutting force of the stainless steel ball. In addition, the chemical method is used to improve the problem of adding the interface of the Wei interface to improve the interface. Among them, the constituent materials are selected to be made of soft epoxy resin, thermosetting epoxy hardening, and high thermal conductivity inorganic material for the modification and processing. Depending on the application, two properties, agents, accelerators and high thermal conductivity fillers can be used _===== =. When adding a soft epoxy to turn the 'epoxy resin can be modified to process the glass-transition polymer material' from the experimental analysis of the potted process, the chemical (10), the can #, and this high thermal conductivity epoxy The thermal properties of the finished resin material and the number of surface 201111436 are all analyzed. _ The experimental example of the invention is that the composite high-index epoxy resin molecular material can be applied to each sub-part and product, such as a light-emitting body. Mobile phone, computer. The invention also finds various high thermal conductivity inorganic materials, for example

^ SiC;BeO ^ MgO ^ ΖηΟ ^ ΒΝ ^ 3Ι3Ν4.4 AIN/Al2〇3. SiC/;N 的百刀比在20〜80/〇之間效果最佳,且其中混合(hybrid):種尺寸 H同的高導熱無機填充材料效果更佳。本發明製備的複合式 向導熱性環騎脂高分子㈣制在二片金屬層,卿該第一、^ SiC;BeO ^ MgO ^ ΖηΟ ^ ΒΝ ^ 3Ι3Ν4.4 AIN/Al2〇3. The best ratio of SiC/;N is between 20~80/〇, and hybrid: type size H The same high thermal conductivity inorganic filler material works better. The composite guide thermal ring riding fat polymer (4) prepared by the invention is made in two metal layers, and the first one is

=金屬層實施時可選自鋪、賴、不鏽鋼料各種不同 備合成具高導熱性及可撓式之基板,它的導熱係數大 於1 W/mK’最高可達3.4 W/mK,且具有可撓性及邮溫的特性, J應用在許多電子零件或電子產品上具有極佳的絕緣及枯著特 性,尤其是據有極佳的熱傳導的功能。 請參閱圖1’其係詳細揭露本發明複合式高導熱性環氧樹脂高 为子材料及其基板的製備流程: Μ产步驟1:於不鏽鋼容器中加入NPER_45〇 (液態軟型(含有橡膠) 環氧樹脂,南亞塑膠公司生產)、MTHPA2(甲基四氣苯肝(Methyl= The metal layer can be selected from paving, laying, and stainless steel materials. It has a high thermal conductivity and flexible substrate. Its thermal conductivity is greater than 1 W/mK' up to 3.4 W/mK. Flexibility and postal temperature characteristics, J applications have excellent insulation and dryness properties in many electronic parts or electronic products, especially for excellent heat transfer. Please refer to FIG. 1 ' in detail for exposing the preparation process of the composite high thermal conductivity epoxy resin high sub-material and the substrate thereof. Step 1: Add NPER_45 不锈钢 in a stainless steel container (liquid soft type (containing rubber) Epoxy resin, produced by Nanya Plastics Co., Ltd.), MTHPA2 (methyl tetraphenyl benzene (Methyl)

Tetra Hydrophthalic Anhydride),硬化劑,南亞塑膠公司生產)、 AI2=3(Sigma-AldriCh公司生產)、DER_732 (可撓性環氧樹脂,D〇w 化學製品公司生產),以及4ME (加速促進劑,Sjgma_A|drich公司 生產)’其中,該八丨2〇3先經i〇/〇 sj|ane-1120 (例如γ-胺基-丙基甲 基二甲氧基矽烷)在乙醇處理過,而可撓性環氧樹脂含有聚矽氧 (silicone) ’ 且其環氧當量(ep〇xy eqUjva|ent wejght)為 310〜330g/eq。將該等組成材料預先攪拌約1小時,使之形成初 步分散。 女裝好球磨機’並且檢查機具内抽水馬達與水位,使該球磨 機得以正常運作。 步驟2 :待組成材料攪拌均勻後,先開啟循環馬達,並將組成 201111436 材料移至球磨機内授拌,並以300rpm速度搜拌約3小時。步驟2 目的在於使高導熱填充材料的顆粒能夠非常地均勻分散,並且使 填充材料看不見顆粒。其中,球磨機内不鏽鋼球數與組成材料比 為10 : 1,轉速在300rpm以下。 步驟3 :將混合物從球磨機移出之後,再使用塗佈機内之三滾 輪進行攪拌,使之再一次的均勻混合。使用滾輪攪拌的目的在於 可使填充材料均勻混合,也可使球磨機少部份未完全分散的小顆 粒全部攪拌,並且非常均勻混合。其中,為了達到均勻混合的目 的,故調整三滚輪間距在〇.〇4mm以下。 步驟4:待一切就緒之後,調整好塗佈機的間距與銅箔基板(或 聚對苯二甲H(PET)膜),使之左右羽且牢固,塗佈前先 開啟乾燥線,使第一段烘箱到達5〇〜1〇〇〇c、第二段烘 100〜150oC ’方能進入乾燥線。 ’、 步驟5 :將複合材料均勻緩慢倒入塗佈機,並且使銅箱基板緩 慢的進入乾燥線進行交聯聚合。 1"20 ^ =7 :當複合材料到達適當黏度後,將銅制壓合機壓過, 使之粘&,之後使用裁切機裁出適當大小。 日#,I,’將裁切好的樣品’再以15〇〇c乾燥至少1小 可撓式複合式環^脂^^聯反應’即賴出高導熱性及 首先======刪樣品時, wei^ 400.00g/eq , mbber.based it 201111436 生產)MTHPA2 (曱基四氫苯昕(Methyl Tetra Hydrophthalic Anhydride)’即馬來酸酐及異戊二烯的縮合物之硬化劑,南亞塑膠 △司生產)、八丨2〇3(先經1〇/〇 snane_ii2〇 (例如γ_胺基-丙基曱基二 甲氧基石夕院)在乙醇處理過)、DER-732 (環氧當量為310-330 g/eq,含聚矽氧之可撓性環氧樹脂,D〇w化學製品公司生產),以 及4ME (加速促進劑,Sigma-Aldrich公司生產)。將該等組成材料 預先授拌約1小時,使之初步分散。 該兩種環氧樹脂不會產生任何相分離’亦即呈現出單一相。 本發明製備時係以球磨機進行,不鏽鋼球數:樹脂=5:1至1〇:1之 鲁間’轉速為300〜500 rpm ’時間2〜4小時,於常溫常壓下操作 控制分散均勻度。其中,添加高導熱性的八丨2〇3粉末(經1wt%的Tetra Hydrophthalic Anhydride), hardener, manufactured by Nanya Plastics Co., Ltd., AI2=3 (manufactured by Sigma-AldriCh), DER_732 (flexible epoxy resin, manufactured by D〇w Chemical Co., Ltd.), and 4ME (acceleration accelerator, Produced by Sjgma_A|drich) 'where the gossip 2〇3 is first treated with i〇/〇sj|ane-1120 (eg γ-amino-propylmethyldimethoxydecane) in ethanol, but The flexible epoxy resin contains polysilicon and has an epoxy equivalent (ep〇xy eqUjva|ent wejght) of 310 to 330 g/eq. The constituent materials were previously stirred for about 1 hour to form a preliminary dispersion. Women's good ball mills' and check the pumping motor and water level in the machine to make the ball mill work properly. Step 2: After the materials to be mixed are evenly mixed, first turn on the circulation motor, and transfer the composition 201111436 material to the ball mill for mixing, and mix at 300 rpm for about 3 hours. The purpose of step 2 is to enable the particles of the highly thermally conductive filler material to be dispersed very uniformly and to make the filler material invisible to the filler material. Among them, the ratio of the number of stainless steel balls to the composition of the ball mill is 10:1, and the rotation speed is below 300 rpm. Step 3: After the mixture was removed from the ball mill, it was stirred using a three-roller in the coater to uniformly mix it again. The purpose of using the roller to stir is to uniformly mix the filler material, and to stir all of the small particles of the ball mill which are not completely dispersed, and to mix them very uniformly. Among them, in order to achieve the purpose of uniform mixing, the pitch of the three rollers is adjusted to be less than 4 mm. Step 4: After everything is ready, adjust the distance between the coater and the copper foil substrate (or polyethylene terephthalate H (PET) film) to make it plumb and firm, and open the drying line before coating. A section of oven reaches 5〇~1〇〇〇c, and the second section is baked 100~150oC' to enter the drying line. Step 5: The composite material was uniformly poured into the coater uniformly, and the copper box substrate was slowly entered into the drying line for cross-linking polymerization. 1"20 ^ =7 : When the composite material reaches the proper viscosity, press the copper presser to make it stick & and then use a cutter to cut the appropriate size.日#,I,' will cut the sample' and then dry at least 1 small flexible compound ring grease at 15〇〇c, which means high thermal conductivity and first ====== When deleting samples, wei^ 400.00g/eq , mbber.based it 201111436 ) MTHPA2 (Methyl Tetra Hydrophthalic Anhydride) is a hardener for condensates of maleic anhydride and isoprene, South Asia Plastic △ Division), gossip 2〇3 (1〇/〇snane_ii2〇 (for example, γ-amino-propyl fluorenyl dimethoxy shixi) treated with ethanol), DER-732 (epoxy) The equivalent weight is 310-330 g/eq, a flexible epoxy resin containing polyoxymethylene, manufactured by D〇w Chemical Company, and 4ME (acceleration accelerator, manufactured by Sigma-Aldrich). The constituent materials were pre-mixed for about 1 hour to be initially dispersed. The two epoxy resins do not produce any phase separation, i.e., exhibit a single phase. The preparation of the invention is carried out by a ball mill, the number of stainless steel balls: resin = 5:1 to 1 〇: 1 between the Lu's speed of 300~500 rpm 'time 2~4 hours, operating under normal temperature and pressure to control the dispersion uniformity . Among them, adding high thermal conductivity of barium 2〇3 powder (via 1wt%

Silane-1120表面改質完成a丨2〇3粉末添加比例為〇姒%至33 wt_%’控制乾燥溫度交聯聚合乾燥時間為2〜3小時, 最佳條件是90分鐘下製備出的樣品,並以熱重分析儀(TGA)分析 (Perkim ElmerPyris 7,樣品:1020 mg, 10oC/min,N2環掊、、a, ,/衣,測 試在不同重量百分比率下本實施例之物質變化,實驗分析結果如 表一、圖2及圖3所示。由實驗結果發現可耐高溫至3〇〇〇c(圖2), 重量最大變化溫度在380〜390〇C之間(圖3)。 ’ 表一、於溫度150〜i6〇°c,9〇分鐘下,環氧樹脂+xwt.% Al2Q3 類型 溫度(°C) 25〇C 0% 0 10% 0 15% 0 20% 0 25% 0 27% 0 33% 0 100°C 0.4527 0.9398 0.8941 0.9392 1.6588 -0.8450 0.8136 25CTC 1.2571 2.797 Ί 8203 2.9254 2.5986 -0.1630 1.8174Silane-1120 surface modification completed a丨2〇3 powder addition ratio is 〇姒% to 33 wt_%' control drying temperature cross-linking polymerization drying time is 2~3 hours, the best condition is 90 minutes prepared sample, And analyzed by thermogravimetric analyzer (TGA) (Perkim ElmerPyris 7, sample: 1020 mg, 10oC/min, N2 ring, a, / /, tested the material change of this example at different weight percentages, experiment The analysis results are shown in Table 1, Figure 2 and Figure 3. It is found from the experimental results that it can withstand high temperatures up to 3〇〇〇c (Figure 2), and the maximum weight change temperature is between 380~390〇C (Figure 3). Table 1, at a temperature of 150~i6〇°c, 9〇 minutes, epoxy resin+xwt.% Al2Q3 type temperature (°C) 25〇C 0% 0 10% 0 15% 0 20% 0 25% 0 27 % 0 33% 0 100°C 0.4527 0.9398 0.8941 0.9392 1.6588 -0.8450 0.8136 25CTC 1.2571 2.797 Ί 8203 2.9254 2.5986 -0.1630 1.8174

350°C 19.028 19.7383 22.2984 17.4353 16.7731 16.5753 450°C ^5.3306^ 孑 7.9176— 72.9598 ^9.5363~ ^3.7905^ ^8.9257^ 57.4914— ^<2112 85.9759 ^¢5514-350°C 19.028 19.7383 22.2984 17.4353 16.7731 16.5753 450°C ^5.3306^ 孑 7.9176— 72.9598 ^9.5363~ ^3.7905^ ^8.9257^ 57.4914— ^<2112 85.9759 ^¢5514-

Il〇955 ,^5626 及2937 201111436 實施例2 材料1㈣複合式祕紐環驗脂高分子 矣面故暂二、':问導熱性Ai2。3粉末(經1过%的snane-1120 ㈣日f純例為33㈣,湖絲溫度在15〇°C, :熱重分析儀_測試在不同交聯聚合時間== ,質變化^驗分析結果如表二、圖4及圖Il〇955, ^5626 and 2937 201111436 Example 2 Material 1 (four) composite secret ring ring for the detection of fat polymer 矣 face, temporarily, ': ask thermal conductivity Ai2. 3 powder (1% by the amount of snane-1120 (four) day f The pure case is 33 (four), the lake wire temperature is 15 ° ° C, : thermogravimetric analyzer _ test in different cross-linking polymerization time ==, qualitative change test results as shown in Table 2, Figure 4 and

之溫至3〇〇〇C(圖4)’重量最大變化溫度在37CK395〇C AI2〇3填充材料進行交聯聚合的丁 表一、環乳樹脂+ 33 wt.% 結果 類型 溫度(°C) ~~~ 25aC~~~ —一· · 100°c 250〇C 350〇C A^C\°n 2小時 3小時 0 ~ 0 0.8316 ^~〇8036 1.3186 1.0976 14.9288 14.6921 ^OU 57.7591 57.0152 550〇C 64.0951 广 63.143 實施例3 材料樣口中例製備複合式高導熱性環氧樹脂高分子 中’:加鬲導熱性Α丨2〇3粉末(巳經由矽烷表面改質完 ^)〇添加比例為33鳴,控制乾燥溫度15〇〇c,Temperature to 3〇〇〇C (Fig. 4) 'Maximum weight change temperature at 37CK395〇C AI2〇3 filler material for cross-linking polymerization of Ding Table I, ring latex resin + 33 wt.% Result type temperature (°C) ~~~ 25aC~~~ —1· · 100°c 250〇C 350〇CA^C\°n 2 hours 3 hours 0 ~ 0 0.8316 ^~〇8036 1.3186 1.0976 14.9288 14.6921 ^OU 57.7591 57.0152 550〇C 64.0951 Wide 63.143 Example 3 Preparation of composite high thermal conductivity epoxy resin in the sample of the material sample: 'Additional thermal conductivity Α丨 2〇3 powder (巳 modified by 矽 表面 surface) ^ 〇 addition ratio is 33, control Drying temperature 15〇〇c,

Htachitrs^ ^ (sL, 古道^ 在同倍率下’所觀察樣品之側面結構分析,分析 j…補材料是否均勻分散在環氧樹g|#中。由圖中可看出古 ^性填充材料A丨2〇3可以均勻分散在環娜旨巾 = 果如圖6至圖11所示。 員鳅刀析…Htachitrs^ ^ (sL, ancient road ^ under the same magnification] the side structure analysis of the observed sample, analysis j... whether the supplementary material is evenly dispersed in the epoxy tree g|#. It can be seen from the figure that the ancient filling material A丨2〇3 can be evenly dispersed in the ring of the towel = fruit as shown in Figure 6 to Figure 11.

11 201111436 實施例4 本實施例依據實施例1製備複合式高導熱性環氧樹脂高分子 膜樣品中,添加高導熱性八丨2〇3粉末(巳經由矽烷表面改質完成), 添加比例為33 wt.% ;與無添加高導熱性α!2〇3粉末做為分析比 較’控制乾燥溫度150〜180oC,交聯聚合’乾燥時間為9〇分鐘 下所製備出的膜樣品,以能量分散X光譜儀(EDX/SEM system, Hitachi)分析化學組成性質’實驗分析結果有明顯的A丨(鋁)元素波 峰(peak)(主要是屬於八丨2〇3填充材料)如圖12及圖彳3所示。 實施例5 本實施例依據實施例1製備複合式高導熱性環氧樹脂高分子 膜樣品中’添加高導熱性AW3粉末(已經由石夕燒表面改質完成), 添加比例為〇〜33 wt_%,控制乾燥溫度150〜180〇c,交聯聚入乾 ^分鐘下所製備出的樣品,並以動態機械分“ 3MA)(TA,QA_8Ga T: 2G〜2⑻。c 5Qc/mjn 1Hz)測試在不同重量 2 m材料在不同溫度下的物性變化,實驗分析結果知道儲 存核式值(E ,儲存模數(storage m〇du|us))s 1〇6〜1〇 一 樹脂高分子材料的E,在1()9〜1G12 Pa之間,此i㈣ 二的二分子材料’如表三、表四及圖14至圖16所示,由ta_ 表三、於溫度180oC,90分鐘下,頊氦斟日匕+ ν * η, 六甘餘取人 卜衣氧树月曰+ X wt.% ΑΙ2〇3進行 乂聯I合的Ε,(儲存模數)值結果 12 201111436 E'(Pa) 0% 15% 20% 25% 27% 33% 40°C 8.90x106 2.50 x1〇7 8.32 x106 2.10 x1〇7 4.18 x1〇7 4.66 x1〇7 80°C 3.87x10® 6.40 x1〇6 3.04 x106 5.83 x106 8.37 x1〇6 8.00 x1〇6 120°C 3.22x10® 6.88 x1〇6 3.15 x106 5.95 x106 8.78 x1〇6 8.12 x1〇6 160°C 4.38x10® 7.41 x1〇6 3.49x106 6.32 x106 9.58 x1〇6 8.67 x1〇6 200°C 4.59x10® 7.97 x1〇6 4.42x10® 6.97 x106 1.05 x1〇7 9.36 x1〇6 表四、於溫度180°C ’ 90分鐘下’環氧樹脂+ xwt % ai2〇3進行 交聯聚合的tan(5)值 tan(5)值 0% 15% 20% 25% 27% 33% 40°C 6.25x10·1 7.41x1 O’1 7.62x1 O'1 6.66x101 5.86x10—1 7.31 x1〇1 80°C 1.03x10'2 2.56x1 CT2 7.71 x102 5.56x102 3.61x1〇-2 4.88x1 〇*2 120°C 1.36x1 O'3 8.26x10·3 1.84x102 1.34x1〇·2 1.63X10'2 1.44x1〇"2 160°C 2.67x1 O'3 9.31 x103 1.57X10·2 1.79X10'2 1.17x1〇-2 1.79x1 O'2 200°C 1.45X10·3 8.55x10·3 2.39x1 O'2 2.30x1 O'2 1.03X10·2 1.82X10211 201111436 Example 4 In this example, a composite high-thermal conductivity epoxy resin polymer film sample was prepared according to Example 1, and a high thermal conductivity barium dioxide powder (completed by decane surface modification) was added, and the ratio was 33 wt.%; compared with the non-added high thermal conductivity α!2〇3 powder as a comparison of 'control drying temperature 150~180oC, cross-linking polymerization' drying time is 9〇 minutes to prepare the film sample, with energy dispersion X-ray spectrometer (EDX/SEM system, Hitachi) analysis of chemical composition properties 'Experimental analysis results have obvious A丨 (aluminum) element peak (mainly belongs to gossip 2〇3 filling material) as shown in Figure 12 and Figure 3 Shown. Embodiment 5 This embodiment prepares a composite high-thermal conductivity epoxy resin polymer film sample according to the embodiment 1 'adding high thermal conductivity AW3 powder (which has been completed by the surface modification of Shi Xi-sing), and the addition ratio is 〇~33 wt_ %, control drying temperature 150~180〇c, cross-link the sample prepared in dry ^ minutes, and test with dynamic mechanical part "3MA" (TA, QA_8Ga T: 2G~2(8).c 5Qc/mjn 1Hz) The physical property changes at different temperatures of 2 m materials at different temperatures, the experimental analysis results know that the storage nucleus value (E, storage modulus (storage m〇du|us)) s 1〇6~1〇 a resin polymer material E, between 1 () 9 ~ 1G12 Pa, the i (four) two of the two molecular materials ' as shown in Table 3, Table 4 and Figure 14 to Figure 16, by ta_ Table 3, at 180 ° C, 90 minutes, 顼氦斟日匕+ ν * η, 六甘余取人布衣氧树月曰+ X wt.% ΑΙ2〇3 for 乂, I Ε, (storage modulus) value result 12 201111436 E'(Pa) 0% 15% 20% 25% 27% 33% 40°C 8.90x106 2.50 x1〇7 8.32 x106 2.10 x1〇7 4.18 x1〇7 4.66 x1〇7 80°C 3.87x10® 6.40 x1〇6 3.04 x106 5.83 x106 8.37 X1 6 8.00 x1〇6 120°C 3.22x10® 6.88 x1〇6 3.15 x106 5.95 x106 8.78 x1〇6 8.12 x1〇6 160°C 4.38x10® 7.41 x1〇6 3.49x106 6.32 x106 9.58 x1〇6 8.67 x1〇6 200 °C 4.59x10® 7.97 x1〇6 4.42x10® 6.97 x106 1.05 x1〇7 9.36 x1〇6 Table IV, tantalum polymerization at a temperature of 180 ° C '90 minutes 'epoxy resin + xwt % ai2〇3 (5) Value tan(5) value 0% 15% 20% 25% 27% 33% 40°C 6.25x10·1 7.41x1 O'1 7.62x1 O'1 6.66x101 5.86x10-1 7.31 x1〇1 80° C 1.03x10'2 2.56x1 CT2 7.71 x102 5.56x102 3.61x1〇-2 4.88x1 〇*2 120°C 1.36x1 O'3 8.26x10·3 1.84x102 1.34x1〇·2 1.63X10'2 1.44x1〇" 2 160°C 2.67x1 O'3 9.31 x103 1.57X10·2 1.79X10'2 1.17x1〇-2 1.79x1 O'2 200°C 1.45X10·3 8.55x10·3 2.39x1 O'2 2.30x1 O'2 1.03X10·2 1.82X102

實施例6 本實施例依據實施例1製備複合式高導熱性環氧樹脂高分子 材料樣品中,添加導熱性八丨2〇3粉末(巳經由矽烷表面改質完成 ,加比例為33 wt·% ’控制乾燥溫度wc ’交聯聚合時間分EXAMPLE 6 In this example, a composite high-thermal conductivity epoxy resin polymer material sample was prepared according to Example 1, and a thermal conductivity of barium oxalate 3 powder was added (the ruthenium was modified by decane surface, and the addition ratio was 33 wt.%). 'Control drying temperature wc 'crosslinking polymerization time

3小時下所製備出的樣品,並以動態機械分析儀(_,丁A 析…果如表五、表六及圖17至圖19所示。 —一 13 2〇1111436 表五、E,(儲存模數)值 E,(Pa) 33%用於2小時 33%用於3小昧 40°C 2.54x107 2.50χ1〇^~ ' 80°C 7.28x106 7.06χ1〇®~~ 120°C 7.74x10® 7.48x10® 160°C 8.15x10® 7.83χϊ〇6 200°C 7.84x10® 7.50χ1〇® ~ 表六、Tan(5)值 _ 溫度 ^ 40°C 53%用於2小時 7.55x10'1 33%用於3小瞎 7.51xl〇^ ^ 80°C 4.71χΐ〇-2 4.57x10^ 120°C 1.85χ1〇-2 1.91x1^ 160°C 1.49x102 2·03χΐ5^~ ' 200°C Γ 2.07x102 1_58xl5^~ ' 實施例7 本實施例依據實施例1製備複合式高導 ^樣品中,添加繼⑽_已經由^表 AI2〇3添加比例為〇〜33wt·%,控制乾燥溫度18〇〇c 為90分鐘下所製備出_品,並㈣式掃触 ΙΐΓ ,PynS 7, 1〇〇C/min,N2環境,丁: 20〜200〇C)測試在不 同重2:百分比率下材料的比熱變化,實驗分析結果都顯示交聯聚 合溫度應控制在150〜180°C為最佳,因DSC之波峰(Peak)在 148〜1490C之間,亦即在15〇〜18〇〇c之間即可完成,最佳為 150〜200°C之間即可完成,由於本發明的樣品可耐熱至3〇〇〇c ’ 因此’在150〜280oC之間,亦可為之,如圖20所示。 實施例8 201111436 本實施例將複合式高導熱性環氧樹脂高分子材料樣品中,所 使用的原、材料、化學品、添加物進行mjcr〇_Raman 膽, 514 及 633 nm laser,50X,sp〇t Size: ιμηΊ)顯微拉曼光譜分 =儀主要分析化學組成結構分析’以了解各種材料的特性組成(依 向導,,、、性填充材料(八丨2〇3)、硬化劑(mthpa2)、可 、加速促·(4ΜΕ),拉曼光譜實驗分析 結果如圖21至圖25所示。 實施例9 材料實T1製備高導熱性複合式環氧樹脂高分子 ^ tint 性Al2〇3粉末(巳經由石夕院表面改質完 成)’添加比例為33 wt.%,控制乾燥溫度15〇〇c 及3小時贼魏合所製備㈣樣品,並_微拉技譜分析儀 irjrrf=狀化合物喊與職分析,實齡析結果 發現化學組成都相同,如圖26所示。 實施例10 膜樣製備高導熱性複合式環氧樹脂高分子 180oC,疗將取人μ 就%,控制乾燥溫度 拉曼L二=不為同樣品,並以顯微 結構解析,實驗分析結果如圖Γ二下:=組同成與 實施例11 本實施例依據實施例1製備複合式 购樣品中,但添加導熱性⑽粉末論粉末 15 201111436 表面改質完成)混合’添加比例AI2〇3 : A|N為5 : 5、7 : 3、3 : 7, 控制乾燥溫度18G°C,交聯聚合舖_為9Q分鐘下所製備出的 樣品膜’並以 Laser Flash LFA-447 Modify ASTM E1461 分析其The sample prepared under 3 hours was measured by a dynamic mechanical analyzer (_, D, A, etc.) as shown in Table 5, Table 6 and Figure 17 to Figure 19. -13 2〇1111436 Table 5, E, ( Storage modulus) value E, (Pa) 33% for 2 hours 33% for 3 hours 40°C 2.54x107 2.50χ1〇^~ ' 80°C 7.28x106 7.06χ1〇®~~ 120°C 7.74x10 ® 7.48x10® 160°C 8.15x10® 7.83χϊ〇6 200°C 7.84x10® 7.50χ1〇® ~ Table VI, Tan(5) value _ temperature ^ 40°C 53% for 2 hours 7.55x10'1 33 % for 3 hours 瞎7.51xl〇^ ^ 80°C 4.71χΐ〇-2 4.57x10^ 120°C 1.85χ1〇-2 1.91x1^ 160°C 1.49x102 2·03χΐ5^~ ' 200°C Γ 2.07x102 1_58xl5^~ ' Example 7 In this example, a composite high-conductivity sample was prepared according to Example 1. The addition of (10)_ has been added from the table AI2〇3 to 〇~33wt·%, and the drying temperature is controlled to 18〇〇c. Prepared for 90 minutes, and (4) type 扫, PynS 7, 1〇〇C/min, N2 environment, D: 20~200〇C) Test the specific heat of the material at different weights 2: percentage ratio Changes, experimental analysis results show that the cross-linking polymerization temperature should be controlled at 150~180 C is the best, because the peak of the DSC (Peak) is between 148~1490C, that is, between 15〇~18〇〇c, and the best is between 150~200°C, because The sample of the present invention is heat resistant to 3 〇〇〇 c 'and thus 'between 150 and 280 ° C, or as shown in FIG. Embodiment 8 201111436 In this embodiment, the raw materials, materials, chemicals and additives used in the composite high thermal conductivity epoxy resin polymer material sample are subjected to mjcr〇_Raman biliary, 514 and 633 nm laser, 50X, sp 〇t Size: ιμηΊ) Micro Raman Spectroscopy = Instrument Analysis of Chemical Composition Structure Analysis to understand the composition of various materials (in accordance with the guide,,,,,,,,,,,,,,,,,,,,,,,,, The results of Raman spectroscopy experimental analysis are shown in Fig. 21 to Fig. 25. Example 9 Material T1 Preparation of High Thermal Conductivity Composite Epoxy Resin Polymer ^ tint Al2〇3 Powder (巳 via the surface modification of Shi Xiyuan) 'Addition ratio is 33 wt.%, control drying temperature 15 〇〇 c and 3 hours thief Wei He prepared (4) sample, and _ micro pull spectrum analyzer irjrrf = compound Shouting job analysis, real age analysis found that the chemical composition is the same, as shown in Figure 26. Example 10 film preparation of high thermal conductivity composite epoxy resin polymer 180oC, treatment will take the human μ%, control drying temperature Raman L II = not the same sample, and microscopic Structural analysis, experimental analysis results are shown in Fig. 2: = group formation and example 11 This example is prepared according to the preparation of the composite sample according to the embodiment 1, but the addition of thermal conductivity (10) powder theory powder 15 201111436 surface modification is completed) mixing 'Addition ratio AI2〇3 : A|N is 5 : 5, 7 : 3, 3 : 7, control drying temperature 18G ° C, cross-linking polymerization shop _ is the sample film prepared at 9Q minutes' and use Laser Flash LFA-447 Modify ASTM E1461 analyzes its

物性與化性,實驗分析結果如表所示,k值在彳61〜3 37W/mK 之間。 表七、熱傳導係數值 樣品名稱 (AI2〇3 : AIN) 厚度 (mm) 密度 (g/cm3) Cp (J/gK) 熱擴散係數 (mm2/s) 熱傳導係數 (W/mK) 5:5 0.820 2.056 1 〇AA 0.282 7:3 1.429 1 •yPH-H 2.128 1.806 1.955 0.315 1.212 3:7 0.647 2.352 1.820 0.298 3.375 實施例12The physical properties and chemical properties, the experimental analysis results are shown in the table, the k value is between 彳61~3 37W/mK. Table 7. Heat transfer coefficient value sample name (AI2〇3 : AIN) Thickness (mm) Density (g/cm3) Cp (J/gK) Thermal diffusivity (mm2/s) Heat transfer coefficient (W/mK) 5:5 0.820 2.056 1 〇AA 0.282 7:3 1.429 1 •yPH-H 2.128 1.806 1.955 0.315 1.212 3:7 0.647 2.352 1.820 0.298 3.375 Example 12

膜揭㈣1製備複合式高導錄環賴脂高分子 、’ ’】、、…、性Α丨2〇3粉末(巳經由矽烷表面改質完成),添 力:比例為0〜7〇被%,控制乾燥溫度180〇C,交聯聚合時=90Membrane (4) 1 Preparation of composite high-introduction ring lysate polymer, ' '], ..., Α丨 2 〇 3 powder (巳 through decane surface modification), Tim: the ratio is 0~7〇% , control drying temperature 180 〇 C, cross-linking polymerization = 90

EueT^l?"' ^" Laser Fl- 0.52〜2^WmK之,實齡減果如表八卿,k值在 201111436 表八、熱傳導係數值(thermal conductivity) AI2O3 填充材料(wt·%) 厚度 (mm) 密度 (g/cm3) Cp (J/gK) 熱擴散係數 (mm2/s) 熱傳導係數 (W/mK) 0% 0.336 2.677 1.674 0.112 0.528 33% 0.163 4.237 1.337 0.227 1.285 50% 0.330 2.924 1.712 0.230 1.415 60% 0.559 2.640 1.638 0.359 1.554 70% 0.787 2.465 1.722 0.505 2.145 實施例13 本實施例依據實施例1製備複合式高導熱性環氧樹脂高分子 材料樣品中,添加高導熱性AIN粉末(巳經由矽烷表面改質完成), 添加比例為Owt.%〜70 wt.%,控制乾燥溫度180°C,交聯聚合乾 燥時間為90分鐘下所製備出的樣品,並以Laser Flash method, LFA-447 Modify ASTME1461分析其物性與化性,實驗分析結果 如表九所示,k值在0.53〜2.37 W/mK之間。EueT^l?"' ^" Laser Fl- 0.52~2^WmK, the actual age reduction is as shown in Table 八卿, k value in 201111436 Table VIII, thermal conductivity value (thermal conductivity) AI2O3 filling material (wt·% Thickness (mm) Density (g/cm3) Cp (J/gK) Thermal diffusivity (mm2/s) Heat transfer coefficient (W/mK) 0% 0.336 2.677 1.674 0.112 0.528 33% 0.163 4.237 1.337 0.227 1.285 50% 0.330 2.924 1.712 0.230 1.415 60% 0.559 2.640 1.638 0.359 1.554 70% 0.787 2.465 1.722 0.505 2.145 Example 13 This example was prepared according to Example 1 to prepare a composite high thermal conductivity epoxy resin polymer material sample, adding high thermal conductivity AIN powder (巳Through the surface modification of decane), the addition ratio is Owt.%~70 wt.%, the drying temperature is controlled at 180 ° C, the cross-linked polymerization drying time is 90 minutes, and the sample is prepared by Laser Flash method, LFA- 447 Modify ASTME1461 analyzes its physical properties and chemical properties. The experimental analysis results are shown in Table 9. The k value is between 0.53 and 2.37 W/mK.

表九、熱傳導係數值(thermal conductivity) AIN (wt.%) 厚度 (mm) 密度 (g/cm3) Cp (J/gK) 熱擴散係數 (mm2/s) 熱傳導係數 (W/mK) 0% 0.336 2.677 1.764 0.112 0.528 33% 0.533 2.221 2.233 0.163 0.806 50% 0.690 2.135 2.019 0.254 1.096 65% 0.441 2.862 1.544 0.403 1.781 70% 0.844 2.323 1.947 0.524 2.369 17 201111436 本案所揭示者,乃較佳實施例之一種,舉凡局部之變更或修 飾而源於本案之技術思想而為熟習該項技藝之人所易於推知者, 倶不脫本案之專利權範疇。 【圖式簡單說明】 圖1為本發明複合式高導熱性環氧樹脂高分子材料及其 箔基板之製備流程圖。 'Table 9. Thermal conductivity AIN (wt.%) Thickness (mm) Density (g/cm3) Cp (J/gK) Thermal diffusivity (mm2/s) Thermal conductivity (W/mK) 0% 0.336 2.677 1.764 0.112 0.528 33% 0.533 2.221 2.233 0.163 0.806 50% 0.690 2.135 2.019 0.254 1.096 65% 0.441 2.862 1.544 0.403 1.781 70% 0.844 2.323 1.947 0.524 2.369 17 201111436 The present disclosure, which is one of the preferred embodiments, is a partial Any change or modification resulting from the technical ideas of this case and easy for people who are familiar with the skill can not be inferred from the patent right of this case. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing the preparation of a composite high thermal conductivity epoxy resin polymer material and a foil substrate thereof. '

% _下’魏娜進彼卿合反應之熱 分鐘下,魏翻旨紐交麟合反應之微 =為溫度150。(:下魏翻旨妨交雜合反狀鍾分析(似 (圖溫度15G°C下魏翻旨蹄交卿纽紅齡熱重量 250 ^A,2°3 t ^II^(SEM)^ _崎_子顯微鏡_)於 =====%_糊梅賴鏡剛於 ^ _式議微鏡_)於 ====7鱗蝴砸鏡剛 圖12為環氧樹脂無添加_3的能量分散χ光譜儀(edx)之分析 P . 201111436 圖13為環氧樹脂添加33飒 之分析圖。 。2 3的能量分散X光譜儀(EDX) 圖14為環氧樹脂添加X Wt.〇/Q Am E’(儲存模數)值分析圖。 2 3的動態機械分析儀(DMA)之 圖15為環氧樹脂添加χ埘% Ε”(儲存模數)值分析圖。。2 3的動態機械分析儀(DMA)之 圖16為環氧樹脂添加x赠 tan(5)值分析圖。 . 2 3的動態機械分析儀(DMA)之% _ 下' Wei Na into the heat of the reaction of the Qing dynasty, the minute of the Wei dynasty, the new accompaniment reaction = the temperature of 150. (: The next Wei reversal can be mismatched and mixed with the clock analysis (like (the temperature is 15G °C under the Wei 旨 蹄 交 卿 纽 New New Year's hot weight 250 ^ A, 2 ° 3 t ^ II ^ (SEM) ^ _崎子子Microscope_)_=====%_糊梅赖镜 immediately in ^ _式微镜_) in ====7 scale butterfly 刚 mirror just Figure 12 is epoxy resin without added _3 energy dispersion Analysis of χx spectrometer (edx) P. 201111436 Figure 13 is an analysis of the addition of 33 Å to epoxy resin. 2 3 Energy Dispersive X Spectrometer (EDX) Figure 14 is an epoxy resin addition X Wt.〇/Q Am E' (Storage modulus) value analysis diagram. Figure 2 shows the dynamic mechanical analyzer (DMA) of Figure 3 for the epoxy resin addition χ埘% Ε" (storage modulus) value analysis diagram. 2 3 dynamic mechanical analyzer ( Figure 16 of DMA) is an analysis of the epoxy resin addition x gift tan (5) value. 2 3 dynamic mechanical analyzer (DMA)

圖17為環氧樹脂添加33鲥0/ A E’(儲存模數)值分析圖。.。2ϋ3的動態機械分析儀(DMA)之 圖忉為環氧樹脂添加33哳〇/ E”(儲存模數)值分析圖。 2 3的動態機械分析儀(DMA)之 圖19為環氧樹脂添加33鲥 tan(5)值分析圖。 · W3的動態機械分析儀(DMA)之 圖20為環氧樹脂添加χ 分析圖。 ’。Α 2〇3的差式掃描熱分析儀(DSC) Z為液態軟型(含有橡膠)環氧樹脂(nper_45_顯微拉曼光 圖22為阿導熱性填充材料(A|2〇3)的顯微拉曼光譜圖。 圖23為硬化劑(MTHPA2)的顯微拉曼光譜圖。 圖24為可撓性環氧樹脂(DER-732)的顯微曼光譜圖。 圖25為加速促進劑(4ME)的顯微拉曼光譜圖。 圖26為為環氧樹脂添加33 wt.% A!2〇3的顯微拉曼光譜圖。 圖27為為環氧樹脂添加0 wt·%、10 wt·%、25 wt.%八丨2〇3的顯微 拉曼光譜圖。 【主要元件符號說明】 無0 19Fig. 17 is a graph showing the analysis of the addition of 33 鲥 0 / A E' (storage modulus) of the epoxy resin. . . . The dynamic mechanical analyzer (DMA) of 2ϋ3 is a 33哳〇/E” (storage modulus) value analysis diagram for epoxy resin. Figure 23 of the dynamic mechanical analyzer (DMA) of Figure 3 is added with epoxy resin. 33鲥tan(5) value analysis chart. · Figure 20 of W3 Dynamic Mechanical Analyzer (DMA) is an epoxy resin addition χ analysis chart. '.Α 2〇3 differential scanning thermal analyzer (DSC) Z is Liquid soft (with rubber) epoxy resin (nper_45_micro-Raman light pattern 22 is a microscopic Raman spectrum of A thermal conductive filling material (A|2〇3). Figure 23 is a hardener (MTHPA2) Microscopic Raman spectroscopy Figure 24 is a micromanogram of a flexible epoxy resin (DER-732) Figure 25 is a microscopic Raman spectrum of the acceleration accelerator (4ME) Figure 26 is a ring The micro-Raman spectrum of 33 wt.% A!2〇3 was added to the oxy-resin. Figure 27 is a micrograph of 0 wt·%, 10 wt·%, 25 wt.% 丨2〇3 added to the epoxy resin. Raman spectrum. [Main component symbol description] None 0 19

Claims (1)

201111436 七、申請專利範圍: 1_一種複合式高導熱性環氧樹脂高分子材料,其包括: 一種軟型(rubber based)環氧樹脂及一種可撓性(fiexjb|e)熱固 型環氧樹脂,其中該軟型環氧樹脂佔該全部高分子成分之重量百 分比係介於10%至60%之間; 一種硬化劑’係於一固化溫度下固化該熱固型環氧樹脂,其 中該硬化劑佔該高分子成分之體積百分比係介於彳%至4〇%之間; 一種矽烷偶合劑,其中該偶合劑佔該高分子成分之重量百分 比係介於0.1%至1〇〇/0之間;以及 φ 一種高導熱無機填充材料(inorganic fillers),其係均勻分散於 該環氧樹脂高分子成分中,且佔該高導熱電絕緣填充材料之重量 百为比係介於1%至80%之間;其中該複合式高導熱性高分子材 料具有均勻結構’且導熱係數係(k)大於1 w/mK。 2. 如申請專利範圍第1項所述之複合式高導熱性環氧樹脂高 分子材料,其中該軟型環氧樹脂及可撓性熱固型環氧樹脂為彼此 互溶。 3. 如申請專機_ 1 _狀複合式高導齡環氧樹脂高 分子材料’其中該固化溫度高於15〇〜2〇〇0C之間。 鲁 4_如巾請專·圍第1項所述之複合式高導錄環氧樹脂高 分子材料,其中該熱固型環氧樹脂中含有一超高分子量環氧基樹 脂。 土 5.如申請專·圍第4項所述之複合式高導紐環氧樹脂高 分子材料,其中該超高分子量環氧樹脂之環氧化當量(ep〇Xy equivalent weight,g/eq.)係介於 100〜50 000 之間。 八早利範圍第1項所述之複合式高導熱性環氧樹脂高 =材料,,中該軟型環氧樹脂係—種未固化之液態環氧樹脂, 八3有聚石夕氧(silicone)及/或橡膠(rubber)。 7_如申請專利範圍第1項所述之複合式高導熱性環氧樹脂高 20 201111436 ==料’其巾該可撓性熱_環氧樹脂係含有環氧基的環 月曰柯料。 八^㈣1撕狀複合式高導触環氧樹脂高 刀匕子材枓,料該細型環氧樹脂係為_環氧樹脂麵甲院樹 月曰0 請專,圍第!項所述之複*式高導熱性環氧樹脂材 料’,、中該軟型壞氧樹脂與該可撓性熱固型環氧樹脂可以 成單一相。 ^如申請巧細第彳撕狀複合式高導紐環氧樹脂材 料、、中雜質型壞氧樹脂包含一經基_環氧基樹脂峻高分子 11_如申請專利細第10項所述之複合式高導雜氧 ^分子材料,其中該羥基_環氧基樹脂醚高分子結__ 曰 氧化物與一雙官能基物種經聚合反應而成。 12_如申請專利範圍第彳項所述之複合式高導熱性 ==該熱固型環氧樹脂係由-液態可挽性環氧“ 13.如帽專利顧第彳項所述之複合式高導紐環氧樹 为子材料,其中該熱IU型樹脂係由—液態環氧樹脂與—二價酸反 應而成。 M_如申請專利範圍第1項所述之複合式高導熱性環氧樹脂 为子材料,其中該熱固型樹脂係由—液態環氧樹脂愈 (amines)反應而成。 ’、 、15.如申請專利範圍第]項所述之複合式高導熱性環氧樹脂高 为子材料’其中該高導熱填充材料為氮化物,其係係選自氮化錯、 亂化爛_、氮他_)、氮化♦_)或其混 σ ΑΙΝ+ΑΙ2〇3(=7:3)為最佳。 A Τ Μ 、16·如申請專利範圍第!項所述之複合式高導熱性環氧樹脂高 为子材料,其中該高導熱填充材料為氧化物,其係係選自氧化紹 Γ· ·了 Τ 21 201111436 (AkO3)、氧化鎂(Mg0)、氧化鋅(Zn0)、二氧化鈦(Tj〇2)或其混合 一 7.如申請專利範圍第1項所述之複合式高導熱性環氧樹脂高 尚分子材料,其中該高導熱填材料均需經矽烷界面偶合劑化 質’偶合劑量為0.1~30%之間。 18.—種複合式高導熱性環氧樹脂高分子基板,其包括: 一第一金屬層; 一第二金屬層;以及201111436 VII. Patent application scope: 1_ A composite high thermal conductivity epoxy resin polymer material, comprising: a rubber based epoxy resin and a flexible (fiexjb|e) thermosetting epoxy resin a resin, wherein the soft epoxy resin accounts for between 10% and 60% by weight of the total polymer component; a hardener 'cures the thermosetting epoxy resin at a curing temperature, wherein The hardener accounts for 5% to 4% by volume of the polymer component; and a decane coupling agent, wherein the coupling agent accounts for 0.1% to 1% by weight of the polymer component. And φ a highly thermally conductive inorganic filler material uniformly dispersed in the epoxy resin polymer component, and the weight of the high thermal conductive electrically insulating filler material is between 1% and 80%; wherein the composite high thermal conductivity polymer material has a uniform structure 'and a thermal conductivity coefficient (k) greater than 1 w/mK. 2. The composite high thermal conductivity epoxy resin high molecular material according to claim 1, wherein the soft epoxy resin and the flexible thermosetting epoxy resin are mutually soluble. 3. If applying for a special machine _ 1 _ composite high-grade epoxy resin high molecular material 'where the curing temperature is higher than 15 〇 ~ 2 〇〇 0C. Lu 4_如巾, please specializes in the composite high-profile epoxy resin high molecular material described in Item 1, wherein the thermosetting epoxy resin contains an ultra-high molecular weight epoxy resin. Soil 5. For the composite high-conductivity epoxy resin polymer material described in Item 4, wherein the epoxidation equivalent of the ultrahigh molecular weight epoxy resin (ep〇Xy equivalent weight, g/eq.) The system is between 100~50 000. The combination of the high thermal conductivity epoxy resin according to item 1 of the eight early benefit range = material, wherein the soft epoxy resin is an uncured liquid epoxy resin, and the eighth has a polysilicon oxide (silicone) ) and / or rubber (rubber). 7_The composite high-thermality epoxy resin as described in claim 1 is high. 201114636 ==Materials The flexible heat-epoxy resin is an epoxy-containing cyclohexyl ketone. Eight ^ (four) 1 tear-shaped composite high-conductivity epoxy resin high knife 匕 枓 material, the fine epoxy resin is _ epoxy resin face garden tree 曰 曰 0 Please, special! And the soft epoxy resin and the flexible thermosetting epoxy resin may be in a single phase. ^If applying for a fine-twisted composite high-impact epoxy resin, the intermediate-type impurity-containing epoxy resin comprises a base-epoxy resin, and the composite is as described in claim 10 a high-conductivity hetero-oxygen molecular material, wherein the hydroxy-epoxy resin ether polymer __ 曰 oxide is polymerized with a bifunctional group. 12_Composite high thermal conductivity as described in the scope of claim 2 == The thermosetting epoxy resin is made of - liquid liftable epoxy" 13. The composite type as described in the cap patent Gu Diyu The high-conductive epoxy tree is a sub-material, wherein the hot IU-type resin is formed by reacting a liquid epoxy resin with a divalent acid. M_ is a composite high thermal conductivity ring according to claim 1 of the patent application scope. The oxy-resin is a sub-material, wherein the thermosetting resin is formed by reacting a liquid epoxy resin. ', 15. The composite high thermal conductivity epoxy resin according to the scope of the patent application. The high sub-material 'where the high thermal conductivity filling material is nitride, the tether is selected from the group consisting of nitriding, chaotic _, nitrogen _, nitriding ♦ _) or its mixed σ ΑΙΝ + ΑΙ 2 〇 3 (= 7:3) is the best. A Τ 、 , 16 · The composite high thermal conductivity epoxy resin described in the scope of the patent application is a sub-material, wherein the high thermal conductivity filling material is an oxide, and its system is Selected from oxidized sputum · · Τ 21 201111436 (AkO3), magnesium oxide (Mg0), zinc oxide (Zn0), titanium dioxide (Tj〇2) or a mixture thereof 7. The composite high thermal conductivity epoxy resin noble molecular material according to claim 1, wherein the high thermal conductive filler material is required to have a coupling dose of 0.1 to 30% via a decane interface coupling agent. 18. A composite high thermal conductivity epoxy resin polymer substrate comprising: a first metal layer; a second metal layer; ^ 一高導熱電絕緣高分子材料層,其具一交互穿透結構且導埶 係數大於1 W/mK’該高導熱電絕緣高分子材料層係疊設於該第二 金屬層及該第二金屬層之間並形成接合;其中該高導熱電絕緣高 分子材料層的厚度在0.1〜1 mm ° 19.如申請專娜圍第18補述之複合式高導熱性環氧樹脂 尚分子基板,其中該第-、第二金屬層為銅箱、㈣、不錄鋼箱 等各種不同金屬羯片。 > 20.如申請專利範圍第18項所述之複合式高導熱性環氧樹脂 高分子基板,其中該高導熱電絕緣高分子材料層包括:一高分子 成分,其包含軟型環氧樹脂、可撓性熱固型環氧樹脂、硬化劑、 以及高導熱填充材料,該等原料係均勻分散於該高分子成分中。 21·如申請專利範圍第20項所述之複合式高導熱性環氧樹脂 高分子基板,其中該軟型環氧樹脂佔該高分子成分之重量百 係介於10%至60%之間。 22.如申請專利範圍第20項所述之複合式高導熱性環氧樹脂 高分子基板,其中該軟性環氧樹脂及可撓性熱固型環氧樹脂為彼 此互溶。 一 23.如申請專利範圍第18項所述之複合式高導熱性環氧樹脂 兩分子基板,其中該馬導熱環氧樹脂材料層與該第一和第二金屬 層之界面具有良好平整之接合’且能夠耐15〇〜28〇〇c的高溫。 22 201111436^ A high thermal conductivity electrically insulating polymer material layer having an interpenetrating structure and a guiding coefficient greater than 1 W/mK'. The high thermal conductive electrically insulating polymer material layer is stacked on the second metal layer and the second Forming a joint between the metal layers; wherein the thickness of the layer of the highly thermally conductive electrically insulating polymer material is 0.1 to 1 mm ° 19. If the composite high-thermal conductivity epoxy resin is still a molecular substrate, The first and second metal layers are copper boxes, (four), non-recorded steel boxes and the like. The composite high thermal conductivity epoxy resin polymer substrate according to claim 18, wherein the high thermal conductive electrically insulating polymer material layer comprises: a polymer component comprising a soft epoxy resin A flexible thermosetting epoxy resin, a hardener, and a highly thermally conductive filler material, which are uniformly dispersed in the polymer component. 21. The composite high thermal conductivity epoxy resin polymer substrate according to claim 20, wherein the soft epoxy resin comprises between 10% and 60% by weight of the polymer component. The composite high thermal conductivity epoxy resin polymer substrate according to claim 20, wherein the soft epoxy resin and the flexible thermosetting epoxy resin are mutually soluble. The composite high thermal conductivity epoxy resin two-molecular substrate according to claim 18, wherein the interface between the horse thermally conductive epoxy material layer and the first and second metal layers has a good flat joint 'And can withstand the high temperature of 15 〇 ~ 28 〇〇 c. 22 201111436 24.如申請專利範圍第20項所述之複合式高導熱性環氧樹脂 高分子基板,其中該高分子成分的製備需以球磨機進行,不鏽鋼 球數:樹脂=5:1至20:1之間,轉速為300〜1200 rpm,時間1〜24 小時,常溫常壓下操作控制分散均勻度。 2324. The composite high thermal conductivity epoxy resin polymer substrate according to claim 20, wherein the preparation of the polymer component is carried out by a ball mill, and the number of stainless steel balls: resin = 5:1 to 20:1. Between, the speed is 300~1200 rpm, the time is 1~24 hours, and the operation uniformity is controlled under normal temperature and normal pressure. twenty three
TW98131490A 2009-09-18 2009-09-18 Composite high heat conduction epoxy resin polymer material and substrate thereof TW201111436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98131490A TW201111436A (en) 2009-09-18 2009-09-18 Composite high heat conduction epoxy resin polymer material and substrate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98131490A TW201111436A (en) 2009-09-18 2009-09-18 Composite high heat conduction epoxy resin polymer material and substrate thereof

Publications (1)

Publication Number Publication Date
TW201111436A true TW201111436A (en) 2011-04-01

Family

ID=44908861

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98131490A TW201111436A (en) 2009-09-18 2009-09-18 Composite high heat conduction epoxy resin polymer material and substrate thereof

Country Status (1)

Country Link
TW (1) TW201111436A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825797A (en) * 2019-05-20 2021-12-21 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet with support, metal foil-clad laminate, and printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825797A (en) * 2019-05-20 2021-12-21 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet with support, metal foil-clad laminate, and printed wiring board

Similar Documents

Publication Publication Date Title
KR102300447B1 (en) Thermally conductive polymer composition and thermally conductive molded object
TWI794179B (en) Resin composition for film, film, film with substrate, metal/resin laminate, resin cured product, semiconductor device, and film manufacturing method
Serrano et al. Curing Behavior and Final Properties of Nanostructured Thermosetting Systems Modified with Epoxidized Styrene‐Butadiene Linear Diblock Copolymers
Duwe et al. A detailed thermal analysis of nanocomposites filled with SiO2, AlN or boehmite at varied contents and a review of selected rules of mixture
TWI507464B (en) Thermal conductive sheet
TW201132691A (en) Thermal conductive sheet
Su et al. Microdiamond/PLA composites with enhanced thermal conductivity through improving filler/matrix interface compatibility
JP7188070B2 (en) LAMINATED STRUCTURE WITH RADIATION INSULATING SHEET AND CURED SHEET AS INSULATING LAYER
JP2011241245A (en) Epoxy resin composition and cured product
TW201215583A (en) Ceramic mixture, and ceramic-containing thermally-conductive resin sheet using same
TW201139642A (en) Thermal conductive sheet
Binyamin et al. 3D Printing Thermally Stable High‐Performance Polymers Based on a Dual Curing Mechanism
Rusli et al. Blends of epoxy resins and polyphenylene oxide as processing aids and toughening agents 2: Curing kinetics, rheology, structure and properties
WO2015136806A1 (en) Thermally conductive polymer composition and thermally conductive molding
WO2012039324A1 (en) Heat-conductive resin composition, resin sheet, resin-clad metal foil, cured resin sheet, and heat-dissipating member
TWI649355B (en) Production method of curable resin mixture and curable resin composition
Zhuo et al. Novel hyperbranched polyphenylsilsesquioxane‐modified cyanate ester resins with improved toughness and stiffness
Hirata et al. Epoxy nanocomposites with reduced coefficient of thermal expansion
Jouyandeh et al. Structure–properties‐performance relationships in complex epoxy nanocomposites: A complete picture applying chemorheological and thermo‐mechanical kinetic analyses
Romo-Uribe et al. PDMS nanodomains in DGEBA epoxy induce high flexibility and toughness
TW201111436A (en) Composite high heat conduction epoxy resin polymer material and substrate thereof
Yao et al. Preparation and properties of hollow silica tubes/bismaleimide/diallylbisphenol A composites with improved toughness, dielectric properties, and flame retardancy
TWI628229B (en) Film forming resin composition, insulating film and semiconductor device
JP5888584B2 (en) Resin composition, resin sheet, prepreg sheet, cured resin sheet, structure, and semiconductor device for power or light source
Nikkhah Varkani et al. Design, preparation and characterization of a high-performance epoxy adhesive with Poly (butylacrylate-block-styrene) Block Copolymer and Zirconia nano particles in aluminum-aluminum bonded joints