TW201111053A - Electrostatic atomization device - Google Patents

Electrostatic atomization device Download PDF

Info

Publication number
TW201111053A
TW201111053A TW099126314A TW99126314A TW201111053A TW 201111053 A TW201111053 A TW 201111053A TW 099126314 A TW099126314 A TW 099126314A TW 99126314 A TW99126314 A TW 99126314A TW 201111053 A TW201111053 A TW 201111053A
Authority
TW
Taiwan
Prior art keywords
effect element
thermoelectric effect
type
high voltage
electrode
Prior art date
Application number
TW099126314A
Other languages
Chinese (zh)
Inventor
Junpei Oe
Hiroshi Suda
Takafumi Omori
Takayuki Nakada
Kentaro Kobayashi
Original Assignee
Panasonic Elec Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Elec Works Co Ltd filed Critical Panasonic Elec Works Co Ltd
Publication of TW201111053A publication Critical patent/TW201111053A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/057Arrangements for discharging liquids or other fluent material without using a gun or nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

An electrostatic atomization device having a simple structure and allowing for reduction in size is disclosed. The electrostatic atomization device has an atomization electrode including a P type Peltier element and an N type Peltier element joined with the P type Peltier element. The atomization electrode is cuspate so as to form a projection with a joined portion of the P type Peltier element and the N type Peltier element. High voltage is applied to the P and N type Peltier elements so that discharging occurs at a distal portion of the atomization electrode, current flows to the P and N type Peltier elements to produce a cooling effect at the joined portion, and condensed water generated by the cooling effect is atomized by the discharging to generate charged fine water droplets.

Description

201111053 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種靜電霧化裝置(electrostatic atomization device) ’尤其是一種採用peitier熱電效應的靜電霧化裝置。 【先前技術】 曰本第3980051號專利以及日本第2006-000826號公開專利 案揭路了靜電霧化裝置的前案,透過peltier模組執行冷卻操作 以產生冷凝水,並將冷凝水供給至放電電極,透過放電電極執 行放電以將冷凝水霧化為帶電的細小水滴(奈米離子霧)。 在如同曰本第3980051號專利以及日本第2006_〇〇〇826號公 開專利案所揭露的靜電霧化裝置中,放電電極係固定於Peltier 模組的冷卻表面,並且散熱器係固定於pdtier模組的散熱表 面。更明確地說’ Peltier模組係透過複數個電極耦接p型 熱電效應元件與N $ Peltief熱電效應元件而形成。然後,與201111053 VI. Description of the Invention: [Technical Field] The present invention relates to an electrostatic atomization device, particularly an electrostatic atomization device using a peeler thermoelectric effect. [Prior Art] The prior art of the electrostatic atomizing device is disclosed in Japanese Patent No. 3,980,051 and Japanese Patent Publication No. 2006-000826. The cooling operation is performed by the peltier module to generate condensed water, and the condensed water is supplied to the discharge. The electrode is subjected to discharge through the discharge electrode to atomize the condensed water into charged fine water droplets (nano ion mist). In the electrostatic atomization device disclosed in Japanese Patent No. 398, 005, 005, and Japanese Patent Publication No. 2006- 〇〇〇 826, the discharge electrode is fixed to the cooling surface of the Peltier module, and the heat sink is fixed to the pdtier mode. The heat dissipation surface of the group. More specifically, the 'Peltier module' is formed by coupling a p-type thermoelectric effect element and a N$Peltief thermoelectric effect element through a plurality of electrodes. Then, with

Pdtier模組分離製造的放電電極及散熱器係固定於Peltier模 組。因此’靜電霧化裝置將會包含相當多複雜的元件,導致盆 尺寸變大。 ’、 【此以= 月提出一種具有較小尺寸及簡單結構的靜電霧化 装置以解決先前技術中所遭遇到之上述問題。 【發明内容】 本發明之-料在於提供—餅電航輕,縣化電極包 201111053 含相連的P型Peltier熱電效應元件與N型Peltier熱電效應元 件。霧化電極的形狀是尖的’以和P型Peltier熱電效應元件與 N型Peltier熱電效應元件之相連部形成投影。高電壓被提供至 P型及N型Pel—熱電效應元件,使得在雜電㈣遠端部發 生放電。電流流經P型及N型Peltier熱電效應元件以於相連部 產生冷卻效應,並且由於冷卻效應所產生的冷凝水將會被放電 霧化成複數個帶電細小水滴(奈米離子霧)。 於一實施例中’霧化電極可包含排列於p型Peltier熱電效應 元件的相連面與N型Peltier熱電效應元件的相連面之間的放電 元件。此外,P型Peltier熱電效應元件與n型peitier熱電效應 元件可彼此對稱,並且彼此相連時形成一弓狀。 不同的第一高電壓與第二高電壓分別施加於P型Pdtier熱電 效應元件與N型Peltier熱電效應元件,致使放電發生於霧化電 極的遠端部並且電流流至P型及N型Peltier熱電效應元件,以 執行冷卻操作。 靜電霧化裝置可更包含面對霧化電極而設置的反電極 (opposing electrode) ° 於一實施例中’冷卻驅動電壓係施加於p型及N型peitier熱 電效應元件,使得流經P型及N型Peltier熱電效應元件的電流 執行冷卻操作,並且高電壓係施加於反電極,使得冷卻驅動電 壓與咼電壓之間的電動勢差,造成霧化電極的遠端部發生放電。 於另一實施例中,不同的第一高電壓與第二高電壓分別施加 於P型Peltier熱電效應元件與n型peitier熱電效應元件,致使第一 同電壓與第二高電壓之間的電動勢差導致電流流經p型pdtier熱 201111053 電效應元件與顧Pdtier熱電效應元件,以執行冷卻 高電壓係施加於反電極,使得第—高電壓與高電壓之雷叙 勢差,造成霧化電極的遠端部發生放電。 關於本發明之優點與精神可以藉由以下的 圖式得到進-步的瞭解。 &述及所附 【實施方式】 請參照圖1 ’圖1係繪示根據本發明之第一實施例的靜 化裝置10之示意圖。 靜電霧化裝置10包含複數個霧化電極u的胞,其中每一個 霧化電極11的胞係由P型Peltier熱電效應元件llp與_pe丨如熱 電效應元件lln所構成。鱗霧化電極n的胞聚集而成一模組’。、、 Ρ型Peltier熱電效應元件1 ip及]_peltier熱電效應元件丨丨η係彎曲 的且形狀彼此對稱而形成向外凸出的形狀。每一ρ型pdtier熱電 效應元件1 lp及N型Peltier熱電效應元件丨ln均包含具有基面的基 部lib以及具有遠端面的遠端部lla,其中遠端部lla的遠端面延 伸的方向係與基部lib的基面延伸的方向垂直,並且遠端部Ua 之位置係與基部lib分隔開來。換句話說,ρ型peitjer熱電效應元 件lip及N型Pdtier熱電效應元件丨匕係形成並由基部Ub向遠端 部11a彼此趨近。ρ型Peltier熱電效應元件llp的遠端面與 Peltier熱電效應元件ι1η的遠端面係彼此相連,使得霧化電極^ 是弓狀且尖的。P型Peltier熱電效應元件llp的遠端面與]^型 Peltier熱電效應元件Un係沿著相連面12彼此相連,且相連面12 延伸的方向係與霧化電極11延伸的方向相同。 在每一霧化電極II中’P型高壓電源13P提供負的第一高電壓 HV(A)至ρ型peitier熱電效應元件llp的基部llb,並且n型高壓電 201111053 源13味供負的第二高電壓HV(B)至]^型peitier熱電效應元件Jn 的基部lib。第一高電壓HV(A)及第二高電壓HV(B)均為負值, 第一尚電壓HV(A)之大小係被設定為大於第二高電壓HV(B),並 且電動勢差係設定在第一高電壓HV(A)與第二高電墨ί^ν(Β)之 間。由於此一電動勢差,電流將會自Ν型Peltier熱電效應元件ιιη 流向Ρ型Peltier熱電效應元件11ρ。反電極(接地電極)15可排列在 與霧化電極11的遠端部11_隔開的位置上,並且在此情況下, 霧化電極11係朝向反電極15投影。 在靜電霧化裝置10中,施加於Ρ型Peltier熱電效應元件lip及ν 型Peltier熱電效應元件lln之第一高電壓hvw與第二高電壓 HV(B)的電動勢差以及施加於反電極15的高電壓(於此例中,即 為第一高電壓HV(A)與施加於反電極15的高電壓之間的電動勢 差)將會導致霧化電極11的遠端部11a附近發生電暈放電。反電極 15可以是與霧化電極11的遠端部lla發生放電之物體,例如接地 端GND或具有預設電動勢之元件。特別地,反電極15可以是殼 體’並且靜電霧化裝置10係容納於殼體中。當靜電霧化裝置1〇 係安裝於冷氣機或空氣清淨機,冷氣機或空氣清淨機的殼體内 牆可被用來作為反電極。當靜電霧化裝置1〇係安裝於電冰箱, 電冰箱的殼體内牆可被用來作為反電極。另外,反電極15亦可 如同前述般單獨提供。於此種狀態下,由於第一高電壓hv(a) 與第二高電壓HV(B)之間的電動勢差,使得電流將會透過相連面 12由N型Peltier熱電效應元件ιΐη的基部lib流至P型Peltier熱電效 應元件Πρ的基部lib。這形成了關於相連面12的冷卻(吸熱)效應 並且從相連面12附近空氣的濕度產生冷凝水w。 產生的冷凝水W將會移至霧化電極η的遠端部ua。由於放電 係發生於遠端部lla’使得冷凝水…被霧化,亦即發生靜電霧化。 201111053 這將會產生向反電極15散射的帶電細小水滴(奈米離子霧)M。該 些帶電細小水滴Μ係從靜電霧化裝置1〇的霧化電極u釋放出 來。舉例而言,當靜電霧化裝置1〇使用於空氣清淨機或臉部化 妝機時,該些帶電細小水滴Μ將會擴散於房間内或人體皮膚上。 根據第一具體實施例’靜電霧化裝置10的優點敘述如下: (1) 在第一具體實施例中’ Ρ型peltier熱電效應元件The discharge electrode and the heat sink manufactured separately from the Pdtier module are fixed to the Peltier module. Therefore, the electrostatic atomization device will contain quite a lot of complicated components, resulting in a larger basin size. [This] proposes an electrostatic atomization device having a small size and a simple structure to solve the above problems encountered in the prior art. SUMMARY OF THE INVENTION The invention is based on the provision of a pie-electricity light, and the county electrode package 201111053 comprises a connected P-type Peltier thermoelectric effect element and an N-type Peltier thermoelectric effect element. The shape of the atomizing electrode is pointed' to form a projection with the junction of the P-type Peltier thermoelectric effect element and the N-type Peltier thermoelectric effect element. A high voltage is supplied to the P-type and N-type Pel-thermoelectric effect elements, causing a discharge at the distal end of the (4). Current flows through the P-type and N-type Peltier thermoelectric effect elements to produce a cooling effect at the junction, and the condensed water produced by the cooling effect is atomized into a plurality of charged fine water droplets (nano ion mist). In one embodiment, the atomizing electrode may comprise a discharge element arranged between the junction face of the p-type Peltier thermoelectric effect element and the junction face of the N-type Peltier thermoelectric effect element. Further, the P-type Peltier thermoelectric effect element and the n-type peitier thermoelectric effect element may be symmetrical to each other and form an arc when connected to each other. Different first high voltages and second high voltages are respectively applied to the P-type Pdtier thermoelectric effect element and the N-type Peltier thermoelectric effect element, so that the discharge occurs at the distal end of the atomizing electrode and the current flows to the P-type and N-type Peltier thermoelectric Effect element to perform a cooling operation. The electrostatically atomizing device may further comprise an opposing electrode disposed facing the atomizing electrode. In one embodiment, the 'cooling driving voltage voltage is applied to the p-type and N-type peiter thermoelectric effect elements so that the P-type and The current of the N-type Peltier thermoelectric effect element performs a cooling operation, and a high voltage is applied to the counter electrode such that the electromotive force difference between the driving voltage and the 咼 voltage is cooled, causing discharge at the distal end portion of the atomizing electrode. In another embodiment, different first high voltages and second high voltages are respectively applied to the P-type Peltier thermoelectric effect element and the n-type peeler thermoelectric effect element, so that the electromotive force difference between the first same voltage and the second high voltage is caused. The current is caused to flow through the p-type pdtier heat 201111053 electric effect element and the Gu Pdtier thermoelectric effect element to perform the cooling high voltage system applied to the counter electrode, so that the first high voltage and the high voltage are different, resulting in the far of the atomizing electrode. A discharge occurs at the end. The advantages and spirit of the present invention can be further understood by the following figures. BRIEF DESCRIPTION OF THE DRAWINGS [Embodiment] Please refer to FIG. 1. FIG. 1 is a schematic view showing a static device 10 according to a first embodiment of the present invention. The electrostatically atomizing device 10 includes a plurality of cells of the atomizing electrode u, wherein the cell line of each of the atomizing electrodes 11 is composed of a P-type Peltier thermoelectric effect element 11p and a _pe such as a pyroelectric effect element 11n. The cells of the scale atomizing electrode n are aggregated into a module '. The Ρ-type Peltier thermoelectric effect element 1 ip and the _peltier thermoelectric effect element 丨丨η are curved and symmetrical to each other to form an outwardly convex shape. Each of the p-type pdtier thermoelectric effect element 1 lp and the N-type Peltier thermoelectric effect element 丨ln includes a base lib having a base surface and a distal end portion 11a having a distal end face, wherein a distal end surface of the distal end portion 11a extends in a direction It is perpendicular to the direction in which the base of the base lib extends, and the position of the distal portion Ua is separated from the base lib. In other words, the p-type peidjer thermoelectric effect element lip and the N-type Pdtier thermoelectric effect element are formed and approached from the base Ub toward the distal end portion 11a. The distal end faces of the p-type Peltier thermoelectric effect element 11p and the distal end faces of the Peltier thermoelectric effect elements ι1n are connected to each other such that the atomizing electrode ^ is arcuate and pointed. The distal end faces of the P-type Peltier thermoelectric effect elements 11p and the Peltier thermoelectric effect elements Un are connected to each other along the connection face 12, and the direction in which the connection faces 12 extend is the same as the direction in which the atomization electrodes 11 extend. In each atomizing electrode II, the 'P-type high voltage power source 13P supplies a negative first high voltage HV(A) to the base llb of the p-type peiter thermoelectric effect element 11p, and the n-type high voltage electric power 201111053 source 13 tastes negative The base lib of the second high voltage HV(B) to the type ^peitier thermoelectric effect element Jn. The first high voltage HV (A) and the second high voltage HV (B) are both negative values, and the magnitude of the first voltage HV (A) is set to be greater than the second high voltage HV (B), and the electromotive force difference is Set between the first high voltage HV (A) and the second high ink ί ^ ν (Β). Due to this electromotive force difference, the current will flow from the P-type Peltier thermoelectric effect element ιιη to the Ρ-type Peltier thermoelectric effect element 11ρ. The counter electrode (ground electrode) 15 may be arranged at a position spaced apart from the distal end portion 11_ of the atomizing electrode 11, and in this case, the atomizing electrode 11 is projected toward the counter electrode 15. In the electrostatically atomizing device 10, the electromotive force difference applied to the first high voltage hvw of the P-type Peltier thermoelectric effect element lip and the ν-type Peltier thermoelectric effect element 11n and the second high voltage HV(B) and applied to the counter electrode 15 The high voltage (in this case, the electromotive force difference between the first high voltage HV (A) and the high voltage applied to the counter electrode 15) causes corona discharge to occur in the vicinity of the distal end portion 11a of the atomizing electrode 11. . The counter electrode 15 may be an object that discharges with the distal end portion 11a of the atomizing electrode 11, such as a ground GND or an element having a predetermined electromotive force. In particular, the counter electrode 15 may be a housing' and the electrostatically atomizing device 10 is housed in a housing. When the electrostatic atomizing device 1 is attached to an air conditioner or an air cleaner, the inner wall of the air conditioner or the air cleaner can be used as a counter electrode. When the electrostatically atomizing device 1 is attached to a refrigerator, the inner wall of the casing of the refrigerator can be used as a counter electrode. Alternatively, the counter electrode 15 may be provided separately as described above. In this state, due to the electromotive force difference between the first high voltage hv(a) and the second high voltage HV(B), the current will flow through the connection surface 12 from the base lib of the N-type Peltier thermoelectric effect element ιΐη. To the base lib of the P-type Peltier thermoelectric effect element Πρ. This creates a cooling (endothermic) effect with respect to the joining face 12 and produces condensed water w from the humidity of the air near the joining face 12. The generated condensed water W will move to the distal end portion ua of the atomizing electrode η. Since the discharge occurs at the distal end portion 11a', the condensed water ... is atomized, i.e., electrostatic atomization occurs. 201111053 This will generate charged fine water droplets (nano ion mist) M scattered to the counter electrode 15. These charged fine water droplets are released from the atomizing electrode u of the electrostatic atomizing device 1〇. For example, when the electrostatic atomizing device 1 is used in an air cleaner or a facial makeup machine, the charged fine water droplets will spread in the room or on the human skin. The advantages of the electrostatic atomizing device 10 according to the first embodiment are described as follows: (1) In the first embodiment, the Ρ type peltier thermoelectric effect element

Peltier熱電效應元件ιΐη彼此相連,並且它們相連的部分形成尖 的霧化電極11,定義出靜電霧化裝置10的投影部分。當相對高 電壓施加於P型及N型Peltier熱電效應元件Up及lln(霧化電極 11)與反電極15時’將會在霧化電極11的遠端部1〗碰生放電。此 外’電流流至P型及N型Peltier熱電效應元件Up及ι1η,並且於其 相連的部分(相連面12)造成冷卻效應。接著,當受到放電時,冷 卻效應所製造出的冷凝水將會經過靜電霧化,而在遠端部11&產 生帶電細小水滴M。藉此’霧化電極η將會與p型及n型peitier 熱電效應元件lip及1 In形成尖的形狀,並同時具有散熱及冷卻的 功能。因此,霧化電極11具有簡單的結構,使得靜電霧化裝置 10的尺寸得以縮小。 (2) 在第一具體實施例中,p型及n型peitier熱電效應元件1丨p及 lln為弓狀且彼此對稱,兩者相連在一起以形成尖的霧化電極 11 ’故能夠滿足散熱、冷卻及穩定地產生帶電細小水滴M等功效。 (3) 在第一具體實施例中,反電極15係對應於霧化電極u而設 置,因此,放電將會穩定地發生於霧化電極u。這也穩定了帶 電細小水滴Μ之產生。 (4) 在第一具體實施例中,第一高電壓係施加於ρ型 Peltier熱電效應元件1 lp且第二高電壓係施加M_pdtier 熱電效應元件lln,所以高電壓係施加於霧化電極丨丨以進行放 201111053 電。此外,第-高電壓HV(A)與第二高電壓Hv⑼之間設定有 電動勢差’因而提供了製造流經Ρ型及Nl?pdtier熱電效應 兀件llp^ri之賴的f力,喊行冷娜作並鷄霧化電極 11。此-簡單的電力提供方式使得放電與冷卻能夠同時被執行。 接下來,請參照圖2,圖2係繪示根據本發明之第二具體實施 例的靜電霧化裝置l〇a。如圖2所示,於此實施例的靜電霧化裝置 10a中’ P型Peltier熱電效應元件Up的遠端面與_peWer熱電效 應元件lln之間將會透過導電棒狀的放電元件14彼此相連。放電 元件14具有遠端部14a,係p型peitier熱電效應元件1丨1)與1^型 Peltier熱電效應元件ιιη所形成之投影的遠端之輕微投影。需注 意的是,放電元件14與第一具體實施例的靜電霧化裝置1〇明 顯不同。 在靜電霧化裝置l〇a中,放電元件14附近將會產生冷卻效 應’並且在放電元件14周圍產生冷凝水w。當放電發生於霧化電 極11的遠端部(例如放電元件14的遠端部14a)時,靜電霧化即會 發生以將冷凝水W變成帶電細小水滴(奈米離子霧)m。 除了第一具體實施例所述之靜電霧化裝置10的優點(1)〜(4)之 外’第二具體實施例所述之靜電霧化裝置l〇a還具有下列優點。 於第二具體實施例中,放電元件14連結了P型Peltier熱電效應 元件lip與N型Peltier熱電效應元件lln,以避免P型Peltier熱電效 應元件lip與N型Peltier熱電效應元件lln因放電而被穿透。此 外’藉由防穿透材料形成放電元件14,霧化電極11的使用壽命 能夠被延長。 請參照圖3,圖3係繪示根據本發明之第三具體實施例的靜電 霧化裝置10b。 第三具體實施例中之靜電霧化裝置10b與第一具體實施例中 201111053 之靜電霧化裝置10不同的是電源的供應模式。冷卻電源16提供 負的冷卻驅動電壓V給P型Peltier熱電效應元件lip的基部lib。N 型Peltier熱電效應元件lin的基部ub係耦接至接地端GND。由於 冷卻驅動電壓V與接地端GND之間具有電動勢差,使得電流 將會由N型Peltier熱電效應元件1 In流至P型Peltier熱電效應元件 lip。高壓電源17係耦接至反電極15,並且反電極15之位置係與 霧化電極11的遠端部11a相隔開。高壓電源17提供正的高電壓Hv 給反電極15。 在靜電霧化裝置10b中,在施加於Ρ型peltier熱電效應元 件lip的冷卻驅動電壓V與施加於反電極15的高電壓HV之間的 電動勢差將導致霧化電極11的遠端部11a附近發生電暈放電。此 外,電流將會由N型Peltier熱電效應元件11η流至P型peltier熱電 效應元件lip,這將會導致相連面12附近發生冷卻效應並在相連 面12附近產生冷凝水w。在遠端部1 la放電所造成的靜電霧化會 將冷凝水W變成帶電細小水滴(奈米離子霧)m。 除了第一具體實施例所述之靜電霧化裝置1〇的優點⑴〜⑶之 外,第三具體實施例所述之靜電霧化裝置1〇b還具有下列優點。 於第三具體實施例中,提供至N型peitier熱電效應元件lln與p 型Peltier熱電效應元件11P之間的冷卻驅動電壓乂係用以執行冷 卻操作,而咼電壓HV係施加於反電極。靜電霧化裝置1〇b係由一 電源供應模式所驅動’於此電源供應模式中,高電壓Hv與冷卻 驅動電歡之間的電動勢差將導致霧化電極u的遠端糾^生 放電。此一簡單的電源供應模式也允許放電與冷卻同時被執行。 對此領域習知技藝之人而言’很明顯可知,本發明亦可以未 偏離本發明之範疇的其他許多不同特定形式實現之,尤其需說 明的是,本發明能夠以下列型式實現之。 201111053 在上述每一個具體實施例中,尖的霧化電極丨丨係藉由連結呈 弓狀且彼此對稱的N型Peltier熱電效應元件1111與?型Peltier熱電 效應元件lip而形成。然而,霧化電極11的形狀不限於此一型式 且可依照需求而修改。此外,該等霧化電極丨丨的胞聚集形成模 組化的靜電霧化裝置1〇。然而,只要單一個胞能夠產生(釋放) 足夠數罝的帶電細小水滴,一個或多個胞均可形成靜電霧化裝 置10。 在第一具體實施例及第二具體實施例中,反電極15係用於 靜電霧化裝置10中。然而,實際上亦可採用同樣具有反電極功 能的周邊元件來取代反電極15。 在第一具體實施例及第二具體實施例中,第一高電壓 HV(A)係施加於p型peitier熱電效應元件Up上且第二高電壓 HV⑼係施加於N型peltier熱電效應元件lln上,以於第一高電壓 HV(A)與第二高電壓HV⑼之間形成電動勢差。然而,電源供應 模式的形狀不限於此一型式且可依照需求而修改。舉例而言, ie·成放電的南電壓以及用來執行冷卻操作的電壓可透過時間分 享(time-sharing)的方式應用之。 在上述每一個具體實施例中,該些電壓HV(A)、 及V均可被調整,藉以調整放電電壓或冷卻量。 在上述母一個具體實施例中,霧化電極1丨附近可設置有單獨 製的散熱器’以改善散熱能力。 藉由以上較佳具體實施例之詳述,係希望能更加清楚描述 本發明之特徵與精神,而並非以上述所揭露的較佳具體實施 =來對本發明之加嫌制。相反地,其目的是希望能涵 蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍 的範疇内。 201111053 【圖式簡單說明】 圖1係繪示根據本發明之第一實施例的靜電霧化 圖。 4尽乂不思 圖2 圖。 騎示根據本發明之第二實關轉電霧化裝置之示意 圖3係繪示根據本發明之第三實施_靜鶴化裝置之示音 【主要元件符號說明】 10、10a、10b:靜電霧化裝置11:霧化電極 1 lp : P塑Peltier熱電效應元件 lln : N型Peltier熱電效應元件 Μ :帶電細小水滴(奈米離子霧) lib :基部 12 :相連面 HV(A):第一高電壓 HV(B):第二高電壓 W :冷凝水 14a :遠端部 V:冷卻驅動電壓 17 :高壓電源 lla:遠端部 13P : P型高壓電源 13n : N型高壓電源 15 :反電極 14 :玫電元件 16 :冷卻電源 GND :接地端 HV :高電壓The Peltier thermoelectric effect elements ιΐη are connected to each other, and the portions to which they are connected form a sharp atomizing electrode 11, defining the projected portion of the electrostatically atomizing device 10. When a relatively high voltage is applied to the P-type and N-type Peltier thermoelectric effect elements Up and 11n (atomizing electrode 11) and the counter electrode 15, a discharge will occur at the distal end portion 1 of the atomizing electrode 11. Further, current flows to the P-type and N-type Peltier thermoelectric effect elements Up and ι1η, and causes a cooling effect at the portion where they are connected (the connection face 12). Then, when discharged, the condensed water produced by the cooling effect is electrostatically atomized, and the charged fine water droplets M are generated at the distal end portion 11 & Thereby, the atomizing electrode η will have a sharp shape with the p-type and n-type peiter thermoelectric effect elements lip and 1 In, and at the same time have a function of heat dissipation and cooling. Therefore, the atomizing electrode 11 has a simple structure, so that the size of the electrostatically atomizing device 10 can be reduced. (2) In the first embodiment, the p-type and n-type peiter thermoelectric effect elements 1丨p and 11n are arcuate and symmetrical to each other, and the two are connected together to form a sharp atomizing electrode 11' so that heat dissipation can be satisfied. , cooling and stable production of charged fine water droplets M and other effects. (3) In the first embodiment, the counter electrode 15 is provided corresponding to the atomizing electrode u, and therefore, the discharge will stably occur on the atomizing electrode u. This also stabilizes the generation of charged fine water droplets. (4) In the first embodiment, the first high voltage is applied to the p-type Peltier thermoelectric effect element 1 lp and the second high voltage is applied to the M_pdtier thermoelectric effect element 11n, so a high voltage is applied to the atomizing electrode 丨丨In order to carry out 201111053 electricity. In addition, an electromotive force difference is set between the first high voltage HV (A) and the second high voltage Hv (9), thus providing a force to generate a flow through the Ρ type and the Nl?pdtier thermoelectric effect element llp^ri, shouting Leng Na made and chicken atomized electrode 11. This - simple power supply allows discharge and cooling to be performed simultaneously. Next, please refer to Fig. 2, which shows an electrostatically atomizing device 10a according to a second embodiment of the present invention. As shown in FIG. 2, in the electrostatic atomizing device 10a of this embodiment, the distal end surface of the 'P-type Peltier thermoelectric effect element Up and the _peWer thermoelectric effect element 11n are connected to each other through the conductive rod-shaped discharge element 14. . The discharge element 14 has a distal portion 14a which is a slight projection of the distal end of the projection formed by the p-type peitier thermoelectric effect element 1丨1) and the 1 type Peltier thermoelectric effect element ιιη. It is to be noted that the discharge element 14 is significantly different from the electrostatic atomization device 1 of the first embodiment. In the electrostatically atomizing device 10a, a cooling effect will be generated in the vicinity of the discharge element 14 and condensed water w is generated around the discharge element 14. When the discharge occurs at the distal end portion of the atomizing electrode 11 (e.g., the distal end portion 14a of the discharge element 14), electrostatic atomization occurs to change the condensed water W into charged fine water droplets (nano ion mist) m. The electrostatic atomizing device 10a described in the second embodiment has the following advantages in addition to the advantages (1) to (4) of the electrostatically atomizing device 10 described in the first embodiment. In the second embodiment, the discharge element 14 is coupled to the P-type Peltier thermoelectric effect element lip and the N-type Peltier thermoelectric effect element 11n to prevent the P-type Peltier thermoelectric effect element lip and the N-type Peltier thermoelectric effect element 11n from being discharged due to discharge. penetrate. Further, the life of the atomizing electrode 11 can be extended by forming the discharge element 14 by the penetration preventing material. Please refer to Fig. 3. Fig. 3 is a diagram showing an electrostatic atomization device 10b according to a third embodiment of the present invention. The electrostatic atomization device 10b in the third embodiment is different from the electrostatic atomization device 10 of 201111053 in the first embodiment in the supply mode of the power source. The cooling power source 16 supplies a negative cooling drive voltage V to the base lib of the P-type Peltier thermoelectric effect element lip. The base ub of the N-type Peltier thermoelectric effect element lin is coupled to the ground GND. Since there is an electromotive force difference between the cooling driving voltage V and the ground GND, current will flow from the N-type Peltier thermoelectric effect element 1 In to the P-type Peltier thermoelectric effect element lip. The high voltage power source 17 is coupled to the counter electrode 15, and the position of the counter electrode 15 is spaced apart from the distal end portion 11a of the atomizing electrode 11. The high voltage power supply 17 supplies a positive high voltage Hv to the counter electrode 15. In the electrostatically atomizing device 10b, the electromotive force difference between the cooling driving voltage V applied to the pel-type peltier thermoelectric effect element lip and the high voltage HV applied to the counter electrode 15 will result in the vicinity of the distal end portion 11a of the atomizing electrode 11. Corona discharge occurred. In addition, current will flow from the N-type Peltier thermoelectric effect element 11n to the P-type peltier thermoelectric effect element lip, which will cause a cooling effect in the vicinity of the connecting face 12 and generate condensed water w in the vicinity of the connecting face 12. The electrostatic atomization caused by the discharge at the distal end portion 1 la causes the condensed water W to become a charged fine water droplet (nano ion mist) m. The electrostatic atomizing device 1b described in the third embodiment has the following advantages in addition to the advantages (1) to (3) of the electrostatic atomizing device 1 of the first embodiment. In the third embodiment, the cooling driving voltage supplied between the N-type peitier thermoelectric effect element 11n and the p-type Peltier thermoelectric effect element 11P is used to perform a cooling operation, and the 咼 voltage HV is applied to the counter electrode. The electrostatically atomizing device 1 〇b is driven by a power supply mode. In this power supply mode, the electromotive force difference between the high voltage Hv and the cooling driving power will cause the remote end of the atomizing electrode u to be electrically discharged. This simple power supply mode also allows discharge and cooling to be performed simultaneously. It will be apparent to those skilled in the art that the present invention may be practiced in many other specific forms without departing from the scope of the invention. In each of the above specific embodiments, the sharp atomizing electrode is connected by an N-type Peltier thermoelectric effect element 1111 which is arcuate and symmetrical to each other. The Peltier thermoelectric effect element is formed by a lip. However, the shape of the atomizing electrode 11 is not limited to this type and can be modified as needed. Further, the cells of the atomizing electrode turns aggregate to form a modularized electrostatic atomizing device. However, as long as a single cell is capable of generating (releasing) a sufficient number of charged fine water droplets, one or more cells can form the electrostatic atomizing device 10. In the first embodiment and the second embodiment, the counter electrode 15 is used in the electrostatically atomizing device 10. However, it is actually possible to replace the counter electrode 15 with a peripheral member also having a counter electrode function. In the first embodiment and the second embodiment, the first high voltage HV(A) is applied to the p-type piper thermoelectric effect element Up and the second high voltage HV(9) is applied to the N-type peltier thermoelectric effect element 11n. The electromotive force difference is formed between the first high voltage HV (A) and the second high voltage HV (9). However, the shape of the power supply mode is not limited to this type and can be modified as needed. For example, the south voltage of the discharge and the voltage used to perform the cooling operation can be applied in a time-sharing manner. In each of the above embodiments, the voltages HV(A), and V can be adjusted to adjust the discharge voltage or the amount of cooling. In a specific embodiment of the above-described mother, a separate heat sink ’ may be provided in the vicinity of the atomizing electrode 1 以 to improve the heat dissipation capability. The features and spirit of the present invention are more clearly described in the detailed description of the preferred embodiments of the present invention. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed. 201111053 [Simplified description of the drawings] Fig. 1 is a view showing an electrostatic atomization pattern according to a first embodiment of the present invention. 4 Do not think about Figure 2 Figure. FIG. 3 is a schematic diagram showing the second embodiment of the present invention according to the present invention. FIG. 3 is a schematic diagram of the main components according to the present invention. [Main component symbol description] 10, 10a, 10b: electrostatic fog Chemical device 11: atomizing electrode 1 lp : P plastic Peltier thermoelectric effect element lln : N type Peltier thermoelectric effect element Μ : charged fine water droplets (nano ion mist) lib : base 12 : connected surface HV (A): first high Voltage HV(B): second high voltage W: condensed water 14a: distal end portion V: cooling driving voltage 17: high voltage power supply 11a: distal end portion 13P: P type high voltage power supply 13n: N type high voltage power supply 15: counter electrode 14 : Rose Element 16 : Cooling Power GND : Ground HV : High Voltage

Claims (1)

201111053 七、申請專利範圍: 1. 一種靜電霧化裝置,包含: 一霧化電極,包含相連的一P型Peltier熱電效應元件及一N型 Peltier熱電效應元件,該霧化電極的形狀是尖的,以和該 P型Peltier熱電效應元件與該N型Peltier熱電效應元件之一 相連部形成一投影; 其中’高電壓被提供至該P型Peltier熱電效應元件與該n型 Peltier熱電效應元件上’使得在該霧化電極的一遠端部發 生放電,一電流流經該P型Peltier熱電效應元件與該 Peltier熱電效應元件以於該相連部產生一冷卻效應,並且 由於該冷卻效應所產生的一冷凝水將會被放電霧化成複 數個帶電細小水滴。 2. 如申請專利範圍第1項之靜電霧化裝置,其中該霧化電極包含 排列於該P型Peltier熱電效應元件的一相連面與該熱 電效應元件的一相連面之間的一放電元件。 3. 如申凊專利範圍第1項或第2項之靜電霧化裝置其中該p型 Peltier熱電效應元件與該N型pdtier熱電效應元件係彼此對 稱’並且當該P型Pdtier熱電效應元件與該糊触沉熱電效應 元件彼此相連時形成一弓狀。 ^ 4. 如中5f專她鮮丨項至幻种之任—項的靜電霧化裝置其 中不同的一第一高電麼與一第二高電壓分別施加於該P型 Peltier熱t效應凡件與該_pdtier熱電效應元件上致使該放 電發生於該航電軸雜端部並且該紐流至别型卩。驗 熱電效應元件與該_PeWer熱電效應元件,以執行一冷卻操 13 201111053 作。 5.如申請專利範圍第i項至第3項中之任一項的靜電霧化 一步包含: 一反電極(opposingelectrode),係面對該霧化電極而設置; 其中’-冷卻驅動賴施加於該!^Peltier熱電效應元件與 該N型Peltier熱電效應元件上,使得流經該㈣阳知熱電 效應元件與該N型Peltier熱電效應元件的電流執 A 操作’ ^且-高電壓施加於該反電極,使得該冷卻驅動電 壓與該〶縣之間的電動勢差造成贿化雜的該遠端 部發生放電。 6. 如申請專職圍第!項至第3項巾之任—項的靜電航裝置 一步包含: 一反電極(opposingelectrode) ’係面對該霧化電極而設置。 7. 如申請專利範圍第6項之靜電霧化裝置,其中不同的一第一高 電壓與-第二高電壓分別施加於該p_tier熱電效應元件盘 該N型Pelto熱電效應元件上,致使邮—高賴與該第二高 電壓之間的電動勢差導致-電流流經該㈣⑽如熱電效應元 件與該N型Peltier熱電效應元件,以執行一冷卻操作,並且一 高電壓施加於該反電極,使得該第—高與該高電壓之間的 電動勢差造成該霧化電極的該遠端部發生放電。 14201111053 VII. Patent application scope: 1. An electrostatic atomization device comprising: an atomization electrode comprising a connected P-type Peltier thermoelectric effect element and an N-type Peltier thermoelectric effect element, the atomization electrode having a pointed shape Forming a projection with a portion of the P-type Peltier thermoelectric effect element and the N-type Peltier thermoelectric effect element; wherein 'a high voltage is supplied to the P-type Peltier thermoelectric effect element and the n-type Peltier thermoelectric effect element' Causing a discharge at a distal end portion of the atomizing electrode, a current flowing through the P-type Peltier thermoelectric effect element and the Peltier thermoelectric effect element to generate a cooling effect at the connecting portion, and a result due to the cooling effect The condensate will be atomized into a plurality of charged fine water droplets. 2. The electrostatically atomizing device of claim 1, wherein the atomizing electrode comprises a discharge element arranged between a connecting face of the P-type Peltier thermoelectric effect element and a connecting face of the thermoelectric effect element. 3. The electrostatically atomizing device of claim 1 or 2, wherein the p-type Peltier thermoelectric effect element and the N-type pdtier thermoelectric effect element are symmetrical to each other' and when the P-type Pdtier thermoelectric effect element is The paste-type thermoelectric effect elements form an arc when connected to each other. ^ 4. For example, in the electrostatic atomization device of the 5F special 她 至 至 幻 幻 幻 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电And the _pdtier thermoelectric effect element causes the discharge to occur at the axon shaft end and the current flows to the other type. The thermoelectric effect element and the _PeWer thermoelectric effect element are tested to perform a cooling operation 13 201111053. 5. The step of electrostatic atomization according to any one of claims 1 to 3, comprising: an counterelectrode disposed opposite the atomizing electrode; wherein the '-cooling drive is applied to The ^Peltier thermoelectric effect element and the N-type Peltier thermoelectric effect element are such that a current flowing through the (four) positive-known thermoelectric effect element and the N-type Peltier thermoelectric effect element is operated, and a high voltage is applied to the opposite The electrode is such that the electromotive force difference between the cooling driving voltage and the Jixian County causes a discharge of the distal portion of the bribe. 6. If you apply for a full-time job! The electrostatic vehicle of the item to item 3 of the item 3 includes: an counterelectrode (opposing electrode) is disposed facing the atomizing electrode. 7. The electrostatically atomizing device of claim 6, wherein a different first high voltage and a second high voltage are respectively applied to the p-tier thermoelectric effect element disk to the N-type Pelto thermoelectric effect element, resulting in postal- The electromotive force difference between the high voltage and the second high voltage causes a current to flow through the (four) (10), such as a pyroelectric effect element and the N-type Peltier thermoelectric effect element, to perform a cooling operation, and a high voltage is applied to the counter electrode, such that The electromotive force difference between the first high and the high voltage causes discharge at the distal end portion of the atomizing electrode. 14
TW099126314A 2009-08-06 2010-08-06 Electrostatic atomization device TW201111053A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183577A JP2011036734A (en) 2009-08-06 2009-08-06 Electrostatic atomization device

Publications (1)

Publication Number Publication Date
TW201111053A true TW201111053A (en) 2011-04-01

Family

ID=43036967

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099126314A TW201111053A (en) 2009-08-06 2010-08-06 Electrostatic atomization device

Country Status (6)

Country Link
US (1) US20120175439A1 (en)
EP (1) EP2461910A1 (en)
JP (1) JP2011036734A (en)
CN (1) CN102655939A (en)
TW (1) TW201111053A (en)
WO (1) WO2011016587A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196652A (en) * 2011-03-23 2012-10-18 Panasonic Corp Electrostatic atomizer and method for producing the same
JP2014050804A (en) * 2012-09-07 2014-03-20 Panasonic Corp Electrostatic atomizing apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952044B2 (en) 2004-06-21 2007-08-01 松下電工株式会社 Electrostatic atomizer
JP4706632B2 (en) * 2006-12-22 2011-06-22 パナソニック電工株式会社 Electrostatic atomizer
JP2008238061A (en) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd Electrostatic atomizer
JP3980051B2 (en) 2007-04-06 2007-09-19 松下電工株式会社 Electrostatic atomizer
JP4956396B2 (en) * 2007-11-27 2012-06-20 パナソニック株式会社 Electrostatic atomizer
SG174444A1 (en) * 2009-03-26 2011-10-28 Panasonic Elec Works Co Ltd Electrostatically atomizing device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2011036734A (en) 2011-02-24
US20120175439A1 (en) 2012-07-12
WO2011016587A1 (en) 2011-02-10
EP2461910A1 (en) 2012-06-13
CN102655939A (en) 2012-09-05

Similar Documents

Publication Publication Date Title
EP2754501B1 (en) Electrostatic atomizing apparatus
WO2011024766A1 (en) Discharge device and electrostatic atomization device comprising same
JP4442444B2 (en) Electrostatic atomizer
WO2010013615A1 (en) Hair care device
JP2014108120A (en) Heating and blowing apparatus
TW201111053A (en) Electrostatic atomization device
WO2012043389A1 (en) Electrostatic atomizing device
JP2009045554A (en) Electrostatic atomizing device
JP4990809B2 (en) hairbrush
KR100324980B1 (en) Photoelectric switch
TW200808452A (en) Power supply for atomisation device
JP5323544B2 (en) Hair dryer with electrostatic atomizer
WO2013084601A1 (en) Electrostatic atomizing apparatus
JP6000684B2 (en) Charged particle generator
TW201204472A (en) Electrostatic atomizer
JP2021005503A (en) Effective component generation device and manufacturing method of the same
JP2005005049A (en) Ion generating apparatus
JP7015596B1 (en) Transparent electrostatic adsorption partition and transparent electrostatic adsorption partition system
WO2022168491A1 (en) Cosmetic appliance
JP2010089088A (en) Electrostatic atomizing device
JP2019000824A (en) Charged particle generator, and hair care device
EP4002612A1 (en) Water ion generation device and personal care appliance
JP6890307B2 (en) Discharge device and hair care device
WO2013042481A1 (en) Electrostatic atomizing device
WO2013035567A1 (en) Electrostatic atomization device