TW201110977A - Compositions and methods for preparing staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions - Google Patents

Compositions and methods for preparing staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions Download PDF

Info

Publication number
TW201110977A
TW201110977A TW99120434A TW99120434A TW201110977A TW 201110977 A TW201110977 A TW 201110977A TW 99120434 A TW99120434 A TW 99120434A TW 99120434 A TW99120434 A TW 99120434A TW 201110977 A TW201110977 A TW 201110977A
Authority
TW
Taiwan
Prior art keywords
polysaccharide
serotype
carrier protein
conjugate
kda
Prior art date
Application number
TW99120434A
Other languages
Chinese (zh)
Other versions
TWI505834B (en
Inventor
Stephen John Freese
Annaliesa Anderson
Viliam Pavliak
Kathrin Ute Jansen
Ingrid Lea Dodge
Tracy Dee Scott
Jasdeep Singh Nanra
A Krishna Prasad
Bruce Green
Original Assignee
Wyeth Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wyeth Llc filed Critical Wyeth Llc
Publication of TW201110977A publication Critical patent/TW201110977A/en
Application granted granted Critical
Publication of TWI505834B publication Critical patent/TWI505834B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/085Staphylococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/6415Toxins or lectins, e.g. clostridial toxins or Pseudomonas exotoxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/646Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the entire peptide or protein drug conjugate elicits an immune response, e.g. conjugate vaccines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/62Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier
    • A61K2039/627Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier characterised by the linker
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/64Medicinal preparations containing antigens or antibodies characterised by the architecture of the carrier-antigen complex, e.g. repetition of carrier-antigen units

Abstract

The present invention relates to immunogenic conjugates comprising S. aureus serotype 5 and 8 capsular polysaccharides conjugated to carrier proteins and methods for their preparation and use. Methods for making the immunogenic conjugates of the invention involve covalent conjugation of the capsular polysaccharides with the carrier proteins using conjugation chemistry involving either 1, 1-carboyl-di-1, 2, 4-triazole (CDT) or 3-(2-pyridyldithio)-propionyl hydrazide (PDPH).

Description

201110977 六、發明說明: 【發明所屬之技術領域】 本發明大體上係關於金黃色葡萄球菌(加 flMrews)血清型5及8莢膜多醣結合物免疫原性組合物以及其 製備及使用方法。 相關申請案之交叉引用 本案主張2009年6月22曰申請之美國臨時專利申請案第 61/219,143號及第61/219,151號之優先權權益,該等申請案 之全部揭示内容各自以全文引用的方式併入本文中。 【先前技術】 人類為革蘭氏陽性(Gram-positive)金黃色葡萄球菌之天 然儲庫。舉例而言,金黃色葡萄球菌可永久性或暫時性定 殖於皮膚、鼻孔及咽喉中而不致病。金黃色葡萄球菌感染 範圍為輕度皮膚感染至心内膜炎、骨髓炎、菌血症及敗血 症。金黃色葡萄球菌亦造成大部分院内感染,且其日益盛 行於社區起始型感染中。此外,2005年,每100,000名個 體中感染抗二曱氧苯青黴素金黃色葡萄球菌(MRSA)者估 計為31.8,包括2005年美國16,650人死亡(KIevens等人, (2007) J•版从汰心卿298:1763 1771)。當個體由於免 疫屏障破壞而變得免疫功能不全時,諸如在手術、置放留 置導管或其他裝置、外傷或創傷期間,疾病隨之發生。 金η色葡萄球菌產生大量細胞外抗原及細胞内抗原包 括:多毒素及酵素。本文特別感興趣的是金黃色葡萄球菌 莢膜夕醣血清型(參看Karakawa及Vann,「Capsular 149159.doc 201110977 polysaccharides of Siap/^/ococcw Weinstein及201110977 VI. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to S. aureus (plus flMrews) serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions and methods of making and using same. CROSS-REFERENCE TO RELATED APPLICATIONS This application claims priority to US Provisional Patent Application Nos. 61/219,143, and No. 61/219,151, the entire disclosure of each of which is incorporated by reference in its entirety. The manner is incorporated herein. [Prior Art] Humans are natural reservoirs of Gram-positive Staphylococcus aureus. For example, S. aureus can be permanently or temporarily colonized in the skin, nostrils, and throat without causing disease. Staphylococcus aureus infections range from mild skin infections to endocarditis, osteomyelitis, bacteremia and septicaemia. Staphylococcus aureus also causes most nosocomial infections and is increasingly prevalent in community-initiated infections. In addition, in 2005, the number of people infected with bis- phthalicillin-resistant Staphylococcus aureus (MRSA) was estimated to be 31.8 per 100,000 individuals, including 16,650 deaths in the United States in 2005 (KIevens et al., (2007) J• version from the heart Qing 298: 1763 1771). When an individual becomes immunocompromised due to destruction of the immune barrier, such as during surgery, placement of an indwelling catheter or other device, trauma or trauma, the disease occurs. Staphylococcus aureus produces a large number of extracellular antigens and intracellular antigens including: polytoxins and enzymes. Of particular interest to this article is the S. aureus capsular sero-serotype (see Karakawa and Vann, "Capsular 149159.doc 201110977 polysaccharides of Siap/^/ococcw Weinstein and

Fields 編。Seminars in Infectious Disease. IV. Bacterial Vaccines.(New York, NY; Thieme Stratton; 1982.第 285-293 頁),尤其血清型5及8莢膜多醣。對自個體分離之大量金 育色葡萄球菌菌株的流行病學研究顯示,7〇%至8〇%為血 清型 5 或 8 莢膜多醣(Arbeit等人,(1984) /«/eci. Db. 2:85-91)。令人遺憾的是,莢膜多醣本身為不 良免疫原。 隨著血管内裝置及侵襲性程序之使用,葡萄球菌感染及 疾病在最近20年中顯著增加。發病率上升由於抗生素抗性 之並行上升而更加麻煩,因此,迫切需要可預防葡萄球菌 感染及疾病的免疫原性組合物。 【發明内容】 本發明係關於包含金黃色葡萄球菌血清型5或8莢膜多醣 與載體蛋白質相結合的免疫原性結合物,及製造該等結合 物之方法。金黃色葡萄球菌血清型5或8莢膜多醣可使用熟 習此項技術者已知的分離程序直接獲自該細菌,可使用合 成方案產生,或可使用熟習此項技術者亦已知的基因工程 程序重組產生。此外,本發明提供誘導針對葡萄球菌之免 疫反應的方法、預防葡萄球菌所致之疾病的方法,及降低 由葡萄球菌感染所致之疾病的至少一種症狀之嚴重程度的 方法》 在一個實施例中,本發明包含免疫原性多醣_蛋白質結 合物,其包含分離金黃色葡萄球菌血清型5或8莢膜多醣與 149159.doc 201110977 載體蛋白質之結合,其中多醣之分子量為2〇让〇&至l〇〇〇 kDa。在一些貫施例中,免疫原性結合物之分子量為 他至5_ kDa。在—個實施例中,免疫原性結合物之多 醣部分的分子量範圍為70 kDa至300 kDa。在一個實施例 中’免疫原性結合物之分子量範圍為5〇〇 kDa至25〇〇 kDa。 在一個實施例中,血清型5或8莢膜多醣之〇_乙醯化度為 10%至100%。在一個實施例中,〇_乙醯化度為5〇%至 100%。在一個實施例中,〇_乙醯化度為75%至1〇〇%。在 一個貫施例中,免疫原性結合物產生功能性抗體,如在動 物效力模型中或經由調理吞嗔細胞性殺死分析 (opsonophagocytic killing assay)、依據殺死細菌所量測。 在一個實施例中,免疫原性結合物載體蛋白質包含 CRM,97。在一個實施例中,CRMl97係經由胺基曱酸酯 鍵、醯胺鍵或二者共價連接至多醣。在一個實施例中,結 合離胺酸與CRM 197之莫耳比可為約1 〇: 1至約2 5:1。在一個 實施例中,對於多醣之至少每5至10個醣重複單元,結合 物包含一個介於CRIV^97與多醣之間的共價鍵。在一個實施 例中,介於載體蛋白質與多醣之間的鍵在多醣之每5個重 複單元中出現一次。 在一個實施例中,包含CRM〗97之免疫原性結合物包含5 至22個離胺酸或8至15個離胺酸共價連接至多醣。在―個 實施例中,包含CRM!97之免疫原性結合物包含5至23個離 胺酸或8至12個離胺酸共價連接至多醣。 149159.doc 201110977 在一個實施例中,免疫原性結合物包含10%至1〇〇% 〇_ 乙醯化之5或8型多醣。在一個實施例中,免疫原性結合物 包3 50 /〇至1 00% 〇_乙醯化之5或8型多醣。在一個實施例 中,免疫原性結合物包含75%至1〇〇% 〇_乙醯化之5或8型 多醣。在—些實施例中,免疫原性組合物可用於在動物效 力模型或調理吞噬細胞性殺死分析中產生功能性抗體。 在個實施例中,以5或8型多醣之總量計,免疫原性結 合物包含小於約30%之游離5或8型多醣。 在個實施例中,以5或8型多醣之總量計,免疫原性結 合物包含小於約20%之游離5或8型多醣。 在一個實施例中,本發明包含__種免疫原性組合物,其 〇 3如本文所述之免疫原性結合物及至少一種佐劑、稀釋 劑或載劑。 佐劑可為基於链之佐劑,諸如鱗酸紹、硫酸紹及氫氧化 铭中之-或多者。在-個實施例中,佐劑包含構酸銘。 在一個實施例中,以5或8型多醣之總量計,免疫原性組 合物包含小於約30%之游離5或8型多醣。 在一個實施例中,以5或8型多醣之總量計,免疫原性組 合物包含小於約20%之游離5或8型多醣。 在★個實施例中’本發明包含一種誘導個體產生針對金 黃色葡萄球菌血清型5或8笑膜多醋結合物之免疫反應的方 法’該方法包含向該個體投與免疫有效量的如本文所述之 免疫原性組合物。 在-個實施例中,本發明包含一種產生免疫原性多醣- 149159.doc 201110977 蛋白質結合物的方法,該結合物包含分離金黃色葡萄球菌 血清型5或8莢膜多醣與載體蛋白質之結合,該方法包含如 下步驟:使分離金黃色葡萄球菌血清型5或8莢膜多醣與 U-幾基-二-(1,2,4-三唑)(CDT)在有機溶劑中反應,產生活 化血清型5或8多醣;及使活化血清型5或8多醣與載體蛋白 質在有機溶劑中反應,產生血清型5或8多醣:載體蛋白質 結合物。 在一個實施例中’活化金黃色葡萄球菌血清型5或8莢膜 多醣之方法進一步包含凍乾分離血清型5或8多醣及將凍乾 之多醣再懸浮於有機溶劑中。在一個實施例中,活化再懸 浮之多醣,接著直接與載體蛋白質反應。在一個實施例 中,將活化之分離血清型5或8多醣分離後與載體蛋白質反 應。在一個實施例中,凍乾分離之活化之分離血清型5或8 夕醣以產生凍乾之活化之分離血清型5或8多醣,隨後使該 多醣與載體蛋白質反應。在一個實施例中,產生分離^Edited by Fields. Seminars in Infectious Disease. IV. Bacterial Vaccines. (New York, NY; Thieme Stratton; 1982. pp. 285-293), especially serotype 5 and 8 capsular polysaccharides. Epidemiological studies of a large number of strains of Staphylococcus aureus isolates isolated from individuals have shown that between 7〇 and 8〇% are serotype 5 or 8 capsular polysaccharides (Arbeit et al., (1984) / «/eci. Db. 2:85-91). Unfortunately, the capsular polysaccharide itself is a poor immunogen. With the use of intravascular devices and invasive procedures, staphylococcal infections and diseases have increased significantly in the last 20 years. Increasing incidence is more troublesome due to the parallel increase in antibiotic resistance, and therefore there is an urgent need for an immunogenic composition that can prevent staphylococcal infection and disease. SUMMARY OF THE INVENTION The present invention relates to immunogenic conjugates comprising S. aureus serotype 5 or 8 capsular polysaccharides in combination with a carrier protein, and methods of making such conjugates. S. aureus serotype 5 or 8 capsular polysaccharide can be obtained directly from the bacterium using a separation procedure known to those skilled in the art, can be produced using synthetic protocols, or can be genetically engineered as is known to those skilled in the art. The program is reorganized. Further, the present invention provides a method of inducing an immune response against Staphylococcus, a method of preventing a disease caused by Staphylococcus, and a method of reducing the severity of at least one symptom of a disease caused by Staphylococcus infection. In one embodiment The present invention comprises an immunogenic polysaccharide-protein conjugate comprising a combination of a S. aureus serotype 5 or 8 capsular polysaccharide and a 149159.doc 201110977 carrier protein, wherein the molecular weight of the polysaccharide is 2 〇 〇 & l〇〇〇kDa. In some embodiments, the immunogenic conjugate has a molecular weight of from 5 k kaa. In one embodiment, the polysaccharide moiety of the immunogenic conjugate has a molecular weight ranging from 70 kDa to 300 kDa. In one embodiment, the immunogenic conjugate has a molecular weight ranging from 5 〇〇 kDa to 25 〇〇 kDa. In one embodiment, the serotype 5 or 8 capsular polysaccharide has a hydrazine degree of from 10% to 100%. In one embodiment, the degree of 〇_乙醯 is from 5〇% to 100%. In one embodiment, the degree of enthalpy is from 75% to 1%. In one embodiment, the immunogenic conjugate produces a functional antibody, as measured in an animal potency model or via an opsonophagotictic killing assay, based on killing the bacteria. In one embodiment, the immunogenic conjugate vector protein comprises CRM, 97. In one embodiment, CRM97 is covalently attached to the polysaccharide via an amine phthalate linkage, a guanamine linkage, or both. In one embodiment, the molar ratio of the combined lysine to CRM 197 can range from about 1 〇:1 to about 2:5:1. In one embodiment, the conjugate comprises a covalent bond between CRIV^97 and the polysaccharide for at least every 5 to 10 sugar repeating units of the polysaccharide. In one embodiment, the bond between the carrier protein and the polysaccharide occurs once every 5 repeating units of the polysaccharide. In one embodiment, the immunogenic conjugate comprising CRM 97 comprises 5 to 22 lysines or 8 to 15 lysines covalently attached to the polysaccharide. In one embodiment, the immunogenic conjugate comprising CRM!97 comprises 5 to 23 isophthalic acids or 8 to 12 isoleucine covalently linked to the polysaccharide. 149159.doc 201110977 In one embodiment, the immunogenic conjugate comprises 10% to 1% 〇 醯 醯 5 5 or type 8 polysaccharide. In one embodiment, the immunogenic conjugate comprises 3 50 /〇 to 100% 〇_乙醯化5 or 8 type polysaccharide. In one embodiment, the immunogenic conjugate comprises from 75% to 1% hydrazine-type 5 or 8 polysaccharide. In some embodiments, the immunogenic composition can be used to produce a functional antibody in an animal efficacy model or a phagocytic killing assay. In one embodiment, the immunogenic composition comprises less than about 30% free 5 or 8 polysaccharide, based on the total amount of the 5 or 8 polysaccharide. In one embodiment, the immunogenic composition comprises less than about 20% free 5 or 8 polysaccharide, based on the total amount of the 5 or 8 polysaccharide. In one embodiment, the invention comprises an immunogenic composition, such as an immunogenic conjugate as described herein, and at least one adjuvant, diluent or carrier. The adjuvant may be a chain-based adjuvant such as, for example, selenate, sulphate, and hydroxide. In one embodiment, the adjuvant comprises a phytic acid. In one embodiment, the immunogenic composition comprises less than about 30% free 5 or 8 polysaccharide, based on the total amount of the 5 or 8 type polysaccharide. In one embodiment, the immunogenic composition comprises less than about 20% free 5 or 8 polysaccharide, based on the total amount of the 5 or 8 type polysaccharide. In one embodiment, the invention comprises a method of inducing an individual to produce an immune response against a S. aureus serotype 5 or 8 smear multi- vine conjugate, the method comprising administering to the individual an immunologically effective amount as herein Said immunogenic composition. In one embodiment, the invention comprises a method of producing an immunogenic polysaccharide-149159.doc 201110977 protein conjugate comprising separating a S. aureus serotype 5 or 8 capsular polysaccharide from a carrier protein, The method comprises the steps of: reacting isolated S. aureus serotype 5 or 8 capsular polysaccharide with U-mono-di-(1,2,4-triazole) (CDT) in an organic solvent to produce activated serum Type 5 or 8 polysaccharide; and reacting the activated serotype 5 or 8 polysaccharide with the carrier protein in an organic solvent to produce a serotype 5 or 8 polysaccharide: carrier protein conjugate. In one embodiment, the method of activating S. aureus serotype 5 or 8 capsular polysaccharide further comprises lyophilizing the serotype 5 or 8 polysaccharide and resuspending the lyophilized polysaccharide in an organic solvent. In one embodiment, the resuspended polysaccharide is activated and then directly reacted with the carrier protein. In one embodiment, the activated isolated serotype 5 or 8 polysaccharide is isolated and reacted with a carrier protein. In one embodiment, the isolated isolated serotype 5 or 8 sugar is separated by lyophilization to produce a lyophilized activated serotype 5 or 8 polysaccharide, which is then reacted with the carrier protein. In one embodiment, the separation is generated^

乾之載體蛋白質再懸浮於有機溶劑中之步驟作為活化之分 离隹血清型5或8多醣鱼巷體孓厶新. 〇The step of resuspending the dried carrier protein in an organic solvent as a separation of the activated serotype 5 or 8 polysaccharide fish alley. New 〇

149159.doc 竦鹵5或8型莢膜 活化之多醣與載 C下維持約8.8至 201110977 約9.2之pH值至少4小時的步驟。 在-個實施例中,活化金黃色葡萄球菌…型笑膜多膽 與載體蛋白質之反應混合物在約饥下、在約Μ之阳值 下維持至少4小時。 在一個實施例中,產生分離金黃色葡萄球菌如型笑膜 多__載體蛋白質的方法包含在產生分離A清型…多__ 蛋白質結合物後將其分離的步驟。 夕在-個實施例中,產生分離金黃色葡萄球菌⑷型莢膜 多醣:載體蛋白質結合物的方法中所使用之有機溶劑為極 非處子性浴劑。在一個實施例中,極性非質子性溶劑係 選自由一甲亞颯(DMSO)組成之群。在一個實施例中,產 隹夕醣-載體蛋白質結合物之方法中的有機溶劑為 DMS0。 ’ 在個貫施例中,產生分離金黃色葡萄球菌5型莢膜多 載體蛋白質結合物之方法包含將含有5型莢膜多醣及 於有機溶劑中之反應混合物的水濃度調節至約〇 1 %至 〇.3 /〇的步驟。在一個實施例中,包含5型莢膜多醣及cDT 於有機溶劑中之反應混合物的水濃度係調節至約〇.2〇/0。 在一個實施例中,使分離金黃色葡萄球菌5型莢膜多醣 活化之步驟包含使多醣與Cdt反應,其中CE)T的用量約比 匕35型莢膜多醣及CDT於有機溶劑中之反應混合物中所 存在之多醣之量過量20莫耳。 在—個實施例中’產生分離金黃色葡萄球菌8型莢膜多 聽·裁體蛋白質結合物之方法包含測定包含8型莢膜多醣 149159.doc 201110977 之反應混合物之水濃度的步驟。在一個實施例中,添加至 反應混合物中以活化多醣之CDT的量係依照與包含8型笑 膜多醣及CDT於有機溶劑中之反應混合物中之水含量約等 莫耳的CDT量提供。 在一個實施例中,添加至反應混合物中以活化多醣之 CDT的量係依照與包含8型莢膜多醣及CDT於有機溶劑中 之反應混合物中之水含量莫耳比為約〇 5:1的CDT之量提 供。在一個實施例中,添加至反應混合物中以活化多醣之 CDT的量係依照與包含8型莢膜多醣及CDT於有機溶劑中 之反應混合物中之水含量莫耳比約為〇 751的cdt之量提 供。 在一個實施例中,包含分離活化之多醣之步驟的方法包 含透析過濾步驟。 义在-個實施例中,該方法包含凍乾载體蛋白質,凍乾 ^ ’相對於NaC1透析過遽載體蛋白質且將NaCl/載體蛋白 質之重量比(W/W)調節至約〇·5至約1.5。在一個實施例中, NaCl與載體蛋白質之比率為約ι。 莢膜 質包 在 貫轭例中,產生分離金黃色葡萄球菌5或8型 多醣-載體蛋白質結合物的方法中所使用之載體蛋白 含CRMm。 在一個實施例中, 多醣-載體蛋白質結 血清型5或8多醣以約 產生勿離金黃色葡萄球菌5或8型莢膜 合物的方法中所使用之CRMl97與活化 1:1之重量比反應。 在一個實施例中 產生分離金黃色葡萄球菌5或8型莢膜 149159.doc 201110977 二載體蛋白質結合物之方法包含將⑷型 味錢三錢合後再與CDT混合於有機溶射之步驟。一 夕醣.載=例中’產生分離金黃色葡萄球菌5或8型英膜 二載體蛋二!質、结合物的方法包含水解血清型5或8多 a結合物以移除未反應之活性基團的步驟。 在-個實施例中’本發明提供一種產生免疫原性結合物 的方法,該結合物包含分離金黃色葡萄球菌血清 膜多膽與載體蛋白質之結合,該方法包含如下步驟:使= 黃色_球菌血清型5或8英膜多聽與3H定基二硫基)_ 丙醯肼(PDPH)及碳化二亞胺在有機溶劑中反應,產生 PDPH連接之多聽;使pDpH連接之多祿與還原劑反應產 生活化多醣;分離活化之血清型5或8多醣,產生分離之活 化血清型5或8多醣;提供活化載體蛋白質;使分離之活化 血清型5或8多醣與活化載體蛋白質反應,產生血清型$或8 多載體蛋白質結合物;藉此產生包含分離金黃色葡萄 球菌血清型5或8笑膜多醣與載體蛋白f相結合的免疫原性 結合物。在一個實施例中,分離活化載體蛋白質後,使該 活化載體蛋白質與活化多醣反應。 在一個實施例中,分離活化載體蛋白質之步驟進一步包 含凍乾分離之活化血清型5或8多醣’產生凍乾之活化血清 型5或8多醣。 在一個實施例中,溴乙酸為溴乙酸之N-羥基丁二醯亞胺 酯(BAANS)。 在一個實施例中,利用PDPH產生血清型8莢膜多醣-載 149159.doc -10- 201110977 體蛋白質結合物之方法包含使用有機溶劑,該有機溶劑為 極性非質子性溶劑。在一個實施例中,極性非質子性溶劑 係選自由二甲亞砜(DMSO)、二甲基甲醯胺(DMF)、二曱基 乙醯胺、甲基-2-吼咯啶酮及六曱基磷醯胺(HMPA)組成 之群。在一個實施例中,有機溶劑為二曱亞砜(DMSO)。 在一個實施例中,利用PDPH產生血清型5或8莢膜多醣-載體蛋白質結合物之方法中所使用之碳化二亞胺為1 -乙基-3-(3-二曱基胺基丙基)-碳化二亞胺(EDAC)。 在一個實施例中,利用PDPH及EDAC產生血清型5或8莢 膜多醣-載體蛋白質結合物之方法包含使血清型5或8莢膜 多醣與PDPH及EDAC以約1:5:3之多醣:PDPH:EDAC重量 比於有機溶劑中反應的步驟。 在一個實施例中,利用PDPH及EDAC產生血清型5或8莢 膜多醣-載體蛋白質結合物之方法中所使用之還原劑為二 硫蘇糖醇(DTT)。 在一個實施例中,在利用PDPH及EDAC產生血清型5或8 莢膜多醣-載體蛋白質結合物的方法中活化載體蛋白質包 含使載體蛋白質與溴乙酸反應。 在一個實施例中,在利用PDPH及EDAC產生血清型5或8 莢膜多醣-載體蛋白質結合物的方法中分離活化血清型5或 8多醣之步驟包含透析過濾。 在一個實施例中,利用PDPH及EDAC產生血清型5或8莢 膜多醣-載體蛋白質結合物之方法包含水解血清型5或8多 醣-載體蛋白質結合物以移除未反應之活性基團的步驟。 149159.doc 201110977 在一個實施例中,水解企清型5或8多醣_載體蛋白質結合 物之步驟包含添加半胱胺鹽酸鹽。 在一個實施例中,利用PDPH&EDAC產生血清型5或8莢 膜多醣-載體蛋白質結合物之方法進一步包含分離含有分 離金頁色葡萄球菌血清型5或8莢膜多醣與載體蛋白質相結 合的免疫原性結合物。 在一個實施例中,分離血清型5或8多醣載體蛋白質結 合物包含透析過濾。 在一個實施例中,利用PDPH及EDAC產生血清型5或8莢 膜多醣-載體蛋白質結合物的方法中所使用之載體蛋白質 包含 crm197。 在一個實施例中,利用PDPH&EDAC產生血清型5或8莢 膜多醣_CRMl97結合物之方法中的CRM丨97係以約1:1 CRMm :莢膜多醣分子之重量比添加。 在一個實施例中,利用PDPH及EDAC產生血清型5或8莢 膜夕醣_載體蛋白質結合物之方法中所使用之活化5或8型 莢膜多醣的分子量為約50 kd至約500 kd。 在一個實施例中,利用PDPH及EDAC產生血清型5或8莢 膜夕醣·載體蛋白質結合物之方法中所產生之免疫原性結 合物的分子量為約400 kd至約5000 kd。 在個實施例中’本發明提供一種免疫原性組合物,其 包含藉由本文所述之任何方法產生的5或8型莢膜多醣-载 體蛋白質結合物。 在個實施例中,本發明提供一種免疫原性組合物,其 149159.doc -12· 201110977 包含藉由本文所述之任何方法所產生之5或8型莢膜多醣_ 載體蛋白質結合物及至少一種佐劑、稀釋劑或載劑。在一 個實施例中’免疫原性組合物包含可選自由磷酸鋁、硫酸 鋁及氫氧化鋁組成之群的基於鋁之佐劑。在一個實施例 中,本文所述之免疫原性組合物包含佐劑磷酸鋁。 以5或8型多醣之總量計,本文所述之免疫原性組合物可 包含小於30%及小於2〇%之游離5或8型多醣。本文所述之 免疫原〖生組合物可於水或低離子強度中性pH值緩衝液中儲 存。 在個貫施例中,本發明提供一種減輕或預防個體之葡 萄球菌感染、㈣萄球菌相關之疾病或病狀的方法,該方 法包含向該個體投與治療或預防量之如本文所述之免疫原 性組合物的㈣。在—個實施例中,該感染、疾病或病狀 係選自由侵襲性金黃色葡萄球菌、敗血症及帶原者組成之 群。 在一個實施例中’本發明提供一種減輕或預防經歷外科 私序之個體之葡萄球菌感染的方法,該方法包含在該外科 私序刚向該個體投與預防有效量之如本文所述之免疫原性 組合物的步驟。 在一個貫施例中,本發明之方法包含以CDI替代CDT。 在一個實施例中’本發明提供具有50 kDa至800 kDa分 子里之金黃色葡萄球菌5或8型莢膜多醣與載體蛋白質之共 4貝結合物;其中該多醣與載體蛋白質之共價結合物之組合 分子量為約400 kE)a至5000 kDa。 149159.doc 201110977 在一個實施例中,多醣與載體蛋白質之共價結合物包含 分子量範圍為70 kDa至300 kDa的多醣部分。在一個實施 例中’多醣與載體蛋白質之共價結合物之分子量範圍為 500 kDa至 2500 kDa。 在一個實施例中,多醣與載體蛋白質之共價結合物中的 載體蛋白質部分包含CRM!”。在一個實施例中,CRMi97 係經由胺基甲酸酯鍵、醯胺鍵或二者共價連接至多醣。在 一些實施例中,結合離胺酸與CRMi97之莫耳比為約1〇:1至 約25:1。在一些實施例中,多醣與載體蛋白質之共價結合 物在多醣之至少每5至1〇個醣重複單元處包含至少一個介 於CRMm與多醣之間的共價鍵。在一些實施例中,多醣與 載體蛋白質之共價結合物在多醣之每5個醣重複單元處包 含至少一個介於CRMl97與多醣之間的鍵。在一些實施例 中,多醣與CRM,97之共價結合物中的CRMi97部分包含5至 22個共價連接至多醣之離胺酸。在一些實施例中,多醣與 CRMw之共價結合物中的CRMi97部分包含5至23個共價連 接至多醣之離胺酸。在一些實施例中,多醣與載體蛋白質 之共價結合物中的CRM】9?部分包含8至15個共價連接至多 醣之離胺酸。在一些實施例中,多醣與載體蛋白質之共價 結合物中的CRMm部分包含8至丨2個共價連接至多醣之離 胺酸。 在一個實施例中,本發明提供一種免疫原性組合物,其 包含如本文所述之金黃色葡萄球菌5或8型多醣與載體蛋白 質之共價結合物及至少一種佐劑、稀釋劑或載劑。 149159.doc -14· 201110977 在一個實施例中,本發明提供一種向個體投與包含如本 文所述之金黃色葡萄球菌5或8型多醣與載體蛋白質之共價 結合物的免疫原性組合物以產生如本文所述之免疫反應的 方法。 在一個實施例中,本發明提供一種分離分子量為2〇 kDa 至1000 kDa之多聽的方法。 在一個實施例中,本發明提供一種藉由本發明之莢膜多 醣、免疫原性結合物或免疫原性組合物產生的抗體。 【實施方式】 考量本發明之[實施方式]時,將更透徹地理解本發明, 且除上文所述以外的特徵、態樣及優勢將變得顯而易見。 此[實施方式]係參考下文圖式。 概述 本發明係關於包含金黃色葡萄球g血清型⑻該多醣 與載體蛋白質相結合之免疫原性結合物以及其製備及使用 方法。本發明之免疫原性結合物的新穎特徵包括多醣及所 得結合物之分子量分佈、每個cRm197載體蛋白質中之結合 離胺酸之比率及共價連接至多醣之離胺酸之數目、載體蛋 白質與多聽之間共價鍵的數目與多酶之重複單元的關係, 及游離多醣以總多醣計之相對量。如本文中所使用之術語 「游離多m胃未與載體蛋白質結合、但㈣存在於結 合物組合物中的多醣。 用於製造本發明之免疫原性結合物的方法包括使用結合 化學法使㈣多醣與載體蛋白f共價結合結合化學法包 149159.doc 15 201110977 括CDI(1,1-羰基二咪唑)、CDT(1,1-羰基-二-1,2,4-三唑)或 PDPH(3-(2-吡啶基二硫基)-丙醯肼)。CDI僅特定用於CP8 結合。使用CDI/CDT在莢膜多醣與載體蛋白質之間產生單 碳或零碳連接子’而使用PDPH在莢膜多醣與載體蛋白質 之間產生共價硫醚鍵。 用於使-SH(硫醇化CP)與-NH2鍵聯之其他交聯劑包括(但 不限於):sulfo-LC-SMPT ; sulfo-LC-SMPT(6-曱基-a-(2·0比 σ定基二硫基)甲苯醯胺基]己酸4 -績基丁二醯亞胺醋); sulfo-KMUS(#-[k-順丁烯二醯亞胺基十一醯基氧基]磺基丁 二醯亞胺酯);sulf0-LC-SPDP(6-(3,-[2-吡啶基二硫基;μ丙 醯胺基)己酸磺基丁二醯亞胺酯),其可被硫醇分解;sulf〇_ SMPB(4-[對-順丁烯二醯亞胺基苯基]丁酸磺基丁二醯亞胺 酯);sulfo-SIAB([4-碘乙醯基]胺基苯曱酸磺基丁二醯亞 胺酯);sulfo-EMCS([N-e-順丁烯二醯亞胺基己醯基氧基] 石黃基丁二驢亞胺酯);EMCA(N-e-順丁稀二醯亞胺基己 酸);sulfo-SMCC(4-[7V-順丁烯二醯亞胺基甲基]環己烷小 曱酸石買基丁 一酿亞胺醋);sulfo-MBS(間-順丁稀二酿亞胺 基苯曱醯基羥基磺基丁二醯亞胺酯);sulf〇_GMBS(N_ [g-順丁烯二醯亞胺基丁醯基氧基]磺基丁二醯亞胺酯); ΒΜΡΑ(Ν-β-順丁烯二醯亞胺基丙酸);2_亞胺基硫烷鹽酸 鹽’ 3-(2- °比。定基二硫基)丙酸丁二蕴亞胺酯;3-順丁稀 二醢亞胺基丙酸Ν- 丁二醯亞胺酯;4_順丁烯二醯亞胺基丁 酸Ν-丁二醯亞胺酯;SMPT(4-丁二醯亞胺基氧基羰基-曱 基-a-[2-吡啶基二硫基]曱苯);lc-SMCC(4-[N-順丁烯二醢 I49159.doc 201110977 亞胺基甲基]環己烷羧基_[6_醯胺基己酸丁二醯亞胺 醋]);KMUA(N-k-順丁烯二醯亞胺基十一酸);LC-SPDP (6-(3-[2-°比咬基二硫基]_丙醯胺基)己酸丁二醯亞胺酯); — SMPH(6-[P-順丁烯二醯亞胺基丙醢胺基]己酸丁二醯亞胺 ‘ 醋);SMPB(4-[對-順丁烯二醯亞胺基苯基]丁酸丁二醯亞胺 醋);SIAB([4-碘乙醯基]胺基苯甲酸尽丁二醯亞胺酯); EMCS(N-e-順丁烯二醯亞胺基己醯基氧基]丁二醯亞胺 酯)·; SMCC(4-[7\M貝丁烯二醯亞胺基曱基]環己烷甲酸丁 二醯亞胺酯);MBS(間-順丁烯二醢亞胺基苯曱醯基_Nyf 基丁二醯亞胺酯);SBAP(3-[溴乙醯胺基]丙酸丁二醯亞胺 酯);BMPS(#-[p-順丁烯二醯亞胺基丙氧基]丁二醯亞胺 酯);AMAS(N-(a-順丁烯二醯亞胺基乙醯氧基)丁二醯亞胺 酯);SIA(碘乙酸沁丁二醯亞胺酯);及(4胃碘乙醯基)胺基 苯曱酸N-丁二醯亞胺酯。 該等試劑亦可使用用於_SH與-OH基團連接之交聯劑交 聯。該等交聯劑包括(但不限於)PMPI(N_[對_順丁稀二醯亞 胺基苯基]異氰酸酯)。 本文所述之組合物及方法適用於各種應用。舉例而言, ' 結合物可用於產生結合物免疫原性組合物以保護接受者免 . 遭金黃色葡萄球菌感染。或者,各種結合物可用於產生針 對細菌莢膜多醣之抗體,該等抗體隨後可用於研究及臨床 實驗室分析,諸如細菌偵測及血清型分類。該等抗體亦可 用於賦予個體被動免疫性。在一歧實施例φ ^ ^ —貝他列肀’所產生之針 對細菌多醣之抗體在動物效力模型或調理表 分成細胞性殺死 149159.doc - 17- 201110977 分析中具有功能性。 除非另外定義,否則本文中所使用之所有技術及科學術 語具有與一般熟習本發明所屬技術者通常所理解相同之含 義。雖然類似或等效於本文中所述者之任何方法及材料均 可用於本發明之實施或測試中,但本文中所述方法及材料 較佳。在描述實施例及主張本發明時,某些術語將根據下 文所述之定義使用。 如本文中所使用,單數形式「一」及「該」包括複數個 指代物,除非上下文另外明確規定。因而,例如,提及 「該方法」包括一或多種方法及/或本文所述類型之步驟 及/或一般技術者閱讀本發明後將顯而易知者,等等。 如本文中所使用,「約」意謂在統計上有意義的值範圍 内,諸如所述濃度範圍、時間範圍、分子量、溫度或阳 值。該圍可在-個數量級内,通常在給定值或範圍之 20%以内,更通常在1G%以内,且更通常在5%以内。術語 「約」所 >函蓋之料偏差將視所研究之特定系統而定,且 可被一般技術者容易瞭解。當在本案内敍述範圍時,該範 圍内之每個整數亦視作本發明之一實施例。 應注意,在本發明中,諸如「包含」、「含有」及其類似 術語之術語可具有美國專利法中賦予其之含義;例如其可 意謂「包括」及其類似術語。該等術語係指包括一種特定 成分或一組成分而不排除任何其他成分。諸如「基本上 由…組成」之術語具有美國專利法中賦予其之含義,例 如,其允許包括不減損本發明之新穎或基本特徵的其他成 149159.doc •18· 201110977 分或步驟,亦即,其排除會 的其他未敘述成分或步驟,且=本發明之新穎或基本特徵 驟,諸如本文中引用或以引用方』除先前技術之成分或步 中之文獻’尤其當本文件之?广本文中的此項技術 二 ‘為疋義可取得專利(例如 與先則技術相比具有新賴性 、 不明顯性、創造性,例如盥 本文中引用或以引用方式併入士 士 ^ ” 八併入本文中的文獻相比)之實施 例時。又’術言吾「由_··組成」具有美國專利法中賦予其之 含義;即此等術語為封閉式的。因此,此等術語係指包括 一種特定成分或一組成分且排除所有其他成分。 免疫原性結合物 如上文所述,本發明係關於包含金黃色葡萄球菌血清型 5或8莢膜多醣與載體蛋白質相結合的免疫原性結合物。本 發明之一個實施例提供包含金黃色葡萄球菌血清型5或8莢 膜多醣與載體分子或蛋白質相結合的免疫原性結合物,其 具有一或多個以下特徵:多醣具有50 kDa至7〇0 kDa之分 子量;免疫原性結合物具有500 kDa至2500 kDa之分子 量;且結合物包含相對於總多醣小於約3〇%之游離多醣。 在一些實施例中,多醣具有2〇 kDa至1〇〇〇 kDa之分子量。 在一些實施例中,免疫原性結合物具有200 kDa至5000 kDa之分子量。在其他實施例中,結合物包含相對於總多 醣小於約25%、約20%、約15%、約1〇%或約5%的游離多 聽。 如本文中所使用之「結合物」包含通常具有所要分子量 範圍之莢膜多醣及載體蛋白質,其中莢膜多醣結合至載體 149159.doc -19· 201110977 蛋白質。結合物可能含有或不含有一定 疋里的游離莢臈多 醣。如本文中所使用,「游離莢膜多膽、 」你袪與莢膜多 醣:載體蛋白質結合物非共償締合(亦即非共價妗人。 附或截留)的莢膜多醣。術語「游離莢膜多醣」、「游離= 醣」及「游離醣」可互換使用且意欲表達相同含義。夕 不考慮載體分子之性質’其可直接或經由連接子結合至 笑膜多膽。如本文中所使用,「結合」係指細菌笑膜㈣ 藉以共價連接至載體分子的過程。結合增強細Μ膜多糖 之免疫原性。結合可根據下文所述之方法或藉由此項技術 已知之其他方法進行。 用於免疫原性組合物中時,需考慮金黃色㈣球菌笑膜 多醣之分子量。高分子量笑膜多醣由於抗原表面上所存在 之抗原決定基的價數較高而能夠誘導某些抗體免疫反應。 分離「高分子量莢膜多醣」預期可用於本發明之組合物及 方法中。在本發明之-實施例中,可分離並純化分子量在 20 kDa至1000 kDa範圍内的高分子量血清型5或8莢膜多 醣。在本發明之-實施例中’可分離並純化分子量在5〇 kDa至700 kDa範圍内的高分子量血清型5或8莢膜多醣。在 本發明之一實施例中,可分離並純化分子量在5〇 kDa至 300 kDa範圍内的尚分子量血清型5或8莢膜多醣。在一實 靶例中,可分離並純化分子量在7〇 kDal3〇() kDa範圍内 的高分子量血清型5或8莢膜多醣。在一實施例中,可分離 並純化分子量在90 kDa至250 kDa範圍内的高分子量血清 型5或8莢膜多醣》在一實施例中,可分離並純化分子量在 I49159.doc •20· 201110977 90 kDa至150 kDa範圍内的高分子量血清型5或8莢膜多 醣。在一實施例中’可分離並純化分子量在9〇 kDa至120 kDa範圍内的高分子量血清型5或8莢膜多醣。在一實施例 中,可分離並純化分子量在80 kDal12() kDa範圍内的高 分子量血清型5或8莢膜多醣。可藉由本發明方法分離並純 化的高分子量血清型5或8莢膜多醣之其他範圍包括分子量 為70 kDa至100 kDa ;分子量為7〇 j^a至110 kDa ;;分子 量為70 kDa至120 kDa ;分子量為7〇 kDa至130 kDa ;分子 罝為70 kDa至140 kDa ;分子量為7〇 kDa至150 kDa ;分子 I為70 kDa至160 kDa ;分子量為8〇 kDa至110 kDa ;分子 罝為80 kDa至120 kDa ;分子量為80 kDd 13〇 kDa ;分子 置為80 kDa至140 kDa ;分子量為80 kDa至150 kDa ;分子 3:為80 kDa至160 kDa ;分子量為9〇 kDa至110 kDa ;分子 量為90 kDa至120 kDa ;分子量為9〇 kDa至130 kDa ;分子 量為90 kDa至140 kDa ;分子量為90 kDa至150 kDa ;分子 量為90 kDa至160 kDa;分子量為1〇〇 kDa至120 kDa;分子 量為100 kDa至130 kDa ;分子量為1〇〇 kDa至140 kDa ;分 子量為100 kDa至150 kDa ;分子量為1〇〇 kDa至160 kDa ; 及類似所要分子量範圍。任何上述範圍内之任何整數均視 作本發明之實施例。 在一個實施例中,結合物之分子量為約5〇 kDa至約5000 kDa °在一個實施例中,結合物之分子量為約2〇〇 kDa至約 5000 kDa。在一個實施例中,免疫原性結合物之分子量為 約500 kDa至約25〇〇 kDa。在一個實施例中,免疫原性結 149159.doc 21 201110977 合物之分子量為約500 kDa至約2500 kDa。在一個實施例 中’免疫原性結合物之分子量為約60〇 kDa至約2800 kDa。在一個實施例中,免疫原性結合物之分子量為約7〇〇 kDa至約2700 kDa。在一個實施例中,免疫原性結合物之 分子量為約1000 kDa至約2000 kDa ;約1800 kDa至約2500 kDa ;約 11〇〇 kDa 至約 2200 kDa ;約 1900 kDa 至約 2700 kDa ;約 1200 kDa 至約 2400 kDa ;約 1700 kDa 至約 2600 kDa ;約 1300 kDa 至約 2600 kDa ;約 1600 kDa 至約 3000 kDa。任何上述範圍内之任何整數均視作本發明之實施 例。 如本文中所使用,「免疫原性」意謂抗原(或抗原之抗原 決定基)(諸如細菌莢膜多醣)或包含抗原之結合免疫原性組 合物在諸如哺乳動物之宿主中引發體液或細胞介導或兩者 "導之免疫反應的能力。因此,如本文中所使用之「免疫 原性結合物」或「結合物」意謂含有結合至載體分子之可 用於引發免疫反應之細菌莢膜多醣抗原或抗原決定子(亦 即抗原決定基)的任何免疫原性結合物。免疫原性結合物 可用於藉由在細胞表面呈現與MHC分子結合之抗原而使宿 主敏感。此外,可產生抗原特異性T細胞或抗體以進一步 保4經免疫之宿主。因而’免疫原性結合物可保護宿主免 患一或多種與細菌感染相關之症狀,或者可保護宿主以免 因感染與莢膜多醣相關之細菌而死亡。免疫原性結合物亦 可用於產生多株或單株抗體’該等抗體可用於賦予個體被 動免疫性。免疫原性結合物亦可用於產生功能性抗體,如 149l59.doc •22· 201110977 在動物效力模型中或經由調理呑噬細胞性殺死分析、依據 殺死細菌所量測。 「抗體」為一種免疫球蛋白分子,其能夠經由至少一個 位於免疫球蛋白分子之可變區中的抗原識別位點特異結合 標乾’諸如碳水化合物、聚核苷酸、脂質、多肽等。如本 文中所使用,除非上下文另外指明,否則希望該術語不僅 涵盍元整多株或單株抗體’而且涵蓋工程改造之抗體(例 如效應功能、穩定性及其他生物活性改變的傲合抗體、人 類化抗體及/或衍生抗體)及其片段(諸如Fab、Fab,' F(ab’)2、Fv)、單鏈(ScFv)及域抗體(包括鯊魚及駱駝科抗 體)’及包含抗體部分之融合蛋白、多價抗體、多特異性 抗體(例如雙特異抗體,只要其展現所要生物活性)及如本 文所述之抗體片段,及包含抗原識別位點之免疫球蛋白分 子的任何其他經修飾構型。抗體包括任何類別之抗體,諸 如IgG、IgA或IgM(或其子類),且抗體不必屬於任何特定 類別。視抗體重鏈恆定域的胺基酸序列而定,免疫球蛋白 可歸為不同類別。有五種主要類別免疫球蛋白:“A、 IgD、IgE、IgG及IgM,且其中多者可進一步分成子類(同 型)’例如人類中之 IgGl、IgG2、lgG3、IgG4、igAl 及 。對應不同類別免疫球蛋白的重鏈恆定域分別稱為 α、δ、ε、γ及μ。不同類別免疫球蛋白之次單元結構及三 維構型已熟知。 抗體片段」僅包含完整抗體之一部分,其中該部分較 佳保留當存在於完整抗體中時在正常情況下與該部分相關 149159.doc -23- 201110977 之功能中的至少一者、較佳大部分或全部β 術語「抗原」一般係指可在動物中刺激產生抗體或7細 胞反應或二者的生物分子,通常為免疫原性組合物或免疫 原性物質(包括注射或吸收至動物中的組合物)中之蛋白 質、肽、多醣或結合物。免疫反應可針對完整分子或分子 之不同部分(例如抗原決定基或半抗原)產生。該術語可用 於指抗原分子之個別分子或指抗原分子之同源或異源群 體。抗原可被抗體、τ細胞受體或具有特異體液及/或細胞 免疫性之其他元件識別。「抗原」亦包括所有相關之抗原 性抗原決定基。指定抗原之抗原決定基可使用此項技術熟 知之抗原決定基定位技術來鑑別。參看例如Epit〇pe149159.doc The halo 5 or 8 capsular activated polysaccharide is maintained at a pH of at least about 4 hours at about 8.8 to 201110977 for about 9.2. In one embodiment, the reaction mixture of activated S. aureus ... type labyrinth and carrier protein is maintained at about hunger for about at least 4 hours at about yaw. In one embodiment, the method of producing a S. aureus isolate, such as a type of smear membrane, comprises the step of isolating the cleavage of the A-form protein conjugate after it has been produced. In one embodiment, the organic solvent used in the method for producing a S. aureus (4) type capsular polysaccharide: carrier protein conjugate is a very non-physiological bath. In one embodiment, the polar aprotic solvent is selected from the group consisting of monomethyl hydrazine (DMSO). In one embodiment, the organic solvent in the method of producing a sugar-carrier protein conjugate is DMS0. In a uniform embodiment, a method of producing a S. aureus Type 5 capsular multi-carrier protein conjugate comprises adjusting a water concentration of a reaction mixture comprising a Type 5 capsular polysaccharide and an organic solvent to about 〇1% As for the steps of .3 /〇. In one embodiment, the water concentration of the reaction mixture comprising the Type 5 capsular polysaccharide and cDT in an organic solvent is adjusted to about 0.2%/0. In one embodiment, the step of activating the isolated S. aureus Type 5 capsular polysaccharide comprises reacting the polysaccharide with Cdt, wherein the CE)T is used in an amount greater than the reaction mixture of the 匕35 capsular polysaccharide and the CDT in an organic solvent. The amount of polysaccharide present in the excess is 20 moles. In one embodiment, the method of producing a S. aureus Type 8 capsular occlusion protein binding comprises the step of determining the water concentration of a reaction mixture comprising Type 8 capsular polysaccharide 149159.doc 201110977. In one embodiment, the amount of CDT added to the reaction mixture to activate the polysaccharide is provided in accordance with the amount of CDT equivalent to about the molar amount of water in the reaction mixture comprising the type 8 serotonin and the CDT in an organic solvent. In one embodiment, the amount of CDT added to the reaction mixture to activate the polysaccharide is about 5:1 according to the molar ratio of water in the reaction mixture comprising the type 8 capsular polysaccharide and CDT in an organic solvent. The amount of CDT is provided. In one embodiment, the amount of CDT added to the reaction mixture to activate the polysaccharide is in accordance with a cdt having a water content of about 751 in a reaction mixture comprising a type 8 capsular polysaccharide and a CDT in an organic solvent. Quantity provided. In one embodiment, the method comprising the step of isolating the activated polysaccharide comprises a diafiltration step. In one embodiment, the method comprises lyophilizing the carrier protein, lyophilizing the dialysis carrier protein relative to NaC1 and adjusting the weight ratio (W/W) of the NaCl/carrier protein to about 〇·5 to About 1.5. In one embodiment, the ratio of NaCl to carrier protein is about ι. Capsules In the conjugate example, the carrier protein used in the method for isolating S. aureus 5 or 8 polysaccharide-carrier protein conjugates contains CRMm. In one embodiment, the polysaccharide-carrier protein serotype 5 or 8 polysaccharide reacts in a weight ratio of CRM97 and activated 1:1 used in a method for producing a S. aureus 5 or 8 capsular compound. . In one embodiment, the method of producing a S. aureus 5 or 8 type capsule is disclosed. 149159.doc 201110977 The method of the two-carrier protein conjugate comprises the step of mixing the (4) type of money with the CDT and mixing with the CDT for organic spraying. Icicle sugar. In the case of 'in the case of producing a S. aureus 5 or 8 type membrane two carrier egg two nucleus, the conjugate comprises hydrolyzing a serotype 5 or more conjugates to remove unreacted activity. The steps of the group. In one embodiment, the invention provides a method of producing an immunogenic conjugate comprising separating a S. aureus serum membrane cholestasis binding to a carrier protein, the method comprising the steps of: making = yellow-cocci Serotype 5 or 8-inch membrane and 3H-derived disulfide)-propionate (PDPH) and carbodiimide are reacted in an organic solvent to produce a PDPH-linked multi-audio; the pDpH is linked to a reducing agent and a reducing agent. The reaction produces an activated polysaccharide; the activated serotype 5 or 8 polysaccharide is isolated to produce an isolated activated serotype 5 or 8 polysaccharide; an activated carrier protein is provided; and the isolated activated serotype 5 or 8 polysaccharide is reacted with an activated carrier protein to produce a serotype $ or 8 multi-carrier protein conjugate; thereby producing an immunogenic conjugate comprising a S. aureus serotype 5 or 8 serotonin polysaccharide in combination with a carrier protein f. In one embodiment, after activating the carrier protein, the activated carrier protein is reacted with the activated polysaccharide. In one embodiment, the step of isolating the activated carrier protein further comprises lyophilizing the activated serotype 5 or 8 polysaccharide' to produce a lyophilized activated serotype 5 or 8 polysaccharide. In one embodiment, the bromoacetic acid is N-hydroxybutylimine imide (BAANS) of bromoacetic acid. In one embodiment, the method of producing a serotype 8 capsular polysaccharide using PDPH - 149159.doc -10- 201110977 bulk protein conjugate comprises using an organic solvent which is a polar aprotic solvent. In one embodiment, the polar aprotic solvent is selected from the group consisting of dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimercaptoacetamide, methyl-2-pyrrolidone, and six A group consisting of mercaptophosphoramide (HMPA). In one embodiment, the organic solvent is disulfoxide (DMSO). In one embodiment, the carbodiimide used in the method of producing a serotype 5 or 8 capsular polysaccharide-carrier protein conjugate using PDPH is 1-ethyl-3-(3-didecylaminopropyl) ) - carbodiimide (EDAC). In one embodiment, the method of producing a serotype 5 or 8 capsular polysaccharide-carrier protein conjugate using PDPH and EDAC comprises serotype 5 or 8 capsular polysaccharide with PDPH and EDAC at a ratio of about 1:5:3: PDPH: The step of EDAC weight ratio in the reaction in an organic solvent. In one embodiment, the reducing agent used in the method of producing a serotype 5 or 8 capsular polysaccharide-carrier protein conjugate using PDPH and EDAC is dithiothreitol (DTT). In one embodiment, the activating vector protein comprises reacting a carrier protein with bromoacetic acid in a method of producing a serotype 5 or 8 capsular polysaccharide-carrier protein conjugate using PDPH and EDAC. In one embodiment, the step of isolating the activated serotype 5 or 8 polysaccharide in a method of producing a serotype 5 or 8 capsular polysaccharide-carrier protein conjugate using PDPH and EDAC comprises diafiltration. In one embodiment, the method of producing a serotype 5 or 8 capsular polysaccharide-carrier protein conjugate using PDPH and EDAC comprises the step of hydrolyzing a serotype 5 or 8 polysaccharide-carrier protein conjugate to remove unreacted reactive groups . 149159.doc 201110977 In one embodiment, the step of hydrolyzing the crude 5 or 8 polysaccharide-carrier protein conjugate comprises adding cysteamine hydrochloride. In one embodiment, the method of producing a serotype 5 or 8 capsular polysaccharide-carrier protein conjugate using PDPH & EDAC further comprises isolating a S. aureus serotype 5 or 8 capsular polysaccharide in combination with a carrier protein Immunogenic conjugate. In one embodiment, the isolated serotype 5 or 8 polysaccharide carrier protein complex comprises diafiltration. In one embodiment, the carrier protein used in the method of producing a serotype 5 or 8 capsular polysaccharide-carrier protein conjugate using PDPH and EDAC comprises crm197. In one embodiment, the CRM 丨97 line in the method of producing a serotype 5 or 8 capsular polysaccharide _CRM97 conjugate using PDPH & EDAC is added at a weight ratio of about 1:1 CRMm: capsular polysaccharide molecule. In one embodiment, the activated 5 or 8 type capsular polysaccharide used in the method of producing a serotype 5 or 8 capsular-carrier protein conjugate using PDPH and EDAC has a molecular weight of from about 50 kd to about 500 kd. In one embodiment, the immunogenic composition produced by the method of producing a serotype 5 or 8 capsular saccharide carrier protein conjugate using PDPH and EDAC has a molecular weight of from about 400 kd to about 5000 kd. In one embodiment, the invention provides an immunogenic composition comprising a 5 or 8 type capsular polysaccharide-carrier protein conjugate produced by any of the methods described herein. In one embodiment, the invention provides an immunogenic composition, 149159.doc -12 201110977 comprising a 5 or 8 type capsular polysaccharide-carrier protein conjugate produced by any of the methods described herein and at least An adjuvant, diluent or carrier. In one embodiment, the immunogenic composition comprises an aluminum-based adjuvant selected from the group consisting of aluminum phosphate, aluminum sulfate, and aluminum hydroxide. In one embodiment, the immunogenic compositions described herein comprise an adjuvant aluminum phosphate. The immunogenic compositions described herein may comprise less than 30% and less than 2% by weight of free 5 or 8 polysaccharides, based on the total amount of the 5 or 8 type polysaccharide. The immunogenic composition described herein can be stored in water or a low ionic strength neutral pH buffer. In a single embodiment, the invention provides a method of reducing or preventing a staphylococcal infection, a disease or condition associated with a bacterium of the bacterium, the method comprising administering to the individual a therapeutic or prophylactic amount as described herein (IV) of the immunogenic composition. In one embodiment, the infection, disease or condition is selected from the group consisting of invasive Staphylococcus aureus, sepsis, and a carrier. In one embodiment, the invention provides a method of reducing or preventing staphylococcal infection in an individual undergoing surgical private order, the method comprising administering to the individual a prophylactically effective amount of the immunization as described herein The step of the original composition. In one embodiment, the method of the invention comprises replacing CDT with CDI. In one embodiment, the invention provides a 4 conjugate of a S. aureus 5 or 8 capsular polysaccharide having a 50 kDa to 800 kDa molecule and a carrier protein; wherein the polysaccharide is covalently bound to the carrier protein The combined molecular weight is from about 400 kE)a to 5000 kDa. 149159.doc 201110977 In one embodiment, the covalent conjugate of the polysaccharide to the carrier protein comprises a polysaccharide moiety having a molecular weight ranging from 70 kDa to 300 kDa. In one embodiment, the covalent conjugate of the polysaccharide to the carrier protein has a molecular weight ranging from 500 kDa to 2500 kDa. In one embodiment, the carrier protein portion of the covalent conjugate of the polysaccharide to the carrier protein comprises CRM!". In one embodiment, CRMi97 is covalently linked via a urethane linkage, a guanamine linkage, or both. To the polysaccharide. In some embodiments, the molar ratio of the combined lysine to CRMi97 is from about 1 :1 to about 25: 1. In some embodiments, the covalent combination of the polysaccharide with the carrier protein is at least at least At least one covalent bond between the CRMm and the polysaccharide is included every 5 to 1 saccharide repeating unit. In some embodiments, the covalent conjugate of the polysaccharide to the carrier protein is at every 5 sugar repeating units of the polysaccharide Containing at least one bond between CRM97 and the polysaccharide. In some embodiments, the CRMi97 moiety in the covalent conjugate of the polysaccharide with CRM, 97 comprises from 5 to 22 lysine covalently linked to the polysaccharide. In embodiments, the portion of CRMi97 in the covalent conjugate of the polysaccharide with CRMw comprises 5 to 23 lysines covalently linked to the polysaccharide. In some embodiments, the CRM in the covalent conjugate of the polysaccharide with the carrier protein] 9? Part contains 8 to 15 covalent connections The lysine of the polysaccharide is attached. In some embodiments, the CRMm portion of the covalent conjugate of the polysaccharide with the carrier protein comprises from 8 to 2 lysines covalently linked to the polysaccharide. In one embodiment, The invention provides an immunogenic composition comprising a covalent conjugate of a S. aureus 5 or 8 polysaccharide and a carrier protein as described herein and at least one adjuvant, diluent or carrier. 149159.doc -14 · 201110977 In one embodiment, the invention provides an immunogenic composition comprising a covalent conjugate comprising a S. aureus 5 or 8 polysaccharide as described herein and a carrier protein to produce an individual as described herein The method of the immunoreaction is described. In one embodiment, the present invention provides a method of isolating a multi-audio having a molecular weight of from 2 〇 kDa to 1000 kDa. In one embodiment, the present invention provides a capsular polysaccharide by the present invention, An antibody produced by an immunogenic conjugate or an immunogenic composition. [Embodiment] The present invention will be more thoroughly understood in consideration of the [embodiment] of the present invention, and The features, aspects and advantages will become apparent. This [embodiment] is based on the following figures. SUMMARY The present invention relates to the immunogenic binding of the polysaccharide containing the golden yellow grape g serotype (8) in combination with the carrier protein. And novel methods for their preparation and use. The novel features of the immunogenic conjugates of the invention include the molecular weight distribution of the polysaccharide and the resulting conjugate, the ratio of bound lysine in each cRm197 carrier protein, and the covalent attachment to the polysaccharide. The number of amine acids, the number of covalent bonds between the carrier protein and the polysynthesis, the relationship between the repeating units of the multiple enzymes, and the relative amount of free polysaccharides based on the total polysaccharide. As used herein, the term "free polym stomach" A polysaccharide that binds to the carrier protein but (d) is present in the conjugate composition. A method for making the immunogenic conjugate of the present invention comprises covalently binding a (4) polysaccharide to a carrier protein f using a binding chemistry method in combination with a chemical reagent package 149159.doc 15 201110977 including CDI (1,1-carbonyldiimidazole), CDT (1,1-Carbonyl-di-1,2,4-triazole) or PDPH (3-(2-pyridyldithio)-propanoid). CDI is only specific for CP8 integration. The use of CDI/CDT produces a single carbon or zero carbon linker between the capsular polysaccharide and the carrier protein and uses PDPH to create a covalent thioether bond between the capsular polysaccharide and the carrier protein. Other crosslinkers used to bond -SH (thiolated CP) to -NH2 include, but are not limited to: sulfo-LC-SMPT; sulfo-LC-SMPT (6-mercapto-a-(2·0) σ 定 二 二 二 ) ) ) ) ] ] ] sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf sulf Sulfobutylidene sulfite); sulf0-LC-SPDP (6-(3,-[2-pyridyldithio; μpropylamino)hexanoic acid sulfobutanediimide), Can be decomposed by thiol; sulf〇_ SMPB (4-[p-butyleneiminophenyl]butyric acid sulfobutane diimide); sulfo-SIAB ([4-iodoethyl) Sulfophenyl sulphonate; sulfo-EMCS ([Ne-m-butylene imino hexyl decyloxy] sulphate succinimide); EMCA (Ne- Cis-butyl diimide iminohexanoic acid); sulfo-SMCC (4-[7V-methylene-2-imidazolylmethyl]cyclohexane ruthenium sulphate; -MBS (m-cis-butyl diimide phenyl sulfonyl hydroxy sulfosyl dimethyl imidate); sulf 〇 GMBS (N_ [g-m-butyleneimine butyl fluorenyloxy] sulfonate Keidine diimine); ΜΡΑ(Ν-β-m-butylenediminopropionic acid); 2-iminothiolane hydrochloride ' 3-(2- ° ratio. thiodithio) propionic acid butyl imidate ; 3- cis-butyl diimide iminopropyl phthalate - butyl succinimide; 4 - maleic acid sulfonium butyrate - butyl sulfoxide; SMPT (4-butane bismuth) Iminooxycarbonyl-fluorenyl-a-[2-pyridyldithio]nonanthene); lc-SMCC (4-[N-cis-butane I49159.doc 201110977 iminomethyl] ring Hexylcarboxyl_[6_decylaminocaproic acid succinimide vinegar]); KMUA (Nk-m-butyleneimidodecanoic acid); LC-SPDP (6-(3-[2- ° ratio of dimethyldithio]- propylamino) hexamethylene hexanoate); — SMPH (6-[P-m-butyleneimine propylamino] hexanoic acid Imine 'vinegar'; SMPB (4-[p-butyleneiminophenyl)butyric acid butyl imidate acetate); SIAB ([4-iodoethenyl]aminobenzoic acid Dimethyl imidate); EMCS (Ne-m-butylene imino hexyl decyloxy) butadiene imidate); SMCC (4-[7\M bebutenyldiimide) Mercapto]butyl iodide cyclohexanecarboxylate); MBS (m-cis-butylene) Aminophenyl fluorenyl-Nyf butyl succinimide ester; SBAP (3-[bromoethylamino) propionic acid butyl succinimide); BMPS (#-[p-cis-butane Iminopropoxy]butanediimide); AMAS (N-(a-m-butyleneimidoethyloxy)butanediamine); SIA (iodoacetate)醯imino ester); and (4 gastric iodine oxime) amino benzoic acid N-butyl succinimide. These reagents can also be crosslinked using a crosslinking agent for the attachment of _SH to the -OH group. Such crosslinking agents include, but are not limited to, PMPI (N_[p-butadienyldiaminophenyl]isocyanate). The compositions and methods described herein are suitable for a variety of applications. For example, a conjugate can be used to produce a conjugate immunogenic composition to protect the recipient from infection by S. aureus. Alternatively, various combinations can be used to generate antibodies against bacterial capsular polysaccharides, which can then be used in research and clinical laboratory analysis, such as bacterial detection and serotype classification. Such antibodies can also be used to confer passive immunity to an individual. In a differential embodiment φ ^ ^ - beta 肀 所 produced by the antibody against bacterial polysaccharides in the animal efficacy model or conditioning table divided into cell kills 149159.doc - 17- 201110977 analysis is functional. All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the methods and materials described herein are preferred. In describing the embodiments and claiming the present invention, certain terms will be used in accordance with the definitions set forth below. As used herein, the singular forms " " " " " " Thus, for example, reference to "the method" includes one or more methods and/or steps of the type described herein and/or will be apparent to those of ordinary skill in the art. As used herein, "about" means within a statistically meaningful range of values, such as the concentration range, time range, molecular weight, temperature, or positivity. The circumference may be within an order of magnitude, typically within 20% of a given value or range, more typically within 1G%, and more typically within 5%. The term “about” means the deviation of the material will depend on the particular system being studied and can be easily understood by the general practitioner. Each integer within the scope is also considered to be an embodiment of the invention. It should be noted that in the present invention, terms such as "including", "containing" and the like may have the meaning given to them in the U.S. Patent Law; for example, it may mean "include" and the like. These terms are meant to include a particular ingredient or group of ingredients without excluding any other ingredients. Terms such as "consisting essentially of" have the meaning given to them in U.S. Patent Law, for example, to allow for the inclusion of other 149159.doc.18.201110977 points or steps that do not detract from the novel or essential characteristics of the present invention, that is, , the other undescribed ingredients or steps of the present invention, and = novel or essential features of the present invention, such as those cited herein or by reference to the prior art components or steps, especially in this document? This technology in the article is a patent that can be patented (for example, new, inconspicuous, and creative compared to the prior art, for example, cited in this article or incorporated by reference.) In the case of the examples incorporated herein, the term "composition" is composed of _.. has the meaning given to it in the U.S. Patent Law; that is, the terms are closed. Therefore, such terms are intended to include a particular ingredient or group of ingredients and exclude all other ingredients. Immunogenic conjugates As described above, the present invention relates to immunogenic conjugates comprising a S. aureus serotype 5 or 8 capsular polysaccharide in combination with a carrier protein. One embodiment of the invention provides an immunogenic conjugate comprising a S. aureus serotype 5 or 8 capsular polysaccharide in combination with a carrier molecule or protein having one or more of the following characteristics: the polysaccharide has a 50 kDa to 7 〇 Molecular weight of 0 kDa; the immunogenic conjugate has a molecular weight of from 500 kDa to 2500 kDa; and the conjugate comprises less than about 3% by weight of free polysaccharide relative to the total polysaccharide. In some embodiments, the polysaccharide has a molecular weight of from 2 〇 kDa to 1 〇〇〇 kDa. In some embodiments, the immunogenic conjugate has a molecular weight of from 200 kDa to 5000 kDa. In other embodiments, the conjugate comprises less than about 25%, about 20%, about 15%, about 1%, or about 5% free polyphonic relative to the total polysaccharide. As used herein, "conjugates" encompasses capsular polysaccharides and carrier proteins which typically have a desired molecular weight range, wherein the capsular polysaccharide binds to the carrier 149159.doc-19·201110977 protein. The conjugate may or may not contain free podopolysaccharide in a certain mash. As used herein, "free capsular is biliary," capsular polysaccharide with capsular polysaccharide: carrier protein conjugates that are not co-compensatory (ie, non-covalent sputum. attached or retained). The terms "free capsular polysaccharide", "free = sugar" and "free sugar" are used interchangeably and are intended to mean the same meaning. Regardless of the nature of the carrier molecule, it can be bound directly or via a linker to the labyrinth. As used herein, "binding" refers to the process by which a bacterial laughing membrane (4) is covalently attached to a carrier molecule. The combination enhances the immunogenicity of the fine membranous polysaccharide. Combinations can be made according to the methods described below or by other methods known in the art. When used in an immunogenic composition, the molecular weight of the golden yellow (tetra) cocide polysaccharide is considered. High molecular weight laughing polysaccharides are capable of inducing certain antibody immune responses due to the high valency of the epitopes present on the surface of the antigen. The separation of "high molecular weight capsular polysaccharides" is contemplated for use in the compositions and methods of the present invention. In the embodiment of the present invention, a high molecular weight serotype 5 or 8 capsular polysaccharide having a molecular weight in the range of 20 kDa to 1000 kDa can be isolated and purified. In the present invention - an embodiment, a high molecular weight serotype 5 or 8 capsular polysaccharide having a molecular weight in the range of 5 〇 kDa to 700 kDa can be isolated and purified. In one embodiment of the invention, a still molecular weight serotype 5 or 8 capsular polysaccharide having a molecular weight in the range of 5 〇 kDa to 300 kDa can be isolated and purified. In a practical example, a high molecular weight serotype 5 or 8 capsular polysaccharide having a molecular weight in the range of 7 〇 kDal 3 〇 () kDa can be isolated and purified. In one embodiment, a high molecular weight serotype 5 or 8 capsular polysaccharide having a molecular weight in the range of 90 kDa to 250 kDa can be isolated and purified. In one embodiment, the molecular weight can be separated and purified at I49159.doc •20·201110977 High molecular weight serotype 5 or 8 capsular polysaccharides ranging from 90 kDa to 150 kDa. In one embodiment, a high molecular weight serotype 5 or 8 capsular polysaccharide having a molecular weight in the range of 9 〇 kDa to 120 kDa can be isolated and purified. In one embodiment, a high molecular weight serotype 5 or 8 capsular polysaccharide having a molecular weight in the range of 80 kDal12() kDa can be isolated and purified. Other ranges of high molecular weight serotype 5 or 8 capsular polysaccharides which can be isolated and purified by the method of the invention include molecular weights from 70 kDa to 100 kDa; molecular weights from 7 〇j^a to 110 kDa; molecular weights from 70 kDa to 120 kDa The molecular weight is 7〇kDa to 130 kDa; the molecular enthalpy is 70 kDa to 140 kDa; the molecular weight is 7〇kDa to 150 kDa; the molecular I is 70 kDa to 160 kDa; the molecular weight is 8〇kDa to 110 kDa; the molecular enthalpy is 80 kDa to 120 kDa; molecular weight 80 kDd 13〇kDa; molecular set at 80 kDa to 140 kDa; molecular weight 80 kDa to 150 kDa; molecule 3: 80 kDa to 160 kDa; molecular weight 9〇kDa to 110 kDa; molecular weight From 90 kDa to 120 kDa; molecular weight from 9〇kDa to 130 kDa; molecular weight from 90 kDa to 140 kDa; molecular weight from 90 kDa to 150 kDa; molecular weight from 90 kDa to 160 kDa; molecular weight from 1〇〇kDa to 120 kDa; The molecular weight ranges from 100 kDa to 130 kDa; the molecular weight ranges from 1 〇〇 kDa to 140 kDa; the molecular weight ranges from 100 kDa to 150 kDa; the molecular weight ranges from 1 〇〇 kDa to 160 kDa; and similar molecular weight ranges. Any integer within any of the above ranges is considered to be an embodiment of the invention. In one embodiment, the molecular weight of the conjugate is from about 5 〇 kDa to about 5000 kDa. In one embodiment, the conjugate has a molecular weight of from about 2 〇〇 kDa to about 5000 kDa. In one embodiment, the immunogenic conjugate has a molecular weight of from about 500 kDa to about 25 〇〇 kDa. In one embodiment, the immunogenic knot 149159.doc 21 201110977 has a molecular weight of from about 500 kDa to about 2500 kDa. In one embodiment, the immunogenic binder has a molecular weight of from about 60 〇 kDa to about 2800 kDa. In one embodiment, the immunogenic conjugate has a molecular weight of from about 7 〇〇 kDa to about 2700 kDa. In one embodiment, the immunogenic binder has a molecular weight of from about 1000 kDa to about 2000 kDa; from about 1800 kDa to about 2500 kDa; from about 11 〇〇 kDa to about 2200 kDa; from about 1900 kDa to about 2700 kDa; kDa to about 2400 kDa; about 1700 kDa to about 2600 kDa; about 1300 kDa to about 2600 kDa; about 1600 kDa to about 3000 kDa. Any integer within any of the above ranges is considered to be an embodiment of the invention. As used herein, "immunogenic" means that an antigen (or antigenic determinant of an antigen), such as a bacterial capsular polysaccharide, or a binding immunogenic composition comprising an antigen, elicits a bodily fluid or cell in a host such as a mammal. The ability to mediate or both" Thus, as used herein, "immunogenic conjugate" or "conjugate" means a bacterial capsular polysaccharide antigen or antigenic determinant (ie, an epitope) that binds to a carrier molecule and is useful for eliciting an immune response. Any immunogenic conjugate. Immunogenic conjugates can be used to sensitize hosts by presenting antigens that bind to MHC molecules on the cell surface. In addition, antigen-specific T cells or antibodies can be produced to further protect the immunized host. Thus, an immunogenic conjugate can protect the host from one or more symptoms associated with bacterial infection, or can protect the host from infection by infection with bacteria associated with the capsular polysaccharide. Immunogenic conjugates can also be used to produce multiple strains or monoclonal antibodies' such antibodies can be used to confer immunity to an individual. Immunogenic conjugates can also be used to produce functional antibodies, such as 149l59.doc • 22· 201110977, measured in animal efficacy models or via conditioned pharyngeal killing assays, based on killing bacteria. An "antibody" is an immunoglobulin molecule capable of specifically binding to a stem such as a carbohydrate, a polynucleotide, a lipid, a polypeptide or the like via at least one antigen recognition site located in the variable region of an immunoglobulin molecule. As used herein, unless the context indicates otherwise, it is intended that the term encompasses not only a multiplicity of strains or a single antibody, but also an engineered antibody (eg, an antibody that has an effector function, stability, and other biological activity changes, Humanized antibodies and/or derived antibodies) and fragments thereof (such as Fab, Fab, 'F(ab')2, Fv), single-stranded (ScFv) and domain antibodies (including shark and camelid antibodies) and antibody-containing portions Fusion proteins, multivalent antibodies, multispecific antibodies (eg, bispecific antibodies, as long as they exhibit the desired biological activity) and antibody fragments as described herein, and any other modified immunoglobulin molecules comprising an antigen recognition site structure. Antibodies include any class of antibodies, such as IgG, IgA or IgM (or a subclass thereof), and the antibodies do not have to belong to any particular class. Depending on the amino acid sequence of the antibody heavy chain constant domain, immunoglobulins can be classified into different classes. There are five main classes of immunoglobulins: "A, IgD, IgE, IgG, and IgM, and many of them can be further divided into subclasses (homotypes)' such as IgG1, IgG2, lgG3, IgG4, igAl in humans. The heavy-chain constant domains of the class immunoglobulin are called α, δ, ε, γ, and μ, respectively. The subunit structure and three-dimensional configuration of different classes of immunoglobulins are well known. The antibody fragment only contains one part of the intact antibody, wherein Partially preferred retention, when present in the intact antibody, is normally associated with the portion of at least one of the functions of 149159.doc -23- 201110977, preferably most or all of the beta term "antigen" generally means A biomolecule in an animal that stimulates the production of an antibody or a 7-cell response or both, typically a protein, peptide, polysaccharide or conjugate in an immunogenic composition or an immunogenic material, including a composition that is injected or absorbed into an animal. . An immune response can be produced against a complete molecule or a different portion of a molecule, such as an epitope or hapten. The term can be used to refer to an individual molecule of an antigenic molecule or to a homologous or heterologous population of antigenic molecules. The antigen can be recognized by antibodies, tau cell receptors or other elements with specific humoral and/or cellular immunity. "Antigens" also include all relevant antigenic epitopes. The epitope of the designated antigen can be identified using epitope characterization techniques well known in the art. See for example Epit〇pe

Mapping Protocols in Methods in Molecular Biology,第 66 卷(Glenn E. Morris編,1996) Humana Press,Totowa, N.J。 舉例而言’線性抗原決定基可如下測定:例如在固體擔體 上同時合成大直狀’ §玄專狀對應於蛋白質分子之各部分; 及在該等肽仍連接於擔體的同時’使該等肽與抗體反應。 該等技術在此項技術中已知者,且描述於例如美國專利第 4,708,871號,Geysen等人,(1984) /Voc. iVa". sCz·· tASZ 81:3998-4002 ; Geysen等人,(1986) Mo/ec. /瞻⑽0/. 23 :709-715中;各文獻以引用的方式併入本文中,如同其 全文陳述一般。同樣,構形抗原決定基可藉由例如χ射線 結晶學及二維核磁共振測定胺基酸之空間構形來鑑別。參 看例如Epitope Mapping Protocols,上文。此外,出於本發 明之目的,「抗原」亦可用於指包括對天然序列之修飾(諸 149159.doc -24 · 201110977 缺失添加及取代(本質上一般具保守性,但其可能具 守n))的蛋白質,只要蛋白質仍能夠引發免疫反應即 可。=等修飾可能為有意的,如藉由定點突變誘發或藉 . 寺疋α成私序,或藉由基因工程方法進行修飾,或者可 &偶」的’諸如藉由產生抗原之宿主之突變。此外,抗 原可來源於、獲自或分離自微生物,例如細菌或者可為 完整生物體。同樣,該定義中亦包括表現抗原之寡核皆酸 或聚核苦酸,諸如在核酸免疫應用中。亦包括合成抗原, =如多抗原決定基、側接抗原決定基及其他來源於重組或 合成之抗原(Bergmann等人,(1993)五以j /w則⑽/ 23: 2777 2781 ; Bergmann^A ^ (1996) J. Immunol. 157:3242-3249 ; Suhrbier (1997) Immunol. Cell Biol. 75:4〇2 408 ; Gardner等人,(1998) 12th w〇rld Ams c〇nference,Mapping Protocols in Methods in Molecular Biology, Vol. 66 (edited by Glenn E. Morris, 1996) Humana Press, Totowa, N.J. For example, a linear epitope can be determined, for example, by simultaneously synthesizing a large straight shape on a solid support. § A metamorphism corresponds to each part of a protein molecule; and while the peptides are still attached to the support, The peptides react with the antibody. Such techniques are known in the art and are described, for example, in U.S. Patent No. 4,708,871, Geysen et al., (1984) /Voc. iVa". sCz. tASZ 81:3998-4002; Geysen et al., ( 1986) Mo/ec. / Vision (10) 0/. 23: 709-715; each of which is incorporated herein by reference in its entirety herein in its entirety in its entirety. Similarly, conformational epitopes can be identified by, for example, X-ray crystallography and two-dimensional nuclear magnetic resonance to determine the spatial configuration of the amino acid. See, for example, Epitope Mapping Protocols, above. Furthermore, for the purposes of the present invention, "antigen" can also be used to include modifications to the native sequence (additions and substitutions of 149159.doc -24 · 201110977 (essentially generally conservative, but which may be n) Protein, as long as the protein can still trigger an immune response. = such modifications may be intentional, such as induced or borrowed by site-directed mutagenesis, or by genetic engineering methods, or by & . Furthermore, the antigen may be derived, obtained or isolated from a microorganism, such as a bacterium or may be a whole organism. Also included in this definition are oligonucleotides or polynucleic acids that exhibit antigens, such as in nucleic acid immunization applications. Also included are synthetic antigens, such as multiple epitopes, flanking epitopes, and other antigens derived from recombinant or synthetic (Bergmann et al., (1993) 5 by j / w (10) / 23: 2777 2781; Bergmann^A ^ (1996) J. Immunol. 157:3242-3249; Suhrbier (1997) Immunol. Cell Biol. 75:4〇2 408; Gardner et al., (1998) 12th w〇rld Ams c〇nference,

Switzerland, 1998 年 6 月 28 日至 7 月 3 日)。 「保護性」免疫反應係指免疫原性組合物引發體液或細 胞介導或二者介導之免疫反應用於保護個體免遭感染的能 力。所提供之保護不必為絕對的,亦即,若相較於對照個 體群體(例如未投與疫苗或免疫原性組合物之已感染動物) 存在統計上顯著之改善’則不必完全預防或根除感染。保 ' 護可能侷限於減輕感染症狀之嚴重程度或發作速度。一般 而言’「保護性免疫反應」將包括在至少5〇%個體中誘導 對特定抗原具特異性之抗體的含量增加,包括功能性抗體 對各種抗原之某些可量測反應程度。在特定情況下,「保 護性免疫反應」可包括在至少50%個體中誘導對特定抗原 149] 59.doc -25- 201110977 具特異性之抗體的含量增加兩倍或四倍,包括功能性抗體 對各種抗原之某些可量測反應程度。在某些實施例中,調 理素化抗體(〇ps〇nising antibody)與保護性免疫反應有關。 因而,保護性免疫反應可藉由在調理吞嗟細胞性分析中量 測細菌數之下降百分比加以分析,例如下文所述者。細菌 數下降至少鳩、25%、5G%、65%、75%、議、85%、 鳩、95%或95%以上較佳。組合物中之特定結合物的 「免疫原性量」-般係基於該結合物之結合 夕而疋量。舉例而言’在1〇〇mcg劑量中,含鳩游離多 醣之血清型5或8芙膜多醣結合物將具有約8〇㈣結合多醣 及約20 mcg未結合多醣。在計算結合物劑量時,通常不考 慮結合物中之蛋白質比例。結合物之量可視葡萄球菌血清 型而變。-般而言’各劑量將包含〇1至⑽W多膽,: 其0.1至lOmcg多醣,且更尤其1JL1〇mcg多醣。 匕 術語「個體」係指哺乳動物、鳥、魚、爬行動物或 其他動物。術語「個體」亦包括人類。術言吾「個體」亦包 括豕養寵物。家養寵物之非限制性實例包括:狗、貓、 緒、兔、大鼠、小鼠、沙鼠(gerbil)、倉氣、天竺鼠、雪 紹、烏、蛇、渐場、魚、龜及娃。術語「個體」亦包括牲 畜。牲畜之非限制性實例包括:羊乾、野牛、路乾、牛、 鹿、豬、馬、路馬、驟、驢、綿羊、山羊、兔、訓鹿 牛、雞、鵝及火雞。 浑 如圖1中所示,金黃色葡萄球菌血清型5及8莢膜多_具 有 X 下、、·口構血 /月型 5[ —4)_p_D-ManNAcA-(l—4)-3-〇、八 149l59.doc •26- 201110977 α-L-FucNAc-(l—3)-β-DFucNAc-(l->]/^及血清型8[ — 3)-4-0-Ac-P-D-ManNAcA-(l—»>3)-a-L-FucNAc-(l—>-3)-p-DFucNAc-(l—]«。參看 Jones (2005) 少办.心心 340:1097-1106。 血清型8莢膜多醣具有與血清型5莢膜多醣相似之三醣重複 單元;然而,其在糖鍵及0-乙醯化位點方面不同,由此產 生血清學上不同之免疫反應模式(Fournier等人,(1984) /wm⑽.45:87-93 ;及Moreau等人,(1990) 201:285-297)。因此,血清型8及5莢膜多醣為相對複 雜之碳水化合物,其具水溶性,通常具酸性且先前被認為 具有約 25 kDa之分子量(Fattom (1990) 58, 2367-2374)。 在一些實施例中,本發明之血清型5及/或8莢膜多醣經 0-乙醯化。在一些實施例中,5型莢膜多醣或寡糖之〇-乙 醯化度為 10%至 100%、20% 至 100%、30% 至 100%、40% 至 100%、50% 至 100%、60% 至 100%、70% 至 100%、80% 至 100%、90% 至 100%、5 0% 至 90%、60% 至 90% ' 70% 至 90% 或80%至90%。在一些實施例中,8型莢膜多醣或寡糖之0-乙醯化度為 10°/〇至 100%、20%至 100%、30%至 100%、40% 至 100%、50%至 100%、60%至 100%、70%至 100%、80%至 100%、90%至 100%、50%至 90%、60% 至 90%、70%至 90% 或80%至90%。在一些實施例中,5型及8型莢膜多醣或寡 糖之0-乙醯化度為10%至100%、20%至100%、30%至 100%、40% 至 100%、50% 至 100%、60% 至 100%、70% 至 100%、8 0% 至 100%、90% 至 100%、5 0% 至 90%、60% 至 149159.doc -27- 201110977 90%、70°/。至 90°/。或 80%至 90%。 多酷或寡糖之0-乙醢化度可藉由此項技術已知之任何方 法測定,例如藉由質子NMR測定(Lemercinier及Jones 1996, Carbohydrate Research 296,83-96,Jones及Lemercinier 2002, J Pharmaceutical and Biomedical analysis 30, 1233-1247 ; WO 05/033 148 或 WO 00/563 57)。另一常用方法係由 Hestrin (1949) J. Biol. Chem. 180, 249-261描述。 在一些實施例中,本發明之血清型5及/或8莢膜多醣係 用於產生功能性抗體,如在證明抗體殺死細菌之動物效力 模型或調理吞噬細胞性殺死分析中依據殺死細菌所量測。 單獨使用監測抗體產生之分析無法證明功能性殺死,此分 析不能表明Ο-乙醯化在效力方面的重要性。 諸如灰清型5或8之莢膜多醣可使用一般技術者已知的分 離程序直接獲自細菌。參看例如Fournier等人,(1 984)上 文,Fournier等人,(1987) 户似㈣"紹⑽⑽厂 13 8:561-567 ;美國專利申請公開案第2〇〇7/〇141〇77號:及 國際專利申請公開案第W〇 00/56357號;各文獻以引用的 方式併入本文中’如同其全文陳述一般。此外,其可使用 合成方案產生。此外,血清型5或8莢膜多醣可使用亦為一 般技術者已知的基因工程改造程序重組產生(參看s & u等 人,(1997)从以0〜0/0訂143:2395-2405 ;及美國專利第 6,〇27,925號;各文獻以引用的方式併入本文中,如同其全 文陳述一般)。 可用於獲得分離血清型8莢膜多醣的一種金黃色葡萄球 149l59.doc -28- 201110977 菌_ =黃色葡萄球菌R2 pfesaq286。此菌株係在改 /夫蘭絲培養液十培育金黃色葡萄球菌pfesa〇286(美 國菌=保存中心、’· Manassas,VA; ATcc寄存編號伙⑼後 猎由流二式細胞測量術以兔抗血清型8多醣抗體加以選 擇。在流動式細胞測量術期間觀測兩個群體^及R2。純 化R1及R2並進行再培養。R2產生血清型8莢膜多醣。流動 式細胞測量分析顯示的4 @ 土 貝不均勺螢先強度。因而,選擇R2用於產 生血清型8莢膜多醣。 *可用於獲得分離血清型5⑽多㈣—種金黃色葡萄球 菌菌株為金黃色葡萄球㈣ESAG266。此g株在生長期間 產生血清型5荚膜多醣’且當細胞處於靜止期時產量達到 峰值。獲自已建立之保存中心或臨床試樣的其他金黃色葡 萄球菌5型或8型菌株可用於製造相應多醣。 本發明免疫原性結合物之另一組分為與細菌莢膜多聰結 合之載體分子或蛋白質。術語「蛋白質載體」《「載體蛋 白質」係指需要針對抗原(諸如笑膜多)之免疫反應時可 與該抗原結合的任何蛋白質分子。與載體結合可增強抗原 之免疫原性。結合可依據標準程序進行。抗原之較佳蛋白 質載體為破傷風、白喉、百日咳、假單胞菌 ⑽似)、大腸桿菌、葡萄球菌及鏈球菌 之毒素、類毒素或毒素之任何突變型交又 反應物質(CRM)。在一個實施例中’尤佳載體為白喉類毒 素CRMm,其來源於產生CRMl97蛋白質之白喉棒狀桿菌 (C. diphtheriae)菌株(:7(β197)。此菌株之ATCC寄存編號為 149159.doc -29- 201110977 53281。產生CRMw之方法描述於美國專利第5,614,382號 中,該專利係以引用的方式併入本文中,如同其全文陳述 一般。或者,可使用蛋白質載體或其他免疫原性蛋白質之 片段或抗原決定基。舉例而言,半抗原性抗原可偶合至細 菌毒素、類毒素或CRM之T細胞抗原決定基。參看1988年2 月 1 日申明之名為「Synthetic Peptides Representing a T_Switzerland, June 28 to July 3, 1998). "Protective" immune response refers to the ability of an immunogenic composition to elicit a humoral or cell-mediated or both-mediated immune response to protect an individual from infection. The protection provided need not be absolute, that is, if there is a statistically significant improvement compared to a control individual population (eg, an infected animal that has not been administered a vaccine or immunogenic composition), then it is not necessary to completely prevent or eradicate the infection. . Protection may be limited to reducing the severity or speed of infection. In general, "protective immune response" will include an increase in the amount of an antibody that is specific for a particular antigen in at least 5% of the individual, including some measureable response of the functional antibody to the various antigens. In certain instances, a "protective immune response" can include a two-fold or four-fold increase in the amount of an antibody specific for a particular antigen 149] 59.doc -25- 201110977, including functional antibodies, in at least 50% of individuals. Some degree of response to various antigens can be measured. In certain embodiments, the 〇ps〇nising antibody is associated with a protective immune response. Thus, the protective immune response can be analyzed by measuring the percent decrease in the number of bacteria in the opsonophagocytic assay, such as those described below. The number of bacteria decreased by at least 鸠, 25%, 5G%, 65%, 75%, 85%, 鸠, 95% or 95% or more. The "immunogenic amount" of a particular combination in a composition is generally based on the combination of the combination. For example, in a dose of 1 〇〇mcg, a serotype 5 or 8 capsular polysaccharide conjugate comprising guanidine free polysaccharide will have about 8 〇 (d) bound polysaccharide and about 20 mcg unbound polysaccharide. The proportion of protein in the conjugate is usually not taken into account when calculating the conjugate dose. The amount of the conjugate can vary depending on the serotype of the staphylococcus. In general, each dose will comprise from 1 to (10) W of biliary, from 0.1 to 10 mgg of polysaccharide, and more particularly 1 JL of 1 mcg of polysaccharide.匕 The term “individual” refers to a mammal, bird, fish, reptile or other animal. The term "individual" also includes humans. The words "individuals" also include keeping pets. Non-limiting examples of domestic pets include: dogs, cats, snails, rabbits, rats, mice, gerbils, stagnation, guinea pigs, shoals, blacks, snakes, gradual fields, fish, turtles, and baby. The term "individual" also includes livestock. Non-limiting examples of livestock include: dried sheep, bison, road dry, cattle, deer, pigs, horses, road horses, scorpions, crickets, sheep, goats, rabbits, deer cattle, chickens, geese and turkeys. As shown in Figure 1, S. aureus serotypes 5 and 8 capsular _ have X lower, · mouth blood / month type 5 [-4] _p_D-ManNAcA-(l-4)-3-〇 , VIII149l59.doc •26- 201110977 α-L-FucNAc-(l-3)-β-DFucNAc-(l->]/^ and serotype 8[-3]-4-0-Ac-PD- ManNAcA-(l-»>3)-aL-FucNAc-(l->-3)-p-DFucNAc-(l-]«. See Jones (2005) Less. Heart 340: 1097-1106. Serum Type 8 capsular polysaccharide has a trisaccharide repeat unit similar to serotype 5 capsular polysaccharide; however, it differs in sugar linkage and 0-acetylation site, thereby producing a serologically different immune response pattern (Fournier Et al., (1984) /wm(10).45:87-93; and Moreau et al. (1990) 201:285-297). Thus, serotype 8 and 5 capsular polysaccharides are relatively complex carbohydrates that are water soluble. Sexual, usually acidic and previously thought to have a molecular weight of about 25 kDa (Fattom (1990) 58, 2367-2374). In some embodiments, the serotype 5 and/or 8 capsular polysaccharide of the invention is subjected to 0-B In some embodiments, the 5-acetylation degree of type 5 capsular polysaccharide or oligosaccharide is from 10% to 100%. %, 20% to 100%, 30% to 100%, 40% to 100%, 50% to 100%, 60% to 100%, 70% to 100%, 80% to 100%, 90% to 100%, 50% to 90%, 60% to 90% '70% to 90% or 80% to 90%. In some embodiments, the 8-type capsular polysaccharide or oligosaccharide has a 0-acetylation degree of 10°/ 〇 to 100%, 20% to 100%, 30% to 100%, 40% to 100%, 50% to 100%, 60% to 100%, 70% to 100%, 80% to 100%, 90% to 100%, 50% to 90%, 60% to 90%, 70% to 90% or 80% to 90%. In some embodiments, 0-acetylation of type 5 and type 8 capsular polysaccharides or oligosaccharides Degrees are 10% to 100%, 20% to 100%, 30% to 100%, 40% to 100%, 50% to 100%, 60% to 100%, 70% to 100%, 80% to 100% , 90% to 100%, 50% to 90%, 60% to 149159.doc -27- 201110977 90%, 70°/. To 90°/. Or 80% to 90%. The 0-acetylation degree of a succulent or oligosaccharide can be determined by any method known in the art, for example by proton NMR (Lemercinier and Jones 1996, Carbohydrate Research 296, 83-96, Jones and Lemercinier 2002, J). Pharmaceutical and Biomedical analysis 30, 1233-1247; WO 05/033 148 or WO 00/563 57). Another common method is described by Hestrin (1949) J. Biol. Chem. 180, 249-261. In some embodiments, the serotype 5 and/or 8 capsular polysaccharides of the invention are used to produce a functional antibody, such as in an animal efficacy model demonstrating antibody killing of bacteria or in a phagocytic killing assay. Bacterial measurement. Analysis of the use of monitored antibodies alone failed to demonstrate functional killing, and this analysis does not indicate the importance of Ο-acetamidine in efficacy. A capsular polysaccharide such as ash clear type 5 or 8 can be obtained directly from bacteria using a separation procedure known to those skilled in the art. See, for example, Fournier et al., (1 984) supra, Fournier et al., (1987) Households (4) "Shao (10) (10) Plant 13 8:561-567; US Patent Application Publication No. 2〇〇7/〇141〇77 And International Patent Application Publication No. W/00/56357; each of which is incorporated herein by reference in its entirety in its entirety herein in its entirety herein. In addition, it can be produced using a synthetic scheme. In addition, serotype 5 or 8 capsular polysaccharides can be produced recombinantly using genetic engineering procedures known to those of ordinary skill (see s & u et al., (1997) from 00:0/0 to 143:2395- 2405; and U.S. Patent No. 6, 〇27, 925; each of which is incorporated herein by reference in its entirety in its entirety herein. A golden yellow grape sphere that can be used to obtain a serotype 8 capsular polysaccharide. 149l59.doc -28- 201110977 _ = Staphylococcus aureus R2 pfesaq286. This strain was cultured in a modified/Frans culture medium with 10 strains of Staphylococcus aureus pfesa〇286 (American bacteria = preservation center, '· Manassas, VA; ATcc registered number (9) after hunting by flow two-cell measurement with rabbit anti- Serotype 8 polysaccharide antibodies were selected. Two populations and R2 were observed during flow cytometry. R1 and R2 were purified and recultured. R2 produced serotype 8 capsular polysaccharide. Flow cytometry analysis showed 4 @ The soil is unevenly fired. Therefore, R2 is selected to produce serotype 8 capsular polysaccharide. * It can be used to obtain isolated serotype 5 (10) and more (four) - Staphylococcus aureus strain is golden yellow grape ball (4) ESAG266. Serotype 5 capsular polysaccharides are produced during growth and yield peaks when the cells are in stationary phase. Other S. aureus Type 5 or 8 strains obtained from established preservation centers or clinical samples can be used to make the corresponding polysaccharides. Another component of the immunogenic conjugate of the present invention is a carrier molecule or protein which binds to the bacterial capsule. The term "protein carrier" and "carrier protein" means that a needle is required. Any protein molecule that binds to the antigen in the immune response of an antigen (such as a smiley membrane). The binding to the carrier enhances the immunogenicity of the antigen. The binding can be carried out according to standard procedures. The preferred protein carrier for the antigen is tetanus, diphtheria, Any mutant cross-reactive substance (CRM) of pertussis, Pseudomonas (10), Escherichia coli, Staphylococcus and Streptococcus toxins, toxoids or toxins. In one embodiment, the preferred carrier is a diphtheria toxoid CRMm derived from a strain of C. diphtheriae producing a CRM97 protein (: 7 (β197). The ATCC accession number for this strain is 149159.doc - 29-201110977 53281. A method of producing a CRMw is described in U.S. Patent No. 5,614,382, the disclosure of which is incorporated herein by reference in its entirety in its entirety in its entirety in its entirety in its entirety. Or an epitope. For example, a hapten antigen can be coupled to a bacterial toxin, a toxoid, or a T cell epitope of a CRM. See the name "Synthetic Peptides Representing a T_" as claimed on February 1, 1988.

Cell Epitope as a Carrier Molecule For Conjugate Vaccines」的美國專利申請案第i5〇,688號;該申請案係以 引用的方式併入本文中,如同其全文陳述一般。其他適合 載體蛋白質包括不活化細菌毒素,諸如霍亂類毒素(例如 國際專利申請案第WO 2004/083251中所述)、大腸桿菌 LT大腸杯菌ST及綠膿桿菌aerwgkosa)外 毒素A。亦可使用細菌外膜蛋白,諸如外膜複合物 c(OMPC)、孔蛋白(porin)、轉鐵蛋白結合蛋白、肺炎球菌 溶血素(pneumolysin)、肺炎球菌表面蛋白A(PspA)、肺炎 球菌黏著蛋白(psaA)或流感嗜血桿菌⑽ 蛋白D。亦可使用其他蛋白質作為載體蛋白 質,諸如卵清蛋白、匙孔螺血藍蛋白(KLH)、牛血清白蛋 白(BSA)或結核菌素純化蛋白衍生物(ppD)。 因此,在一個實施例中,本發明免疫原性結合物内之載 體蛋白質為CRMm,且CRM〗97經由胺基曱酸酯鍵、醯胺 鍵或二者共價連接至莢膜多醣。在一些實施例中,本發明 免疫原性結合物内之載體蛋白質為Crm197,且CRM197經 由硫醚鍵共價連接至莢膜多醣。載體蛋白質中之可結合至 149159.doc •30· 201110977 莢膜多醣之離胺酸殘基數目可表徵為所結合離胺酸之範 圍+例而5,在指定免疫原性組合物中,CRM197在39個 離胺馱中可包含5至15個共價連接至莢膜多醣的離胺酸。 >數之另一方式為12%至40°/〇(^尺]^197離胺酸共價連 接至莢膜多醣。舉例而言’在指定免疫原性組合物中, CRM!9?可在39個離胺酸中包含以至22個共價連接至莢膜多 酿的離胺酸。表達此參數之另一方式為40%至60% CRM197 離胺酸共價連接至笑膜多醣。在-些實施例中,CRM197在 39個離胺酸中包含5至15個共價連接至cp8的離胺酸。表達 此參數之另一方式為12%至4〇% CRMm離胺酸共價連接至 在二只施例中,CRM丨97在39個離胺酸中包含1 8至 22個共價連接至cp5的離胺酸。表達此參數之另一方式為 40 /。至60% CRM197離胺酸共價連接至cp。 如上文所述,與莢膜多醣結合之載體蛋白質中之離胺酸 殘基數目可表徵為所結合離胺酸之範圍,該範圍可表達為 莫耳比。舉例而言,Cp8免疫原性結合物中之所結合離胺 酸與CRM197之莫耳比可為約18:1至約22:1。在一個實施例 中,CP8免疫原性結合物中之所結合離胺酸與CRM…之莫 耳比範圍可為約15:1至約25:1。在一個實施例中,⑽免 疫原性結合物中之所結合離胺酸與CRMm之莫耳比範圍可 為約14:1至約20:1 ;約12:1至約18:1 ;約10:1至約16:1 ;約 8,1至約14:1,約6:1至約12:1 ;約4:1至約1〇:1 ;約20:1至 約26:1 ’約22:1至約28:1 ;約24:1至約30:1 ;約26:1至約 32:1 ;約28:1至約34:1 ;約30:1至約36:1 ;約5:1至約 149159.doc -31 - 201110977 :::1;約5:1至約2〇:1;約10:1至約2〇:1;或約10:1至約 又’ CP5免疫原性結合物中之所結合離胺酸與 197之莫耳比可為約3:1至25:1。在-個實施例中,CP5 免疫原性結合物中之所結合離胺酸與CRM,97之莫耳比範圍 可為約5:1至約2〇:卜在_個實施例中,⑵免疫原性結合 物中之所結合離胺酸與CRMi97之莫耳比範圍可為約“至 約20:1 ;約6:1至約2〇:1 ;約7:1至約2〇^ ;約η至約 2〇:1 ;約10:1至約20:1 ;約11:1至約2〇:ι ;約12:1至約 2〇:1 ;約13:1至約20:1 ;約14:1至約2〇:1 ;約ΐ5:ι至約 2〇·1,力16.1至約20:1 ;約17:1至約2〇:i ;約18:1至約 20:1 ;約5:1至約18:1 ;約7:1至約16:1 ;或約91至約 14:1。 表達與莢膜多醣結合之載體蛋白質中之離胺酸殘基數目 的另一方式可為結合離胺酸之範圍。舉例而言,在指定 CP8免疫原性結合物中,cRMi97可在39個離胺酸中包含5 至15個共價連接至莢膜多聽的離胺酸。或者,此參數可表 達為百分比。舉例而言,在指定CP8免疫原性結合物中, 所結合離胺酸之百分比可為1 〇%至50%。在一些實施例 中,20%至50%離胺酸可共價連接至CP8。或者,30%至 50% CRM197離胺酸可共價連接至CP8; 10%至40% CRM197 離胺酸;10%至30% CRM197離胺酸;20%至40% CRM197離 胺酸;25%至40% CRM197離胺酸;30%至40。/。CRM197離胺 酸;10% 至30% CRM197離胺酸;15% 至 30% CRM197離胺 酸;20% 至30% CRM197離胺酸;25% 至30% CRM197 離胺 149159.doc -32· 201110977 酸;10。/。至 15°/。CRM197離胺酸;或 ι〇%至 12% CRM197離胺 酸共價連接至CP8。又,在指定CP5免疫原性結合物中, CRM]97可在39個離胺酸中包含18至22個共價連接至莢膜多 _的離胺酸。或者’此參數可表達為百分比。舉例而言, 在指定CP5免疫原性結合物中,所結合離胺酸之百分比可 為40%至60%。在一些實施例中,40%至60°/。離胺酸可共價 連接至CP5。或者,30%至50% CRM197離胺酸可共價連接 至CP5 ; 20%至40% CRMI97離胺酸;10%至30°/。CRM197離 胺酸;50%至70% CRM197離胺酸;35%至65% CRM197離胺 酸;30°/。至 60% CRM197離胺酸;25% 至 55% CRMI97 離胺 酸;20% 至50。/。CRM197離胺酸;15% 至 45% CRM197離胺 酸;10%至40% CRM〗97離胺酸;40%至70% CRM197離胺 酸;或45%至75%CRM197離胺酸共價連接至CP5。 莢膜多醣鏈與載體分子上之離胺酸的連接頻率為表徵莢 膜多醣之結合物的另一參數。舉例而言,在一個實施例 中’莢膜多醣之至少每5至10個醣重複單元存在至少一個 介於CRM!97與多醣之間的共價鍵。在另一實施例中,莢膜 多醣之每5至10個醣重複單元;每2至7個醣重複單元;每3 至8個醣重複單元;每4至9個醣重複單元;每6至11個醣重 複單元;每7至12個醣重複單元;每8至13個醣重複單元; 每9至14個醣重複單元;每10至15個醣重複單元;每2至6 個醣重複單元;每3至7個醣重複單元;每4至8個醣重複單 元;每6至10個醣重複單元;每了至1]L個醣重複單元;每8 至12個醣重複單元;每9至13個醣重複單元;每⑺至丨斗個 149159.doc -33- 201110977 醣重複單元;每10至20個醣重複單元;或每5至1〇個醣重 複單元存在至少一個介於CRM,97與多醣之間的共價鍵。在 另一實施例中,莢膜多醣之每2、3、4、5、6、7、8、9、 1〇、11、12、13、14、15、16、17、18、19 或 20 個醣重複 單元存在至少一個介於CRMm與莢膜多醣之間的鍵。 本發明之一個實施例提供一種免疫原性組合物,其包含 任何含有金黃色葡萄球菌企清型5或8莢膜多醣與上述載體 蛋白質相結合之免疫原性結合物。 術語「免疫原性組合物」係關於任何含有抗原(例如微 生物或其組分)之醫藥組合物,該組合物可用於在個體中 引發免疫反應。本發明之免疫原性組合物可用於保護或治 療易感染金黃色葡萄球菌的人類(藉助於全身 '表皮或黏 膜途徑投與免疫原性組合物),或可用於產生可用於賦予 另一個體被動免疫性的多株或單株抗體製劑。此等投藥可 包括經由肌肉内、腹膜内、皮内或皮下途徑注射;或經由 黏膜投與口腔/消化道、呼吸道或泌尿生殖道。在一個實 施例中,使用鼻内投藥治療或預防金黃色葡萄球菌之鼻咽 帶原者’從而在其最初期減輕感染。免疫原性組合物亦可 用於產生功能性抗體,如在動物效力模型中或經由調理吞 噬細胞性殺死分析、依據殺死細菌所量測。 特定免疫原性組合物之組分的最佳量可藉由標準研究確 定’包括觀測個體之適當免疫反應。初次接種疫苗後,個 體可接受一或數次充分間隔之加強免疫。 本發明之免疫原性組合物亦可包括一或多種以下抗原: 149159.doc •34- 201110977U.S. Patent Application Serial No. 5,688, the disclosure of which is incorporated herein by reference in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety. Other suitable carrier proteins include non-activated bacterial toxins such as cholera toxoid (e.g., as described in International Patent Application No. WO 2004/083251), Escherichia coli LT Escherichia coli ST and Pseudomonas aeruginosa aerwgkosa). Bacterial outer membrane proteins such as outer membrane complex c (OMPC), porin, transferrin binding protein, pneumolysin, pneumococcal surface protein A (PspA), pneumococcal adhesion can also be used. Protein (psaA) or Haemophilus influenzae (10) protein D. Other proteins may also be used as carrier proteins such as ovalbumin, keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA) or tuberculin purified protein derivative (ppD). Thus, in one embodiment, the carrier protein in the immunogenic conjugate of the invention is CRMm and CRM 97 is covalently linked to the capsular polysaccharide via an amino phthalate linkage, a guanamine linkage or both. In some embodiments, the carrier protein within the immunogenic conjugate of the invention is Crm197 and CRM197 is covalently linked to the capsular polysaccharide via a thioether linkage. The carrier protein can be bound to 149159.doc • 30· 201110977 The number of lysine residues of the capsular polysaccharide can be characterized as the range of bound lysine + instance 5, in the specified immunogenic composition, CRM197 The 39 amidines may contain from 5 to 15 lysines covalently linked to the capsular polysaccharide. Another way of > number is 12% to 40°/〇(^尺)^197 is covalently attached to the capsular polysaccharide by the amine acid. For example, 'in a given immunogenic composition, CRM!9? Contains up to 22 lysines covalently linked to the capsule in 39 lysines. Another way to express this parameter is 40% to 60% CRM197 is covalently attached to the amino acid to the laughing polysaccharide. In some embodiments, CRM197 comprises 5 to 15 lysines covalently linked to cp8 in 39 amide acids. Another way to express this parameter is 12% to 4% CRMm covalently linked to the amine acid To two of the examples, CRM 丨97 contained 18 to 22 lysines covalently linked to cp5 in 39 amide acids. Another way to express this parameter is 40 /. to 60% CRM197 The amine acid is covalently attached to cp. As described above, the number of amino acid residues in the carrier protein bound to the capsular polysaccharide can be characterized as the range of bound lysine, which can be expressed as a molar ratio. In contrast, the molar ratio of bound lysine to CRM197 in the Cp8 immunogenic conjugate can range from about 18:1 to about 22:1. In one embodiment, the CP8 immunogenic conjugate is The molar ratio of the combined lysine to CRM can range from about 15:1 to about 25: 1. In one embodiment, (10) the molar ratio of bound lysine to CRMm in the immunogenic conjugate The range can be from about 14:1 to about 20:1; about 12:1 to about 18:1; about 10:1 to about 16:1; about 8,1 to about 14:1, about 6:1 to about 12 :1 ; about 4:1 to about 1 :1; about 20:1 to about 26:1 'about 22:1 to about 28:1; about 24:1 to about 30:1; about 26:1 to about 32:1; about 28:1 to about 34:1; about 30:1 to about 36:1; about 5:1 to about 149159.doc -31 - 201110977 :::1; about 5:1 to about 2〇 :1; about 10:1 to about 2:1; or about 10:1 to about 'the CP5 immunogenic conjugate, the combined lysine and 197 molar ratio may be about 3:1 to 25 In one embodiment, the molar ratio of the combined lysine to CRM, 97 in the CP5 immunogenic conjugate may range from about 5:1 to about 2: in one embodiment (2) The molar ratio of bound lysine to CRMi97 in the immunogenic conjugate may range from about "to about 20:1; from about 6:1 to about 2:1; from about 7:1 to about 2". ^; about η to about 2〇:1; about 10:1 to about 20:1; about 11:1 to about 2〇:ι; about 12:1 to about 2〇:1; about 13:1 to about 20 :1 ; 14:1 to about 2:1; about 5:ι to about 2〇·1, force 16.1 to about 20:1; about 17:1 to about 2:i; about 18:1 to about 20:1; From about 5:1 to about 18:1; about 7:1 to about 16:1; or about 91 to about 14:1. Another way of expressing the number of lytic acid residues in the carrier protein bound to the capsular polysaccharide can be in the range of binding to the lysine. For example, in a designated CP8 immunogenic conjugate, cRMi97 may comprise from 5 to 15 covalently linked to the capsular polyamine lysine in 39 lysines. Alternatively, this parameter can be expressed as a percentage. For example, the percentage of bound lysine in the designated CP8 immunogenic conjugate can range from 1% to 50%. In some embodiments, 20% to 50% of the amine acid can be covalently attached to the CP8. Alternatively, 30% to 50% CRM197 can be covalently attached to CP8 from the amine acid; 10% to 40% CRM197 lysine; 10% to 30% CRM197 lysine; 20% to 40% CRM197 lysine; 25% Up to 40% CRM197 lysine; 30% to 40. /. CRM197 lysine; 10% to 30% CRM197 lysine; 15% to 30% CRM197 lysine; 20% to 30% CRM197 lysine; 25% to 30% CRM197 amide 149159.doc -32· 201110977 Acid; 10. /. To 15°/. CRM197 is free of amine acid; or ι〇% to 12% CRM197 is covalently attached to CP8 from the amine. Further, in the designated CP5 immunogenic conjugate, CRM]97 may contain 18 to 22 lysines covalently linked to the capsule in 39 lysines. Or 'this parameter can be expressed as a percentage. For example, the percentage of bound lysine in the designated CP5 immunogenic conjugate can range from 40% to 60%. In some embodiments, 40% to 60°/. The lysine can be covalently attached to the CP5. Alternatively, 30% to 50% of CRM197 can be covalently attached to the CP5 from the amino acid; 20% to 40% of the CRMI97 is lysine; 10% to 30°/. CRM197 is from aminic acid; 50% to 70% CRM197 is from aminic acid; 35% to 65% CRM197 is from aminic acid; 30°/. Up to 60% CRM197 lysine; 25% to 55% CRMI97 from amino acid; 20% to 50. /. CRM197 lysine; 15% to 45% CRM197 lysine; 10% to 40% CRM 97 cis acid; 40% to 70% CRM197 lysine; or 45% to 75% CRM 197 covalently linked to lysine To CP5. The frequency of attachment of the capsular polysaccharide chain to the amine acid on the carrier molecule is another parameter that characterizes the combination of the capsular polysaccharide. For example, in one embodiment at least every 5 to 10 sugar repeat units of the capsular polysaccharide have at least one covalent bond between CRM!97 and the polysaccharide. In another embodiment, every 5 to 10 sugar repeating units of the capsular polysaccharide; every 2 to 7 sugar repeating units; every 3 to 8 sugar repeating units; every 4 to 9 sugar repeating units; every 6 to 11 sugar repeating units; every 7 to 12 sugar repeating units; every 8 to 13 sugar repeating units; every 9 to 14 sugar repeating units; every 10 to 15 sugar repeating units; every 2 to 6 sugar repeating units ; every 3 to 7 sugar repeating units; every 4 to 8 sugar repeating units; every 6 to 10 sugar repeating units; each to 1] L sugar repeating units; every 8 to 12 sugar repeating units; every 9 Up to 13 sugar repeat units; each (7) to the bucket 149159.doc -33- 201110977 sugar repeat unit; every 10 to 20 sugar repeat units; or every 5 to 1 sugar repeat unit exists at least one between CRM, Covalent bond between 97 and polysaccharide. In another embodiment, each of the capsular polysaccharides is 2, 3, 4, 5, 6, 7, 8, 9, 1 〇, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 The sugar repeating unit has at least one bond between the CRMm and the capsular polysaccharide. One embodiment of the present invention provides an immunogenic composition comprising any immunogenic conjugate comprising a Staphylococcus aureus 5 or 8 capsular polysaccharide in combination with the above carrier protein. The term "immunogenic composition" relates to any pharmaceutical composition containing an antigen, such as a microorganism or a component thereof, which composition can be used to elicit an immune response in an individual. The immunogenic compositions of the invention can be used to protect or treat humans susceptible to S. aureus (administering an immunogenic composition by means of a systemic 'epidermal or mucosal route), or can be used to generate passives that can be used to confer another body An immunological multi-plant or monoclonal antibody preparation. Such administration may include injection via the intramuscular, intraperitoneal, intradermal or subcutaneous route; or administration to the oral/digestive, respiratory or genitourinary tract via the mucosa. In one embodiment, intranasal administration is used to treat or prevent the nasopharyngeal band of S. aureus' to reduce infection at its initial stage. The immunogenic composition can also be used to produce a functional antibody, as measured in an animal potency model or via a conditioned phagocytic killing assay, based on killing the bacteria. The optimal amount of the components of a particular immunogenic composition can be determined by standard studies' including the appropriate immune response of the observed individual. After the initial vaccination, the individual can receive one or several adequate intervals of booster immunization. The immunogenic compositions of the invention may also include one or more of the following antigens: 149159.doc • 34- 201110977

ClfA、ClfB、SdrC、SdrD、SdrE MntC/SitC/唾液結合蛋 白、IsdB、IsdA、Opp3a、DltA、HtsA、LtaS、SdrH、 SrtA、SpA、SBI、a-溶血素(hla)、β-溶血素、纖維結合蛋 白結合蛋白A(fnbA)、凝固酶、map、Panton-Valentine殺白 血球素(pvl)、γ毒素(hlg)、ica、免疫顯性ABC轉運體、 RAP、自溶素、層黏連蛋白受體、isaA/pisA、IsaB/pisB、 SPOIIIE、SsaA、EbpS、SasF、SasH、EFB(FIB)、FnbB、ClfA, ClfB, SdrC, SdrD, SdrE MntC/SitC/Saliva-binding protein, IsdB, IsdA, Opp3a, DltA, HtsA, LtaS, SdrH, SrtA, SpA, SBI, a-hemolysin (hla), β-hemolysin, Fibronectin binding protein A (fnbA), coagulase, map, Panton-Valentine leukocyte (pvl), gamma toxin (hlg), ica, immunodominant ABC transporter, RAP, autolysin, laminin Receptor, isaA/pisA, IsaB/pisB, SPOIIIE, SsaA, EbpS, SasF, SasH, EFB (FIB), FnbB,

Npase、EBP、骨涎結合蛋白n、金黃色葡萄球菌金屬蛋白 酶(aureolysin)前驅體(AUR)/Seppl、Cna、TSST-1、 mecA、dPNAG、GehD、EbhA、EbhB、SSP-1、SSP-2 HBP、玻璃連結蛋白結合蛋白、HarA、腸毒素A、腸毒素 Β、腸毒素Cl及新穎自溶素。 在一個實施例中,本發明之免疫原性組合物進一步包含 佐劑、緩衝劑、 低溫保護劑、鹽、二階陽離子、非離子型 清’冻劑、自由基氧化抑制劑、稀釋劑或載劑中之至少一 者。在一個實施例中,本發明之免疫原性組合物内之佐劑 為基於鋁之佐劑。在一個實施例中,佐劑為選自由磷酸 鋁坆I鋁及氫氧化鋁組成之群的基於鋁之佐劑。在一個 實施例中’佐劑為磷酸鋁。 一起投與時能增強免疫反應的Npase, EBP, osteophyte-binding protein n, aureolysin precursor (AUR)/Seppl, Cna, TSST-1, mecA, dPNAG, GehD, EbhA, EbhB, SSP-1, SSP-2 HBP, vitronectin binding protein, HarA, enterotoxin A, enterotoxin sputum, enterotoxin Cl, and novel autolysin. In one embodiment, the immunogenic composition of the present invention further comprises an adjuvant, a buffer, a cryoprotectant, a salt, a second-order cation, a non-ionic clearing agent, a radical oxidation inhibitor, a diluent or a carrier. At least one of them. In one embodiment, the adjuvant in the immunogenic composition of the invention is an aluminum based adjuvant. In one embodiment, the adjuvant is an aluminum-based adjuvant selected from the group consisting of aluminum lanthanum aluminum phosphate and aluminum hydroxide. In one embodiment the adjuvant is aluminum phosphate. Can enhance the immune response when administered together

149159.doc 佐劑為當與免疫原或抗原一 物質。許多細胞激素或淋巴1 -35- 201110977 1 8(及其突變形式);干擾素-α、β及γ ;顆粒球巨噬細胞群 落刺激因子(GM-CSF)(參看例如美國專利第5,078,996號及 ATCC寄存編號39900);巨噬細胞群落刺激因子(M-CSF); 顆粒球群落刺激因子(G-CSF);及腫瘤壞死因子α及β。可 與本文所述之免疫原性組合物一起使用之其他佐劑包括趨 化因子,包括(而不限於)MCP-1、ΜΙΡ-1α、MIP-Ιβ及 RANTES ;黏著分子,諸如選擇素,例如L-選擇素、Ρ-選 擇素及Ε-選擇素;黏蛋白樣分子,例如CD34、GlyCAM-1 及MadCAM-1 ;整合素家族成員,諸如LFA-1、VLA-1、 Mac-Ι及pi 50.95 ;免疫球蛋白超家族成員,諸如PECAM、 ICAM(例如 ICAM-1、ICAM-2及 ICAM-3)、CD2及 LFA-3 ; 共刺激分子,諸如B7-1、B7-2、CD40及CD40L ;生長因 子,包括血管生長因子、神經生長因子、纖維母細胞生長 因子、表皮生長因子、PDGF、BL-1及血管内皮生長因 子;受體分子,包括Fas、TNF受體、Fit、Apo-1、p55、 WSL-1、DR3、TRAMP、Apo-3 ' AIR、LARD、NGRF、 DR4、DR5、KILLER、TRAIL-R2、TRICK2 及 DR6 ;及卡 斯蛋白酶(Caspase),包括ICE。 適用於增強免疫反應之佐劑可進一步包括(而不限 於)MPL™(3-0-脫乙醯化單磷醯基脂質A, Corixa; Hamilton,MT),其描述於美國專利第4,912,094號中。亦 適用作佐劑者為可得自Corixa之合成脂質A類似物或者胺 基烷基葡糖胺磷酸鹽化合物(AGP)或其衍生物或類似物, 及美國專利第6,113,918號中所述者種此類AGP為2- 149159.doc -36- 201110977 [(R)-3 -十四醯基氧基十四酿基胺基]乙基2_脫氧_4_〇_膦醯 基-3-0-[(R)-3-十四醯基氧基十四醯基]_2_[(R)_3十四醯基 氧基十四醯基-胺基]-b-D-葡萄派σ南糖苦,其亦稱作529(以 前稱作RC529)。此529佐劑係調配成水性形式(AF)或穩定 乳液(SE)。 其他佐劑包括胞壁酿肽’諸如N-乙醯基-胞壁總基_l-蘇 胺醯基-D-異麩醯胺酸(thr-MDP)、N-乙醯基-降胞壁醯基_ L-丙胺酸-2-(Γ-2’-二(十六醯基甘油基_3_羥基磷醯基 氧基)-乙胺(ΜΤΡ-ΡΕ);水包油乳液’諸如MF59(美國專利 第6,299,884號)(含有5°/。角鯊烯、〇.5°/〇聚山梨醇酯8〇及ο」% Span 85(視情況含有不同量之MTP-PE),使用微流體化 儀’諸如 110Y型微流體化儀(Microfluidics,Newton, MA) 調配成亞微米顆粒)及SAF(含有10%角鯊烯、0.4%聚山梨 醇酯80、5°/。氧化異丙烯嵌段共聚物l 121及thr-MDP,微流 體化成亞微米乳液或經渦旋處理產生較大粒徑之乳液); 不完全弗氏佐劑(incomplete Freund's adjuvant ; IFA);鋁 鹽(礬)’諸如氫氧化鋁、磷酸鋁、硫酸鋁;愛菲金 (Amphigen);阿夫立定(Avridine) ; L121/角鯊烯;D-丙交 酉旨-聚丙交酯/醣苷;氧化異丙烯多元醇類;已殺死之博德 氏桿菌(5orc?eie//a);皂苷,諸如美國專利第5,〇57,540號中 所述之Stimulon™ QS-21(Antigenics, Framingham, MA)、 美國專利第 5,254,339號中所述之isconlatrix®(CSL Limited, Parkville,Australia)及免疫刺激複合物(ISC〇MS);結核分 枝桿菌;細菌脂多醣;合成 149159.doc -37- 201110977 聚核苷酸’諸如含CpG基元之寡核苷酸(例如美國專利第 6,207,646號),IC-31(Intercell AG, Vienna, Austria) ’ 福述 於歐洲專利第1,296,713號及第1,3 26,63 4號中;百日咳毒素 (PT)或其突變體、霍亂毒素或其突變體(例如美國專利第 7,285,281 號、第 7,332,174 號、第 7,361,355 號及第 7,3 84,640號),或大腸桿菌不对熱毒素(lt)或其突變體, 尤其1/1'-1^63、1^1-1172(例如美國專利第6,149,919號'第 7’115,73 0號及第7,291,588號)。 免疫原性組合物可視情況包含醫藥學上可接受之載劑。 術語「醫藥學上可接受之載劑」意謂經聯邦管理機構、州 政府或其他管理機構批准或者列於美國藥典或其他一般認 可之藥典中的供用於動物(包括人類以及非人類哺乳動物) 之載劑。術語「載劑」係指隨醫藥組合物一起投與之稀釋 劑、佐劑、賦形劑或媒劑。水、生理食鹽水溶液及右旋糖 水溶液及甘油溶液可用作液體載劑,尤其用於可注射溶 液°適合醫藥載劑之實例描述於E. w Martin之 「Remington’s Pharmaceutical Sciences」中。調配物應適 合投藥模式。 本發明之免疫原性組合物可進一步包含一或多種其他 「 免疫調節劑」,該等免疫調節劑為干擾或改變免疫系統 的藥劑’從而觀測到體液及/或細胞介導之免疫性上調或 下調。在一個實施例中,提供體液及/或細胞介導之免疫 系統分支之上調。某些免疫調節劑之實例包括例如佐劑或 月匕激素’或Isc〇matrix®(CSL Limited; Parkville,Australia) ’ 】49159.doc •38- 201110977 尤其美國專利第5,254,339號中所述者。可用於本發明之免 疫原性組合物中的佐劑之非限制性實例包括幻61佐劑系統 (Ribi lnc.; Hamilton,MT)、礬、礦物凝膠(諸如氫氧化鋁凝 膠)、水包油乳液、油包水乳液(諸如完全弗氏佐劑及不完 全弗氏佐劑)、嵌段共聚物((^1^;八^恤,〇八)、(^-21(Cambridge Biotech Inc.; Cambridge, ΜΑ) ' SAF-M(Chiron; Emeryville,CA)、Amphigen®佐劑、皂苷、Quii A或其他皂苷部分、單鱗醯基脂質a及阿夫立定脂質胺佐 劑。可用於本發明之免疫原性組合物中的水包油乳液之非 限制性實例包括改良型SEAM62及SEAM 1/2調配物。改良 型 SEAM62 為含有 50/〇(v/v)角鯊烯(Sigma)、i〇/〇(v/v)Span® 85清潔劑(ICI Surfactants)、〇.7%(v/v)聚山梨醇酯80清潔劑 (ICI Surfactants)、2.5%(v/v)乙醇、200 mcg/ml Quil A、 100 mcg/ml膽固醇及〇·5%(ν/ν)卵磷脂的水包油乳液。改良 型 SEAM 1/2為包含5%(ν/ν)角鯊烯、i%(v/v)span® 85清潔 劑、0·7ο/〇(ν/ν)聚山梨醇酯8〇清潔劑、2.5%(v/v)乙醇、100 mcg/ml Quil A及50 mcg/ml膽固醇之水包油乳液。可包括 於免疫原性組合物中之其他「免疫調節劑」包括例如一或 多種介白素、干擾素或其他已知細胞激素或趨化因子。在 一個實施例中’佐劑可能為環糊精衍生物或聚陰離子性聚 合物,諸如美國專利第6,165,995號及第6,610,310號中分別 所述者。應瞭解,所使用之免疫調節劑及/或佐劑將視免 疫原性組合物所投與之個體、注射途徑及注射次數而定。 除複數種葡萄球菌莢膜多醣-蛋白質結合物外,本發明 149159.doc -39· 201110977 之免疫原性組合物可進—步包含一或多種防腐劑。FDA要 求處於多劑量瓶中之生物製品含有防腐劑,僅有少數例 外。含有防腐劑之疫苗製品包括含有苄索氯銨(炭疽)、2_ 苯氧基乙醇(DTaP、HepA、Lyme、P〇li〇(非經腸))、苯酚 (肺炎、傷寒(非經腸)、牛痘)及硫柳汞(DTap、DT、Tcj、149159.doc Adjuvant is a substance when used with an immunogen or antigen. Many cytokines or lymphocytes 1 -35- 201110977 18 (and their mutant forms); interferon-α, β and γ; granule macrophage community stimulating factor (GM-CSF) (see, for example, U.S. Patent No. 5,078,996 and ATCC accession number 39900); macrophage community stimulating factor (M-CSF); granule globule community stimulating factor (G-CSF); and tumor necrosis factor alpha and beta. Other adjuvants that can be used with the immunogenic compositions described herein include chemokines including, without limitation, MCP-1, ΜΙΡ-1α, MIP-Ιβ, and RANTES; adhesion molecules, such as selectins, for example L-selectin, Ρ-selectin and Ε-selectin; mucin-like molecules such as CD34, GlyCAM-1 and MadCAM-1; integrin family members such as LFA-1, VLA-1, Mac-Ι and pi 50.95; immunoglobulin superfamily members such as PECAM, ICAM (eg ICAM-1, ICAM-2 and ICAM-3), CD2 and LFA-3; costimulatory molecules such as B7-1, B7-2, CD40 and CD40L Growth factors, including vascular growth factor, nerve growth factor, fibroblast growth factor, epidermal growth factor, PDGF, BL-1, and vascular endothelial growth factor; receptor molecules, including Fas, TNF receptor, Fit, Apo-1 , p55, WSL-1, DR3, TRAMP, Apo-3 'AIR, LARD, NGRF, DR4, DR5, KILLER, TRAIL-R2, TRICK2 and DR6; and Caspase, including ICE. Adjuvants suitable for enhancing the immune response may further include, without limitation, MPLTM (3-0-deacetylated monophosphonyl lipid A, Corixa; Hamilton, MT), which is described in U.S. Patent No. 4,912,094 . Also suitable as adjuvants are synthetic lipid A analogs or aminoalkyl glucosamine phosphate compounds (AGP) or derivatives or analogs thereof available from Corixa, and those described in U.S. Patent No. 6,113,918. Such AGP is 2- 149159.doc -36- 201110977 [(R)-3 -tetradecyloxytetrakisylamino]ethyl 2_deoxy_4_〇_phosphinyl-3-0 -[(R)-3-tetradecyloxytetradecyl]_2_[(R)_3tetradecyloxytetradecyl-amino]-bD-grape sigma sucrose, Also known as 529 (formerly known as RC529). This 529 adjuvant is formulated into an aqueous form (AF) or a stable emulsion (SE). Other adjuvants include cell wall-derived peptides such as N-ethyl thiol-cell wall total _l-threonyl-D-iso branide (thr-MDP), N-ethyl thiol-deciding wall Indenyl _ L-alanine-2-(Γ-2'-bis(hexadecylglyceryl_3_hydroxyphosphonyloxy)-ethylamine (ΜΤΡ-ΡΕ); oil-in-water emulsion 'such as MF59 (U.S. Patent No. 6,299,884) (containing 5 ° / squalene, 〇 5 ° / 〇 polysorbate 8 〇 and ο %% Span 85 (depending on the amount of MTP-PE), using microfluidics Chemical instrument such as 110Y microfluidizer (Microfluidics, Newton, MA) formulated into submicron particles) and SAF (containing 10% squalene, 0.4% polysorbate 80, 5 ° / oxidized isopropylene block Copolymer l 121 and thr-MDP, microfluidized into submicron emulsion or vortexed to produce emulsion of larger particle size); incomplete Freund's adjuvant (IFA); aluminum salt (矾)' Aluminum hydroxide, aluminum phosphate, aluminum sulfate; Amphigen; Avridine; L121/squalene; D-propionate-polylactide/glycoside; oxidized isopropenol polyol; Killed Bode Saccharomyces (5orc?eie//a); saponins, such as those described in US Patent No. 5, 〇57, 540, StimulonTM QS-21 (Antigenics, Framingham, MA), US Patent No. 5,254,339 (isconlatrix®) CSL Limited, Parkville, Australia) and immunostimulating complex (ISC〇MS); Mycobacterium tuberculosis; bacterial lipopolysaccharide; synthesis 149159.doc -37- 201110977 polynucleotides such as oligonucleotides containing CpG motifs (e.g., U.S. Patent No. 6,207,646), IC-31 (Intercell AG, Vienna, Austria) 'Full in European Patent Nos. 1,296,713 and 1, 3 26, 63 4; pertussis toxin (PT) or Mutant, cholera toxin or a mutant thereof (e.g., U.S. Patent Nos. 7,285,281, 7,332,174, 7,361,355 and 7,3,84,640), or Escherichia coli, not to a thermotoxin (lt) or a mutant thereof, 1/1'-1^63, 1^1-1172 (for example, U.S. Patent No. 6,149,919, '7'115, 73 0 and 7,291,588). The immunogenic composition may include medicine as appropriate. An acceptable carrier. The term "pharmaceutically acceptable carrier" means approved for use by animals, including humans and non-human mammals, by a federal regulatory agency, state government, or other regulatory agency or listed in the US Pharmacopoeia or other generally recognized pharmacopoeia. Carrier. The term "carrier" refers to a diluent, adjuvant, excipient or vehicle with which the pharmaceutical composition is administered. Water, physiological saline solution and dextrose aqueous solution and glycerol solution can be used as a liquid carrier, especially for injectable solutions. Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E. w Martin. The formulation should be suitable for the mode of administration. The immunogenic composition of the present invention may further comprise one or more other "immunomodulators" which are agents which interfere with or alter the immune system' thereby observing humoral and/or cell-mediated immune upregulation or Down. In one embodiment, a bodily fluid and/or cell mediated immune system branch upregulation is provided. Examples of certain immunomodulatory agents include, for example, the adjuvants or the menopause hormones or Isc〇matrix® (CSL Limited; Parkville, Australia) </ RTI> 49159. doc • 38-201110977, especially in U.S. Patent No. 5,254,339. Non-limiting examples of adjuvants that can be used in the immunogenic compositions of the invention include the Magic 61 adjuvant system (Ribi lnc.; Hamilton, MT), hydrazine, mineral gels (such as aluminum hydroxide gel), water Oil-in-water emulsion, water-in-oil emulsion (such as complete Freund's adjuvant and incomplete Freund's adjuvant), block copolymer ((^1^;八^,〇八), (^-21 (Cambridge Biotech Inc) .; Cambridge, ΜΑ) 'SAF-M (Chiron; Emeryville, CA), Amphigen® adjuvant, saponin, Quii A or other saponin fraction, monosulfonyl lipid a and aflide lipid amine adjuvant. Non-limiting examples of oil-in-water emulsions in the immunogenic compositions of the invention include modified SEAM 62 and SEAM 1/2 formulations. Modified SEAM 62 is 50/〇 (v/v) squalene (Sigma), I〇/〇(v/v)Span® 85 Cleaner (ICI Surfactants), 7%.7% (v/v) Polysorbate 80 Cleaner (ICI Surfactants), 2.5% (v/v) Ethanol, 200 Oil-in-water emulsion of mcg/ml Quil A, 100 mcg/ml cholesterol and 〇·5% (ν/ν) lecithin. Modified SEAM 1/2 is 5% (ν/ν) squalene, i% (v/v)span® 85 cleaner, 0·7 /〇(ν/ν) polysorbate 8〇 detergent, 2.5% (v/v) ethanol, 100 mcg/ml Quil A and 50 mcg/ml cholesterol oil-in-water emulsion. Can be included in immunogenic combinations Other "immunomodulators" in the context include, for example, one or more interleukins, interferons or other known cytokines or chemokines. In one embodiment, the adjuvant may be a cyclodextrin derivative or a polyanionic Polymers, such as those described in U.S. Patent Nos. 6,165,995 and 6,610,310, respectively, it being understood that the immunomodulatory agents and/or adjuvants used will be administered to the individual to which the immunogenic composition is administered, the route of administration. And the number of injections. In addition to a plurality of staphylococcal capsular polysaccharide-protein conjugates, the immunogenic composition of the present invention 149159.doc-39·201110977 may further comprise one or more preservatives. The biological products in the dose bottles contain preservatives with a few exceptions. Vaccine preparations containing preservatives include benzethonium chloride (anthrax), 2_phenoxyethanol (DTaP, HepA, Lyme, P〇li〇 (non- Intestine)), phenol (pneumonia, typhoid fever (non- Intestine), Vaccinia) and thimerosal (DTap, DT, Tcj,

HePB、Hib、流感、JE、腦膜炎、肺炎、狂犬病)之疫苗。 經批准用於可注射藥物之防腐劑包括例如氯代丁醇、間曱 酚、對羥基苯曱酸甲醋、對羥基苯曱酸丙醋、2_苯氧基乙 醇、节索氣銨、氯化苯曱烴銨、苯甲酸、苯甲醇、苯酚、 硫柳汞及硝酸笨汞。 本發明之調配物可進-步包含以下一或多者:緩衝劑、 鹽、二階陽離子、非離子型清潔劑、諸如糖之低溫保護劑 及諸如自由基清除劑或整合劑之抗氧化劑,或其任何多重 組合。選擇任一種組分(例如螯合劑)可能決定是否需要另 一種組分(例如清除劑)。經調配供投藥之最終組合物應無 菌及/或無熱原質。熟習此項技術者可視各種因素(諸如必 要之特定儲存及投藥條件),憑經驗確定在含防腐劑之本 發明免疫原性組合物中包括此等及其他組分之何種組合將 最佳。 某些實把例中,可與非經腸投藥相容之本發明調配物 包含-或多種生理學上可接受之緩衝劑,其選自(但不限 於)^(三甲胺)、碟酸鹽、乙酸鹽、侧酸鹽、擰檬酸鹽、 甘胺酸、組胺酸及丁二酸鹽。在某些實施例中,調配物係 緩衝至約6.0至約9.0、較佳約6.4至約74之阳範圍内。 149159.doc 201110977 在某些實施例中,可沪堂I$ α 士&amp; 物或調配物的ΡΗ值太: 發明之免疫原性組合 術中…! 配物之pH值可使用此項技 1 不 &gt; 術加以調節。調配物之pH值可調節至3_〇至 8.0在某些貫施例中,調配物之阳值可為或可調節為3 〇 至6·〇、4.0至6.0,或5〇至8〇。在其他實施例中,調配物 之阳值可為或可調節為約3_〇、約3.5、約4.〇、約4 5、約 5·0、約5.5、約5.8、約6〇、約65、約7〇、約η或約 8·〇。在某些實施例中,ρΗ值可為或可調節至4 5至Μ,或 4,5 至 6,5、5·〇至 5,4、5 4至5 5、5 …6、5 6至5 77 8 5.8至5_9、5_9至6.0、6.0至6.1、6.1至6.2、6.2至 6’3至6-5 6’5至7.0、7.0至7.5或7.5至8.0之範圍内。 在一特定實施例中,調配物之ρΗ值為約5 8 ^ 在某些實施例中,與非經腸投藥相容的本發明調配物包 含一或多種二價陽離子,包括(但不限於)MgCh、CaCh及Vaccines of HePB, Hib, influenza, JE, meningitis, pneumonia, rabies. Preservatives approved for injectable pharmaceuticals include, for example, chlorobutanol, m-nonylphenol, methylparaben, propylparaben, 2-phenoxyethanol, sulphonium, chlorine Ammonium benzoate, benzoic acid, benzyl alcohol, phenol, thimerosal, and stearic mercury. The formulations of the present invention may further comprise one or more of the following: buffers, salts, second-order cations, nonionic detergents, cryoprotectants such as sugars, and antioxidants such as free radical scavengers or integrators, or Any multiple combination thereof. The choice of any component, such as a chelating agent, may determine if another component (e.g., a scavenger) is required. The final composition to be administered for administration should be sterile and/or pyrogen free. Those skilled in the art will be able to determine, empirically, which combination of these and other components are preferred in the immunogenic compositions of the present invention containing the preservative, depending on various factors, such as the particular storage and administration conditions necessary. In certain embodiments, formulations of the invention that are compatible with parenteral administration comprise - or a plurality of physiologically acceptable buffers selected from, but not limited to, (trimethylamine), disc salts , acetate, acid salt, citrate, glycine, histidine and succinate. In certain embodiments, the formulation is buffered to a positive range of from about 6.0 to about 9.0, preferably from about 6.4 to about 74. 149159.doc 201110977 In certain embodiments, the devaluation of the Hutang I$α &amp; or the formulation is too: The immunogenic combination of the invention Intraoperative...! The pH of the formulation can be adjusted using this technique. The pH of the formulation can be adjusted to 3_〇 to 8.0. In some embodiments, the positive value of the formulation can be or can be adjusted to 3 至 to 6·〇, 4.0 to 6.0, or 5 to 8 〇. In other embodiments, the positive value of the formulation can be or can be adjusted to about 3 〇, about 3.5, about 4. 〇, about 4 5, about 5.00, about 5.5, about 5.8, about 6 〇, about 65, about 7 〇, about η or about 8 〇. In some embodiments, the value of ρΗ can be or can be adjusted to 4 5 to Μ, or 4, 5 to 6, 5, 5·〇 to 5, 4, 5 4 to 5 5, 5 ... 6, 5 to 5 77 8 5.8 to 5_9, 5_9 to 6.0, 6.0 to 6.1, 6.1 to 6.2, 6.2 to 6'3 to 6-5, 6'5 to 7.0, 7.0 to 7.5 or 7.5 to 8.0. In a particular embodiment, the formulation has a pH of about 5 8 ^. In certain embodiments, the formulation of the invention that is compatible with parenteral administration comprises one or more divalent cations including, but not limited to, MgCh, CaCh and

MnCl2,濃度範圍為約〇 j mM至約1〇 mM,較佳高達約5 rnM。 在某些實施例中,與非經腸投藥相容的本發明調配物包 含一或多種鹽,包括(但不限於)氯化鈉、氯化鉀、硫酸鈉 及硫酸鉀,該等鹽以非經腸投與個體時生理學上可接受之 離子濃度存在且以可產生所選離子強度或容積滲透濃度之 最終濃度包括在最終調配物中。調配物之最終離子強度或 滲透壓度將由多個組分(例如來自緩衝化合物及其他非緩 衝鹽之離子)決定。較佳鹽NaCH系以至多約250 mM之範圍 存在,鹽濃度經選擇與其他組分(例如糖)互補,使得調配 149159.doc 201110977 物之最終總容積滲透濃度與非經腸投藥(例如肌肉内或皮 下注射)相容,且將促進免疫原性组合物調配物之免疫原 性組分在各種溫度範圍下的長期穩定性。無鹽調配物將容 許一或多種所選低溫保護劑之範圍增加,以維持所要最終 容積滲透濃度水準。 在某些貫施例中,與非經腸投藥相容的本發明調配物包 含一或多種低溫保護劑’其選自(但不限於)二醣(例如乳 糖、麥芽糖、蔗糖或海藻糖)及多經基烴(例如半乳糖醇、 甘油、甘露醇及山梨醇)。MnCl2 has a concentration ranging from about 〇 j mM to about 1 mM, preferably up to about 5 rnM. In certain embodiments, formulations of the invention that are compatible with parenteral administration comprise one or more salts including, but not limited to, sodium chloride, potassium chloride, sodium sulfate, and potassium sulfate, the salts being non- Physiologically acceptable ionic concentrations are present when administered intra-intestinal to an individual and are included in the final formulation at a final concentration that produces a selected ionic strength or volume osmotic concentration. The final ionic strength or osmotic pressure of the formulation will be determined by multiple components, such as ions from buffer compounds and other non-buffering salts. Preferably, the salt NaCH is present in the range of up to about 250 mM, and the salt concentration is selected to be complementary to other components (e.g., sugar) such that the final total volume osmotic concentration of the 149159.doc 201110977 is formulated with parenteral administration (e.g., intramuscular). Or subcutaneous injection) is compatible and will promote long-term stability of the immunogenic component of the immunogenic composition formulation over a wide range of temperatures. The salt-free formulation will allow for an increase in the range of one or more selected cryoprotectants to maintain the desired final volumetric osmotic concentration level. In certain embodiments, a formulation of the invention that is compatible with parenteral administration comprises one or more cryoprotectants, which are selected from, but are not limited to, disaccharides (eg, lactose, maltose, sucrose, or trehalose) and Poly-based hydrocarbons (eg, galactitol, glycerol, mannitol, and sorbitol).

在某些實施例中,調配物之容積滲透濃度處於約2〇〇 m〇s/L至約800 m〇s/L之範圍内,較佳範圍為約25〇 m〇s/L 至約500 mOs/L,或約300 mOs/L至約400 mOs/L·。無鹽調 配物可含有例如約5%至約25%蔗糖,且較佳含有約7%至 約15%或約1〇%至約12%蔗糖。或者,無鹽調配物可含有 例如約3%至約12%山梨醇,且較佳含有約4%至約7❶/❶或約 5%至約6%山梨醇。若添加諸如氯化鈉之鹽,則相對降低 蔗糖或山梨醇之有效範圍。此等及其他渗透壓度及容積渗 透濃度考慮完全處於此項技術之技能範圍内。 在某些實施例中’與非經腸投藥相容的本發明調配物包 含一或多種自由基氧化抑制劑及/或螯合劑。各種自由基 清除劑及螯合劑在此項技術t已知且應用於本文所述之調 配物及使用方法。實例包括(但不限於)乙醇、EDTA、 EDTA/乙醇組合、三乙醇胺、甘露醇、組胺酸、甘油、样 檬酸鈉、肌醇六磷酸鹽、三聚磷酸鹽、抗壞血酸/抗壞血 149159.doc -42· 201110977 酸鹽、丁二酸/ 丁二酸鹽、蘋果酸/順丁稀二酸鹽、得斯芬 (desferal)、EDDHA及DTPA ’及上述兩者或兩者以上之不 同組合。在某些實施例中,可以有效增強調配物之長期穩 定性的濃度添加至少一種非還原性自由基清除劑。—或多 種自由基氧化抑制劑/螯合劑亦可以不同組合添加,諸如 清除劑及二階陽離子。螯合劑之選擇將決定是否需要添加 清除劑。 在某些實施例中,與非經腸投藥相容的本發明調配物包 含一或多種非離子型界面活性劑,包括(但不限於)聚氧化 乙烯脫水山梨醇脂肪酸酯、聚山梨醇酯_8〇(Tween 8〇)、聚 山梨醇酯-60(Tween 60)、聚山梨醇酯_40(Tween 40)及聚山 梨醇酯-20(Tween 20);聚氧乙烯烷基醚,包括(但不限 於)Bnj 58、Brij 35以及其他界面活性劑,諸如Trh〇n χ_ 100,Tnton Χ-114、ΝΡ40、Span 85及氧化異丙烯系列非 離子型界面活性劑(例如氧化異丙烯121),較佳組分聚山梨 醇酯_80之濃度為約0.001%至約2。/。(高達約0.25❶/。較佳)或聚 山梨醇酯_4〇之濃度為約〇 〇〇1%至1%(高達約〇 5%較佳)。 在某些實施例中’本發明調配物包含一或多種適合非經 齡技某的其他穩定劑,例如包含至少一個硫醇(-SH)基之 還原劑(例如半胱胺酸、N-乙醯基半胱胺酸、還原麩胱甘 肽、硫代乙醇酸鈉、硫代硫酸鹽、單硫代甘油或其混合 物)。或者或視情況,本發明之含防腐劑之免疫原性組合 物调配物可藉由自避光保存調配物(例如藉由使用褐色玻 璃容器)之儲存容器中移除氧來進一步穩定。 149159.doc •43· 201110977 本發明之含防腐劑之免疫原性組合物調配物可包含一或 多種醫藥學上可接受之載劑或賦形劑,包括自身不誘導免 疫反應之任何賦形劑。適合賦形劑包括(但不限於)巨分 子,諸如蛋白質、醣、聚乳酸、聚乙醇酸、聚合胺基酸、 胺基酸共聚物、蔗糖(Pa〇letti等人,2〇〇1,19: 2 11 8)、海藻糖、乳糖及脂質聚集物(諸如油滴或脂質體)。 3玄等載劑為熟習此項技術者所熟知。醫藥學上可接受之賦 形劑論述於例如 Gennaro, 2〇〇〇, Remingt〇n: The 本發明之組合物可;東乾或呈水㈣彡式,亦即溶液或懸浮 液。液體調配物宜自其包裝形式直接投與,且因而用於注 射較為理想’不似本發明之凍乾組合物所需般需要在水 性介質中復原。 向個體直接遞送本發明之免疫原性組合物可藉由非經腸 投藥(肌肉内、腹膜内、皮内1下、靜脈内,或投與組 織之胞間隙或經直腸、經口 '經陰道、局部、經皮、 鼻内、眼、耳、肺或其他黏膜投藥來實現。在一較佳實施 例中,非經腸投藥係藉由肌肉内注射,例如投與個體之股 ^上臂°注射可經由針(例如皮下注射針),但可替代性地 =無針注射。典型肌肉内劑量為〇5mL。本發明組合物 ^Μ各種形式,例如供注射用之液體溶液或懸浮液。 m例中’組合物可製備成供經肺投與之粉末或喷 霧,例如含於明人55 tb + *4· 、 、°在其他實施例中,組合物可能製 備成栓劑或子宮托’或供經鼻、耳或眼投與之例如喷霧、 149159.doc • 44 - 201110977 滴劑、凝膠或粉末。 各免疫原性組合物劑量中之結合物的量係選擇為可誘導 免疫保護反應而無顯著不良反應的量。此量可視葡萄球菌 血清型而定。一般而言’各劑量將包含〇1至1〇〇叫多醣, 尤其0.1至10μ§多醣,且更尤其!至5盹多醣。 特定免疫原性組合物之組分的最佳量可藉由標準研究讀 定’包括觀測個體之適當免疫反應。初次接種疫苗後,個 體可接受一或多次充分間隔之加強免疫。 包裝及劑型 本發明之免疫原性組合物可包裝成單位劑量或多劑量形 式(例如2劑、4劑或4劑以上)。對於多劑量形式,小瓶通常 但未必優於預填充注射器。適合的多劑量形式包括(作不 :於至1〇劑/容器’。.⑴毫升/齊卜在某些實施例 ’劑里為〇·5 mL劑量。參看例如國際專利申請案· 2〇〇7/127668 ’該申請案係以引用的方式併入本文中。 組合物可存在於小觀或其他適合儲存容器中或可存在 =預填充遞送裝置中,例如可提供有針或無針的單組分或 夕:分注射器。注射器通常(但未必)含有單劑量之本發明 =腐劑之免疫原性組合物1管亦可設想多劑量預填 多劑量,。同m’小瓶可包括單劑量,但可替代性地包括 ,但組合物之典型注射 中,劑量調配成供投與 调配成供投與成人、青 有效劑量體積可按常規方式確定 劑量為0.5 mL體積。在某些實施例 人類個體。在某些實施例中,劑量 I49l59.doc •45· 201110977 少年、青年、幼兒或嬰兒(亦即不超過丨歲)人類個體,且在 較佳實施例中可藉由注射投藥。 本發明之液體免疫原性組合物亦適用於復原呈現凍乾形 式存在之其他免疫原性組合物。在免疫原性組合物用於此 種臨時性復原的情況下,本發明提供具有兩個或兩個以上 小瓶、兩個或兩個以上預填充注射器或每一者一或多個之 套組,其中注射器内含物係用於在注射前復原小瓶之内含 物,或反之亦然。 或者’可凍乾並復原本發明之免疫原性組合物,例如使 用此項技術中熟知之許多冷凍乾燥方法之一形成乾燥、形 狀規則(例如球形)之粒子,諸如微丸或微球體,其粒子特 徵(諸如平均直徑尺寸)可藉由改變其具體製備方法加以 擇及控制免疫原性組合物可進一步包含可視情況製備成 或含於各別乾燥、形狀規則(例如球形)之粒子(諸如微丸或 微球體)中的佐劑。在該等實施例中,本發明進一步提供 一種免疫原性組合物套組,其包含:包括穩定化、乾燥免 疫原性組合物且視情況進一步包含一或多種本發明之防腐 劑的第-組分,及包含用於復原該第—組分之無菌水溶液 的第二組分。在某些實施例中,水溶液包含一或多種防腐 劑且可視情況包含至少一種佐劑(參看例如w〇 2〇〇9/ 109550 ’該文獻以引用的方式併入本文中)。 在又-實施例中,多劑量形式之容器係選自(但不限於) 由以下組成之群的—或多者:—般實驗室玻璃器孤、燒 瓶、燒杯、S:筒、醋酵器、生物反應器、導管、管路、 149159.doc -46· 201110977 衣、大口瓶、小瓶、小瓶蓋(例 (例如橡膠塞、旋緊蓋)、安 瓿、,主射器、雙腔室或多腔室注 妊金ΐΛ 町益主射态塞、注射器 柱塞、橡膠蓋、塑膠蓋、玻璃甚 u 把私 坡塥盍、樂筒及拋棄式筆及其類 似物。本發明之容器不受製诰姑 ^ ^ 材枓限制,且包括諸如以下 材料:玻璃、金糊如鋼、殘鋼、㈣)及聚合物(例 如熱塑性聚合物、彈性體、熱塑性彈性體)。在一特定實 施例中,此形式之容器為具有丁基膠塞之5机8相夏型 玻璃瓶。熟習此項技術者將瞭解,上述形式絕非詳盡清 單,而是僅為熟習此項技術者提供關於可供本發明利用之 各種形式的料。所涵蓋之可用於本發明之其他形式可見 於實驗室設備供應商及製造商之公開目錄中,諸如υη_In certain embodiments, the volumetric osmolality of the formulation is in the range of from about 2 〇〇 m〇s/L to about 800 m〇s/L, preferably from about 25 〇m〇s/L to about 500. mOs/L, or about 300 mOs/L to about 400 mOs/L·. The salt-free formulation may contain, for example, from about 5% to about 25% sucrose, and preferably from about 7% to about 15% or from about 1% to about 12% sucrose. Alternatively, the salt-free formulation may contain, for example, from about 3% to about 12% sorbitol, and preferably from about 4% to about 7 ❶/❶ or from about 5% to about 6% sorbitol. If a salt such as sodium chloride is added, the effective range of sucrose or sorbitol is relatively lowered. These and other osmotic pressure and volumetric osmotic concentration considerations are well within the skill of the art. In certain embodiments, the formulations of the invention that are compatible with parenteral administration comprise one or more free radical oxidation inhibitors and/or chelating agents. Various free radical scavengers and chelating agents are known in the art and are useful in the formulations and methods of use described herein. Examples include, but are not limited to, ethanol, EDTA, EDTA/ethanol combination, triethanolamine, mannitol, histidine, glycerol, sodium citrate, phytate, tripolyphosphate, ascorbic acid/ascorbic acid 149159 .doc -42· 201110977 acid salt, succinic acid / succinate, malic acid / cis-succinate, desferal, EDDHA and DTPA ' and different combinations of the two or more . In certain embodiments, at least one non-reducing free radical scavenger can be added at a concentration effective to enhance the long-term stability of the formulation. - or a plurality of free radical oxidation inhibitors/chelators may also be added in various combinations, such as scavengers and second order cations. The choice of chelating agent will determine if a scavenger is required. In certain embodiments, formulations of the invention that are compatible with parenteral administration comprise one or more nonionic surfactants including, but not limited to, polyoxyethylene sorbitan fatty acid esters, polysorbates _8〇 (Tween 8〇), Polysorbate-60 (Tween 60), Polysorbate-40 (Tween 40) and Polysorbate-20 (Tween 20); Polyoxyethylene alkyl ethers, including (but not limited to) Bnj 58, Brij 35, and other surfactants, such as Trh〇n χ _ 100, Tnton Χ-114, ΝΡ40, Span 85, and oxidized isopropylene series nonionic surfactants (eg, oxidized isopropene 121) Preferably, the concentration of the preferred component polysorbate _80 is from about 0.001% to about 2. /. The concentration of (up to about 0.25 Å/min.) or polysorbate _4 为 is from about 1% to about 1% (up to about 5% is preferred). In certain embodiments, the formulations of the present invention comprise one or more other stabilizers suitable for non-aged techniques, such as a reducing agent comprising at least one thiol (-SH) group (eg, cysteine, N-B Mercaptocysteine, reduced glutathione, sodium thioglycolate, thiosulfate, monothioglycerol or mixtures thereof). Alternatively, or as the case may be, the preservative-containing immunogenic composition formulation of the present invention may be further stabilized by the removal of oxygen from a storage container that protects the formulation from light (e.g., by using a brown glass container). 149159.doc • 43· 201110977 The preservative-containing immunogenic composition formulation of the present invention may comprise one or more pharmaceutically acceptable carriers or excipients, including any excipients that do not induce an immune response by themselves. . Suitable excipients include, but are not limited to, macromolecules such as proteins, sugars, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, sucrose (Pa〇letti et al., 2, 1, 19) : 2 11 8), trehalose, lactose and lipid aggregates (such as oil droplets or liposomes). 3 Xuan et al. are well known to those skilled in the art. Pharmaceutically acceptable excipients are discussed, for example, in Gennaro, 2, Remingt〇n: The composition of the invention; or as a solution or suspension of water (iv). The liquid formulation is preferably administered directly from its packaged form and, as such, is preferred for injections that do not require reconstitution in an aqueous medium as required by the lyophilized compositions of the present invention. Direct delivery of an immunogenic composition of the invention to an individual can be administered parenterally (intramuscularly, intraperitoneally, intradermally, intradermally, intravenously, or in the interstitial space of a tissue or transrectally or orally). , local, transdermal, intranasal, ocular, aural, pulmonary or other mucosal administration. In a preferred embodiment, parenteral administration is by intramuscular injection, for example, administration of an individual's upper arm. It may be via a needle (for example a hypodermic needle), but alternatively = needle-free injection. A typical intramuscular dose is 〇5 mL. The composition of the invention is in various forms, for example a liquid solution or suspension for injection. The composition may be prepared as a powder or spray for administration via the lung, for example, in the presence of 55 tb + *4·, in other embodiments, the composition may be prepared as a suppository or pessary or By nasal, aural or ocular administration, for example, a spray, 149159.doc • 44 - 201110977 drops, gel or powder. The amount of conjugate in each immunogenic composition dose is selected to induce an immunoprotective response. No significant amount of adverse reactions. This amount can be seen in Portugal It is determined by the serotype of the bacterium. In general, each dose will comprise 〇1 to 1 〇〇 polysaccharide, especially 0.1 to 10 μ § polysaccharide, and more particularly! to 5 盹 polysaccharide. Components of specific immunogenic compositions The optimal amount can be read by standard studies to include the appropriate immune response of the observed individual. After the initial vaccination, the individual can receive one or more sufficiently spaced booster immunizations. Packaging and Dosage Forms The immunogenic compositions of the invention can be packaged. In unit or multi-dose form (eg 2, 4 or more). For multi-dose forms, vials are usually, but not necessarily, better than pre-filled syringes. Suitable multi-dose forms include (do not: to 1 dose) / Container '.. (1) cc / iv in some embodiments 'agents 〇 · 5 mL dose. See, for example, International Patent Application No. 2/7/127, 668, the entire disclosure of which is incorporated herein by reference. The composition may be present in a small or other suitable storage container or may be present in a pre-filled delivery device, such as a one-component or vacant syringe that may be provided with or without a needle. The syringe typically (but not necessarily) contains Single dose The invention may also envisage multi-dose pre-filling multiple doses. The same m' vial may include a single dose, but may alternatively be included, but in a typical injection of the composition, the dose Formulated for administration and administration to an adult, cyan effective dosage volume can be determined in a conventional manner with a dose of 0.5 mL volume. In certain embodiments human subjects. In certain embodiments, the dose I49l59.doc •45· 201110977 A juvenile, youth, infant or infant (i.e., no more than one year old) human individual, and in preferred embodiments, can be administered by injection. The liquid immunogenic composition of the present invention is also suitable for use in a reconstituted lyophilized form. Other immunogenic compositions. Where the immunogenic composition is used in such temporary reconstitution, the invention provides for having two or more vials, two or more pre-filled syringes or each one Or a plurality of sets wherein the syringe contents are used to restore the contents of the vial prior to injection, or vice versa. Alternatively, 'the immunogenic composition of the invention can be lyophilized and reconstituted, for example, using one of many freeze-drying methods well known in the art to form dry, regular (eg, spherical) particles, such as pellets or microspheres, The particle characteristics (such as the average diameter size) can be controlled by controlling the specific preparation method to control the immunogenic composition, and can further comprise particles which are optionally prepared or contained in separate dry, regular (eg, spherical) shapes (such as micro An adjuvant in a pellet or microsphere). In these embodiments, the invention further provides an immunogenic composition kit comprising: a first group comprising a stabilized, dried immunogenic composition and, optionally, one or more preservatives of the invention And a second component comprising a sterile aqueous solution for reconstituting the first component. In certain embodiments, the aqueous solution comprises one or more preservatives and optionally at least one adjuvant (see, e.g., w〇 2〇〇9/109550', which is incorporated herein by reference). In still another embodiment, the multi-dose form of the container is selected from, but not limited to, a group consisting of: - a laboratory glass orphan, a flask, a beaker, an S: tube, a vinegar , bioreactors, conduits, tubing, 149159.doc -46· 201110977 garments, jars, vials, vials (eg (eg rubber stoppers, screw caps), ampoules, main emitters, double chambers or Multi-chamber injection of pregnant gold ΐΛ 益 益 主 main plug, syringe plunger, rubber cover, plastic cover, glass u 把 塥盍 塥盍 乐, music tube and disposable pen and the like. The container of the present invention is not subject to The material is limited and includes materials such as glass, gold paste such as steel, residual steel, (iv), and polymers (e.g., thermoplastic polymers, elastomers, thermoplastic elastomers). In a particular embodiment, the container of this type is a 5-machine 8-phase summer glass bottle with a butyl rubber stopper. Those skilled in the art will appreciate that the above-described forms are not exhaustive, but merely provide those skilled in the art with a variety of materials that can be utilized by the present invention. Other forms covered by the present invention can be found in the public catalog of laboratory equipment suppliers and manufacturers, such as υη_

States Plastic Corp· (Lima, OH), VWR。 製造免疫原性結合物之方法 本發明亦包括製造本文所述之免疫原性結合物的方法。 用於製造本發明之免疫原性結合物的方法包括使用結合化 學法使莢膜多醣與載體蛋白共價結合,結合化學法包括 CDI(1,1-幾基二咪唑)、CDT(1,1-羰基-二Ί4—三唑)或 PDPH(3 -(2_ °比。定基二硫基)_丙酿肼)。 因此’本發明之一個實施例提供一種基於Cdt的製造免 疫原性結合物之方法’該結合物包含相結合之金黃色葡萄 球菌血清型5或8莢膜多醣與載體蛋白質,該方法包含如下 步驟:a)使金黃色葡萄球菌血清型5或8莢膜多醣與咪唑或 三唑化合,產生化合多醣;b)使化合多醣與CDT在有機溶 劑及约0.1 %至約〇. 3 % w/v水中反應,產生活化之血清型5 149159.doc 47· 201110977 或8英膜多酿“)純化活化之血清型5或8英膜多餹,產生 純化之活化血清型5或8莢膜多冑;句使純化之活化血清型 5或8笑膜多酶與載體蛋白質在有機溶劑中反應,產生血清 型5或8英膜多冑:載體蛋白質結合物;及e)水解金清型5 或8英膜多_ :載體蛋白質結合物,移除未反應之活性基 團;藉此產生包含金黃色葡萄球菌血清型…莢膜多聰與 載體蛋白質相結合的免疫原性結合物。在—個實施例中, 在步驟⑷之前,使純化之活化血清型5或8英膜多膽與載體 蛋白質化合。 在本發明之一個實施例中,提供另一種基於CDT的製造 免疫原性結合物之方法,該結合物包含相結合之金黃色葡 萄球菌血清型5或8苑膜多聽與載體蛋白質,該方法包含如 I步驟.a)使金黃色葡萄球菌血清型5或8莢膜多醣與咪唑 或三。坐化合,產生化合多醣;b)使化合多醋與CDT在有機 溶劑^約(M。/。至約〇·3% w/v水中反應,產生活化之血清型 或8莢膜多醣;c)使活化之血清型5或8莢膜多醣與載體蛋 質在有機洛劑中反應,產生血清型5或8莢膜多醣:載體 蛋白質結合物;及d)水解血清型5或8荚膜多醣:載體蛋白 質結合物,移除未反應之活性基團;藉此產生包含金黃色 葡萄球菌血清型5或8笑膜多醣與載體蛋白質相結合的免疫 原性結合物。 在—個實施例中’基於CDT的製造免疫原性結合物之方 法内的有機溶劑為極性非質子性溶劑。在一個實施例中, 有機溶劑為選自由二曱亞砜(DMSO)、二甲基甲醯胺 149l59.doc -48- 201110977 (DMF)、二甲基乙醯胺、N-甲基-2-。比咯啶酮及六甲基磷醯 月女(HMPA)組成之群的極性非質子性溶劑。在一個實施例 中,有機溶劑為DMSO。 在一個實施例中,在基於CDT之製造免疫原性結合物之 方法中’使化合多醣與CDT反應之步驟包含提供相較於多 酷約20倍莫耳過量之cdt。 在一個實施例中’在基於CDT之製造免疫原性結合物之 方法中,純化活化之血清型5或8莢膜多醣之步驟包含透析 過渡。 在一個實施例中,基於CDT之製造免疫原性結合物之方 法内的載體蛋白質為CRMm。在一個實施例中,製造免疫 原I1生結合物之方法内的活化血清型5或8莢膜多醣與 以約1:1之重量比反應。 在—個實施例中,在基於CDT之製造免疫原性結合物之 方法中,水解血清型5或8多醣:載體蛋白質結合物以移除 未反應之活性基團的步驟包含在緩衝液中稀釋並在約2〇它 至約26。〇下維持約8,8至約9 2之阳值至少4小時。在一個實 施例中’水解血清型5或8莢膜多醣:載體蛋白質結合物之 步驟包含在緩衝液中稀釋並在約坑下維持約&quot;之阳值 至少4小時。 在-個實施例中,純化根據基於CDT之製造免疫原性結 物之方法所產生的血清型5或8笑膜多膽:載體蛋白質結 合物。在-個實施例中,純化血清型5或8英膜多醣:載體 蛋白質結合物包含透析過濾。 149159.doc -49· 201110977 在一個實施例中,在基於CDT之製造免疫原性結合物之 方法中,在使化合多醣與CDT反應前,將化合血清型5或8 多醣凍乾並再懸浮。在一個實施例中,在使化合多醣與 CDT反應前’將化合多醣與載體蛋白分別凍乾並再懸浮。 在一個實施例中,將凍乾之化合多醣及/或凍乾之載體蛋 白質再懸浮於有機溶劑中。在一個實施例中,有機溶劑為 DMSO。 在一個實施例中’在基於Cdt之製造免疫原性結合物之 方法中,在使活化血清型5或8莢膜多醣與載體蛋白質化合 刖,將純化之活化血清型5或8莢膜多醣及載體蛋白質分別 凍乾並再懸洋。在一個實施例中,載體蛋白為CRMm,且 在凍乾前相對於NaCI透析過濾CRMw。在一個實施例 中,在凍乾前相對於NaC1透析過濾(:11]^1…且將NaCi/cRM 之重量比調節至約〇·5至約丨5。 本發明之一個實施例提供一種基於PDPH之製造免疫原 性結合物之方法,該結合物包含相結合之金黃色葡萄球菌 血清型5或8莢膜多醣與載體蛋白質,該方法包含如下步 驟· a)使金黃色葡萄球菌血清型5或8莢膜多醣與 石及化一亞胺在有機溶劑中反應,產生pDpH連接之多醣; b)使PDPH連接之多醣與還原劑反應,產生活化之多酿;^ 純化活化之血清型5或8莢膜多醣,產生純化之活化血清型 5或8英膜多酿;d)使載體蛋白f與演乙酸在有機溶劑中反 應,產生活化之載體蛋白質;e)純化活化之載體蛋白質, 產生純化之活化載體蛋白質;f)使純化之活化血清型5或8 I49159.doc -50- 201110977 莢膜多醣與純化之活化載體蛋白質反應,產生血清型5或8 莢膜多醣:載體蛋白質結合物;及g)水解血清型5或8莢膜 多醣:載體蛋白質結合物,移除未反應之活性基團;藉此 產生包含金黃色葡萄球菌血清型5或8莢膜多醣與載體蛋白 質相結合的免疫原性結合物。 在一個實施例中,基於PDPH之製造免疫原性結合物之 方法内所使用之溴乙酸為溴乙酸7V-羥基丁二醯亞胺酯 (BAANS)。在一個實施例中,本發明之基於PDPH之方法 内所使用之載體蛋白質為CRM197且BAANS係以約1:0.1至 約1:0.5之CRM197:BAANS重量比添加。 在一個實施例中,基於PDPH之製造免疫原性結合物之 方法内的有機溶劑為極性非質子性溶劑。在一個實施例 中,有機溶劑為選自由DMSO、DMF、二甲基乙醯胺、JV-曱基-2-吡咯啶酮及HMPA組成之群的極性非質子性溶劑。 在一個實施例中,有機溶劑為DMSO。 在一個實施例中,基於PDPH之製造免疫原性結合物之 方法内所使用之碳化二亞胺為1-乙基-3-(3-二曱基胺基丙 基)-碳化二亞胺(EDAC)。在一個實施例中,使血清型5或8 莢膜多醣與PDPH及EDAC於有機溶劑中反應之步驟包含維 持多醣:PDPH:EDAC之重量比為約1:5:3。 在一個實施例中,基於PDPH之製造免疫原性結合物之 方法内所使用之還原劑為二硫蘇糖醇(DTT)。 在一個實施例中,在基於PDPH之製造免疫原性結合物 之方法中,純化活化之血清型5或8莢膜多醣及純化載體蛋 149159.doc •51 - 201110977 白質之步驟各包含透析過濾。 在一個實施例中,基於PDPH之製造免疫原性結合物之 方法内的载體蛋白質為CRMm。在一個實施例中,在製造 免疫原性結合物之方法中,活化血清型5或8莢膜多醣與 CRMm以約1:1之重量比反應。 在—個實施例中,在基於PDPH之製造免疫原性結合物 之方法中,水解血清型5或8多醣:載體蛋白質結合物以移 除未反應之活性基團的步驟包含添加半胱胺鹽酸鹽。 在一個實施例中,純化根據基於PDPH之製造免疫原性 結合物之方法所產生的血清型5或8笑膜多醣:載體蛋白質 結合物。在一個實施例中,純化血清型5或8莢膜多醣:載 體蛋白質結合物包含透析過濾。 在一個實施例中,在基於PDPH之製造免疫原性結合物 之方法中,在使純化之活化血清型5或8莢膜多醣與純化之 活化載體蛋白質反應前,將純化之活化多醣及純化之活化 載體蛋白質分別凍乾並再懸浮。在一個實施例中,將凍乾 之活化多醣及/或凍乾之活化載體蛋白質再懸浮於有機溶 劑中。在一個實施例中,有機溶劑為Dms〇。 如本文中所使用,「凍乾」意謂脫水過程,其中在冷凍 細菌莢膜多醣的同時、在足夠熱存在下降低周圍壓力以允 s午冷凍之水直接自固相昇華為氣相。可使用此項技術已知 之凉乾夕醣之任何方法。參看例如Harris及Angal (1989) 「Protein Purification Methods」,Kennedy 及 Cabral,編 「Recovery Processes for Biological Materials」(John I49159.doc -52- 201110977States Plastic Corp. (Lima, OH), VWR. Methods of Making Immunogenic Conjugates The present invention also encompasses methods of making the immunogenic conjugates described herein. A method for making an immunogenic conjugate of the invention comprises covalently binding a capsular polysaccharide to a carrier protein using a binding chemistry, the binding chemistry comprising CDI (1,1-monodiimidazole), CDT (1,1) - carbonyl-dioxa-4-triazole) or PDPH (3 - (2_ ° ratio. thiodithio)). Thus, one embodiment of the present invention provides a method for producing an immunogenic conjugate based on Cdt, which comprises a combined S. aureus serotype 5 or 8 capsular polysaccharide and a carrier protein, the method comprising the following steps : a) combining S. aureus serotype 5 or 8 capsular polysaccharide with imidazole or triazole to produce a compounded polysaccharide; b) bringing the compounded polysaccharide and CDT in an organic solvent and from about 0.1% to about 0.3% w/v Reacts in water to produce activated serotypes 5 149159.doc 47· 201110977 or 8 inch membranes to purify ") purified activated serotypes 5 or 8 capsules to produce purified activated serotype 5 or 8 capsules; The purified activated serotype 5 or 8 masking membrane multi-enzyme is reacted with the carrier protein in an organic solvent to produce a serotype 5 or 8-inch membrane: a carrier protein conjugate; and e) hydrolyzed gold-clearing type 5 or 8 inches Membrane _ : carrier protein conjugate, removing unreacted reactive groups; thereby producing an immunogenic conjugate comprising S. aureus serotype ... capsular scorpion and carrier protein. In an embodiment In, before step (4) Purification of the activated serotype 5 or 8 membranous cholestases into a carrier protein. In one embodiment of the invention, another CDT-based method of making an immunogenic conjugate is provided, the conjugate comprising a combined gold Staphylococcus aureus serotype 5 or 8 membranes to listen to the carrier protein, the method comprises, as in step I. a) S. aureus serotype 5 or 8 capsular polysaccharide and imidazole or three. Sit combination to produce a compound polysaccharide; b) reacting the combined vinegar with CDT in an organic solvent (M. / to about 3% 3% w/v water to produce an activated serotype or 8 capsular polysaccharide; c) to activate the serotype 5 or 8 capsular polysaccharide and carrier egg substance are reacted in an organic agent to produce serotype 5 or 8 capsular polysaccharide: carrier protein conjugate; and d) hydrolyzed serotype 5 or 8 capsular polysaccharide: carrier protein conjugate, removed An unreacted reactive group; thereby producing an immunogenic conjugate comprising a S. aureus serotype 5 or 8 serotonin polysaccharide in combination with a carrier protein. In one embodiment, a CDT-based immunogenic binding is produced. The organic solvent in the method of the object is a polar aprotic solvent. In one embodiment, the organic solvent is selected from the group consisting of disulfoxide (DMSO), dimethylformamide 149l59.doc -48- 201110977 (DMF), dimethylacetamide, N a linear aprotic solvent consisting of a group consisting of pyrrolidone and hexamethylphosphonium (HMPA). In one embodiment, the organic solvent is DMSO. In one embodiment, In the method of making an immunogenic conjugate based on CDT, the step of reacting the conjugated polysaccharide with CDT comprises providing a cdt that is about 20 times molar excess compared to how cool. In one embodiment, the immunogen is produced on a CDT-based basis. In the method of sex conjugate, the step of purifying the activated serotype 5 or 8 capsular polysaccharide comprises a dialysis transition. In one embodiment, the carrier protein within the method of making an immunogenic conjugate based on CDT is CRMm. In one embodiment, the activated serotype 5 or 8 capsular polysaccharide in the method of making the immunogenic I1 conjugate is reacted in a weight ratio of about 1:1. In one embodiment, in the method of making an immunogenic conjugate based on CDT, the step of hydrolyzing the serotype 5 or 8 polysaccharide: carrier protein conjugate to remove unreacted reactive groups comprises diluting in a buffer And at about 2 〇 it to about 26. Maintain a positive value of about 8, 8 to about 92 for at least 4 hours. In one embodiment, the step of hydrolyzing the serotype 5 or 8 capsular polysaccharide:carrier protein conjugate comprises diluting in a buffer and maintaining a positive value of about &quot;about&quot; for about 4 hours. In one embodiment, the serotype 5 or 8 serotonin: carrier protein complex produced according to the CDT-based method for producing immunogenic compounds is purified. In one embodiment, the purified serotype 5 or 8 inch membrane polysaccharide: carrier protein conjugate comprises diafiltration. 149159.doc -49· 201110977 In one embodiment, in a method of making an immunogenic conjugate based on CDT, the serotype 5 or 8 polysaccharide is lyophilized and resuspended prior to reacting the conjugated polysaccharide with CDT. In one embodiment, the conjugated polysaccharide and the carrier protein are separately lyophilized and resuspended prior to reacting the conjugated polysaccharide with CDT. In one embodiment, the lyophilized compounded polysaccharide and/or lyophilized carrier protein is resuspended in an organic solvent. In one embodiment, the organic solvent is DMSO. In one embodiment, in a method for producing an immunogenic conjugate based on Cdt, the activated serotype 5 or 8 capsular polysaccharide is combined with a carrier protein, and the purified activated serotype 5 or 8 capsular polysaccharide is The carrier proteins were lyophilized and resuspended in the ocean. In one embodiment, the carrier protein is CRMm and the CRMw is diafiltered against NaCI prior to lyophilization. In one embodiment, the weight ratio of NaCi/cRM is adjusted to about 〇·5 to about 丨5 relative to NaC1 prior to lyophilization and the weight ratio of NaCi/cRM is adjusted. One embodiment of the present invention provides a basis for A method of making an immunogenic conjugate of PDPH comprising a combined S. aureus serotype 5 or 8 capsular polysaccharide and a carrier protein, the method comprising the steps of: a) causing S. aureus serotype 5 Or 8 capsular polysaccharides are reacted with stone and imine in an organic solvent to produce a pDpH-linked polysaccharide; b) reacting the PDPH-linked polysaccharide with a reducing agent to produce an activated polysaccharide; 8 capsular polysaccharide, producing purified activated serotype 5 or 8 inch membrane brewing; d) reacting carrier protein f with acetic acid in organic solvent to produce activated carrier protein; e) purifying activated carrier protein, producing purification Activating the carrier protein; f) reacting the purified activated serotype 5 or 8 I49159.doc -50- 201110977 capsular polysaccharide with the purified activated carrier protein to produce a serotype 5 or 8 capsular polysaccharide: carrier protein conjugate; g) Hydrolyzing serotype 5 or 8 capsular polysaccharide: carrier protein conjugate, removing unreacted reactive groups; thereby producing immunogenic binding comprising S. aureus serotype 5 or 8 capsular polysaccharide in combination with carrier protein Things. In one embodiment, the bromoacetic acid used in the method of making an immunogenic conjugate based on PDPH is 7V-hydroxybutylimine bromoacetate (BAANS). In one embodiment, the carrier protein used in the PDPH-based method of the invention is CRM197 and the BAANS is added at a CRM197:BAANS weight ratio of from about 1:0.1 to about 1:0.5. In one embodiment, the organic solvent within the method of making an immunogenic conjugate based on PDPH is a polar aprotic solvent. In one embodiment, the organic solvent is a polar aprotic solvent selected from the group consisting of DMSO, DMF, dimethylacetamide, JV-mercapto-2-pyrrolidone, and HMPA. In one embodiment, the organic solvent is DMSO. In one embodiment, the carbodiimide used in the method of making an immunogenic conjugate based on PDPH is 1-ethyl-3-(3-didecylaminopropyl)-carbodiimide ( EDAC). In one embodiment, the step of reacting the serotype 5 or 8 capsular polysaccharide with PDPH and EDAC in an organic solvent comprises maintaining the polysaccharide: PDPH: EDAC in a weight ratio of about 1:5:3. In one embodiment, the reducing agent used in the method of making an immunogenic conjugate based on PDPH is dithiothreitol (DTT). In one embodiment, in the method of making an immunogenic conjugate based on PDPH, the steps of purifying the activated serotype 5 or 8 capsular polysaccharide and purifying the carrier egg 149159.doc • 51 - 201110977 white matter each comprise diafiltration. In one embodiment, the carrier protein within the method of making an immunogenic conjugate based on PDPH is CRMm. In one embodiment, in the method of making an immunogenic conjugate, the activated serotype 5 or 8 capsular polysaccharide is reacted with CRMm in a weight ratio of about 1:1. In one embodiment, in the method of producing an immunogenic conjugate based on PDPH, the step of hydrolyzing a serotype 5 or 8 polysaccharide: carrier protein conjugate to remove unreacted reactive groups comprises adding a cysteamine salt Acid salt. In one embodiment, the serotype 5 or 8 smiley polysaccharide: carrier protein conjugate produced according to the PDPH-based method of making an immunogenic conjugate is purified. In one embodiment, the purified serotype 5 or 8 capsular polysaccharide:carrier protein conjugate comprises diafiltration. In one embodiment, in the method of making an immunogenic conjugate based on PDPH, the purified activated polysaccharide and purified are purified prior to reacting the purified activated serotype 5 or 8 capsular polysaccharide with the purified activated carrier protein. The activated carrier protein was lyophilized and resuspended. In one embodiment, the lyophilized activated polysaccharide and/or lyophilized activated carrier protein is resuspended in an organic solvent. In one embodiment, the organic solvent is Dms. As used herein, "lyophilized" means a dehydration process in which the peripheral pressure is reduced while freezing the bacterial capsular polysaccharide to allow the frozen water to sublimate from the solid phase to the gas phase. Any method of cold-drying sugar known in the art can be used. See, for example, Harris and Angal (1989) "Protein Purification Methods", Kennedy and Cabral, ed. "Recovery Processes for Biological Materials" (John I49159.doc -52- 201110977

Wiley &amp; Sons ; 1993);美國專利第4,134,2 14號;及國際專 利申請公開案第WO 2003/086471號;各文獻係以引用的方 式併入本文中,如同其全文陳述一般。凍乾期間視情況可 包括低溫保護劑,諸如蔗糖、葡萄糖、乳糖、海藻糖、阿 拉伯糖、木糖、半乳糖、山梨醇或甘露醇。 如本文中所使用,「活化」意謂細菌英膜多骑或載體蛋 白以使其易於結合之方式(亦即,必須使至少—個部分能 夠共彳貝結合至載體分子)加以修姊。舉例而言,對於本發 明之基於CDT之結合方法’多醣係在低水分環境中(例如 於DMSO中)活化,形成具有可用羥基之三唑胺基曱酸酯部 分及具有羧酸之醯基三唑部分。活化多醣可接著與CRM丨μ 蛋白質反應,使CRM】97内之離胺酸殘基對三嗤進行親核性 置換並且形成扣基甲酸酯鍵(針對活性經基)及酿胺鍵(針對 活性缓酸)。相比之下,對於本發明之基於PDPh之結合方 法,載體蛋白質與多醣均在結合前活化:丨)Crm197之活 化包括藉由胺基與溴乙酸N_羥基丁二醯亞胺酯之反應將溴 乙醯基引入CRMm蛋白質中;及2)多醣之活化包括使多醣 中之N-乙醯基胺基甘露醇醛酸之經碳化二亞胺活化之曱酸 酉曰基與锍基反應性醯肼雜二官能性連接劑pDpHi肼基偶 合’接著用DTT還原。活化多醣可接著與活化載體蛋白質 反應’使彳于經PDPH硫醇化之多醣之硫醇與活化載體蛋白 貝之溴乙醯基反應,從而藉由溴置換形成共價硫醚鍵。 根據本發明之方法,可純化莢膜多醣、載體蛋白質及/ 或多聽-蛋白質結合物。可使用此項技術已知之用於純化 I49159.doc •53- 201110977 多醣或蛋白質之任何方法,諸如濃縮/透析過濾、沈澱/溶 離、柱層析及深度過濾。參看例如FarrSs等人’(1996) B/oiec/mo/· 10:375-380 ; Gongalves等人,CommunicatingWiley &amp;Sons;1993); U.S. Patent No. 4,134,2, 14, and International Patent Application Publication No. WO 2003/086471; each of which is incorporated herein by reference in its entirety herein in its entirety. A cryoprotectant such as sucrose, glucose, lactose, trehalose, arabinose, xylose, galactose, sorbitol or mannitol may optionally be included during lyophilization. As used herein, &quot;activated&quot; means that the bacterial membrane is multi-riding or carrier protein in such a way as to facilitate its incorporation (i.e., at least a portion must be capable of binding the mussel to the carrier molecule) for repair. For example, for the CDT-based binding method of the present invention, the polysaccharide is activated in a low moisture environment (for example, in DMSO) to form a triazolyl phthalate moiety having a hydroxyl group and a sulfhydryl group having a carboxylic acid. Azole moiety. The activated polysaccharide can then be reacted with the CRM丨μ protein to subject the amino acid residue in CRM97 to nucleophilic displacement of the triterpenoid and form a carbaryl linkage (for the active thiol) and a stilbene linkage (for Active acid retardant). In contrast, for the PDPh-based binding method of the present invention, both the carrier protein and the polysaccharide are activated prior to binding: activation of Crm197 includes reaction of an amine group with N-hydroxybutylimine of bromoacetate. The bromoethenyl group is introduced into the CRMm protein; and 2) the activation of the polysaccharide comprises the ruthenium ruthenium group and the sulfhydryl group which are activated by the carbodiimide of the N-ethyl decylamino mannitol in the polysaccharide. The doped difunctional linker pDpHi thiol couple was then reduced with DTT. The activated polysaccharide can then be reacted with the activated carrier protein to react the thiol of the polysaccharide thiolated with PDPH with the ethidium bromide group of the activated carrier protein to form a covalent thioether bond by bromine displacement. According to the method of the present invention, capsular polysaccharide, carrier protein and/or poly--protein conjugate can be purified. Any method known in the art for purifying I49159.doc •53-201110977 polysaccharides or proteins, such as concentration/diafiltration, precipitation/dissolution, column chromatography and depth filtration, can be used. See, for example, FarrSs et al. (1996) B/oiec/mo/· 10:375-380; Gongalves et al., Communicating

Current Research and Educational Topics and Trends in Applied Microbiology (Antonio Mendez Vilas編0 第 1版. Badajoz,Espanha : Formatex ; 2007.第 450-457 頁); Tanizaki等人,(1996) */. Mz’eroMo/, 27:19-23 ;及 美國專利第6,146,9〇2號;及美國專利申請公開案第 2008/0286838號;各文獻係以引用的方式併入本文中,如 同其全文陳述一般。 如本文中所使用,術語「分離」或「純化」意謂物質自 其原始環境中移除(例如,其天然存在時之天然環境,或 其為重組實體時自其宿主生物體移除,或自一個環境移至 不同環境)。舉例而言,分離之多醣、肽或蛋白質實質上 不含該蛋白質所來源之細胞或組織源之細胞物質或其他污 染性蛋白質’或者當化學合成或存在於混合物中作為化學 反應之一部分時,實質上不含化學前驅物或其他化學物 質。在本發明中,蛋白質或多醣可自細菌細胞或細胞碎屑 刀離,因此其係以適用於製造免疫原性組合物之形式提 供。術語「分離」可包括純化,包括例如如本文所述之純 化莢膜多醣之方法。用語「實質上不含細胞物質」包括製 備多醣/多肽/蛋白質,其中多醣/多肽/蛋白質係自可分離 或重組產生其之細胞的細胞組分分離。因而,實質上不含 細胞物質或其他化合物之多肽/蛋白f、多醣或結合物包 149159.doc -54- 201110977 括製備具有小於約30°/。、20%、10%、5%、2.5%或1%(以 乾重量計)之污染性蛋白質、多醣或其他化合物的多肽/蛋 白質、多St或結合物。當多肽/蛋白質為重組產生時,其 較佳亦實質上不含培養基,亦即,培養基表示小於約 20%、10%、5%、4%、3%、2%或1 %之蛋白質製劑體積。 當多肽/蛋白質或多醣係藉由化學合成產生時,其較佳實 質上不含化學前驅物或其他化學物質,亦即,其與涉及蛋 白質或多醣之合成之化學前驅物或其他化學物質分離。因 此,除了相關多肽/蛋白質或多醣片段以外,該等多肽/蛋 白質或多醣製劑亦具有小於約30%、20%、i〇〇/Q、5%、 4%、3%、2%或1 %(以乾重量計)之化學前驅物或化合物。 藉由本文所述之任何方法產生的免疫原性結合物均可在 水或低離子強度中性pH緩衝液中儲存,或者凍乾成乾粉 末。 誘導免疫反應及防止金黃色葡萄球菌感染的方法 本發明亦包括使用本文所述之免疫原性組合物之方法。 舉例而言’本發明之一個實施例提供一種誘導針對金黃色 葡萄球菌之免疫反應的方法,該方法包含向個體投與免疫 原性量之本文所述之任何免疫原性組合物。本發明之一個 實施例提供一種防止個體感染金黃色葡萄球菌之方法,或 一種預防金黃色葡萄球菌感染之方法,或降低至少一種與 金黃色葡萄球菌所致之感染相關之症狀的嚴重程度或延遲 其發作的方法’該等方法包含向個體投與免疫原性量之本 文所述之任何免疫原性組合物。本發明之一個實施例提供 149159.doc -55- 201110977 一種治療或預防個體之葡萄球菌感染、與葡萄球菌屬相關 之疾病或病狀的方法’該方法包含向該個體投與治療或預 防有效量之如本文所述之免疫原性組合物的步驟。在一些 實施例中,治療或預防葡萄球菌感染、疾病或病狀之方法 包含人類、獸醫學、動物或農業處理。另一實施例提供一 種治療或預防個體之葡萄球菌感染、與葡萄球菌屬相關之 疾病或病狀的方法’該方法包含自本文所述之免疫原性組 合物產生多株或單株抗體製劑並使用該抗體製劑賦予個體 被動免疫性。本發明之一個實施例提供一種預防經歷外科 程序之個體之葡萄球菌感染的方法,該方法包含在外科程 序前向該個體投與預防有效量之本文所述之免疫原性組合 物的步驟。 對抗原或免疫原性組合物之「免疫反應」為個體對相關 抗原或疫苗組合物中所存在之分子產生體液及/或細胞介 導之免疫反應。出於本發明之目的,「體液免疫反應」為 抗體介導之免疫反應且包括誘導及產生可識別本發明免疫 原性組合物中之抗原並依一定親和力與其結合的抗體,而 「細胞介導之免疫反應」為由τ細胞及/或其他白血球介導 之免疫反應。「細胞介導之免疫反應」係由呈現抗原性抗 原決定基與I類或π類主要組織相容性複合體(MHC)分子、 CD1或其他非經典MHC樣分子之結合而引發。由此活化抗 原特異性CD4+ T輔助細胞或CD8+細胞毒性T淋巴細胞 (「CTL」)。CTL對與經典或非經典MHC所編碼之蛋白質 結合且表現於細胞表面上所呈現的肽抗原具有特異性。 149159.doc -56· 201110977 CTL有助於誘導並促進細胞内微生物之細胞内破壞或使感 染該等微生物之細胞溶解。細胞免疫性之另一態樣包括輔 助T細胞之抗原特異性反應。輔助T細胞之作用在於輔助刺 激非特異性效應細胞的功能且集中其活性,該等效應細胞 針對的細胞可在其表面上呈現與經典或非經典MHC分子結 合之肽或其他抗原。「細胞介導之免疫反應」亦指產生細 胞激素、趨化因子及由活化T細胞及/或其他白血球所產生 之其他該等分子,包括來源於CD4 +及CD8+ T-細胞之彼等 分子。特定抗原或組合物刺激細胞介導之免疫反應的能力 可藉由許多分析法測定,諸如淋巴細胞增殖(淋巴細胞活 化)分析、CTL細胞毒性細胞分析、藉由分析致敏個體中之 抗原特異性T-淋巴細胞,或藉由量測由T細胞回應於抗原 再刺激而產生之細胞激素。該等分析法係此項技術中已熟 知。參看例如 Erickson 等人,(1993) ·/. 1 5 1:41 89- 4199,及Doe等人 ’(1994)五wr. J. 24:2369-2376。 如本文中所使用,「處理(treatment)」(包括其變化形 式’例如「treat」或「treated」)意謂以下任一者或多者·· ⑴預防感染或再感染,如傳統疫苗;(Π)降低症狀之嚴重 程度或消除症狀;及(iii)實質上或完全消除所述病原體或 病症。因此’處理可依預防方式(感染前)或治療方式(感染 後)進行。在本發明中,預防性處理為較佳模式。根據本 發明之一特定實施例,提供處理(包括預防性及/或治療性 免疫)宿主動物防止微生物感染(例如細菌,諸如葡萄球菌) 的組合物及方法。本發明之方法適用於賦予個體預防性 149159.doc -57- 201110977 及/或治療性免疫性。本發明夕士士 个^月之方法亦可對用 研究應用之個體實施。 王物營于 物如「哺乳動物」意謂人類或非人類動 你= 動物係指歸類為哺乳動物的任何動 物,包括人類、刷養動物及農畜,以及動物園動物 動物及寵物伴侣動物,諸如宕甚0 Λ 渚如豕養寵物及其他家畜,包括Current Research and Educational Topics and Trends in Applied Microbiology (Antonio Mendez Vilas, ed. 0, 1st edition. Badajoz, Espanha: Formatex; 2007. pp. 450-457); Tanizaki et al., (1996) */. Mz'eroMo/, 27:19-23; and U.S. Patent No. 6,146,9, 2; and U.S. Patent Application Publication No. 2008/0286838; each of which is incorporated herein by reference in its entirety herein in its entirety. As used herein, the term "isolated" or "purified" means that a substance is removed from its original environment (eg, its natural environment in its natural presence, or removed from its host organism when it is a recombinant entity, or Moved from one environment to a different environment). For example, an isolated polysaccharide, peptide or protein is substantially free of cellular material or other contaminating protein of the cell or tissue source from which the protein is derived' or when chemically synthesized or present in a mixture as part of a chemical reaction, It does not contain chemical precursors or other chemicals. In the present invention, the protein or polysaccharide may be detached from bacterial cells or cell debris, and thus it is provided in a form suitable for the manufacture of an immunogenic composition. The term "isolated" may include purification, including, for example, a method of purifying a capsular polysaccharide as described herein. The phrase "substantially free of cellular material" includes the preparation of polysaccharides/polypeptides/proteins in which the polysaccharide/polypeptide/protein is isolated from the cellular components of cells which are separable or recombinantly produced. Thus, polypeptides/proteins f, polysaccharides or conjugates substantially free of cellular material or other compounds include preparations having less than about 30°/. 20%, 10%, 5%, 2.5% or 1% (by dry weight) of peptide/protein, multi-St or conjugate of contaminating protein, polysaccharide or other compound. When the polypeptide/protein is produced recombinantly, it preferably also contains substantially no culture medium, i.e., the medium represents less than about 20%, 10%, 5%, 4%, 3%, 2% or 1% of the protein preparation volume. . When a polypeptide/protein or polysaccharide is produced by chemical synthesis, it preferably does not substantially contain a chemical precursor or other chemical, i.e., it is separated from a chemical precursor or other chemical involved in the synthesis of the protein or polysaccharide. Thus, in addition to the relevant polypeptide/protein or polysaccharide fragment, the polypeptide/protein or polysaccharide preparations also have less than about 30%, 20%, i〇〇/Q, 5%, 4%, 3%, 2% or 1%. A chemical precursor or compound (on a dry weight basis). The immunogenic conjugates produced by any of the methods described herein can be stored in water or low ionic strength neutral pH buffer or lyophilized to a dry powder. Methods of Inducing an Immune Response and Preventing S. aureus Infections The present invention also encompasses methods of using the immunogenic compositions described herein. By way of example, one embodiment of the invention provides a method of inducing an immune response against S. aureus comprising administering to an individual an immunogenic amount of any of the immunogenic compositions described herein. One embodiment of the present invention provides a method of preventing an individual from contracting S. aureus, or a method of preventing S. aureus infection, or reducing the severity or delay of at least one symptom associated with an infection caused by S. aureus Methods of Attacking The methods comprise administering to the individual an immunogenic amount of any of the immunogenic compositions described herein. One embodiment of the present invention provides a method for treating or preventing a staphylococcal infection in a subject, a disease or condition associated with Staphylococcus, the method comprising administering to the individual a therapeutically or prophylactically effective amount The step of an immunogenic composition as described herein. In some embodiments, methods of treating or preventing a staphylococcal infection, disease, or condition include human, veterinary, animal or agricultural treatment. Another embodiment provides a method of treating or preventing a staphylococcal infection, a disease or condition associated with Staphylococcus in an individual, the method comprising producing a multi- or monoclonal antibody preparation from the immunogenic composition described herein and The antibody formulation is used to confer passive immunity to an individual. One embodiment of the invention provides a method of preventing staphylococcal infection in an individual undergoing a surgical procedure, the method comprising the step of administering to the individual a prophylactically effective amount of an immunogenic composition described herein prior to a surgical procedure. An "immune response" to an antigen or immunogenic composition is the subject's humoral and/or cell-mediated immune response to a molecule present in the relevant antigen or vaccine composition. For the purposes of the present invention, a "humoral immune response" is an antibody-mediated immune response and includes the induction and production of an antibody that recognizes an antigen in an immunogenic composition of the invention and binds thereto with a certain affinity, and "cell-mediated" The immune response is an immune response mediated by tau cells and/or other white blood cells. A "cell-mediated immune response" is initiated by the binding of an antigenic antigenic determinant to a class I or π major histocompatibility complex (MHC) molecule, CD1 or other non-canonical MHC-like molecule. Thus, antigen-specific CD4+ T helper cells or CD8+ cytotoxic T lymphocytes ("CTL") are activated. CTLs are specific for peptide antigens that bind to proteins encoded by classical or non-classical MHC and that appear on the cell surface. 149159.doc -56· 201110977 CTL helps to induce and promote intracellular destruction of intracellular microorganisms or to solubilize cells that infect these microorganisms. Another aspect of cellular immunity includes antigen-specific responses of helper T cells. The role of helper T cells is to assist in stimulating the function of non-specific effector cells and to concentrate their activity, and the cells to which these effector cells are directed may present peptides or other antigens on their surface that bind to classical or non-classical MHC molecules. "Cell-mediated immune response" also refers to the production of cytokines, chemokines, and other such molecules produced by activated T cells and/or other white blood cells, including those derived from CD4+ and CD8+ T-cells. The ability of a particular antigen or composition to stimulate a cell-mediated immune response can be determined by a number of assays, such as lymphocyte proliferation (lymphocyte activation) assays, CTL cytotoxic cell assays, by analysis of antigen specificity in sensitized individuals. T-lymphocytes, or by measuring cytokines produced by T cells in response to antigen re-stimulation. These analytical methods are well known in the art. See, for example, Erickson et al. (1993) ·/. 1 5 1:41 89- 4199, and Doe et al. (1994) V. J. 24: 2369-2376. As used herein, "treatment" (including variations thereof such as "treat" or "treated") means any one or more of the following: (1) prevention of infection or reinfection, such as traditional vaccines; Π) reducing the severity of symptoms or eliminating symptoms; and (iii) substantially or completely eliminating the pathogen or condition. Therefore, treatment can be carried out according to a preventive method (before infection) or a treatment method (after infection). In the present invention, prophylactic treatment is a preferred mode. According to a particular embodiment of the invention, compositions and methods are provided for treating (including prophylactic and/or therapeutic immunization) host animals against microbial infections (e.g., bacteria, such as staphylococcus). The methods of the invention are useful for conferring prophylactic 149159.doc -57-201110977 and/or therapeutic immunity. The method of the invention of the present invention can also be carried out for individuals who use the research application. The king's object, such as "mammals," means that humans or non-humans move you = animals refers to any animal classified as a mammal, including humans, brushed animals and farm animals, as well as zoo animals and pet companion animals. Such as 宕 0 0 Λ such as raising pets and other livestock, including

(但不限於)牛、綿羊、雪紹、豬、馬、兔、山羊U 及其類似物。較佳伴但動物為狗及猶。哺乳動物較佳為人 類。 本文中可互換使用之Γ #鸡甩w θ 免疫原性量」及「免疫有效量」 係指抗原或免疫原性組合物足以引發免疫反應(細胞(Τ細 胞)或體液(Β·細胞或抗體)反應或兩者)的4,如藉由熟習 此項技術者已知之標準分析所量測。 組合物中特定結合物之量—般係基於總多醣(該結合物 之結合多醣及未結合之多醣)計算。舉例而言,在100 mcg CP5多醣劑量中,含20%游離多聰之cp5結合物將具有約肋 meg結合CP5多_及約20 mcg未結合cp5多酶。計算結合物 劑量時,it常不考慮結合物中蛋白質的比例。結合物之量 可視葡萄球菌血清型而變。—般而言,各劑量將包含〇1 至1〇〇 mcg多醣,尤其0.1至meg多醣,且更尤其丄至⑺ meg多醣。免疫原性組合物中之*同多·組分之「免疫原 性量」可不同,且各自可包含1 mcg、2 mcg、3 mcg、4 meg ^ 5 meg &gt; 6 meg &gt; 7 meg &gt; 8 mcg . 9 meg ^ 10 meg ^ 15 meg、20 mcg、30 mcg、40 mcg、5〇 mcg、6〇 mcg、7〇 149159.doc •58- 201110977 meg、80 meg、90 meg或約loo mcg任何特定多醣抗原。 金黃色葡萄球菌「侵襲性疾病」為自正常情況下無菌之 部位分離出細菌,在該部位中存在疾病之相關臨床徵象/ 症狀。正常情況下無菌之身體部位包括血液、CSF、胸膜 液〜包液、腹膜液、關節/滑液、骨、内部身體部位(淋 巴結、腦、心臟、肝、脾、玻璃狀液、f、姨臟、卵巢) 或其他正常情況下無菌之部位。表徵侵襲性疾病之臨床病 狀包括菌血症、肺炎、蜂窩組織炎、骨髓炎、心内膜炎、 敗血性休克及其他病狀。 抗原作為免疫原之效力可藉由增殖分析、藉由細胞溶解 ^析(諸如量測T細胞溶解其特異標靶細胞之能力的鉻釋放 分析)或藉由量測B細胞活性程度(藉由量測企清中對抗原 具特異性之循環抗體之含量)加以量測。免疫反應亦可藉 由量測投與抗原後所誘導之抗原特異抗體之企清含量來傾 、】更特疋而έ係藉由量測如此誘導之抗體增強特定白血 农之調理吞嘴細胞能力的能力,如本文所述。免疫反應之 保蔓私度可藉由已投與之抗原攻毒經免疫之宿主來量測。 舉例而5,右需要免疫反應所針對之抗原為細菌,則由免 疫原性里之抗原所誘導之保護程度係藉由在細g細胞攻毒 動物後H則存活率百分比或死亡率百分比來量測。在一個 實知例t ’保護量可藉由量測至少—種與細菌感染相關之 症狀(例如與感染相關之發熱)來量浪]。多抗原或多組分疫 田或免疫原性組合物中各抗原之量將隨各其他組分而變 可藉由熱習此項技術者已知之方法測定。該等方法 149159.doc -59· 201110977 包括用於量測免疫原性及/或活體内效力之程序。在某此 實施例中,術語「約」意謂在20〇/。以内,較佳在1〇%以 内,且更佳在5 %以内。 本發明進一步提供特異性地且選擇性地結合本發明之血 清型5或8莢膜多耱或免疫原性結合物的抗體及抗體組合 物。在一些實施例中,向個體投與本發明之血清型5或8莢 膜多醣或免疫原性結合物後產生抗體。在一些實施例中, 本發明提供針對本發明之一或多種血清型5或8莢膜多醣或 免疫原性結合物的純化及分離抗體。在一些實施例中,本 發明之抗體具功能性,如在動物效力模型中或經由調理吞 嗤細胞性殺死分析、依據殺死細菌所量測。在一些實施例 中’本發明之抗體賦予個體被動免疫性。使用熟習此項技 術者熟知之技術,本發明進一步提供編碼本發明之抗體或 抗體片段的聚核㈣分子,及產生本發明之抗體或抗體組 合物的細胞、細胞株(諸如用於重組產生抗體之融合瘤細 胞或其他工程改造細胞株)或轉殖基因動物。 本發明之抗體或抗體組合物可用於治療或預防個體之葡 萄球菌感染、肖葡萄球菌屬相關之疾病或病狀的方法中, 該方法包含產生多株或單株抗體製劑並使用該抗體或抗體 組合物賦予個體被動免疫性。本發明之抗體亦可用於診斷 性方法中,例如债測CP5、CP8或其結合物之存在或對其 含量進行定量。 〃 此項技術中已知之若干動物模型可用於評估本文所述之 任一種免疫原性組合物之效力。例如: 149159.doc 201110977 被動小鼠敗血症模型:小鼠用免疫IgG或單株抗體腹膜 内(I.p_)被動免疫。24小時後以致死量之金黃色葡萄球菌攻 毒小鼠。靜脈内(i.v.或i.p·)投與細菌攻毒,確保任何存活 率均可歸因於抗體與細菌之特異性活體内相互作用。細菌 攻毒劑量確定為使未免疫對照小鼠中約2〇%達成致命性敗 血症所需之劑量。可藉由Kaplan-Meier分析對存活率研究 進行統計學評估。 主動免疫及攻毒模型:在此模型中’小鼠在第〇、3、6 週(或熟習此項技術者已知之類似時程)用標靶抗原皮下 (S.C.)進行主動免疫,且在第8週(或熟習此項技術者已知之 其他類似時程)藉由靜脈内或腹膜内途徑進行攻毒。校準 細菌攻毒劑量以在14天之時段内在對照組中達成約2〇%存 活率。可藉由Kaplan-Meier分析對存活率研究進行統計學 評估。 被動感染性心内膜炎模型:先前已使用金黃色葡萄球菌 所致之感染性心内膜炎(IE)之被動免疫模型顯示clfA可誘 導保護性免疫。參看Vernachio等人’(2〇〇6) ά C/iemo. 50:511-518。在此IE模型中,使用兔或大 鼠來模擬臨床感染’包括中樞靜脈導管、菌血症及血行性 傳播至末梢器官。向以導管植入無菌主動脈辦贅生物之兔 或大鼠投與對標把抗原具特異性之單株或多株抗體的單次 靜脈内注射液。24小時後,用異源葡萄球菌菌株或mrsa 菌株靜脈内攻毒動物。接著,在攻毒48小時後,收集並谇 養心臟贅生物、腎及血液。接著量測心瓣贅生物、腎及血 149159.doc -61 - 201110977 液中之葡萄球菌感染頻率。在一項研究中,當用mrse ATCC 35984或MRSA PFESA0003攻毒動物時,使用針對(but not limited to) cattle, sheep, cedar, pigs, horses, rabbits, goats U and the like. Better accompanied by animals and dogs. The mammal is preferably human. As used herein, the terms "chicken w θ immunogenic amount" and "immunologically effective amount" mean that the antigen or immunogenic composition is sufficient to elicit an immune response (cell (Τ cell) or body fluid (Β·cell or antibody) 4 of the reaction or both, as measured by standard analysis known to those skilled in the art. The amount of a particular combination in the composition is generally calculated based on the total polysaccharide (the bound polysaccharide of the combination and the unbound polysaccharide). For example, in a dose of 100 mcg CP5 polysaccharide, a cp5 conjugate containing 20% of free polyxon will have about rib meg binding to CP5 _ and about 20 mcg unbound cp5 multienzyme. When calculating the conjugate dose, it often does not consider the proportion of protein in the conjugate. The amount of conjugate can vary depending on the serotype of the staphylococcus. In general, each dose will comprise from 1 to 1 mc mcg polysaccharide, especially from 0.1 to meg polysaccharide, and more particularly to (7) meg polysaccharide. The "immunogenic amount" of the *multiple components in the immunogenic composition may be different, and each may contain 1 mcg, 2 mcg, 3 mcg, 4 meg ^ 5 meg &gt; 6 meg &gt; 7 meg &gt 8 mcg . 9 meg ^ 10 meg ^ 15 meg, 20 mcg, 30 mcg, 40 mcg, 5 〇 mcg, 6 〇 mcg, 7 〇 149159.doc • 58- 201110977 meg, 80 meg, 90 meg or about loo mcg Any specific polysaccharide antigen. Staphylococcus aureus "invasive disease" is the isolation of bacteria from a sterile site under normal conditions in which clinical signs/symptoms of the disease are present. Under normal circumstances, the body parts of the body include blood, CSF, pleural fluid ~ liquid, peritoneal fluid, joints / synovial fluid, bone, internal body parts (lymph nodes, brain, heart, liver, spleen, vitreous, f, sputum , ovary) or other sterile parts under normal conditions. Clinical conditions that characterize invasive diseases include bacteremia, pneumonia, cellulitis, osteomyelitis, endocarditis, septic shock, and other conditions. The effectiveness of the antigen as an immunogen can be determined by proliferation assays, by cell lysis (such as chromium release assays that measure the ability of T cells to lyse their specific target cells) or by measuring the extent of B cell activity (by amount) The amount of circulating antibodies specific for the antigen in the assay is measured. The immune response can also be measured by measuring the amount of the antigen-specific antibody induced by the antigen, and the sputum is enhanced by measuring the antibody thus induced to enhance the ability of the specific white blood to regulate the cells. Ability as described in this article. The immune response can be measured by the host immunized with the administered antigen. For example, 5, if the antigen to which the right immune response is directed is a bacterium, the degree of protection induced by the antigen in the immunogenicity is determined by the percentage of survival or the percentage of mortality after H is challenged by the fine g cell. Measurement. In a well-known example, the amount of protection can be measured by measuring at least one symptom associated with bacterial infection (e.g., fever associated with infection). The amount of each antigen in a multi-antigen or multi-component epidermal or immunogenic composition will vary with each other component and can be determined by methods known to those skilled in the art. Such methods 149159.doc -59· 201110977 include procedures for measuring immunogenicity and/or in vivo efficacy. In some embodiments, the term "about" means 20 〇 /. Within, preferably within 1%, and more preferably within 5%. The invention further provides antibodies and antibody compositions that specifically and selectively bind to the serotype 5 or 8 capsular polysaccharide or immunogenic conjugate of the invention. In some embodiments, the antibody is produced following administration of a serotype 5 or 8 capsular polysaccharide or immunogenic conjugate of the invention to an individual. In some embodiments, the invention provides purification and isolation of antibodies against one or more serotype 5 or 8 capsular polysaccharides or immunogenic conjugates of the invention. In some embodiments, the antibodies of the invention are functional, as measured in an animal potency model or via a conditioned swallow cell killing assay, based on killing bacteria. In some embodiments, an antibody of the invention confers passive immunity to an individual. The invention further provides a polynuclear (tetra) molecule encoding an antibody or antibody fragment of the invention, and a cell or cell strain producing the antibody or antibody composition of the invention (such as for recombinant production of antibodies) using techniques well known to those skilled in the art. A fusion of tumor cells or other engineered cell lines) or a transgenic animal. The antibody or antibody composition of the present invention can be used in a method for treating or preventing a staphylococcal infection, a disease or a condition associated with a Staphylococcus aureus in an individual, the method comprising producing a multi-plant or monoclonal antibody preparation and using the antibody or antibody The composition imparts passive immunity to the individual. The antibodies of the invention may also be used in diagnostic methods, such as the presence or quantification of the presence of CP5, CP8 or combinations thereof. Several animal models known in the art can be used to assess the efficacy of any of the immunogenic compositions described herein. For example: 149159.doc 201110977 Passive mouse sepsis model: Mice were passively immunized with immunized IgG or monoclonal antibody intraperitoneally (I.p_). After 24 hours, the mice were challenged with lethal S. aureus. Intravenous (i.v. or i.p.) administration of bacterial challenge ensures that any survival rate can be attributed to the specific in vivo interaction of the antibody with the bacteria. The bacterial challenge dose was determined to be the dose required to achieve approximately 2% of the unimmunized control mice to achieve lethal sepsis. The survival rate study can be statistically assessed by Kaplan-Meier analysis. Active immunization and challenge models: In this model, mice were actively immunized with the target antigen subcutaneously (SC) at weeks, 3, and 6 weeks (or similar time courses known to those skilled in the art), and in the first Attacks were performed by intravenous or intraperitoneal route for 8 weeks (or other similar time courses known to those skilled in the art). Calibration The bacterial challenge dose achieved a survival rate of approximately 2% in the control group over a 14 day period. The survival rate study can be statistically assessed by Kaplan-Meier analysis. Passive Infective Endocarditis Model: A passive immunization model of infective endocarditis (IE) previously used with S. aureus has shown that clfA can induce protective immunity. See Vernachio et al. (2〇〇6) ά C/iemo. 50:511-518. In this IE model, rabbits or rats were used to simulate clinical infections including central venous catheters, bacteremia, and hematogenous spread to peripheral organs. A single intravenous injection of a single or multiple antibodies specific for the target antigen is administered to rabbits or rats implanted with a sterile aorta. After 24 hours, the animals were challenged intravenously with a heterologous staphylococci strain or a mrsa strain. Next, after 48 hours of challenge, the heart, kidneys, and blood were collected and maintained. Then measure the heart valve, kidney and blood. 149159.doc -61 - 201110977 The frequency of staphylococcal infection in the fluid. In one study, when using mrse ATCC 35984 or MRSA PFESA0003 to challenge animals, use

ClfA之多株抗體製劑或單株抗體均顯示感染速率顯著降 低。參看Vernachio等人,上文。 被動感染性心内膜炎模型:該感染性心内膜炎模型亦適 合主動免疫研究。兔或大鼠用標靶抗原肌肉内(im)免 疫並在兩週後用金頁色葡萄球菌經由靜脈内途徑攻毒。 腎盂腎炎模型:在腎盂腎炎模型中,小鼠在第〇、3及6 週(熟習此項技術者已知之類似時程)用標靶抗原免疫。在 第8週’藉由例如腹膜内注射例如1 7 x丨〇8 cfu金黃色葡萄 球菌PFESA0266來攻毒動物。48小時後,收集並培養腎及/ 或其他組織。最後’對腎及/或其他組織中之攻毒細菌的 群落形成單位進行計數。此模型評估在動物中之全身性傳 播。 使用調理吞噬細胞性殺死分析監測功能性抗體 此分析使用分化效應細胞,該等細胞來自根據製造商方 案使用 LYMPHOLYTE®-poly 溶液(Cedarlane laboratories limited,Ontario,Canada)自供體人類血液所分離的細胞株 (例如HL60)或多形核細胞(PMN)。將效應細胞以約2X 1 〇7個 細胞/毫升之濃度再懸浮於分析緩衝液(含1 %牛血清白蛋白 之改良伊格爾氏培養基)中並置於37。(:培育箱中直至準備 使用。金黃色葡萄球菌菌株PFESA0266在胰蛋白酶大豆瓊 脂板上生長隔夜。刮下細菌細胞,洗蘇兩次並再懸浮於含 5%甘油之分析緩衝液中直至〇d600= 1,此值等於約5X1 〇8 149159.doc • 62- 201110977 cfu/ml之濃度。冷凍細菌懸浮液之1 mi等分試樣並儲存於 -40 C下直至準備使用。將冷凍之細菌懸浮液解凍且在分 析缓衝液中調節至濃度為1〇6 Cfu/mi,且置於冰上。使用 無菌96深孔1 mi聚丙烯板進行該分析。製備抗體樣品之兩 倍連續稀釋液(50 μΐ),接著向抗體混合物中添加3〇〇 分 析緩衝液。向分析板中添加細菌(5〇 並在4。〇下於旋轉 振盪益上置放30分鐘。進行調理步驟,隨後添加5〇 μ1人類 補體(最終;辰度為1 %)。最後,向分析板中添加5 〇 y效應細 胞(濃度為1〇7個細胞/毫升),且藉由重複吸移充分混合懸 &gt;子液。懸浮液之5〇 μΐ等分試樣於無菌1%皂苷溶液中進行 1 〇倍連續稀釋,經渦旋處理使細菌凝集最小化,並一式兩 伤塗於姨蛋白酶大豆瓊脂上。在使用迴轉烤肉架式振盪器 連續混合下,在37它下培育分析板1小時。培育結束時, 芯浮液之5 0 μΐ專分试樣於無菌i %皂苷溶液中進行1 〇倍連 續稀釋,藉由渦旋處理進行混合以使細菌凝集最小化,並 一式兩份塗於胰蛋白酶大豆瓊脂上。藉由在6〇分鐘時測定 具有細菌、抗體、補體及效應細胞之孔中的存活efu數目 〃缺乏抗體但含有細菌、補體及效應細胞之管内的存活 cfu數目之比率來計算殺死百分比。包括含有細菌、補體 及血清之對照以調節因凝集所致的任何Cfu減少。 補體吸附 針對金黃色葡萄球菌菌株PFESA〇266、p PFESAG27G所吸附之人類供者血清在分析中可用作補體來 源。金黃色葡萄球㈣株在3rcMTSA板上生長隔夜。 149159.doc -63 - 201110977 自分析板刮下細胞並再懸浮於無菌PBS中。細菌細胞在4。〇 下以10,000 rpm離心10分鐘’且將細胞離心塊再懸浮於人 類血清中供吸附。血清與細菌一起在4。〇下於旋轉振盡器 (nutator)上培育30分鐘。對細胞進行離心,血清轉移至含 有細菌的另一個管中,且再重複吸附步驟30分鐘。最後, 對細胞進行離心,且使血清通過〇.2微米過濾器,接著在 液氮中冷凍0.5 ml等分試樣。 方法II-0PA ’使用HL-60細胞 根據 S. Romero-Steiner 等人 ’ Clin Diagn Lab Immun〇1 4(4) (1997),第415-422頁分化HL-60細胞。將所收集之 HL-60細胞以約1〇8個細胞/毫升再懸浮於分析緩衝液(含1% 牛血清白蛋白之改良伊格爾氏培養基)中並置於37。〇培育 箱中直至準備使用。金黃色葡萄球菌菌株在胰蛋白酶大豆 瓊脂板上生長隔夜。刮下細菌細胞,洗滌兩次並再懸浮於 含5%甘油之分析緩衝液中直至〇D6Qg=1,此值等於約5χΐ〇8 cfu/m卜冷凍細菌懸浮液之! m丨等分試樣並儲存於_4〇它下 直至準備使用。將冷凍之細菌懸浮液解凍且在分析緩衝液 中調節至濃度為1〇6 cfu/m卜且置於冰上。使用無菌%深 孔1 m】聚丙烯板進行該分析^製備單株抗體樣品之兩倍連 續稀釋液(25 μΐ),接著向抗體懸浮液中添加15〇 y分析緩 衝液。向分析板中添加細菌(25μ1)並在下於旋轉振盪器 上置放30分鐘,接著添加25 μι人類補體(最終濃度為〗%)。 最後,向分析板中添加25 μ1 HL_6〇細胞(1〇7個細胞/毫升), 且藉由重複吸移充分混合懸浮液。懸浮液之25 W等分試樣 149I59.doc •64· 201110977 於無菌1 〇/0皂苷溶液中進行丨〇供 進杆.β入 °續稀釋,藉由渦旋處理 進仃展合以使細菌凝集最小化, 大 並~式兩份塗於胰蛋白酶 人且瓊月日上。在使用迴轉烤肉牟 37。广w ⑽木式振盪器連續混合下,在 八二&quot;分析板1小時。培育結束時,懸浮液…等 =樣於無gl%4们容液中進“倍連續稀釋,藉由渦 疋處理進行混合並一式兩份塗 姨蛋白酶大豆瓊脂上。藉 由在60分鐘時測定具有細菌、抗 體補體及HL-60細胞之 孔中的存活cfu數目與缺乏抗體作 3有細鹵、補體及HL-60 ,.田胞之管内的存活cfu數目之比率 千人计算殺死百分比。包 括含有細菌、補體及mAb之對昭以▲田„ m t &amp; 对α以调節因凝集所致的任何 cfu減少。 以下實例為說明而非為限制所提供。 實例 實例1:製備金黃色葡萄球菌血清型8莢膜多醣 在此貫例中’描述各種分子大小範圍之金黃色葡萄球菌 血清型8笑膜多聽之產生。金黃色葡萄球菌血清型8莢膜多 醣重複單元之結構示於圖丨中。本文所述之方法可有效產 生刀子里在約20 kDa至700 kDa範圍内的血清型8莢膜多 醣。藉由適當地選擇條件,可分離並純化分子量在5〇 kDa 至700 kDa範圍内的高分子量血清型8莢膜多醣。為用於免 疫原性組合物十,可分離並純化分子量在7〇 kDa至3〇〇 kDa及許多所要範圍内的血清型8莢膜多醣。基於生長特徵 及所產生之莢膜量,使用菌株PFESA0005或叩以八们“產 生血清型8莢膜多醣。自菌株PFESA0005或PFESA0286分 H9159.doc •65· 201110977 離之莢膜顯示相同。 “為了產生血清型8荚膜多醣,菌株在主要由碳源(乳糖或 庶糖)、水解大豆粉作為氮源及痕量金屬組成的複合培養 基中生長。菌株在生物反應器中生長2至5天。 在熱c處理别’移除樣品以測試培養物中之葡萄球菌腸 毒素B(SEB)之含量。在0.05%聚山梨醇酯80存在下,SEB 於酸酵物中之濃度為⑽ng/ml。先前實驗顯示,熱壓處 理培養物!小時使SEB含量降低至小於〇1 ng/mi,該值低於 TECRA套組之偵測極限。 ―將已透析過濾之經乙醇分離之多㈣載於Q·瓊脂糖縱 管柱上’ 用如上文所述之心㈣性梯度溶離。藉由〇乙 醯基分析及雙向免疫擴散測試(測試血清型5多醣之存在)及 構酸鹽分析(分析磷壁酸(TA)之存在)分析溶離份。在溶離 份35至95中偵測到血清型8多醣之存在(圖2八至四)。 為了減少磷壁酸污染,彙集溶離份35至75且用偏過碘酸 鈉氧化任何殘餘磷壁酸以便藉由相對於重蒸水之3K透析過 濾將其移除。 藉由依賴於尚溫及低pH值來影響莢膜自細胞釋放並降低 多醣之分子量的兩種不同方法純化用於製備結合物之血清 型8莢膜多醣。所得分子量視水解步驟之時間、溫度及 值而定。 使用表1中說明之技術表徵血清型8莢膜多醣。 149159.doc -66 - 201110977 表1:經純化之金黃色葡萄球菌血清型8莢膜多醣之表徵 分析A multi-drug antibody preparation or a monoclonal antibody of ClfA showed a marked decrease in the infection rate. See Vernachio et al., supra. Passive Infective Endocarditis Model: This infective endocarditis model is also suitable for active immunological studies. Rabbits or rats were immunized intramuscularly (im) with the target antigen and challenged with S. aureus via the intravenous route two weeks later. Pyelonephritis model: In the pyelonephritis model, mice were immunized with the target antigen at weeks, 3, and 6 weeks (similar time periods known to those skilled in the art). At week 8, the animals were challenged by, for example, intraperitoneal injection of, for example, 17 x 8 cfu of S. aureus PFESA0266. After 48 hours, the kidneys and/or other tissues are collected and cultured. Finally, the community forming units of the challenged bacteria in the kidney and/or other tissues are counted. This model assesses systemic spread in animals. Monitoring functional antibodies using opsonophagocytic killing assays This assay uses differentiated effector cells from cells isolated from donor human blood using LYMPHOLYTE®-poly solution (Cedarlane laboratories limited, Ontario, Canada) according to the manufacturer's protocol. Strain (eg HL60) or polymorphonuclear cell (PMN). The effector cells were resuspended in assay buffer (modified Eagle's medium containing 1% bovine serum albumin) at a concentration of about 2X 1 〇 7 cells/ml and placed at 37. (: in the incubator until ready for use. S. aureus strain PFESA0266 was grown overnight on tryptic soy agar plates. Bleed the bacterial cells, washed twice and resuspended in 5% glycerol in assay buffer until 〇d600 = 1, this value is equal to approximately 5X1 〇8 149159.doc • 62- 201110977 cfu/ml concentration. 1 aliquot of frozen bacterial suspension and stored at -40 C until ready for use. The solution was thawed and adjusted to a concentration of 1 〇 6 Cfu/mi in assay buffer and placed on ice. The assay was performed using a sterile 96 deep well 1 mi polypropylene plate. Prepare twice the serial dilution of the antibody sample (50 Μΐ), then add 3 〇〇 analysis buffer to the antibody mixture. Add bacteria to the assay plate (5 〇 and place on the spin shake for 30 minutes at 4 。. Perform the conditioning step, then add 5 〇 μ1 Human complement (final; 1%). Finally, 5 〇y effector cells (concentration of 1 〇 7 cells/ml) were added to the assay plate, and the suspension was thoroughly mixed by repeated pipetting. 5〇μΐ aliquot of the suspension 1 〇 serial dilution in sterile 1% saponin solution, vortexing to minimize bacterial agglutination, and two strokes were applied to chymotrypsin soy agar. Under continuous mixing using a rotary barbecue shaker, at 37 The assay plate was incubated for 1 hour. At the end of the incubation, the 50 μΐ monolith of the core float was serially diluted 1 〇 in a sterile i % saponin solution and mixed by vortexing to minimize bacterial agglutination. And applied to trypsin soy agar in duplicate. The number of viable efus in wells with bacteria, antibodies, complement and effector cells was determined at 6 min, 〃 lacking antibodies but containing bacteria, complement and effector cells The percentage of surviving cfu is used to calculate the percentage of kill. A control containing bacteria, complement and serum is included to regulate any reduction in Cfu due to agglutination. Complement adsorption for humans adsorbed by S. aureus strains PFESA〇266, p PFESAG27G Serum was used as a source of complement in the analysis. Golden yellow grape (4) strains grew overnight on 3rcMTSA plates. 149159.doc -63 - 201110977 The plate was scraped off and resuspended in sterile PBS. Bacterial cells were centrifuged at 10,000 rpm for 10 minutes at 4 rpm and the cell pellet was resuspended in human serum for adsorption. Serum was incubated with bacteria at 4. Incubate for 30 minutes on a rotary nutrator. Centrifuge the cells, transfer the serum to another tube containing the bacteria, and repeat the adsorption step for another 30 minutes. Finally, centrifuge the cells and pass the serum through the 〇.2 A micron filter followed by a 0.5 ml aliquot in liquid nitrogen. Method II-0PA ' uses HL-60 cells to differentiate HL-60 cells according to S. Romero-Steiner et al. 'Clin Diagn Lab Immun.1 4(4) (1997), pp. 415-422. The collected HL-60 cells were resuspended in assay buffer (modified Eagle's medium containing 1% bovine serum albumin) at about 1 8 cells/ml and placed at 37. 〇 Incubate the box until ready for use. S. aureus strains were grown overnight on tryptic soy agar plates. The bacterial cells were scraped off, washed twice and resuspended in assay buffer containing 5% glycerol until 〇D6Qg=1, which is equal to about 5χΐ〇8 cfu/m of frozen bacterial suspension! An aliquot of m丨 was stored and stored under _4 直至 until it was ready for use. The frozen bacterial suspension was thawed and adjusted to a concentration of 1 〇 6 cfu/m b in assay buffer and placed on ice. The assay was performed using a sterile % deep well 1 m] polypropylene plate. Two-fold serial dilutions (25 μΐ) of the individual antibody samples were prepared, followed by the addition of 15 μy analytical buffer to the antibody suspension. Bacteria (25 μl) were added to the assay plate and placed on a rotary shaker for 30 minutes, followed by the addition of 25 μm human complement (final concentration 〖%). Finally, 25 μl of HL_6 〇 cells (1〇7 cells/ml) were added to the assay plate, and the suspension was thoroughly mixed by repeated pipetting. 25 W aliquot of the suspension 149I59.doc •64· 201110977 The sputum is fed into the sterile 1 〇/0 saponin solution. The β is continuously diluted and vortexed to form bacteria. The agglutination was minimized, and the two were applied to the trypsin and the two were applied. Use the Rotary Grill 牟 37. Wide w (10) wood-type oscillators were continuously mixed under the 1982 &quot; analysis board for 1 hour. At the end of the incubation, the suspension, etc., were sampled in a ML%-free solution, mixed in a continuous dilution, mixed by vortexing and applied in duplicate to chymotrypsin soy agar. Determined at 60 minutes. The ratio of the number of surviving cfus in the wells with bacteria, antibody complement and HL-60 cells was compared with the number of surviving cfus in the tubes lacking the antibody to 3 with fine halo, complement and HL-60. This includes the inclusion of bacteria, complement, and mAb, ▲ „ mt mt &amp; α to adjust for any cfu reduction due to agglutination. The following examples are provided by way of illustration and not limitation. EXAMPLES Example 1: Preparation of S. aureus serotype 8 capsular polysaccharide In this example, S. aureus serotype 8 serotypes of various molecular size ranges were described. The structure of the S. aureus serotype 8 capsular polysaccharide repeating unit is shown in Figure 。. The methods described herein are effective in producing serotype 8 capsular polysaccharides in the range of about 20 kDa to 700 kDa in knives. High molecular weight serotype 8 capsular polysaccharide having a molecular weight in the range of 5 〇 kDa to 700 kDa can be isolated and purified by appropriately selecting conditions. For use in immunogenic compositions, serotype 8 capsular polysaccharides having molecular weights ranging from 7 〇 kDa to 3 〇〇 kDa and many desired ranges can be isolated and purified. Based on the growth characteristics and the amount of capsular produced, the strain PFESA0005 or sputum was used to produce serotype 8 capsular polysaccharide. The capsular membrane was shown to be the same from the strain PFESA0005 or PFESA0286, H9159.doc •65·201110977. A serotype 8 capsular polysaccharide is produced, and the strain is grown in a complex medium mainly composed of a carbon source (lactose or sucrose), hydrolyzed soybean powder as a nitrogen source, and a trace metal. The strain is grown in a bioreactor for 2 to 5 days. The sample was removed in the heat c treatment to test the content of staphylococcal enterotoxin B (SEB) in the culture. The concentration of SEB in the acid yeast was (10) ng/ml in the presence of 0.05% polysorbate 80. Previous experiments have shown that the culture is hot pressed! The hourly reduction of SEB content is less than 〇1 ng/mi, which is below the detection limit of the TECRA kit. - The diafiltration-filtered ethanol (4) was loaded on a Q·Sepharose column and dissolved by a heart (four) gradient as described above. The fractions were analyzed by hydrazine thiol analysis and two-way immunodiffusion test (testing for the presence of serotype 5 polysaccharide) and acid salt analysis (analysis of the presence of teichoic acid (TA)). The presence of serotype 8 polysaccharide was detected in fractions 35 to 95 (Fig. 2 to 4). To reduce the contamination of the teichoic acid, the fractions 35 to 75 were pooled and any residual teichoic acid was oxidized with sodium metaperiodate to remove it by diafiltration against 3K of re-distilled water. The serotype 8 capsular polysaccharide used to prepare the conjugate is purified by two different methods that affect the release of the capsule from the cell and reduce the molecular weight of the polysaccharide depending on the temperature and the low pH. The molecular weight obtained depends on the time, temperature and value of the hydrolysis step. Serotype 8 capsular polysaccharides were characterized using the techniques described in Table 1. 149159.doc -66 - 201110977 Table 1: Characterization of purified S. aureus serotype 8 capsular polysaccharide

特異性 分析 殘餘蛋白質 洛瑞比色分析(Lowry colorimetric assay) 殘餘核酸 260 nm掃描 殘餘磷壁酸 磷酸鹽比色分析 殘餘肽聚糖 HPAEC-PAD 尺寸 SEC-MALLS 組成 HPAEC-PAD 身分 1H-NMR或與特異性mAb反應 0-乙醯化 1H-NMR 濃度 MALLS-RI 或 HPAEC-PAD 藉由下述方法產生莢膜多醣可得到蛋白質、核酸、肽聚 糖及磷壁酸污染物含量低的經充分表徵之純多醣。 在第一種方法中,莢膜多醣自細胞釋放且分子量降低 後,用酵素混合液(例如核糖核酸酶、脫氧核糖核酸酶、 溶菌酶及蛋白酶)處理製劑以消化雜質。培育後,藉由添 加乙醇(最終濃度約25%)使殘餘雜質沈澱。移除殘餘乙醇 後,將含莢膜多醣之溶液裝載於陰離子交換柱(Q-瓊脂糖) 上且用線性鹽梯度溶離。彙集含莢膜多醣之溶離份且用偏 過蛾酸納處理。此處理導致殘餘麟壁酸污染物被氧化水 解,但不影響血清型8莢膜多醣。藉由添加乙二醇淬滅反 應。濃縮物質並相對於蒸餾水透析過濾,以移除任何殘餘 試劑及副產物。 第二種方法用於產生莢膜多醣而無需使用酵素消化各種 來源於細胞之雜質。在此方法中,莢膜多醣自細胞釋放且 149159.doc -67- 201110977 分子量降低後,藉由微濾、隨後超濾及透析過濾使水解的 醱酵培養液澄清。用活性碳處理溶液以移除雜質。碳處理 後’用偏過碘酸鈉處理物質以氧化殘餘磷壁酸,接著用丙 二醇淬滅。濃縮物質並相對於蒸餾水透析過濾,以移除任 何殘餘試劑及副產物。 使用任一種方法產生製劑均得到蛋白質、核酸及磷壁酸 污染物含量低的純莢膜多醣。所述方法藉由改變水解條件 τ用於產生特疋範圍之所要高分子量多醣。可藉由本文所 述之方法獲得之莢膜多醣的實例示於下表2中。如依據無 磷壁酸(TA)、肽聚醣及低殘餘蛋白質所指示,各批純化血 /月型8莢膜多醣具有高純度。參看表2。低分子量範圍為 20.4 kDa至65.1 kDa,且純化多醣經高度〇_乙酿化(約 100%)。核酸污染程度低(012_2 Μ%)。 表2:表徵血清型8莢膜多醣製劑 1 2 3 (kDa) (g/mol) (洛瑞) %(w/w) (260 nm 掃描) %(w/w) NMI % 310 27.0 ! 2 438 29.0 2 4 179 ^ 0-37 ⑽ 1〇 爽膜多醣之分子量選擇:動力學分析顯示,本文所主 :二產生分子量範圍較寬的莢膜多^。首先,由細1 :較大多聽’隨後選擇所要分子量範圍1 制^及轉步驟之pH值及加熱條件加以純化。. 兴色葡萄球菌㈣培養液之熱處理為介於潑酵與突 0.94 2 0.12 10C 10C 108 H9159.doc -68· 201110977 夕醋回收之間的處理步驟。此處理步驟使用熱將pH值經調 即之培養液處理特定時段。在低pH值下熱處理的目標在於 杀又死.·.田見使腸毒素失活、釋放細胞結合多醣及將分子量 降至所要大小。在此等目標中’就此步驟中所需之處理時 間而吕’降低分子量最慢。因此,在所考慮之處理時間内 必然達成其他目標。 熱處理:確定用於選擇莢膜多骑之各種分子量範圍的pH 值及度條件。此等研究使用15 l寶樂菲醱酵器 (Biolafme Fementei·)。藉由螺㈣將輯培養液轉移至酸 酵益中。使用約200 rpm之搜動速度,用濃硫酸調節培養 液pH值。接著’使培養液溫度上升至設定值。一旦溫度達 到設定點’即開始熱處理計時。當達到所要處理時間時, :σ養液冷卻至至’盖。獲取處理中之樣品,分別藉由 HPLC及SEC-MALLS系統測定多醣濃度及分子量。分子量 (MW)資料用於動力學分析。在ρΗ 3 5、4〇及5〇下隨時間 測定MW分佈。參看圖3 a。 使用獲自該處理之純化血清型8莢膜多_、對多醣之弱 酸水解進行動力學分析。用硫酸將純化多㈣液調節至所 要PH值供實驗用。將社5 mL溶液轉移至各15 ‘離心管 中。將離心管置於裝備精密溫度控制系統之油浴中。每隔 預定時間取出離心、管,並於冰桶中淬滅。實驗結束時,向 樣品中添加i M Tris緩衝液之等分試樣(pH 7 5)以便將阳值 調回至約7。藉由SEC_MALLS系統分析樣品。娜資料用 ㈣力學分析。在ΡΗ 3·5下隨日夺間測定溫度對⑽之顯分 149159.doc -69- 201110977 佈的影響。參看圖3B。 如圖3 A中所示,較低pH值在降低多醣分子量方面更有 效。可使用pH 5、95。(:、歷時15分鐘至120分鐘來產生300 kDa至600 kDa之分子量。同樣,可使用pH 4、95。匸、歷時 15分鐘至120分鐘來產生250 kDa至450 kDa之分子量。此 外’可使用pH 3.5 ' 95。(:、歷時1 5分鐘至120分鐘來產生 120kDa至450 kDa之分子量。 如圖3B中所示,隨時間推移,溫度越高,水解速率越 快,且所產生之多醣之分子量範圍越寬。在相同pH值下使 用杈低溫度55 C (相對於95。(〕)產生較窄多醣分子量範圍。 此外,圖4顯示純化CP8之分子量與弱酸(pH 3 5,95。〇) 水解處理時間的相關性。純化多醣為獲自先前詳述之回收 處理的最終產物。亦如圖4中所示,延長在阳3 5下熱處 理金黃色葡萄球菌PFESA0005菌株的時間可產生分子量較 小之CP8,而縮短pH 35下之熱處理時間可產生分子量較 高之CP8。視在pH 3.5下之熱處理時間長度而定,血清型8 莢膜夕醣之分子大小在約8〇 kDa至約22〇 kDa範圍内。如 圖4中所示,低pH值下之熱處理時間與純化cp8之分子大 小之間的相關性可用於評估產生具有特^分子量範圍之純 化多膽所需的處理時間。 要的是注意到,如上文所示,可產生、釋放並純化2 kDa至超過5〇〇 kDa之整個分子量範# 醋。因此,該等方法可用於產生具有特定所要高分子量菊 149159.doc 201110977 圍之莢膜夕醣’諸如表3中所示。所產生之分子量範圍相 對軚乍之夕醣(其中峰值分子量在87让〇3至i〇8 範圍内) 表示可藉由本文所述之方法獲得的經充分表徵之分子量範 圍。尤其有利之高分子量範圍(在7〇 ]^&amp;至3〇〇 kDa或7〇 kDaJ* 150 kDa範圍内)的多醣可藉由使莢膜多醣與載體分 子或蛋白資、合而用於製造免疫原性組合物(參看表3 )。用 於產生分子量範圍為約8〇至120 kDa之CP8英膜多醣的條件 如下· 95 C ’ pH 3.5,歷時3〇〇分鐘。 表3產生具有特定高分子量範圍之金清型8莢膜多醣Specificity analysis of residual protein Lorry colorimetric assay Residual nucleic acid 260 nm scanning residual phosphonium acid phosphate colorimetric analysis residual peptidoglycan HPAEC-PAD size SEC-MALLS Composition HPAEC-PAD identity 1H-NMR or Specific mAb reaction 0-acetamidine 1H-NMR concentration MALLS-RI or HPAEC-PAD The capsular polysaccharide produced by the following method can be fully characterized by low content of protein, nucleic acid, peptidoglycan and teichoic acid contaminants. Pure polysaccharide. In the first method, after the capsular polysaccharide is released from the cells and the molecular weight is lowered, the preparation is treated with an enzyme mixture (e.g., ribonuclease, deoxyribonuclease, lysozyme, and protease) to digest impurities. After incubation, residual impurities were precipitated by the addition of ethanol (final concentration of about 25%). After removing residual ethanol, the capsular polysaccharide-containing solution was loaded on an anion exchange column (Q-Sepharose) and dissolved with a linear salt gradient. The fractions containing the capsular polysaccharide were pooled and treated with sodium molybdate. This treatment resulted in residual linal acid contaminants being oxidatively hydrolyzed but not affecting serotype 8 capsular polysaccharides. The reaction was quenched by the addition of ethylene glycol. The material was concentrated and dialyzed against distilled water to remove any residual reagents and by-products. The second method is used to produce capsular polysaccharide without the use of enzymes to digest various cell-derived impurities. In this method, the capsular polysaccharide is released from the cells and the molecular weight of 149159.doc-67-201110977 is lowered, and the hydrolyzed fermentation broth is clarified by microfiltration, followed by ultrafiltration and diafiltration. The solution is treated with activated carbon to remove impurities. After carbon treatment, the material was treated with sodium metaperiodate to oxidize the residual teichoic acid, followed by quenching with propylene glycol. The material was concentrated and dialyzed against distilled water to remove any residual reagents and by-products. The preparation of the preparation using either method yields a pure capsular polysaccharide having a low content of protein, nucleic acid and teichoic acid contaminants. The method is used to produce a desired high molecular weight polysaccharide in a particular range by varying the hydrolysis conditions τ. Examples of capsular polysaccharides obtainable by the methods described herein are shown in Table 2 below. Each batch of purified blood/moon type 8 capsular polysaccharide has high purity as indicated by non-phospholiic acid (TA), peptidoglycan, and low residual protein. See Table 2. The low molecular weight range is from 20.4 kDa to 65.1 kDa, and the purified polysaccharide is subjected to high enthalpy (about 100%). The degree of nucleic acid contamination is low (012_2 Μ%). Table 2: Characterization of serotype 8 capsular polysaccharide preparation 1 2 3 (kDa) (g/mol) (Lori) % (w/w) (260 nm scan) % (w/w) NMI % 310 27.0 ! 2 438 29.0 2 4 179 ^ 0-37 (10) 1 分子量 膜 膜 之 之 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量 分子量First, it is purified by fine 1: large and large listening 'subsequent selection of the desired molecular weight range 1 and the pH of the transfer step and heating conditions. The heat treatment of the Staphylococcus aureus (4) culture solution is a treatment step between the fermentation and the recovery of 0.94 2 0.12 10C 10C 108 H9159.doc -68· 201110977 vinegar recovery. This treatment step uses heat to treat the pH-adjusted culture solution for a specific period of time. The goal of heat treatment at low pH is to kill and die. Tianjian inactivates the enterotoxin, releases the cell-bound polysaccharide and reduces the molecular weight to the desired size. In these targets, 'the processing time required for this step' is the slowest to lower the molecular weight. Therefore, other goals must be achieved within the processing time considered. Heat Treatment: Determine the pH and degree conditions used to select various molecular weight ranges for the capsule ride. These studies used a 15 l Biolafme Fementei. Transfer the culture medium to the acid fertilizer by using snail (4). The pH of the culture medium was adjusted with concentrated sulfuric acid using a search speed of about 200 rpm. Then, the temperature of the culture solution is raised to a set value. The heat treatment timing is started as soon as the temperature reaches the set point. When the desired treatment time is reached, the sigma solution is cooled to the 'cover. The samples in the treatment were obtained, and the polysaccharide concentration and molecular weight were determined by HPLC and SEC-MALLS systems, respectively. Molecular weight (MW) data were used for kinetic analysis. The MW distribution was measured over time at ρ Η 3 5, 4 〇 and 5 。. See Figure 3 a. Kinetic analysis of the weak acid hydrolysis of the polysaccharide was carried out using purified serotype 8 capsules obtained from this treatment. The purified poly(tetra) solution was adjusted to the desired pH with sulfuric acid for experimental use. Transfer 5 mL of the solution to each of the 15 'centrifuge tubes. Place the tube in an oil bath equipped with a precision temperature control system. Centrifuges and tubes were taken every predetermined time and quenched in an ice bucket. At the end of the experiment, an aliquot of the i M Tris buffer (pH 7.5) was added to the sample to adjust the positive value back to about 7. Samples were analyzed by the SEC_MALLS system. Na data used (four) mechanical analysis. Under ΡΗ 3·5, the temperature is determined by the time of day (10). 149159.doc -69- 201110977 The influence of cloth. See Figure 3B. As shown in Figure 3A, a lower pH is more effective in reducing the molecular weight of the polysaccharide. pH 5, 95 can be used. (:, 15 minutes to 120 minutes to produce a molecular weight of 300 kDa to 600 kDa. Similarly, pH 4, 95 can be used. 匸, 15 minutes to 120 minutes to produce a molecular weight of 250 kDa to 450 kDa. pH 3.5 '95. (:, for 15 minutes to 120 minutes to produce a molecular weight of 120 kDa to 450 kDa. As shown in Figure 3B, the higher the temperature, the faster the hydrolysis rate and the resulting polysaccharide The broader the molecular weight range, the lower molecular weight range of 55 C (relative to 95%) is produced at the same pH value. In addition, Figure 4 shows the molecular weight of the purified CP8 and the weak acid (pH 3 5, 95. Correlation of hydrolysis treatment time. Purified polysaccharide is the final product obtained from the recovery treatment detailed above. As shown in Fig. 4, prolonging the heat treatment time of S. aureus PFESA0005 strain under Yang 3 5 can produce molecular weight. Small CP8, while shortening the heat treatment time at pH 35 can produce CP8 with higher molecular weight. Depending on the length of heat treatment at pH 3.5, the molecular size of serotype 8 capsules is about 8〇kDa to about 22 〇kDa fan As shown in Figure 4, the correlation between the heat treatment time at low pH and the molecular size of purified cp8 can be used to assess the processing time required to produce purified cholestases with specific molecular weight ranges. Thus, as indicated above, the entire molecular weight range of 2 kDa to more than 5 〇〇 kDa can be produced, released and purified. Therefore, these methods can be used to produce a capsule having a specific desired molecular weight of 149159.doc 201110977. The sugars are shown in Table 3. The molecular weight range produced is relative to the sucrose (where the peak molecular weight is in the range of 87 〇 3 to i 〇 8), indicating that sufficient is obtained by the methods described herein. Characterized molecular weight range. Particularly advantageous polysaccharides in the high molecular weight range (in the range of 7〇^^&amp; to 3〇〇kDa or 7〇kDaJ* 150 kDa) can be obtained by using capsular polysaccharides with carrier molecules or proteins, In combination, it was used to make an immunogenic composition (see Table 3). The conditions for producing a CP8 film polysaccharide having a molecular weight ranging from about 8 Å to 120 kDa were as follows: 95 C 'pH 3.5, which lasted 3 minutes. 3 produces specific High molecular weight range of Jinqing type 8 capsular polysaccharide

100 -~~~~~ _87___ 實例2 ·血清型8莢膜與多醣CRM197結合 】知述用於產生金黃色葡萄球菌血清型8莢膜多醣. CRMl97結合物之方法及表徵分析。已研發用於使金黃色葡 萄球菌血清型8莢膜多醣與此載體蛋白質結合的不同結合 化學法。舉例而言,使用PDPH(3-(2_t定基二硫基).丙醯 I49159.doc •71 - 201110977 肼)結合可在cp與載體蛋白質之間產生共價硫醚鍵。或 者’使用CDI/CDT( 1,1-幾基二η米唾/1,!_幾基-二- 唑)結合可在CP與載體蛋白質之間產生單碳或零碳連接 子。 藉由PDPH結合化學法使血清型8莢膜多醣與CRM…結合。 PDPH結合化學法為一種多步驟方法,包括活化多醣、 移除硫醇保護基、純化活化之多醣中間物、活化並純化 CRM,9?蛋白質,及使活化組分結合,接著純化。在向多醣 中引入含硫醇基之連接子且向CRMl97蛋白質載體中引入鹵 乙醯基後,使金黃色葡萄球菌血清型8莢膜多醣經由硫醚 鍵連接至蛋白質載體。藉由胺基與溴乙酸N_羥基丁二醯亞 胺酯之反應將溴乙醯基引入CRM〗9?蛋白質中。為了產生硫 醇化多醣,使多醣中N-乙醯基胺基甘露醇醛酸之經碳化二 亞胺活化之甲酸酯基偶合至巯基反應性醯肼雜二官能性連 接劑3-(2-吡啶基二硫)_丙醯肼(PDPH)之醯肼基。藉由dtt 還原所產生且在Sephadex G25管柱上藉由SEC純化的經 PDPH硫醇化之多醣的硫醇與活化蛋白質的溴乙醯基反 應,從而藉由溴置換在多醣與載體蛋白質之間形成共價硫 醚鍵。未反應之溴乙醯基用半胱胺鹽酸鹽(2_胺基乙硫醇鹽 酸鹽)「封端」。接著濃縮反應混合物並透析過濾。殘餘之 未結合溴乙醯基用半胱胺鹽酸鹽封端以確保結合後不存在 反應性漠乙醯基。由此在溴置換後、在半胱胺之硫醇端與 離胺酸殘基上之乙醯基之間形成共價鍵。 1 ·用PDPH使金黃色葡萄球菌血清型8莢膜多醣硫醇化: 149159.doc •72· 201110977 首先藉由PDPH硫醇化來活化多醣。將多醣與新製備之 PDPH儲備溶液(250 mg/mL,含於DMSO中)、EDAC儲備溶 液(90 mg/mL,含於重蒸水中)及MES緩衝儲備溶液(0.5 Μ,pH 4.85)混合,以使得最終溶液含有0.1 M MES、及2 及4 mg/mL多醣,對於血清型8莢膜多醣同時維持1:0.6: 1.25之多醣:PDPH:EDAC重量比。在室溫下培育1小時, 接著使用3500 MWCO透析裝置在4°C至8°C下相對於1000倍 體積之蒸餾水透析4次以移除未反應之PDPH。用0.2 Μ DTT產生PDPH連接之多醣,且在室溫下培育3小時或在4°C 至8°C培育隔夜。使用Sephadex G25樹脂及蒸餾水作為移 動相、藉由SEC自活化醣分離過量DTT及反應副產物。藉 由DTDP分析分析溶離份之硫醇基,且彙集溶離於管柱之 空隙體積附近的硫醇陽性溶離份。藉由PAHBAH及0-乙醯 基分析分析所彙集之溶離份以測定活化度,活化度表達為 含硫醇基之重複單元的莫耳百分比(硫醇之莫耳濃度/重複 單元之莫耳濃度)。凍乾活化多醣並儲存在-25°C下直至需 要結合。 藉由PDPH再現血清型8多醣硫醇化之結果示於表4中。 血清型8多醣之活化度在12%至16%範圍内,對應於每10個 莢膜多醣重複單元連接約1個蓮接分子至每5個重複單元連 接1個連接分子。 149159.doc -73- 201110977 表4 :藉由PDPH活化血清型8莢膜多醣-再現性研究 血清型8多醣-PDPH 活化度 (% Msh/Mru) 標度 mg 產率mg (〇/〇,w/w) 1 14 36 30(83) 2 16 30 27 (91) 4 16 38 42(110) 5 12 40 44(110) 2.載體蛋白質活化:獨立地藉由溴乙醯化來活化載體蛋 白質。用10 mM經磷酸鹽缓衝之0.9% NaCl(pH 7)(PBS)將 CRM,97稀釋至5 mg/mL,接著使用1 Μ儲備溶液、用0.1 Μ NaHC03 達成 pH 7.0。使用 20 mg/mL DMSO 之 BAANS 儲備 溶液,以CRM197:BAANS比率l:0.25(w:w)添加溴乙酸N-羥 基丁二醯亞胺酯(BAANS)。此反應混合物在4°C至8°C培育 1小時,接著在Sephadex G-25上使用SEC純化。藉由洛瑞 分析分析純化之活化CRMm以測定蛋白質濃度,接著用 PBS稀釋至5 mg/mL。添加作為低溫保護劑的蔗糖直至5% wt/vol,且冷束活化之蛋白質並在- 25°C下儲存直至需要結 合。 CRM197離胺酸殘基之溴乙醯化極為連貫,從而使可利用 之39個離胺酸中之19至25個離胺酸活化(參看表5)。該反應 以高產率產生活化蛋白質。 149159.doc -74- 201110977 表5 : CRM197溴乙醯化之產率及程度 製劑 1 2 3 4 5 6 標度 產率100 -~~~~~ _87___ Example 2 ·Serotype 8 capsule combined with polysaccharide CRM197] The method and characterization analysis for the production of S. aureus serotype 8 capsular polysaccharide. CRMl97 conjugate. Different binding chemistries have been developed for the binding of S. aureus serotype 8 capsular polysaccharide to this carrier protein. For example, the use of PDPH (3-(2_t-definyldithio).propanol I49159.doc •71 - 201110977 肼) binding can produce a covalent thioether bond between cp and a carrier protein. Alternatively, a single carbon or zero carbon linker can be produced between the CP and the carrier protein using a combination of CDI/CDT (1,1-mono-2-n-mial/1, !-yl-di-oxazole). Serotype 8 capsular polysaccharide was combined with CRM... by PDPH binding chemistry. The PDPH binding chemistry is a multi-step process that involves activating the polysaccharide, removing the thiol protecting group, purifying the activated polysaccharide intermediate, activating and purifying the CRM, 9? protein, and binding the activating component, followed by purification. After introducing a thiol group-containing linker into the polysaccharide and introducing a haloacetic acid group into the CRMl97 protein carrier, the S. aureus serotype 8 capsular polysaccharide is linked to the protein carrier via a thioether bond. The bromoethenyl group is introduced into the CRM 9-9 protein by the reaction of an amine group with N-hydroxybutylidene bromoacetate. In order to produce a thiolated polysaccharide, the carbodiimide-activated formate group of N-ethyl decylamino mannitol in the polysaccharide is coupled to a thiol reactive doped difunctional linker 3-(2- Amidino group of pyridyldithio)-propionyl (PDPH). The thiol of the PDPH thiolated polysaccharide purified by dtt reduction and purified by SEC on a Sephadex G25 column is reacted with the bromide group of the activated protein to form a bond between the polysaccharide and the carrier protein by bromine displacement. Covalent thioether bond. The unreacted bromoethane group is "capped" with cysteamine hydrochloride (2-aminoethyl thiolate). The reaction mixture was then concentrated and diafiltered. The remaining unbound bromoacetyl group is capped with cysteamine hydrochloride to ensure that no reactive oxime groups are present after binding. Thus, after bromine displacement, a covalent bond is formed between the thiol end of the cysteamine and the acetamidine group on the lysine residue. 1 - Thiolization of S. aureus serotype 8 capsular polysaccharide with PDPH: 149159.doc • 72· 201110977 The polysaccharide was first activated by thiolation of PDPH. The polysaccharide was mixed with freshly prepared PDPH stock solution (250 mg/mL in DMSO), EDAC stock solution (90 mg/mL in red distilled water) and MES buffer stock solution (0.5 Μ, pH 4.85). The final solution contained 0.1 M MES, and 2 and 4 mg/mL polysaccharide, while the serotype 8 capsular polysaccharide maintained a 1:0.6:1.25 polysaccharide:PDPH:EDAC weight ratio. Incubation was carried out for 1 hour at room temperature, followed by dialysis 4 times with respect to 1000 volumes of distilled water at 4 ° C to 8 ° C using a 3500 MWCO dialysis apparatus to remove unreacted PDPH. The PDPH-linked polysaccharide was produced with 0.2 Μ DTT and incubated for 3 hours at room temperature or overnight at 4 °C to 8 °C. Sephadex G25 resin and distilled water were used as the mobile phase, and excess DTT and reaction by-products were separated from the activated sugar by SEC. The thiol group of the dissolved fraction was analyzed by DTDP analysis, and the thiol-positive dissolved fraction dissolved in the vicinity of the void volume of the column was collected. The pooled fractions were analyzed by PAHBAH and 0-acetamidine analysis to determine the degree of activation, expressed as the percentage of moles of thiol-containing repeat units (molar concentration of thiol / molar concentration of repeating unit) ). The activated polysaccharide was lyophilized and stored at -25 °C until binding was required. The results of thiolation of the serotype 8 polysaccharide by PDPH are shown in Table 4. The serotype 8 polysaccharide has an activation degree in the range of 12% to 16%, corresponding to about 1 ligating molecule per 10 capsular polysaccharide repeating units to 1 linking molecule per 5 repeating units. 149159.doc -73- 201110977 Table 4: Activation of serotype 8 capsular polysaccharide by PDPH-reproducibility study serotype 8 polysaccharide-PDPH activation (% Msh/Mru) scale mg yield mg (〇/〇,w /w) 1 14 36 30(83) 2 16 30 27 (91) 4 16 38 42(110) 5 12 40 44(110) 2. Vector protein activation: The carrier protein is activated independently by bromination. CRM, 97 was diluted to 5 mg/mL with 10 mM phosphate buffered 0.9% NaCl (pH 7) (PBS), followed by a pH of 7.0 using a 1 Μ stock solution with 0.1 Μ NaHC03. N-hydroxybutylimine bromoacetate (BAANS) was added at a CRM197:BAANS ratio of 1:0.25 (w:w) using a BAANS stock solution of 20 mg/mL DMSO. The reaction mixture was incubated at 4 ° C to 8 ° C for 1 hour and then purified on Sephadex G-25 using SEC. Purified activated CRMm was analyzed by Lori analysis to determine protein concentration, followed by dilution to 5 mg/mL with PBS. Sucrose was added as a cryoprotectant up to 5% wt/vol, and the cold-beam activated protein was stored at -25 °C until binding was required. The bromoacetylation of CRM197 from the amino acid residue is extremely consistent, thereby activating 19 to 25 of the 39 amide acids available (see Table 5). This reaction produces activated proteins in high yield. 149159.doc -74- 201110977 Table 5: Yield and extent of CRM197 bromoacetylation Formulation 1 2 3 4 5 6 Scale Yield

23 38 35 35 35 48 85 87 77 94 87 104 經活化之離胺酸(n=) 24 20 19 22 23 25 3 ·偶合反應:活化莢膜多酿及活化載體蛋白質製備後, 即使一者在結合反應中化合。將來乾且硫醇化之多聽溶解 於0.16 Μ硼酸鹽(pH 8.95)中,與解凍之溴乙醯化CRMi97及 蒸餾水混合,以使得最終溶液含有0 1 Μ硼酸鹽、1:丨重量 比之CRMm :多醣及1 mg/mL多醣。在室溫下培育16小時 至24小時。藉由使用溶解於〇1 M硼酸鹽(pH 8 95)中之 mg/mL半胱胺儲備溶液,以1:2(wt/wt)之CRM〗97 :半胱胺 比率添加半胱胺鹽酸鹽來使蛋白質上未反應之溴乙醯基封 端,並在室溫下培育4小時。使用1〇〇κ聚醚砜超濾器、藉 由相對於0_9% NaCl進行5〇倍透析過濾來純化莢膜多醣 ^^^⑴結合物^结合物)。 藉由PDPH再現血清型8眾胺玄电 一 主A媒多醣硫私化之研究結果顯 示’多醣之活化度在12%至i 6%銘囹允 孤成 — 王1 〇 /〇乾圍内,對應於每丨〇個多 醣重複單元連接約1個連接分早5盔 疋丧刀千至母5個重複單元連接1個 連接分子。 藉由CDI/CDT結合化學法使血 合0 清型8莢膜多醣與Crm197結 149159.doc -75- 201110977 CDI及CDT提供一步結合法,其中多醣在無水環境 (DMSO)中活化,形成具有可用羥基之咪唑或三唑胺基曱 酸酯部分及具有羧酸之醯基咪唑或醯基三唑部分。添加蛋 白質載體(含於DMSO中)引起離胺酸親核置換咪唑或三唑 及形成胺基甲酸酯鍵(針對活性羥基)及醯胺鍵(針對活性羧 酸)。 CDI與CDT結合化學法均產生共價連接至載體蛋白質的 血清型8莢膜多醣,此係依據以下指示:尺寸排阻層析之 溶離份中醣及蛋白質之存在,及對經乙醇醛封端或經半胱 胺鹽酸鹽封端之結合物的胺基酸分析。 製備莢膜血清型8多醣分子大小處於20 kDa至40 kDa範 圍内之多批結合物(藉由PDPH與CDI/CDT化學法製備)之結 果總結顯示於下表6中。此兩種結合方法所產生之結合物 之游離莢膜多醣、多_ -蛋白質比率及產率無顯著差異。 所結合之血清型8莢膜多醣的抗原性不會因結合而改變, 如結合物與天然多醣之間的一致沈殿素線(identity precipitin line)戶斤示。 表6:表徵藉由兩種結合化學法所製備之血清型8莢膜多 醣 crm197 分子大小(MW或 CP產率 蛋白質 游離糖 游離蛋 經修飾之 化學法 輸出比率 Kd(%&lt;0.3),多糖/蛋 (%) 產率(%) (%) 白質(%) 離胺酸 白質) CDI/CDT 46-62 54-55 0.8-0.9 22-25 &lt; 1 7-8 34/57至 60/57 PDPH 34-70 61-83 0.6-0.9 15-41 ND 11-16 74-92% 149159.doc -76- 201110977 如上文所示,本文所述之方法可用於產生具有特定所要 高分子量範圍之莢膜多醣。設法自具有預選定高分子量範 圍的可經過濾及純化之血清型8莢膜多醣製備結合物以供 用於免疫原性組合物中。表7匯總血清型8莢膜多醣結合物 之分析,其中血清型8莢膜多醣之分子量在約80 kDa至120 kDa範圍内,且利用咪唑結合化學法。所得結合物之分子 量在595 kDa至1708 kDa範圍内。每個CRM197中之結合離 胺酸數目在高值9至低值3範圍内。游離莢膜多醣在高值 6%至低值2%範圍内。 表7:具有預選定分子量範圍之血清型8莢膜多醣之結合物 試驗 多醣 MW(kDa) 產率(%) 游離醣(%) MW,藉由 SEC-MALLS(kDa) 經修飾之離胺酸 1 99 88 6 943 4 2 113 73 5 841 3 3 105 79 3 719 7 4 100 86 2 630 9 5 87 90 3 595 6 兩種結合化學法均產生共價連接至載體蛋白質之血清型 8莢膜多醣。游離莢膜多醣、血清型8莢膜多醣:蛋白質比 率及藉由此兩種方法所產生之結合物之產率不存在顯著差 異。 實例3: —步法(〇1^卩〇〇相較於複雜€01/€01'法 如上文所述,用於製造本發明之免疫原性結合物的方法 包括使用結合化學法使莢膜多醣與載體蛋白質共價結合, 結合化學法包括CDI(1,1-羰基二咪唑)、CDT(1,1-羰基-二- 149159.doc •ΊΊ · 201110977 1’2’4-二〇幻或?1)1&gt;11(3_(2_0比咬基二硫基)_丙酿耕)。使用 CDI/CDT在英膜多醣與載體蛋白f之間產生單碳或零碳連 接子,而使用PDPH在莢膜多醣與載體蛋白質之間產生共 價硫醚鍵。 基於PDPH之方法為—種多步驟方法,包括活化多酷、 移除多酶上之硫醇保護基、純化活化之多醣中間物、活化 並純化蛋白質載體,及使活化組分結合,#著純化。在此 方法中,金黃色葡萄球菌血清型8莢膜多醣與pDpH及碳化 二亞胺在諸如0.1 M MES之水溶液中反應,產生PDPH連接 之多醣。PDPH連接之多醣與還原劑反應,產生活化之多 醣,接著純化。載體蛋白質在水溶液中與溴乙酸N_羥基丁 二醯亞胺酯反應,產生活化之載體蛋白質,接著純化。純 化之活化血清型8多醣接著與純化之活化載體蛋白質反 應’產生血清型8多醣:載體蛋白質結合物。 相比之下’基於CDI及CDT之方法為一步或兩步結合方 法’其中莢膜多醣在無水環境(亦即,DMSO)中活化,形 成具有可用羥基之咪唑或三唑胺基曱酸酯部分及具有缓酸 之醯基咪唑或醯基三唑部分。添加蛋白質載體(含於DMS〇 中)引起離胺酸親核置換咪唑或三唑及形成胺基曱酸酯鍵 (針對活性羥基)及醯胺鍵(針對活性羧酸)。因此,開發出 兩種基於CDI或CDT之方法:較複雜之方法及較簡單之一 步法。在較複雜之方法十,金黃色葡萄球菌血清型8莢膜 多醣與咪唑或三唑化合,凍乾,接著與CDI或CDT在有機 溶劑(諸如DMSO)中反應,產生活化之血清型8多酿。純化 149159.doc •78· 201110977 活化之血清型8多醣,接著與載體蛋白質在有機溶劑中反 應,產生血清型8多糖-載體蛋白質結合物。一步法與複雜 方法相似,例外之處在於活化之血清型8多醣在與載體蛋 白質反應前未經純化。 CDI/CDT複雜法 活化多醣:血清型8多醣與10公克三唑/公克血清型8混 合,並;東乾。所得餅塊以2.0毫克血清型8多醣/毫升溶解於 DMSO中。測定水含量。添加新製備之CDT儲備溶液(100 mg/mL,含於DMSO中)直至達成CDT之莫耳量與水相等。 或者,可調節CDT的添加量以達成較高或較低活化度。在 23°C下保持30分鐘。 純化活化之血清型8多醣:將經活化之血清型8(ACP8)之 溶液傾入25體積水中以除去過量CDT。在10 kDa PES薄膜 上以約1 mg/cm2濃縮至其原始體積,且相對於至少10體積 之水透析過濾。此步驟在小於4小時内完成。經透析過濾 之物質與10公克三唑/公克原始血清型8多醣混合且凍乾。 製備凍乾之CRM : CRM在10 kDa PES薄膜上以恆定體積 相對於至少10體積之0·4% NaCl/5%蔗糖透析過濾。測定蛋 白質濃度,且添加足夠的透析過濾缓衝液以使蛋白質濃度 達到5.0 g/L,從而獲得NaCl/CRM之重量比=0.8。凍乾 CRM。 結合:經活化、透析過濾之血清型8多醣以1 mg/mL溶解 於DMSO中。添加100 mM硼酸鹽溶液直至達到2% v/v。 CRM以2 mg/mL再懸浮,且當完全溶解時,與ACP8溶液 149159.doc •79- 201110977 合併。允許在23°C下反應20小時。 將結合物反應液傾入24體積5 mM硼酸鹽(pH 9.0)中且在 室溫下攪拌1小時。接著用0.5 Μ磷酸鹽緩衝液(pH 6.5)調 節至pH 7.5。經由5微米過濾器過濾,且在300 kDa PES薄 膜上以約1 mg/cm2之負荷濃縮至原始體積,並相對於至少 10體積之水透析過濾。所得濃縮物經由0.22微米過濾器過 濾,並在2°C至8°C下儲存。 CDI/CDT—步法 CRM丨97基質交換:透析過濾CRM197以使約10 mM填酸 鹽/80 mM NaCl/Ι5%蔗糖之整體基質(pH 7)交換成5 mM味 0坐/0·72% NaCl/15 m Μ辛基-β - D -糖普(pH 7)。交換可移除 不利於結合且會限定運送至結合中之氣化鈉含量的磷酸鹽 及蔗糖。添加辛基-β-D-葡萄哌喃糖苷,防止在無菌過濾 後形成粒子。 藉由切向流動式過渡、相對於5 mMe米《坐/〇.72%/15 mM 辛基-Β-D-葡萄哌喃糖苷(PH 7)進行CRM197基質之交換(使 用1 OK MWCO PES薄膜,滞留濃度為約4 mg/mL,經由1 〇 個透析過濾體積倍數)。典型薄膜限量(membrane challenge)為2 g/ft2 ’且基質中之最終目標Crm197濃度為6 mg/mL。CRMi97在 2°C 至 8°C 下儲存。 活化/結合·金黃色葡萄球菌血清型8英膜多醋之活化/結 合法由以下步驟組成:1) CRM丨97之基質交換;2)使多醣化 合;3)殼式冷來及凍乾CRMw及化合之多醣;4)溶解;東乾 之多聽及CRM〗” ;5)活化多醣;6)使活化之多醣與CRm197 149159.doc -80- 201110977 結合;及7)純化結合物(稀釋、透析過濾、無菌過濾)。 多醣與10公克1,2,4-三唑賦形劑/公克多醣化合。賦形劑 以粉末形式添加至多醣中,在環境溫度下混合小於1 5分鐘 後獲得溶液。 化合之多醣及CRM197分別使用-75°C乙醇浴液進行殼式 冷凍。每1 L瓶子之體積為約500 mL。 為了溶解多醣,向含有多醣之個別凍乾瓶中添加 DMSO,獲得懸浮液,接著轉移至活化/結合反應容器中以 便加熱。添加DMSO直至獲得2 g/L之濃度。當懸浮液在混 合下達到約45°C時,獲得澄清溶液。接著將溶液冷卻至 23〇C±2〇C。 為了溶解crm197,向含有CRM197之個別凍乾瓶中添加 DMSO,獲得懸浮液,接著轉移至第二容器中供混合。添 加DMSO直至獲得2 g/L之濃度。通常在小於15分鐘内獲得 澄清溶液。 對多醣/DMSO溶液取樣供卡-費分析(Karl Fischer analysis),以測定水分含量。CDT於DMSO中製備成100 mg/mL溶液,且基於所測定之水分含量添加。在23°C士 2°C 下,在混合下連續添加CDT溶液約5分鐘。反應在23°C±2°C 下進行最少30分鐘。對反應物取樣以測定活化度(UV 220/205 nm) ’接著添加100 mM硼酸鈉(pH 9)以獲得1.5% 水溶液。接著,在23°C±2°C下攪拌反應溶液最少30分鐘。 為了使活化之多醣與CRM197結合,添加DMSO以獲得0.8 mg/mL反應濃度。溶解於DMSO中之CRM197接著在混合下 149159.doc -81- 201110977 添加至活化之多醣溶液中。反應物在23。(:±2。(:下攪拌最少 4小時。 在混合下,反應溶液藉由添加至5 mM四硼酸鈉(pH 9)中 稀釋H)倍,以轉殘餘活性㈣。㈣之溶液通過5㈣過 渡器並濃縮至2 g/L之目標滞留濃度。使用則〖再生纖維 素膜、經由20個透析過濾體積倍數、對5應丁二酸鹽(pH 7)進行切向流動式過濾。典型膜負荷為】g/ft2。純化之結 合物通過0.22微米過濾器’並在2〇c至81下儲存。 實例4:使用一步法及複雜結合方法使血清型8莢膜多醣 結合 此實例顯示,在一步法或複雜法中可使用具有預選定分 子量範圍之魏多㈣於結合。首先由細“胞產生較大 多醣,且純化之所得分子量範圍可藉由實例丨之水解過程 的pH值及加熱來控制(如表3中所示)。 在此實例中,選擇血清型8莢膜多醣之分子量在約8〇 kDa至約kDa範圍内的8批料,且使用活化(對於血清型 8笑膜多釀使用1,1-幾基-二-(1,2,4-三唑進行結合。參看 表8。所得結合物之分子量在595让〇&amp;至17〇8 kDa.圍内。 每個CRM中之結合離胺酸數目在高值13至低值3範圍内。 游離糠在高值11%至低值1%範圍内。 149159.doc •82· 201110977 表8:用80 kDa至120 kDa莢膜多醣製備之血清型8莢膜多 醣結合物 方法 試驗 多醣 MW(kDa) 醣產率 (%) 游離糖 (%) MW,藉由SEC-MALLS(kDa) 離胺酸 一步法 1 98 86 1 751 11 2 89 80 1 675 13 3 108 76 4 1073 5.0 4 108 69 4 819 5.2 5 89 85.1 8 1708 10 6 100 94.0 11 1577 5 複雜方法 1 99 88 6 943 4 2 113 73 5 841 3 3 105 79 3 719 7 4 100 86 2 630 9 5 87 90 3 595 6 實例5:評估鼠類菌血症模型中所結合之原生血清型8莢膜 多醣及經鹼處理之jk清型8莢膜多醣 評估結合之前原生血清型8莢膜多醣上存在之用於誘導 功能性抗體反應之0-乙醯基對於莢膜多醣結合物的重要 性。血清型8莢膜多醣在弱鹼性條件下脫除〇-乙醯基,且 NMR與離子層析(1C)均證實jk清型8英膜多醣de-0-Ac-CRM中不存在0-乙醯化。藉由PDPH化學法使de-O-Ac CP8 多醣與CRM結合來製備CP8 de-O-Ac-CRM結合物,如實例 2中所述。 血清型8莢膜多醣結合物意外地顯示,藉由1C法未量測 到乙醯基。此可歸因於結構、〇-乙醯化位點與其他金黃色 葡萄球菌莢膜多醣不同,從而又可在結合期間移除或修飾 149159.doc -83- 201110977 血清型8莢膜多醣中之乙醯基。 鼠類菌血症模型用於評估原生血清型8莢膜多醣相較於 經鹼處理之血清型8莢膜多醣與CRM197結合之效力。各組 雌性BALB/c小鼠(15隻/組)在第0、3及6週接種1 meg血清 型8莢膜多醣de-0-Ac-CRM或1 pg血清型8莢膜多醣O-Ac-CRM。疫苗係以22 meg AlP〇4調配。用金黃色葡萄球菌 PFESA0003攻毒動物,且在3小時後對血液中之細菌進行 計數。資料顯示,以未處理原生血清型8莢膜多醣結合物 免疫之動物血液中之復原細菌efu在統計上顯著(ρ=0·0362) 減少,如學生t檢驗所測定(表9)。在以經鹼處理之血清型8 莢膜多醣結合物免疫之動物中,血液中之復原細菌efu與 生理食鹽水對照組相似。 表9:血清型8莢膜多醣-CRM197結合物使小鼠中由金黃色 葡萄球菌PFESA0003所致之菌血症減輕 抗原 菌株/劑量 LogCFU/血液 (P值) 生理食鹽水 4.35 PFESA0003 CP8 de-0-Ac-CRM „ 4.45 1.14x10s CP8 O-Ac-CRM 3.93 0.03 實例6:評估鼠類菌血症模型中所結合之原生血清型8莢膜 多醣及經鹼處理之血清型8莢膜多醣 評估血清型8莢膜多醣結合物在腎盂腎炎模型中保護小 鼠的能力。與以PBS免疫之對照組相比,腹膜内接受金黃 色葡萄球菌攻毒之小鼠血液中之細菌計數顯著降低。 進行兩項研究,在用金黃色葡萄球菌PFESA0268(8型)攻 I49159.doc -84- 201110977 毒後,評估CP8-CRM〗97結合物在上述鼠類菌血症模型中的 效力第項研究(圖5)顯示菌血症顯著減輕(p=〇 0308)。 為進行研究,藉由在第0、2及4週皮下注射均以丨〇〇叩 aip〇4調配之1 血清型8莢膜多醣-CRMl97與生理食鹽水 對各組6至8週齡瑞士韋伯斯特小鼠(Swiss Webstei&gt;以^) (η-3 0)進行主動免疫,且在第6週藉由靜脈内途徑用金黃 色葡萄球菌PFESA026 8(8型)攻毒。攻毒前實驗係在小鼠於 二次接種後達到之年齡進行以便優化攻毒菌株之劑量。藉 由Kaplan-Meier分析對存活率研究進行統計學評估。 實例7 .以原生及經化學修飾之血清型8莢膜多醣結合物免 疫之小鼠之血清的調理活性 使用PFESA0005菌株,自免疫接種研究選擇血清型8莢 膜多醣效價高之小鼠血清(n=5)比較調理活性β 〇pA結果 (表10)顯示,僅藉由結合原生灰清型8莢膜多醣所製備之結 合物在小鼠中產生調理性抗體。值得注意的是,de_〇Aci 清型8莢膜多餹結合物在小鼠中具免疫原性,但在此分析 中所產生之抗體不具調理性。OPA效價報導為在觀測到 40%殺死率時之稀釋度的倒數。 149159.doc -85· 201110977 表10:以原生血清型8莢膜多醣免疫之小鼠血清相較於以 de-O-Ac血清型8莢膜多醣-CRM免疫之小鼠血清的調理活 性23 38 35 35 35 48 85 87 77 94 87 104 Activated lysine (n=) 24 20 19 22 23 25 3 · Coupling reaction: Activated capsules and activated carrier proteins are prepared, even if one is combined Compound in the reaction. In the future, dry and thiolated, dissolved in 0.16 lanthanum borate (pH 8.95), mixed with thawed bromoacetylated CRMi97 and distilled water, so that the final solution contains 0 1 Μ borate, 1: 丨 weight ratio of CRMm : Polysaccharide and 1 mg/mL polysaccharide. Incubate at room temperature for 16 hours to 24 hours. Cysteine hydrochloride was added at a CRM of 97: cysteamine ratio of 1:2 (wt/wt) by using a mg/mL cysteamine stock solution dissolved in 〇1 M borate (pH 8 95). Salt was used to cap the unreacted ethidium bromide on the protein and incubated for 4 hours at room temperature. The capsular polysaccharide ^^^(1) conjugate conjugate was purified by 5 〇 diafiltration with respect to 0-9% NaCl using a 1 〇〇 κ polyether sulfone ultrafilter. The results of the research on the privatization of serotype 8 serotonin-main A-serum polysaccharide sulphur by PDPH showed that the activation degree of 'polysaccharide' was 12% to i 6%, Ming Yun Yun Gucheng - Wang 1 〇/〇干围, Corresponding to each of the polysaccharide repeating units, about 1 link is connected, and the first 5 molecules are connected to one repeating unit to connect one connecting molecule. The CDI/CDT binding chemistry method provides a one-step binding method for the C. capsular polysaccharide and the Crm197 junction 149159.doc -75- 201110977 CDI and CDT, wherein the polysaccharide is activated in an anhydrous environment (DMSO) to form a hydroxyl group with an available hydroxyl group. An imidazole or triazolyl phthalate moiety and a mercapto imidazole or decyl triazole moiety having a carboxylic acid. The addition of a protein carrier (contained in DMSO) causes nucleophilic displacement of the imidazole or triazole from the amine acid and formation of a urethane linkage (for the reactive hydroxyl group) and a guanamine linkage (for the active carboxylic acid). Both CDI and CDT binding chemistries produce serotype 8 capsular polysaccharide covalently linked to the carrier protein, according to the following instructions: the presence of sugars and proteins in the fractions of size exclusion chromatography, and the termination of glycolaldehyde Or amino acid analysis of a cysteamine hydrochloride-terminated conjugate. A summary of the results for preparing a plurality of batches of conjugates of capsular serotype 8 polysaccharides ranging from 20 kDa to 40 kDa (prepared by PDPH and CDI/CDT chemistry) is shown in Table 6 below. There was no significant difference in free capsular polysaccharide, poly-protein ratio and yield of the conjugates produced by the two binding methods. The antigenicity of the combined serotype 8 capsular polysaccharide is not altered by binding, as indicated by the identity precipitin line between the conjugate and the natural polysaccharide. Table 6: Characterization of the serotype 8 capsular polysaccharide crm197 molecular size prepared by two binding chemistry methods (MW or CP yield, chemical free sugar free egg modified chemical export ratio Kd (% &lt; 0.3), polysaccharide / Egg (%) Yield (%) (%) White matter (%) Offic acid white matter) CDI/CDT 46-62 54-55 0.8-0.9 22-25 &lt; 1 7-8 34/57 to 60/57 PDPH 34-70 61-83 0.6-0.9 15-41 ND 11-16 74-92% 149159.doc -76- 201110977 As indicated above, the methods described herein can be used to produce capsules with specific high molecular weight ranges Polysaccharide. A conjugate is prepared from a serotype 8 capsular polysaccharide having a pre-selected high molecular weight range that can be filtered and purified for use in an immunogenic composition. Table 7 summarizes the analysis of serotype 8 capsular polysaccharide conjugates wherein the serotype 8 capsular polysaccharide has a molecular weight in the range of from about 80 kDa to 120 kDa and utilizes imidazole binding chemistry. The molecular weight of the resulting conjugate is in the range of 595 kDa to 1708 kDa. The number of bound deaminic acids in each CRM197 ranged from a high value of 9 to a low value of 3. The free capsular polysaccharide ranges from a high value of 6% to a low value of 2%. Table 7: Conjugates of serotype 8 capsular polysaccharides with pre-selected molecular weight ranges. Test polysaccharide MW (kDa) yield (%) free sugar (%) MW, modified lysine by SEC-MALLS (kDa) 1 99 88 6 943 4 2 113 73 5 841 3 3 105 79 3 719 7 4 100 86 2 630 9 5 87 90 3 595 6 Both binding chemistries produce serotype 8 capsular polysaccharide covalently linked to the carrier protein . There was no significant difference in free capsular polysaccharide, serotype 8 capsular polysaccharide: protein ratio and the yield of the conjugate produced by the two methods. Example 3: - Step method (〇1^卩〇〇 compared to the complex €01/€01' method as described above, the method for making the immunogenic conjugate of the invention comprises using a binding chemistry method to make the capsule The polysaccharide is covalently bound to the carrier protein, and the binding chemistry includes CDI (1,1-carbonyldiimidazole), CDT (1,1-carbonyl-di-149159.doc •ΊΊ · 201110977 1'2'4-diode or 1) 1 &gt; 11 (3_(2_0 than dimethyldithio) _ propylene). Using CDI/CDT to produce a single carbon or zero carbon linker between the membrane polysaccharide and the carrier protein f, while using PDPH A covalent thioether bond is produced between the capsular polysaccharide and the carrier protein. The PDPH-based method is a multi-step method, including activation, removal of the thiol protecting group on the multi-enzyme, purification of the activated polysaccharide intermediate, activation And purifying the protein carrier, and binding the activating component, in which the S. aureus serotype 8 capsular polysaccharide is reacted with pDpH and carbodiimide in an aqueous solution such as 0.1 M MES to produce PDPH. a linked polysaccharide. The PDPH-linked polysaccharide reacts with a reducing agent to produce an activated polysaccharide. Purification. The carrier protein is reacted with N-hydroxybutyrimidine bromoacetate in aqueous solution to produce an activated carrier protein, which is then purified. The purified activated serotype 8 polysaccharide is then reacted with the purified activated carrier protein to produce serotype 8 Polysaccharide: carrier protein conjugate. In contrast, 'CDI-based and CDT-based methods are one-step or two-step binding methods' in which the capsular polysaccharide is activated in an anhydrous environment (ie, DMSO) to form an imidazole or three with available hydroxyl groups. An oxazolidine phthalate moiety and a mercapto imidazole or decyl triazole moiety having a slow acid. Addition of a protein carrier (containing in DMS oxime) causes nucleophilic displacement of the imidazole or triazole with an amine acid and formation of an amine phthalate Keys (for active hydroxyl groups) and guanamine bonds (for active carboxylic acids). Therefore, two methods based on CDI or CDT have been developed: a more complicated method and a simpler one-step method. In the more complicated method ten, golden yellow Staphylococcal serotype 8 capsular polysaccharide is combined with imidazole or triazole, lyophilized, and then reacted with CDI or CDT in an organic solvent such as DMSO to produce an activated serotype 8 148159.doc •78· 201110977 Activated serotype 8 polysaccharide, followed by reaction with carrier protein in an organic solvent to produce serotype 8 polysaccharide-carrier protein conjugate. One-step method is similar to complex method except for activated serum Type 8 polysaccharide was not purified before reaction with carrier protein. CDI/CDT complex method activated polysaccharide: serotype 8 polysaccharide mixed with 10 g triazole/g serotype 8 and; Donggan. The obtained cake was 2.0 mg serotype. 8 polysaccharide/ml was dissolved in DMSO. The water content was determined. A freshly prepared CDT stock solution (100 mg/mL in DMSO) was added until the molar amount of CDT was equal to water. Alternatively, the amount of CDT added can be adjusted to achieve a higher or lower degree of activation. Hold at 23 ° C for 30 minutes. Purification of activated serotype 8 polysaccharide: A solution of activated serotype 8 (ACP8) was poured into 25 volumes of water to remove excess CDT. It was concentrated to about its original volume on a 10 kDa PES film at about 1 mg/cm2 and diafiltered against at least 10 volumes of water. This step is completed in less than 4 hours. The diafiltered material was mixed with 10 g of triazole/g raw serotype 8 polysaccharide and lyophilized. Preparation of lyophilized CRM: CRM was dialyzed against a 10 kDa PES membrane in a constant volume relative to at least 10 volumes of 0.4% NaCl/5% sucrose. The protein concentration was measured, and sufficient diafiltration buffer was added to bring the protein concentration to 5.0 g/L, thereby obtaining a NaCl/CRM weight ratio = 0.8. Freeze dry CRM. Binding: The activated, diafiltered serotype 8 polysaccharide was dissolved in DMSO at 1 mg/mL. Add 100 mM borate solution until 2% v/v is reached. The CRM was resuspended at 2 mg/mL and, when completely dissolved, was combined with the ACP8 solution 149159.doc •79-201110977. Allow to react at 23 ° C for 20 hours. The conjugate reaction solution was poured into 24 volumes of 5 mM borate (pH 9.0) and stirred at room temperature for 1 hour. It was then adjusted to pH 7.5 with 0.5 Μ phosphate buffer (pH 6.5). It was filtered through a 5 micron filter and concentrated to the original volume on a 300 kDa PES film at a load of about 1 mg/cm2 and diafiltered against at least 10 volumes of water. The resulting concentrate was filtered through a 0.22 micron filter and stored at 2 °C to 8 °C. CDI/CDT-step method CRM丨97 matrix exchange: diafiltration CRM197 to exchange about 10 mM acidate / 80 mM NaCl / 5% sucrose whole matrix (pH 7) into 5 mM flavor 0 sit / 0 · 72% NaCl/15 m octyl-β-D-saccharide (pH 7). Exchange can remove phosphate and sucrose that are not conducive to bonding and will limit the amount of vaporized sodium delivered to the bond. The octyl-?-D-glucopyranoside is added to prevent the formation of particles after sterile filtration. Exchange of CRM197 matrix by tangential flow transition with respect to 5 mMem sit/〇.72%/15 mM octyl-Β-D-glucopyranoside (pH 7) (using 1 OK MWCO PES film The retention concentration is about 4 mg/mL, filtered by 1 diafiltration volume multiple). The typical membrane challenge is 2 g/ft2' and the final target Crm197 concentration in the matrix is 6 mg/mL. CRMi97 is stored at 2 ° C to 8 ° C. Activation/Binding·Staphylococcus aureus serotype 8 membrane vinegar activation/binding method consists of the following steps: 1) matrix exchange of CRM丨97; 2) combination of polysaccharides; 3) shell cold and freeze-dried CRMw And compounded polysaccharides; 4) solubilization; Dongganzhiduo and CRM〗; 5) activated polysaccharides; 6) activated polysaccharides combined with CRm197 149159.doc -80- 201110977; and 7) purified conjugates (dilution, Dialysis filtration, sterile filtration) Polysaccharide is combined with 10 g of 1,2,4-triazole excipient/g of polysaccharide. The excipient is added to the polysaccharide in powder form, and the solution is obtained after mixing at ambient temperature for less than 15 minutes. The combined polysaccharide and CRM197 were shell-frozen using a -75 ° C ethanol bath, respectively, and the volume per 1 L of the bottle was about 500 mL. In order to dissolve the polysaccharide, DMSO was added to the individual freeze-dried bottle containing the polysaccharide to obtain a suspension. Then transferred to an activation/binding reaction vessel for heating. DMSO was added until a concentration of 2 g/L was obtained. A clear solution was obtained when the suspension reached about 45 ° C under mixing. The solution was then cooled to 23 ° C ± 2〇C. In order to dissolve crm197, to contain CRM197 DMSO was added to individual lyophilized vials to obtain a suspension, which was then transferred to a second vessel for mixing. DMSO was added until a concentration of 2 g/L was obtained. A clear solution was usually obtained in less than 15 minutes. Sampling the polysaccharide/DMSO solution Karl Fischer analysis to determine the moisture content. CDT was prepared in 100 mg/mL solution in DMSO and added based on the measured moisture content. At 23 ° C ± 2 ° C, under mixing The CDT solution was added continuously for about 5 minutes. The reaction was carried out at 23 ° C ± 2 ° C for a minimum of 30 minutes. The reactants were sampled to determine the degree of activation (UV 220 / 205 nm) 'Next 100 mM sodium borate (pH 9) was added A 1.5% aqueous solution was obtained. Then, the reaction solution was stirred at 23 ° C ± 2 ° C for a minimum of 30 minutes. In order to bind the activated polysaccharide to CRM197, DMSO was added to obtain a reaction concentration of 0.8 mg / mL. CRM197 dissolved in DMSO was followed by Add 149159.doc -81- 201110977 to the activated polysaccharide solution under mixing. The reactants are at 23 (: ± 2) (: stirring for a minimum of 4 hours. Under mixing, the reaction solution is added to 5 mM tetraboric acid by mixing Dilute H) times in sodium (pH 9) Activity (4). The solution of (4) is passed through a 5 (four) transition device and concentrated to a target retention concentration of 2 g/L. For use, the regenerated cellulose membrane is filtered through a volume of 20 diafiltration filters to 5 succinate (pH 7). Tangential flow filtration. Typical membrane loading was g/ft2. The purified conjugate was passed through a 0.22 micron filter' and stored at 2 〇c to 81. Example 4: Binding of serotype 8 capsular polysaccharide using a one-step method and a complex binding method This example shows that Weidu (4) with a preselected molecular weight range can be used for binding in a one-step or complex method. First, a larger polysaccharide is produced from the fine cells, and the molecular weight range obtained by purification can be controlled by the pH of the hydrolysis process of the example and heating (as shown in Table 3). In this example, the serotype 8 pods are selected. 8 batches of membrane polysaccharides with molecular weights ranging from about 8 〇kDa to about kDa, and using activation (for serotype 8 laughter, 1,1-Mec-di-(1,2,4-triazole) The binding is carried out. See Table 8. The molecular weight of the resulting conjugate is in the range of 595 〇 &amp; to 17 〇 8 kDa. The number of bound lysines in each CRM is in the range of high 13 to low 3. Between the high value of 11% and the low value of 1%. 149159.doc •82· 201110977 Table 8: Serotype 8 capsular polysaccharide conjugate method prepared with 80 kDa to 120 kDa capsular polysaccharide Method for the determination of polysaccharide MW(kDa) sugar Yield (%) free sugar (%) MW, one step by SEC-MALLS (kDa) lysine 1 98 86 1 751 11 2 89 80 1 675 13 3 108 76 4 1073 5.0 4 108 69 4 819 5.2 5 89 85.1 8 1708 10 6 100 94.0 11 1577 5 Complex method 1 99 88 6 943 4 2 113 73 5 841 3 3 105 79 3 719 7 4 100 86 2 630 9 5 87 90 3 595 6 Example 5: Evaluation of the primary serotype 8 capsular polysaccharide combined with the alkali treated jk clear type 8 capsular polysaccharide in a murine bacteremia model. Evaluation of the presence of pre-existing serotype 8 capsular polysaccharide for induction function The importance of the 0-acetyl group of the serotonin response to the capsular polysaccharide conjugate. The serotype 8 capsular polysaccharide was removed under weak alkaline conditions, and both NMR and ion chromatography (1C) confirmed There is no 0-acetamidine in jk clear type 8 film polysaccharide de-0-Ac-CRM. The combination of de-O-Ac CP8 polysaccharide and CRM by PDPH chemistry to prepare CP8 de-O-Ac-CRM The substance, as described in Example 2. The serotype 8 capsular polysaccharide conjugate unexpectedly showed that the ethyl thiol group was not detected by the 1C method. This can be attributed to the structure, the oxime-acetylation site and other gold. The S. aureus capsular polysaccharide is different, which in turn can remove or modify the acetamyl group in the serotype 8 capsular polysaccharide of 149159.doc -83- 201110977 during the binding. The murine bacteremia model is used to evaluate the native serotype 8 The effect of capsular polysaccharide on the binding of alkali-treated serotype 8 capsular polysaccharide to CRM197. Female BALB/c mice in each group (15/ ) Were seeded in the first six weeks and 0,3 1 meg serotype 8 capsular polysaccharides de-0-Ac-CRM or 1 pg serotype 8 capsular polysaccharide O-Ac-CRM. The vaccine was formulated with 22 meg AlP〇4. Animals were challenged with S. aureus PFESA0003 and bacteria in the blood were counted after 3 hours. The data showed that the reconstituted bacterial efu in the blood of the animals immunized with the untreated native serotype 8 capsular polysaccharide conjugate was statistically significant (ρ = 0362), as determined by Student's t-test (Table 9). In the animals immunized with the alkali-treated serotype 8 capsular polysaccharide conjugate, the reconstituted bacterial efu in the blood was similar to the physiological saline control group. Table 9: Serotype 8 capsular polysaccharide-CRM197 conjugate reduces bacteremia caused by S. aureus PFESA0003 in mice Antigen strain/dose LogCFU/blood (P value) Physiological saline 4.35 PFESA0003 CP8 de-0 -Ac-CRM „ 4.45 1.14x10s CP8 O-Ac-CRM 3.93 0.03 Example 6: Evaluation of primary serotype 8 capsular polysaccharide combined with alkali-treated serotype 8 capsular polysaccharide evaluation serum in a murine bacteremia model The ability of the type 8 capsular polysaccharide conjugate to protect mice in the pyelonephritis model showed a significant decrease in the bacterial count in the blood of mice infected with S. aureus in the peritoneum compared to the control group immunized with PBS. In the study, the efficacy of the CP8-CRM 97 conjugate in the above-mentioned murine bacteremia model was evaluated after S. aureus PFESA0268 (type 8) attack I49159.doc -84- 201110977 toxic (Figure 5 ) showed a significant reduction in bacteremia (p = 〇 0308). For the study, serotype 8 capsular polysaccharide-CRM97 was formulated with 丨〇〇叩aip〇4 by subcutaneous injection at weeks 0, 2, and 4. 6 to 8 weeks old Swiss Webster mice with physiological saline (Swiss Webstei&gt; actively immunized with ^) (η-3 0) and challenged with S. aureus PFESA026 8 (type 8) by intravenous route at week 6. The pre-challenge experimental line was in mice. The age reached after the second vaccination was carried out in order to optimize the dose of the challenge strain. The survival study was statistically evaluated by Kaplan-Meier analysis. Example 7. Immunization with native and chemically modified serotype 8 capsular polysaccharide conjugates The modulating activity of the serum of the mouse was determined by using the PFESA0005 strain, and the serotype 8 capsular polysaccharide high titer mouse serum (n=5) was compared from the immunization study to compare the opsonic activity β 〇pA results (Table 10). The conjugate produced by the combination of the native ash-clear type 8 capsular polysaccharide produces a modulating antibody in mice. It is worth noting that the de_〇Aci clear type 8 capsular polysaccharide conjugate is immunogenic in mice. However, the antibodies produced in this assay were not conditioned. The OPA titer was reported as the reciprocal of the dilution at the 40% kill rate observed. 149159.doc -85· 201110977 Table 10: Primary serotype 8 pods Membrane polysaccharide-immunized mouse serum compared to de-O-Ac Serotype 8 capsular polysaccharide mice immunized serum -CRM conditioning activity

De-O-Ac血清型8莢膜多醣-CRM 血清型8莢膜多醣-CRM 第0週血清OP效價 第8週血清OP效價 第0週血清OP效價 第8週血清OP效價 &lt;50 &lt;50 50 150 &lt;50 &lt;50 &lt;50 1350 &lt;50 &lt;50 &lt;50 450 &lt;50 &lt;50 &lt;50 1350 &lt;50 &lt;50 &lt;50 4050 實例8:可藉由添加原生血清型8莢膜多醣來抑制血清型8 結合物抗血清殺死金黃色葡萄球菌菌株 為了證實殺死之特異性,在原生血清型8莢膜多醣或無 關之肺炎球菌多醣(Pn 14 poly)存在下進行調理吞噬細胞性 分析,基本上如上文所述。 結果(表11)顯示,反應混合物中存在原生血清型8莢膜多 醣可抑制對金黃色葡萄球菌PFESA0286(8型)進行之調理吞 噬細胞性殺死。此等結果證實,免疫血清之調理吞噬細胞 性殺死係由莢膜特異性抗體介導。 表11:添加血清型8笑膜多糖可抑制免疫血清對金黃色葡 萄球菌進行之調理吞噬細胞性殺死 猴 血清樣品 OPA效價 WkO &lt;50 Wk8 4050 02D133 WkO + 20 pg CP8 poly &lt;50 Wk8 + 20 μβ CP8 poly &lt;50 WkO + 20 pg Pn 14 poly &lt;50 Wk8 + 20 pg Pnl4 poly 4050 149159.doc -86- 201110977De-O-Ac serotype 8 capsular polysaccharide-CRM serotype 8 capsular polysaccharide-CRM Week 0 serum OP titer Week 8 serum OP titer Week 0 serum OP titer Week 8 serum OP titer &lt ;50 &lt;50 50 150 &lt;50 &lt;50 &lt;50 1350 &lt;50 &lt;50 &lt;50 450 &lt;50 &lt;50 &lt;50 1350 &lt;50 &lt;50 &lt;50 4050 Example 8: The serotype 8 conjugate antiserum can be inhibited by the addition of native serotype 8 capsular polysaccharide to kill the S. aureus strain in order to confirm the specificity of killing, in native serotype 8 capsular polysaccharide or unrelated pneumococcal polysaccharide ( The opsonophagocytic assay was performed in the presence of Pn 14 poly), essentially as described above. The results (Table 11) show that the presence of native serotype 8 capsular polysaccharide in the reaction mixture inhibits opsonophagocytic killing of S. aureus PFESA0286 (type 8). These results confirm that the opsonophagocytic killing of immune sera is mediated by capsular specific antibodies. Table 11: Adding serotype 8 serotonin polysaccharide can inhibit the modulating of immune sera against S. aureus phagocytic killing monkey serum sample OPA titer WkO &lt;50 Wk8 4050 02D133 WkO + 20 pg CP8 poly &lt;50 Wk8 + 20 μβ CP8 poly &lt;50 WkO + 20 pg Pn 14 poly &lt;50 Wk8 + 20 pg Pnl4 poly 4050 149159.doc -86- 201110977

WkO &lt;50WkO &lt;50

Wk8 4050 A4N122 WkO + 20 μδ CP8 poly &lt;50Wk8 4050 A4N122 WkO + 20 μδ CP8 poly &lt;50

Wk8 + 20 pg CP8 poly &lt;50Wk8 + 20 pg CP8 poly &lt;50

WkO + 20 pg Pnl4 poly &lt;50 __Wk8 + 20 pg Pnl4 poly__1350 總結 所有結合化學法均產生共價連接至載體蛋白質CRM197之 血清型8莢膜多醣。游離醣、血清型8莢膜多醣:蛋白質比 率及藉由此等方法所產生之結合物的產率不存在顯著差 異。 實例9:製備金黃色葡萄球菌血清型5莢膜多醣 在此實例中,描述各種分子大小範圍之金黃色葡萄球菌 血清型5莢膜多醣之產生。金黃色葡萄球菌血清型5莢膜多 醣重複單元之結構示於圖6中。本文所述之方法可有效地 產生分子量在約20 kDa至800 kDa範圍内之血清型5莢膜多 醣。藉由適當地選擇條件,可分離並純化分子量在50 kDa 至800 kD a範圍内的高分子量血清型5莢膜多酷。為用於免 疫原性組合物中,可分離並純化分子量在70 kDa至300 kDa、70 kDa至150 kDa及許多其他所要範圍内的血清型5 莢膜多醣。基於生長特徵及所產生之莢膜量,選擇菌株 PFESA0266來產生血清型5英膜多醣。 為了產生血清型5莢膜多醣,菌株PFESA0266在主要由 碳源(乳糖或蔗糖)、水解大豆粉作為氮源及痕量金屬組成 的複合培養基中生長。菌株在生物反應器中生長2至5天。 如上所詳述進行PFESA0266菌株之醱酵。在收集時,培 149159.doc -87- 201110977 養物之OD6QG為7.38。將培養物熱壓處理1小時,且在冷卻 後,如上文所述處理培養物以便自上清液物質分離細胞。 各回收約1 L經過濾及濃縮之上清液及細胞。 熱壓處理前,移除樣品以測試培養物中之葡萄球菌腸毒 素B(SEB)之含量。在0.05%聚山梨醇酯80存在下,SEB於 醱酵物中之濃度為15-20 ng/ml。先前實驗顯示,熱壓處理 培養物1小時使SEB含量降至小於〇. 1 ng/ml,該值低於 TECRA套組之偵測極限。 將已透析過濾之經乙醇分離之多醣裝載於q_瓊脂糖Aec 管柱上’且用如上文所述之NaCl線性梯度溶離。藉由〇_乙 醯基分析及雙向免疫擴散測試(測試血清型5多醣之存在)及 磷酸鹽分析(分析磷壁酸之存在)來分析溶離份。在溶離份 60至105中偵測到血清型5多醣之存在(圖7八至7B)。為了減 少磷壁酸污染,彙集溶離份60至85且用偏過碘酸鈉氧化任 何殘餘磷壁酸以便相對於蒸餾水進行3]^透析過濾將其移 除。 藉由依賴高溫及低pH值來影響笑膜自細胞釋放並降低多 醣分子量的兩種不同方法純化用於製備結合物之血清型5 英膜多_。所得分子量視水解步驟之時間、溫度及阳值而 定。 使用上文表1中所說明之技術表徵血清型5笑膜多聽。 藉由下文所述之方法產生笑膜多膽可得到蛋白質、核 酸、肽聚醣及磷壁酸污染物含量低的純多酶。 在第一種方法中,莢膜多醣自細胞 腿釋放且分子量降低 149l59.doc * 88 - 201110977 後,用酵素混合液(例如核糖核酸酶、脫氧核糖核酸酶、 溶菌酶及蛋白酶)處理製劑以消化雜質。培育後,藉由添 加乙醇(最終濃度約25%)使殘餘雜質沈澱。移除殘餘乙醇 後,將含莢膜多醣之溶液裝載於陰離子交換柱(Q_瓊脂糖) 上且用線性鹽梯度溶離。彙集含莢膜多醣之溶離份且用偏 過碘酸鈉處理。此處理導致殘餘磷壁酸污染物被氧化水 解,但不影響血清型5莢膜多醣。藉由添加乙二醇淬滅反 應。濃縮物物並相對於蒸餾水(dH2〇)透析過濾,以移除任 何殘餘試劑及副產物。 第一種方法用於產生莢膜多醣而無需使用酵素消化各種 來源於細胞之雜質。在此方法中,莢膜多醣自細胞釋放且 刀子量降低後,藉由微濾、隨後超濾及透析過濾使水解的 醱酵培養液變澄清。用活性碳處理該溶液以移除雜質。碳 處理後,用偏過碘酸鈉處理物質以氧化殘餘磷壁酸,接著 用丙二醇淬滅。濃縮物質並相對於蒸餾水透析過濾,以移 除任何殘餘試劑及副產物。 使用任一種方法產生製劑均可得到蛋白質、核酸及磷壁 酸污染物含量低的純莢膜多醣。所述方法可藉由控制水解 條件用於產生具有特定所要高分子量範圍之多醣。 可藉由本文所述之方法獲得之莢膜多醣的實例示於下表 12中。如依據無璘壁酸(TA)、肽聚醣及低殘餘蛋白質所指 不,各批純化之血清型5莢膜多醣具有高純度。參看表12 及13。分子量範圍為132.7 kDa至800 kDa ,且純化之多_ 經高度Ο-乙醯化(在90%至100%範圍内)且經1〇〇% N_乙醯 U9159.doc • 89 - 201110977 化。 血清型5莢膜多醣純化產率為39%至63%,且純化之血清 型5多醣之分子大小為35 kDa至65 kDa不等(參看表12)。磷 壁酸(TA)污染程度為可接受的,且殘餘蛋白質及核酸之含 量亦在可接受範圍内。血清型5多醣之NMR譜與文獻中所 報導者一致。 表12:血清型5莢膜多醣表徵 樣品 CP5 產率 MW 蛋白質 核酸 〇-乙醯基 mg % (kDa) %(w/w) (R/mol) (260 nm掃描) %(w/w) NMR(%) 1 101 39 47 0 0.5 94 2 91 48 65 1.2 2.5 96 3 578 63 35 2.5 0.7 75 表13 :其他血清型5莢膜多醣表徵。 O-乙醯基 N-乙醯基 樣品 MW (kDa) CP5(mg/ml) NMR(%) 身分NMR NMR(°/〇) 1 800.1 3.164 100 通過 100 2 132.7 1.172 90 通過 100 3 335.4 0.975 90 通過 100 4 366.8 0.865 90 通過 ND ND=未偵測出 莢膜多醣之分子量選擇:動力學分析顯示,本文所述之 方法可產生分子量範圍較寬的莢膜多醣。首先,由細菌細 胞產生較大多醣,隨後選擇所要分子量範圍,接著藉由控 制加熱及水解步驟之pH值及加熱條件加以純化。 金黃色葡萄球菌醱酵培養液之熱處理為介於醱酵與莢膜 149I59.doc -90- 201110977 多醣回收之間的處理步驟。 節之培養液處理特定時段。 殺死細胞、使腸毒素失活、 降至所要大小。在此等目標 間而言,降低分子量最慢。 必然達成其他目標。 此處理步驟使用熱將pH值經調 在低pH值下熱處理的目標在於 釋放細胞結合多醣及將分子量 中’就此步驟中所需之處理時 因此,在所考慮之處理時間内 熱處理·確定用於選擇莢膜多酿之各種分子量範圍的pH 值及脈度條件等研究中使们5 Lf樂菲輯器。藉由 螺動泉將潑酵培養液轉移至酿酵器中。使用約鳩犷㈣之 搜動速度,用漢硫酸調節培養液ρ·。接著,使培養液溫 升X疋值。一旦溫度達到設定點,即開始熱處理計 時。當達到所要處理時間時,將培4液冷卻至室溫。獲取 處理令之樣品,分別藉由HPLC及SEC-MALLS系統測定多 醣濃度及分子量。分子量(MW)資料用於動力學分析。在 化之MW分佈,參看圖 PH 3.5、4.0及5.0下測定隨時間璧 8A。 使用獲自該處理之純化血清型8莢膜多醣、對多醣之弱 酉文水解進仃動力學分析。用硫酸將純化之多醣溶液調節至 所要pH值供實驗用。將約(5社溶液轉移至各15紅離心 官中。將離心管置於裝備精密溫度控制系統之油浴中。每 隔預定的時間取出離心管,並於冰桶中淬滅。在實驗結束 時,向樣品中添加i M Tris緩衝液之等分試樣7 5)以便 將pH值調回至約7。藉由SEC_MALLS系統分析樣品。娜 資料用於動力學分析。在pH 4 5下測定溫度隨時間對 149159.doc •91 · 201110977 之MW分佈的影響。參看圖8B。 結果 如圖8Α中所示,較低ρΗ值在降低多醣分子量方面更有 效。在此實例中’可使用pH 5、95°C、歷時15分鐘至120 分鐘來產生約300 kDa至約600 kDa之分子量範圍。參看圖 8A。同樣’選擇pH 4·5、95°C、歷時15分鐘至120分鐘可 產生200 kDa至400 kDa之多醣分子量範圍。此外,選擇pH 4.0、95°C、歷時15分鐘至120分鐘可產生120 kDa至300 kDa之多醣分子量範圍。 如圖8B中所示’隨時間推移,溫度越高,水解速率越 快,且所產生之多醣之分子量範圍越寬。以另一種方式表 達,在相同pH值下使用較低溫度55。〇(相對於95。〇產生較 窄多醣分子量範圍。 此外,圖4顯示純化血清型5莢膜多醣之分子量與弱酸 (pH 4.5,95°C)水解處理時間的相關性。純化多醣為獲自 先前詳述之回收處理的最終產物。亦如圖4中所示,延長 在pH 4·5下熱處理金黃色葡萄球菌PFESA0266菌株的時間 可產生分子量較*之血清型8笑膜多酶,而缩短阳4 5下 之熱處理時間可產生分子量較高之企清型5笑膜多酿。視 在PH 4,5下之熱處理時間長度而^,血清型5莢膜多聽之 分子大小在約90 kDa至約22〇 kDa範圍内。如圖4中所示, 低PH值下之熱處理時間與純化血清型5英膜㈣之分子大 小之間的相關性可用於評估產生具有料分子量範圍之純 化多醣所需的處理時間。 149159.doc •92· 201110977 如上文所示,可產生、釋放並純化2〇 kDa至超過500 kDa之整個分子量範圍的血清型5莢膜多酿。所述方法可用 於產生具有特定所要高分子量範圍之莢膜多醣,諸如表14 中所示。所產生之分子量範圍相對較窄之多醣(其中峰值 分子I在63 kDa至142 kDa範圍内)表示可藉由本文所述之 方法獲得的經充分表徵之分子量範圍。具有尤其有利之高 分子量範圍(在70 kDa至300 kDa或7〇 kDa至15〇 kDa範圍 内)的多醣適用於藉由使莢膜多醣與載體分子或蛋白質結 合來製造免疫原性組合物。用於產生分子量範圍為約1〇〇 至140 kDa之CP5莢膜多醣的條件如下:9yc,pH 4 5,歷 時5分鐘。然而’ ρ η值、溫度及時間之不同【合亦將: 生分子量範圍為約100kDa至140kDa的CP5分子。 表Η :產生具有特定高分子量範圍之血清型$莢膜多醣 血清型5莢膜多醣 MW(kDa)WkO + 20 pg Pnl4 poly &lt;50 __Wk8 + 20 pg Pnl4 poly__1350 Summary All binding chemistry resulted in a serotype 8 capsular polysaccharide covalently linked to the carrier protein CRM197. There was no significant difference in the free sugar, serotype 8 capsular polysaccharide: protein ratio and the yield of the conjugate produced by such methods. Example 9: Preparation of S. aureus serotype 5 capsular polysaccharide In this example, the production of S. aureus serotype 5 capsular polysaccharides of various molecular size ranges is described. The structure of the S. aureus serotype 5 capsular polysaccharide repeating unit is shown in Fig. 6. The methods described herein are effective to produce serotype 5 capsular polysaccharides having molecular weights ranging from about 20 kDa to 800 kDa. High molecular weight serotype 5 capsules with molecular weights ranging from 50 kDa to 800 kD a can be isolated and purified by appropriate selection of conditions. For use in immunogenic compositions, serotype 5 capsular polysaccharides having molecular weights ranging from 70 kDa to 300 kDa, 70 kDa to 150 kDa, and many other desirable ranges can be isolated and purified. Based on the growth characteristics and the amount of capsule produced, strain PFESA0266 was selected to produce a serotype 5 film polysaccharide. In order to produce a serotype 5 capsular polysaccharide, the strain PFESA0266 was grown in a complex medium consisting mainly of a carbon source (lactose or sucrose), hydrolyzed soy flour as a nitrogen source and a trace metal. The strain is grown in a bioreactor for 2 to 5 days. The fermentation of the PFESA0266 strain was carried out as detailed above. At the time of collection, the OD6QG of the 149159.doc -87- 201110977 nutrient was 7.38. The culture was autoclaved for 1 hour, and after cooling, the culture was treated as described above to separate cells from the supernatant material. Approximately 1 L of each was filtered and the supernatant and cells were concentrated. Samples were removed to test the amount of staphylococcal enterotoxin B (SEB) in the culture prior to autoclaving. The concentration of SEB in the mash was 15-20 ng/ml in the presence of 0.05% polysorbate 80. Previous experiments showed that the hot-pressed culture for 1 hour reduced the SEB content to less than 0.1 ng/ml, which is below the detection limit of the TECRA kit. The diafiltered ethanol-separated polysaccharide was loaded onto a q-Sepharose Aec column&apos; and was eluted with a linear gradient of NaCl as described above. The fractions were analyzed by 〇- 醯 醯 analysis and two-way immunodiffusion test (testing for the presence of serotype 5 polysaccharide) and phosphate analysis (analysis of the presence of teichoic acid). The presence of the serotype 5 polysaccharide was detected in the fractions 60 to 105 (Figs. 7 to 7B). In order to reduce the contamination of the teichoic acid, the fractions 60 to 85 were pooled and any residual teichoic acid was oxidized with sodium metaperiodate to remove it by diafiltration against distilled water. The serotype 5 membranes used to prepare the conjugates were purified by two different methods that depend on high temperature and low pH to affect the release of the membrane from the cells and reduce the molecular weight of the polysaccharide. The molecular weight obtained depends on the time, temperature and positive value of the hydrolysis step. The serotype 5 smiley membrane was characterized using the technique described in Table 1 above. Pure polyenzymes with low levels of protein, nucleic acid, peptidoglycan and teichoic acid contaminants can be obtained by the method described below. In the first method, after the capsular polysaccharide is released from the cell leg and the molecular weight is lowered by 149l59.doc * 88 - 201110977, the preparation is treated with an enzyme mixture (such as ribonuclease, deoxyribonuclease, lysozyme and protease) to digest Impurities. After incubation, residual impurities were precipitated by the addition of ethanol (final concentration of about 25%). After removing residual ethanol, the capsular polysaccharide-containing solution was loaded on an anion exchange column (Q_Sepharose) and dissolved with a linear salt gradient. The fractions containing the capsular polysaccharide were pooled and treated with sodium metaperiodate. This treatment resulted in oxidative hydrolysis of residual teichoic acid contaminants, but did not affect serotype 5 capsular polysaccharides. The reaction was quenched by the addition of ethylene glycol. The material was concentrated and dialyzed against distilled water (dH2) to remove any residual reagents and by-products. The first method is used to produce capsular polysaccharide without the use of enzymes to digest various cell-derived impurities. In this method, after the capsular polysaccharide is released from the cells and the amount of the knives is lowered, the hydrolyzed fermentation broth is clarified by microfiltration, followed by ultrafiltration and diafiltration. The solution was treated with activated carbon to remove impurities. After carbon treatment, the material was treated with sodium metaperiodate to oxidize the residual teichoic acid, followed by quenching with propylene glycol. The material was concentrated and dialyzed against distilled water to remove any residual reagents and by-products. Pure capsular polysaccharides having low levels of protein, nucleic acid and phosphobiochemical contaminants can be obtained by using any of the methods to produce a preparation. The method can be used to produce a polysaccharide having a particular desired high molecular weight range by controlling the hydrolysis conditions. Examples of capsular polysaccharides obtainable by the methods described herein are shown in Table 12 below. The purified serotype 5 capsular polysaccharides of the batches are of high purity, as indicated by the no-wall acid (TA), peptidoglycan and low residual protein. See Tables 12 and 13. The molecular weight ranged from 132.7 kDa to 800 kDa, and the purification was _ highly Ο-acetylated (in the range of 90% to 100%) and passed through 1〇〇% N_ 醯 U9159.doc • 89 - 201110977. The purified yield of serotype 5 capsular polysaccharide was 39% to 63%, and the purified serotype 5 polysaccharide had molecular sizes ranging from 35 kDa to 65 kDa (see Table 12). The degree of contamination of the phosphonic acid (TA) is acceptable, and the residual protein and nucleic acid content are also within acceptable limits. The NMR spectrum of the serotype 5 polysaccharide was consistent with those reported in the literature. Table 12: Serotype 5 capsular polysaccharide characterization sample CP5 yield MW protein nucleic acid 〇-acetyl group mg % (kDa) % (w / w) (R / mol) (260 nm scan) % (w / w) NMR (%) 1 101 39 47 0 0.5 94 2 91 48 65 1.2 2.5 96 3 578 63 35 2.5 0.7 75 Table 13: Characterization of other serotypes 5 capsular polysaccharides. O-Ethyl N-acetonitrile sample MW (kDa) CP5 (mg/ml) NMR (%) NMR NMR (°/〇) 1 800.1 3.164 100 by 100 2 132.7 1.172 90 by 100 3 335.4 0.975 90 100 4 366.8 0.865 90 By ND ND = no molecular weight selection of capsular polysaccharides was selected: kinetic analysis showed that the methods described herein produced capsular polysaccharides with a broad molecular weight range. First, a larger polysaccharide is produced from the bacterial cells, followed by selection of the desired molecular weight range, followed by purification by controlling the pH of the heating and hydrolysis steps and heating conditions. The heat treatment of the Staphylococcus aureus fermentation broth is a processing step between the fermentation and the capsule 149I59.doc -90- 201110977 polysaccharide recovery. The culture medium is treated for a specific period of time. Kill cells, inactivate intestinal toxins, and reduce to the desired size. The reduction in molecular weight is the slowest among these targets. It is inevitable to achieve other goals. This treatment step uses heat to adjust the pH to a low pH value. The goal of heat treatment is to release the cell-bound polysaccharide and to treat the molecular weight in the process required for this step. Therefore, the heat treatment is determined during the treatment time considered. Select the pH value and pulse condition of various molecular weight ranges of the capsule to make the 5 Lf music. The sterilized fermentation broth is transferred to the broth by means of a screw spring. Using the search speed of about 鸠犷 (4), adjust the culture solution ρ· with han sulfuric acid. Next, the culture solution was allowed to warm to a value of X疋. Once the temperature reaches the set point, the heat treatment timer begins. When the desired treatment time is reached, the solution 4 is cooled to room temperature. Samples of treatment orders were obtained and the polysaccharide concentration and molecular weight were determined by HPLC and SEC-MALLS systems, respectively. Molecular weight (MW) data were used for kinetic analysis. The MW distribution in the assay is measured with time 璧 8A as shown in Figures PH 3.5, 4.0 and 5.0. The kinetic analysis of the weak hydrazine hydrolysis of the polysaccharide was carried out using purified serotype 8 capsular polysaccharide obtained from the treatment. The purified polysaccharide solution was adjusted to the desired pH with sulfuric acid for experimental use. Transfer about 5 solutions to each of the 15 red centrifuges. Place the centrifuge tube in an oil bath equipped with a precision temperature control system. Remove the centrifuge tube every predetermined time and quench it in an ice bucket. At the end of the experiment An aliquot of i M Tris buffer 7.5) was added to the sample to adjust the pH back to about 7. Samples were analyzed by the SEC_MALLS system. Na data is used for kinetic analysis. The effect of temperature over time on the MW distribution of 149159.doc •91 · 201110977 was measured at pH 4 5 . See Figure 8B. Results As shown in Figure 8A, a lower pH value is more effective in reducing the molecular weight of the polysaccharide. In this example, a molecular weight range of from about 300 kDa to about 600 kDa can be produced using pH 5, 95 ° C for 15 minutes to 120 minutes. See Figure 8A. Similarly, the pH range of 200 kDa to 400 kDa can be produced by selecting pH 4·5, 95 ° C for 15 minutes to 120 minutes. In addition, the selection of pH 4.0, 95 ° C, for 15 minutes to 120 minutes can produce a molecular weight range of polysaccharides from 120 kDa to 300 kDa. As shown in Fig. 8B, the higher the temperature, the faster the hydrolysis rate and the wider the molecular weight range of the polysaccharide produced. Expressed in another way, a lower temperature of 55 is used at the same pH. 〇 (relative to 95. 〇 produces a narrower molecular weight range. In addition, Figure 4 shows the correlation between the molecular weight of the purified serotype 5 capsular polysaccharide and the weak acid (pH 4.5, 95 ° C) hydrolysis treatment time. The final product of the recovery treatment detailed above. As shown in Fig. 4, prolonging the heat treatment of S. aureus PFESA0266 strain at pH 4·5 can produce a serotype 8 seromembrane multi-enzyme with a molecular weight of less than * The heat treatment time of yang 4 5 can produce more than the molecular weight of the Qiqing type 5 laughing film. The length of the heat treatment is PH 4,5, and the molecular size of the serotype 5 capsule is about 90 kDa. Up to about 22 〇 kDa. As shown in Figure 4, the correlation between the heat treatment time at low pH and the molecular size of the purified serotype 5 inch membrane (4) can be used to evaluate the production of purified polysaccharides with a molecular weight range. The required treatment time. 149159.doc •92· 201110977 As shown above, serotype 5 capsules can be produced, released and purified from 2〇kDa to over 500 kDa. The method can be used to produce Specific height A capsular polysaccharide having a molecular weight range, such as shown in Table 14. A polysaccharide having a relatively narrow molecular weight range (wherein peak molecule I is in the range of 63 kDa to 142 kDa) represents a process obtainable by the method described herein. a fully characterized molecular weight range. Polysaccharides with a particularly advantageous high molecular weight range (in the range of 70 kDa to 300 kDa or 7〇kDa to 15〇kDa) are suitable for immunization by binding capsular polysaccharides to carrier molecules or proteins. The original composition. The conditions for producing CP5 capsular polysaccharide having a molecular weight ranging from about 1 〇〇 to 140 kDa are as follows: 9 yc, pH 4 5, lasting 5 minutes. However, the difference between ρ η value, temperature and time Also: a CP5 molecule having a molecular weight ranging from about 100 kDa to 140 kDa. Table Η: Producing a serotype with a specific high molecular weight range. capsular polysaccharide serotype 5 capsular polysaccharide MW (kDa)

3 5 7 9 103 5 7 9 10

142 108 142 108 ND ND 63 72 74 63 ND 149159.doc -93· 201110977 實例10:血清型5莢膜多醣與crm197結合 此實例描述用於產生金黃色葡萄球菌血清型5莢膜多醣_ crm197結合物之方法及表徵分析。已研發用於使金黃色葡 萄球菌血清型5莢膜多醣與此載體蛋白質結合的不同結合 化學技術。舉例而言,使用PDPH(3_(2_吡啶基二硫基)_丙 醯肼)結合可在CP與載體蛋白質之間產生共價硫醚鍵;而 使用CDT(1,1-羰基-二_1,2,4-三唑)結合可在莢膜多醣與載 體蛋白質之間產生單碳或零碳連接子。142 108 142 108 ND ND 63 72 74 63 ND 149159.doc -93· 201110977 Example 10: Serotype 5 capsular polysaccharide binding to crm197 This example describes the production of S. aureus serotype 5 capsular polysaccharide _ crm197 conjugate Methods and characterization analysis. Different binding chemistry techniques have been developed for binding S. aureus serotype 5 capsular polysaccharide to this carrier protein. For example, the use of PDPH (3_(2-pyridyldithio)-propionamidine) binding can produce a covalent thioether bond between the CP and the carrier protein; whereas CDT (1,1-carbonyl-di-) is used. 1,2,4-triazole) binding produces a single carbon or zero carbon linker between the capsular polysaccharide and the carrier protein.

藉由PDPH結合化學法使i清型5莢膜多醣與CRMi97結合 PDPH結合化學法為一種多步驟方法,包括活化多醣、 移除硫醇保護基、純化活化之多醣中間物、活化並純化 CRMm蛋白質’及使活化组分結合,接著純化。向多醣中 引入含硫醇基之連接子並向CRM!9?蛋白質載體中引入鹵乙 醯基後’使金黃色葡萄球邊血清型5笑膜多酿經由硫趟鍵 連接至蛋白質載體。藉由胺基與溴乙酸N—羥基丁二醯亞胺 酷之反應將溴乙醯基引入CRM]97蛋白質中。為了產生硫醇 化多醣,使多醣中N-乙醯基胺基甘露醇醛酸之經碳化二亞 胺活化之甲酸酯基偶合至疏基反應性醯肼雜二官能性連接 劑3-(2-吡啶基二硫)_丙醯肼(PDPH)之醯肼基。藉由DTT還 原所產生且在Sep had ex G25管柱上藉由SEC純化的經pj)PH 硫醇化之多醣的硫醇與活化蛋白質的溴乙醯基反應,從而 藉由溴置換在多醣與載體蛋白質之間形成共價硫醚鍵。未 反應之溴乙醯基用半胱胺鹽酸鹽(2-胺基乙硫醇鹽酸鹽) 「封端」。接著濃縮反應混合物並透析過渡。殘餘之未結 149159.doc -94- 201110977 合溴乙醯基用半胱胺鹽酸鹽封端以確保在結合後不存在反 應性溴乙醯基。由此在溴置換後、在半胱胺之硫醇端與離 胺酸殘基上之乙醯基之間形成共價鍵。 1.用PDPH使金黃色葡萄球菌血清型5莢膜多Sf硫醇化: 首先藉由PDPH硫醇化來活化多醣。將多醣與新製備之 PDPH儲備溶液(250 mg/mL,含於DMSO中)、EDAC儲備溶 液(90 mg/mL,含於重蒸水中)及MES緩衝儲備溶液(0.5 Μ,pH 4.8 5)混合,使得最終溶液含有0.1 M MES、及2 mg/mL及4 mg/mL莢膜多醣,對於血清型8莢膜多同時維 持1:5:3之多醣:PDPH:EDAC重量比。在室溫下培育1小 時,接著使用3500 MWCO透析裝置在4°C至8°C下相對於 1000倍體積之蒸餾水透析4次以移除未反應之PDPH。使用 0.2 M DTT溶液產生PDPH連接之多醣,且在室溫下培育3 小時或在4°C至8°C培育隔夜。使用Sephadex G25樹脂及蒸 餾水作為移動相、藉由SEC自活化之醣分離過量DTT以及 反應副產物。藉由DTDP分析分析溶離份之硫醇基,且彙 集溶離於管柱之空隙體積附近的硫醇陽性溶離份。藉由 PAHBAH及0_乙醯基分析分析溶離份彙集物以測定活化 度,活化度表達為含硫醇基之重複單元的莫耳百分比(硫 醇之莫耳濃度/重複單元之莫耳濃度)。凍乾活化之多醣並 儲存在-25°C下直至需要結合。 藉由PDPH再現血清型8多醣硫醇化之結果示於表1 5中。 血清型5多醣之活化度在11%至19%範圍内,對應於每10個 莢膜多醣重複單元連接約1個連接分子至每5個重複單元連 149159.doc -95- 201110977 接1個連接分子。 表15 :藉由PDPH活化血清型5莢膜多醣-再現性研究 血清型5多醣-PDPH 活化度 (% Msh/Mru) 標度 rag 產率 mg(%,w/w) 1 11 23 19.6(85) 2 13 30 28 (93) 3 19 30 23(77) 4 15 32 29 (90) 2.載體蛋白質活化:獨立地藉由溴乙醯化來活化載體蛋 白質。用10 mM經磷酸鹽緩衝之0.9% NaCl(pH 7)(PBS)將 CRM197稀釋至5 mg/mL,接著使·用1 Μ儲備溶液、用0.1 Μ NaHC03 達成 pH 7.0。使用 20 mg/mL DMSO 之 BAANS 儲備 溶液,以CRM丨97:BAANS比率l:0.25(w:w)添加溴乙酸iV-羥 基丁二醯亞胺酯(BAANS)。此反應混合物在4°C至8°C下培 育1小時,接著在Sephadex G-25上使用SEC純化。藉由洛 瑞分析分析純化之活化CRM197以測定蛋白質濃度,接著用 PBS稀釋至5 mg/mL。添加作為低溫保護劑的蔗糖直至5°/〇 wt/vol,且冷;東活化之蛋白質並在-25°C下儲存直至需要結 合。 CRM197之離胺酸殘基之溴乙醯化極為連貫,從而使可利 用之39個離胺酸中之19至25個離胺酸活化(參看表16)。該 反應以高產率產生活化之蛋白質。 149159.doc -96- 201110977 表16 : CRMm溴乙醯化之產率及程度 製劑 活化之離胺酸(n=) 標度 產率 ---------- (%w/w) 1 24 23 85 2 20 38 87 3 19 35 77 4 22 35 94 5 23 35 87 6 25 48 1〇4 3.偶合反應: :活化之莢膜多骑及 —-- 活化之載體 後’即使二者在結合反應中化合。經凍乾及硫醇化之多醣 溶解於(M6 Μ蝴酸鹽(pH 8.95)中,與解來之漠乙醯化 CRMw及蒸餾水混合,使得最終溶液含有〇1河硼酸鹽、 1:1重量比之CRMm:多醣及2 mg/mL血清型5荚膜多醣。 在室溫下培育16小時至‘24小時。II由使用溶解於M删 酸鹽(pH 8.95)中之135 mg/mL半胱胺儲備溶液,以 1:2(wt/wt)之CRMm ··半胱胺比率添加半胱胺鹽酸鹽來使. 蛋白質上未反應之溴乙醯基封端,並在室溫下培育斗小 時。使用100K聚醚砜超濾器、藉由相對於〇9% Naci進行 5〇倍透析過濾來純化莢膜多醣_CRM|97結合物(結合物)。 藉由PDPH再現血清型5莢膜多醣硫醇化的研究結果顯 示,活化度在11%至19%範圍内,對應於每1(H@cp重複單 元連接約1個連接分子至每5個重複單元連接丨個連接分 子0 藉由CDT結合化學法使血清型5莢膜多醣與CRM…結合 CDT提供-步結合法,其中多在無水環境_s⑺中 149159.doc •97· 201110977 活化,形成具有可用羥基之三唑胺基曱酸酯部分及具有羧 酸之醯基咪。坐或醢基三°坐部分。添加蛋白質載體(含於 DMSO中)引起離胺酸親核置換三唑及形成胺基曱酸酯鍵 (針對活性羥基)及醯胺鍵(針對活性羧酸)。反應溶液在水 溶液中稀釋1 〇倍,為藉由切向流動式過濾純化作準備。 CDT結合化學法產生共價連接至載體蛋白質的血清型5 莢膜多醣,此依據以下指示:尺寸排阻層析之溶離份中醣 及蛋白質之存在以及對經乙醇醛封端或經半胱胺鹽酸鹽封 端之結合物的胺基酸分析。 製備血清型5莢膜多醣分子大小處於20 kDa至40 kDa範 圍内之多批結合物(藉由PDPH與CDT化學法製備)之結果總 結顯示於下表1 7中。此等結合化學法所產生之結合物之游 離莢膜多醣、多醣··蛋白質比率及產率無顯著差異。所結 合之血清型5莢膜多醣的抗原性不會因結合而改變,如結 合物與原生多醣之間的一致沈殿素線所示。 表17:表徵藉由兩種結合化學法所製備之血清型5莢膜多 醣-crm197 蛋白質 CP產率 產率 化學法 (%) (%) CDT 19-27 35 輸出 比率 0.5-0.8 分子大小(MW或 ^ 游離蛋經修飾之 Kd(%&lt;0.3),多 m }白質(%) 離胺酸 醣/蛋白質)) 10-40 &lt;1 18-22 38/61 至 76/74 PDPH 26-52 40-99 0.4-1.0 23-50 ND ND 7.5&gt;&lt;105 至 2.3&gt;&lt;106 ND =未偵測出 如上文所示,本文所述之方法可用於產生具有特定所要 高分子量範圍之莢膜多醣。設法自具有預選定高分子量範 149159.doc 98- 201110977 圍的可經過濾及純化之血清型5莢膜多醣製備結合物以供 用於免疫原性組合物中。表1 8匯總血清型5莢膜多醣結合 物之分析,其中血清型5莢膜多醣之分子量在約92 kDa至 約119 kDa範圍内,且用三唑活化(CDT)。所得結合物之分 子量在1 533 kDa至2656 kDa範圍内。每個CRM197中之結合 離胺酸數目在高值22至低值15範圍内。游離莢膜多醣在高 值18%至低值11%範圍内。 表18:具有預選定分子量範圍之血清型5莢膜多醣之結 合物 多醣 MW,藉由SEC- 經修飾之離 試驗 MW(kDa) 產率(%) 游離醣(%) MALLS(kDa) 胺酸 1 121 63 11 2130 19 2 92 72 16 1533 22 3 119 74 14 2656 15 4 115 63 18 1911 15 兩種結合化學法均產 生共價連接至載體蛋白質 之血清型 5莢膜多醣。 此兩種方 '法所產生之結合物之游, 離莢膜多 醣 、血清型5 莢膜多醣 :蛋白質 比率及產率不存在顯著差 異。 實例11 ··複雜法相較於一步CDT法 如上文所述,用於製造本發明之免疫原性結合物的方法 包括使用結合化學法使莢膜多醣與載體蛋白質共價結合, 結合化學法包括0〇丁(1,1-羰基-二-1,2,4-三唑)或?〇?別3-(2-吡啶基二硫基)-丙醯肼)。使用CDT在莢膜多醣與載體蛋 149159.doc -99· 201110977 白質之間產生單碳或零碳連接子,而使用PDPH在英膜多 醣與載體蛋自質之間產生含有共價硫賴的五碳連接子。 基於PDPH之方法為—種多步驟方法包括活化多酿、 移除多聽上之硫醇保護基、純化活化之多財間物、活化 並純化蛋白質載體’及使活化組分結合,接著純化。在此 &gt;金^色葡萄球gjk清型5莢膜多餹與驗η及碳化 二亞胺在諸如DMS0之有機溶劑中反應,產生pDpH連接之 多酶。PDPH連接之多醣與還原劑反應,產生活化之多 醣,接著純化。載體蛋白質在有機溶劑中與漠乙酸反應, 產生活化之載體蛋白質,接著純化。純化之活化血清型5 多醣接著與純化之活化載體蛋白質反應,產生血清型5多 醣:載體蛋白質結合物。 相比之下,基於CDT之方法為一步結合方法,其中莢膜 多醣在無水環境(亦mDMS0)中活化,形成具有可用羥基 之三唑胺基甲酸酯部分及具有羧酸之醯基咪唑或醯基三唑 部分。添加蛋白質載體(含MDMS〇f)引起離胺酸親核置 換咪唑或三唑及形成胺基甲酸酯鍵(針對活性羥基)及醯胺 鍵(針對活性羧酸)’從而允許結合以「一步」形式進行。 因此’開發出兩種基於CDT之方法:較複雜之方法及較簡 單之一步法。在較複雜之方法中,金黃色葡萄球菌血清型 5莢膜多醣與咪唑或三唑化合’接著與CDT在有機溶劑(諸 如DMSO)及約0.2% w/v水中反應,產生活化之血清型5多 醣。純化活化之血清型5多醣’接著與載體蛋白質在有機 溶劑中反應,產生血清型5多醣:載體蛋白質結合物。一 149159.doc •100- 201110977 步法與複雜法相似,例外之處在於活化之血清型5多醣在 與載體蛋白質反應前未經純化。 CDT複雜法 活化血清型5莢膜多醣:血清型5莢膜多醣與10公克三 唑/公克血清型5莢膜多醣混合並凍乾。所得餅塊以每毫升 2.0毫克血清型5莢膜多醣溶解於DMSO中。測定水含量並 調節至0.2%。添加新製備之CDT儲備溶液(100 mg/mL,含 於DMSO中)直至達成CDT之量20倍莫耳過量於CP5之量。 或者,可調節CDT的添加量以達成較高或較低活化度。在 23°C下保持30分鐘。 純化活化之血清型5莢膜多醣:將活化之血清型5莢膜多 醣(ACP5)之溶液傾入25體積水中以除去過量CDT。在10 kDa PES薄膜上以約1 mg/cm2濃縮至其原始體積,且相對 於至少10體積之水透析過濾。此步驟在小於4小時内完 成。經透析過濾之物質與10公克三唑/公克原始血清型5多 醣混合且凍乾。 製備凍乾之CRM : CRM在10 kDa PES薄膜上以恆定體積 相對於至少10體積之0.4% NaCl/5%蔗糖透析過濾。測定蛋 白質濃度,且添加足夠的透析過濾緩衝液以使蛋白質濃度 達到5.0 g/L,從而獲得NaCl/CRM之重量比=0.8。凍乾 CRM。 結合:活化、透析過濾之血清型5莢膜多醣以1 mg/mL溶 解於DMSO中。添加100 mM硼酸鹽溶液直至達到2% v/v。 CRM以2 mg/mL再懸浮,且當完全溶解時,與ACP5溶液 149159.doc -101 - 201110977 合併。允許在4°C下反應20小時。 將結合物反應液傾入24體積之5 mM硼酸鹽(pH 9.0)中且 在室溫下攪拌1小時。接著用〇,5 Μ磷酸鹽緩衝液(pH 6.5) 調節至pH 7.5。經由5微米過濾器過濾,且在3〇〇 kDa PES 薄膜上以約1 mg/cm2之負荷濃縮至原始體積,並相對於至 少10體積之水透析過濾。所得濃縮物經由〇 22微米過滤器 過濾,並在2°C至8°C下儲存。 CDT—步法 CRM〗9?基質交換:透析過濾CRMi97以便將約1〇 mM磷酸 鹽/80 mM NaCL/15%蔗糖之整體基質(pH 7)交換成5 mM咪 唑/0.72% NaCl/15 mM辛基-β-D-葡萄旅喃糖苷(pH 7)。交 換可移除不利於結合且會限定運送至結合中之氯化鈉含量 的磷酸鹽及蔗糖。添加辛基_p_D_葡萄哌喃糖苷,防止在 無菌過濾後形成粒子。 藉由切向流動式過慮、相對於5 mM味唾/0.72% NaCl/15 mM辛基-β-D-葡萄哌喃糖苷(pH 7)進行(^]^197基質之交換 (經由10個透析過濾體積倍數’使用10K MWCO PES薄 膜,滯留濃度為約4 mg/mL,)。典型薄膜限量為2 g/ft2, 且基質中之最終目標crm197濃度為6 mg/mL。CRMi97在 2°C至8°C下儲存。 活化/結合:金黃色葡萄球菌血清型5莢膜多醣之活化/結 合法由以下步驟組成:1)使多醣化合;2)殼式冷凍及凍乾 CRM】97及所化合之多醣;;3)溶解凍乾之多醣及; 4)活化多醣;5)使活化之多醣與CRMm結合;及6)純化結 J49159.doc -102- 201110977 合物(稀釋、透析過濾、無菌過濾)。 多醣與10公克1,2,4-三唑賦形劑/公克多醣化合。賦形劑 以粉末形式添加至多醣中,在環境溫度下混合小於1 5分鐘 後獲得溶液。 所化合之多醣及CRM197分別使用-75°C乙醇浴進行殼式 冷凍。每1 L瓶子之體積為約500 mL。 為了溶解多醣,向多醣之個別凍乾瓶中添加DMSO,獲 得懸浮液,接著轉移至活化/結合反應容器中以便加熱。 添加DMSO直至獲得2 g/L之濃度。混合5至10分鐘後獲得 澄清溶液。 為了溶解CRM197,向含有CRM197之個別凍乾瓶中添加 DMSO,獲得懸浮液,接著轉移至第二容器中供混合。添 加DMSO直至獲得2 g/L之濃度。通常在小於15分鐘内獲得 澄清溶液。 對多醣/DMSO溶液取樣供卡-費分析,以測定水分含 量。CDT於DMSO中製備成1 00 mg/mL溶液且以5莫耳過量 於5型多醣添加(複雜法使用20莫耳當量CDT,而一步法使 用5莫耳當量CDT:CP5)。在23°C+2°C下,在混合下,歷經 約5分鐘連續添加CDT溶液。反應物在23°C±2°C進行最少30 分鐘。對反應物取樣以測定活化度(UV 220/205 nm),接著 添加100 mM硼酸鈉(pH 9)以獲得1.5°/。水溶液。接著,在 23°C+2°C下攪拌反應溶液最少30分鐘。 為了使活化之多醣與CRM197結合,添加DMSO以獲得 0.55 mg/mL反應濃度。溶解於DMSO中之CRM197接著在混 149159.doc •103- 201110977 合下添加至活化之多醣溶液中。在幻^^^下攪拌反應最 少16小時。 反應溶液用5 mM四硼酸鈉(ρΗ 86)稀釋1〇倍,獲得最終 之稀釋溶液(PH㈣.2)。在23t±2t下攪拌該溶液最少4小 時。使稀釋溶液通過5 μπι過濾器並濃縮至2 g/Li目標滯 留/辰度。使用5 mM丁二酸鹽(ppj 7)、經由20個透析過濾體 積七數、使用300K再生纖維素薄膜進行切向流動式過濾。 典型溥膜限量為1 g/ft2。使純化之結合物通過〇 22微米過 濾器’並在2。(:至8°C下儲存。 實例12:使用一步法及複雜結合法使血清型5莢膜多醣 結合 此貫例顯示,在一步法或複雜法中可使用具有預選定分 子量範圍之莢膜多醣結合。首先由細菌細胞產生較大多 醋’且可藉由實例9之水解過程的pH值及加熱來控制所得 分子量範圍。在此實例中,選擇金清型5莢膜多醣之分子 量在約90 kDa至約140 kDa範圍内的8批料,且在上述一步 法或複雜法中使用三唑(CDT)活化進行結合。參看表19。 所得結合物之分子量在1125 kDa至2656 kDa範圍内。每個 CRM中之結合離胺酸數目在高值22至低值15範圍内。游離 糖在高值23%至低值11%範圍内。 149159.doc -104- 201110977 表19:用90 kDa至140 kDa莢膜多醣製備之血清型5莢膜 多酷結合物 方法 試驗 多醣 MW(kDa) 醣產率(%) 游離糖 (%) MW,藉由SEC-MALLS(kDa) 離胺酸 一步法 1 142 93 11 1932 19 2 108 93 14 1117 20 3 142 85 17 1609 15 4 108 86 23 1125 15 複雜法 1 121 63 11 2130 19 2 92 72 16 1533 22 3 119 74 14 2656 15 4 115 63 18 1911 15 實例13:血清型5莢膜多醣結合物在鼠類腎盂腎炎模型中 持續展現保護作用 評估血清型5莢膜多醣結合物在腎盂腎炎模型中保護小 鼠的能力。與以PBS免疫之對照組相比,腹膜内接受金黃 色葡萄球菌攻毒之小鼠血液中之細菌計數顯著降低。 所有6項個別研究均顯示,免疫動物之腎的cfu/ml顯著減 少(圖9)。當彙集此等研究供進行後設分析(meta analysis) 時,該等研究之總體顯著性總體上增加至低於0.0001。資 料顯示,用莢膜多醣結合物主動接種後,腎菌落形成持續 減少。 實例14:藉由不同結合化學法製備之血清型5莢膜多醣結 合物保護小鼠不受實驗感染 用藉由PDPH或CDT化學法所製備之血清型5莢膜多醣結 合物在鼠類腎盂腎炎模型中進行主動免疫研究。使莢膜多 149159.doc -105- 201110977 醣與CRM197結合之方法描述於上文中。結果顯示,相較於 假免疫動物,兩種結合物均減少小鼠中之群落形成(表 20)。 表20 : PDPH相較於CDT結合對在腎盂腎炎模型中防止金 黃色葡萄球菌攻毒的影響。 研究編號 抗原 菌株/劑量 logCFU/腎 顯著性 研究1 生理食鹽水+Α1Ρ〇4 PFESA0266 5.53 ± 1.90 — 1 meg CP5-CRM (PDPH) +AIPO4 2x108 3.01 ± 1.83 p&lt; 0.001 研究2 1 meg CP5-CRM (CDT) +AIPO4 生理食鹽水+aipo4 PFESA0266s 1.67±0_23 6.17 ±1.76 p&lt; 0.0001 1 meg CP5-CRM (PDPH) +AIPO4 2.7x10s 3.06 ± 1.69 p &lt; 0.0001 1 meg CP5-CRM (CDT) +AIPO4 1.87 ±0.69 p &lt; 0.0001 實例15:血清型5莢膜多醣結合物之主動免疫在大鼠心内 膜炎模型中保護大鼠 用CP5-CRM197 PDPH結合物進行4項研究。用金黃色葡 萄球菌PFESA0266攻毒後,在三分之二實驗中,血清型5 莢膜多醣結合物使心臟與腎中之復原CFU顯著減少(表 21)。在第三項研究中,抗CP5效價之幾何平均效價(GMT) 在三項實驗中最低,但僅略低於先前實驗。 149159.doc •106- 201110977 表21:血清型5莢膜多醣-CRM197免疫使大鼠心内膜炎模型 中之CFU減少。Binding of cytosolic polysaccharides to CRMi97 by PDPH binding chemistry is a multi-step process involving activating polysaccharides, removing thiol protecting groups, purifying activated polysaccharide intermediates, and activating and purifying CRMm proteins. 'And the activating components are combined, followed by purification. The introduction of a thiol group-containing linker into the polysaccharide and introduction of the haloacetic acid group into the CRM!9? protein carrier allows the golden yellow grape spheroid serotype 5 laughing membrane to be ligated to the protein carrier via a thiol bond. The bromoethenyl group is introduced into the CRM]97 protein by a reaction of an amine group with N-hydroxybutylimine of bromoacetate. In order to produce a thiolated polysaccharide, the carbodiimide-activated formate group of N-ethyl decylamino mannitol in the polysaccharide is coupled to a thiol-reactive doped bifunctional linker 3-(2) - Pyridyl disulfide) - a sulfhydryl group of propyl hydrazine (PDPH). The thiol of the pj)PH thiolated polysaccharide purified by DTT and produced by TT reduction on the Sep had ex G25 column is reacted with the bromoethane group of the activated protein to thereby replace the polysaccharide with the carrier by bromine A covalent thioether bond is formed between the proteins. The unreacted bromoacetyl group is "capped" with cysteamine hydrochloride (2-aminoethylthiol hydrochloride). The reaction mixture was then concentrated and the dialysis transition. Residual unknot 149159.doc -94- 201110977 The bromoethane group was capped with cysteamine hydrochloride to ensure that no reactive bromoethylidene group was present after binding. Thus, after bromine displacement, a covalent bond is formed between the thiol end of the cysteamine and the acetamidine group on the amino acid residue. 1. Sulphurization of S. aureus serotype 5 capsular poly Sf with PDPH: The polysaccharide was first activated by thiolation of PDPH. Mix the polysaccharide with freshly prepared PDPH stock solution (250 mg/mL in DMSO), EDAC stock solution (90 mg/mL in distilled water) and MES buffer stock solution (0.5 Μ, pH 4.8 5) The final solution contained 0.1 M MES, and 2 mg/mL and 4 mg/mL capsular polysaccharide, while maintaining a 1:5:3 polysaccharide:PDPH:EDAC weight ratio for serotype 8 capsules. Incubation was carried out for 1 hour at room temperature, followed by dialysis against 4 volumes of distilled water 4 times at 4 ° C to 8 ° C using a 3500 MWCO dialysis apparatus to remove unreacted PDPH. The PDPH-linked polysaccharide was produced using a 0.2 M DTT solution and incubated for 3 hours at room temperature or overnight at 4 °C to 8 °C. Sephadex G25 resin and distilled water were used as the mobile phase, and excess DTT and reaction by-products were separated by self-activated sugar by SEC. The thiol group of the dissolved fraction was analyzed by DTDP analysis, and the thiol-positive dissolved fraction dissolved in the vicinity of the void volume of the column was collected. The dissolution fraction was analyzed by PAHBAH and 0-acetamidine analysis to determine the degree of activation, and the degree of activation expressed as the molar percentage of the thiol group-containing repeating unit (molol concentration of thiol / molar concentration of repeating unit) . The activated polysaccharide was lyophilized and stored at -25 ° C until binding was required. The results of thiolation of the serotype 8 polysaccharide by PDPH are shown in Table 15. The serotype 5 polysaccharide has an activation degree in the range of 11% to 19%, corresponding to about 1 linking molecule per 10 capsular polysaccharide repeating units to every 5 repeating units. 149159.doc -95- 201110977 1 connection molecule. Table 15: Activation of serotype 5 capsular polysaccharide by PDPH-reproducibility study serotype 5 polysaccharide-PDPH activation degree (% Msh/Mru) scale rag yield mg (%, w/w) 1 11 23 19.6 (85 2 13 30 28 (93) 3 19 30 23(77) 4 15 32 29 (90) 2. Carrier protein activation: The carrier protein is activated independently by bromination. CRM197 was diluted to 5 mg/mL with 10 mM phosphate buffered 0.9% NaCl (pH 7) (PBS), followed by pH 7.0 with 0.1 Μ NaHC03. iV-hydroxybutylimine (BAANS) bromoacetate was added at a CRM 丨 97:BAANS ratio of 1:0.25 (w:w) using a BAANS stock solution of 20 mg/mL DMSO. The reaction mixture was incubated at 4 ° C to 8 ° C for 1 hour, followed by purification on Sephadex G-25 using SEC. The purified activated CRM197 was analyzed by Lori analysis to determine the protein concentration, followed by dilution to 5 mg/mL with PBS. Sucrose was added as a cryoprotectant up to 5 ° / 〇 wt / vol, and cold; East activated protein and stored at -25 ° C until binding is required. The bromoacetylation of the aminic acid residue of CRM197 is extremely coherent, thereby activating 19 to 25 of the 39 lysines available for use (see Table 16). This reaction produces activated proteins in high yield. 149159.doc -96- 201110977 Table 16: Yield and extent of CRMm bromoacetamidine Deactivated lysine (n=) scale yield---------- (%w/w) 1 24 23 85 2 20 38 87 3 19 35 77 4 22 35 94 5 23 35 87 6 25 48 1〇4 3. Coupling reaction: : Activated capsule multi-riding and --- activation of the carrier 'even if both Compounded in the binding reaction. The lyophilized and thiolated polysaccharide was dissolved in (M6 oxime acid salt (pH 8.95), mixed with the solution of sulphuric acid CRMw and distilled water, so that the final solution contained 〇1 river borate, 1:1 weight ratio CRMm: Polysaccharide and 2 mg/mL serotype 5 capsular polysaccharide. Incubate for 16 hours to '24 hours at room temperature. II by using 135 mg/mL cysteamine dissolved in M-Putolate (pH 8.95) In a stock solution, cysteamine hydrochloride is added at a CRMm··cysteamine ratio of 1:2 (wt/wt) to cap the unreacted bromoethylidene on the protein and incubate at room temperature for hours. Purification of capsular polysaccharide _CRM|97 conjugate (conjugate) by 5 diafiltration with respect to 〇9% Naci using a 100K polyethersulfone ultrafilter. Reproduction of serotype 5 capsular polysaccharide sulphur by PDPH The results of alcoholization studies show that the degree of activation is in the range of 11% to 19%, corresponding to every 1 (H@cp repeat unit is linked to about 1 linker molecule to every 5 repeat units connected to a linker molecule 0 by CDT binding chemistry The method provides a serotype 5 capsular polysaccharide and CRM... in combination with CDT to provide a step-by-step method, which is mostly in the anhydrous environment _s(7) 149159.doc •97· 2011 10977 is activated to form a triazolyl decanoate moiety having a usable hydroxyl group and a thiol group having a carboxylic acid. The sitting or thiol tris. The addition of a protein carrier (containing in DMSO) causes nucleophilic displacement of the amine acid. Triazole and the formation of amino phthalate linkages (for reactive hydroxyl groups) and guanamine linkages (for active carboxylic acids). The reaction solution is diluted 1 〇 in aqueous solution to prepare for tangential flow filtration purification. The chemical method produces a serotype 5 capsular polysaccharide covalently linked to a carrier protein, according to the following instructions: the presence of sugars and proteins in the fractions of size exclusion chromatography and the blocking with glycolaldehyde or cysteamine hydrochloride Amino acid analysis of salt-terminated conjugates. Preparation of serotype 5 capsular polysaccharides Multi-batch conjugates with molecular size ranging from 20 kDa to 40 kDa (prepared by PDPH and CDT chemistry) are summarized below In Table 17. The ratio of free capsular polysaccharide, polysaccharide·protein ratio and yield of the combination produced by the combination of chemical methods is not significantly different. The antigenicity of the combined serotype 5 capsular polysaccharide is not due to binding. change As shown by the consensus between the conjugate and the native polysaccharide. Table 17: Characterization of serotype 5 capsular polysaccharide-crm197 protein prepared by two binding chemistry methods. Yield yield chemical method (%) ( %) CDT 19-27 35 Output ratio 0.5-0.8 Molecular size (MW or ^ Free egg modified Kd (% &lt; 0.3), more m } White matter (%) Amino acid sugar / protein)) 10-40 &lt;;1 18-22 38/61 to 76/74 PDPH 26-52 40-99 0.4-1.0 23-50 ND ND 7.5&gt;&lt;105 to 2.3&gt;&lt;106 ND = not detected as shown above The methods described herein can be used to produce capsular polysaccharides having a particular desired high molecular weight range. A conjugate was prepared from a serotype 5 capsular polysaccharide having a pre-selected high molecular weight formula 149159.doc 98- 201110977 which can be filtered and purified for use in an immunogenic composition. Table 1 summarizes the analysis of serotype 5 capsular polysaccharide conjugates wherein the serotype 5 capsular polysaccharide has a molecular weight in the range of from about 92 kDa to about 119 kDa and is activated with triazole (CDT). The molecular weight of the resulting conjugate is in the range of 1 533 kDa to 2656 kDa. The number of bound lysines in each CRM197 ranged from a high value of 22 to a low value of 15. The free capsular polysaccharide ranges from a high value of 18% to a low value of 11%. Table 18: Conjugate polysaccharide MW of serotype 5 capsular polysaccharide with pre-selected molecular weight range, by SEC-modified MW (kDa) yield (%) free sugar (%) MALLS (kDa) Amino acid 1 121 63 11 2130 19 2 92 72 16 1533 22 3 119 74 14 2656 15 4 115 63 18 1911 15 Both binding chemistries produce a serotype 5 capsular polysaccharide covalently linked to a carrier protein. There was no significant difference in the ratio of capsular polysaccharide to serotype 5 capsular polysaccharide: protein ratio and yield between the two methods. Example 11 Complicated Method Compared to the One-Step CDT Method As described above, the method for producing the immunogenic conjugate of the present invention comprises covalently binding a capsular polysaccharide to a carrier protein using a binding chemistry method, including 0 Agaridine (1,1-carbonyl-di-1,2,4-triazole) or? 〇? Other 3-(2-pyridyldithio)-propanoid). Using CDT to produce a single carbon or zero carbon linker between the capsular polysaccharide and the carrier egg 149159.doc -99· 201110977 white matter, and using PDPH to produce a covalent sulfur-containing five between the membrane polysaccharide and the carrier egg self-mass Carbon linker. The PDPH-based approach is a multi-step process involving activation of the brew, removal of the polythiol protecting group, purification of the activated multi-compartment, activation and purification of the protein carrier&apos; and binding of the activating component followed by purification. Here, &gt; gold color grape ball gjk clear type 5 capsule multi-powder and η and carbodiimide are reacted in an organic solvent such as DMS0 to produce a pDpH-linked multi-enzyme. The PDPH-linked polysaccharide reacts with a reducing agent to produce an activated polysaccharide, which is then purified. The carrier protein is reacted with desert acetic acid in an organic solvent to produce an activated carrier protein, which is then purified. The purified activated serotype 5 polysaccharide is then reacted with the purified activated carrier protein to produce a serotype 5 polysaccharide: carrier protein conjugate. In contrast, the CDT-based method is a one-step method in which a capsular polysaccharide is activated in an anhydrous environment (also mDMS0) to form a triazolamide moiety having a hydroxyl group available and a mercapto imidazole having a carboxylic acid or Mercapto triazole moiety. Addition of a protein carrier (containing MDMS〇f) causes nucleophilic displacement of the imidazole or triazole from the amine acid and formation of a urethane bond (for the reactive hydroxyl group) and a guanamine bond (for the active carboxylic acid)' to allow for the combination of "one step The form is carried out. Therefore, two methods based on CDT have been developed: a more complicated method and a simpler one-step method. In a more complex method, S. aureus serotype 5 capsular polysaccharide is combined with imidazole or triazole' followed by reaction with CDT in an organic solvent such as DMSO and about 0.2% w/v water to produce activated serotype 5 Polysaccharide. Purification of the activated serotype 5 polysaccharide&apos; is then reacted with the carrier protein in an organic solvent to produce a serotype 5 polysaccharide: carrier protein conjugate. One 149159.doc •100- 201110977 The footwork is similar to the complex method except that the activated serotype 5 polysaccharide is not purified prior to reaction with the carrier protein. CDT Complex Method Activated serotype 5 capsular polysaccharide: Serotype 5 capsular polysaccharide was mixed with 10 gram of triazole/gram serotype 5 capsular polysaccharide and lyophilized. The resulting cake was dissolved in DMSO at 2.0 mg serotype 5 capsular polysaccharide per ml. The water content was measured and adjusted to 0.2%. A freshly prepared CDT stock solution (100 mg/mL in DMSO) was added until the amount of CDT was 20 times the molar excess of CP5. Alternatively, the amount of CDT added can be adjusted to achieve a higher or lower degree of activation. Hold at 23 ° C for 30 minutes. Purification of activated serotype 5 capsular polysaccharide: A solution of activated serotype 5 capsular polysaccharide (ACP5) was poured into 25 volumes of water to remove excess CDT. It was concentrated to about its original volume on a 10 kDa PES film at about 1 mg/cm2 and diafiltered against at least 10 volumes of water. This step is completed in less than 4 hours. The diafiltered material was mixed with 10 g of triazole/g raw serotype 5 polysaccharide and lyophilized. Preparation of lyophilized CRM: CRM was dialyzed against a 10 kDa PES membrane in a constant volume relative to at least 10 volumes of 0.4% NaCl/5% sucrose. The protein concentration was measured, and sufficient diafiltration buffer was added to bring the protein concentration to 5.0 g/L, thereby obtaining a NaCl/CRM weight ratio = 0.8. Freeze dry CRM. Binding: Activated, diafiltered serotype 5 capsular polysaccharide was dissolved in DMSO at 1 mg/mL. Add 100 mM borate solution until 2% v/v is reached. The CRM was resuspended at 2 mg/mL and, when completely dissolved, was combined with the ACP5 solution 149159.doc -101 - 201110977. Allow to react at 4 ° C for 20 hours. The conjugate reaction solution was poured into 24 volumes of 5 mM borate (pH 9.0) and stirred at room temperature for 1 hour. It was then adjusted to pH 7.5 with hydrazine, 5 Μ phosphate buffer (pH 6.5). It was filtered through a 5 micron filter and concentrated to the original volume on a 3 〇〇 kDa PES film at a load of about 1 mg/cm 2 and diafiltered against at least 10 volumes of water. The resulting concentrate was filtered through a 〇 22 μm filter and stored at 2 ° C to 8 ° C. CDT-step CRM 9 matrix exchange: diafiltration of CRMi97 to exchange about 1 mM phosphate / 80 mM NaCL / 15% sucrose whole matrix (pH 7) into 5 mM imidazole / 0.72% NaCl / 15 mM xin --β-D-glucoside glucoside (pH 7). Exchange can remove phosphate and sucrose that are detrimental to binding and will limit the amount of sodium chloride delivered to the bond. The octyl_p_D_glucopyranoside is added to prevent the formation of particles after sterile filtration. Exchange of (^]^197 matrix by tangential flow, relative to 5 mM saliva/0.72% NaCl/15 mM octyl-β-D-glucopyranoside (pH 7) (via 10 dialysis Filtration volume multiple 'use 10K MWCO PES film, retention concentration is about 4 mg / mL,) typical film limit is 2 g / ft 2, and the final target crm197 concentration in the matrix is 6 mg / mL. CRMi97 at 2 ° C to Storage at 8 ° C. Activation / binding: S. aureus serotype 5 capsular polysaccharide activation / binding method consists of the following steps: 1) compounding the polysaccharide; 2) shell freezing and lyophilization CRM] 97 and compounding Polysaccharide; 3) Dissolve lyophilized polysaccharide and; 4) Activate polysaccharide; 5) Combine activated polysaccharide with CRMm; and 6) Purify knot J49159.doc -102- 201110977 Compound (dilution, diafiltration, sterile filtration) ). The polysaccharide is combined with 10 grams of 1,2,4-triazole excipient per gram of polysaccharide. The excipients are added to the polysaccharide in powder form and a solution is obtained after mixing for less than 15 minutes at ambient temperature. The combined polysaccharide and CRM197 were shell-frozen using a -75 °C ethanol bath, respectively. The volume per 1 L of bottle is approximately 500 mL. To dissolve the polysaccharide, DMSO is added to individual freeze-dried vials of the polysaccharide to obtain a suspension which is then transferred to an activation/binding reaction vessel for heating. DMSO was added until a concentration of 2 g/L was obtained. A clear solution was obtained after 5 to 10 minutes of mixing. To dissolve CRM197, DMSO was added to individual lyophilized vials containing CRM197 to obtain a suspension, which was then transferred to a second vessel for mixing. DMSO was added until a concentration of 2 g/L was obtained. A clear solution is usually obtained in less than 15 minutes. A card-fee analysis was performed on the polysaccharide/DMSO solution to determine the moisture content. CDT was prepared as a 100 mg/mL solution in DMSO and added in a 5 molar excess to the type 5 polysaccharide (20 molar equivalent CDT was used in the complex method and 5 mole equivalent CDT: CP5 in one step). The CDT solution was continuously added over 5 minutes at 23 ° C + 2 ° C with mixing. The reaction was carried out at 23 ° C ± 2 ° C for a minimum of 30 minutes. The reactants were sampled to determine the degree of activation (UV 220/205 nm), followed by the addition of 100 mM sodium borate (pH 9) to obtain 1.5 °/. Aqueous solution. Next, the reaction solution was stirred at 23 ° C + 2 ° C for a minimum of 30 minutes. In order to bind the activated polysaccharide to CRM197, DMSO was added to obtain a reaction concentration of 0.55 mg/mL. CRM197 dissolved in DMSO is then added to the activated polysaccharide solution under mixing 149159.doc • 103-201110977. Stir the reaction for at least 16 hours under phantom ^^^. The reaction solution was diluted 1 〇 with 5 mM sodium tetraborate (ρΗ 86) to obtain a final diluted solution (pH (4). 2). The solution was stirred at 23 t ± 2 t for a minimum of 4 hours. The diluted solution was passed through a 5 μm filter and concentrated to 2 g/Li target retention/length. Tangential flow filtration was carried out using 5 mM succinate (ppj 7), using a diafiltration filter volume of 20 diafiltration filters, using a 300K regenerated cellulose film. The typical diaphragm is limited to 1 g/ft2. The purified conjugate was passed through a 〇 22 μm filter ' and at 2. (: Store at 8 ° C. Example 12: Combining serotype 5 capsular polysaccharides using one-step and complex binding methods This example shows that capsular polysaccharides with pre-selected molecular weight ranges can be used in one-step or complex methods. Combining. Firstly, the bacterial cells produce larger vinegar' and the molecular weight range can be controlled by the pH of the hydrolysis process of Example 9 and heating. In this example, the molecular weight of the selected gold capsular polysaccharide is about 90 kDa. Up to 8 batches in the range of about 140 kDa, and combined using triazole (CDT) activation in the one-step or complex method described above. See Table 19. The molecular weight of the resulting conjugate is in the range of 1125 kDa to 2656 kDa. The number of bound lysines in CRM ranges from a high value of 22 to a low value of 15. Free sugars range from a high value of 23% to a low value of 11%. 149159.doc -104- 201110977 Table 19: Use 90 kDa to 140 kDa Method for the preparation of capsular polysaccharides by serotype 5 capsules conjugate method. Polysaccharide MW (kDa) Sugar yield (%) Free sugar (%) MW, one step by SEC-MALLS (kDa) lysine 1 142 93 11 1932 19 2 108 93 14 1117 20 3 142 85 17 1609 15 4 108 86 2 3 1125 15 Complex method 1 121 63 11 2130 19 2 92 72 16 1533 22 3 119 74 14 2656 15 4 115 63 18 1911 15 Example 13: Serotype 5 capsular polysaccharide conjugates continue to show protection in the murine pyelonephritis model The role of the serotype 5 capsular polysaccharide conjugate in protecting the mouse in the pyelonephritis model was evaluated. The count of bacteria in the blood of mice infected with S. aureus was significantly lower than that of the control group immunized with PBS. All six individual studies showed a significant reduction in cfu/ml in the kidneys of immunized animals (Figure 9). When these studies were pooled for meta-analysis, the overall significance of the studies was generally increased. To less than 0.0001. The data show that renal colony formation continues to decrease after active inoculation with the capsular polysaccharide conjugate. Example 14: Serotype 5 capsular polysaccharide conjugate prepared by different binding chemistry methods protects mice from experimental infection Active immunization studies were performed in a murine pyelonephritis model using a serotype 5 capsular polysaccharide conjugate prepared by PDPH or CDT chemistry. The capsule was 149159.doc -105- 201110977 The method of binding to CRM197 is described above. The results show that both conjugates reduce colony formation in mice compared to sham-immunized animals (Table 20). Table 20: Effect of PDPH versus CDT binding on prevention of S. aureus challenge in a pyelonephritis model. Study number antigen strain/dose logCFU/kidney significance study 1 Physiological saline + Α1Ρ〇4 PFESA0266 5.53 ± 1.90 — 1 meg CP5-CRM (PDPH) +AIPO4 2x108 3.01 ± 1.83 p&lt; 0.001 Study 2 1 meg CP5-CRM ( CDT) +AIPO4 Physiological saline + aipo4 PFESA0266s 1.67±0_23 6.17 ±1.76 p&lt; 0.0001 1 meg CP5-CRM (PDPH) +AIPO4 2.7x10s 3.06 ± 1.69 p &lt; 0.0001 1 meg CP5-CRM (CDT) +AIPO4 1.87 ± 0.69 p &lt; 0.0001 Example 15: Active immunization with serotype 5 capsular polysaccharide conjugates Rats were protected in a rat endocarditis model with the CP5-CRM197 PDPH conjugate for 4 studies. After challenge with S. aureus PFESA0266, in two-thirds of the experiments, the serotype 5 capsular polysaccharide conjugate significantly reduced the recovery CFU in the heart and kidney (Table 21). In the third study, the geometric mean titer (GMT) of anti-CP5 titers was the lowest of the three experiments, but only slightly lower than previous experiments. 149159.doc •106- 201110977 Table 21: Serotype 5 capsular polysaccharide-CRM197 immunization reduced CFU in a rat endocarditis model.

Log復原CFU 顯著性 GMT 免疫原性組合物 攻毒菌株/劑量 心臟 腎 心臟 腎 CP效價 1 meg CP5-CRM PFESA0266 4.34± 1.78 3.92± 1.73 103,000 1 meg PP5-CRM 2.21xl08 efu 7_94± 0.78 6.77± 0_79 pO.OOl p&lt;0_05 1 meg CP5-CRM PFESA0266 4.43± 2.30 3.11±2.33 51,000 生理食鹽水 6.5xl07 efu 5.63± 2.48 4.19±2.05 無 無 1 meg CP5-CRM PFESA0266 4.01± 2.49 3.90± 1.92 67,000 生理食鹽水 4.〇χ108 efu 7.52± 1.38 6.52± 1.17 p&lt;0.0002 p&lt;0.0002 實例16 : HMW CP5結合物疫苗在小鼠中之免疫原性強於 LMW CP5結合物疫苗 進行鼠類腎盂腎炎研究以評估不同CP5結合物調配物之 免疫原性及效力。測試兩種調配物:第一種調配物由高分 子量(HMW)CP5(約3 00 kD)與CRM197相結合而構成。第二 種調配物含有相結合之低分子量(LMW)CP5(約25 kD)與 CRM】97。測試HMW疫苗的3種劑量濃度、oj及〇 〇1 meg)。LMW疫苗以1 meg進行測試。亦包括由多醣結合物 疫苗構成之陰性對照組’該疫苗來源於肺炎鏈球菌與 CRM]97(PP5)之結合物。在第〇、3及6週用22 meg Α1Ρ〇4調 配多醣,且在第8週用金黃色葡萄球菌PFES A〇266攻毒。 在攻毒後48小時收集腎並對細菌群落進行計數。兩種疫苗 均可有效地產生免疫反應’且在1 pg HMW與LMW疫苗處 理組之小鼠的腎中觀測到金黃色葡萄球菌PFESA〇266之 CFU減少。此減少具劑量依賴性’如依據效力隨疫苗劑量 降低而降低所示(圖10)。對於偵測HMW及LMW疫苗之效 149159.doc •107- 201110977 力差異而言,CFU讀數不夠敏感。因此,藉由opa測試小 鼠血清。OPA效價定義為在OPA分析中殺死40%金黃色葡 萄球菌菌株PFESA0266所需之血清稀釋度。可見HMW疫 苗之OPA效價高於LMW調配物(圖11)。 實例17:包含高分子量多醣之莢膜多醣結合物顯示強於包 含低分子量多醣之結合物的免疫原性 對非人類靈長類動物(NHP)進行研究以評估不同英膜結 合物調配物之免疫原性。以兩種不同劑量濃度(2吨及2〇 pg)測§式兩種調配物。第一種調配物含有相結合之高分子 量(HMW)多醣(約130 kD)與CRMw。第二種調配物含有相 結合之低分子量(LMW)多醣(約25 kD)與CRM丨97。各組5隻 靈長類動物以單次劑量之任一種疫苗接種,且在接種前及 接種後兩週監測免疫效價。OPA效價定義為在Opa分析中 殺死40%金黃色葡萄球菌菌株PFESA〇266所需之血清稀釋 度。亦藉由ELISA監測抗體效價。可見HMW疫苗之活性強 於LMW調配物(表22),如依據HMW疫苗之抗體效價為 LMW疫苗之丨〇倍所證明。接受HMW疫苗之NHP的〇pA反 應率亦更高(80%相較於40%)。 表22. H1VIW多聽結合物疫苗之免疫原性經觀測強於lmw 多醣結合物疫苗 CP5-CRM197 劑量 (meg)/動物 PD1*之幾何 平均值 OPA反應率 (%) 士 HMW(125 kD) 20 32 ~8(Γ 2 21 ~~80 LMW(25 kD) 20 3 &quot;~40 ' 2 8 40 I49159.doc -108- 201110977 *增加倍數係藉由比較接種後2週之CP5 ELISA效價與接種前之效價^^7^^ 率係根據猴子在接種單劑量疫苗後2週所產生之OPA效價增幅來計算。各組含有$ 隻恆河獼猴,且疫苗係以AlP〇4調配(250微克/劑量)。___、. 實例18 :多醣〇·乙醯化對於誘導針對血清型5莢媒多聽結 合物之保護性抗體反應具重要意義 為了評估血清型5莢膜多醣之0-乙醯化的重要性,脫除 原生莢膜多醣之0-乙醯基(dOAc)並使用上文所論述之 PDPH結合化學法結合至CRM197(dOAc-CRM197) 〇並列比較 dOAcCP-CRM197與CP5-CRM丨97在鼠類腎盂腎炎模型中之效 力。 用缺乏0-乙醯基之結合物(dOAc CP5-CRM)免疫未能減 少腎中之復原細菌CFU。此等資料(表23)表明,〇_乙醯化 對於誘導針對CP5之功能性抗體具重要意義。 表23 :用De-O-乙醯化金清型5笑膜多糖結合物免疫不能防 止小鼠腎菌落形成 研究編號 抗原 菌株/劑量 LogCFU/腎 顯著性 研究1 1 meg PP5-CRM PFESA0266 3.89 ±2.24 11 _ _ 1 meg dOAc CP5-CRM 7χ108 4.20 土 1.75 1 meg CP5-CRM 1.75 ±0.39 P值&lt;0.008 研究2 生理食鹽水 PFESA0266 5.08 ± 1.96 1 meg dOAc CP5-CRM 2.4χ108 5.89 ± 1.29 1 meg CP5-CRM 2.93 士 2.11 P值 &lt; 0.02 實例19 :使用具有已知特異性之單株抗體藉由OPA證實〇-乙醯化作為血清型5莢膜多醣之功能性抗原決定基的重 要性 評估對 OAc + (CP5-7-l)、OAc+/-(CP5-5-l)及 OAc-(CP5-6- 149J59.doc -109- 201110977 1)具特異性之血清型5莢膜多醣單株抗體針對5型菌株 PFESA0266之OP殺死活性(表24)。針對血清型8莢膜多醣 之單株抗體(對CP8 OAc+具特異性之CP8-3-1)用作陰性對 照物》 OAc特異性抗CP5 mAb CP5-7-1介導金黃色葡萄球菌 PFESA0266之殺死(表24)。又,可識別CP5 OAc+及CP5 OAc-共用之抗原決定基的單株抗體CP5-5-1介導 PFESA0266菌株之殺死。對血清型5 OAc-莢膜多醣上所存 在之抗原決定基具特異性的單株抗體不介導PFESA0266菌 株之殺死。此等結果表明,血清型5莢膜多醣上之〇-乙醯 基抗原決定基為誘發血清型5特異性抗體之功能性活性所 必需。 抗體需要具有功能性,如在證明抗體殺死細菌之動物效 力模型或s周理吞喔細胞性殺死分析中依據殺死細胞所量 測。功能性殺死作用可不單獨使用監測抗體產生之分析證 明,此種分析不能表明Ο-乙醯化在效力方面的重要性。 表24 :對Ο-乙醢化(+)血清型5莢膜多醣以及Ο-乙醯化及 De-O-乙醯化(+/·)血清型5莢膜多醣具特異性的單株抗體具 有針對金黃色葡萄球菌PFESA0266(5型)的調理性 CP5-7-l(0-Ac +) (meg) 20 10 5 2.5 CP8-3-l(-對照) (meg) 20 10 5 2.5 31 46Log restore CFU significant GMT immunogenic composition challenge strain / dose heart kidney kidney kidney CP titer 1 meg CP5-CRM PFESA0266 4.34 ± 1.78 3.92 ± 1.73 103,000 1 meg PP5-CRM 2.21xl08 efu 7_94 ± 0.78 6.77 ± 0_79 pO.OOl p&lt;0_05 1 meg CP5-CRM PFESA0266 4.43± 2.30 3.11±2.33 51,000 saline 6.5xl07 efu 5.63± 2.48 4.19±2.05 no 1 meg CP5-CRM PFESA0266 4.01± 2.49 3.90± 1.92 67,000 saline 4 〇χ108 efu 7.52± 1.38 6.52± 1.17 p&lt;0.0002 p&lt;0.0002 Example 16: HMW CP5 conjugate vaccine is more immunogenic in mice than LMW CP5 conjugate vaccine for murine pyelonephritis studies to assess different CP5 binding The immunogenicity and potency of the formulation. Two formulations were tested: the first formulation consisted of a combination of high molecular weight (HMW) CP5 (about 300 kD) and CRM197. The second formulation contains a combination of low molecular weight (LMW) CP5 (about 25 kD) and CRM]97. Three dose concentrations of the HMW vaccine, oj and 〇1 meg) were tested. The LMW vaccine was tested at 1 meg. Also included is a negative control group consisting of a polysaccharide conjugate vaccine. The vaccine is derived from a combination of S. pneumoniae and CRM] 97 (PP5). Polysaccharides were formulated with 22 meg Α1Ρ〇4 at weeks, 3 and 6 weeks, and challenged with S. aureus PFES A〇266 at week 8. The kidneys were collected 48 hours after challenge and the bacterial community was counted. Both vaccines were effective in generating an immune response&apos; and a decrease in CFU of S. aureus PFESA 266 was observed in the kidneys of mice at 1 pg HMW and LMW vaccine treatment groups. This reduction is dose dependent' as shown by the decrease in efficacy as the vaccine dose decreases (Figure 10). For the detection of HMW and LMW vaccine effects, the CFU readings are not sensitive enough. Therefore, the mouse serum was tested by opa. OPA titer was defined as the serum dilution required to kill 40% of the S. aureus strain PFESA0266 in the OPA assay. It can be seen that the OPA titer of the HMW vaccine is higher than that of the LMW formulation (Fig. 11). Example 17: A capsular polysaccharide conjugate comprising a high molecular weight polysaccharide exhibits greater immunogenicity than a conjugate comprising a low molecular weight polysaccharide. Non-human primate (NHP) was studied to assess immunity of different membrane conjugate formulations. Originality. Two formulations were tested at two different dose concentrations (2 ton and 2 〇 pg). The first formulation contained a combined high molecular weight (HMW) polysaccharide (about 130 kD) and CRMw. The second formulation contains a combination of low molecular weight (LMW) polysaccharides (about 25 kD) and CRM 丨97. Five primates in each group were vaccinated with either single dose of vaccine and immune titers were monitored before vaccination and two weeks after vaccination. The OPA titer is defined as the serum dilution required to kill 40% of the S. aureus strain PFESA〇266 in the Opa assay. Antibody titers were also monitored by ELISA. It can be seen that the activity of the HMW vaccine is stronger than that of the LMW formulation (Table 22), as evidenced by the antibody titer of the HMW vaccine as a multiple of the LMW vaccine. The 〇pA response rate of NHP receiving HMW vaccine was also higher (80% compared to 40%). Table 22. Immunogenicity of the H1VIW multi-audioconjugate vaccine was observed to be stronger than the lmw polysaccharide conjugate vaccine CP5-CRM197 dose (meg) / animal PD1* geometric mean OPA response rate (%) Shi HMW (125 kD) 20 32 ~ 8 (Γ 2 21 ~~80 LMW(25 kD) 20 3 &quot;~40 ' 2 8 40 I49159.doc -108- 201110977 * Increase the fold by comparing the CP5 ELISA titer and vaccination 2 weeks after inoculation The pre-existing titer ^^7^^ rate was calculated based on the increase in OPA titer produced by monkeys 2 weeks after inoculation of a single-dose vaccine. Each group contained $only rhesus macaques, and the vaccine was formulated with AlP〇4 (250 Micrograms/dose).___,. Example 18: Polysaccharide 〇· acetylation is important for inducing protective antibody responses against serotype 5 pod poly-conjugates in order to assess serotype 5 capsular polysaccharide 0-acetamidine Importance, remove the o-acetyl group (dOAc) of the native capsular polysaccharide and bind to CRM197 (dOAc-CRM197) using the PDPH binding chemistry discussed above. Parallel comparison of dOAcCP-CRM197 with CP5-CRM丨97. Efficacy in a murine pyelonephritis model. Immunization with a conjugate lacking 0-acetamido (dOAc CP5-CRM) failed to reduce kidney Recovering bacterial CFU. These data (Table 23) indicate that 〇_乙醯化 is important for inducing functional antibodies against CP5. Table 23: De-O-acetamidine gold-type 5 smiling membrane conjugates Immunization does not prevent mouse kidney colony formation. Numbered antigen strain/dose LogCFU/kidney significance study 1 1 meg PP5-CRM PFESA0266 3.89 ±2.24 11 _ _ 1 meg dOAc CP5-CRM 7χ108 4.20 Soil 1.75 1 meg CP5-CRM 1.75 ± 0.39 P value &lt;0.008 Study 2 Physiological saline PFESA0266 5.08 ± 1.96 1 meg dOAc CP5-CRM 2.4χ108 5.89 ± 1.29 1 meg CP5-CRM 2.93 ± 2.11 P value &lt; 0.02 Example 19: Using a single with known specificity Evaluation of the importance of 〇-acetamidine as a functional epitope of serotype 5 capsular polysaccharide by OPA for OAc + (CP5-7-l), OAc +/- (CP5-5-l) and OAc-(CP5-6-149J59.doc-109-201110977 1) Specific serotype 5 capsular polysaccharide monoclonal antibody against OP killing activity of type 5 strain PFESA0266 (Table 24). Monoclonal antibody against serotype 8 capsular polysaccharide (CP8-3-1 specific for CP8 OAc+) was used as a negative control. OAc-specific anti-CP5 mAb CP5-7-1 mediated S. aureus PFESA0266 Killed (Table 24). Furthermore, the monoclonal antibody CP5-5-1, which recognizes the epitopes shared by CP5 OAc+ and CP5 OAc, mediates the killing of the PFESA0266 strain. The monoclonal antibody specific for the epitope present on the serotype 5 OAc-capsular polysaccharide does not mediate the killing of the PFESA0266 strain. These results indicate that the 〇-acetyl thiol epitope on the serotype 5 capsular polysaccharide is necessary for inducing the functional activity of the serotype 5 specific antibody. The antibody needs to be functional, as measured by killing the cells in an animal efficacy model demonstrating that the antibody kills the bacteria or in the analysis of the killing cell killing. The functional killing effect may not use the analytical evidence of monitoring antibody production alone, and such an analysis does not indicate the importance of Ο-acetamidine in efficacy. Table 24: Monoclonal antibodies specific for Ο-acetylated (+) serotype 5 capsular polysaccharide and Ο-acetylated and De-O-acetylated (+/·) serotype 5 capsular polysaccharide Conditioning with S. aureus PFESA0266 (type 5) CP5-7-l (0-Ac +) (meg) 20 10 5 2.5 CP8-3-l (-control) (meg) 20 10 5 2.5 31 46

CP5-5-l(〇-Ac +/-) CP5-6-l(0-Ac -) (meg) (meg) _ 20 10 5 2.5 20 10 5 2.5 33 30 21 -12 -5 -12 -5 資料報導為殺死百分比,且藉由在6〇分鐘時測定具有細菌、抗體、補體及hl-60細胞之 孔中的存活CFU數目與缺乏抗體但含有細菌、補體及HL-60細胞之孔中的存活CFU數目 之比率來計算。 149159.doc -110- 201110977 實例20:由高分子量多醣構成之CP5結合物在非人類靈長 類動物(NHP)中的免疫原性經觀測強於低分子量多糖 對非人類靈長類動物(NHP)進行研究以評估不同笑膜結 合物調配物之免疫原性。以兩種不同劑量濃度(2叫及2〇 pg)測試兩種調配物。第一種調配物由高分子量(HMW)多 醣(約130 kD)與CRMm相結合而構成。第二種調配物含有 相結合之低分子量(LMW)多醣(約25 kD)與CRM197。各組5 隻靈長類動物以單次劑量之任一種疫苗接種,且在接種前 及接種後兩週監測免疫效價。OPA效價定義為在0PA分析 中殺死40%金黃色葡萄球菌菌株PFESA0266所需之血清稀 釋度。亦藉由ELISA監測抗體效價。可見HMW疫苗之活性 強於LMW調配物(表25)。HMW疫苗之抗體效價為lmv/疫 苗的3至10倍。接受HMW疫苗之NHP的OPA反應率亦更高 (80%相較於40%)。 表25 : HMW多醋結合物疫苗之免疫原性經觀測強於LMW 多醣結合物疫苗 CP5-CRM197 劑量 (meg)/動物 PD1*之幾何平均血 OPA反應率 HMW(125 kD) 20 32 80 —~- 2 21 ' 80 - LMW(25 kD) 20 3 40 '~ 2 &quot;8 40 —~ *增加倍數係藉由比較接種疫苗後2週之CP5 ELISA效價與接種&amp;前之效價 反應率係根據猴子在接種單次劑量疫苗後2週產生之OPA效價增幅來計算。各組含隻 猴,且疫苗係以AlP〇4調配(250微克/劑量)。___ 又 總結 本文所述之兩種結合化學法均產生共價連接至載體蛋白 質CRM197之血清型5莢膜多醣。此兩種方法所產生之結合 149I59.doc 201110977 物之游離醣、血清型5多_ 著差異。 蛋白質比率及產率不存在顯 本說明書中提及之所有公開 發明所屬技術者之水準。所有 用的方式併入本文中,引用的 明各個別公開案或專利申請案 般。 案及專利申請案表明熟習本 公開案及專利申請案均以引 程度如同特定地且個別地指 以引用的方式併入本文中一 雖然上述本發明為清楚理解之目的已藉㈣明及實例加 以詳述,但在隨附巾請專圍之範心仍可進行某些變 化及改進。 【圖式簡單說明】 圖1展示金黃色葡萄球菌血清型8英膜多聽之重複多畴結 構(N-乙醯基胺基甘露㈣酸為ManNAeA,N乙醢基^岩 藻糖胺為L-FucNAc,且N_乙醯基D_岩藻糖胺為d_ FucNAc); 圖2A展示對金黃色葡萄球菌血清型8英膜多釀⑼乙酿基 分析)及磷壁酸(磷酸鹽分析)之離子交換層析(Q_瓊脂糖)之 溶離份的分析;圖2B展示藉由雙向免疫擴散分析分析金黃 色葡萄球菌血清型8莢膜多醣之離子交換層析(Q_瓊脂糖) 之溶離份; 圖3八展示在95(:下、在熱處理期間{)11值(35、4或5)對 降低金黃色葡萄球菌血清型8莢膜多醣分子量的影響;圖 3B展示在pH 3.5下、在熱處理期間溫度(55。〇、75。〇或 95C)對降低金黃色葡萄球菌血清型8莢膜多醣分子量的影 149159.doc •112· 201110977 響; 圖4展示純化金黃色葡萄球菌血清型8莢膜多醣相較於血 清型5莢膜多醣在熱處理期間、分別在pH 3.5及pH 4.5下及 在95°C下隨時間變化之分子量; 圖5展示相較於經A1P04處理之對照組(圓形),接受血清 型8莢膜多醣-CRM197結合物之小鼠(菱形)的存活率增加; 圖6展示金黃色葡萄球菌血清型5多醣之重複多醣結構 (#-乙醯基胺基甘露醇醛酸為ManNAcA,iV-乙醯基L-岩藻 糖胺為L-FucNAc,且TV-乙醯基D-岩藻糖胺為D-FucNAcA); 圖7A展示對金黃色葡萄球菌血清型5多醣(Ο-乙醯基分 析)及磷壁酸(磷酸鹽分析)之離子交換層析(Q-瓊脂糖)之溶 離份的分析;圖7Β展示藉由雙向免疫擴散分析分析金黃色 葡萄球菌血清型5多聽之離子交換層析(Q-瓊脂糖)的溶離 份; 圖8Α展示在95 °C下、在熱處理期間pH值(3.5、4或5)對 降低金黃色葡萄球菌血清型5莢膜多醣分子量的影響;圖 8B展示在pH 3.5下、在熱處理期間溫度(55°C、75°C或 95°C )對降低金黃色葡萄球菌血清型5莢膜多醣分子量的影 響; 圖9展示相較於經PBS處理之對照組,接受血清型5多醣-CRM197結合物之小鼠的腎盂腎炎減輕(陰影區域為經處理 之小鼠); 圖10展示在接種高分子量(HMW)CP5-CRM、低分子量 (LMW)CP5-CRM或PP5-CRM對照物之小鼠中以金黃色葡萄 149159.doc • 113 - 201110977 球菌PFESA0266攻毒後腎中之復原 (CFU);及 圖11展示自接種多醣結合物(高分 CRM、低分子量(LMW)CP5-CRM)之不同 得之血清的OPA效價(幾何平均值)之比較 小鼠組成。 落形成單位 量(HMW)CP5-配物之小鼠獲 各組由5至9隻 149159.doc 114-CP5-5-l(〇-Ac +/-) CP5-6-l(0-Ac -) (meg) (meg) _ 20 10 5 2.5 20 10 5 2.5 33 30 21 -12 -5 -12 -5 Data are reported as percent kill and by measuring the number of surviving CFUs in wells with bacteria, antibodies, complement and hl-60 cells at 6 min and in wells lacking antibodies but containing bacteria, complement and HL-60 cells The ratio of the number of surviving CFUs is calculated. 149159.doc -110- 201110977 Example 20: The immunogenicity of CP5 conjugates composed of high molecular weight polysaccharides in non-human primates (NHP) was observed to be stronger than low molecular weight polysaccharides for non-human primates (NHP) Studies were conducted to assess the immunogenicity of different laughing membrane conjugate formulations. Both formulations were tested at two different dose concentrations (2 and 2 〇 pg). The first formulation consists of a combination of high molecular weight (HMW) polysaccharide (about 130 kD) and CRMm. The second formulation contained a combination of low molecular weight (LMW) polysaccharides (about 25 kD) and CRM197. Five primates in each group were vaccinated with either single dose of vaccine and immune titers were monitored before vaccination and two weeks after vaccination. The OPA titer is defined as the serum dilution required to kill 40% of the S. aureus strain PFESA0266 in the 0PA assay. Antibody titers were also monitored by ELISA. It can be seen that the HMW vaccine is more active than the LMW formulation (Table 25). The antibody titer of the HMW vaccine is 3 to 10 times that of the lmv/vaccine. The OPA response rate of NHP receiving HMW vaccine was also higher (80% compared to 40%). Table 25: Immunogenicity of HMW polyacetate conjugate vaccine was observed to be stronger than LMW polysaccharide conjugate vaccine CP5-CRM197 dose (meg) / animal PD1* geometric mean blood OPA response rate HMW (125 kD) 20 32 80 —~ - 2 21 ' 80 - LMW(25 kD) 20 3 40 '~ 2 &quot;8 40 —~ * Increase the fold by comparing the CP5 ELISA titer with the vaccination & pre-validation rate 2 weeks after vaccination It was calculated based on the increase in OPA titer produced by monkeys 2 weeks after inoculation of a single dose of vaccine. Each group contained monkeys and the vaccine was formulated with AlP〇4 (250 μg/dose). ___ Further Summary Both of the binding chemistry described herein produced a serotype 5 capsular polysaccharide covalently linked to the carrier protein CRM197. The combination of the two methods produced 149I59.doc 201110977 free sugar, serotype 5 more than _ difference. The protein ratio and yield are not present at all levels of the art to which all of the disclosed inventions are mentioned in the specification. All of the methods used are incorporated herein by reference to the respective publications or patent applications. The disclosure of the present invention and the patent application are hereby incorporated by reference in their entirety as if individually and individually, in Details, but in the accompanying towel, you can still make some changes and improvements. [Simplified description of the diagram] Figure 1 shows the S. aureus serotype 8 intestine multi-repeated repetitive multidomain structure (N-acetamidoamine mannose (tetra) acid for ManNAeA, N acetyl ketone fucosamide for L -FucNAc, and N_acetinyl D_fucosylamine is d_FucNAc); Figure 2A shows the S. aureus serotype 8-in-a-tube (9) ethyl-branched analysis) and teichoic acid (phosphate analysis) Analysis of the fractions of ion exchange chromatography (Q_Sepharose); Figure 2B shows the dissolution of ion exchange chromatography (Q_Sepharose) of S. aureus serotype 8 capsular polysaccharide by two-way immunodiffusion analysis Figure 3 shows the effect of reducing the molecular weight of S. aureus serotype 8 capsular polysaccharide at 95 (under, during heat treatment) (Figures 3B, at pH 3.5, The temperature (55. 〇, 75. 〇 or 95C) during heat treatment reduces the molecular weight of S. aureus serotype 8 capsular polysaccharide 149159.doc • 112· 201110977 ring; Figure 4 shows the purified S. aureus serotype 8 The capsular polysaccharide is compared to the serotype 5 capsular polysaccharide during the heat treatment, respectively at the pH 3.5 and pH at pH 4.5 and varying with time at 95 ° C; Figure 5 shows mice receiving serotype 8 capsular polysaccharide-CRM197 conjugate compared to A1P04 treated control (circle) Survival rate increased; Figure 6 shows the repeating polysaccharide structure of S. aureus serotype 5 polysaccharide (#-acetamidoamine mannitol is ManNAcA, iV-acetyl L-fucosylamine is L-) FucNAc, and TV-acetyl-D-fucosylamine is D-FucNAcA); Figure 7A shows the S. aureus serotype 5 polysaccharide (Ο-acetamidine analysis) and teichoic acid (phosphate analysis) Analysis of the fractions of ion exchange chromatography (Q-Sepharose); Figure 7A shows the analysis of the dissociation of S. aureus serotype 5 multi-tone ion exchange chromatography (Q-Sepharose) by two-way immunodiffusion analysis; Figure 8A shows the effect of pH (3.5, 4 or 5) on reducing the molecular weight of S. aureus serotype 5 capsular polysaccharide at 95 °C during heat treatment; Figure 8B shows the temperature during heat treatment at pH 3.5 ( 55 ° C, 75 ° C or 95 ° C) to reduce the molecular weight of S. aureus serotype 5 capsular polysaccharide Effect; Figure 9 shows that pyelonephritis was reduced in mice receiving serotype 5 polysaccharide-CRM197 conjugate compared to the PBS-treated control group (shaded area was treated mice); Figure 10 shows high molecular weight inoculation (HMW) CP5-CRM, low molecular weight (LMW) CP5-CRM or PP5-CRM control in mice with golden yellow grapes 149159.doc • 113 - 201110977 cocci PFESA0266 after kidney recovery (CFU); Figure 11 shows a comparative mouse composition of OPA titers (geometric mean) of serum obtained from inoculated polysaccharide conjugates (high score CRM, low molecular weight (LMW) CP5-CRM). The mouse forming unit (HMW) CP5-ligand was obtained from 5 to 9 mice in each group. 149159.doc 114-

Claims (1)

201110977 七、申請專利範圍: 1. 一種免疫原性多醋-蛋白質結合物,其包含與載體蛋白質 結合之为離之金黃色葡萄球菌awrews)血 清型8莢膜多醣,其中: a)該多酶之分子量為2〇 kDa至1000 kDa。 2·如請求項1之免疫原性結合物,其中該免疫原性結合物 之分子量為200 kDa至5 000 kDa。 3 _ 一種免疫原性多醣-蛋白質結合物,其包含與載體蛋白質 結合之分離之金黃色葡萄球菌血清型5莢膜多醣,其 中: a)該多醣之分子量為2〇 kDa至1000 kDa。 4. 如請求項3之免疫原性結合物,其中該免疫原性結合物 之分子量為200 kDa至5000 kDa。 5. 如請求項1至4中任一項之,免疫原性結合物,其中該多醣 之分子量範圍為70 kDa至300 kDa。 6. 如請求項1至5中任一項之免疫原性結合物,其中該結合 物之分子量範圍為5〇〇 kDa至2500 kDa。 7·如請求項1至4中任一項之免疫原性結合物,其中該多醣 之◦-乙醯化度為10〇/〇至100〇/〇。 8. 如請求項7之免疫原性結合物,其中該多醣之0-乙醯化 度為 50% 至 1〇〇〇/((。 9. 如請求項7之免疫原性結合物,其中該多醣之〇-乙醯化 度為 75°/。至 100%。 1〇·如請求項7至9中任一項之免疫原性結合物,其中如在動 149159.doc 201110977 物效力模型或調理吞噬細胞性殺死分析中依據殺死細菌 所量測’該免疫原性化合物可產生功能性抗體。 11.如請求項1至10中任一項之免疫原性結合物,其中該載 體蛋白質為CRM197。 12 ·如凊求項11之免疫原性結合物,其中該CRMi97係經由胺 基甲酸酯鍵、醯胺鍵或二者共價連接至該多醣。 13. 如請求項11或12之免疫原性結合物,其中結合離胺酸與 CRM〗97之莫耳比為約1〇: 1至約25:1。 14. 如請求項π之免疫原性結合物,其中在該多醣之至少每 5至10個酿重複單元中存在至少一個介於cRMm#多_ 之間的共價鍵。 15. 如請求項π或14之免疫原性結合物,其中在該多醣之每 5個醣重複單元中存在至少一個介於CRMm與多醣之間 的鍵。 16. 如請求項U至15中任一項之免疫原性結合物,其中該 CRMm包含5至22個共價連接至該多醣的離胺酸。 17·如請求項16之免疫原性結合物,其中該CRMm包含8至 15個共價連接至該多醣的離胺酸。 18. 如凊求項i至17中任一項之免疫原性結合物,以5或$型 多醣之總量計’該免疫原性結合物包含小於30%之游離5 或8型多醣。 19. 如請求項18之免疫原性結合物,以5或8型多醣之總量 十°亥免疫原性結合物包含小於20%之游離5或8型多 醣。 149l59.doc 201110977 2 0 · —種免疫原性組合物,其包含如請求項1至丨9中任一項 之免疫原性結合物及至少一種佐劑、稀釋劑或載劑。 2 1 ·如請求項20之免疫原性組合物,其中該佐劑為基於鋁之 佐劑。 22. 如請求項21之免疫原性組合物,其中該佐劑係選自由磷 酸鋁、硫酸鋁及氫氧化鋁組成之群。 23. 如請求項21之免疫原性組合物,其中該佐劑為磷酸鋁。 24. 如請求項20至23中任一項之免疫原性組合物,以5或8型 多醣之總ΐ計,該免疫原性組合物包含小於3〇%之游離5 或8型多酷。 25_如清求項24之免疫原性組合物,以5或8型多醋之總量 δ十,§亥免疫原性組合物包含小於2〇〇/。之游離5或8型多 醣。 26. —種誘導個體中之針對金黃色葡萄球菌也清型5或血清 型8莢膜多醣結合物之免疫反應的方法,該方法包括向 該個體投與免疫有效量之如請求項2〇至25中任一項之免 疫原性組合物。 27. -種產生免疫原性多醣_蛋白質結合物的方法,該結合物 . 包含與載體蛋白質結合之分離之金黃色葡萄球“清型 • 8莢膜多醣,該方法包含如下步驟: a) 使分離之金黃色葡萄球菌血清型8莢膜多醣與羰基 二-三嗤(CDT)在有機溶劑中反應,產生活化之血清型8 多醣;及 b) 使該活化血清型8多醣與載體蛋白質在有機溶劑中反 149159.doc 201110977 應,產生血清型8多醣:載體蛋白質結合物; 其中產生包3金黃色葡萄球菌血清型8英膜多釀·載體 蛋白質結合物的免疫原性結合物。 a 28. -種產生免疫原性多醋·蛋白質結合物的方法,該結 包含與載體蛋白質結合之分離之金黃色葡萄球菌金:型 5莢膜多醣,該方法包括如下步驟: 型5莢膜多聽與幾基 產生活化之血清型5 a)使分離之金黃色葡萄球菌血清 二-三嗤(CDT)在有機溶劑中反應, 多醣;及 W吏該活化血清型5多醣與載體蛋白質在有機溶劑中反 應,產生血清型5多醣:載體蛋白質結合物; 其中產生包含金黃色葡萄球菌灰清型5莢膜多醣-栽體 蛋白質結合物的免疫原性結合物。 29.如睛求項27或請求項28之方法,其進一步包括: 凍乾忒分離之多醣;及將該凍乾之多醣再懸浮於有機 溶劑中。 30.如請求項27至29中任一項之方法,其中該活化之分離多 醣係先自活化反應中分離後,再與載體蛋白質反應。 3 1.如凊求項3 〇之方法’其中步驟b)包括: 0 /東乾該分離之活化之分離多醣,產生凍乾之活化之 分離多醣; Η)象乾該載體蛋白質,產生凍乾之載體蛋白質;及 U1)將該凍乾之活化之分離多醣及該凍乾之載體蛋白質 再懸浮於有機溶劑中,產生活化之分離多醣與載體蛋白 149159.doc 201110977 質之混合物。 32. 如請求項27至31中任一項之方法,其進一步包括將步驟 b)之該反應混合物於緩衝液中稀釋及在約2〇艺至約26它 下維持約8.8至約9.2之pH值至少4小時。 33. 如請求項27至31中任一項之方法,其進一步包括將步驟 b)之該反應混合物於緩衝液中稀釋及在約23。〇下維持約 9.0之pH值至少4小時。 其進一步包括分離該 3 4.如請求項27至33中任一項之方法 金黃色葡萄球菌血清型莢膜多醣_載體蛋白質結合物 其中該有機溶劑為極 3 5.如請求項2 7至3 4中任一項之方法 性非質子性溶劑。 36·如請求項35之方法,其中該極性非質子性溶劑係選自由 二曱亞砜(DMSO)、二曱基甲醯胺(DMF)、二甲基乙醯 胺、iV-曱基-2L定酮及六甲基破㈣胺㈣叫組成之 群。 3 7 _如§青求項3 6之方法,盆φ兮亡地,上 右 共〒5亥有機溶劑為二曱亞砜 (DMSO)。 38·如§青求項27及29至37中任一 ι盲之古本 甘心 ,τ仕項之方法,其甲該使多醣與 CDT反應之步驟包括測定金黃色葡萄球菌血清型8笑膜多 醣中之水含量,及調節CDTiJl声,* 5 w η即辰度,直至有機溶劑中cDT: 水之莫耳比為約1: i。 39. 如請求項27及29至38中任—項之方法,其中該使多釀與 CDT反應之步驟包括測定金黃色葡萄球菌血清型8莢膜多 醣中之水含量及調節CDT濃度直至有機溶劑中CDT水之 149159.doc 201110977 莫耳比為約0.5:1。 40·如請求項27及29至38中任一瑁夕古1 ^ 項之方法,其中該使多醣與 CDT反應之步驟包括測定金黃 、巴阄甸球鹵血清型莢膜8多 醣中之水含量及調節CDT濃度, 且主有機洛劑中CDT:水 之莫耳比為約0.75:1。 41. 如請求項28至37中任一項之方法,甘七 貝之方法,其中該使血清型5多 醣與CDT反應之步驟包括提供韶 仍诙仏超過多醣莫耳量約2〇倍的 CDT。 42. 如請求項28至37及41中任—瑁夕古、土 孙 貝之方法,其中該血清型5 多聰CDT於有機溶劑混合物中 ^ T的水,晨度係s周節至〇丨。/〇至 0.3〇/〇。 43. 如請求項42之方法,其中該水濃度係調節至〇2%。 44. 如請求項29至43中任一項之太本 甘士— \ $ &lt;方法,其中該分離活化之血 清型多醣之步驟包括透析過渡。 45,如請求項27至44中任一頊夕古土 丁饮項之方法,其中在凍乾前,相對 於NaCl透析過濾該載體蛋白質,且將NaCi/蛋白質載體 蛋白質之重量比調節至約〇.5至約1 5。 46. 如請求項27至45中任一項之方法,其中該载體蛋白質為 CRM 1 97 0 47. 如請求項46之方法,其中該活化之血清型多 依約1:1之重量比反應。 48. 如請求項27至47中任-項之方法,其中該分離之金黃色 葡萄球菌血清型莢膜多醣係先與咪唑或三唑混合後,再 於有機溶劑中與CDT混合。 149159.doc 201110977 49. 如請求項27至48中任一項之方法,其進一步包括水解該 血清型多醣-載體蛋白質結合物,以移除未反應之活性美 團。 50. —種製造免疫原性結合物的方法,該結合物包含與戴體 蛋白質結合之分離之金黃色葡萄球菌血清型8莢犋多 醣,該方法包括如下步驟: a) 使金黃色葡萄球菌血清型8莢膜多醣與3_(2_π比啶旯 二硫基)-丙醯肼(PDPH)及碳化二亞胺於有機溶劑=二 應’產生PDPH連接之多醣; b) 使PDPH連接之多醣與還原劑反應,產生活 匕之多 醣; c) 分離該活化之血清型8多醣,產生分離之活化血清】 8多醣; β d) 提供活化之載體蛋白質; e) 使該分離之活化血清型8多醣與該活化之载體蛋白質 反應,產生血清型8多醣-載體蛋白質結合物;藉此產生 包含與载體蛋白 之五汽色葡萄球菌血清型 法,該結合物包含與載體 葡萄球菌血清型5莢膜多 質結合之分離 51. 8莢膜多醣之免疫原性結合物。 一種製造免疫原性結合物的方 蛋白質結合之分離之金黃色 醣’該方法包括如下步驟: 莢膜多醣與3-(2-比啶基 二亞胺於有機溶劑中反 a)使金黃色葡萄球菌血清型5 二硫基)-丙醯肼(PDPH)及碳化 應’產生PDPH連接之多醣; 149159.doc 201110977 b) 使PDPH連接之多醣與還原劑反應,產生活化之多 醣; c) 分離該活化血清型5多醣,產生分離之活化血清型5 多醣; d) 提供活化之載體蛋白質; e) 使該分離之活化血清型5多醣與該活化之載體蛋白質 反應,產生血清型5多醣-载體蛋白質結合物;藉此產生 包含與載體蛋白質結合之分離之金黃色葡萄球菌血清型 5莢膜多醣之免疫原性結合物。 52. 53. 54. 55. 56. 57. 如請求項50或請求項51之方法,其中分離該活化之載體 蛋白質後,再使該活化之載體蛋白質與該活化之多醣反 應。 如清求項5 0至5 2中任一項之方法,其中·· 步驟c)進一步包括凍乾該分離之活化血清型8多醣,產 生凍乾之活化血清型多醣。 如請求項50至53中任-項之方法,其中該有機溶劑為極 性非質子性溶劑。 如請求項54之方法’其中該極性非質子性溶劑係選自由 二甲亞砜(DMSO)、二甲基甲醯胺(DMF)、二甲基乙醯 胺、沁甲基·2_吡咯啶酮及六曱基磷醯胺(HMpA)組成之 群。 、 如請求項55之方法,其中該極性非質子性溶劑為二甲亞 砜(DMSO) 〇 如請求項5G至56中任-項之方法,其中該碳化二亞胺為 149159.doc 201110977 1-乙基-3-(3-二曱基胺基丙基)-碳化二亞胺(EdaC)。 58. 如請求項50至57中任一項之方法,其中該使血清型笑膜 多醣與PDPH及EDAC於有機溶劑中反應之步驟包括維持 約1:5:3之多醣:PDPH.EDAC重量比。 59. 如請求項50至58中任一項之方法,其中該還原劑為二硫 蘇糖醇(DTT)。 60. 如請求項50至59中任一項之方法’其中該載體蛋白質之 活化包括使載體蛋白質與溴乙酸反應。 61. 如請求項60之方法,其中該溴乙酸包含溴乙酸羥基 丁二醯亞胺酯(BAANS)。 62. 如請求項50至61中任一項之方法,其中該分離活化血清 型多醣之步驟包括透析過濾。 63·如請求項50至62中任一項之方法其中該分離活化載體 蛋白質之步驟包括透析過濾。 64.如请求項5〇至63中任一項之方法其進一步包括水解血 清型多醣-載體蛋白質結合物以移除未反應之活性基團的 步驟。 65. 66. 67. 月长項64之方法,其中該水解血清型多酿載體蛋白質 結合物之步驟包括添加半胱胺鹽酸鹽。 ::青求項50至65中任一項之方法,其進一步包括分離該 i '、丨生”。口物,其包含與载體蛋白質相結合之分離之 金汽色葡萄球菌血清型莢膜多醣。 :求項66之方法’其中該血清型多醣:載體蛋白質結 &amp;物之分離法包括透析過濾。 149159.doc 201110977 68. 如請求項50至67中任一項之方法,其中該載體蛋白質為 CRM 1 97 〇 69. 如請求項68之方法,其中該活化血清型多醣與(:尺]^】97依 約1:1之重量比反應。 70. 如請求項27至69中任一項之方法,其中該活化多醣的分 子大小為約20 kDa至約1〇〇〇 kDa。 71 ·如請求項70之方法,其中該活化多醣的分子大小為約5〇 kDa至 500 kDa。 72. 如請求項27至71中任一項之方法,其中該免疫原性多醣_ 蛋白質結合物之分子大小為4〇〇 kDa至約5000 kDa。 73. —種免疫原性結合物,其係由如請求項27至72中任一項 之方法產生。 74. 如請求項73之免疫原性結合物,其包含的游離多醣超過 約1 %且小於約30%。 75. 如請求項73之免疫原性結合物,其包含小於約2〇%之游 離多醋。 76. —種免疫原性組合物,其包含如請求項73至75中任一項 之免疫原性結合物及至少一種佐劑、稀釋劑或載劑。 77. 如請求項76之免疫原性組合物’其中該佐劑為基於紹之 佐劑。 78. 如請求項77之免疫原性組合物,其中該佐劑係選自由石舞 酸鋁、硫酸鋁及氫氧化鋁組成之群。 79. 如請求項78之免疫原性組合物’其中該佐劑為碟酸在呂。 80. 如請求項76至79中任一項之免疫原性組合物,以各型多 149159.doc -10- 201110977 醣之總量計,該免疫原性組合物包含小於30%之游離各 型多醣。 8 1 ·如請求項80之免疫原性組合物,以各型多醣之總量計, 該免疫原性組合物包含小於20%之游離各型多醣。 82. —種共價結合至載體蛋白質之金黃色葡萄球菌8型莢膜 多醣’該莢膜多醣之分子量為2〇 kDa至1000 kDa ;其中 該多·與該載體蛋白質之共價結合物之組合分子量為約 200 kDa至 5000 kDa。 83. —種共價結合至載體蛋白質之金黃色葡萄球菌$型莢膜 多醋’該莢膜多醣之分子量為2〇 kDa至1〇〇〇 kDa ;其中 該多釀與載體蛋白質之共價結合物之組合分子量為約 200 kDa至 5000 kDa。 84. 如請求項82或請求項83之共價結合至載體蛋白質之多 ’其中該多醣之分子量範圍為7〇 kDa至300 kDa。 85. 如請求項82或請求項83之共價結合至載體蛋白質之多 酷’該共價結合物之分子量範圍為500 kDa至2500 kDa。 86. 如請求項82或請求項83之共價結合至載體蛋白質之多 醣,其中該載體蛋白質為CRM197。 .87·如請求項86之共價結合至載體蛋白質之多醣,其中該 • CRM】97係經由胺基甲酸酯鍵、醯胺鍵或二者共價連接至 該多醣。 88.如請求項86或請求項”之共價結合至載體蛋白質之多 酷’其中結合離胺醆與CRM197之莫耳比為約1〇:1至約 25:1 〇 149159.doc 201110977 89_如請求項88之共價結合至载體蛋白質之多醣,其中在該 多醣之至少每5至10個醣重複單元中存在至少一個介於 CRM197與多醣之間的共價鍵。 90. 如請求項88或請求項89之共價結合至載體蛋白質之多 聽’其中在該多醣之每5個醣重複單元中存在至少一個 介於CRM197與多醣之間的鍵。 91. 如請求項88至89中任一項之共價結合至載體蛋白質之多 膽,其中該CRM〗9?包含5至22個共價連接至該多醣的離 胺酸。 92. 如請求項91之共價結合至載體蛋白質之多醣,其中該 CRM〗97包含8至15個共價連接至該多醣的離胺酸。 93. —種免疫原性組合物’其包含如請求項82至%中任—項 之共彳貝結合至載體蛋白質之多醣及至少一種佐劑、稀釋 劑或載劑。 94. 如請求項93之免疫原性組合物,其中該佐劑為基於鋁之 佐劑。 95. 如請求項94之免疫原性組合物,其中該佐劑係選自由磷 酸紹、硫酸鋁及氫氧化鋁組成之群。 96·如請求項95之免疫原性組合物,其中該佐劑為磷酸鋁。 97. —種減輕或預防個體之葡萄球菌感染、與葡萄球菌相關 之疾病或病狀的方法,該方法包括向該個體投與免疫有 效量之如請求項20至25及76至81及93至96中任一項之免 疫原性組合物的步驟。 98_如請求項97之方法,其中該感染、疾病或病狀係選自由 149159.doc •12· 201110977 j襲性金黃色葡萄球菌、敗血症及帶原者組成之群。 種減私或預防經歷外科程序之個體之葡萄球菌感染的 方法’該方法包括在該外科程序前向該個體投與免疫有 效量之如請求項20至25及76至81及93至96中任一項之免 疫原性組合物的步驟。 如哨求項97至99中任-項之方法,其中該個體為人類、 家養寵物或牲畜。 ιοί. —種分離分子量為20至1〇〇〇 kDa之金黃色葡萄球菌莢膜 多醣的方法,該方法包括對細菌細胞懸浮液進行酸性熱 處理之步驟。 102. —種抗體,其係由本發明之莢膜多醣、免疫原性結合物 或免疫原性組合物產生。 103‘如請求項1 〇2之抗體’其中如在動物效力模型或調理吞 嗤細胞性殺死分析中依據殺死細菌所量測,該抗體具功 能性。 149159.doc201110977 VII. Patent application scope: 1. An immunogenic poly- vinegar-protein conjugate comprising a serotype 8 capsular polysaccharide of S. aureus awrews in combination with a carrier protein, wherein: a) the multi-enzyme The molecular weight is from 2 〇 kDa to 1000 kDa. 2. The immunogenic conjugate of claim 1, wherein the immunogenic conjugate has a molecular weight of from 200 kDa to 5 000 kDa. 3 _ An immunogenic polysaccharide-protein conjugate comprising an isolated S. aureus serotype 5 capsular polysaccharide in combination with a carrier protein, wherein: a) the polysaccharide has a molecular weight of from 2 〇 kDa to 1000 kDa. 4. The immunogenic conjugate of claim 3, wherein the immunogenic conjugate has a molecular weight of from 200 kDa to 5000 kDa. 5. The immunogenic conjugate according to any one of claims 1 to 4, wherein the polysaccharide has a molecular weight ranging from 70 kDa to 300 kDa. The immunogenic conjugate according to any one of claims 1 to 5, wherein the conjugate has a molecular weight ranging from 5 〇〇 kDa to 2500 kDa. The immunogenic conjugate according to any one of claims 1 to 4, wherein the polysaccharide has a ◦-acetylation degree of from 10〇/〇 to 100〇/〇. 8. The immunogenic conjugate of claim 7, wherein the polysaccharide has a degree of 0-acetylation of 50% to 1%/(( 9. The immunogenic conjugate of claim 7 wherein多糖 醯 醯 醯 醯 醯 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 In the phagocytic killing assay, the immunogenic compound is capable of producing a functional antibody according to the method of killing the bacterium. The immunogenic conjugate according to any one of claims 1 to 10, wherein the carrier protein is CRM197. The immunogenic conjugate of claim 11, wherein the CRMi97 is covalently linked to the polysaccharide via a urethane linkage, a guanamine linkage, or both. 13. As claimed in claim 11 or 12. An immunogenic conjugate wherein the molar ratio of the combination of lysine to CRM 97 is from about 1 :1 to about 25:1. 14. An immunogenic conjugate according to claim π, wherein at least the polysaccharide is present There is at least one covalent bond between cRMm# and more than every 5 to 10 brewing repeat units. 15. If the request item π or 14 is exempted a pro-conjugate, wherein at least one bond between the CRMm and the polysaccharide is present in every 5 sugar repeat units of the polysaccharide. 16. The immunogenic conjugate of any one of claims U to 15, wherein The CRMm comprises from 5 to 22 lysines covalently linked to the polysaccharide. The immunogenic conjugate of claim 16, wherein the CRMm comprises from 8 to 15 lysines covalently linked to the polysaccharide. 18. The immunogenic conjugate according to any one of items 1 to 17, wherein the immunogenic conjugate comprises less than 30% of a free 5 or 8 type polysaccharide, based on the total amount of the 5 or $ type polysaccharide. The immunogenic conjugate of claim 18, wherein the total immunoconjugate of the 5 or 8 type polysaccharide comprises less than 20% of the free 5 or 8 type polysaccharide. 149l59.doc 201110977 2 0 · An immunogenic composition comprising the immunogenic conjugate of any one of claims 1 to 9 and at least one adjuvant, diluent or carrier. 2 1 . The immunogenic composition of claim 20. Wherein the adjuvant is an aluminum-based adjuvant. 22. The immunogenic composition of claim 21, wherein the adjuvant The group consisting of aluminum phosphate, aluminum sulfate, and aluminum hydroxide. 23. The immunogenic composition of claim 21, wherein the adjuvant is aluminum phosphate. 24. The method of any one of claims 20 to 23 An immunogenic composition comprising less than 3% by weight of free 5 or 8 type, based on the total oxime of the 5 or 8 type polysaccharide. 25_Immunogenic composition of claim 24 , the total amount of 5 or 8 type vinegar is δ, and the oxime immunogenic composition contains less than 2 〇〇 /. Free 5 or 8 type polysaccharides. 26. A method of inducing an immune response against a S. aureus serotype 5 or serotype 8 capsular polysaccharide conjugate in an individual, the method comprising administering to the individual an immunologically effective amount as claimed in claim 2 An immunogenic composition according to any one of the preceding claims. 27. A method of producing an immunogenic polysaccharide-protein conjugate comprising a separate golden yellow grape sphere "clear type 8 capsular polysaccharide" in combination with a carrier protein, the method comprising the steps of: a) The isolated S. aureus serotype 8 capsular polysaccharide reacts with carbonyl di-triazine (CDT) in an organic solvent to produce an activated serotype 8 polysaccharide; and b) the activated serotype 8 polysaccharide and the carrier protein are organic In the solvent, 149159.doc 201110977 should produce a serotype 8 polysaccharide: carrier protein conjugate; wherein an immunogenic conjugate of the Saccharomyces cerevisiae serotype 8 infusion of the carrier protein binding is produced. - a method of producing an immunogenic polyacetic acid-protein conjugate comprising an isolated S. aureus gold: type 5 capsular polysaccharide in combination with a carrier protein, the method comprising the steps of: a serotype that activates a few bases 5 a) reacts the isolated S. aureus serum di-triterpene (CDT) in an organic solvent, a polysaccharide; and W 吏 the activated serotype 5 The sugar is reacted with the carrier protein in an organic solvent to produce a serotype 5 polysaccharide: carrier protein conjugate; wherein an immunogenic conjugate comprising a S. aureus ash clear type 5 capsular polysaccharide-carrier protein conjugate is produced. The method of claim 27 or claim 28, further comprising: lyophilizing the isolated polysaccharide; and resuspending the lyophilized polysaccharide in an organic solvent. 30. The method of any one of claims 27 to 29 The method wherein the activated isolated polysaccharide is first separated from the activation reaction and then reacted with the carrier protein. 3 1. The method of claim 3, wherein step b) comprises: 0 / Donggan the activation of the separation Separating the polysaccharide to produce a lyophilized activated polysaccharide; Η) drying the carrier protein to produce a lyophilized carrier protein; and U1) resuspending the lyophilized activated polysaccharide and the lyophilized carrier protein in an organic In the solvent, a mixture of the activated isolated polysaccharide and the carrier protein 149159.doc 201110977. The method of any one of claims 27 to 31, further comprising the step b) The mixture is diluted in a buffer and maintained at a pH of from about 8.8 to about 9.2 for at least 4 hours from about 2 Torr to about 26. 33. The method of any one of claims 27 to 31, further comprising the step of b) The reaction mixture is diluted in a buffer and maintained at a pH of about 9.0 at about 23 Torr for at least 4 hours. It further comprises isolating the 3 4. The method of any one of claims 27 to 33 is golden yellow. Staphylococcal serotype capsular polysaccharide-carrier protein conjugate wherein the organic solvent is a polar 3 5. The methodic aprotic solvent of any one of claims 27 to 34. 36. The method of claim 35, wherein the polar aprotic solvent is selected from the group consisting of disulfoxide (DMSO), dimercaptomethylamine (DMF), dimethylacetamide, iV-mercapto-2L The ketone and hexamethyl broken (tetra) amine (four) are called the group. 3 7 _ If § Qing seeking item 3 6 method, the pot φ 兮 兮 , , , , , , , 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机38. If § Qing Qi 27 and 29 to 37 are in any way, the method of τ Shi Xiang, the method of reacting the polysaccharide with CDT includes determining the S. aureus serotype 8 in the laughing polysaccharide. The water content, and adjust the CDTiJl sound, * 5 w η is the end, until the organic solvent in the cDT: water molar ratio is about 1: i. 39. The method of any one of clauses 27 and 29, wherein the step of reacting the multi-brewed with the CDT comprises determining the water content of the S. aureus serotype 8 capsular polysaccharide and adjusting the CDT concentration to the organic solvent. Medium CDT Water 149159.doc 201110977 Mo ratio is about 0.5:1. 40. The method of any one of claims 27 and 29 to 38, wherein the step of reacting the polysaccharide with the CDT comprises determining the water content of the golden, glutinous serotonic capsular 8 polysaccharide. And adjusting the concentration of CDT, and the molar ratio of CDT:water in the main organic agent is about 0.75:1. The method of any one of claims 28 to 37, wherein the step of reacting the serotype 5 polysaccharide with the CDT comprises providing a CDT which is about 2 times more than the polysaccharide molar amount. . 42. In the case of claims 28 to 37 and 41, the method of 瑁 古 古 , 土 贝 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , . /〇 to 0.3〇/〇. 43. The method of claim 42, wherein the water concentration is adjusted to 〇2%. 44. The method according to any one of claims 29 to 43 wherein the step of isolating the activated serum-type polysaccharide comprises a dialysis transition. The method of any one of claims 27 to 44, wherein the carrier protein is diafiltered against NaCl before lyophilization, and the weight ratio of the NaCi/protein carrier protein is adjusted to about 〇. .5 to about 1 5. The method of any one of claims 27 to 45, wherein the carrier protein is CRM 1 97 0 47. The method of claim 46, wherein the activated serotype is reacted in a weight ratio of about 1:1 . The method of any one of clauses 27 to 47, wherein the isolated S. aureus serotype capsular polysaccharide is first mixed with imidazole or triazole and then mixed with CDT in an organic solvent. The method of any one of claims 27 to 48, further comprising hydrolyzing the serotype polysaccharide-carrier protein conjugate to remove unreacted active melons. 50. A method of making an immunogenic conjugate comprising an isolated S. aureus serotype 8 viburnum polysaccharide in combination with a wearer protein, the method comprising the steps of: a) allowing S. aureus serum Type 8 capsular polysaccharide and 3_(2_π-bipyridinium dithio)-propionate (PDPH) and carbodiimide in organic solvent=二应' to produce PDPH-linked polysaccharide; b) PDPH-linked polysaccharide and reduction The agent reacts to produce a polysaccharide of live sputum; c) isolates the activated serotype 8 polysaccharide to produce an isolated activated serum] 8 polysaccharide; β d) provides an activated carrier protein; e) activates the isolated activated serotype 8 polysaccharide The activated carrier protein reacts to produce a serotype 8 polysaccharide-carrier protein conjugate; thereby producing a S. serovar serotype method comprising the carrier protein and the carrier Staphylococcus serotype 5 capsule Separation of multi-mass combination 51. 8 immunoconjugate of capsular polysaccharide. A method for producing an immunogenic conjugate that binds to an isolated golden yellow sugar'. The method comprises the steps of: capsular polysaccharide and 3-(2-pyridyldiimide in an organic solvent, anti-a) to make golden yellow grapes Cocci serotype 5 dithio)-propanoid (PDPH) and carbonization should produce a PDPH-linked polysaccharide; 149159.doc 201110977 b) reacting the PDPH-linked polysaccharide with a reducing agent to produce an activated polysaccharide; c) isolating the Activating serotype 5 polysaccharide to produce an isolated activated serotype 5 polysaccharide; d) providing an activated carrier protein; e) reacting the isolated activated serotype 5 polysaccharide with the activated carrier protein to produce a serotype 5 polysaccharide-vector Protein conjugate; thereby producing an immunogenic conjugate comprising the isolated S. aureus serotype 5 capsular polysaccharide bound to the carrier protein. 52. The method of claim 50 or claim 51, wherein the activated carrier protein is isolated and the activated carrier protein is reacted with the activated polysaccharide. The method of any one of the items 50 to 5, wherein the step c) further comprises lyophilizing the isolated activated serotype 8 polysaccharide to produce a lyophilized activated serotype polysaccharide. The method of any one of clauses 50 to 53, wherein the organic solvent is a polar aprotic solvent. The method of claim 54, wherein the polar aprotic solvent is selected from the group consisting of dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide, hydrazine methyl-2-pyrrolidine a group consisting of a ketone and a hexamethylenephosphonamide (HMpA). The method of claim 55, wherein the polar aprotic solvent is dimethyl sulfoxide (DMSO), such as the method of any one of claims 5G to 56, wherein the carbodiimide is 149159.doc 201110977 1- Ethyl-3-(3-didecylaminopropyl)-carbodiimide (EdaC). The method of any one of claims 50 to 57, wherein the step of reacting the serotype lipopolysaccharide with PDPH and EDAC in an organic solvent comprises maintaining a polysaccharide of about 1:5:3: PDPH.EDAC weight ratio . The method of any one of claims 50 to 58, wherein the reducing agent is dithiothreitol (DTT). The method of any one of claims 50 to 59 wherein the activation of the carrier protein comprises reacting the carrier protein with bromoacetic acid. 61. The method of claim 60, wherein the bromoacetic acid comprises hydroxybutylide bromoacetate (BAANS). The method of any one of claims 50 to 61, wherein the step of isolating the activated serotype polysaccharide comprises diafiltration. The method of any one of claims 50 to 62, wherein the step of isolating the activated carrier protein comprises diafiltration. The method of any one of claims 5 to 63, further comprising the step of hydrolyzing the serum-type polysaccharide-carrier protein conjugate to remove unreacted reactive groups. 65. The method of Moon Length 64, wherein the step of hydrolyzing the serotype of the multi-flavored carrier protein conjugate comprises adding cysteamine hydrochloride. The method of any one of claims 50 to 65, further comprising isolating the i ', axon". The mouthpiece comprising the isolated S. aureus serotype capsule in combination with a carrier protein The method of claim 66, wherein the serotype polysaccharide: carrier protein conjugate &amp; isolation method comprises diafiltration. 149159.doc 201110977. The method of any one of claims 50 to 67, wherein the carrier The protein is CRM 1 97 〇69. The method of claim 68, wherein the activated serotype polysaccharide is reacted with (: 尺)^97 in a weight ratio of about 1:1. 70. according to any one of claims 27 to 69. The method of claim 7, wherein the activated polysaccharide has a molecular size of from about 20 kDa to about 1 〇〇〇 kDa. 71. The method of claim 70, wherein the activated polysaccharide has a molecular size of from about 5 〇 kDa to 500 kDa. The method of any one of claims 27 to 71, wherein the immunogenic polysaccharide-protein conjugate has a molecular size of from 4〇〇kDa to about 5000 kDa. 73. An immunogenic conjugate, such as The method of any one of claims 27 to 72 is produced. 74. An immunogenic conjugate comprising more than about 1% and less than about 30% free polysaccharide. 75. The immunogenic conjugate of claim 73, comprising less than about 2% free vinegar. An immunogenic composition comprising the immunogenic conjugate of any one of claims 73 to 75 and at least one adjuvant, diluent or carrier. 77. The immunogenic composition of claim 76 The adjuvant is an adjuvant based on the above. 78. The immunogenic composition of claim 77, wherein the adjuvant is selected from the group consisting of aluminum sulphate, aluminum sulfate, and aluminum hydroxide. An immunogenic composition of 78, wherein the adjuvant is a dish of acid. In an immunogenic composition according to any one of claims 76 to 79, each type is 149159.doc -10- 201110977 sugar In total amount, the immunogenic composition comprises less than 30% of the free polysaccharides. 8 1 . The immunogenic composition of claim 80, based on the total amount of each type of polysaccharide, the immunogenic composition comprising Less than 20% of free polysaccharides of various types. 82. A golden yellow grape covalently bound to carrier protein The capsular polysaccharide of the bacterium 8 has a molecular weight of 2 〇 kDa to 1000 kDa; wherein the combined molecular weight of the covalent conjugate with the carrier protein is about 200 kDa to 5000 kDa. The capsular polysaccharide having a molecular weight of 2〇kDa to 1〇〇〇kDa covalently bound to the carrier protein, wherein the molecular weight of the covalent conjugate of the multi-flavored carrier protein is It is about 200 kDa to 5000 kDa. 84. The covalent attachment of claim 82 or claim 83 to the carrier protein wherein the polysaccharide has a molecular weight ranging from 7 〇 kDa to 300 kDa. 85. The covalent bond of claim 80 or claim 83 to the carrier protein has a molecular weight ranging from 500 kDa to 2500 kDa. 86. A polysaccharide covalently bound to a carrier protein of claim 82 or claim 83, wherein the carrier protein is CRM197. .87. The polysaccharide covalently bound to the carrier protein of claim 86, wherein the CRM 97 is covalently attached to the polysaccharide via a urethane linkage, a guanamine linkage, or both. 88. As claimed in claim 86 or claim "covalently bound to the carrier protein, the molar ratio of the combined amidoxime to CRM197 is from about 1 :1 to about 25:1 〇149159.doc 201110977 89_ A polysaccharide covalently bound to a carrier protein as claimed in claim 88, wherein at least one covalent bond between CRM197 and the polysaccharide is present in at least every 5 to 10 sugar repeat units of the polysaccharide. 88 or the covalent attachment of claim 89 to the listener of the carrier protein wherein there is at least one bond between CRM197 and the polysaccharide in every 5 sugar repeat units of the polysaccharide. 91. In claims 88 to 89 Any one of the covalently bound to the carrier protein, wherein the CRM 9-9 comprises 5 to 22 lysines covalently linked to the polysaccharide. 92. Covalently bound to the carrier protein as claimed in claim 91 a polysaccharide, wherein the CRM 97 comprises from 8 to 15 lysines covalently linked to the polysaccharide. 93. An immunogenic composition comprising a total mussel combination as claimed in claim 82 to % To the polysaccharide of the carrier protein and at least one adjuvant, diluent or carrier. The immunogenic composition of claim 93, wherein the adjuvant is an aluminum-based adjuvant. 95. The immunogenic composition of claim 94, wherein the adjuvant is selected from the group consisting of phosphoric acid, aluminum sulfate, and The immunogenic composition of claim 95. The immunogenic composition of claim 95, wherein the adjuvant is aluminum phosphate. 97. a species that reduces or prevents staphylococcal infection in a subject, a disease or condition associated with staphylococci The method comprising the step of administering to the individual an immunologically effective amount of the immunogenic composition of any one of claims 20 to 25 and 76 to 81 and 93 to 96. 98. The method of claim 97 Wherein the infection, disease or condition is selected from the group consisting of 149159.doc •12·201110977 j Staphylococcus aureus, sepsis and a genus. The species is reduced or prevented from staphylococcal infection in an individual undergoing a surgical procedure. The method of the present invention comprises the step of administering to the individual an immunologically effective amount of the immunogenic composition of any one of claims 20 to 25 and 76 to 81 and 93 to 96 prior to the surgical procedure. The method of any one of items 97 to 99, The individual is a human, domestic pet or livestock. ιοί. A method for isolating a S. aureus capsular polysaccharide having a molecular weight of 20 to 1 〇〇〇 kDa, the method comprising the step of subjecting the bacterial cell suspension to an acidic heat treatment. 102. An antibody produced by the capsular polysaccharide, immunogenic conjugate or immunogenic composition of the invention. 103' The antibody of claim 1 〇 2 wherein the antibody is efficacious or phagocytic The antibody was functional in the sex kill assay as measured by killing bacteria. 149159.doc
TW099120434A 2009-06-22 2010-06-22 Compositions and methods for preparing staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions TWI505834B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21915109P 2009-06-22 2009-06-22
US21914309P 2009-06-22 2009-06-22

Publications (2)

Publication Number Publication Date
TW201110977A true TW201110977A (en) 2011-04-01
TWI505834B TWI505834B (en) 2015-11-01

Family

ID=43599164

Family Applications (2)

Application Number Title Priority Date Filing Date
TW099120434A TWI505834B (en) 2009-06-22 2010-06-22 Compositions and methods for preparing staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions
TW104127997A TW201544119A (en) 2009-06-22 2010-06-22 Compositions and methods for preparing staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW104127997A TW201544119A (en) 2009-06-22 2010-06-22 Compositions and methods for preparing staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions

Country Status (22)

Country Link
US (2) US9125951B2 (en)
EP (2) EP2445523B1 (en)
JP (4) JP2012530785A (en)
KR (2) KR101774062B1 (en)
CN (1) CN102625713A (en)
AR (1) AR077190A1 (en)
AU (1) AU2010301043B2 (en)
BR (1) BRPI1011753B8 (en)
CA (1) CA2766418C (en)
CO (1) CO6480930A2 (en)
ES (2) ES2729934T3 (en)
IL (1) IL217085B (en)
MX (1) MX2012000045A (en)
MY (1) MY158231A (en)
NZ (1) NZ597191A (en)
PE (1) PE20110065A1 (en)
PH (2) PH12015502508A1 (en)
RU (1) RU2531234C2 (en)
SA (1) SA114350400B1 (en)
SG (2) SG10201406432RA (en)
TW (2) TWI505834B (en)
WO (1) WO2011041003A2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010264538B2 (en) 2009-06-22 2013-10-03 Wyeth Llc Immunogenic compositions of Staphylococcus aureus antigens
CN102596254B (en) * 2009-09-30 2016-10-19 诺华股份有限公司 Staphylococcus aureus 5 type and the coupling of CP8
RU2579900C2 (en) * 2009-10-30 2016-04-10 Новартис Аг Purification of staphylococcus aureus type 5 and type 8 capsular saccharides
AR091902A1 (en) * 2012-07-25 2015-03-11 Hanmi Pharm Ind Co Ltd LIQUID FORMULATION OF A PROLONGED INSULIN CONJUGATE
ES2800479T3 (en) 2012-08-16 2020-12-30 Pfizer Glycoconjugation Procedures and Compositions
NZ708523A (en) 2012-11-21 2018-09-28 Serum Institute Of India Pvt Ltd Production of high yields of bacterial polysaccharides
GB201310008D0 (en) 2013-06-05 2013-07-17 Glaxosmithkline Biolog Sa Immunogenic composition for use in therapy
KR102229568B1 (en) * 2014-01-21 2021-03-18 화이자 인코포레이티드 Streptococcus pneumoniae capsular polysaccharides and conjugates thereof
KR20170016857A (en) 2014-05-12 2017-02-14 퍼듀 리서치 파운데이션 Selectin and icam/vcam peptide ligand conjugates
US10307474B2 (en) * 2014-08-08 2019-06-04 Glaxosmithkline Biologicals S.A. Modified host cells and hybrid oligosaccharides for use in bioconjugate production
WO2016091904A1 (en) 2014-12-10 2016-06-16 Glaxosmithkline Biologicals Sa Method of treatment
WO2016178123A1 (en) * 2015-05-04 2016-11-10 Pfizer Inc. Group b streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof
IL303998A (en) * 2015-07-21 2023-08-01 Pfizer Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof
JP6839199B2 (en) * 2016-02-15 2021-03-03 ヒプラ シエンティフィック エセ.エレ.ウ. Streptococcus ubelis extract as an immunogenic agent
CN108883192A (en) * 2016-03-15 2018-11-23 默沙东和惠康基金会合资的希勒曼实验室私人有限公司 Novel polysaccharide-protein conjugate and its acquisition technique
US11400162B2 (en) 2017-02-24 2022-08-02 Merck Sharp & Dohme Llc Processes for the formulation of pneumococcal polysaccharides for conjugation to a carrier protein
WO2018156491A1 (en) * 2017-02-24 2018-08-30 Merck Sharp & Dohme Corp. Enhancing immunogenicity of streptococcus pneumoniae polysaccharide-protein conjugates
EP3678694A4 (en) * 2017-09-07 2021-10-20 Merck Sharp & Dohme Corp. Processes for the formulation of pneumococcal polysaccharides for conjugation to a carrier protein
CN111093649B (en) 2017-09-07 2023-08-25 默沙东有限责任公司 Pneumococcal polysaccharide and its use in immunogenic polysaccharide-carrier protein conjugates
CN117018172A (en) 2017-09-07 2023-11-10 默沙东有限责任公司 Pneumococcal polysaccharide and its use in immunogenic polysaccharide-carrier protein conjugates
WO2019212844A1 (en) * 2018-04-30 2019-11-07 Merck Sharp & Dohme Corp. Methods for providing a homogenous solution of lyophilized mutant diptheria toxin in dimethylsulfoxide
US11260119B2 (en) 2018-08-24 2022-03-01 Pfizer Inc. Escherichia coli compositions and methods thereof
JP7239509B6 (en) 2019-02-22 2023-03-28 ファイザー・インク Method for purifying bacterial polysaccharides
BR112022015796A2 (en) 2020-02-21 2022-10-11 Pfizer PURIFICATION OF SACCHARIDES
CN111228478A (en) * 2020-02-25 2020-06-05 江南大学 Application of trisaccharide repeating unit oligosaccharide chain in preparation of staphylococcus aureus vaccine
CA3221075A1 (en) * 2021-05-28 2022-12-01 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US150688A (en) 1874-05-12 Improvement in centrifugal machines
US4134214A (en) 1977-08-05 1979-01-16 Merck & Co., Inc. Freeze-drying process for the preparation of meningococcus vaccine without degradation of potency
US4673574A (en) 1981-08-31 1987-06-16 Anderson Porter W Immunogenic conjugates
US4902506A (en) 1983-07-05 1990-02-20 The University Of Rochester Immunogenic conjugates
US4708871A (en) 1983-03-08 1987-11-24 Commonwealth Serum Laboratories Commission Antigenically active amino acid sequences
SE8405493D0 (en) 1984-11-01 1984-11-01 Bror Morein IMMUNOGENT COMPLEX AND KITCHEN FOR PREPARING IT AND USING IT AS IMMUNOSTIMENTING AGENTS
NZ214503A (en) * 1984-12-20 1990-02-26 Merck & Co Inc Covalently-modified neutral bacterial polysaccharides, stable covalent conjugates of such polysaccharides and immunogenic proteins, and methods of preparing such polysaccharides and conjugates
IL78775A (en) 1985-05-15 1992-06-21 Biotech Australia Pty Ltd Oral vaccines
US5078996A (en) 1985-08-16 1992-01-07 Immunex Corporation Activation of macrophage tumoricidal activity by granulocyte-macrophage colony stimulating factor
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
US4912094B1 (en) 1988-06-29 1994-02-15 Ribi Immunochem Research Inc. Modified lipopolysaccharides and process of preparation
CA2017507C (en) 1989-05-25 1996-11-12 Gary Van Nest Adjuvant formulation comprising a submicron oil droplet emulsion
CA2047031A1 (en) 1990-07-19 1992-01-20 Stephen Marburg Peptide-polysaccharide-protein conjugate vaccines
NZ239643A (en) 1990-09-17 1996-05-28 North American Vaccine Inc Vaccine containing bacterial polysaccharide protein conjugate and adjuvant (c-nd-che-a-co-b-r) with a long chain alkyl group.
JP4087896B2 (en) 1991-11-22 2008-05-21 ナビ・バイオフアーマシユテイカルズ Staphylococcus epidermidis type I and type II surface antigens
IT1253009B (en) 1991-12-31 1995-07-10 Sclavo Ricerca S R L DETOXIFIED IMMUNOGENIC MUTANTS OF COLERIC TOXIN AND TOXIN LT, THEIR PREPARATION AND USE FOR THE PREPARATION OF VACCINES
EP0616034B1 (en) 1993-03-05 2004-10-20 Wyeth Holdings Corporation Plasmid for production of CRM protein and diphtheria toxin
AU678613B2 (en) 1993-09-22 1997-06-05 Henry M. Jackson Foundation For The Advancement Of Military Medicine Method of activating soluble carbohydrate using novel cyanylating reagents for the production of immunogenic constructs
US5571515A (en) 1994-04-18 1996-11-05 The Wistar Institute Of Anatomy & Biology Compositions and methods for use of IL-12 as an adjuvant
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
WO1996014873A2 (en) * 1994-11-16 1996-05-23 Sri International COVALENTLY BOUND β-GLUCAN CONJUGATES IN TARGETED DELIVERY
BE1008978A5 (en) 1994-12-27 1996-10-01 Solvay Adjuvants for vaccines.
AU725279B2 (en) * 1995-06-07 2000-10-12 Alberta Research Council Inc. Immunogenic and immunostimulatory oligosaccharide compositions and methods of making and using them
GB9622159D0 (en) 1996-10-24 1996-12-18 Solvay Sociutu Anonyme Polyanionic polymers as adjuvants for mucosal immunization
GB9622660D0 (en) 1996-10-31 1997-01-08 Biocine Spa Immunogenic detoxified mutant toxin
US6113918A (en) 1997-05-08 2000-09-05 Ribi Immunochem Research, Inc. Aminoalkyl glucosamine phosphate compounds and their use as adjuvants and immunoeffectors
CA2293739A1 (en) 1997-06-12 1998-12-17 Shin-Etsu Bio, Inc. Production of non-native bacterial exopolysaccharide in a recombinant bacterial host
WO1999003871A1 (en) 1997-07-17 1999-01-28 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hexadecasaccharide-protein conjugate vaccine for shigella dysenteriae type 1
CA2310217A1 (en) 1997-11-26 1999-06-03 Inhibitex, Inc. Extracellular matrix-binding proteins from staphylococcus aureus
US7252828B2 (en) 1998-07-15 2007-08-07 The Brigham And Women's Hospital, Inc. Polysaccharide vaccine for staphylococcal infections
US6703025B1 (en) 1998-08-31 2004-03-09 Inhibitex, Inc. Multicomponent vaccines
WO2000012131A1 (en) 1998-08-31 2000-03-09 Inhibitex, Inc. Multicomponent vaccines
US6146902A (en) 1998-12-29 2000-11-14 Aventis Pasteur, Inc. Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions
EP1035137A1 (en) 1999-03-12 2000-09-13 Pasteur Merieux Serums Et Vaccins Method for the reductive amination of polysaccharides
US6936258B1 (en) 1999-03-19 2005-08-30 Nabi Biopharmaceuticals Staphylococcus antigen and vaccine
KR20020000785A (en) 1999-03-19 2002-01-05 장 스테판느 Vaccine
US7115730B1 (en) 1999-04-27 2006-10-03 Chiron Srl Immunogenic detoxified mutant E. coli LT-A-toxin
US7384640B1 (en) 1999-09-30 2008-06-10 Wyeth Holdings Corporation Mutant cholera holotoxin as an adjuvant
AU2001247697B2 (en) 2000-03-22 2006-06-22 Solulink, Incorporated Hydrazine-based and carbonyl-based bifunctional crosslinking reagents
GB0007432D0 (en) 2000-03-27 2000-05-17 Microbiological Res Authority Proteins for use as carriers in conjugate vaccines
PT1296713E (en) 2000-06-08 2004-02-27 Intercell Biomediz Forschungs IMMUNOSTIMULATING OLIGODESOXINUCLEOTIDES
AT410635B (en) 2000-10-18 2003-06-25 Cistem Biotechnologies Gmbh VACCINE COMPOSITION
KR20030096292A (en) * 2001-03-27 2003-12-24 덴드레온 샌 디에고 엘엘씨 Nucleic acid molecules encoding a transmembrane serine protease 9, the encoded polypeptides and methods based thereon
JP2005508143A (en) 2001-06-07 2005-03-31 ワイス・ホールデイングス・コーポレーシヨン Mutated form of cholera holotoxin as an adjuvant
CN1977971A (en) 2001-06-07 2007-06-13 惠氏控股有限公司 Mutant forms of cholera holotoxin as an adjuvant
CA2351018A1 (en) 2001-07-09 2003-01-09 Universite De Sherbrooke Dna vaccine against staphylococcus aureus
FR2828404B1 (en) 2001-08-10 2005-07-15 Neovacs COMPOSITE SUPERIMMUNOGEN FOR BIFUNCTIONAL VACCINE USE FOR THE TREATMENT OF DISEASES ASSOCIATED WITH STROMAL TISSUE DISORDER
US20030113350A1 (en) 2001-09-19 2003-06-19 Fattom Ali I. Glycoconjugate vaccines for use in immune-compromised populations
US20030092062A1 (en) * 2001-10-24 2003-05-15 Reddy M. Parameswara Immobilizing biological molecules
EP1777236B8 (en) * 2002-03-26 2017-02-22 GlaxoSmithKline Biologicals SA Modified saccharides having improved stability in water for use as a medicament
TW200306314A (en) 2002-04-16 2003-11-16 Tanabe Seiyaku Co Liquid preparation comprising camptothecin derivative and pharmaceutical composition producible by lyophilizing the preparation
GB0220198D0 (en) * 2002-08-30 2002-10-09 Chiron Spa Modified saccharides,conjugates thereof and their manufacture
DK1565478T3 (en) 2002-11-12 2017-11-13 Brigham & Womens Hospital Inc POLYSACCHARID Vaccine against staphylococcal infections
JP4078417B2 (en) 2003-03-04 2008-04-23 独立行政法人産業技術総合研究所 Oligopeptidase from thermophile
WO2004080490A2 (en) 2003-03-07 2004-09-23 Wyeth Holdings Corporation Polysaccharide - staphylococcal surface adhesin carrier protein conjugates for immunization against nosocomial infections
CA2519511A1 (en) 2003-03-17 2004-09-30 Wyeth Holdings Corporation Mutant cholera holotoxin as an adjuvant and an antigen carrier protein
DK2644206T3 (en) * 2003-05-23 2019-06-11 Nektar Therapeutics PEG derivatives containing two PEG chains
GB0323103D0 (en) 2003-10-02 2003-11-05 Chiron Srl De-acetylated saccharides
KR101157694B1 (en) 2003-12-17 2012-06-20 와이어쓰 엘엘씨 Immunogenic peptide carrier conjugates and methods of producing same
US7537766B2 (en) 2004-08-30 2009-05-26 Wyeth Neisseria meningitidis inner core lipo-oligosaccharide epitopes, multivalent conjugates thereof and immunogenic compositions thereof
KR101508563B1 (en) * 2004-09-22 2015-04-07 글락소스미스클라인 바이오로지칼즈 에스.에이. Immunogenic composition for use in vaccination against staphylococcei
US20060134141A1 (en) * 2004-12-14 2006-06-22 Nabi Biopharmaceuticals Glycoconjugate vaccines containing peptidoglycan
US8431136B2 (en) * 2005-06-27 2013-04-30 Glaxosmithkline Biologicals S.A. Immunogenic composition
BRPI0710210A2 (en) * 2006-03-30 2011-05-24 Glaxomithkline Biolog S A immunogenic composition, vaccine, methods for preparing the vaccine, and for preventing or treating staphylococcal infection, use of the immunogenic composition, and process for conjugating oligosaccharide or capsular polysaccharide
GB0606416D0 (en) * 2006-03-30 2006-05-10 Glaxosmithkline Biolog Sa Immunogenic composition
AR060187A1 (en) * 2006-03-30 2008-05-28 Glaxosmithkline Biolog Sa IMMUNOGENIC COMPOSITION
FR2899110A1 (en) * 2006-03-31 2007-10-05 Sanofi Pasteur Sa Immunogenic composition, useful for immunizing against Staphylococcus aureus infection, comprises capsular polysaccharide of type 8 and 5 of Staphylococcus aureus strain overproducing type 8 and/or type 5, respectively
US20070253985A1 (en) 2006-04-26 2007-11-01 Wyeth Novel processes for coating container means which inhibit precipitation of polysaccharide-protein conjugate formulations
GB0700562D0 (en) * 2007-01-11 2007-02-21 Novartis Vaccines & Diagnostic Modified Saccharides
CA2681570C (en) 2007-03-23 2016-05-03 Wyeth Shortened purification process for the production of capsular streptococcus pneumoniae polysaccharides
KR101695800B1 (en) 2008-03-05 2017-02-22 사노피 파스퇴르 Process for stabilizing an adjuvant containing vaccine composition
AU2010264538B2 (en) * 2009-06-22 2013-10-03 Wyeth Llc Immunogenic compositions of Staphylococcus aureus antigens
GB0913681D0 (en) 2009-08-05 2009-09-16 Glaxosmithkline Biolog Sa Immunogenic composition
RU2579900C2 (en) 2009-10-30 2016-04-10 Новартис Аг Purification of staphylococcus aureus type 5 and type 8 capsular saccharides
RU2570730C2 (en) 2010-12-22 2015-12-10 УАЙТ ЭлЭлСи Stable immunogenic compositions of staphylococcus aureus antigens

Also Published As

Publication number Publication date
EP2445523B1 (en) 2019-04-17
SG177310A1 (en) 2012-02-28
IL217085B (en) 2018-10-31
WO2011041003A2 (en) 2011-04-07
EP2445523A2 (en) 2012-05-02
PE20110065A1 (en) 2011-01-31
WO2011041003A9 (en) 2011-06-09
EP3461496B1 (en) 2023-08-23
CA2766418A1 (en) 2011-04-07
CO6480930A2 (en) 2012-07-16
JP2013237693A (en) 2013-11-28
RU2011152045A (en) 2013-07-27
KR20120048568A (en) 2012-05-15
JP2012530785A (en) 2012-12-06
CN102625713A (en) 2012-08-01
MX2012000045A (en) 2012-01-30
PH12015502508A1 (en) 2019-06-03
SA114350400B1 (en) 2016-05-26
BRPI1011753B8 (en) 2021-05-25
US20120276137A1 (en) 2012-11-01
RU2531234C2 (en) 2014-10-20
WO2011041003A3 (en) 2011-10-27
CA2766418C (en) 2016-03-29
KR101774062B1 (en) 2017-09-01
JP2017179378A (en) 2017-10-05
BRPI1011753A2 (en) 2016-03-29
AR077190A1 (en) 2011-08-10
US9125951B2 (en) 2015-09-08
MY158231A (en) 2016-09-15
SG10201406432RA (en) 2014-11-27
BRPI1011753B1 (en) 2021-03-02
US9623100B2 (en) 2017-04-18
ES2729934T3 (en) 2019-11-07
PH12021551159A1 (en) 2022-02-21
AU2010301043B2 (en) 2014-01-09
JP6153581B2 (en) 2017-06-28
TW201544119A (en) 2015-12-01
TWI505834B (en) 2015-11-01
NZ597191A (en) 2013-11-29
JP2016053051A (en) 2016-04-14
ES2959890T3 (en) 2024-02-28
KR20140119165A (en) 2014-10-08
JP6393804B2 (en) 2018-09-19
AU2010301043A1 (en) 2012-01-19
IL217085A0 (en) 2012-02-29
US20160022798A1 (en) 2016-01-28
EP3461496A1 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
TW201110977A (en) Compositions and methods for preparing staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions
TWI469789B (en) Immunogenic compositions of staphylococcus aureus antigens
CN106177933B (en) Immunogenic compositions
KR101742406B1 (en) Glycoconjugation processes and compositions
IL297740A (en) Group b streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof
IL305459A (en) Immunogenic polysaccharide protein conjugated comprising a polysaccharide derived from b streptococcus gbs