TW201110540A - Amplifier with programmable off voltage - Google Patents

Amplifier with programmable off voltage Download PDF

Info

Publication number
TW201110540A
TW201110540A TW98142419A TW98142419A TW201110540A TW 201110540 A TW201110540 A TW 201110540A TW 98142419 A TW98142419 A TW 98142419A TW 98142419 A TW98142419 A TW 98142419A TW 201110540 A TW201110540 A TW 201110540A
Authority
TW
Taiwan
Prior art keywords
voltage
transistor
state
signal
output signal
Prior art date
Application number
TW98142419A
Other languages
Chinese (zh)
Inventor
Ming-Hui Chen
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201110540A publication Critical patent/TW201110540A/en

Links

Landscapes

  • Amplifiers (AREA)

Abstract

An amplifier with multiple stages and having improved reliability is described. The multiple amplifier stages are coupled in parallel and include at least one switchable amplifier stage. Each switchable amplifier stage may be operated in an on state or an off state and includes a gain transistor and a cascode transistor. The gain transistor amplifies an input signal and provides an amplified signal in the on state and is disabled in the off state. The cascode transistor buffers the amplified signal and provides an output signal in the on state and is disabled based on an off voltage in the off state. The off voltage may be greater than zero volts or may have one of multiple possible values. The off voltage may be generated based on an output signal level, e.g., may be set to different values for different ranges of output signal level.

Description

201110540 六、發明說明: 【發明所屬之技術領域】 本發明大體而言係關於電子設備,且更具體言之,係關 於一種放大器。 【先前技術】 - 放大器通常用於各種電子器件中以提供信號放大。不同 類型之放大器可用於不同用途。舉例而言,一諸如蜂無式 電話之無線通信器件可包括用於雙向通信之一傳輸器及一 接收器。傳輸器可利用驅動器放大器(DA)及功率放大器 (PA),接收器可利用低雜訊放大器(LNA),且傳輸器及接 收器可利用可變增益放大器(VGA)。 次微米互補金氧半導體(CMOS)製造過程通常用於無線 器件及其他電子器件中之射頻(RF)電路,以便降低成本及 改良整合。然而,以次微米(:河03製程製造之電晶體通常 具有小的實體尺寸,且更易受到歸因於大的信號擺動之應 力。該應力可不利地影響藉由此等電晶體實施之放大器的 可罪性。迫切需要具有良好效能及良好可靠性之放大器。 【實施方式】 • 本文中將詞「例示性」用以意謂「充當一實例、例項或 說明」。本文中經描述為「例示性」之任何設計未必應解 釋為相比其他設計為較佳或有利的。 具有良好效能及改良之可靠性的放大器描述於本文中。 放大器可用於各種電子器件,諸如,無線通信器件、蜂巢 式電話、個人數位助理(PDA)、掌上型器件、無線數攄 I45291.doc 201110540 機、膝上型電腦、無線電話、廣播接收器、藍芽器件、消 費型電子器件等。為清楚起見,在下文中描述放大器在可 為蜂巢式電話或某一其他器件之無線器件中的使用。 圖1展示無線通信器件1〇〇之例示性設計的方塊圖。在此 例示性設計中,無線器件100包括一資料處理器11〇及一收 發器120。收發器120包括支援雙向無線通信的一傳輸器 130及一接收器150。大體而言,無線器件1〇〇可包括用於 任何數目個通信系統及任何數目個頻帶之任何數目個傳輸 器及任何數目個接收器。 在傳輸路徑中,資料處理器110處理待傳輸之資料且將 類比輸出信號提供至傳輸器130。在傳輸器130内,類比輸 出信號由放大器(Amp)132放大,由低通濾波器134濾波以 移除由數位至類比轉換所造成之影像,由VGA 136放大, 且由混頻器13 8自基頻增頻轉換至rf。經增頻轉換之信號 由濾波器140濾波以移除由增頻轉換所造成之影像,進一 步由驅動器放大器(DA) 142及功率放大器(pa) 144放大,經 由雙工器/開關146投送,且經由天線148傳輸。 在接收路徑中,天線148接收來自基地台之信號且提供 所接收之信號’該所接收之信號經由雙工器/開關1 46投送 且經提供至接收器150。在接收器150内,所接收之信號由 LNA 1 52放大,由帶通濾波器154濾波,且由混頻器156自 RF降頻轉換至基頻。經降頻轉換之信號由vga 158放大, 由低通濾波器160濾波且由放大器1 62放大以獲得經提供至 資料處理器110之類比輸入信號。 145291.doc 201110540 圖1展示實施直接轉換架構之傳輸器130及接收器15〇, 該直接轉換架構在一個級中將信號在RF與基頻之間進行頻 率轉換。傳輸器130及/或接收器150亦可實施超外差架 構,該超外差架構在多個級中將信號在RF與基頻之間進行 頻率轉換。局部振盪器(L0)產生器17〇產生傳輸£〇信號及 接收LO信號,且將其分別提供至混頻器138及156。鎖相 迴路(PLL)172接收來自資料處理器11〇之控制資訊,且將 控制信號提供至LO產生器170以產生適當頻率下的傳輸L〇 "is说及接收L 0信號。 圖1展示例示性收發器設計。大體而言,傳輸器J 3 〇及接 收器150中之信號的調節可由放大器、濾波器、混頻器等 之一或多個級執行。此等電路區塊可與圖i中所展示之組 態不同地經配置。此外,圖丨中未展示之其他電路區塊亦 可用以調節傳輸器及接收器中之信號。亦可省略圖1中之 一些電路區塊。可在類比積體電路(lC)、RF lC(RFIC)、混 合仏號1C等上實施收發器i 20之全部或一部分。舉例而 言,可在RFIC上實施傳輸器13〇中之放大器U2至驅動器放 大器142 ’而可在該RFIC外部實施功率放大器丨44。 資料處理器110可執行無線器件100之各種功能,例如, 對經傳輸及所接收之資料的處理。記憶體! 12可儲存用於 資料處理器110之程式碼及資料。可在一或多個特殊應用 積體電路(AS 1C)及/或其他1C上實施資料處理器no。 如圖1中所展示,一傳輸器及一接收器可包括各種放大 器。可以各種方式實施每一放大器。 145291.doc 201110540 圖2展示可用於圖1中之DA 142、PA 144、LNA 152、 VGA 136及158及/或其他放大器之放大器200的示意圖。放 大器200包括並聯耦接之κ個放大器級2 10a至210k,其中κ 可為任何整數值。亦可將放大器級稱作分支等。在每一放 大器級210内’ N通道金氧半導體(NMOS)電晶體212之源極 搞接至電路接地’且其閘極接收一輸入信號Vin ^常常可 互換地使用術語「電晶體」及「器件」。NMOS電晶體214 之源極耦接至NMOS電晶體212之汲極,且其汲極耦接至提 供輸出信號Vout的節點X。NMOS電晶體212為在其閘極處 接收Vin信號’放大該Vin信號且在其汲極處提供經放大之 信號的增益電晶體。NMOS電晶體214為其閘極耦接至ac 接地之疊接電晶體(cascode transistor)。NMOS電晶體2 14 在其源極處接收經放大之信號,且在其汲極處提供v〇uMf 號。 反相器220之輸入端接收一 Bk控制信號,且其輸出端提 供NMOS電晶體214之控制電壓,其中keO,,.·,K}。可藉由 一 P通道MOS(PMOS)電晶體及一NMOS電晶體來實施反相 器220,該等電晶體之閘極耦接在一起並形成反相器輸入 如,且其及極搞接在一起並形成反相器輸出端。PM〇§電 晶體之源極可耦接至電源供應器Vdd,且NM〇s電晶體之 源極可糕接至電路接地,如圖2中所展示。電阻器222麵接 於反相器220的輸出端與NMOS電晶體214的閘極之間。 電感器230耦接於節點X與Vdd供應電壓之間。電感器 230提供用於所有啟用之放大器級令之NM〇s電晶體212及 145291.doc 201110540 214的偏壓電流,電感器23〇亦可用於輸出阻抗匹配。 可經由各別Bk控制信號個別地啟用或停用κ個放大器級 210a至210k中之每一者。對於第k個放大器級而言,當Bk 控制k號處於邏輯低時,反相器22〇在其輸出端提供vdd, NMOS電晶體214被接通,且該放大器級被啟用。相反地, 备Bk控制k號處於邏輯高時’反相器220在其輸出端提供〇 伏特(V),NMOS電晶體214被斷開,且該放大器級被停 用。每一放大器級在被啟用時提供信號增益。K個放大器 級210a至21 Ok可提供相等量的增益(例如,在所有κ個放大 器級具有相同電晶體大小的情況下)或可提供不同量的增 益(例如,在該K個放大器級具有不同電晶體大小的情況 下)。舉例而言’放大器級1中之NMOS電晶體212及214的 大小(及增益)可為放大器級2中之NMOS電晶體212及214的 兩倍’放大器級2中之NMOS電晶體212及2 14的大小可為下 一放大器級中之NMOS電晶體212及214的兩倍,等等。可 藉由啟用(多個)適當放大器級來獲得放大器2〇〇的所要總增 益。輸出信號位準可視放大器200之總增益而定(例如,可 與放大器200之總增益成比例)。 放大器200如下操作。對於啟用之每一放大器級,nm〇s 電晶體212放大Vin信號且提供經放大之信號。NMOS電晶 體212亦執行電壓至電流轉換。NMOS電晶體2 14緩衝經放 大之彳§號’提供為一之電流增益,且為V〇ut信號提供信號 驅動。電阻器222為RF阻斷電阻器,其在NMOS電晶體214 之閘極處阻斷Vout信號中的RF信號分量。 145291.doc 201110540 藉由通常用於無線傳輸器中之驅動器放大器的開放汲極 架構來實施放大器200。放大器200使用耦接於Vdd供應電 壓與所有K個放大器級21〇a至210k中之疊接電晶體214之間 的電感器230。電感器230允許Vout信號擺動高於Vdd電 壓’此情形可有益於為放大器200獲得較高的1分貝(dB)壓 縮點以及較好的相鄰頻道洩漏抑制(ACLR)及相鄰頻道功 率抑制(ACPR)效能。然而,較大v〇ut信號擺動亦可對疊接 電晶體214之可靠性造成損失。當Vout信號高於vdd時,所 有K個放大器級21〇中之疊接電晶體214可觀察到可對此等 疊接電晶體施加應力的大電壓。 對於啟用之每一放大器級210,可藉由將vdd施加至每一 啟用之疊接電晶體的閘極而在疊接電晶體2丨4及增益電晶 體212上分割Vout信號的電壓擺動。然而,當(例如)在需要 較小輸出信號位準之情況下由自動增益控制(AGC)斷開疊 接電晶體214時,歸因於較大Vout信號擺動之應力的大部 分出現。即使當疊接電晶體214被斷開,該疊接電晶體214 仍連接至輸出節點X且將接著在其汲極處觀察到v〇ut信 號。在切斷狀態下’疊接電晶體214之閘極經由反相器22〇 而拉至接地,且疊接電晶體214之源極亦經由操作為開關 之增益電晶體2 12而拉至接地。在切斷狀態下,疊接電晶 體214之汲極至源極電壓Vds以及汲極至閘極電壓vdg可大 於Vdd(例如’達Vdd之兩倍)’且可超過額定器件電壓。大 的Vds及Vdg電壓可對疊接電晶體214施加應力,且可不利 地影響該電晶體之可靠性及壽命。當放大器2〇〇以高增益/ 14529i.doc •10- 201110540 兩輸出功率操作且停用一放大器級以降低增益時,應力可 為尤其嚴重的。此停用的放大器級中之疊接電晶體可觀察 到可遠高於Vdd之大的Vds及Vdg電壓。 圖3展示放大器300之例示性設計的示意圖,放大器3〇〇 具有可程式化切斷電壓以達成改良之可靠性。放大器3〇〇 可用於圖 1 中之DA 142、PA 144、LNA 152、VGA 136及 158’及/或其他放大器。放大器3〇〇包括並聯耦接之反個放 大器級3 10a至3 10k。在每一放大器級31〇内,NMOS電晶體 3 12之源極耦接至電路接地’且其閘極接收一 Vin信號。 NMOS電晶體3 14之源極耦接至NMOS電晶體3 12之汲極, 其閘極耦接至節點Ak ’(其中ke{l,..·,K}),且其汲極耦接 至節點X。反相器320之輸入端接收Bk控制信號,其上部 供應節點耦接至節點γ,且其下部供應節點耦接至節點 Z。電阻器322耦接於反相器320的輸出端與節aAk之間。 電容器324耦接於節點Ak與電路接地之間。亦可用由串聯 搞接之多個(例如,兩個)反相器組成之緩衝器替換反相器 320。Bk控制信號可視反相器還是緩衝器用於放大器級31〇 中而具有不同極性。 電感器330耦接於Vdd電源供應器與提供v〇m信號的節點 X之間。Von電壓產生器340將接通電壓Von提供至節點γ, 且可藉由電阻器、電容器、電晶體等實施。v〇n電壓可等 於vdd或vdd之分率。當啟用放大器級時,可選擇v〇n電壓 以在疊接電晶體314及增益電晶體312上提供所要電壓降。 亦可省略Von電壓產生器340,且節點γ可直接耦接至Vdd 145291.doc 201110540 電源供應器。Voff電壓產生器350將切斷電壓v〇ff提供至節 點Z ’且可如下文所描述實施。圖3中未展示之另一電壓產 生器可產生用於所有K個放大器級310中之NM0S電晶體 3 1 2的閘極之偏壓電壓。 K個放大器級310a至31 Ok中之每一者可經由用於彼級之 Bk控制信號個別地啟用或停用。可藉由對Bk控制信號提 供邏輯低而啟用第k個放大器級’此情形導致反相器320經 由電阻器322將Von電壓提供至NMOS電晶體3 14的閘極且 接通該NMOS電晶體。相反地’可藉由對Bk控制信號提供 邏輯高而停用第k個放大器級,此情形導致反相器320經由 電阻器322將Voff電壓提供至NMOS電晶體314的閘極且斷 開該NMOS電晶體。 疊接放大器300如下操作。對於啟用之每一放大器級 3 1 0,NMOS電晶體3 1 2操作為放大Vin信號之增益電晶體。 NMOS電晶體314藉由其閘極處之Von電壓啟用,操作為緩 衝來自NMOS電晶體312之經放大之信號的疊接電晶體,且 為Vout信號提供信號驅動。電阻器322為rf阻斷電阻器, 其在NMOS電晶體3 14之閘極處阻斷Von電壓中的RF信號分 量。電容器324穩定NMOS電晶體314之閘極電壓以改良 NMOS電晶體314的增益。對於停用之每一放大器級, NMOS電晶體3 14在其閘極處接收v〇ff電壓且被斷開。 可藉由具有薄閘極氧化物之薄氧化物NMOS電晶體來實 施NMOS電晶體312及314,以便獲得良好的rf效能。薄氧 化物NMOS電晶體之閘極氧化物的可靠性視該nm〇s電晶 145291.doc •12· 201110540 體之在其被斷開時的Vdg電壓而定。薄氧化物NMOS電晶 體之壽命在閘極氧化物的破裂之前可由時間相依介電質崩 潰(TDDB)函數給出。TDDB函數可藉由一等式模型化或可 經由電腦模擬得以判定。 圖4展示氧化物壽命對Vdg電壓的曲線圖。水平軸表示 Vdg電壓且以線性標度給出。垂直軸線表示氧化物壽命且 以對數標度給出。曲線410展示薄氧化物NMOS電晶體之氧 化物壽命對Vdg電壓。曲線420展示薄氧化物PMOS電晶體 之氧化物壽命對Vdg電壓。虛線43 0表示目標氧化物壽命, 其可為如圖4中所展示之10年或某一其他持續時間。 如圖4中所展示,可藉由確保NMOS電晶體之Vdg電壓低 於Vmaxl電壓而獲得該NMOS電晶體的目標氧化物壽命。 可藉由確保PMOS電晶體之Vdg電壓低於Vmax2電壓而獲得 該PMOS電晶體的目標氧化物壽命。曲線410及420以及 Vmaxl電壓及Vmax2電壓可視各種因素而定,諸如,1C製 造過程、閘極氧化物厚度、閘極氧化物面積、溫度等。 對於圖3中所展示之例示性設計,可將停用之NMOS電晶 體3 14的Vdg電壓給出為:201110540 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to electronic devices and, more particularly, to an amplifier. [Prior Art] - Amplifiers are commonly used in various electronic devices to provide signal amplification. Different types of amplifiers can be used for different purposes. For example, a wireless communication device such as a beephone can include one of a transmitter for two-way communication and a receiver. The transmitter can utilize a driver amplifier (DA) and a power amplifier (PA). The receiver can utilize a low noise amplifier (LNA), and the transmitter and receiver can utilize a variable gain amplifier (VGA). Sub-micron complementary metal oxide semiconductor (CMOS) fabrication processes are commonly used in radio frequency (RF) circuits in wireless devices and other electronic devices to reduce cost and improve integration. However, transistors fabricated in sub-micron (: River 03 process typically have small physical dimensions and are more susceptible to stresses due to large signal swings. This stress can adversely affect the amplifier implemented by such an isomorph Offence. There is an urgent need for an amplifier with good performance and good reliability. [Embodiment] • The word "exemplary" is used herein to mean "serving as an instance, instance or description." Any design that is exemplary should not be construed as preferred or advantageous over other designs. Amplifiers with good performance and improved reliability are described herein. Amplifiers can be used in a variety of electronic devices, such as wireless communication devices, honeycombs Telephones, personal digital assistants (PDAs), handheld devices, wireless data I45291.doc 201110540 machines, laptops, wireless phones, broadcast receivers, Bluetooth devices, consumer electronics, etc. For the sake of clarity, The use of an amplifier in a wireless device that can be a cellular phone or some other device is described below. Figure 1 shows a wireless communicator A block diagram of an exemplary design of the device 1. In this exemplary design, the wireless device 100 includes a data processor 11 and a transceiver 120. The transceiver 120 includes a transmitter 130 and a support for two-way wireless communication. Receiver 150. In general, the wireless device 1 can include any number of transmitters and any number of receivers for any number of communication systems and any number of frequency bands. In the transmission path, data processor 110 processes The data to be transmitted and the analog output signal is provided to transmitter 130. Within transmitter 130, the analog output signal is amplified by amplifier (Amp) 132 and filtered by low pass filter 134 to remove the digital to analog conversion. The image is amplified by VGA 136 and is upconverted from base frequency to rf by mixer 13. The upconverted signal is filtered by filter 140 to remove the image caused by the upconversion, further by the driver amplifier (DA) 142 and power amplifier (pa) 144 are amplified, delivered via duplexer/switch 146, and transmitted via antenna 148. In the receive path, antenna 148 receives from the base station And provide the received signal 'The received signal is routed via duplexer/switch 1 46 and provided to receiver 150. Within receiver 150, the received signal is amplified by LNA 1 52 by bandpass Filter 154 filters and is downconverted from RF to the fundamental frequency by mixer 156. The downconverted signal is amplified by vga 158, filtered by low pass filter 160 and amplified by amplifier 1 62 to obtain the data. Analog input signal to processor 110. 145291.doc 201110540 Figure 1 shows a transmitter 130 and a receiver 15A implementing a direct conversion architecture that frequency converts a signal between RF and a fundamental frequency in one stage. Transmitter 130 and/or receiver 150 may also implement a superheterodyne architecture that frequency converts signals between RF and fundamental frequencies in multiple stages. The local oscillator (L0) generator 17 generates a transmission signal and a reception LO signal, and supplies them to the mixers 138 and 156, respectively. A phase locked loop (PLL) 172 receives control information from the data processor 11 and provides control signals to the LO generator 170 to generate transmissions at appropriate frequencies and to receive and receive L0 signals. Figure 1 shows an exemplary transceiver design. In general, the adjustment of the signals in transmitter J3 and receiver 150 can be performed by one or more stages of amplifiers, filters, mixers, and the like. These circuit blocks can be configured differently than the configuration shown in Figure i. In addition, other circuit blocks not shown in the figure can be used to adjust the signals in the transmitter and receiver. Some of the circuit blocks in Figure 1 may also be omitted. All or part of the transceiver i 20 may be implemented on an analog integrated circuit (1C), an RF lC (RFIC), a hybrid nickname 1C, or the like. For example, amplifier U2 in transmitter 13A can be implemented on the RFIC to driver amplifier 142' and power amplifier 丨44 can be implemented external to the RFIC. The data processor 110 can perform various functions of the wireless device 100, such as processing of transmitted and received data. Memory! 12 can store code and data for the data processor 110. The data processor no can be implemented on one or more special application integrated circuits (AS 1C) and/or other 1C. As shown in Figure 1, a transmitter and a receiver can include various amplifiers. Each amplifier can be implemented in a variety of ways. 145291.doc 201110540 FIG. 2 shows a schematic diagram of an amplifier 200 that can be used with DA 142, PA 144, LNA 152, VGA 136 and 158, and/or other amplifiers in FIG. The amplifier 200 includes κ amplifier stages 2 10a through 210k coupled in parallel, where κ can be any integer value. The amplifier stage can also be referred to as a branch or the like. In each amplifier stage 210, the source of the 'N-channel MOS transistor 212 is connected to the circuit ground' and its gate receives an input signal Vin ^. The terms "transistor" and "and" are often used interchangeably. Device". The source of the NMOS transistor 214 is coupled to the drain of the NMOS transistor 212 and its drain is coupled to the node X that provides the output signal Vout. NMOS transistor 212 is a gain transistor that receives a Vin signal at its gate to amplify the Vin signal and provide an amplified signal at its drain. The NMOS transistor 214 has its gate coupled to an ac grounded cascode transistor. NMOS transistor 2 14 receives the amplified signal at its source and provides a v〇uMf number at its drain. The input of inverter 220 receives a Bk control signal and its output provides a control voltage for NMOS transistor 214, where keO,, . . . , K}. The inverter 220 can be implemented by a P-channel MOS (PMOS) transistor and an NMOS transistor. The gates of the transistors are coupled together to form an inverter input, and the Together form the inverter output. The source of the PM 电 电 transistor can be coupled to the power supply Vdd, and the source of the NM 〇 s transistor can be connected to the circuit ground, as shown in FIG. 2 . Resistor 222 is coupled between the output of inverter 220 and the gate of NMOS transistor 214. The inductor 230 is coupled between the node X and the Vdd supply voltage. Inductor 230 provides bias current for NM〇s transistors 212 and 145291.doc 201110540 214 for all enabled amplifier stages, and inductor 23〇 can also be used for output impedance matching. Each of the κ amplifier stages 210a through 210k can be individually enabled or disabled via respective Bk control signals. For the kth amplifier stage, when Bk controls k to be at logic low, inverter 22 提供 provides vdd at its output, NMOS transistor 214 is turned "on" and the amplifier stage is enabled. Conversely, when the Bk control k is at logic high, the inverter 220 supplies 〇 volts (V) at its output, the NMOS transistor 214 is turned off, and the amplifier stage is disabled. Each amplifier stage provides signal gain when enabled. K amplifier stages 210a through 21 Ok may provide equal amounts of gain (eg, with all κ amplifier stages having the same transistor size) or may provide different amounts of gain (eg, different at the K amplifier stages) In the case of transistor size). For example, the size (and gain) of NMOS transistors 212 and 214 in amplifier stage 1 can be twice that of NMOS transistors 212 and 214 in amplifier stage 2 NMOS transistors 212 and 2 14 in amplifier stage 2. The size can be twice that of the NMOS transistors 212 and 214 in the next amplifier stage, and so on. The desired overall gain of the amplifier 2 can be obtained by enabling the appropriate amplifier stage(s). The output signal level is dependent on the total gain of the visual amplifier 200 (e.g., may be proportional to the total gain of the amplifier 200). The amplifier 200 operates as follows. For each amplifier stage enabled, the nm〇s transistor 212 amplifies the Vin signal and provides an amplified signal. NMOS transistor 212 also performs voltage to current conversion. The NMOS transistor 2 14 buffer is provided with a current gain and provides a signal drive for the V〇ut signal. Resistor 222 is an RF blocking resistor that blocks the RF signal component in the Vout signal at the gate of NMOS transistor 214. 145291.doc 201110540 The amplifier 200 is implemented by an open drain architecture commonly used for driver amplifiers in wireless transmitters. The amplifier 200 uses an inductor 230 coupled between the Vdd supply voltage and the stacked transistors 214 of all of the K amplifier stages 21a through 210k. Inductor 230 allows the Vout signal to swing above the Vdd voltage'. This situation can be beneficial for obtaining a higher 1 dB (dB) compression point for amplifier 200 and better adjacent channel leakage rejection (ACLR) and adjacent channel power rejection ( ACPR) performance. However, a larger v〇ut signal swing can also cause loss of reliability to the stacked transistor 214. When the Vout signal is higher than vdd, the stacked transistors 214 of all of the K amplifier stages 21A can observe a large voltage at which stress can be applied to the stacked transistors. For each amplifier stage 210 that is enabled, the voltage swing of the Vout signal can be split across the stacked transistor 2丨4 and the gain transistor 212 by applying vdd to the gate of each enabled stacked transistor. However, when the stacked transistor 214 is turned off by automatic gain control (AGC), for example, when a smaller output signal level is required, most of the stress due to the swing of the larger Vout signal occurs. Even when the spliced transistor 214 is turned off, the spliced transistor 214 is still connected to the output node X and will then observe the v 〇ut signal at its drain. In the off state, the gate of the stacked transistor 214 is pulled to ground via the inverter 22, and the source of the stacked transistor 214 is also pulled to ground via the gain transistor 2 12 operating as a switch. In the off state, the drain-to-source voltage Vds and the drain-to-gate voltage vdg of the stacked NMOS 214 may be greater than Vdd (e.g., 'doubled to Vdd') and may exceed the rated device voltage. Large Vds and Vdg voltages can stress the stacked transistor 214 and can adversely affect the reliability and lifetime of the transistor. The stress can be particularly severe when the amplifier 2 operates with high gain / 14529i.doc •10-201110540 two output powers and deactivates an amplifier stage to reduce the gain. The stacked transistors in this deactivated amplifier stage can observe Vds and Vdg voltages that are much higher than Vdd. 3 shows a schematic diagram of an exemplary design of an amplifier 300 having a programmable cut-off voltage for improved reliability. Amplifier 3 〇〇 can be used for DA 142, PA 144, LNA 152, VGA 136 and 158' and/or other amplifiers in FIG. The amplifier 3A includes an inverse amplifier stage 3 10a to 3 10k coupled in parallel. Within each amplifier stage 31, the source of NMOS transistor 3 12 is coupled to circuit ground ' and its gate receives a Vin signal. The source of the NMOS transistor 3 14 is coupled to the drain of the NMOS transistor 3 12 , the gate of which is coupled to the node Ak ' (where ke{l, .., K}), and the drain is coupled to Node X. The input of the inverter 320 receives the Bk control signal, the upper supply node is coupled to the node γ, and the lower supply node is coupled to the node Z. The resistor 322 is coupled between the output of the inverter 320 and the node aAk. The capacitor 324 is coupled between the node Ak and the circuit ground. The inverter 320 can also be replaced with a buffer composed of a plurality of (e.g., two) inverters connected in series. The Bk control signal visible inverter or buffer is used in the amplifier stage 31〇 with different polarities. The inductor 330 is coupled between the Vdd power supply and the node X that provides the v〇m signal. The Von voltage generator 340 supplies the turn-on voltage Von to the node γ, and can be implemented by a resistor, a capacitor, a transistor, or the like. The v〇n voltage can be equal to the fraction of vdd or vdd. When the amplifier stage is enabled, the v〇n voltage can be selected to provide the desired voltage drop across the stacked transistor 314 and the gain transistor 312. The Von voltage generator 340 can also be omitted, and the node γ can be directly coupled to the Vdd 145291.doc 201110540 power supply. The Voff voltage generator 350 provides the cutoff voltage v?ff to the node Z' and can be implemented as described below. Another voltage generator, not shown in Figure 3, can generate a bias voltage for the gate of the NMOS transistor 3 1 2 of all K amplifier stages 310. Each of the K amplifier stages 310a through 31 Ok can be individually enabled or disabled via a Bk control signal for the other stage. The kth amplifier stage can be enabled by providing a logic low to the Bk control signal. This condition causes the inverter 320 to provide a Von voltage to the gate of the NMOS transistor 3 14 via the resistor 322 and turn the NMOS transistor on. Conversely, the kth amplifier stage can be deactivated by providing a logic high to the Bk control signal, which causes the inverter 320 to provide a Voff voltage to the gate of the NMOS transistor 314 via the resistor 322 and to turn off the NMOS. Transistor. The spliced amplifier 300 operates as follows. For each amplifier stage 3 1 0 that is enabled, the NMOS transistor 3 1 2 operates as a gain transistor that amplifies the Vin signal. NMOS transistor 314 is enabled by the Von voltage at its gate, operates to buffer the stacked transistor from the amplified signal of NMOS transistor 312, and provides signal drive for the Vout signal. Resistor 322 is an rf blocking resistor that blocks the RF signal component in the Von voltage at the gate of NMOS transistor 314. Capacitor 324 stabilizes the gate voltage of NMOS transistor 314 to improve the gain of NMOS transistor 314. For each amplifier stage that is deactivated, NMOS transistor 314 receives the V〇ff voltage at its gate and is turned off. The NMOS transistors 312 and 314 can be implemented by a thin oxide NMOS transistor having a thin gate oxide to achieve good rf performance. The reliability of the gate oxide of a thin oxide NMOS transistor depends on the voltage of the nm 〇s 145291.doc •12· 201110540 depending on the Vdg voltage at which it is turned off. The lifetime of the thin oxide NMOS transistor can be given by a time dependent dielectric collapse (TDDB) function prior to the breakdown of the gate oxide. The TDDB function can be modeled by an equation or can be determined by computer simulation. Figure 4 shows a graph of oxide lifetime versus Vdg voltage. The horizontal axis represents the Vdg voltage and is given on a linear scale. The vertical axis represents the oxide lifetime and is given on a logarithmic scale. Curve 410 shows the oxide lifetime versus Vdg voltage for a thin oxide NMOS transistor. Curve 420 shows the oxide lifetime versus Vdg voltage of a thin oxide PMOS transistor. The dashed line 43 0 represents the target oxide lifetime, which may be 10 years as shown in Figure 4 or some other duration. As shown in Figure 4, the target oxide lifetime of the NMOS transistor can be obtained by ensuring that the Vdg voltage of the NMOS transistor is below the Vmaxl voltage. The target oxide lifetime of the PMOS transistor can be obtained by ensuring that the Vdg voltage of the PMOS transistor is lower than the Vmax2 voltage. The curves 410 and 420 and the Vmax1 voltage and the Vmax2 voltage may be determined by various factors such as a 1C manufacturing process, a gate oxide thickness, a gate oxide area, a temperature, and the like. For the exemplary design shown in Figure 3, the Vdg voltage of the deactivated NMOS transistor 3 14 can be given as:

Vdg=Vout-Voff 〇 等式(1)Vdg=Vout-Voff 〇 Equation (1)

Vdg電壓應小於Vmaxl,以獲得NMOS電晶體314的所要 氧化物壽命。如等式(1)中所展示,可藉由增大Voff電壓來 減小Vdg電壓。較高的Voff電壓可改良氧化物壽命,此情 形為合意的。然而,由於Voff電壓在NMOS電晶體314被停 145291.doc 13 201110540 用時施加至該NMOS電晶體314的閘極,因此該v〇ff電壓應 如下受到限制: 等式(2)The Vdg voltage should be less than Vmaxl to achieve the desired oxide lifetime of the NMOS transistor 314. As shown in equation (1), the Vdg voltage can be reduced by increasing the Voff voltage. A higher Voff voltage improves oxide lifetime, which is desirable. However, since the Voff voltage is applied to the gate of the NMOS transistor 314 when the NMOS transistor 314 is stopped, the v〇ff voltage should be limited as follows: Equation (2)

Voff < Vth, 其中Vth為NMOS電晶體314之臨限電壓。較高的v〇ff電壓 可在NMOS電晶體314被斷開時增大穿過該nm〇S電晶體 3 14的漏電流,此情形可為不合意的。可基於氧化物可靠 性與漏電流之間的折衷來選擇v〇汀電壓。 可將Vdg電壓分解成直流(DC)部分及交流(AC)部分。 Vdg電壓之DC部分可視v〇ff電壓以及可關於(例如,等 於)Von之Vout〗5號的DC部分而定。vdg電壓之AC部分可視 V〇ut信號的AC部分而定。NM〇s電晶體314之寄生汲極至 閘極電容cdg可有助於維持Vdg電壓且減少v〇ut信號之ac 部分之耦合的量。 〜在一例示性設計中,骑電壓可為可視輸出信號位準 定的可程式化值。較大的v〇ff電壓可用於較大的輸出信 位準’且反之亦然。較大的v〇ff電壓可導致較多的漏 流。然而’可消耗較多電流以便提供較大的輸出信號 =°較高的漏電流可因此占較大的輸出信號位準下之總 机的小百分比。可針對低的輸出信號位準將醫電壓設 至〇 v,且漏電流在此狀況下將不出現。 圖5展示可程式化V〇ff電壓之例示性設計。水平軸表 可以相對於-毫瓦特之分貝(dBm)為單位給出的輸出, 位準。垂直軸表示可以伏特為單位給出的醫電壓。曲 145291.doc -14 - 201110540 510展示Voff電壓對輸出信號位準。 在圖5中所展示之例示性設計中’可基於輪出信號位準 之四個範圍將Voff電壓設定至四個可能值中的一者。詳言 之,可針對PouU或小於Poutl之輸出信號位準將醫電^ 設定至VofH,針對以加丨與以如〕之間的輸出信號位準設定 至Voff2,針對?_2與P〇ut3之間的輸出信號位準設定至Voff < Vth, where Vth is the threshold voltage of the NMOS transistor 314. A higher v〇ff voltage can increase leakage current through the nm〇S transistor 3 14 when the NMOS transistor 314 is turned off, which can be undesirable. The voltage can be selected based on a trade-off between oxide reliability and leakage current. The Vdg voltage can be decomposed into a direct current (DC) portion and an alternating current (AC) portion. The DC portion of the Vdg voltage can be viewed as a V〇ff voltage and can be related to (e.g., equal to) the Vout of Vout Vout. The AC portion of the vdg voltage can be determined by the AC portion of the V〇ut signal. The parasitic drain to gate capacitance cdg of the NM〇s transistor 314 can help maintain the Vdg voltage and reduce the amount of coupling of the ac portion of the v〇ut signal. ~ In an exemplary design, the ride voltage can be a programmable value for the visual output signal level. A larger v〇ff voltage can be used for a larger output signal level and vice versa. A larger v〇ff voltage can result in more leakage current. However, more current can be consumed to provide a larger output signal = a higher leakage current can therefore account for a small percentage of the overall output signal level. The medical voltage can be set to 〇 v for low output signal levels, and leakage current will not occur under this condition. Figure 5 shows an exemplary design of a programmable V〇ff voltage. Horizontal axis table The output, level, which can be given in decibels (dBm). The vertical axis represents the medical voltage that can be given in volts. 145 291.doc -14 - 201110540 510 shows the Voff voltage versus output signal level. In the exemplary design shown in Figure 5, the Voff voltage can be set to one of four possible values based on four ranges of rounded signal levels. In particular, the medical power can be set to VofH for the output signal level of PouU or less than Poutl, and set to Voff2 for the output signal level between the plus and the like, for? The output signal level between _2 and P〇ut3 is set to

Voff3,或針對Pout3或大於p〇ut3之輸出信號位準設定至Voff3, or the output signal level for Pout3 or greater than p〇ut3 is set to

Voff4。可基於各種因素(諸如,所要氧化物可靠性、 NMOS電晶體之Vmax、輸出信號位準之所需整體範圍等) 來選擇Voffl至Voff4及p〇utl至ρ_3。在—例示性設計 中,Voffl可等於〇 V,v〇ff2可等於1〇〇毫伏特(mv),侃门 可等於200 mV,且%任4可等於3〇〇 mV。在一例示性設計 :,Poutl可等於4 dBm,P〇ut2可等於8 dBm,且卩叫^可 等於12 dBm。亦可將…出至^以及以加丨至卩仙^設定至 其他值。 圖5展示針對輸出信號位準之不同範圍將Voff電壓設定 至離散值的例示性設計。大體而言,任何數目個Voff值可 用於輸出信號位準之任何數目個範圍。任何Voff值可用於 輸出仑號位準的每一範圍。在另一例示性設計中可基於 輸出^號位準來連續地調整v〇ff電壓。對於兩種例示性設 。十可基於用於K個放大器級310之B1至BK控制信號來判 )^號位準。B1至BK控制信號可因此用以產生Voff電 壓。 圖6展示圖3中之Voff電壓產生器350之例示性設計的示 14529l.d〇, 201110540 意圖。在Voff電壓產生器350内,PM〇s電晶體61〇之源極 耦接至參考電壓Vref,且其閘極接收啟用信號Enb。可將 Enbk號設定至邏輯高以停用電壓產生器ho或設定至 邏輯低以啟用Voff電壓產生器350。電阻器612、614、616 及618串聯耦接且耦接於PMOS電晶體610的汲極與電路接 地之間。電阻器612、614及616之底端分別提供v〇ff4、Voff4. Voffl to Voff4 and p〇utl to ρ_3 may be selected based on various factors such as desired oxide reliability, Vmax of the NMOS transistor, desired overall range of output signal levels, and the like. In an exemplary design, Voffl may be equal to 〇 V, v 〇 ff2 may be equal to 1 〇〇 millivolt (mv), 侃 may be equal to 200 mV, and % 4 may be equal to 3 〇〇 mV. In an exemplary design: Poutl can be equal to 4 dBm, P〇ut2 can be equal to 8 dBm, and 卩^ can be equal to 12 dBm. You can also set ... to ^ and add to 卩 ^ ^ to other values. Figure 5 shows an exemplary design for setting the Voff voltage to discrete values for different ranges of output signal levels. In general, any number of Voff values can be used for any number of ranges of output signal levels. Any Voff value can be used to output each range of the loyalty level. In another exemplary design, the v〇ff voltage can be continuously adjusted based on the output level. For two exemplary settings. Ten can be judged based on the B1 to BK control signals for the K amplifier stages 310. The B1 to BK control signals can thus be used to generate a Voff voltage. Figure 6 shows an illustration of an exemplary design of the Voff voltage generator 350 of Figure 3, 14529l.d, 201110540. In the Voff voltage generator 350, the source of the PM 〇s transistor 61 耦 is coupled to the reference voltage Vref, and its gate receives the enable signal Enb. The Enbk number can be set to logic high to disable the voltage generator ho or set to logic low to enable the Voff voltage generator 350. Resistors 612, 614, 616, and 618 are coupled in series and coupled between the drain of PMOS transistor 610 and the circuit ground. The bottom ends of the resistors 612, 614 and 616 are respectively provided with v 〇 ff4,

Voff3及Voff2。開關622、624及626之一端麵接至節點z且 其另一端分別接收Voff4、Voff3及Voff2。開關628耦接於 卽點Z與電路接地之間。開關622、624、626及628分別藉 由S1、S2、S3及S4控制信號來打開及閉合。 解碼器63 0可接收圖3中之K個放大器級310的B1至BK控 制信號。解碼器630可基於可指示輸出信號位準之則至6〖 控制信號而產生S 1至S4控制信號。 圖6展示將Voff電壓設定至四個可能值中之一者的¥〇££電 壓產生器350的例示性設計。電阻器612 ' 614、616及61 8 可具有適當選擇之值以獲得四個所要Voff值。亦可藉由其 他例示性設計來實施Voff電壓產生器350。 大體而言,一裝置可包含多個放大器級以放大輸入信號 且提供輸出信號’例如’如圖3中所展示。該多個放大器 級可並聯耦接且可包含至少一可切換放大器級。每一可切 換放大器級可在接通狀態或切斷狀態下操作且可包含一麵 接至一疊接電晶體之增益電晶體。增益電晶體可在接通狀 態下放大輸入信號並提供經放大之信號,且可在切斷狀,瞭 下不放大該輸入信號。疊接電晶體可在接通狀態下緩衝經 145291.doc •16· 201110540 放大之信號並提供輸出信號,且可在切斷狀態下基於切斷 電壓而被停用。切斷電壓可大於零伏特或可具有多個可能 值中之-者。切斷電壓亦可小於疊接電晶體之臨限電壓此 無論何時該裝置正傳輸’可啟用至少一放大器級。可啟 用或停用該至少-可切換放大器級以獲得目標輪出信號位 準。-電感器可耦接於所有放大器級的輸出端與—供應電 壓之間。輸出信號可接著具有低於及高於該供應電壓的電 壓擺動。 在-例示性設計中’第一電壓產生器可基於輸出信號位 準而產生切斷電壓。切斷電壓之該多個可能值(其可包括 零伏特)可與輸出信號位準的多個範圍相關聯。可將切斷 電壓設定至基於覆蓋當前輸出信號位準之範圍所判定的 值。在-例示性設計中,第一電麼產生器可接收用於該至 少一可切換放大器級之至少一控制信號,且可基於該至少 一控制信號而產生切斷電壓。每一控制信號可將相應之可 切換放大器級設定至接通狀態或切斷狀態。在一例示性設 計中,第一電壓產生器可包含多個電阻器,該多個電阻器 牟聯耦接且提供切斷電壓之該多個可能值,例如,如圖6 中所展示。 在一例示性設計中,每一可切換放大器級可進一步包含 一反相器(如圖3中所展示)或一緩衝器(其可由兩個反相器 之串級構成)以接收用於可切換放大器級之控制信號且提 供用於疊接電晶體之控制電壓。反相器/緩衝器可耦接於 用以啟用疊接電晶體的接通電壓(例如,vdd或Von)與切斷 I45291.doc 17 201110540 電壓之間。每一可切換故大器級可進一步包含:⑴一電阻 器,其耦接於反相器/緩衝器的輸出端與疊接電晶體的閘 極之間,及(11) 一電容器,其耦接於疊接電晶體之閘極與 電路接地之間。第二電壓產生器可接收輸出信號且產生用 於每一可切換放大器級中之反相器/緩衝器的接通電壓。 可藉由NMOS電晶體(如圖3中所展示)、pM〇s電晶體或 其他類型之電晶體來實施每一可切換放大器級之增益電晶 體及疊接電晶體。可針對不同類型之電晶體將切斷電磨及 接通電壓設定至不同值。 圖7展示用於操作放大器之程序7〇〇的一例示性設計。可 在接通狀態下藉由增益電晶體放大輸入信號以獲得經放大 之L號(區塊7 12) »可在接通狀態下藉由疊接電晶體緩衝經 放大之信號以獲得輸出信號(區塊714)。可在切斷狀態下藉 由切斷電壓用疊接電晶體,其中該切斷電壓大於零伏特 或具有多個可能值中之一者(區塊716)。 在例示丨生°又s十中,可基於輸出信號位準而產生切斷電 壓(區塊71 8) 〇可在輸出信號位準低於臨限值之情況下將切 斷電壓β又定至零伏特,或在該輸出信號位準大於該臨限值 之情況下設定至大於零伏特的值。可在切斷狀態下將疊接 電晶體之控制電麼設定至切斷電屋,或在接通狀態下設定 至接通電壓。接通電壓可基於輸出信號產生,或可經設定 至一預定值(例如,Vdd;)。 在-例示性設計中,可啟用並聯麵接之多個放大器級中 的至少一者,且可停用剩餘放大器級。每一放大器級可包 145291.doc •18- 201110540 含增益電晶體及疊接電晶體。可藉由切斷電壓停用每一停 用之放大器級中的疊接電晶體。可基於在該多個放大器級 當中啟用哪至少放大器級而產生切斷電壓。 本文中所描述之放大器可改良停用的電晶體的可靠性, 該等停用的電晶體可耦接至與啟用之電晶體所耦接至之輸 出節點相同的輸出節點》詳言之,每一停用的電晶體之閘 極可在不需要由彼電晶體進行之RF放大時耦接至低v〇ff電 壓(而非電路接地)。Voff電壓可為可程式化的(例如,經由 串列匯流排介面)’使得較大的Voff值可用於較大的輸出信 號位準,且反之亦然,例如,如圖5中所展示。針對圖3中 所展示之例示性放大器設計執行電腦模擬。電腦模擬展示 在Voff電壓大於〇 V之情況下較高的輸出信號範圍中之可 忽略的RF效能降級(就增益、功率 '線性度及雜訊而言)。 放大器可因此在不犧牲RF效能及漏電流之情況下改良停用 之電晶體的可靠性。 可在1C、類比1C、RFIC、混合信號1C、ASIC、印刷電 路板(PCB)、電子器件等上實施本文中所描述之放大器。 放大器亦可藉由諸如CMOS、NM0S、PM0S、雙極接面電 晶體(BJT)、雙極CMOS(BiCMOS)、矽鍺(SiGe)、砷化鎵 (GaAs)等之各種1(:製程技術來製造。 實施本文中所描述之放大器的裝置可為獨立器件或可為 較大器件之部分。一器件可為⑴獨立I(: ; (ii)可包括用於 儲存資料及/或指令之記憶體1(:的一或多個1C之集合;(丨⑴ 諸如RF接收器(RFR)4 RF傳輸器/接收器(rtr)之rFIC ; 145291.doc •19· 201110540 (v)可嵌入其他器件 無線器件、手機或 (iV)諸如行動台數據機(MSM)之ASIC ; 内之模組;(vi)接收器、蜂巢式電話、 行動單元;(Vii)等。 在-或多個例示性設平計中,所描述之功能可以硬體、 人體、勒體或其任何組合來實施。若以軟體實施則該等 功月&可作為—或多個指令或程式碼在一電腦可讀媒體上健 存或經由其傳輸。電腦可讀媒體包括電腦儲存媒體及通信 ㈣兩者,通信媒體包括促進將電腦程式自一處傳送至另 一處之任何媒體。儲存媒體可為可由電腦存取之任何可用 媒體。藉由實例且非限制,該等電腦可讀媒體可包含 ROM、EEPROM、CD-ROM或其他光碟儲存器件、 磁碟儲存器件或其他磁性儲存器件,或可用於以指令或資 料結構之形式載運或儲存所要程式碼且可由電腦存取的任 何其他媒體。又,可適當地將任何連接稱為電腦可讀媒 體。舉例而言,若使用同軸電纜、光纖電纜、雙絞線、數 位用戶線(DSL),4諸如紅外、線、無線電及微波之無線技 術自網站、伺服器或其他遠端源傳輸軟體,則同軸電纜、 光纖電纜、雙絞線、鼠’或諸如紅外線、無線電及微波 之無線技術包括在媒體的定義中。如本文中所使用的,磁 碟及光碟包括壓縮光碟(CD)、雷射光碟、光碟、數位多功 能光碟(DVD)、軟性磁碟及藍光光碟,其中磁碟通常以磁 性方式再現資料,而光碟藉由雷射以光學方式再現資料。 上述各物之組合亦應包括在電腦可讀媒體之範疇内。 提供本發明之先前描述以使任何熟習此項技術者能夠進 14529I.doc -20- 201110540 仃或使用本發明。對本發明之各種修改對於熟習此項技術 者將顯而易見’且在不脫離本發明之範疇的情況下,本文 中所定義之一般原理可應用於其他變型。因此,本發明並 不意欲限於本文中所描述之實例及設計,而應符合與本文 中所揭示之原理及新穎特徵一致的最廣範脅。 【圖式簡單說明】 圖1展示一無線通信器件之方塊圖; 圖2展示一放大器之示意圖; 圖3展示具有改良之可靠性之放大器的示意圖; 圖4展示氧化物壽命對汲極至閘極電壓(Vdg)的曲線圖; 圖5展示可程式化切斷電壓對輸出信號位準; 圖6展示一切斷電壓產生器之示意圖;及 圖7展示用於操作放大器之程序。 【主要元件符號說明】 100 無線通信器件 110 資料處理器 112 記憶體 120 收發器 130 傳輸器 132 放大器(Amp) 134 低通j慮波器 136 可變增益放大器(VGA) 138 混頻 140 滤波器 145291.doc 201110540 142 驅動器放大器(DA) 144 功率放大器(PA) 146 雙工器/開關 148 天線 150 接收器 152 低雜訊放大器(LNA) 154 帶通濾波器 156 混頻器 158 VGA 160 低通遽波器 162 放大器 170 局部振盪器(LO)產生器 172 鎖相迴路(PLL) 200 放大器 210a 放大級 210b 放大Is級 210k 放大級 212 N通道金氧半導體(NMOS)電晶體/增益電晶體 214 NMOS電晶體/疊接電晶體 220 反相器 222 電阻器 230 電感器 300 疊接放大器 310a 放大器級 145291.doc -22- 201110540 310b 放大器級 310k 放大器級 312 N通道金氧半導體(NMOS)電晶體/增益電晶體 314 NMOS電晶體/疊接電晶體 320 反相器 322 電阻器 324 電容器 330 電感Is 340 Von電壓產生器 350 Voff電壓產生器 610 P通道金氧半導體(PMOS)電晶體 612 電阻器 614 電阻器 616 電阻器 618 電阻器 622 開關 624 開關 626 開關 628 開關 630 解碼器 A1 節點 A2 節點 AK 節點 B1 控制信號 145291.doc -23- 201110540 B2 控制信號 BK 控制信號 Enb 啟用信號 SI 控制信號 S2 控制信號 S3 控制信號 S4 控制信號 Vdd 電源供應器/供應電壓 Vin 輸入信號 Voff 切斷電壓 Voffl 切斷電壓 Voff 2 切斷電壓 Voff 3 切斷電壓 Voff 4 切斷電壓 Von 接通電壓 Vout 輸出信號 Vref 參考電壓 X 節點 Y 節點 z 節點 145291.doc -24-Voff3 and Voff2. One end of the switches 622, 624, and 626 is connected to the node z and the other end thereof receives Voff4, Voff3, and Voff2, respectively. The switch 628 is coupled between the defect Z and the circuit ground. Switches 622, 624, 626, and 628 are opened and closed by S1, S2, S3, and S4 control signals, respectively. The decoder 63 0 can receive the B1 to BK control signals of the K amplifier stages 310 of Figure 3. The decoder 630 can generate the S 1 to S4 control signals based on the control signal that can be output to the 6 control signals. Figure 6 shows an illustrative design of a voltage generator 350 that sets the Voff voltage to one of four possible values. Resistors 612 ' 614, 616, and 61 8 may have appropriately selected values to obtain four desired Voff values. The Voff voltage generator 350 can also be implemented by other exemplary designs. In general, a device can include multiple amplifier stages to amplify an input signal and provide an output signal 'e.g., as shown in FIG. The plurality of amplifier stages can be coupled in parallel and can include at least one switchable amplifier stage. Each of the switchable amplifier stages can be operated in an on state or in an off state and can include a gain transistor connected to a stacked transistor. The gain transistor amplifies the input signal in an on state and provides an amplified signal, and can be in a cut-off state without amplifying the input signal. The spliced transistor can buffer the signal amplified by 145291.doc •16· 201110540 and provide an output signal in the on state, and can be deactivated based on the cut-off voltage in the off state. The cutoff voltage can be greater than zero volts or can have any of a number of possible values. The cut-off voltage can also be less than the threshold voltage of the stacked transistor. This enables at least one amplifier stage whenever the device is transmitting '. The at least-switchable amplifier stage can be enabled or disabled to achieve a target round-trip signal level. The inductor can be coupled between the output of all amplifier stages and the supply voltage. The output signal can then have a voltage swing below and above the supply voltage. In an exemplary design, the first voltage generator can generate a cut-off voltage based on the output signal level. The plurality of possible values of the cutoff voltage (which may include zero volts) may be associated with a plurality of ranges of output signal levels. The cut-off voltage can be set to a value determined based on the range covering the current output signal level. In an exemplary design, the first power generator can receive at least one control signal for the at least one switchable amplifier stage and can generate a cutoff voltage based on the at least one control signal. Each control signal can set the corresponding switchable amplifier stage to an on state or an off state. In an exemplary design, the first voltage generator can include a plurality of resistors coupled in series and providing the plurality of possible values of the cutoff voltage, for example, as shown in FIG. In an exemplary design, each switchable amplifier stage may further comprise an inverter (as shown in FIG. 3) or a buffer (which may be formed by a cascade of two inverters) for receiving The control signal of the amplifier stage is switched and a control voltage for the stacked transistor is provided. The inverter/buffer can be coupled between the turn-on voltage (e.g., vdd or Von) to enable the stacked transistor and the voltage to cut off I45291.doc 17 201110540. Each switchable level further includes: (1) a resistor coupled between the output of the inverter/buffer and the gate of the stacked transistor, and (11) a capacitor coupled Connected between the gate of the stacked transistor and the circuit ground. The second voltage generator can receive the output signal and generate a turn-on voltage for the inverter/buffer in each switchable amplifier stage. The gain transistor and the stacked transistor of each switchable amplifier stage can be implemented by an NMOS transistor (as shown in Figure 3), a pM〇s transistor, or other type of transistor. The cut-off electric grinder and the turn-on voltage can be set to different values for different types of transistors. Figure 7 shows an exemplary design of a procedure 7 for operating an amplifier. The input signal can be amplified by the gain transistor in the on state to obtain the amplified L number (block 7 12) » The amplified signal can be buffered by the stacked transistor in the on state to obtain an output signal ( Block 714). The stacked transistor can be turned off by a cut-off voltage in a cut-off state, wherein the cut-off voltage is greater than zero volts or has one of a plurality of possible values (block 716). In the example of the generation of the temperature, the cut-off voltage can be generated based on the output signal level (block 7 8). The cut-off voltage β can be set to the output signal level below the threshold. Zero volts, or a value greater than zero volts if the output signal level is greater than the threshold. The control voltage of the laminated transistor can be set to cut off the electric house in the off state, or set to the on voltage in the on state. The turn-on voltage can be generated based on the output signal or can be set to a predetermined value (e.g., Vdd;). In an exemplary design, at least one of the plurality of amplifier stages connected in parallel can be enabled and the remaining amplifier stages can be disabled. Each amplifier stage can be packaged 145291.doc •18- 201110540 with gain transistor and stacked transistor. The stacked transistors in each of the disabled amplifier stages can be deactivated by switching off the voltage. The cutoff voltage can be generated based on which of the at least amplifier stages is enabled in the plurality of amplifier stages. The amplifiers described herein can improve the reliability of a deactivated transistor that can be coupled to the same output node as the output node to which the enabled transistor is coupled. The gate of a deactivated transistor can be coupled to a low voltage (not circuit ground) when RF amplification by the transistor is not required. The Voff voltage can be programmable (e.g., via a serial bus interface)' such that a larger Voff value is available for a larger output signal level, and vice versa, for example, as shown in FIG. Computer simulations were performed for the exemplary amplifier design shown in Figure 3. Computer simulations show negligible RF performance degradation (in terms of gain, power 'linearity, and noise) in the higher output signal range where the Voff voltage is greater than 〇 V. The amplifier can therefore improve the reliability of the disabled transistor without sacrificing RF performance and leakage current. The amplifiers described herein can be implemented on 1C, analog 1C, RFIC, mixed signal 1C, ASIC, printed circuit board (PCB), electronics, and the like. The amplifier can also be used by various technologies such as CMOS, NM0S, PM0S, Bipolar Junctional Transistor (BJT), Bipolar CMOS (BiCMOS), germanium (SiGe), gallium arsenide (GaAs), etc. The device implementing the amplifiers described herein may be a stand-alone device or may be part of a larger device. A device may be (1) independent I (:; (ii) may include memory for storing data and/or instructions. 1 (: a set of one or more 1C; (丨 (1) such as RF Receiver (RFR) 4 RF Transmitter / Receiver (rtr) rFIC; 145291.doc • 19· 201110540 (v) can be embedded in other devices wireless Device, cell phone or (iV) ASIC such as Mobile Station Data Machine (MSM); module within; (vi) receiver, cellular phone, mobile unit, (Vii), etc. in - or multiple illustrative settings In the context, the functions described may be implemented in hardware, human body, orthography, or any combination thereof. If implemented in software, the powers may be used as one or more instructions or code on a computer readable medium. Storing or transmitting via it. Computer readable media includes computer storage media and communications (4), communication media This includes any medium that facilitates the transfer of a computer program from one location to another. The storage medium can be any available media that can be accessed by a computer. By way of example and not limitation, such computer-readable media can include ROM, EEPROM, CD - ROM or other optical storage device, disk storage device or other magnetic storage device, or any other medium that can be used to carry or store the desired code in the form of an instruction or data structure and accessible by a computer. Any connection is called a computer readable medium. For example, if you use coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), 4 wireless technologies such as infrared, wire, radio and microwave from the website, server or Other remote source transmission software, coaxial cable, fiber optic cable, twisted pair, mouse 'or wireless technology such as infrared, radio and microwave are included in the definition of the media. As used herein, the disk and the optical disk include compression. Optical discs (CDs), laser discs, compact discs, digital versatile discs (DVDs), flexible discs and Blu-ray discs, where the disc is usually magnetic The material is reproduced in a manner that optically reproduces the material by laser. The combination of the above should also be included in the scope of computer readable media. The foregoing description of the present invention is provided to enable anyone skilled in the art to enter the 14529I. The present invention will be apparent to those skilled in the art, and the general principles defined herein may be applied to other variations without departing from the scope of the invention. Therefore, the present invention is not intended to be limited to the examples and designs described herein, but rather the broadest scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a block diagram of a wireless communication device; Figure 2 shows a schematic diagram of an amplifier; Figure 3 shows a schematic diagram of an amplifier with improved reliability; Figure 4 shows oxide lifetime versus drain to gate A graph of voltage (Vdg); Figure 5 shows a programmable voltage cutoff versus output signal level; Figure 6 shows a schematic diagram of a cutoff voltage generator; and Figure 7 shows a procedure for operating an amplifier. [Main component symbol description] 100 Wireless communication device 110 Data processor 112 Memory 120 Transceiver 130 Transmitter 132 Amplifier (Amp) 134 Low pass j filter 136 Variable gain amplifier (VGA) 138 Mixing 140 Filter 145291 .doc 201110540 142 Driver Amplifier (DA) 144 Power Amplifier (PA) 146 Duplexer/Switch 148 Antenna 150 Receiver 152 Low Noise Amplifier (LNA) 154 Bandpass Filter 156 Mixer 158 VGA 160 Low Pass Chopper 162 Amplifier 170 Local Oscillator (LO) Generator 172 Phase Locked Loop (PLL) 200 Amplifier 210a Amplifier Stage 210b Amplified Is Stage 210k Amplifier Stage 212 N Channel Metal Oxide Semiconductor (NMOS) Transistor / Gain Transistor 214 NMOS Crystal / lapped transistor 220 inverter 222 resistor 230 inductor 300 cascading amplifier 310a amplifier stage 145291.doc -22- 201110540 310b amplifier stage 310k amplifier stage 312 N-channel MOS transistor / gain transistor 314 NMOS transistor / stacked transistor 320 inverter 322 resistor 324 capacitor 330 inductor Is 340 Von Voltage generator 350 Voff voltage generator 610 P-channel MOS transistor 612 resistor 614 resistor 616 resistor 618 resistor 622 switch 624 switch 626 switch 628 switch 630 decoder A1 node A2 node AK node B1 control Signal 145291.doc -23- 201110540 B2 Control signal BK Control signal Enb Enable signal SI Control signal S2 Control signal S3 Control signal S4 Control signal Vdd Power supply / supply voltage Vin Input signal Voff Cut-off voltage Voffl Cut-off voltage Voff 2 Cut Break voltage Voff 3 cutoff voltage Voff 4 cutoff voltage Von turn-on voltage Vout output signal Vref reference voltage X node Y node z node 145291.doc -24-

Claims (1)

201110540 七、申請專利範圍: 1. 一種裝置,其包含: 多個放大器級,其用以放大一輸入信號且提供一輸出 信號,該多個放大器級並聯耦接且包含至少一可切換放 • 大器級’每一可切換放大器級係在一接通狀態或一切斷 - 狀態下操作且包含 一增益電晶體,其用以在該接通狀態下放大該輸入 信號並提供一經放大之信號’且用以在該切斷狀態下 不放大該輸入信號,及 一疊接電晶體,其耦接至該增益電晶體且用以在該 接通狀態下緩衝該經放大之信號並提供該輸出信號, 该疊接電晶體在該切斷狀態下係基於一切斷電壓而被 停用,該切斷電壓大於零伏特或具有多個可能值中之 一者。 2. 如請求項1之裝置,其進一步包含: 電壓產生器,其用以基於一輸出信號位準而產生該 切斷電壓。 3. 如叫求項2之裝置,該切斷電壓之該多個可能值與輸出 . 信號位準之多個範圍相關聯,且該切斷電壓經設定至一 I於覆蓋該輸出信號位準之一範圍所判定的值。 4. 如請求項丨之裝置,其進一步包含: 電壓產生益,其用以接收用於該至少一可切換放大 斋級之至少一控制信號’且用以基於該至少一控制信號 而產生該切斷電壓’每一控制信號將一相應可切換放大 145291.doc 201110540 器級設定至該接通狀態或該切斷狀態》 5. 如請求項1之裝置,其進一步包含: 一電壓產生器’其包含多個電阻器,該多個電阻器串 聯麵接且提供該切斷電壓之該多個可能值。 6. 如凊求項1之裝置,該切斷電壓之該多個可能值包含零 伏特。 7. 如請求項1之裝置,該切斷電壓小於該疊接電晶體之一 臨限電壓。 8. 如明求項1之裝置,每一可切換放大器級進—步包含 反相器或一緩衝器,其用以接收用於該可切換放大 器級之-控制信號且用以提供—用於該疊接電晶體之控 制電望”亥反相器或s亥緩衝器麵接於一用以啟用該疊接 電晶體的接通電壓與用以停用該疊接電晶體的該切斷電 9.如:求項8之裝置’每-可切換放大器級進一步包含 二阻器’其耗接於該反相器或該緩衝器的一輸出端 一 h唛接電晶體的一閘極之間,及 一電容器’其耦接於該疊接電曰 地之間。 且按亀日日體的該閘極與電路接 10·如請求項8之裝置,其進一步包含 號且產生用於每 衝器的該接通電 -電壓產生器,其用以接收該輪出俨 -可切換放大器級中之該反相器或該‘ 其進一步包含: 11 ·如清求項1之袭置 145291.doc 201110540 一電感器’其麵接於該多個放大器級的輸出端與一供 應電壓之間’該輸出信號具有一低於及高於該供應電壓 的電壓擺動。 12. 13. 14. 15. 16. 如凊求項1之裝置,當該裝置正傳輸時,該多個放大器 級中之至少一者被啟用。 如凊求項1之裝置,該至少一可切換放大器級被啟用或 停用以獲得一目標輸出信號位準。 一種積體電路,其包含: 夕個放大器級,其用以放大一輸入信號且提供一輸出 仏號,該多個放大器級並聯耦接且包含至少一可切換放 大器級,每一可切換放大器級係在一接通狀態或一切斷 狀態下操作且包含 一增益電晶體,其用以在該接通狀態下放大該輸入信 號並提供一經放大之信號,且用以在該切斷狀態下不放 大該輸入信號,及 一疊接電晶體,其耦接至該增益電晶體且用以在該接 通狀態下緩衝該經放大之信號並提供該輸出信號,該疊 接電晶體在該切斷狀態下係基於一切斷電壓而被停用, 該切斷電壓大於零伏特或具有多個可能值中之一者。 如請求項14之積體電路,其進一步包含: 一電壓產生器,其用以基於一輸出信號位準而產生該 切斷電壓。 如請求項14之積體電路,該增益電晶體及該疊接電晶體 包含N通道金氧半導體(NM〇s)電晶體或卩通道金氧半導 145291.doc 201110540 體(PMOS)電晶體。 17. —種方法,其包含: 在一接通狀態下藉由一增益 日曰體放大一輪入作缺以 獲得一經放大之信號; 軋入乜唬以 在该接通狀態下藉由一疊接電 ^ , 接罨日日體緩衝該經放大之信 唬並美供一輸出信號;及 在一切斷狀態下藉由-切斷電壓停用該疊接電晶體, 該切斷電壓大於零伏特或具有多個可能值中之一者。 18. 如請求項17之方法,其進一步包含: 基於一輸出信號位準而產生該切斷電壓。 19. 如明求項18之方法,該產生該切斷電壓包含 在該輸出信號位準低於一臨限值之情況下將該切斷電 壓設定至零伏特,及 在該輸出信號位準大於該臨限值之情況下將該切斷電 壓設定至一大於零伏特的值。 20. 如請求項π之方法,其進一步包含: 基於該輸出信號而產生一接通電壓;及 在該切斷狀態下將該疊接電晶體之一控制電壓設定至 該切斷電壓,或在該接通狀態下設定至該接通電壓。 21. 如請求項17之方法,其進一步包含: 啟用並聯耦接之多個放大器級中的至少一者,每一放 大器級包含該增益電晶體及該疊接電晶體;及 藉由該切斷電壓停用每一停用之放大器級中的該疊接 電晶體。 145291.doc 201110540 22. 如請求項21之方法,其進一步包含: 基於在該多個放大器級當中啟用哪至少一放大器級而 產生該切斷電壓。 23. —種裝置,其包含: 用於在一接通狀態下放大一輸入信號以獲得一經放大 之信號的構件; 用於在該接通狀態下緩衝該經放大之信號並提供一輸 出信號的構件;及 用於在一切斷狀態下藉由一切斷電壓停用該用於緩衝 之構件的構件’該切斷電壓大於零伏特或具有多個可能 值中之一者。 24. 如請求項23之裝置,其進一步包含: 用於基於輪出信號位準而產生該切斷電壓的構件。 25. 如凊求項24之裝置’該用於產生該切斷電壓的構件包含 用於在》亥輸出仏號位準低於_臨限值之情況 斷電壓設定至零伏特的構件,及 ’以刀 用於在该輪出信號位 斷雷懕-宕s 早大於仏限值之情況下將該切 斷電屋汉疋至一大於零伏特的值的構件。 145291.doc201110540 VII. Patent Application Range: 1. A device comprising: a plurality of amplifier stages for amplifying an input signal and providing an output signal, the plurality of amplifier stages being coupled in parallel and comprising at least one switchable release The stage 'each switchable amplifier stage operates in an on state or a off state and includes a gain transistor for amplifying the input signal and providing an amplified signal in the on state' The input signal is not amplified in the off state, and a stacked transistor is coupled to the gain transistor and used to buffer the amplified signal and provide the output signal in the on state. The spliced transistor is deactivated in the off state based on a cutoff voltage that is greater than zero volts or has one of a plurality of possible values. 2. The device of claim 1, further comprising: a voltage generator for generating the cutoff voltage based on an output signal level. 3. The apparatus of claim 2, wherein the plurality of possible values of the cutoff voltage are associated with a plurality of ranges of output. signal levels, and the cutoff voltage is set to an I to cover the output signal level The value determined by one of the ranges. 4. The device of claim 1, further comprising: a voltage generating benefit for receiving at least one control signal for the at least one switchable amplification stage and for generating the slice based on the at least one control signal Breaking voltage 'each control signal sets a corresponding switchable amplification 145291.doc 201110540 to the on state or the off state. 5. The device of claim 1, further comprising: a voltage generator A plurality of resistors are included, the plurality of resistors being connected in series and providing the plurality of possible values of the cutoff voltage. 6. The device of claim 1, wherein the plurality of possible values of the cutoff voltage comprises zero volts. 7. The device of claim 1, wherein the cut-off voltage is less than a threshold voltage of the stacked transistor. 8. The apparatus of claim 1, each switchable amplifier stage further comprising an inverter or a buffer for receiving a control signal for the switchable amplifier stage and for providing - for The control circuit of the spliced transistor is connected to a turn-on voltage for enabling the spliced transistor and the cut-off power for deactivating the spliced transistor 9. The device of claim 8 wherein the 'each-switchable amplifier stage further comprises a second resistor' that is coupled between the inverter or an output of the buffer and is connected between a gate of the transistor And a capacitor 'coupled between the stacked grounds. and the gate of the next day is connected to the circuit. 10. The device of claim 8 further includes a number and is generated for each rush. The on-voltage-voltage generator of the device is configured to receive the inverter in the turn-off-switchable amplifier stage or the further comprising: 11 - as claimed in claim 1 145291.doc 201110540 An inductor 'between the output of the plurality of amplifier stages and a supply voltage' The output signal has a voltage swing below and above the supply voltage. 12. 13. 14. 15. 16. The device of claim 1, wherein at least one of the plurality of amplifier stages is transmitting while the device is transmitting The device is enabled, such as the device of claim 1, the at least one switchable amplifier stage is enabled or disabled to obtain a target output signal level. An integrated circuit comprising: an amplifier stage for amplifying An input signal and an output nickname, the plurality of amplifier stages being coupled in parallel and including at least one switchable amplifier stage, each switchable amplifier stage operating in an on state or a off state and including a gain a crystal for amplifying the input signal in the on state and providing an amplified signal, and for not amplifying the input signal in the off state, and a stacked transistor coupled to the gain a transistor for buffering the amplified signal and providing the output signal in the on state, the spliced transistor being deactivated based on a cutoff voltage in the off state, the cutoff voltage being large At zero volts or having one of a plurality of possible values, such as the integrated circuit of claim 14, further comprising: a voltage generator for generating the cut-off voltage based on an output signal level. The integrated circuit of item 14, wherein the gain transistor and the stacked transistor comprise an N-channel gold oxide semiconductor (NM〇s) transistor or a germanium channel gold oxide semiconductor 145291.doc 201110540 body (PMOS) transistor. a method comprising: amplifying a round-up by a gain day in an on state to obtain an amplified signal; rolling in a 乜唬 to connect the 乜唬 in the on state And connecting the amplified signal to the output signal and receiving the output signal by a cut-off voltage in a cut-off state, the cut-off voltage being greater than zero volts or more One of the possible values. 18. The method of claim 17, further comprising: generating the cutoff voltage based on an output signal level. 19. The method of claim 18, wherein the generating the cutoff voltage comprises setting the cutoff voltage to zero volts if the output signal level is below a threshold, and the output signal level is greater than In the case of the threshold, the cut-off voltage is set to a value greater than zero volts. 20. The method of claim π, further comprising: generating a turn-on voltage based on the output signal; and setting a control voltage of the one of the stacked transistors to the cut-off voltage in the cut-off state, or This on-voltage is set in the on state. 21. The method of claim 17, further comprising: enabling at least one of a plurality of amplifier stages coupled in parallel, each amplifier stage including the gain transistor and the stacked transistor; and by the cutting The voltage disables the stacked transistor in each of the disabled amplifier stages. 22. The method of claim 21, further comprising: generating the cutoff voltage based on which of the plurality of amplifier stages is enabled. 23. An apparatus comprising: means for amplifying an input signal in an on state to obtain an amplified signal; for buffering the amplified signal and providing an output signal in the on state And a member for deactivating the member for buffering by a cut-off voltage in a cut-off state, the cut-off voltage being greater than zero volts or having one of a plurality of possible values. 24. The device of claim 23, further comprising: means for generating the cut-off voltage based on the rounded signal level. 25. The apparatus of claim 24, wherein the means for generating the cut-off voltage comprises means for setting the voltage to zero volts in the case where the output level is below the threshold value, and ' The knives are used to sever the power down to a value greater than zero volts in the event that the turn-off signal bit breaks the 懕-懕s earlier than the 仏 limit. 145291.doc
TW98142419A 2008-12-10 2009-12-10 Amplifier with programmable off voltage TW201110540A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US63219408A 2008-12-10 2008-12-10

Publications (1)

Publication Number Publication Date
TW201110540A true TW201110540A (en) 2011-03-16

Family

ID=44836315

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98142419A TW201110540A (en) 2008-12-10 2009-12-10 Amplifier with programmable off voltage

Country Status (1)

Country Link
TW (1) TW201110540A (en)

Similar Documents

Publication Publication Date Title
JP5139582B2 (en) Amplifier with programmable off voltage
KR101320468B1 (en) An apparatus, a wireless device and a method for cascode amplifier with protection circuitry
US8461921B2 (en) Amplifier module with multiple operating modes
US8395435B2 (en) Switches with bias resistors for even voltage distribution
EP2460270B1 (en) Switch with improved biasing
US8072272B2 (en) Digital tunable inter-stage matching circuit
US8666338B2 (en) Multi-mode bypass driver amplifier with tunable load matching
US8779857B2 (en) Amplifier with variable matching circuit to improve linearity
US7868657B1 (en) High voltage logic circuits
TW201110540A (en) Amplifier with programmable off voltage