TW201110368A - Flexible solar cell with high conversion efficiency and the manufacturing method - Google Patents

Flexible solar cell with high conversion efficiency and the manufacturing method Download PDF

Info

Publication number
TW201110368A
TW201110368A TW098130391A TW98130391A TW201110368A TW 201110368 A TW201110368 A TW 201110368A TW 098130391 A TW098130391 A TW 098130391A TW 98130391 A TW98130391 A TW 98130391A TW 201110368 A TW201110368 A TW 201110368A
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
type semiconductor
type
gas
ratio
Prior art date
Application number
TW098130391A
Other languages
Chinese (zh)
Other versions
TWI405343B (en
Inventor
Ru-Yuan Yang
Chin-Min Hsiung
Chuen-Shii Chou
Wu-Jang Huang
Original Assignee
Univ Nat Pingtung Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Pingtung Sci & Tech filed Critical Univ Nat Pingtung Sci & Tech
Priority to TW098130391A priority Critical patent/TWI405343B/en
Publication of TW201110368A publication Critical patent/TW201110368A/en
Application granted granted Critical
Publication of TWI405343B publication Critical patent/TWI405343B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The disclosure is a flexible solar cell with high power conversion efficiency and the manufacturing method. The cell mainly comprises a substrate; a first ZnO transparent conductive film; a crystal-embedded P type semiconductor layer; a first microcrystal-embedded i-type semiconductor layer; a second microcrystal-embedded first N type semiconductor layer; a nanocrystal-embedded second N type semiconductor layer and a second ZnO transparent conductive film. It is consisted of nanocrystal silicon which reduce degradation and microcrystal silicon which increase electron mobility, which improves the conversion efficiency of solar cell.

Description

201110368 六、發明說明: 【發明所屬之技術領域】 本發明係有關於-種太陽能電池,其制有關於—種具有高 光電轉換效率之可撓式太陽能電池及其製備方法。 【先前技術】 按,由於國際能源短缺,世界各國持續研發各種可行之替代 成源’其中又以太陽能發電之太陽能電池最受觸目。太陽能電 籲池具有使用方便、取之不盡、用之不竭、無廢棄物、無污染、無 轉動部份、㈣音、可阻酿雜、使轉命長、尺寸可隨意變 化、並與賴物作結合及普及鱗伽,故世界各_利用太陽 能電池作為能源取得的重要手段。 在薄膜太陽能電池的結構上,一般是以透明玻璃為基板,其 上依序成長第-層電極、光電轉換層以及第二層電極。在第二層 電極的材料選擇上,因其在太陽光賴照射之τ,容易產生光劣 籲化現象(Staebler-Wronski,SW),這些光劣化現象係起因於,太陽光 能會打斷-些鍵結較弱树軒共價鍵,因而使賴浮鍵的數目 隨著光照時間而增多。因此可藉由改良電極的品f以提高電極壽 命並提升矽薄臈太陽能電池之轉換效率。 參…、美國a告專利第6,180,870號,標題為:光伏電池 (Ph—cdevice),其主要揭示一種太陽能 電池的製程方式。其 利用通過各種氣體製作出不同之IM-N結構,藉以改善電流特性 ϋ增加電池整體之光電轉換效率,但未能使電極能在持續 照光之下能維持其電流特性。 201110368 因此’有必要提出-種具有高透光率且具有、结構所 之可撓式太陽能電池,其可细結晶料、微晶料、奈米晶石夕 質結構來提高其光波長之做,更藉由高透光率之透明=電 膜提昇入射光之穿透率,進而提升可撓式太_電池之轉換效率。 【發明内容】 鑒於以上f之技術關題,本發明提供—種具有高光電轉換 效率之可撓式太陽能電池,其多能隙讀財祕增加光吸收範 圍,進而提昇太陽能電池之光電轉換效率。 本發明提出-種具有高透光率之可撓式太陽能電池結構,其 包含·-可撓式基板;—第—翻導電膜;—p型半導體層;一 本質型(1型)半導體層;一第一 N型半導體層卜第二N型半 導體層;以及一第二透明導電膜。 ,本翻尚提$-種具有高光轉触率之可赋太陽能電池 製,方法’其包含下列步驟:㈠以陰極電弧賴沉積系統製備 一第一透明導電膜於-可撓式基板上;(二)沈積—p型半導體層 於該第-透明導電膜上方;(三)至少通人—氫氣以及—雜氣體 、沈積本質型(i型)半導體層於該P型半導體層上方;(四) 人至>、通人該氫氣、該氣體以及—碟化氫氣體沈積一具有 鑲埋第二微祕H N型半導體層於該本質型㈣)半導體 層上方,(五)再次至少通入該氫氣 '該矽烷氣體以及一磷化氫氣 體沈積-具有鑲埋奈米晶石夕質第二N型羊導體層於該第一 N裂半 導體層上方,(六)以及至少通入一氧氣以及一氬氣以沈積一第二 透明導電膜於該N型半導體層上方。 201110368 為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂, 下文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 雖然本發明可表現為不同形式之實施例,但附圖所示者及於 下文中說明者係為本發明可之較佳實關,麟了解本文所揭示 者係考里為本發明之一範例,且並非意圖用以將本發明限制於圖 式及/或所描述之特定實施例中。 修 現參照第1圖’其所示為具有高光電轉換效率之可撓式太陽 忐電池100側視剖面圖,該結構為本發明之第一實施例。本發明 之具有高光電轉換效率之可撓式太陽能電池100包含:基板11(); 第一透明導電膜120; P型半導體層13〇;本質型(i型)半導體層 140,第一 N型半導體層150;第二n型半導體層160;以及第二透 明導電膜170。其中,p型半導體層13〇内係鑲埋結晶矽質13卜 本質型(1型)半導體層140内係鑲埋第一微晶矽質141,第一 N 型半導體層150内係鑲埋第二微晶矽質15卜而第二N型半導體 參 層16〇内係鑲埋奈米晶矽質16卜 可挽式基板110係選自於具有向分子材料之塑膠、聚乙稀對 苯二甲酸酯(Poly Ethylene Terephthalate,PET)、聚酿亞胺 (Polyimide,PI)以及液晶材料之一。在一較佳實施例中,可撓式基 板110係選自聚醯亞胺。需注意’利用不同材料之可撓式基板11〇 會影響第一透明導電膜120之光電特性。 第一透明導電膜120及第二透明導電膜no係分別形成於可 撓式基板110及第二N型半導體層160上’且其係選用陰極電狐 201110368 電漿沉積系統作為主要製程方式。於本發明實施例中’第一透明 導電膜120係配置於可撓式基板no上,其片電阻值係介於35ΟΩ/口 至470Ω/口之間,且其晶粒尺寸係介於L6奈米至2.6奈米之間, 而其於可見光之穿透率係介於90%至95%之間。 P型半導體層130内具有鑲埋結晶矽質131,係形成於第一透 明導電膜120上。P型半導體層130可選用電漿增強型化學式氣相 沈積製程(Plasma-enhanced chemical vapor deposition,PECVD)、熱 絲化學氣相沉積法(Hot-wire chemical vapor deposition, HW-CVD) 或特尚頻電褒增強型化學式氣相沈積(Very high frequency-plasma enhance chemical vapor deposition,VHF-PECVD)製程作為主要製 程方式,並通入矽化合物(Silicide)氣體如矽烷(silane,SH4)並 混和氫氣(Hydrogen,H)、氬氣(Argon,Ar)等氣體作為結晶矽質 131之製作氣體。且結晶矽質131可選自微晶矽,奈米晶矽,多晶 矽質之一。在一較佳實施例中,結晶矽質131係為多晶矽,其形 成方式可選自金屬錄發法(Metal induced crystalline,MIC )、準 分子雷射退火(Excimer laser anneal,ELA)、以及固相結晶 化(Solid phase crystalline,SPC)所組成族群之一。需注意 的是,本發明之P型半導體層130内之結晶矽質131係佔p型半 導體層130之整體比例係為80%至100%之間,而結晶矽質ι31 之晶粒尺寸係介於1微米至5微米之間。需注意,不同的結晶比 例與晶粒尺寸會影響P型半導體層13 0之載子移動率與光電特 性。 其中,在原本質材料中加入雜質(Impurities )用以產生 201110368 多餘的電洞,以電洞構成多數载子之半導體,則稱之為?型 半導體層13〇。例:就石夕或鍺半導體而言,在其本質半導體 中,掺入3價原子的雜質(Impu她s)時,即形成多餘的電 洞’且該電洞係為電流的運作方式。 其中P型半導體層13G之搀雜方式於本發明巾係採用可 選用氣體摻雜、熱擴散法(Thermal diffusion)、固相結晶化 (Solidphase crystalline,SPC)或準分子雷射退火(Εχ(^π laser anneal,ELA)等製程作為主要的製程方式。 籲 本質型(1型)半導體層14〇内係鑲埋第一微晶矽質141,其 係形成於P型半導體層130上方,用以提昇太陽能電池之電特性。 其中’本質型(1型)半導體層140之厚度係介於0·5微米到2微 米之間,且第一微晶破質141佔該本質型(丨型)半導體層mo之 比例係為35%至45%之間,而第一微晶石夕質之晶粒尺寸係介於I〗 奈米至23奈米之間。此外,本質型(丨型)半導體層14〇對於薄 膜型太陽能電池之電特性影響最大,其是由於電子與電洞在材料 # 内部傳導時’若該本質型(i型)半導體層140厚度過厚,兩者重 合機率極高。為避免此現象發生,本質型(i型)半導體層14〇不 宜過厚。反之,本質型(i型)半導體層140厚度過薄時,又易造 成吸光性不足。 本質型(i型)半導體層140 —般係以非晶矽質薄膜(a-Si:H) 為主。然而,非晶矽質薄膜於光照後的短時間内,其性能將大幅 的衰退,即所謂的光劣化(Staebler-Wronski,SW)效應,其衰減 幅度約15%〜35%。SW效應係由於材料中部份未飽和的矽原 201110368 子(Dangling bond,DB)因光照射後,所發生結構變化之故。故 為有效消除sw效應,於本發明中使用第一微晶石夕質薄膜以 提高太陽能電池之轉換效率。 本發明之i型半導體層140係由高密度電漿化學氣相沈積系統 來形成,通入之氣體可選用矽化合物(Silicide)氣體如矽烷(silane, SKU)並混和氫氣(Hydrogen,H)、氬氣(Argon,Ar)等作為該第 一微晶矽質薄膜之製作氣體。 第一 N型半導體層150具有鑲埋第二微晶矽質151,其係形 成於本質型(1型)半導體14〇層上方,其中,第二微晶矽質151 佔第一 N型半導體層15〇之比例係為5%至4〇%之間,而第二微 晶矽質151之晶粒尺寸係介於10奈米至乃奈米之間。其中第二 微晶石夕質151佔第- N型半導體们5〇之較佳比例係為2〇%至 25%之間。 第二N型半導體層160具有鑲埋奈米晶矽質161,其係形成 於第- N型半導體層150上方。其中,奈米晶石夕質161佔第4 型半導體層160之比例係為5%至4〇%之間,而奈米晶石夕質l6i之 晶粒尺寸係小於3奈米。其中第微晶石夕質161佔第工^^型半導體 層160之較佳比例係為12〇/〇至15〇/〇之間。 第-N型半導體層15〇與第二N型半導體層16〇可選用於電 漿增強型化學式氣相沈積製程、熱絲化學氣相沉積法、高密度電 漿化學氣相_法與特親雜顧·學錢相沈積製程之一 作為主要製程方式。 其中,第一 N型半導體層150與第二N型半導體層16〇係 201110368 指在本質材料中加入的雜質可產生多餘的電子,以電子構成 多數載子之半導體。例如,就矽和鍺半導體而言,若在其本 質半導體中摻入5價原子的雜質時,即形成多餘之電子。其 中,電子流係以電子為主來運作。第一 N型半導體層15〇與 第二N型半導體層160之摻雜方式可選用於氣體摻雜熱、準 分子雷射退火(Excimer laser anneal, ELA )、固相結晶化 (Solid phase crystalline,SPC)、擴散法(Thermal diffusion) 或離子佈植法(Ion implantation)作為主要製程方式。 需✓主思的疋,第一 N型半導體層i6〇之能隙大於第一 n型 半導體層150之能隙,第一 N型半導體層15〇.之能隙大於本質型 (1型)半導體層140之能隙,而本質型(丨型)半導體層14〇之 月隙係大於P型半導體層13〇之能隙。 其中第型半導體層之厚度係在第-N型半導體層15〇 之厚度的1/2至1/5倍之間,第一 N型半導體層15〇之厚度係在本 質型(i型)半導體層14G之厚度的1/7至·倍之間,而本質型 _ (1型)半導體層140之厚度係在P型半導體層13〇之厚度的2〇 至50倍之間。在-較佳實施例中,第二N型半導體層⑽之較佳 厚度係在第-N型半導體層15〇之厚度的1/2至1/3倍之間,第一 N料導體層15()之較佳厚在本質型半導體層⑽之 厚度的1/7至1/15倍之間’而本質型(i型)半導體層14〇之較佳 厚度係在P型半導體層13()之厚度的2G至%倍之間。 本發明之-種具有高光電轉換效率之可撓式太陽能電池⑽ 之製備方法流程圖,請參考第2圖,其可包含下列步驟·· 201110368 步驟210 :沉積第一透明導電膜12〇於可撓式基板no。 步驟220 :沈積P型半導體層13〇。 步驟230 :沈積本質型〇型)半導體層丨4〇。 步驟240 :沈積第一 N型半導體層15〇。 步驟250 :沈積第二N型半導體層16〇。 步驟260 :沈積第二透明導電膜17〇。 於步驟210中,係以陰極電弧電漿沉積系統製備第一透明導 電膜120於可撓式基板11〇上,其至少通入一氧氣以及一氬氣以 沈積第一透明導電膜120,該氧氣除以該氬氣之比例係介於7至 11之間,且其製程功率係介於3〇〇瓦至5〇〇瓦之間,而製程溫度 係介於25°C至40°C之間’使第一透明導電膜12〇之片電阻值係介 於370Ω/□至470Ω/□之間,且其晶粒尺寸係介於丨6奈米至2.6奈 米之間,而其於可見光之穿透率係介於9〇%至95%之間。。 在步驟220中,沈積P型半導體層13〇於第一透明導電膜12〇 上,為使P型半導體層130鑲埋結晶石夕質131。p型半導體層130 選用電漿增強型化學式氣相沈積製程(Plasma_en^anced chemicai vapor deposition,PECVD)、熱絲化學氣相沉積法(H〇t_wire chemical vapor deposition,HW-CVD)或特高頻電漿增強型化學式氣相沈積 (Very high frequency-plasma enhance chemical vapor deposition, VHF-PECVD)製程作為主要製程方式,並藉由通入矽化合物 (Silicide)氣體如矽烷(silane, SH0 並混和氫氣(Hydrogen,H)、 氬氣(Argon, Ar)等氣體,可使p型半導體層13〇鑲埋結晶矽質 131。藉由改變石夕院及氫氣混和比例,可使結晶矽質為微晶石夕, 201110368 奈米晶石夕’多晶石夕質之一,鑲埋結晶石夕質131之p型半導體層BO 即可形成。 其中結晶發質131之製程方式亦可選用金屬銹發法(Metal induced crystalline,MIC )、準分子雷射退火(Excimer laser anneal,ELA )、以及固相結晶化(Solid phase crystalline,SPC ) 所組成族群之一。需注意,結晶矽質131佔p型半導體層13〇之 比例係為80%至100%之間’而結晶矽質131之晶粒尺寸係介於1 微米至5微米之間》 鲁 在步驟23〇中,在電漿增強型化學式氣相沈積製程、熱絲化 學氣相沉積法、高密度電漿化學氣相沈積製程與特高頻電漿增強 型化學式氣相沈積之一中至少通入一氫氣以及一矽烷氣體,使本 質型(i型)半導體層140沈積於P型半導體層13〇上方,且藉由 通入之氫氣流量與矽烷氣體流量之比例在1〇倍至8〇倍之間,使 本質型(i型)半導體層140内鑲埋第一微晶矽質14卜其中第一 微晶石夕質141佔本質型(i型)半導體層140之30%至70%。第一 • 微晶石夕質141佔本質型(i型)半導體層140之較佳比例係在35% 至45% ’且微晶矽質141之晶粒尺寸係介於12奈米至23奈米之 間’而所通入之氫氣流量與矽烷氣體流量之比例係在25倍至60 倍之間。此外,本發明之本質型〇型)半導體層14〇之厚度係介 於0.5微米到2微米之間。 在步驟240中’再次在電漿增強型化學式氣相沈積製程、高 密度電漿化學氣相沈積製程、熱絲化學氣相沉積法與特高頻電漿 增強型化學式氣相沈積之一中,至少通入氫氣、矽烧氣體以及填 201110368 化氫氣體,使第一 N型半導體層150沈積於本質型(i型)半導體 層140上。藉由通入之氫氣流量與矽烷氣體流量之比例係在5倍 至40倍之間’且製程功率係介於loo.瓦至15〇瓦之間而製程溫度 為30至35°C之間,使第一 N型半導體層150内鑲埋第二微晶矽 質151,且該第二微晶石夕質151佔該第一 N型半導體層150之比 例係為5%至40%之間,而該第二微晶矽質151之晶粒尺寸係介於 10奈米至25奈米之間,並具有i奈米至3奈米之粗糙度;在一較 佳實施例中採用高密度電漿化學氣相沈積製程,製程功率係介於 100瓦至120 iL之間、製程溫度為3(rc至坑,而通入之氫氣流 量與矽烷氣體流量之比例係在25倍至30倍之間,其中第二微晶 矽質151之晶粒尺寸係介於12奈米至15奈米之間,以及u奈: 至1.5奈米粗财,使第二微晶石夕質151成長具有良好結晶度,進 而增加載子移動率。 在步驟250巾,再次在電漿增強型化學式氣相沈積製程、高 密度電漿化學氣她積餘、_化學油沉齡純高頻電漿 =型化學_目_之十至m魏氣體以麟 化虱軋體,使第型半導體層160沈積於第 上。藉由私之氫紐量與魏氣體流量之_係在5倍至;)倍 之間,且製程功率係介於100瓦至200 瓦之間而激兹、翌奋达π201110368 VI. Description of the Invention: [Technical Field] The present invention relates to a solar cell which is related to a flexible solar cell having high photoelectric conversion efficiency and a method of producing the same. [Prior Art] According to the international energy shortage, countries around the world continue to develop various viable alternative sources. Among them, solar cells powered by solar power are the most attractive. The solar power pool is easy to use, inexhaustible, inexhaustible, waste-free, non-polluting, non-rotating, (four) sound, can block the brewing, make the life longer, the size can be changed at will, and The combination of the things and the popularity of the scales, so the world's use of solar cells as an important means of energy. In the structure of a thin film solar cell, a transparent glass is generally used as a substrate, and a first layer electrode, a photoelectric conversion layer, and a second layer electrode are sequentially grown thereon. In the material selection of the second layer electrode, it is easy to produce the phenomenon of light inferiority (Staebler-Wronski, SW) due to the τ of the sunlight, which is caused by the solar energy being interrupted - These bonds are weaker, and thus the number of Lai floating keys increases with the illumination time. Therefore, by improving the product f of the electrode, the electrode life can be improved and the conversion efficiency of the tantalum solar cell can be improved. References, U.S. Patent No. 6,180,870, entitled: Photovoltaic Cell (Ph-cdevice), which mainly discloses a manufacturing method of a solar cell. It utilizes various gases to produce different IM-N structures, thereby improving current characteristics and increasing the overall photoelectric conversion efficiency of the battery, but failing to maintain the current characteristics of the electrodes under continuous illumination. 201110368 Therefore, it is necessary to propose a kind of flexible solar cell with high transmittance and structure, which can be used to improve the wavelength of light by fine crystal material, microcrystalline material and nanocrystalline structure. Moreover, the transparency of the incident light is enhanced by the transparency of the high transmittance = the electric film, thereby improving the conversion efficiency of the flexible _ battery. SUMMARY OF THE INVENTION In view of the technical issues of the above, the present invention provides a flexible solar cell having high photoelectric conversion efficiency, which increases the light absorption range, thereby improving the photoelectric conversion efficiency of the solar cell. The invention provides a flexible solar cell structure with high light transmittance, comprising: a flexible substrate; a first turned conductive film; a p-type semiconductor layer; an intrinsic type (1 type) semiconductor layer; a first N-type semiconductor layer, a second N-type semiconductor layer; and a second transparent conductive film. The present invention provides a solar cell system having a high light-flooding rate, and the method includes the following steps: (1) preparing a first transparent conductive film on a flexible substrate by a cathode arc-dip deposition system; a) depositing a p-type semiconductor layer over the first transparent conductive film; (3) passing at least a hydrogen-and a hetero-gas, a deposited intrinsic (i-type) semiconductor layer over the P-type semiconductor layer; a person, a hydrogen gas, a gas, and a hydrogen vapor gas deposition layer having a second micro-HN-type semiconductor layer embedded above the intrinsic (4) semiconductor layer, and (5) at least introducing the hydrogen gas again 'the decane gas and a phosphine gas deposition - having an embedded nanocrystalline N-type sheep conductor layer over the first N-cracked semiconductor layer, (s) and at least one oxygen and one argon Gas is deposited over the N-type semiconductor layer with a second transparent conductive film. The above and other objects, features, and advantages of the present invention will become more apparent from the understanding of the appended claims. [Embodiment] Although the present invention may be embodied in various forms, the embodiments shown in the drawings and the description below are the preferred embodiments of the present invention. An example of the invention is not intended to limit the invention to the drawings and/or the particular embodiments described. The modification is shown in Fig. 1 which is a side sectional view of a flexible solar cell 100 having high photoelectric conversion efficiency, which is a first embodiment of the present invention. The flexible solar cell 100 having high photoelectric conversion efficiency of the present invention comprises: a substrate 11 (); a first transparent conductive film 120; a P-type semiconductor layer 13A; an intrinsic (i-type) semiconductor layer 140, a first N-type a semiconductor layer 150; a second n-type semiconductor layer 160; and a second transparent conductive film 170. Wherein, the p-type semiconductor layer 13 is embedded in the crystalline enamel 13 and the intrinsic (type 1) semiconductor layer 140 is embedded with the first microcrystalline germanium 141, and the first N-type semiconductor layer 150 is embedded in the first Two microcrystalline tantalum 15 and the second N-type semiconductor reference layer 16〇 internal embedded nanocrystalline tannin 16 pullable substrate 110 is selected from plastics with molecular materials, polyethylene terephthalate Poly Ethylene Terephthalate (PET), Polyimide (PI), and one of liquid crystal materials. In a preferred embodiment, the flexible substrate 110 is selected from the group consisting of polyimine. It is to be noted that the use of the flexible substrate 11 of different materials affects the photoelectric characteristics of the first transparent conductive film 120. The first transparent conductive film 120 and the second transparent conductive film no are formed on the flexible substrate 110 and the second N-type semiconductor layer 160 respectively, and the cathode electric fox 201110368 plasma deposition system is selected as the main process. In the embodiment of the present invention, the first transparent conductive film 120 is disposed on the flexible substrate no, and the sheet resistance value is between 35 ΟΩ/□ and 470 Ω/□, and the grain size thereof is between L6 Nai. The meter is between 2.6 nm and its transmittance in visible light is between 90% and 95%. The P-type semiconductor layer 130 has an embedded crystalline germanium 131 formed on the first transparent conductive film 120. The P-type semiconductor layer 130 may be a plasma-enhanced chemical vapor deposition (PECVD), a hot-wire chemical vapor deposition (HW-CVD) or a special frequency. The process of the high-frequency-plasma enhance chemical vapor deposition (VHF-PECVD) process is used as the main process, and a silicide gas such as silane (SH4) and hydrogen (Hydrogen) is introduced. , H), argon (Argon, Ar) or the like as a production gas of the crystalline enamel 131. And the crystalline enamel 131 may be selected from the group consisting of microcrystalline germanium, nanocrystalline germanium, and polycrystalline germanium. In a preferred embodiment, the crystalline enamel 131 is a polycrystalline germanium formed by a metal induced crystalline (MIC), an excimer laser anneal (ELA), and a solid phase. One of the groups consisting of solid phase crystalline (SPC). It should be noted that the crystalline germanium 131 in the P-type semiconductor layer 130 of the present invention accounts for 80% to 100% of the overall proportion of the p-type semiconductor layer 130, and the grain size of the crystalline germanium ι31 is introduced. Between 1 micron and 5 microns. It should be noted that different crystallographic ratios and grain sizes affect the carrier mobility and photo-electricity of the P-type semiconductor layer 130. Among them, the addition of impurities (Impurities) to the original intrinsic material to produce the excess holes of 201110368, and the semiconductors that make up the majority of the carriers by holes, is called? The type semiconductor layer 13 is. For example, in the case of Shi Xi or Sui Semiconductor, in the intrinsic semiconductor, when a impurity of a trivalent atom (Impu s) is incorporated, an extra hole is formed and the hole is a current operation mode. The doped mode of the P-type semiconductor layer 13G is selected from the invention by gas doping, thermal diffusion, solid phase crystallization (SPC) or excimer laser annealing (Εχ(^) The process of π laser anneal, ELA) is the main process mode. The intrinsic type (1 type) semiconductor layer 14 is embedded in the first microcrystalline germanium 141, which is formed on the P-type semiconductor layer 130 for Improving the electrical characteristics of the solar cell. The thickness of the 'intrinsic (type 1) semiconductor layer 140 is between 0.5 micrometers and 2 micrometers, and the first microcrystalline breakdown 141 accounts for the intrinsic (germanium) semiconductor. The ratio of layer mo is between 35% and 45%, and the grain size of the first microcrystalline stone is between I and nanometers. In addition, the intrinsic (丨) semiconductor layer 14〇 has the greatest influence on the electrical characteristics of the thin film type solar cell, because when the electron and the hole are conducted inside the material #, if the thickness of the intrinsic type (i type) semiconductor layer 140 is too thick, the probability of the overlap is extremely high. Avoid this phenomenon, the intrinsic (i-type) semiconductor 14) It should not be too thick. Conversely, when the thickness of the intrinsic (i-type) semiconductor layer 140 is too thin, the light absorption is insufficient. The intrinsic (i-type) semiconductor layer 140 is generally made of an amorphous tantalum film (a- Si:H) is dominant. However, the performance of amorphous enamel film will be greatly degraded in a short time after illumination, so-called photo-deterioration (Staebler-Wronski, SW) effect, and its attenuation is about 15%~ 35%. The SW effect is due to the structural change of the partially unsaturated Dangling bond (DB) in the material due to light irradiation. Therefore, in order to effectively eliminate the sw effect, the first method is used in the present invention. The microcrystalline stone film is used to improve the conversion efficiency of the solar cell. The i-type semiconductor layer 140 of the present invention is formed by a high-density plasma chemical vapor deposition system, and the gas to be introduced may be a silicide gas such as decane. (silane, SKU) and mixing hydrogen (Hydrogen, H), argon (Argon, Ar), etc. as a production gas of the first microcrystalline tantalum film. The first N-type semiconductor layer 150 has a second microcrystalline germanium embedded therein. 151, its system is formed in the essence (1 Above the semiconductor 14 layer, wherein the ratio of the second microcrystalline tantalum 151 to the first N-type semiconductor layer 15 is between 5% and 4%, and the grain of the second microcrystalline tantalum 151 The size is between 10 nm and nanometer, wherein the second microcrystalline stone 151 is preferably between 2% and 25% of the N-type semiconductors. The semiconductor layer 160 has an inlaid nanocrystalline germanium 161 formed over the first N-type semiconductor layer 150. Wherein, the ratio of the nanocrystalline granules 161 to the fourth type semiconductor layer 160 is between 5% and 4%, and the grain size of the nanocrystalline l6i is less than 3 nm. The preferred ratio of the first microcrystalline stone 161 to the semiconductor layer 160 is between 12 〇/〇 and 15 〇/〇. The first-N-type semiconductor layer 15〇 and the second N-type semiconductor layer 16〇 can be selected for a plasma-enhanced chemical vapor deposition process, a hot-wire chemical vapor deposition method, a high-density plasma chemical vapor method, and a special One of the main process methods is the one of the process of depositing and learning. Wherein, the first N-type semiconductor layer 150 and the second N-type semiconductor layer 16 are connected to the semiconductor material, and the impurities added in the intrinsic material can generate excess electrons, and the electrons constitute a majority carrier semiconductor. For example, in the case of germanium and germanium semiconductors, when an impurity of a pentavalent atom is doped into an organic semiconductor, excess electrons are formed. Among them, the electronic flow system operates mainly on electronics. The doping method of the first N-type semiconductor layer 15A and the second N-type semiconductor layer 160 can be selected for gas doping heat, Excimer laser anneal (ELA), solid phase crystallization (Solid phase crystallization, SPC), Thermal Diffusion or Ion implantation is the main process. It is necessary to consider that the energy gap of the first N-type semiconductor layer i6 is larger than that of the first n-type semiconductor layer 150, and the energy gap of the first N-type semiconductor layer 15 is larger than that of the intrinsic (type 1) semiconductor. The energy gap of the layer 140, and the intrinsic (丨-type) semiconductor layer 14 is larger than the energy gap of the P-type semiconductor layer 13 . Wherein the thickness of the first type semiconductor layer is between 1/2 and 1/5 times the thickness of the first-N type semiconductor layer 15 , and the thickness of the first N-type semiconductor layer 15 is in the intrinsic type (i-type) semiconductor The thickness of the layer 14G is between 1/7 and a times, and the thickness of the intrinsic_(1 type) semiconductor layer 140 is between 2 〇 and 50 times the thickness of the P-type semiconductor layer 13 。. In a preferred embodiment, the second N-type semiconductor layer (10) preferably has a thickness between 1/2 and 1/3 times the thickness of the -N-type semiconductor layer 15, and the first N-conductor layer 15 The preferred thickness of () is between 1/7 and 1/15 times the thickness of the intrinsic semiconductor layer (10)' and the preferred thickness of the intrinsic (i-type) semiconductor layer 14 is in the P-type semiconductor layer 13 () The thickness is between 2G and % times. A flow chart of a method for preparing a flexible solar cell (10) having high photoelectric conversion efficiency of the present invention, please refer to FIG. 2, which may include the following steps: 201110368 Step 210: depositing a first transparent conductive film 12 Flexible substrate no. Step 220: depositing a P-type semiconductor layer 13A. Step 230: depositing an intrinsic germanium type semiconductor layer. Step 240: depositing a first N-type semiconductor layer 15A. Step 250: depositing a second N-type semiconductor layer 16A. Step 260: depositing a second transparent conductive film 17A. In step 210, a first transparent conductive film 120 is prepared on the flexible substrate 11 by a cathodic arc plasma deposition system, and at least one oxygen gas and one argon gas are introduced to deposit a first transparent conductive film 120. The ratio of the argon gas is between 7 and 11, and the process power is between 3 watts and 5 watts, and the process temperature is between 25 ° C and 40 ° C. 'Making the first transparent conductive film 12's sheet resistance value between 370 Ω / □ and 470 Ω / □, and its grain size is between 丨 6 nm to 2.6 nm, and its visible light The penetration rate is between 9〇% and 95%. . In step 220, a P-type semiconductor layer 13 is deposited on the first transparent conductive film 12A, so that the P-type semiconductor layer 130 is embedded with the crystallized stone 131. The p-type semiconductor layer 130 is selected from a plasma enhanced chemical vapor deposition process (PECVD), a hot metal chemical vapor deposition (HW-CVD) or a high frequency The process of Very High Frequency-plasma Enhance Chemical Vapor Deposition (VHF-PECVD) is used as the main process, and by introducing a sulfonium compound such as silane (hydrogen hydride, SH0 and hydrogen) , H), argon (Argon, Ar) and other gases, the p-type semiconductor layer 13 can be embedded in the crystalline enamel 131. By changing the ratio of Shi Xiyuan and hydrogen mixing, the crystalline enamel can be made into microcrystalline eve , 201110368 One of the crystals of the nanocrystalline spine, the p-type semiconductor layer of the crystallized stone 131 can be formed. The process of crystallized hair 131 can also be selected by metal rust method (Metal One of the groups of induced crystalline, MIC, Excimer laser anneal (ELA), and solid phase crystalline (SPC). Note that crystalline enamel 131 accounted for The ratio of the p-type semiconductor layer 13 is between 80% and 100% 'and the grain size of the crystalline tantalum 131 is between 1 micrometer and 5 micrometers." Lu is in step 23, in plasma enhanced type. At least one hydrogen gas and one decane gas are introduced into at least one of a chemical vapor deposition process, a hot wire chemical vapor deposition process, a high density plasma chemical vapor deposition process, and a UHF plasma enhanced chemical vapor deposition process. The type (i-type) semiconductor layer 140 is deposited over the P-type semiconductor layer 13〇, and the ratio of the hydrogen flow rate to the flow rate of the decane gas is between 1 and 8 times, so that the intrinsic type (i type) The first microcrystalline tantalum 14 is embedded in the semiconductor layer 140, wherein the first microcrystalline stone 141 accounts for 30% to 70% of the intrinsic (i-type) semiconductor layer 140. The first • the microcrystalline stone 141 A preferred ratio of the intrinsic (i-type) semiconductor layer 140 is between 35% and 45% 'and the crystallite size of the microcrystalline tantalum 141 is between 12 nm and 23 nm' and the hydrogen gas is introduced. The ratio of the flow rate to the flow rate of the decane gas is between 25 and 60 times. In addition, the intrinsic type 半导体 type semiconductor layer of the present invention The thickness of 14 系 is between 0.5 microns and 2 microns. In step 240, 'in the plasma enhanced chemical vapor deposition process, the high density plasma chemical vapor deposition process, the hot wire chemical vapor deposition method and the UHF plasma enhanced chemical vapor deposition, The first N-type semiconductor layer 150 is deposited on the intrinsic (i-type) semiconductor layer 140 by introducing at least hydrogen gas, helium gas, and 201110368 hydrogen gas. The ratio of the flow of hydrogen to the flow of decane gas is between 5 and 40 times' and the process power is between loo. watt and 15 watts and the process temperature is between 30 and 35 °C. The second microcrystalline germanium 151 is embedded in the first N-type semiconductor layer 150, and the ratio of the second microcrystalline litmus 151 to the first N-type semiconductor layer 150 is between 5% and 40%. The second microcrystalline tantalum 151 has a grain size of between 10 nm and 25 nm and has a roughness of from i nanometer to 3 nm; in a preferred embodiment, high density electricity is used. Slurry chemical vapor deposition process, process power is between 100 watts and 120 μL, process temperature is 3 (rc to pit, and the ratio of hydrogen flow to decane gas flow is between 25 and 30 times , wherein the second microcrystalline tannin 151 has a grain size of between 12 nm and 15 nm, and u na: to 1.5 nm coarse grain, so that the second microcrystalline stone 151 grows well with crystallization Degree, and thus increase the carrier mobility. In step 250, again in the plasma enhanced chemical vapor deposition process, high-density plasma chemical gas her surplus, _ chemistry Shen Ling pure high-frequency plasma = type of chemical _ mesh _ 10 to m Wei gas is lining the rolling body, so that the first semiconductor layer 160 is deposited on the first. By the private hydrogen amount and Wei gas flow _ Between 5 times and ;) times, and the process power is between 100 watts and 200 watts.

之晶粒尺寸係小於3奈米,並具有!奈 在一較佳實施财_高密度電漿化學氣 201110368 相沈積製程,製程功率係介於140瓦至150瓦之間、製程溫度為 30°C至35°C,而通入之氫氣流量與矽烷氣體流量之比例係在33 倍至35倍之間,其中奈米晶石夕質161之晶粒尺寸係介於丨奈米至 2奈米之間’使奈米晶矽質161成長具有30%至57%之良好結晶 度與1奈米至2奈米粗縫度。 在步驟260中,至少通入一氧氣以及一氬氣以沈積一第二透 明導電膜170於第二N型半導體層160上方。其中,氧氣除以氬 氣之比例係介於7至11之間,且其製程功率係介於3〇〇瓦至5〇〇 • 瓦之間,而製程溫度係介於25〇C至4(TC之間,使其片電阻值介於 250Ω/□至350Ω/□之間’且其晶粒尺寸係介於16.奈米至2·6.奈米 之間,而其平均粗糙度係介於2.5奈米至9.5奈米之間,其於可見 光之穿透率係介於90%至95%之間。 综上所述,本發明之一種具有高透光率之可撓式太陽能電 池,該多能隙結構以及高透光率之導電膜係用以幫助太陽光譜波 長範圍的吸收以及太陽光之使用率,其將有助於提高半導體層結 • 晶度,改良電極的品質以提高電極壽命,進而提昇太陽能電池之 光電轉換效率。 雖然本發明已以前述較佳實施例揭示,然其並非用以限定本 發明,任何熟習此技藝者,在不脫離本發明之精神和範圍内,當 了作各種之更動與修改。如上述的解釋,都可以作各型式的修正 與變化’而不會破壞此發㈣精神。賊本㈣之保護範圍當視 後附之申請專利範圍所界定者為準。 13 201110368 【圖式簡單說明】 第1圖顯示本發明之具有高透光率之可撓式太陽能電池之結 構側視剖面圖;以及 '° 第2圖顯示本發明之具有高透光率之可撓式太陽能電池製備 方法之流程圖。 【主要元件符號說明】 100 具有高光電轉換效率之可撓式太陽能電池 110 可挽式基板 120 第一透明導電膜 130 P型半導體層 131 結晶碎質 140 本質型(i型)半導體層 141 第一微晶矽質 150 第一N型半導體層 151 第二微晶矽質 160 第二N型半導體層 161 奈米晶矽質 170 第二透明導電膜The grain size is less than 3 nm and has! In a better implementation of the high-density plasma chemical gas 201110368 phase deposition process, the process power is between 140 watts and 150 watts, the process temperature is 30 ° C to 35 ° C, and the hydrogen flow rate is The ratio of the flow rate of the decane gas is between 33 and 35 times, wherein the grain size of the nanocrystalline stone 161 is between 丨 nanometer and 2 nanometers 'the nanocrystalline enamel 161 grows with 30 Good crystallinity from % to 57% and coarseness from 1 nm to 2 nm. In step 260, at least one oxygen gas and one argon gas are introduced to deposit a second transparent conductive film 170 over the second N-type semiconductor layer 160. Among them, the ratio of oxygen divided by argon is between 7 and 11, and the process power is between 3 watts and 5 watts, and the process temperature is between 25 〇C and 4 ( Between TC, its sheet resistance is between 250 Ω / □ and 350 Ω / □ ' and its grain size is between 16. nm to 2. 6 nm, and its average roughness is Between 2.5 nm and 9.5 nm, the transmittance in visible light is between 90% and 95%. In summary, the present invention has a flexible solar cell with high light transmittance. The multi-gap structure and the high transmittance conductive film are used to help absorb the wavelength range of the solar spectrum and the utilization rate of sunlight, which will help to improve the semiconductor layer and crystallinity, improve the quality of the electrode to improve the electrode. The present invention, which is disclosed in the foregoing preferred embodiments, is not intended to limit the invention, and any person skilled in the art, without departing from the spirit and scope of the invention, Make a variety of changes and modifications. As explained above, you can make various types. Amendments and changes will not undermine the spirit of this issue. The scope of protection of the thief (4) is subject to the definition of the scope of the patent application. 13 201110368 [Simple description of the diagram] Figure 1 shows the high of the present invention A side view of a structure of a flexible solar cell with light transmittance; and a graph of a method for preparing a flexible solar cell having high transmittance according to the present invention. [Description of main components] 100 Flexible solar cell 110 with high photoelectric conversion efficiency Portable substrate 120 First transparent conductive film 130 P-type semiconductor layer 131 Crystalline 140 Intrinsic (i-type) semiconductor layer 141 First microcrystalline germanium 150 First N-type semiconductor layer 151 second microcrystalline enamel 160 second N-type semiconductor layer 161 nanocrystalline enamel 170 second transparent conductive film

Claims (1)

201110368 七、申請專利範圍: 1. 一種具有高光電轉換效率之可撓式太陽能電池,包含: 一可撓式基板; 一第一透明導電膜,係配置於該可撓式基板上,其片電阻 值係介於350Ω/□至450Ω/□之間’且其可見光之穿透率係介於 90%至95%之間; 一 P型半導體層’配置於該第一透明導電膜上,該P型半 導體層内镶埋一結晶碎質’該結晶破質之晶粒尺寸係介於1微 米至5微米之間且佔該P型半導體層之比例係為80%至1〇〇% 之間; 一本質型(i型)半導體層,配置於該P型半導體層上, 其厚度係介於0.5微米到2微米之間且在該p型半導體層之厚 度的20至50倍之間,其鑲埋一第一微晶石夕質,該第一微晶石夕 質之晶粒尺寸係介於12奈米至23奈米之間且佔該本質型(i 型)半導體層之比例係為35%至45%之間; 一第一N型半導體層,配置於該本質型〇型)半導體層 上,該第一 N型半導體層之厚度係在本質型(i型)半導體層 之厚度的1/7至1/50倍之間且鑲埋一第二微晶矽質,該第二微 晶碎質係由-高密度電漿化學氣相沈積系統製備之,該第二微 晶石夕質之晶粒尺寸係介於10奈米至25奈米之間且佔該第一 N 型半導體層之比例係為5%至40%之間; 一第二N型半導體層,配置於該第一 N型半導體層上, 15 201110368 該第二N型半導體層之厚度係在第一 N型半導體層丨之厚产 的1/2至1/5倍之間且鑲埋一奈米晶矽質,該奈米晶矽質係由 該高密度電漿化學氣相沈積系統製備之,該奈米晶矽質之晶粒 尺寸係小於3奈米且佔該第二N型半導體層之比例係為5%至 40%之間;以及 一第二透明導電膜’配置於該第二N型半導體層上,其片 電阻值係介於250Ω/口至350Ω/□之間,其可見光之穿透率係介 於90%至95%之間。 2·如請求項1所述之可撓式太陽能電池,其中該第一 半導體 層之第二微晶矽質之晶粒尺寸係介於12奈米至15奈米之間。 3. 如請求項1所述之可撓式太陽能電池,其中該第二微晶矽質佔 該第一 N型半導體層之比例係介於2〇%至25%之間。 4. 如請求項1所述之可撓式太陽能電池,其中該第一 半導體 層之厚度係在該本質型(i型)半導體層之厚度的1/7至1/2〇 倍之間。 5·如凊求項1所述之可撓式太陽能電池,其中該第二半導體 層之奈米晶石夕質晶粒尺寸係介於1奈米至2奈米之間。 6.如請求項1所述之可撓式太陽能電池,其中該奈米晶石夕質佔該 第二N型半導體層之比例係介於12%至15%之間。 7·如印求項1所述之可撓式太陽能電池,其中該第二N型半導體 層之厚度係在第一 N型半導體層之厚度的1/2至1/3倍之間。 8· —種具有高光電轉換效率之可撓式太陽能電池製備方法,其包 201110368 含下列步驟: 以陰極電弧電聚沉積系統製備一第一透明導電膜於一可 挽式基板上’而其於可見光之穿透率係介於90%至95%之間; 沈積一 P型半導體層於該第一透明導電膜上,並使該p 型半導體層内鑲埋一結晶矽質’該結晶矽質之晶粒尺寸係介於 1微米至5微米之間且佔該P型半導體層之比例係為8〇%至 100%之間; 鲁 至)通入*"""氣氣以及·梦烧氣體以沈積一本質型(i型) 半導體層於該P型半導體層上,並使該本質型〇型)半導體 層之厚度係介於0.5微米到2微米之間並鑲埋一第一微晶石夕 質’該第一微晶矽質之晶粒尺寸係介於丨2奈米至23奈米之間 且佔該本質型(i型)半導體層之比例係為35%至45〇/〇之間, 且所通入之該氫氣流量與該矽烷氣體流量之比例係在25倍至 60倍之間; • 至少通入該氫氣、該矽烷氣體與一磷化氫氣體以沈積一第 一 N型半導體層於該本質型(i型)半導體層上,而所通入之 該氫氣流量與該石夕烧氣體流量之比例係在5倍至4〇倍之間, 且製程功率係介於100瓦至15〇瓦之間而製程溫度為3〇至% C之間,使該第一 N型半導體層内鑲埋一第二微晶矽質,該 第二微晶矽質之晶粒尺寸係介於1〇奈米至25奈米之間並具有 1奈米至3奈米之粗糙度且佔該第一 N型半導體層之比例係為 5%至40%之間; 201110368 至少通入該氫氣、該石夕烧氣體與該璘化氫氣體以沈積一第 二N型半導體層於該第一 N型半導體層上,而所通入之該氫 氣流量與該矽烷氣體流量之比例係在5倍至4〇倍之間,且製 程功率係介於100瓦至2〇〇瓦之間而製程溫度為3〇至35。匸之 間’使該第二N型半導體層内鑲埋一奈米晶石夕質,且該奈米 晶石夕質之晶粒尺寸係小於3絲麟有〗奈米至3奈米之粗糙 度且佔該第二>1型半導體層之比娜為辦至桃之間;以及 至少通入一氧氣與一氬氣以沈積一第二透明導電膜於該鲁 第- N型半導體層上,其於可見光之穿透率係介於9〇%至95% 之間。 9.如請求項8所述之方法,其中該第一_半導體層之製程功率 係介於100瓦至120瓦之間。 ‘如請求項8所述之方法,其中該第一 N型半導體層之氫氣流量 除以石夕烧氣體流量之比例係介於25至3〇。 11·如請求項8所述之方法,其中該第一N型半導體層之粗键度係籲 介於1.3奈米至ι·5奈米之間。 12.如請求項8所述之方法,其中該第一 N型半導體層之製程溫度 係介於3〇ΐ至35°C之間。 如請求項8所述之方法’其中該第二㈣半導體層之製程功率 係介於140瓦至15〇瓦之間。 14.如請求項8所述之方法,其中製備該第二N型半導體層時,該 氫氣流量除以矽烷氣體流量之比例係介於33至35之間。 18 201110368 15. 如請求項8所述之方法,其中該第二N型半導體層粗糙度係介 於1奈米至2奈米。 16. 如請求項8所述之方法,其中該第二N型半導體層之製程溫度 係介於30°C至35°C之間。。201110368 VII. Patent application scope: 1. A flexible solar cell with high photoelectric conversion efficiency, comprising: a flexible substrate; a first transparent conductive film disposed on the flexible substrate, and a sheet resistance thereof The value is between 350 Ω/□ and 450 Ω/□′ and the visible light transmittance is between 90% and 95%; a P-type semiconductor layer is disposed on the first transparent conductive film, the P Inserting a crystalline particle in the semiconductor layer, wherein the crystal size of the crystal is between 1 μm and 5 μm and the ratio of the P-type semiconductor layer is between 80% and 1%; An intrinsic (i-type) semiconductor layer disposed on the P-type semiconductor layer having a thickness between 0.5 micrometers and 2 micrometers and between 20 and 50 times the thickness of the p-type semiconductor layer Buried a first microcrystalline stone, the grain size of the first microcrystalline stone is between 12 nm and 23 nm and the ratio of the intrinsic (i type) semiconductor layer is 35 Between 1% and 45%; a first N-type semiconductor layer disposed on the intrinsic germanium type semiconductor layer, the first N The thickness of the semiconductor layer is between 1/7 and 1/50 times the thickness of the intrinsic (i-type) semiconductor layer and a second microcrystalline germanium is embedded, and the second microcrystalline element is made of -high density Prepared by a plasma chemical vapor deposition system, the grain size of the second microcrystalline stone is between 10 nm and 25 nm and the ratio of the first N-type semiconductor layer is 5% to 40% between; a second N-type semiconductor layer disposed on the first N-type semiconductor layer, 15 201110368 The thickness of the second N-type semiconductor layer is 1/1 of the thickness of the first N-type semiconductor layer Between 2 and 1/5 times and embedded with a nanocrystalline enamel, the nanocrystalline enamel is prepared by the high density plasma chemical vapor deposition system, and the grain size of the nanocrystalline enamel is The ratio of the second N-type semiconductor layer is between 5% and 40%; and a second transparent conductive film is disposed on the second N-type semiconductor layer, and the sheet resistance value is Between 250 Ω/□ and 350 Ω/□, the visible light transmittance is between 90% and 95%. The flexible solar cell of claim 1, wherein the second microcrystalline tantalum of the first semiconductor layer has a grain size of between 12 nm and 15 nm. 3. The flexible solar cell of claim 1, wherein the ratio of the second microcrystalline germanium to the first N-type semiconductor layer is between 2% and 25%. 4. The flexible solar cell of claim 1, wherein the thickness of the first semiconductor layer is between 1/7 and 1/2" of the thickness of the intrinsic (i-type) semiconductor layer. 5. The flexible solar cell of claim 1, wherein the second semiconductor layer has a nanocrystalline grain size of between 1 nm and 2 nm. 6. The flexible solar cell of claim 1, wherein the ratio of the nanocrystalline stone to the second N-type semiconductor layer is between 12% and 15%. The flexible solar cell of claim 1, wherein the thickness of the second N-type semiconductor layer is between 1/2 and 1/3 times the thickness of the first N-type semiconductor layer. 8· a method for preparing a flexible solar cell with high photoelectric conversion efficiency, the package 201110368 comprises the following steps: preparing a first transparent conductive film on a pullable substrate by a cathodic arc electropolymer deposition system The visible light transmittance is between 90% and 95%; depositing a P-type semiconductor layer on the first transparent conductive film, and embedding a crystalline germanium in the p-type semiconductor layer The grain size is between 1 micrometer and 5 micrometers and the ratio of the P-type semiconductor layer is between 8〇% and 100%; Luzhi) access*""" Dreaming to burn a gas to deposit an intrinsic (i-type) semiconductor layer on the P-type semiconductor layer, and to make the thickness of the intrinsic germanium type semiconductor layer between 0.5 micrometers and 2 micrometers and to embed a first The crystallite size of the first microcrystalline enamel is between 丨2 nm and 23 nm and the ratio of the intrinsic (i-type) semiconductor layer is 35% to 45 〇. Between /〇, and the ratio of the hydrogen flow rate to the decane gas flow is between 25 and 60 times And at least introducing the hydrogen gas, the decane gas and a phosphine gas to deposit a first N-type semiconductor layer on the intrinsic (i-type) semiconductor layer, and the hydrogen flow rate and the stone are introduced The ratio of the gas flow rate is between 5 and 4 times, and the process power is between 100 watts and 15 watts, and the process temperature is between 3 〇 and % C, so that the first N-type semiconductor A second microcrystalline tantalum is embedded in the layer, and the grain size of the second microcrystalline tannin is between 1 nm and 25 nm and has a roughness of 1 nm to 3 nm and accounts for The ratio of the first N-type semiconductor layer is between 5% and 40%; 201110368 at least the hydrogen gas, the gas-fired gas and the hydrogen halide gas are deposited to deposit a second N-type semiconductor layer on the first On the N-type semiconductor layer, the ratio of the hydrogen flow rate to the flow rate of the decane gas is between 5 and 4 times, and the process power is between 100 watts and 2 watts and the process temperature is It is 3 to 35. Between the crucibles, the nano-crystal layer is embedded in the second N-type semiconductor layer, and the grain size of the nanocrystalline crystal is less than 3 lining to the roughness of 3 nm to 3 nm. And the ratio of the second > type 1 semiconductor layer is between the peaches; and at least one oxygen gas and one argon gas are introduced to deposit a second transparent conductive film on the Lud-N type semiconductor layer The transmittance in visible light is between 9〇% and 95%. 9. The method of claim 8 wherein the first _ semiconductor layer has a process power of between 100 watts and 120 watts. The method of claim 8, wherein the ratio of the hydrogen flow rate of the first N-type semiconductor layer divided by the flow rate of the gas-fired gas is between 25 and 3 Torr. The method of claim 8, wherein the first N-type semiconductor layer has a coarse bond degree between 1.3 nm and ι·5 nm. The method of claim 8, wherein the first N-type semiconductor layer has a process temperature of between 3 Å and 35 ° C. The method of claim 8 wherein the process power of the second (four) semiconductor layer is between 140 watts and 15 watts. 14. The method of claim 8, wherein the ratio of the hydrogen flow rate to the decane gas flow rate is between 33 and 35 when the second N-type semiconductor layer is prepared. The method of claim 8, wherein the second N-type semiconductor layer has a roughness of between 1 nm and 2 nm. 16. The method of claim 8, wherein the process temperature of the second N-type semiconductor layer is between 30 ° C and 35 ° C. . 1919
TW098130391A 2009-09-09 2009-09-09 Flexible solar cell with high conversion efficiency and the manufacturing method TWI405343B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098130391A TWI405343B (en) 2009-09-09 2009-09-09 Flexible solar cell with high conversion efficiency and the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098130391A TWI405343B (en) 2009-09-09 2009-09-09 Flexible solar cell with high conversion efficiency and the manufacturing method

Publications (2)

Publication Number Publication Date
TW201110368A true TW201110368A (en) 2011-03-16
TWI405343B TWI405343B (en) 2013-08-11

Family

ID=44836259

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098130391A TWI405343B (en) 2009-09-09 2009-09-09 Flexible solar cell with high conversion efficiency and the manufacturing method

Country Status (1)

Country Link
TW (1) TWI405343B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107403852A (en) * 2016-05-19 2017-11-28 盐城金合盛光电科技有限公司 Silicon substrate heterojunction solar cell and its manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101019273B1 (en) * 2007-07-24 2011-03-07 어플라이드 머티어리얼스, 인코포레이티드 Multi-junction solar cells and methods and apparatuses for forming the same
TW200933908A (en) * 2008-01-29 2009-08-01 Contrel Technology Co Ltd A silicon-based thin film solar-cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107403852A (en) * 2016-05-19 2017-11-28 盐城金合盛光电科技有限公司 Silicon substrate heterojunction solar cell and its manufacturing method thereof

Also Published As

Publication number Publication date
TWI405343B (en) 2013-08-11

Similar Documents

Publication Publication Date Title
US8211739B2 (en) Polycrystalline silicon solar cell having high efficiency and method for fabricating the same
JP4814307B2 (en) Method for producing photovoltaic cells based on thin film silicon
JP2001267611A (en) Thin-film solar battery and its manufacturing method
TW200950113A (en) Thin film silicon solar cell and manufacturing method thereof
KR20100097549A (en) Thin film si solar cell using zno nanowire and fabrication method thereof
TWI437721B (en) Method for manufacturing silicon thin-film solar cells
TW200947729A (en) Semiconductor structure combination for thin-film solar cell and manufacture thereof
CN102655185A (en) Heterojunction solar cell
US20140159042A1 (en) Top down aluminum induced crystallization for high efficiency photovoltaics
US8211738B2 (en) Polycrystalline silicon solar cell having high efficiency and method for fabricating the same
CN101609796B (en) Film forming method and method for manufacturing film solar battery
WO2012173814A1 (en) Tandem solar cell with improved tunnel junction
WO2008059857A1 (en) Thin-film photoelectric conversion device
TW201010115A (en) Method for depositing an amorphous silicon film for photovoltaic devices with reduced light-induced degradation for improved stabilized performance
US8003423B2 (en) Method for manufacturing a poly-crystal silicon photovoltaic device using horizontal metal induced crystallization
TWI470812B (en) Heterojunction solar cell and electrode thereof
TW201110368A (en) Flexible solar cell with high conversion efficiency and the manufacturing method
CN109037392A (en) A kind of production technology of graphene/silicon structure solar battery
TW201112424A (en) Thin film solar cell and method of forming the same
TW201228002A (en) Manufacturing method of thin film solar cells and thin film solar cells thereof
TW200933908A (en) A silicon-based thin film solar-cell
WO2011105166A1 (en) Photoelectric conversion module and method for manufacturing same
US8946062B2 (en) Polycrystalline silicon thick films for photovoltaic devices or the like, and methods of making same
TWI451578B (en) Silicon-based solar cell with hetrojunction and manufacturing method thereof
TW201017901A (en) Photovoltaic cell and method of manufacturing a photovoltaic cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees