TW201109741A - Light diffusing plate for point-light sources and direct-lighting backlight device using point-light-source - Google Patents

Light diffusing plate for point-light sources and direct-lighting backlight device using point-light-source Download PDF

Info

Publication number
TW201109741A
TW201109741A TW099119336A TW99119336A TW201109741A TW 201109741 A TW201109741 A TW 201109741A TW 099119336 A TW099119336 A TW 099119336A TW 99119336 A TW99119336 A TW 99119336A TW 201109741 A TW201109741 A TW 201109741A
Authority
TW
Taiwan
Prior art keywords
light
point
diffusing plate
shape
convex
Prior art date
Application number
TW099119336A
Other languages
Chinese (zh)
Other versions
TWI427333B (en
Inventor
Tomofumi Maekawa
Masaaki Kondo
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Publication of TW201109741A publication Critical patent/TW201109741A/en
Application granted granted Critical
Publication of TWI427333B publication Critical patent/TWI427333B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Abstract

This invention provides a light diffusing plate for using in a direct-lighting backlight device using point-light sources. It is capable of, without using multiple optical films, achieving excellent luminance, luminance uniformity (in frontal and diagonal view fields) and color unevenness characteristics with the desired thickness of backlight and reduced number of point-light sources. More specifically, this invention provides a light diffusing plate, which is used for point-light sources and has a plurality of convex portions formed on its surface. Each convex portion has a substantially triangular-pyramid shape with a triangular bottom. The slope angle (<theta>) of each side of the triangular-pyramid shape with respect to the bottom, and the material refraction index (A) of the convex portions satisfy the following two formulae (1) and (2), where formula (1): <theta> = -40A DEG + 115.2 DEG, and formula (2): <theta> = 25A DEG + 22.25 DEG.

Description

201109741 六、發明說明: 【發明所屬之技術領域】 本發明係關☆-種適合於配置有點光源之背光之組合的 光擴散板、及包含其之直下型點光源背光裝置。 【先前技術】 ·—般而言,作驗晶顯㈣时光,存在稱為側光型背 光與直下型背光之2種方式,但對大型顯示裝置而言,較 多使用廉價且可實現高亮度之直下型背光。 作為直下型背光’先前通常以如冷陰極管之類的線狀光 源為基礎進行設計,且採用使用擴散板及光學膜進行面發 光之方式。201109741 VI. Description of the Invention: [Technical Field] The present invention relates to a light diffusing plate suitable for a combination of backlights having a somewhat light source, and a direct type point light source backlight device including the same. [Prior Art] - Generally speaking, there are two methods called side-light type backlights and direct-type backlights. However, for large-scale display devices, they are more expensive and can achieve high brightness. Straight down backlight. As a direct type backlight, 'the front is usually designed on the basis of a linear light source such as a cold cathode tube, and a surface light is emitted using a diffusion plate and an optical film.

然而,近年來,就環境問題及光源之壽命、省電、以及 提昇畫質之觀點而言,需要代替冷陰極管轉而使用LED (light emitting diode,發光二極體)作為光源。 然而,相對於冷陰極管為線光源,而LED為點光源,因 此存在儿度不均變大之問題,從而擴散板及光學膜要求將 點光源轉換為面光源之技術。 作為LED光源,通常較多使用最廉價且具有直上光 之光線強度較強之朗伯分佈(Lambertian以价化此⑽)的 LED,而如何將朝LED直上之指向性較強之光源轉換為面 光源係較大課題。 另一方面’近年來強烈要求使液晶顯示器薄型化、低成 本化,作為背光,要求削減光源、削減光學膜、且以自光 源至擴散板為止之較短距離使光擴散之技術。 148960.doc 201109741 先前,作為直下型點光源用光擴散技術,提出有一種像 形成位置調整方法:使相對於自複數個點狀光源中構成面 積最小且周長最短之凸四角形之4個點狀光源的、光擴散 板之光出射面之各點狀光源的各個像於光出射面之特定區 域内可觀察到。又,作為光擴散板之形狀,提出有傾斜角 不同之凹型四角錐形狀(例如,參照專利文獻1)。 又,同樣地,以提高光線利用率為目的,提出有於光擴 散板之光出射面側將凹型四角錐配置成斜列狀之構造(例 如’參照專利文獻2)。 進而,作為減少LED光源之光量不均之方法,提出有於 光擴散板之出射面側無間隙地形成有具有角隅稜鏡形狀之 複數個稜鏡的稜鏡片(例如,參照專利文獻3)。 先行技術文獻 專利文獻 專利文獻1 :國際公開第07/114158號手冊 專利文獻2:美國專利第733492〇號說明書 專利文獻3.曰本專利特開平10-274947號公報 【發明内容】 發明所欲解決之問題 然而,於使用專利文獻丨中所記載之於出射面側具有 型倒四角錐形狀之光擴散板的情料,亮度不均減,1、、效 較小’特別是自傾斜方向觀察之情料之亮度均句^存 較,問題。因&amp;,於使用上述形狀之光擴散板之情形時 為提高亮度均勾性’需要增加點光源之數量或光學膜,· 148960.doc 201109741 者使背光變厚。 又’專利文獻記載有使光擴散板之表面為凸凹 錐形狀,但未記載藉由將本案請求項中所記載之具有特定 之斜面角度與折射率之關聯的三角錐形狀對光擴散板之出 射面側進行賦形,而直下型LED光源背光之亮度與亮度均 勻性(正面及斜視野)飛躍性地提高。 又,關於專利文獻2中所記載之於出射面側具有凹型四 角錐形狀之光擴散板’亦與專利文獻i同樣地,具有正面 及傾斜方向之亮度均勾性及色不均提高效果較小之問題。 為提高點光源之亮度均句性,需要增加光源之數量或併用 多個包3稜鏡膜之光學膜,從而存在成本變高之問題。 &amp;進而,專利文獻3中’提出有無間隙地形成有包含丙烯 -夂系秘月日之角隅稜鏡形狀之微小的複數個稜鏡且厚度為1 _之稜鏡片’但關於亮度及亮度不均,未獲得充分之提 尚或改善效果。 又’專利文獻3中,記載有亦較佳使用對光擴散板之出 射面側賦予角隅稜鏡形狀’酉己置有四角錐、六角錐等錐體 形狀讀鏡者,但未記制由將本㈣求項中所記載之具 有特疋之斜面角度與折射率之關聯的三角錐形狀對光擴散 板之出射面側進行賦形,而提高直下型led光源背光之亮 度及亮度均勻性(正面及斜視野)以及色不均。 如上所述,上述先前技術中,&amp; 了於所期望之背光厚度 下顯現優異之亮度、亮度均勻性(正面及斜視野)及色不均 特眭,需要進行配置多個點光源或併用多個光學膜等改 148960.doc 201109741 善。 本發明係解決上述課題者,其目的在於提供一種於使用 點光源之直下型點光源背光中,即便不併用多個光學膜, 亦能夠以所期望之背光厚度且個數較少之點光源,同時實 現優異之壳度、亮度均勻性(正面及斜視野)以及色不均特 性的光擴散板,以及使用此種光擴散板之直下型背光裝 置。 解決問題之技術手段 本發明者們為了解決上述課題而進行努力研究,結果發 現於在光之出光面側具有複數個大致三角錐形狀之凸部 的光擴散板中,若上述凸部之傾斜角度與形成凸部之材料 之折射率滿足特定關係,則將光擴散板配置於點光源之正 上方時之亮度、色不均特性以及亮度均勻性、特別是斜視 亮度均勻性顯著提高,從而完成本發明。 又,發現若將此種光擴散板與點光源組合而製造直下型 背光裝置,則其色不均特性、亮度及亮度均勻性(正面及 斜視)顯著提高,實現先前技術中無法預想的大幅度之光 源個數之削減、背光厚度之薄化、以及光學膜之削減,從 而完成本發明。 即,本發明如下所述。 [1] 一種點光源用光擴散板,其係於表面形成有複數個凸部 之光擴散板, 上述凸部係底面為三角形之大致三角錐形狀, 148960.doc 201109741 上述大致三角錐形狀之側面相對於底面之傾斜角θ及形 成上述凸部之材料之折射率Α滿足下述式(丨)及(2)·· (1) · · · -40Α°+115.2° (2) · · · 25Α°+22.25° ° [2] 如上述[1 ]之點光源用光擴散板,其中上述傾斜角㊀及上 述折射率Α滿足下述式(3)及(4): (3) · · · Θ2 -40Αο + 116.2。 (4) · · · θ $ 25Αο + 20·25ο » [3] 如上述[1]或[2]之點光源用光擴散板,其中上述傾斜角㊀ 為 Θ/55。。 [4] 如上述[1]至[3]中任一項之點光源用光擴散板,其相對 於自與上述凸部形成面側相反之面側入射之可見光,不表 現複歸反射特性,進而滿足下述條件(丨), 條件(1):使用分光光度計,自與凸部相反之面,以對 相對於光擴散板之水平面之垂線傾斜7度之入射角度入射 波長450〜75〇 nm之光時的平均反射率r為45%以上。 [5] 如上述[1]至[4]中任一項之點光源用光擴散板,其滿足 下述式(5): (5) · · * g/(b+c+d)^ 0.30 (式⑺中’ b、c及d分別表示,於在通過以下I點、j點及凸 148960-doc 201109741 部頂點(於凸部為三角錐台形狀之情形時,為頂部三角形 之重心)3點之平面切斷上述凸部時出現之切斷面中, 將凸部之一側面之切平面與底面所成之角θ,滿足以下式 (1’)及(2’)的部分Β投影至水平面之投影線段的長度, 將位於較Β更凸部之底部側之部分c投影至水平面之投 影線段的長度, 及將位於較Β更頂部側之部分D投影至水平面之投影線 段的長度。 (Γ) . . . θ'^-40Α° + 11 5.2° (21) · · . θ'^ 25Α°+22.25° I點:將凸部之頂點(於凸部為三角錐台形狀之情形時,為 頂部二角形之重心)垂直投影至底面三角形之點。 ”占自=上述1點,對於構成底面三角形之邊中的與上述j點 之距離最近之邊繪製垂線時的該垂線與該邊之交點。 又’式(5)中,g表示於在與底面三角形垂直之平面且通過 以下Γ點、J,點之平面切斷上述凸部時出現之切斷面的、 中心至包含Γ點之單側部分令,將上述凸部之一側面之切 線中的 '位於較該切線與底面所成之角❹,滿足(1,)及(2,)之 部:更頂部側的部分投影至水平面之投影線段之長度。 其令,於存在複數個滿足上述條件之切斷面之情形時, 採用g之值最大之切斷面。 I點.广使凸部之頂點(於凸部為三角錐台形狀之情形時, 為頂。P,角形之重心)垂直投影至底面三角形之點、與底 面二角形之頂點中之最接近該投影點之底面三角形的頂點 l4S960.doc 201109741 連結之線段之中點。 r點:自上述I’點,對於構成底面三角形之邊中的與上述r 點之距離最近之邊繪製垂線時的該垂線與該邊之交點)。 [6] 如上述[5]之點光源用光擴散板,其中上述b、c&amp;d之和 為 5〜200 μιη。 [7] 如上述[1]至[6]中任-項之點光源用光擴散板,其包含 至少(a)透鏡層與(b)擴散層, 上述(a)透鏡層與上述(b)擴散層係選自由同一層、連續 層及分離層所組成之群中之任一者, 上述凸部形成於上述(a)透鏡層之表面。 [8] 如上述[7]之點光源用光擴散板,其中上述⑻擴散層包 含透明樹脂與擴散劑,擴散率8為2〜4〇%。 [9] 如上述[7]或[8]之點光㈣光擴散板,其係包含⑷透鏡 層與(b)擴散層, 上述⑷透鏡層與(b)擴散層之厚度之和為〇5〜3〇_。 [10] 一種直下型點光源背光裝置,其包含: 複數個點光源; 如上述⑴至[9]中任-項之光擴散板,其係配設於上述 點光源之上方,且於與該點光源相對向之面側之相反側的 148960.doc 201109741 面側,在表面形成有複數個底面為三角形之大致三角錐吖 狀之凸部;以及 擴散性反射片,其係配設於上述點光源之下方。 [11] 如上述[10]之直下型點光源背光裝置,其中上述點光源 係光峰值角度為-25〜25。之LED光源。 [12] 如上述[10]或[11]之直下型點光源背光裝置,其中上述 擴散性反射片之擴散反射率為9〇%以上。 [13] 如上述[10]至[12]中任一項之直下型背光裝置,其中於 上述光擴散板之出光面側進而包含至少2片具有聚光功能 之光學膜。 [14] 如上述[10]至[13]中任一項之直下型背光裝置,其中於 將點光源之平均間距設為p, 將自點光源至光擴散板為止之距離設為H之情形時, 卩/1^處於1.5〜2.5之範圍内。 [15] 一種直下型背光裝置,其係包含 複數個點光源、及 如上述[1]至[9]中任一項之光擴散板者, 上述複數個點光源週期性地配置成格子狀, 上述光擴散板之複數個凸部係以相鄰之凸部之底面三角 148960.doc 201109741 开/之it彼此平行的方式而週期性地配置,且 上述複數個點光源與上述光擴散板係、以該光擴散板之各 凸。卩之底面二角形的任一邊、與構成上述點光源之格子狀 配置之格子之四角形的對角線平行或垂直之方式而積層。 [16] 一種直下型背光裝置,其係包含 複數個點光源、及 如上述[1]至[9]中任一項之光擴散板者, 上述複數個點光源週期性地配置成格子狀, 上述複數個凸部係底面為等腰三角形之大致三角錐形 狀, 上述光擴散板之複數個凸部係以相鄰之凸部之底面等腰 二角形之底邊彼此平行的方式而週期性地配置,且 上述複數個點光源與上述光擴散板係以該光擴散板之各 凸部之底面等腰三角形的底邊'與構成上述點光源之格子 狀配置之格子之四角形的對角線平行或垂直之方式而積 層。 [17] 一種直下型背光裝置,其係包含 複數個點光源、及 如上述[1]至[9]中任一項之光擴散板者, 上述複數個點光源週期性地配置成格子狀, 上述複數個凸部係底面為正三角形之大致三角錐形狀, 上述複數個凸部係以相鄰之凸部之底面正三角形之—邊 148960.doc • 11 · 201109741 彼此平行的方式而週期性地配置,且 上述複數個點光源與上述光擴散板係以該光擴散板之各 凸部之底面正三角形的任一邊、與構成上述點光源之格子 狀配置之格子之四角形的對角線平行或垂直之方式而積 層。 發明之效果 右使用本發明之光擴散板,則當與點光源組合時,顯現 良好之焭度、色不均特性、亮度均勻性(正面及斜視野), 因此結果可實現用於背光之點光源及光學膜之削減、及背 光之薄型化。 【實施方式】 以下,對用以實施本發明之形態(以下,稱為「本實施 形態」)加以詳細說明。 再者,本發明並不限定於以下之記載,於其主旨之範圍 内可加以各種變形而實施。 [點光源用光擴散板] 本貫施形態之光擴散板係於其表面形成有複數個凸部之 光擴散板® 上述凸部係底面為三角形之大致三角錐形狀。 上述光擴散板係該大致三角錐形狀之側面相對於底面之 傾斜角θ(以下’亦有時僅稱為傾斜角0)及形成上述凸部之 材料之折射率Α(以下,亦有時僅稱為折射率Α)滿足下述式 (1)及(2)的點光源用光擴散板。 (1) · · · θ^-40A°+11 5.2° 148960.doc -12- 201109741 (2) · · . 25A0+22_250 圖4中表示以折射率Α為橫軸、以傾斜角θ為縱軸之圖。 圖4中,本實施形態之光擴散板係滿足式0=25八。+22.25。之 下側與式Θ=-40Α〇 + 11 5.2。之上側之區域内之條件者。 猎由上述光擴散板之表面之凸部之大致三角錐形狀的傾 斜角Θ與折射率Α滿足上述式⑴與⑺之關係,而使用上述 光擴散板之點光源背光中,亮度、色不均特性、正面亮度 均勻性以及斜視亮度均勻性顯著提高。 作為光擴散板之表面形狀,即便使用除凸型大致三角錐 、卜之例如凸型夕角錐形狀及包含三角錐之凹型多角錐形 狀’亦無法表現本案目標性能。 又’於雖光擴散板之表面形狀為凸型大致三角錐形狀, 不禹足上述(1)及(2)之情形時,色不均特性、正面及斜 視之亮度均勻性顯著劣化。 右本g施形悲之光擴散板中上述傾斜角0與折射率A滿足 述式(3)與(4),貝ij免度、色不均特性、正面亮度均句性 以及斜視亮度均勻性進一步提高而較佳。 (3) · · · -40Ao+l 16.2。 (4) · · · Θ客 25八。+20.25。 進而,若傾斜角Θ為55·5度以上,則成為亮度、色不均 特性、正面直奋a a又φ勻性以及斜視亮度均勻性尤其優異之擴 散板,而尤佳。 、’、: 藉由使用雷射顯微鏡或SEM(scanning electronHowever, in recent years, in terms of environmental problems, life of light sources, power saving, and improvement of image quality, it is necessary to use LEDs (light emitting diodes) as light sources instead of cold cathode tubes. However, since the cold cathode tube is a line light source and the LED is a point light source, there is a problem that the unevenness of the unevenness becomes large, and the diffusion plate and the optical film require a technique of converting the point light source into a surface light source. As an LED light source, it is generally more common to use the Lambertian LED (Lambertian to price this (10)) LED which is the cheapest and has a strong light intensity of straight illuminating, and how to convert the light source which is directed toward the LED straight into a surface. The light source is a big problem. On the other hand, in recent years, there has been a strong demand for a liquid crystal display to be thinner and less expensive, and as a backlight, a technique of reducing a light source, reducing an optical film, and diffusing light from a light source to a diffusion plate is required. 148960.doc 201109741 Previously, as a light diffusion technique for a direct-type point light source, there has been proposed an image formation position adjustment method in which four dot shapes are formed with respect to a convex quadrilateral having the smallest area and the shortest circumference from the plurality of point light sources. Each of the point light sources of the light source and the light exit surface of the light diffusing plate can be observed in a specific region of the light exit surface. Further, as the shape of the light-diffusing sheet, a concave quadrangular pyramid shape having a different inclination angle has been proposed (for example, see Patent Document 1). In the same manner, in order to improve the light utilization efficiency, it is proposed to arrange the concave quadrangular pyramids in a diagonal shape on the light-emitting surface side of the light-diffusing sheet (see, for example, Patent Document 2). Further, as a method of reducing the amount of light of the LED light source, it is proposed to form a plurality of ridges having a plurality of turns with a corner shape on the exit surface side of the light diffusing plate (see, for example, Patent Document 3) . PRIOR ART DOCUMENT PATENT DOCUMENT Patent Document Patent Document 1: International Publication No. 07/114158, Patent Document 2: U.S. Patent No. 733,492, PCT Patent Publication No. JP-A No. 10-274947. However, in the case of using the light diffusing plate having the inverted quadrangular pyramid shape on the side of the exit surface described in the patent document, the luminance unevenness is reduced, and the effect is small, especially when viewed from the oblique direction. The brightness of the situation is more than the sentence, the problem. In the case of using the light diffusing plate of the above shape, in order to improve the brightness, it is necessary to increase the number of point light sources or the optical film, and the backlight is thickened. Further, the patent document describes that the surface of the light diffusing plate has a convex-concave tapered shape, but the triangular pyramid shape having a specific slope angle and the refractive index described in the claim of the present application is not described as being emitted to the light diffusing plate. The face side is shaped, and the brightness and brightness uniformity (front and oblique view) of the direct type LED light source backlight are dramatically improved. In addition, as in the patent document i, the light diffusing plate having a concave quadrangular pyramid shape on the side of the exit surface described in Patent Document 2 has a small uniformity in brightness and unevenness in color unevenness in the front and oblique directions. The problem. In order to improve the brightness uniformity of the point light source, it is necessary to increase the number of light sources or to use a plurality of optical films including the film, so that there is a problem that the cost becomes high. &amp; Further, in Patent Document 3, it is proposed to form a plurality of ridges having a thickness of 1 _ including a small number of 稜鏡 of the 丙烯-夂 秘 秘 之 隅稜鏡 但 但 但 但 但 但 但 但 但 但 但 但 但 但Uneven, no adequate improvement or improvement. Further, in Patent Document 3, it is described that it is preferable to use a pyramidal shape mirror such as a quadrangular pyramid or a hexagonal cone for imparting a corner shape to the exit surface side of the light diffusing plate, but it is not recorded by The triangular pyramid shape having the characteristic slope angle and the refractive index described in the item (4) is shaped on the exit surface side of the light diffusion plate to improve the brightness and brightness uniformity of the direct type LED light source backlight ( Front and oblique view) and uneven color. As described above, in the above prior art, it is preferable to exhibit excellent brightness, brightness uniformity (front and oblique viewing), and color unevenness characteristics under the desired backlight thickness, and it is necessary to configure a plurality of point light sources or use them in combination. An optical film, etc. changed 148960.doc 201109741 good. The present invention has been made in view of the above problems, and an object of the invention is to provide a point light source having a desired backlight thickness and a small number of backlights in a direct-type point light source backlight using a point light source, even if a plurality of optical films are not used in combination. At the same time, a light diffusing plate excellent in shell degree, brightness uniformity (front and oblique viewing), and color unevenness characteristics, and a direct type backlight using the light diffusing plate are realized. In order to solve the above problems, the inventors of the present invention have conducted intensive studies to find that the angle of inclination of the convex portion is the same in a light diffusing plate having a plurality of convex portions having a substantially triangular pyramid shape on the light emitting surface side. When the refractive index of the material forming the convex portion satisfies a specific relationship, brightness, color unevenness, and brightness uniformity, particularly squint brightness uniformity, are significantly improved when the light diffusing plate is disposed directly above the point light source, thereby completing the present invention. Further, it has been found that when such a light diffusing plate is combined with a point light source to produce a direct type backlight device, color unevenness characteristics, brightness and brightness uniformity (front and squint) are remarkably improved, and a large degree unpredictable in the prior art is realized. The present invention has been accomplished by reducing the number of light sources, thinning the thickness of the backlight, and reducing the optical film. That is, the present invention is as follows. [1] A light diffusing plate for a point light source, wherein a light diffusing plate having a plurality of convex portions formed on a surface thereof is formed, and a bottom surface of the convex portion is a triangular triangular pyramid shape, 148960.doc 201109741 a side of the substantially triangular pyramid shape The inclination angle θ with respect to the bottom surface and the refractive index 材料 of the material forming the convex portion satisfy the following formulas (丨) and (2)·(1) · · · -40Α°+115.2° (2) · · · 25Α °+22.25° ° [2] The light diffusing plate for a point source according to the above [1], wherein the inclination angle 1 and the refractive index Α satisfy the following formulas (3) and (4): (3) · · · Θ2 -40Αο + 116.2. (4) θ $25Αο + 20·25ο » [3] The light diffusing plate for a point light source according to [1] or [2] above, wherein the inclination angle 1 is Θ/55. . [4] The light-diffusing sheet for a point light source according to any one of the above [1] to [3], which does not exhibit a return reflection characteristic with respect to visible light incident from a side opposite to a surface side of the convex portion forming surface. Further, the following conditions (丨) are satisfied, and the condition (1): using a spectrophotometer, from the surface opposite to the convex portion, is incident at an incident angle of 450 to 75 at an incident angle of 7 degrees with respect to a perpendicular to the horizontal plane of the light diffusion plate. The average reflectance r at the time of nm light is 45% or more. [5] The light diffusing plate for a point light source according to any one of the above [1] to [4], which satisfies the following formula (5): (5) · · * g/(b+c+d)^ 0.30 (in the formula (7), 'b, c, and d respectively indicate the apex of the top triangle by the following I point, j point, and convex 148960-doc 201109741 vertices (in the case where the convex portion is in the shape of a triangular frustum) 3 When the plane of the point cuts the convex portion, the angle θ formed by the tangent plane of one side surface of the convex portion and the bottom surface is projected to the portion of the following formulas (1') and (2'). The length of the projection line segment of the horizontal plane, the length of the projection line segment projecting to the horizontal plane from the portion c on the bottom side of the more convex portion, and the length of the projection line segment projecting the portion D located on the more top side to the horizontal plane. Γ) . . . θ'^-40Α° + 11 5.2° (21) · · . θ'^ 25Α°+22.25° I point: the apex of the convex part (when the convex part is in the shape of a triangular frustum, The center of gravity of the top quadrangle is projected perpendicularly to the point of the bottom triangle. "Accounting from the above 1 point, the nearest edge to the j point in the side of the bottom triangle The intersection of the perpendicular line and the side when the vertical line is formed. In the formula (5), g is a cut when the convex portion is cut by a plane perpendicular to the bottom triangle and is cut by a plane of the following 、, J, and a point. The one-side portion of the section from the center to the point of the defect, the 'in the tangent to the side of the convex portion is located at an angle 较 between the tangent and the bottom surface, satisfying (1,) and (2,) Part: The length of the projection line segment projected to the horizontal plane by the portion on the top side. Therefore, when there are a plurality of cut surfaces satisfying the above conditions, the cut surface having the largest value of g is used. The apex of the part (in the case where the convex part is in the shape of a triangular frustum, the top. P, the center of gravity of the angle) is vertically projected to the point of the bottom triangle, and the bottom of the bottom corner of the triangle is closest to the bottom of the projection point. Vertex l4S960.doc 201109741 The midpoint of the connected line segment. r point: from the above I' point, the intersection of the perpendicular line and the edge when the vertical line is drawn from the edge closest to the r point in the side of the bottom triangle. [6] Optical expansion for point source as in [5] above The light-diffusing sheet for a point light source according to any one of the above-mentioned items [1] to [6], which comprises at least (a) a lens layer and a slab (b) a diffusion layer, wherein the (a) lens layer and the (b) diffusion layer are selected from the group consisting of a same layer, a continuous layer, and a separation layer, wherein the convex portion is formed in the (a) lens [8] The light diffusing plate for a point source according to [7] above, wherein the (8) diffusion layer contains a transparent resin and a diffusing agent, and the diffusivity is 8 to 4%. [9] The spot light (four) light diffusing plate according to [7] or [8] above, comprising (4) a lens layer and (b) a diffusion layer, wherein a sum of thicknesses of the (4) lens layer and the (b) diffusion layer is 〇5 ~3〇_. [10] A direct-type point light source backlight device, comprising: a plurality of point light sources; wherein the light diffusing plate of any one of (1) to [9] is disposed above the point light source, and a point light source is opposite to the opposite side of the surface side of the 148960.doc 201109741 side, a plurality of convex portions having a substantially triangular pyramid-shaped bottom surface are formed on the surface; and a diffusing reflection sheet is disposed at the above point Below the light source. [11] The direct-type point light source backlight device according to [10] above, wherein the point light source has a light peak angle of -25 to 25. LED light source. [12] The direct-type point light source backlight device of [10] or [11], wherein the diffusive reflection sheet has a diffuse reflectance of 9% or more. [13] The direct type backlight device according to any one of the above [10], wherein the light-emitting surface of the light-diffusing sheet further comprises at least two optical films having a light collecting function. [14] The direct type backlight device according to any one of the above [10] to [13] wherein, in the case where the average pitch of the point light sources is p, and the distance from the point light source to the light diffusion plate is set to H When 卩/1^ is in the range of 1.5 to 2.5. [15] A direct type backlight device comprising a plurality of point light sources, and the light diffusing plate according to any one of the above [1] to [9], wherein the plurality of point light sources are periodically arranged in a lattice shape. The plurality of convex portions of the light diffusing plate are periodically arranged such that the bottom triangular 148960.doc 201109741 of the adjacent convex portions is parallel to each other, and the plurality of point light sources and the light diffusing plate are Each of the light diffusing plates is convex. Any one of the sides of the bottom surface of the crucible is laminated parallel or perpendicular to the diagonal of the square of the lattice constituting the lattice arrangement of the point light source. [16] A direct type backlight device comprising a plurality of point light sources, and the light diffusing plate according to any one of the above [1] to [9], wherein the plurality of point light sources are periodically arranged in a lattice shape. The bottom surface of the plurality of convex portions is a substantially triangular pyramid shape of an isosceles triangle, and the plurality of convex portions of the light diffusion plate are periodically arranged such that bottom edges of the equal waist portions of the adjacent convex portions are parallel to each other Arranging, wherein the plurality of point light sources and the light diffusing plate are parallel to a diagonal of a quadrangular shape of a bottom surface of each of the convex portions of the light diffusing plate and a square of a lattice of the point light source Layered vertically or vertically. [17] A direct type backlight device comprising a plurality of point light sources, and the light diffusing plate according to any one of the above [1] to [9], wherein the plurality of point light sources are periodically arranged in a lattice shape. The bottom surface of the plurality of convex portions is a substantially triangular pyramid shape of an equilateral triangle, and the plurality of convex portions are periodically and parallel to each other in a manner that the sides of the adjacent convex portions are equilateral triangles 148960.doc • 11 · 201109741 Arranging, wherein the plurality of point light sources and the light diffusing plate are parallel to a diagonal of a square of a bottom surface of each of the convex portions of the light diffusing plate and a diagonal of a square of a lattice of the dot light source Laminated in a vertical manner. Effect of the Invention When the light diffusing plate of the present invention is used right, when combined with a point light source, good enthalpy, color unevenness, and brightness uniformity (front and oblique) are exhibited, so that the result can be realized for the backlight. The reduction of the light source and the optical film, and the thinning of the backlight. [Embodiment] Hereinafter, a mode for carrying out the invention (hereinafter referred to as "this embodiment") will be described in detail. The present invention is not limited to the following description, and various modifications can be made without departing from the spirit and scope of the invention. [Light diffusing plate for point light source] The light diffusing plate of the present embodiment is a light diffusing plate in which a plurality of convex portions are formed on the surface thereof. The bottom surface of the convex portion is a triangular triangular pyramid shape. The light diffusing plate is an inclination angle θ of the side surface of the substantially triangular pyramid shape with respect to the bottom surface (hereinafter referred to as "the inclination angle 0") and a refractive index 材料 of the material forming the convex portion (hereinafter, sometimes only The refractive index Α) is a light diffusing plate for a point light source that satisfies the following formulas (1) and (2). (1) · · · θ^-40A°+11 5.2° 148960.doc -12- 201109741 (2) · · . 25A0+22_250 Figure 4 shows the refractive index Α as the horizontal axis and the inclination angle θ as the vertical axis. Picture. In Fig. 4, the light diffusing plate of the present embodiment satisfies the formula 0 = 25 eight. +22.25. The lower side is Θ=-40Α〇 + 11 5.2. The condition in the area above the upper side. The inclination angle Θ of the substantially triangular pyramid shape of the convex portion of the surface of the light diffusing plate and the refractive index Α satisfy the relationship between the above formulas (1) and (7), and the brightness of the point light source using the light diffusing plate is uneven in brightness and color. Characteristics, front brightness uniformity, and squint brightness uniformity are significantly improved. As the surface shape of the light diffusing plate, the target performance of the present invention cannot be expressed even if a convex triangular pyramid, a convex pyramid shape, and a concave polygonal pyramid including a triangular pyramid are used. Further, in the case where the surface shape of the light-diffusing sheet is a convex-shaped substantially triangular pyramid shape, the color unevenness characteristics, the brightness uniformity of the front surface and the oblique view are remarkably deteriorated when the above (1) and (2) are not satisfied. The above-mentioned tilt angle 0 and refractive index A satisfy the above-mentioned equations (3) and (4), the ij exemption degree, the color unevenness characteristic, the front luminance uniformity, and the squint brightness uniformity. Further improvement is preferred. (3) · · · -40Ao+l 16.2. (4) · · · Hacker 25 eight. +20.25. Further, when the inclination angle Θ is 55·5 or more, it is preferable to be a diffusing plate which is excellent in brightness, color unevenness, front straightness, uniformity, and slant brightness uniformity. , ', : by using a laser microscope or SEM (scanning electron

Pe,掃描式電子顯微鏡)(電子顯微鏡)來觀察擴散 148960.doc •13· 201109741 板表面之剖面形狀而求出。 折射率A可藉由將形成凸部之部位切 壓機等製作矣A τ 雖’其後以埶 製作表面平滑之膜,依據JIS K7U2且估田…、 射計而求出。又,於&amp;± 使用阿貝折 凸部切斷之後,# Α 月$時,亦可將 後如碎上述切斷部位,藉由貝身 method)而求出。 、兄在(Becke 又’形成光擴散板之凸部之材料之折 樣之材料中的锈 係由形成試 的透明者(例如,透明樹脂)所決宏p体 光擴散劑等,折射率 、疋,即便添加 对羊本身亦不會因此而變化。 因此,於因凸部含有光擴散劑 利用上述方法^ 彳廣政性’故難以 刁沄測疋折射率之情形時等, 之材料中的透明去&amp;丨^头 僅使形成凸部 樣地使用阿貝抽&lt; )朕化,與上述同 文明貝折射計,敎該臈 Α。 外身了手,而求出折射率 所謂本實施形態之#撼 擴政板之凸部之形心卩 乂 ·,係指底面為三角形,且頂 ’ 三备裉从士邮 丨马點或面積小於底面之 /的Μ,亦包含如圖3所示之所謂之三角錐台。 擴散板之凸部之側面既可為平面 部為點之情形時,該頂點既可如 了為曲面,於頂 圖2所示“ 讀线,亦可如 又,三角錐之脊線既可尖銳,亦可為曲面。 進而,本實施形態之光擴散板 三a 爾成极之凸部之形狀即上述大致 一角錐形狀較佳為,將頂點(或 Ξ.0,^^ ^ 貞。Ρ二角形之中心)與底面 一角屯之中心連結之直線(中心 軸)與平面垂直,即不為斜 J48960.doc 201109741 三角錐。 於本實施形態之光擴散板中,如上所述,上述傾斜角θ 為凸部之側面與底面所成之角。 再者,於凸部之側面之一部分包含曲面之情形時,亦於 凸部之側面包含平面之情形時,該平面與底面所成之角為 傾斜角θ。於凸部之側面舍合递叙 ㈤匕3複數個平面之情形時,面積 最大之平面與底面所成之角為傾斜角㊀。 又,於凸部之側面全部為曲面之情形時,傾斜角9為側 面之切平面與底面所成之角中之最大的角。 又’於大致三角錐形狀為斜三角錐之情形時,傾斜角0 為凸部之3個側面與底面所成之角中之最大的角。 本實施形態之光擴散板較佳為’於其表面週期性地形成 有具有大致三角錐形狀之同一形狀之凸部。 又’就色不均特性、亮度及亮度均勾性之觀點而言,較 佳為本實施形態之光擴散板之凸部之形狀及配置滿 式(5)〇 (5). . * g/(b+c+d)^ 〇.3〇 上述式(5)中,卜心分別表示,於在通過以下m、j 點及凸部頂點(於凸部為三角錐台形狀之情形時,為頂部 三角形之重心)之3點之平面切斷上述凸部時出現之切斷面 中, 將凸部之-側面之切平面與底面所成之角θ,滿足以下式 (η及(2·)之部分Β投影至水平面之投影線段的長度㈤中 之10;將位於較Β更凸部之底部側之部分c投影至水平面之 i48960.doc •15· 201109741 投 影線段的長度(圖5中之C);以及將位於較B更頂部侧之 部分D投影至水平面之投影線段的長度(圖$中之十 (!')(2,) • · · * θ'^ -40Α° + 115.2° θ'^ 25Α° + 22.25° I點:將凸部之頂點(於凸部為三角錐台形狀之情形時,為 頂部之三角形之重心)垂直投影至底面三角形之點。 心自上述m,對於構成底面三角形之邊中的與上幻, 點之距離最近之邊繪製垂線時的該垂線與該邊之交點。 再者,圖5中之位於較B更凸部之底部側之部中包含 與鄰接之凸部之間的距離Lxl/2的部分,d之頂部側 凸部之頂點(於三角錐台形狀之情形日寺,為頂部三角形: 於圖5中,例示直線線段作為部分B,但部分以要為滿 足上述式(1’)、之部分,則亦可為曲線。 例如’於形成錢散板之凸部之材料之折射率八^ ^ 的情形時’部分B亦可為於㈣〜62。之範圍内連續 rl〇 述式(5)_,對g加 工 ^ «Λ, 將於與底面三角形垂直之平面且通過以下!,點、〜 平面(圖23(A)中之虛線)切斷上述凸料出現的切斷 圖 23(B)。 ’、取 ’點:將使凸部之頂點(於㈣為三角錐台形狀之情形 :’為頂部三角形之重心)垂直投影至底面三角形之點: 與底面三角形之頂點中的最接近該投影點之底面三角形的 148960.doc •16- 201109741 頂點連結之線段之中點。 自上述I‘點,對於構成底面三角形之邊中的與上述I 點之距離最近之邊”线時的該垂線與該邊之交點。 =圖23(B)表示上述切斷面中之自中心至包含;,點之單側之 最下。P為止的部分。將上述凸部之一側面之切線中的位於 較該切線與底面所成之角θ,滿足上述(1,)及(2,)之部分更頂 部側的部分投影I + m π 欠京^至水千面之投影之投影線段的長度設為 g。其中,於存在複數個^上述條件之切斷面之情形 時’採用g之值最大之切斷面。 就進步提间壳度及亮度均勻性之觀點而言,更佳為 0.01Sg/(b+c+d)S 0,20,進而較佳 4〇 〇1gg/(b+c+d)g 〇1〇。 進而,就色不均特性、亮度及亮度均勻性之觀點而言, 較佳為本實施形態之光擴散板之凸部之形狀及配置滿足下 述式(6)與(7)。 (6) · · *0^ c/(b+c+d)^ 0.20 (7) . · · 〇 ^ d/(b+c+d) ^ 0.40 就進一步提高亮度及亮度均勻性之觀點而言,更佳為 0.01^c/(b+c+d)$0.13 ’ 進而較佳為 〇 〇1$c/(b+c+d)g〇 %。 再者,上述b、c、d、g可藉由使用雷射顯微鏡或 SEM(電子顯被鏡)來觀察擴散板表面之剖面形狀而東出 又,就亮度均勻性、雲紋及製造之觀點而言, 之凸部之大致三角雜形狀中之上述b、c、d之二= 5〜200 μηι較佳’更佳為1〇〜150 μηι,進而較佳為i5〜i2〇 μηι 〇 148960.doc 17· 201109741 又,光擴散板之凸部之大致三角錐形狀之高度(自底面 至最上部為止之距離)較佳為1〇〜4〇〇 μηι。 - 本實施形態之光擴散板之凸部較佳為 十 7』π J見先不表現 複歸反射特性之形狀。 即,若大致三角錐形狀為不表現複歸反射特性之形狀, 則自點光源出射且再次返回至點光源之光之比例變少,可 抑制點光源吸收光。 作為複歸反射特性之指標,可使用自光擴散板之與凸部 形成面側為相反側之面(入光面)側’以對相對於光擴散板 之水平面之垂線傾斜7度之入射角度,入射波長45〇〜750 nm之光時的平均反射率r。 此處,所謂平均反射率R,係指於45〇〜75〇 nm之波長區 域内針對每波長1 nm求出反射率時之平均值。 若平均反射率R為45%以上’則可以說為複歸反射成分 較少、點光源之光之吸收較少的光擴散板,且成為色不均 特性、亮度、亮度均勻性尤其優異之光擴散板。 平均反射率R更佳為50%以上,進而較佳為⑽以上。 於上述凸部之大致三角錐形狀例如為底面為三角形之凸 型大致三角錐’且為三角錐之側面相對於底面之傾斜角θ 為57度之形狀的情形時’光不會返回至光之入光點,不具 有複歸反射性,因此成為較高之平均反射率。 另一方面,於上述凸部之夫, 致二角錐形狀例如具有角隅 稜鏡形狀(上述傾斜_5度)且具有複歸性反射性之情形 時’光會返回至光之入光點’因此平均反射率R未達 148960.doc •18· 201109741 45%。 因此,上述大致三角錐之形狀較佳為上述傾斜角0為55&lt; 以外之傾斜角之大致三角錐形狀。 又,就提高色不均特性、亮度、亮度均勻性之觀點而 言,理想的是使入射至光擴散板之光適度擴散。 因此,平均反射率R之上限值較佳為7〇%以下,更佳為 6 7%以下。 於組合使用本實施形態之光擴散板與光源之情形時,藉 由將大致三角錐形狀之凸部配置於光擴散板之2個表面中 之出光面侧,而成為亮度、色不均特性、亮度均勻性(正 面及斜視野)尤其優異之背光裝置。 再者,以下,於本說明書中,於與光源組合使用之情形 時,將接近光源之表面(即,與光源相對向之側)定義為入 光面,將遠離光源之表面(光源之相反側)定義為出光面。 大致二角錐形狀之凸部係於光擴散板之表面設置複數 個。 複數個凸部之形狀既可相同,亦可不同。 又’關於複數個凸部之配置之態樣亦並無限定。 例如’就亮度均勻性及生產性之觀點而言,較佳為將上 述複數個凸部以相鄰之凸部底面三角形之相對之邊彼此平 行的方式而鄰接配置。 又’凸部之底面三角形之形狀亦無限定。 例如,如圖6所示,於將凸部之底面三角形之内角分別 又為α、β、γ之情形時,就亮度均勻性之觀點而言較佳為 148960.doc • 19- 201109741 α-β1、Ιβ-γΐ、丨 γ-α| 分別為 20。以下, 進而較佳為5。以下。 凸部之底面三角形之尤佳之 形。 更佳為10。以下, 形狀為等腰三角形、 正三角 進而’就亮度均句性之觀點而言較佳為,設置於光擴散 板之表面之大致三角錐形狀之凸部形成於光擴散板之水平 以上, 形成為95面 面之70面積。/。以上的區域’更佳為形成為8〇面積% 進而較佳為形成為90面積%以上,進而更佳為 積°/〇以上。 就亮度以及正面及斜視之亮度均勾性之觀點而言,較佳 鏡層與(b)擴散 為本實施形態之光擴散板包含至少⑷透 層。 層 上述⑷透鏡層係形成有上述凸型三角錐形狀之層。 上述㈦擴散層係包含透明樹脂與擴散劑且使光擴散 之 由複數 ⑷層、(b)層既可均由單—層所形成亦可 層所形成。 如圖7所示,上 述(a)層與(b)層既可為同一層,亦可為連 ,層,或者亦可為分離層。 所謂同一層,及&gt; 江t 係心於(b)擴散層之表面形成上述大致二 角錐:即於㈨層中組入⑷層之層構成。 — 所s胃連續層 ^ a 你心(a)透鏡層與(b)擴散層密著而一體化 之層構成。 鏡層與(b)擴散層作為個別之薄 所謂分離層,係指⑷透 148960.doc -20· 201109741 片而存在,且物理性地重疊2片薄片之構成。 關於分離層,既可自接近光源之側以(a)層、(b)層、戍 者(b)層、(a)層之組合進行配置,亦可進而於(a)層與()3)層 之間配置其他薄片。 關於構成本實施形態之光擴散板之凸部(於圖7所示之構 成之情形時,為(a)透鏡層)的材料,只要為具有滿足上述 式(1)、(2)之折射率A者,則並無限定,例如較佳使用透光 性較高之樹脂。 例如可列舉:聚對苯二甲酸乙二酯、聚對苯二曱酸丙二 酉旨、聚對苯二曱酸丁二酯、聚萘二曱酸乙二酯等聚酯樹脂 及其等之共聚物;聚丙烯、聚曱基戊烯、脂環式聚烯烴等 聚烯烴樹脂;聚苯乙烯、苯乙烯-丙烯腈共聚物、苯乙烯_ 曱基丙稀酸共聚物、曱基丙烯酸曱酯-苯乙稀共聚物、α_ 曱基苯乙烯共聚物等苯乙烯系樹脂;聚甲基丙烯酸甲酯、 聚丙烯酸乙酯等丙烯酸系樹脂;甲基丙烯酸酯樹脂、聚碳 酸酯樹脂等。 構成本實施形態之光擴散板之凸部(於圖7所示之構成之 情形時,為(a)透鏡層)的材料只要為具有滿足上述式(1)、 (2)之折射率A者,則並無限定,關於折射率A,就亮度、 色不均特性、正面免度均勻性及斜視亮度均勻性之觀點而 言,折射率較佳為1.43以上,更佳為〖.49以上,進而較佳 為1_53以上’尤佳為ι·55以上。Pe, scanning electron microscope) (electron microscopy) to observe the diffusion 148960.doc •13·201109741 The shape of the surface of the plate is obtained. The refractive index A can be obtained by forming a film having a smooth surface with 埶A τ after a convex portion forming a convex portion, and then obtaining a smooth surface by 埶 according to JIS K7U2. Further, after &amp;± using the Abbe-folding convex portion, the ##月$ may be obtained by breaking the above-mentioned cut portion by the shell method. Brother (Becke also 'the rust in the material that forms the material of the convex portion of the light diffusing plate is determined by the transparent person (for example, transparent resin) to determine the macro-p-light diffusing agent, etc., refractive index,疋 即便 疋 疋 疋 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊 羊Go to & 丨 ^ head only to make the convex part of the use of Abbe pumping &lt;) 朕, with the above civilized refractometer, 敎 臈Α. The body is out of the hand, and the refractive index is obtained. The shape of the convex part of the #撼大撼板 of this embodiment refers to the triangle of the bottom surface, and the top of the three-pointed 裉 裉 裉 士 士 或 或The crucible smaller than the bottom surface also includes a so-called triangular frustum as shown in FIG. When the side of the convex portion of the diffuser plate can be a point where the plane portion is a point, the vertex can be as a curved surface, as shown in the top view of FIG. 2, the line can be sharpened as well as the ridge line of the triangular cone. Further, the shape of the convex portion of the light diffusing plate of the present embodiment, that is, the shape of the substantially triangular pyramid is preferably a vertex (or Ξ.0, ^^^ 贞. The line connecting the center of the corner and the center of the corner of the bottom surface (the central axis) is perpendicular to the plane, that is, it is not a slope. The light diffusion plate of the present embodiment, as described above, the above-mentioned inclination angle θ The angle formed by the side surface of the convex portion and the bottom surface. Further, when one of the side surfaces of the convex portion includes a curved surface, and when the side surface of the convex portion includes a flat surface, the angle formed by the flat surface and the bottom surface is inclined. The angle θ. When the side of the convex portion is reciprocated (5) 匕 3 plural planes, the angle between the plane with the largest area and the bottom surface is the inclination angle 1. Also, when the sides of the convex portion are all curved surfaces The inclination angle 9 is the plane of the side and the bottom surface In the case where the substantially triangular pyramid shape is an oblique triangular pyramid, the inclination angle 0 is the largest angle among the angles formed by the three side surfaces of the convex portion and the bottom surface. Preferably, the diffusing plate has a convex portion having the same shape having a substantially triangular pyramid shape periodically formed on the surface thereof. Further, in terms of color unevenness characteristics, brightness, and brightness, it is preferably the present embodiment. The shape and arrangement of the convex portion of the light diffusing plate of the form are full (5) 〇 (5). * g/(b+c+d)^ 〇.3 〇 In the above formula (5), the buxins respectively indicate that In the cut surface that occurs when the convex portion is cut by the plane of the three points of the m, j point and the apex of the convex portion (the center of gravity of the top triangular portion when the convex portion is in the shape of a triangular frustum), The angle θ formed by the tangent plane of the convex portion and the bottom surface satisfies 10 of the length (5) of the projection line segment projected to the horizontal plane by the portion of the following formula (η and (2·); The part c of the bottom side is projected to the horizontal plane i48960.doc •15· 201109741 The length of the projected line segment (C in Figure 5); and will be located The length of the projected line segment projected to the horizontal plane by the portion D on the top side of B (10 in the figure (!')(2,) • · · * θ'^ -40Α° + 115.2° θ'^ 25Α° + 22.25 ° I point: the vertex of the convex part (the center of gravity of the top triangle when the convex part is in the shape of a triangular frustum) is vertically projected to the point of the bottom triangle. The heart is from the above m, in the side of the triangle forming the bottom surface. The point where the perpendicular line intersects the edge when the vertical line is drawn from the point closest to the point of the illusion, and the point on the bottom side of the convex portion of the B is included in the portion between the convex portion and the adjacent convex portion. The part of the distance Lxl/2, the apex of the top side convex part of d (in the case of the triangular frustum shape, the temple is the top triangle: in Fig. 5, the straight line segment is exemplified as the part B, but partially to satisfy the above formula The part of (1') can also be a curve. For example, 'in the case of the refractive index of the material forming the convex portion of the bulk plate, the portion B may be (4) to 62. In the range of continuous rl description (5)_, for g machining ^ «Λ, will be perpendicular to the plane of the bottom triangle and through the following !, point, ~ plane (dashed line in Figure 23 (A)) cut the above The cut of the convex material appears in Fig. 23(B). ', take' point: the vertex of the convex part (in the case of (4) is the shape of a triangular frustum: 'the center of gravity of the top triangle') is vertically projected to the point of the bottom triangle: the closest to the projection point of the vertex of the bottom triangle The bottom triangle is 148960.doc •16- 201109741 The point in the line connecting the vertices. From the point I' above, the intersection of the perpendicular line and the side with respect to the side of the side of the bottom triangle which is closest to the I point. = Fig. 23(B) shows the center from the cut surface The portion of the tangent to the side of the convex portion is located at an angle θ between the tangent line and the bottom surface, and satisfies the above (1,) and (2, Part of the top part of the projection I + m π The length of the projection line segment of the projection from the Jing ^ to the water surface is set to g. Wherein, in the case where there are a plurality of cut surfaces of the above conditions, 'g The cut surface having the largest value is more preferably 0.01 Sg / (b + c + d) S 0, 20, and further preferably 4 〇〇 1 gg / (in terms of improving the degree of shelling and brightness uniformity). b+c+d)g 〇1〇 Further, in terms of color unevenness characteristics, brightness, and brightness uniformity, it is preferable that the shape and arrangement of the convex portion of the light diffusing plate of the present embodiment satisfy the following formula (6) and (7). (6) · · *0^ c/(b+c+d)^ 0.20 (7) . · · 〇^ d/(b+c+d) ^ 0.40 to further increase the brightness And brightness uniformity More preferably, it is 0.01^c/(b+c+d)$0.13' and further preferably 〇〇1$c/(b+c+d)g〇%. Furthermore, the above b, c, d, g By using a laser microscope or an SEM (Electronic Display Mirror) to observe the cross-sectional shape of the surface of the diffusion plate, the general triangular shape of the convex portion can be seen from the viewpoints of brightness uniformity, moiré, and manufacturing. The above b, c, d two = 5 ~ 200 μηι preferably 'better than 1 ~ 150 μηι, and further preferably i5 ~ i2 〇 μηι 〇 148960.doc 17 · 201109741 again, the light diffuser convex The height of the substantially triangular pyramid shape of the portion (the distance from the bottom surface to the uppermost portion) is preferably 1 〇 to 4 〇〇 μηι. - The convex portion of the light diffusion plate of the present embodiment is preferably 10 7 π π J The shape of the complex reflection characteristic is not exhibited. That is, if the substantially triangular pyramid shape is a shape that does not exhibit the complex reflection characteristic, the proportion of light that is emitted from the point source and returned to the point source again is reduced, and the point source can be suppressed from absorbing light. As an index of the reversion reflection characteristic, the side of the light diffusing plate opposite to the side on which the convex portion is formed may be used (the light incident surface) side. 'The average reflectance r when incident on a light with a wavelength of 45 〇 to 750 nm is inclined at an incident angle of 7 degrees with respect to the perpendicular to the horizontal plane of the light diffusing plate. Here, the average reflectance R is 45 〇. The average value of the reflectance is obtained for each wavelength of 1 nm in the wavelength range of 75 〇 nm. If the average reflectance R is 45% or more, it can be said that the reversion reflection component is less, and the light absorption of the point source is less. The light diffusing plate is a light diffusing plate which is excellent in color unevenness characteristics, brightness, and brightness uniformity. The average reflectance R is more preferably 50% or more, and still more preferably (10) or more. When the substantially triangular pyramid shape of the convex portion is, for example, a convex substantially triangular pyramid having a triangular bottom surface and a shape in which the inclination angle θ of the side surface of the triangular pyramid is 57 degrees with respect to the bottom surface, the light does not return to the light. The light spot has no reversion reflectivity and therefore has a higher average reflectance. On the other hand, in the case of the above-mentioned convex portion, when the shape of the pyramidal shape has, for example, a corner shape (the above-described inclination _5 degrees) and has a reflexive reflectance, the light returns to the light entrance point of the light. Therefore, the average reflectance R is less than 148960.doc •18·201109741 45%. Therefore, the shape of the substantially triangular pyramid is preferably a substantially triangular pyramid shape in which the inclination angle 0 is 55 &lt; Further, from the viewpoint of improving color unevenness characteristics, brightness, and brightness uniformity, it is preferable to appropriately diffuse light incident on the light diffusing plate. Therefore, the upper limit of the average reflectance R is preferably 7% or less, more preferably 67% or less. When the light-diffusing sheet and the light source of the present embodiment are used in combination, the convex portion having a substantially triangular pyramid shape is disposed on the light-emitting surface side of the two surfaces of the light-diffusing sheet to have luminance and color unevenness characteristics. Brightness uniformity (front and oblique view) is especially excellent for backlights. Furthermore, in the present specification, in the case of being used in combination with a light source, the surface close to the light source (ie, the side opposite to the light source) is defined as the light incident surface, and the surface away from the light source (the opposite side of the light source) ) is defined as the illuminating surface. The convex portion having a substantially quadrangular pyramid shape is provided on the surface of the light diffusing plate in plural. The shapes of the plurality of convex portions may be the same or different. Further, the aspect of the arrangement of the plurality of convex portions is not limited. For example, from the viewpoint of brightness uniformity and productivity, it is preferable that the plurality of convex portions are arranged adjacent to each other such that the opposite sides of the triangular faces of the adjacent convex portions are parallel to each other. Further, the shape of the bottom face of the convex portion is not limited. For example, as shown in Fig. 6, when the inner corners of the triangular faces of the convex portions are respectively α, β, and γ, it is preferably 148960.doc • 19-201109741 α-β1 from the viewpoint of brightness uniformity. Ιβ-γΐ and 丨γ-α| are respectively 20. Hereinafter, it is further preferably 5. the following. The shape of the triangle on the bottom of the convex part is particularly good. More preferably 10. In the following, it is preferable that the shape is an isosceles triangle, a positive triangle, and the like, and the convex portion of the substantially triangular pyramid shape provided on the surface of the light diffusion plate is formed at a level above the light diffusion plate, and is formed. It is 70 areas of 95 faces. /. The above region ' is more preferably formed to have an area of 8 Å, more preferably 90% by area or more, and still more preferably 5% or more. From the viewpoints of brightness and brightness of front and squint, the preferred mirror layer and (b) diffused light diffusing sheet of the present embodiment comprise at least (4) a layer. Layer The above (4) lens layer is formed with a layer of the above-described convex triangular pyramid shape. The above (7) diffusion layer may be formed of a plurality of layers (4) and (b) which may be formed of a single layer or a layer of a transparent resin and a diffusing agent and diffuse light. As shown in Fig. 7, the above (a) layer and (b) layer may be the same layer, may be a joint, a layer, or may be a separate layer. The same layer, and &gt; Jiang t, is formed on the surface of the (b) diffusion layer to form the above-mentioned substantially digonal pyramid: that is, the layer of the (4) layer is formed in the (nine) layer. — The continuous layer of the stomach s consists of a layer in which the heart (a) lens layer and (b) the diffusion layer are dense and integrated. The mirror layer and (b) the diffusion layer are individually thin. The so-called separation layer refers to a structure in which (4) 148960.doc -20·201109741 sheets are present, and two sheets are physically overlapped. The separation layer may be disposed from the side close to the light source by a combination of the (a) layer, the (b) layer, the (b) layer, and the (a) layer, or may be further in the (a) layer and the (3) layer. Other sheets are placed between the layers. The material of the convex portion (the (a) lens layer in the case of the configuration shown in Fig. 7) of the light-diffusing sheet of the present embodiment is a refractive index satisfying the above formulas (1) and (2). A is not limited, and for example, a resin having a high light transmittance is preferably used. For example, polyethylene terephthalate, polybutylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and the like may be mentioned. Copolymer; polyolefin resin such as polypropylene, polydecylpentene, alicyclic polyolefin; polystyrene, styrene-acrylonitrile copolymer, styrene-mercapto-acrylic acid copolymer, decyl methacrylate a styrene resin such as a styrene copolymer or an α-mercapto styrene copolymer; an acrylic resin such as polymethyl methacrylate or polyethyl acrylate; a methacrylate resin or a polycarbonate resin. The material constituting the convex portion of the light diffusing plate of the present embodiment (in the case of the configuration shown in Fig. 7 (a) lens layer) is a material having a refractive index A satisfying the above formulas (1) and (2). There is no limitation on the refractive index A, and the refractive index is preferably 1.43 or more, more preferably 〖49 or more, from the viewpoints of brightness, color unevenness characteristics, front side uniformity uniformity, and squint brightness uniformity. Further preferably, it is 1_53 or more, and particularly preferably ι·55 or more.

折射率A之上限並不特別存在,就亮度、色不均特性、 正面冗度均勻性及斜視亮度均勻性之觀點而言’折射率A 148960.doc •21 · 201109741 較佳為1.71以下,更佳為1.65以下。 又,本實施形態之光擴散板之擴散率s較佳為2%以上, 更佳為5 °/。以上,進而較佳為1 〇%以上。 再者,如下所述,於傾斜角θ為55。之情形時,減少複歸 反射,因此擴散率S較佳為5。/。以上,更佳為1〇%以上。 本實施形態之光擴散板之擴散率s之上限較佳為4〇%以 下,更佳為30%以下。 若光擴散板之擴散率S為上述範圍,則成為亮度、亮度 均勻性(正面及斜視)、色不均特性優異之光擴散板。 再者,關於擴散率s,於上述光擴散板之(a)層與(b)層為 同一層之情形時、於(a)層與(b)層為連續層之情形時以及 於(a)層與(b)層為分離層之情形時,於重疊(a)層與(b)層之 狀態下利用熱壓機等使表面平滑後,使用變角光度計(例 如曰本電色工業公司製造之GC5000L),進行於透射模式 下以光入射角0度入射光時之透射光之亮度的測定,藉x由 下述式可求出上述擴散率S。 又,於上述光擴散板僅由(a)層所構成之情形時,對於 利用熱壓機等使表面平滑後,與上述同樣地進行測 疋,藉由下述式可求出上述擴散率s。 擴散率 S=100x(L(20度)+l(70度))/(L(5度)χ2) 此處, L(5度)為朝5度之角度出光之透射光之亮度㈣化”, L(2〇度)為朝2G度之角度出光之透射光之亮度㈣/m2), L(7〇度)為朝70度之角度出光之透射光之亮度(cd/m2)。 148960.doc •22- 201109741 於本實施形態之光擴散板具有圖7之構成之情形時,關 於構成(b)擴散層之材料並無特別限定,例如可列舉包含 (透明)樹脂與擴散劑之樹脂組合物。 作為構成光擴散板之(b)擴散層之材料,較佳為於透明 樹脂中以最佳粒徑分散最適量的具有與該樹脂之折射率不 同之折射率之光擴散劑成分的樹脂組合物。 作為樹脂之具體例’可列舉:聚對苯二甲酸乙二醋、聚 對苯二甲酸丙二酯 '聚對苯二甲酸丁二酯、聚萘二甲酸乙 二酯等聚酯樹脂及其等之共聚物;聚丙烯、聚甲基戊烯、 脂環式聚烯烴等聚烯烴樹脂;聚苯乙烯、笨乙烯丙烯腈 共聚物、苯乙烯-甲基丙烯酸共聚物、甲基丙烯酸甲酯-苯 乙烯共聚物、α-甲基苯乙烯共聚物等苯乙烯系樹脂;聚甲 基丙烯酸甲酯、聚丙烯酸乙酯等丙烯酸系樹脂;曱基丙烯 酸酯樹脂、聚碳酸酯樹脂等。 作為光擴散劑,例如可列舉:丙烯酸系樹脂交聯微粒 子、苯乙烯系樹脂交聯微粒子、聚矽氧系樹脂交聯微粒 子、MS(曱基丙烯酸甲酯-苯乙烯共聚物)系交聯微粒子、 氟樹脂微粒子、玻璃微粒子、二氧化矽微粒子、碳酸鈣、 硫酸鋇、氧化鈦、氧化鋁、滑石、雲母等,該等可單獨使 用或併用。 作為光擴散劑之形狀,可列舉:圓球狀、橢圓狀、不定 形狀、針狀、板狀、中空狀、柱狀、錐狀等形狀。 作為光擴散劑之平均粒徑,就亮度均勻性及易製造之觀 點而言,較佳為1〜2〇 μιη,最佳為2〜1〇 μηι。上述平均粒徑 148960.doc -23- 201109741 可藉由粒极分佈計而求出。 再者,於本實施形態之光擴散板具有圖7之構成之情形 時,當(a)層與(b)層為同一層時,就亮度及亮度均勻性(正 面及斜視)之觀點而言,構成(b)擴散層之材料之折射率為 折射率A ’必需滿足上述⑴、式(2),但當⑷層與⑼層為 連續層及分離層時,構成(b)擴散層之材料之折射率無需滿 足上述式(1)、(2卜 μ丨 又,就亮度均勻性及易製造之觀點而言,構成 層之樹脂與光擴散劑之折射率差較佳為0·05〜0.2,更佳為 〇1〇〜0.16。 例如,作為對於聚苯乙烯樹脂而言較佳之光擴散劑,可 列舉丙烯酸系交聯微粒子或聚矽氧系交聯微粒子。 進而’就亮度均勻性及易製造之觀點而言,光擴散劑之 添加量相對於構成(b)擴散層之材料(例如,樹脂組合物)整 體,較佳為0.02〜2質量%,更佳為仏㈦〜丨質量。 又,本實施形態之光擴散板之全光線透射率几較佳為 83%以上,更佳為85%以上。 全光線透射率Tb之上限較佳為95%以下。 若全光線透射率Tb為上述範圍,則成為亮度、亮度均句 性(正面及斜視)、色不均特性優異之光擴散板。 再者,關於全光線透射率丁b,於上述光擴散板之⑷層 與(b)層為同一層之情形時、於⑷層與⑻層為連續層之情 形時、以及於刚師)層為分離層之情料,可於重遇 ⑷層與(b)層之狀態下利用熱塵機等使表面平滑之後,2 148960.doc -24· 201109741 據JIS Κ71 〇5而測定上述壓製品。 又,於上述光擴散板僅由(a)層所構成之情形時,可藉由 對於(a)層利用熱壓機等使表面平滑之後,與上述同樣地進 行測定而求出。 於本實施形態之光擴散板中,即便上述凸部為傾斜角θ 為55。之大致三角錐形狀等表現出複歸反射特性之形狀, 亦可藉由於形成上述凸部之材料中添加擴散劑、或設置含 有擴散劑之擴散層,而減少複歸反射成分。 具體而言,即便為上述凸部之傾斜角0為55。之大致三角 錐形狀之光擴散板,亦可藉由使擴散率3為5%以上,而減 少複歸反射成分,可獲得平均反射率尺為45%以上之光擴 散板。 又,上述光擴散板之擴散率S之上限較佳為4〇%以下, 更佳為30%以下。 若上述擴散率S為上述範圍,則成為亮度、亮度均勻性 (正面及斜視)、色不均特性優異之光擴散板。 複歸反射成分係藉由除於光擴散板中添加擴散劑以外, 亦可以下述方式減少:使光擴散板之入光面之平均傾斜角 U為1度以上、較佳為5度以上,或者將自光擴散板之凸形 狀面入光之全光線透射率Τ控制為75〜95%、更佳為 80〜92%。 (光擴散板之厚度) 就剛性、光學特性(亮度、亮度均勻性)之觀點而言,本 實施形態之光擴散板較佳為0.5〜3.〇 mm,更佳為〇8〜25 148960.doc -25· 201109741 mm ’進而較佳為1.0〜2.0 mm。 又’於本實施形態之光擴散板具有圖7所示之構成之情 形時’當光擴散板之(a)層與(b)層為分離層時,將重疊(a) 層與(b)層時之總厚度作為光擴散板之厚度。 (其他層) 本貫施形態之光擴散板可形成為除(a)層與(b)層以外, 視需要進而積層其他層之積層構造。 其層構成可根據用途、目的而適當選擇。 作為層構成之例,除透鏡層(a)層、擴散層(b)層以外, 若將包含其他樹脂組合物或化合物之層設為X層' γ層、Z 層,則例如可列舉I X層/(a)(b)同一層之2層構成,或者X 層/(a)層/(b)層、(a)層/(b)層/X層、(a)層/X層/(b)層之3層構 成,X層/(a)層/(b)層/X層、X層/(a)層/(b)層/γ層、χ層/(a) 層/Y層/(b)層之4層構成,進而χ層/γ層/(a)/(b)/Y層、乂層, (a)層/Y層/(b)層/X層、X層/(幻層/γ層/化)層/z層之5層構成 等。 再者,亦可連續積層複數層由相同樹脂組合物所構成之 層。 又,亦可積層5層以上,但若考慮到製造之容易度,則 車父佳為以5層以下構成光擴散板。 (添加劑) 本實施形態之光擴散板中亦可調配各種添加劑。 作為此種添加劑,例如可列舉:有機或無機之染料或顏 料、消光劑、熱穩定劑、阻燃劑、防靜電劑、消泡劑、整 148960.doc -26- 201109741 色劑、抗氧化劑、紫外線吸收劑、結晶成核劑、增白劑、 雜質之捕捉劑、增稠劑、表面調整材料等。 (光擴散板之其他構成例) 本貝施之光擴散板t,就亮度均勻性及與安梦 光中之指示銷之摩擦性之觀點而言,較佳為於與形成有上 述大致二角錐形狀之凸部之面為相反側之面、即盘且 合使用時之較佳態樣中成為人光面(光源側之面)之面= 置凹凸形狀。 Λ 具體而言,就赛房;5&amp; 匕又及儿度均勻性之觀點而言,較 光面之平均傾斜角叫〜3。。,更佳為3〜25。,= 5~20。。 仪往兩 當入光面之平均傾斜角U未達1。時,例如若出光面側之 P之傾斜角為55度,則存在光擴散板表現出複歸反射特 性,自點光源出光之光返回至點光源,而背光之亮度下降 的It ’兄。又’若平均傾斜角超過3〇。,則存在亮度均勻性 惡化之傾向。 上述平均傾斜㈣可藉由下述方式而求出:利用雷射顯 微鏡觀察擴散板剖面,於擴散板之長度方向與短邊方向 上’以1 0 0 0 μηι寬;速碑七, 、只求出1 μπι寬度之平均傾斜角(相對 於光擴散板之水平面之傾斜角),計算長度方向之平均值 與短邊方向之平均值’進而算出其平均。 再者’於本實施形態之光擴散板具有圖7所示之構成之 情形時’當⑷層與_為分離層時,較佳為⑷層、⑻層 均使入光面側之平均傾斜角為上述範圍。 148960.doc -27- 201109741 [光擴散板之製造方法] 本實施形態之光擴散板可對於構成光擴散板之各層之材 料,利用公知之方法且利用成形方法形成凸部而製造。 例如可列舉:將包含透光性較高之樹脂之樹脂組合物於 熔融狀態下自金屬口擠出,使用加工成所期望之形狀之輥 進行成形的熔融成形法;將樹脂組合物於溶解在溶劑中之 狀態下自金屬口擠出,使用加工成所期望之形狀之輥進行 成形的溶液鑄膜法;於利用溶液鑄膜法進行表面賦形所得 之固體膜上,積層熔融樹脂的擠出層壓法或者積層固體膜 彼此之幹式層壓法;使用加工成所期望之形狀之壓模,&amp;將 於熔融狀態下自金屬口擠出之板熱壓成形的方法;進而, 使用加工成所期望之形狀之模具進行射出成形的方法等。 该等中,就生產性、環境適應性之觀點而言,熔融成形 法為最佳成形法。 [直下型點光源背光裝置] 本實施形態之背光裝置係如圖8所示,具有將配置有複 數個點光源(LED)之點光源底座、擴散性反射薄片(擴散性 反射板)及本實施形態之光擴散板依序配置之構成。 於本實施形態之直下型點光源背光裝置中,光擴散板配 設於上述點光源之上方,且於與該點光源相對向之面側為 相反側之面側,形成有上述底面為三角形之大致三角錐形 狀之凸部。 於本實施形態之直下型點光源背光裝置中,作為擴散性 反射薄片(圖8中之擴散性反射板),較佳地使用擴散反射率 148960.doc •28- 201109741 9〇 /〇以上之白色樹脂薄#,更佳地使用95%以上之白色樹 脂薄片。 上述擴散反射率可藉由下述方式而求出:使用分光光度 计例如島津製作所製造之分光光度計uv_22〇〇,對以入射 角〇°對薄片入射波長為45〇 nm〜7〇〇 nm之光時之反射率每 10 nm地進行測定,算出平均反射率。 於本實施形態之直下型點光源背光裝置中,就亮度及亮 度均勻性之觀點而言,上述點光源較佳為光峰值角度 為-25°〜25°之LED光源。 作為上述點光源,例如可列舉具有朗伯出光分佈之led 光源。 本實施形態之光擴散板係對於具有光峰值角度超過25。 之廣角出光分佈之點光源,可實現優異之亮度均勻性。 本貫施形態之光擴散板係對於_25。〜25。之入射光具有顯 著優異之擴散反射性能,因此與具有光峰值角度超過25。 之廣角出光分佈之點光源相比,藉由與光源正上方之光線 強度較強之光峰值角度為_25。〜25。之點光源組合,可達成 尤其優異之亮度及亮度均勻性。 進而,擴散性反射薄片(擴散性反射板)將由光擴散板所 擴散反射之光朝向光擴散板側擴散反射,藉此於光擴散板 與擴政性反射薄片(擴散性反射板)之間使光均勻化,而作 為为光可保持正面及斜視之亮度均勻性、進而優異之色不 均特性。 又’與具有廣角出光分佈之點光源相比,光峰值角度 I48960.doc •29- 201109741 為_25。〜25°之點光源(例如LED光源)具有向光能之轉換效 率較高、平均電流之亮度較高之特點,因此若對於此種點 光源使用本實施形態之光擴散板,則可於保持較高之亮度 之狀態下,提高亮度均勻性及色不均特性。 如上所述,本實施形態中之光擴散板具有由先前之光擴 散板而無法同時實現的以廣範圍之角度使來自點光源之光 擴散反射的擴散反射性能與光源間之聚光性能,因此藉由 將點光源、特別是光之峰值角度為_25。〜25。之直上光之光 線強度較強的點光源與擴散性反射薄片組合,可實現具有 優異之亮度之直下型點光源背光。 於本實施形態之直下型點光源#織置中,於使用光峰 值角度為_25〜25。之LED光源作為點光源之情形時,如圖8 所示’當將點光源最上部與光擴散板之平均距離設為h、 將相鄰點光源之平均距離設為p時’較佳為丨 2.5。 ~ 此處’所謂點光源最上部與光擴散板之平均距離H,係 指測定安裝於背光中之戶斤右赴&amp;I , a t ,' 所有點先源最上部與光擴散板之距 離(單位為mm),取其平均值。 又,所谓相鄰點光源之平均距離p(單位為麵卜係指背 光之螢幕面積(單位為_”除以點光源之數量所得之值之 平方根值。 再者所明月光之螢幕面積」,係指使用該背光進行 顯示之畫面(映出圖像之部分)之面積。 本貫施形態之直下细赴止北丨# m 直卜^•點先源背光裝置中,就亮度、正面 148960.doc -30- 201109741 及:視亮度均句性之觀點而言,較佳為於本實施形態之光 擴散板之出光面側進而包含具有聚光性之光學膜。 所。胃上述具有聚光性之光學膜,係指具有使入射至膜之 光朝向膜正上方向提昇之功能的膜,較佳為以入射角60度 對薄片入射550 nm之單色光時,以變角光度計(例如,曰 本電色工業公司製造之GC5000L)所測定之出光分佈之主 峰值角為50度以下的膜。更佳為主峰值角為35度〜45度之 膜。 例如可列舉:市售之稜鏡片、擴散薄片、透鏡薄片等。 特別是更佳地使用以下配設圖案:於光擴散板之反光源 面側,配置2片以入射角60度入射55〇 11111單色光時由變角 光度計所測定之出光分佈之主峰值角為35度〜45度的光學 膜之配設圖案;或者於光擴散板之反光源側,配置丨片以 入射角60度入射550 nm之單色光時由變角光度計所測定之 出光分佈之主峰值角為35度〜45度的光學膜,進而於其上 配置稜鏡片之配設圖案。 先前之光擴散板例如於表面具有凹型四角錐形狀之光擴 散板中,為了於Ρ/Η=1·9之條件下同時實現亮度與亮度均 勻性,需要至少3片以上之具有聚光性之光學膜,但若使 用本實施形態之光擴散板,則上述光學膜以2片即可顯現 同樣之性能。藉此,可大幅削減光學膜,因此經濟性效果 顯著變大。 於本實施形態之直下型背光裝置中,作為較佳點光源, 可列舉光峰值角度為-25〜25。之直上光之光線強度較高之 148960.doc 31 201109741 點光源(例如具有朗伯出光分佈之LED光源)、或具有光峰 值角度超過25。之廣角出光分佈之LED光源、或者雷射光 源’尤佳地使用正上方之光線強度較強之例如具有光之峰 值強度為-25〜25。之出光分佈者,其中如圖9所示,具有光 之峰值角為0度、半值角為60度之朗伯式之出光分佈的點 光源(L E D光源)。 作為除上述出光分佈以外之條件,並無特別限制,例如 可列舉.利用藍色LED激發黃色螢光體之類型,或利用藍 色LED激發綠色、紅色螢光體之單晶片類型之疑似白色 led ;組合紅色/綠色/藍色LED而製作白色光之多晶片類 型,進而組合近紫外LED與紅色/綠色/藍色螢光體之單晶 片類型之疑似白色LED,進而紅色/綠色/藍色雷射之组: 等。 “形也之直下型點光源背光係於複數個點光源之配 置與設置於光擴散板表面之凸部之三角錐形狀具有特定關 係時,顯現尤其優異之亮度均勻性。 —具體而言’就亮度均勾性之觀點而t,較佳為如圖_ 二於光擴散板表面以相鄰凸部之底面三角形之—邊彼此 平行之方式而週期性地配置複數 直⑽個以,並且將複數個點 光源週期性地配置成格子肤, 總^々 切、與光擴散板處於如光 個…夕… 角心之至少-邊與構成上述複數 直之位置關係。 的四角…角線平行或垂 再者’關於上述平行之位署 位置關係’亦包含自平行偏移 148960.docThe upper limit of the refractive index A does not particularly exist, and the refractive index A 148960.doc • 21 · 201109741 is preferably 1.71 or less from the viewpoints of brightness, color unevenness characteristics, frontal redundancy uniformity, and squint brightness uniformity. Good for 1.65 or less. Further, the diffusivity s of the light diffusing plate of the present embodiment is preferably 2% or more, and more preferably 5 °/. The above is further preferably 1% or more. Further, as described below, the inclination angle θ is 55. In the case of the case, the return reflection is reduced, so the diffusivity S is preferably 5. /. More preferably, it is 1% or more. The upper limit of the diffusivity s of the light-diffusing sheet of the present embodiment is preferably 4% or less, more preferably 30% or less. When the diffusivity S of the light-diffusing sheet is in the above range, it is a light-diffusing sheet excellent in brightness, brightness uniformity (front and squint), and color unevenness characteristics. Further, regarding the diffusion rate s, when the (a) layer and the (b) layer of the light diffusion plate are the same layer, when the (a) layer and the (b) layer are continuous layers, and (a) When the layer and the layer (b) are separated layers, the surface is smoothed by a hot press or the like in a state in which the layers (a) and (b) are overlapped, and a variable angle photometer (for example, the enamel color industry) is used. The GC5000L manufactured by the company measures the brightness of the transmitted light when the light is incident at a light incident angle of 0 degrees in the transmission mode, and the above-described diffusion rate S can be obtained by the following formula. In the case where the light-diffusing sheet is formed of only the layer (a), the surface is smoothed by a hot press or the like, and then the measurement is performed in the same manner as described above, and the diffusion rate s can be obtained by the following formula. . Diffusion rate S=100x (L (20 degrees) + l (70 degrees)) / (L (5 degrees) χ 2) Here, L (5 degrees) is the brightness (four) of the transmitted light that is emitted toward the angle of 5 degrees. L (2〇) is the brightness of the transmitted light (4)/m2) which is emitted toward the angle of 2G degrees, and L (7〇) is the brightness (cd/m2) of the transmitted light which is emitted toward the angle of 70 degrees. 148960. Doc 22-201109741 When the light-diffusing sheet of the present embodiment has the configuration of FIG. 7, the material for forming the (b) diffusion layer is not particularly limited, and examples thereof include a resin composition containing a (transparent) resin and a diffusing agent. As the material of the (b) diffusion layer constituting the light-diffusing sheet, it is preferable to disperse an optimum amount of a resin having a refractive index component having a refractive index different from that of the resin in an optimum particle diameter in the transparent resin. The specific example of the resin is a polyester resin such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate or polyethylene naphthalate. And other copolymers; polyolefin resins such as polypropylene, polymethylpentene, alicyclic polyolefin; polystyrene, stupid ethylene acrylonitrile a styrene resin such as a styrene-methacrylic acid copolymer, a methyl methacrylate-styrene copolymer or an α-methylstyrene copolymer; an acrylic resin such as polymethyl methacrylate or polyethyl acrylate; Resin; thiol acrylate resin, polycarbonate resin, etc. Examples of the light diffusing agent include acrylic resin crosslinked fine particles, styrene resin crosslinked fine particles, polyfluorene-based resin crosslinked fine particles, and MS (曱) Methyl methacrylate-styrene copolymer) is a crosslinked microparticle, a fluororesin microparticle, a glass microparticle, a cerium oxide microparticle, calcium carbonate, barium sulfate, titanium oxide, aluminum oxide, talc, mica, etc., which may be used alone or The shape of the light diffusing agent may be a spherical shape, an elliptical shape, an indefinite shape, a needle shape, a plate shape, a hollow shape, a column shape, a tapered shape, or the like. As the average particle diameter of the light diffusing agent, the brightness is used. From the viewpoint of uniformity and ease of manufacture, it is preferably 1 to 2 〇 μιη, and most preferably 2 to 1 〇 μηι. The above average particle diameter 148960.doc -23-201109741 can be determined by a particle size distribution meter. Further, in the case where the light diffusing plate of the present embodiment has the configuration of Fig. 7, when the layers (a) and (b) are the same layer, the brightness and brightness uniformity (front and squint) are considered. In addition, the refractive index of the material constituting the (b) diffusion layer is such that the refractive index A′ must satisfy the above (1) and (2), but when the (4) layer and the (9) layer are continuous layers and separation layers, the (b) diffusion layer is formed. The refractive index of the material does not need to satisfy the above formulas (1), (2), and in terms of brightness uniformity and ease of manufacture, the refractive index difference between the resin constituting the layer and the light diffusing agent is preferably 0.05. ~1, more preferably 〇1〇~0.16. For example, as the light diffusing agent which is preferable for the polystyrene resin, acrylic crosslinked fine particles or polyfluorene-based crosslinked fine particles can be cited. Further, the amount of the light diffusing agent added is preferably 0.02 to 2% by mass, more preferably 0.02 to 2% by mass, based on the total of the material (for example, the resin composition) constituting the (b) diffusion layer, from the viewpoint of brightness uniformity and ease of production. For 仏 (seven) ~ 丨 quality. Further, the total light transmittance of the light-diffusing sheet of the present embodiment is preferably 83% or more, more preferably 85% or more. The upper limit of the total light transmittance Tb is preferably 95% or less. When the total light transmittance Tb is in the above range, it is a light-diffusing sheet excellent in brightness, brightness, uniformity (front and squint), and color unevenness characteristics. Further, regarding the total light transmittance D, in the case where the (4) layer and the (b) layer of the light diffusing plate are the same layer, when the (4) layer and the (8) layer are continuous layers, and in the case of the layer) In the case of the separation layer, the surface can be smoothed by a hot dust machine or the like in the state of the (4) layer and the (b) layer. 2 148960.doc -24·201109741 The above-mentioned pressed product is measured in accordance with JIS Κ71 〇5. In the case where the light diffusing plate is formed of only the layer (a), the surface of the layer (a) is smoothed by a hot press or the like, and then measured in the same manner as described above. In the light diffusing plate of the present embodiment, the convex portion has an inclination angle θ of 55. The substantially triangular pyramid shape or the like exhibits a shape of a reversion reflection characteristic, and a refraction reflection component can be reduced by adding a diffusion agent to the material forming the convex portion or providing a diffusion layer containing a diffusing agent. Specifically, the inclination angle 0 of the convex portion is 55. In the light-diffusing sheet having a substantially triangular pyramid shape, the light-diffusing sheet having an average reflectance rule of 45% or more can be obtained by reducing the complex reflection component by making the diffusivity 3 5% or more. Further, the upper limit of the diffusivity S of the light diffusing plate is preferably 4% by weight or less, more preferably 30% or less. When the diffusivity S is in the above range, the light diffusing plate is excellent in brightness, brightness uniformity (front and squint), and color unevenness characteristics. The complex reflection component may be reduced by adding a diffusing agent to the light diffusing plate in such a manner that the average tilt angle U of the light incident surface of the light diffusing plate is 1 degree or more, preferably 5 degrees or more. Alternatively, the total light transmittance Τ from the convex shape surface of the light diffusing plate to light is controlled to be 75 to 95%, more preferably 80 to 92%. (Thickness of Light-Diffusing Plate) The light-diffusing sheet of the present embodiment is preferably 0.5 to 3. 〇 mm, more preferably 〇 8 to 25 148960, from the viewpoint of rigidity and optical characteristics (brightness and brightness uniformity). Doc -25·201109741 mm 'and further preferably 1.0 to 2.0 mm. Further, when the light diffusing plate of the present embodiment has the configuration shown in Fig. 7, when the (a) layer and the (b) layer of the light diffusing plate are separated layers, the layers (a) and (b) are overlapped. The total thickness of the layer is taken as the thickness of the light diffusing plate. (Other Layers) The light diffusing plate of the present embodiment can be formed as a laminated structure in which other layers are laminated as needed, in addition to the layers (a) and (b). The layer configuration can be appropriately selected depending on the purpose and purpose. In the example of the layer configuration, in addition to the lens layer (a) layer and the diffusion layer (b) layer, if the layer containing the other resin composition or compound is the X layer 'γ layer or the Z layer, for example, the IX layer can be cited. / (a) (b) Two layers of the same layer, or X layer / (a) layer / (b) layer, (a) layer / (b) layer / X layer, (a) layer / X layer / ( b) 3 layers of layers, X layer / (a) layer / (b) layer / X layer, X layer / (a) layer / (b) layer / γ layer, χ layer / (a) layer / Y layer / (b) layer of 4 layers, and then χ layer / γ layer / (a) / (b) / Y layer, 乂 layer, (a) layer / Y layer / (b) layer / X layer, X layer / (Phantom layer / γ layer / layer) layer / z layer of 5 layers and so on. Further, a plurality of layers of the same resin composition may be continuously laminated. In addition, it is also possible to laminate five or more layers. However, in consideration of the easiness of manufacture, the vehicle owner preferably forms a light diffusing plate of five or less layers. (Additive) Various additives may be blended in the light-diffusing sheet of the present embodiment. As such an additive, for example, an organic or inorganic dye or pigment, a matting agent, a heat stabilizer, a flame retardant, an antistatic agent, an antifoaming agent, a 148960.doc -26-201109741 colorant, an antioxidant, Ultraviolet absorber, crystal nucleating agent, whitening agent, trapping agent for impurities, thickener, surface conditioning material, and the like. (Other configuration examples of the light diffusing plate) The light diffusing plate t of the present invention is preferably formed with the above-described substantially triangular pyramid shape from the viewpoint of brightness uniformity and friction with the indicating pin in An Mengguang. The surface of the convex portion is the surface on the opposite side, that is, the surface of the disk and the surface of the human light surface (the surface on the light source side) in the preferred aspect of use. Λ Specifically, in terms of the game room; 5&amp; and the uniformity of the child's degree, the average tilt angle of the lighter surface is called ~3. . More preferably 3 to 25. , = 5~20. . The average tilt angle U of the instrument into the light surface is less than 1. For example, if the inclination angle of P on the light-emitting surface side is 55 degrees, the light diffusing plate exhibits a return-reflecting characteristic, and the light emitted from the point light source returns to the point light source, and the brightness of the backlight is lowered. Also, if the average tilt angle exceeds 3 inches. However, there is a tendency that the uniformity of brightness is deteriorated. The above average tilt (four) can be obtained by observing the cross section of the diffuser plate by a laser microscope, and is '100 μηηι Width in the longitudinal direction and the short side direction of the diffuser plate; The average tilt angle of the width of 1 μπι (the tilt angle with respect to the horizontal plane of the light diffusing plate) is calculated, and the average value of the longitudinal direction and the average value of the short side direction are calculated to calculate the average. In the case where the light diffusing plate of the present embodiment has the configuration shown in Fig. 7, when the (4) layer and the _ are separated layers, it is preferable that the (4) layer and the (8) layer have the average tilt angle of the light incident side. For the above range. 148960.doc -27-201109741 [Manufacturing Method of Light-Diffusing Plate] The light-diffusing sheet of the present embodiment can be produced by forming a convex portion by a known method and using a known method for the material constituting each layer of the light-diffusing sheet. For example, a resin molding composition containing a resin having a high light transmittance is extruded from a metal port in a molten state, and a melt molding method is used to form a resin formed into a desired shape; and the resin composition is dissolved in the resin composition. a solution casting method for extruding from a metal port in a solvent, forming a roll formed into a desired shape; and extruding a molten resin on a solid film obtained by surface forming by a solution casting method a lamination method or a dry lamination method of laminated solid films; a stamper formed into a desired shape, &amp; a method of hot press forming a sheet extruded from a metal port in a molten state; and further, processing A method of performing injection molding of a mold having a desired shape. Among these, the melt forming method is an optimum forming method from the viewpoint of productivity and environmental suitability. [Direct-type point light source backlight device] The backlight device of the present embodiment has a point light source chassis in which a plurality of point light sources (LEDs) are disposed, a diffusive reflection sheet (diffusion reflector), and the present embodiment, as shown in FIG. The form of light diffusing plate is configured in sequence. In the direct-type point light source backlight device of the present embodiment, the light diffusing plate is disposed above the point light source, and the bottom surface is formed in a triangular shape on a side opposite to a surface side facing the point light source. A convex portion of a generally triangular pyramid shape. In the direct-type point light source backlight device of the present embodiment, as the diffusive reflective sheet (diffusing reflective sheet in Fig. 8), white having a diffuse reflectance of 148960.doc • 28 - 201109741 9 〇 / 〇 or more is preferably used. Resin thin #, more preferably 95% or more of white resin sheet. The diffuse reflectance can be obtained by using a spectrophotometer such as a spectrophotometer uv_22〇〇 manufactured by Shimadzu Corporation, and the incident wavelength of the sheet is 45 〇 nm to 7 〇〇 nm at an incident angle 〇°. The reflectance at the time of light was measured every 10 nm, and the average reflectance was calculated. In the direct-type point light source backlight device of the present embodiment, the point light source is preferably an LED light source having a light peak angle of -25° to 25° from the viewpoint of brightness and brightness uniformity. As the point light source, for example, a led light source having a Lambertian light distribution can be cited. The light diffusing plate of this embodiment has a light peak angle of more than 25. The point source of the wide-angle light distribution provides excellent brightness uniformity. The light diffusing plate of the present embodiment is for _25. ~25. The incident light has a remarkable excellent diffuse reflection property, and thus has an optical peak angle of more than 25. Compared with the point light source of the wide-angle light distribution, the light peak angle of the light having a strong intensity directly above the light source is _25. ~25. The combination of point light sources achieves particularly excellent brightness and brightness uniformity. Further, the diffusive reflective sheet (diffusing reflector) diffuses and reflects the light diffused and reflected by the light diffusing plate toward the light diffusing plate side, thereby making the light diffusing plate and the diffusing reflective sheet (diffusing reflecting sheet) The light is uniformized, and as the light, the brightness uniformity of the front side and the squint can be maintained, and the color unevenness characteristic is excellent. Also, the light peak angle I48960.doc •29-201109741 is _25 compared to a point source having a wide-angle light distribution. A light source of ~25° (for example, an LED light source) has a high conversion efficiency to light energy and a high luminance of an average current. Therefore, if the light diffusion plate of the present embodiment is used for such a point light source, it can be maintained. In the state of higher brightness, brightness uniformity and color unevenness characteristics are improved. As described above, the light diffusing plate of the present embodiment has the diffuse reflection performance that diffuses and reflects the light from the point light source and the light collecting performance between the light sources at a wide range of angles, which cannot be simultaneously achieved by the previous light diffusing plate. By setting the peak angle of the point source, especially the light, to _25. ~25. The light of the straight illuminating light is combined with the diffusing reflective sheet to achieve a direct-type point source backlight with excellent brightness. In the direct type point light source # weaving of this embodiment, the angle of the light peak used is _25 to 25. When the LED light source is used as a point light source, as shown in FIG. 8 'When the average distance between the uppermost portion of the point light source and the light diffusing plate is h, and the average distance between adjacent point light sources is p, it is preferable. 2.5. ~ Here, the average distance H between the uppermost part of the point source and the light diffusing plate is measured by the distance between the upper part of the source and the light diffusing plate. The unit is mm) and its average value is taken. Moreover, the average distance p of the adjacent point light sources (the unit is the surface area of the screen area of the backlight (in units of _) divided by the number of point sources, and the screen area of the moonlight," It refers to the area of the screen (the part of the image) that is displayed by using the backlight. The form of the image is straight down to the north of the road. #m 直^^ The point source backlight device, the brightness, the front 148960. Doc -30-201109741 and it is preferable that the light-emitting surface side of the light-diffusing sheet of the present embodiment further includes an optical film having a condensing property from the viewpoint of brightness uniformity. The optical film refers to a film having a function of elevating light incident on the film toward the film in the upward direction of the film, and is preferably a variable angle photometer when the sheet is incident on a monochromatic light of 550 nm at an incident angle of 60 degrees (for example). The film having a main peak angle of 50 degrees or less of the light distribution measured by GC5000L manufactured by Sakamoto Denshoku Industries Co., Ltd. is preferably a film having a main peak angle of 35 to 45 degrees. For example, a commercially available rib Lenses, diffusion sheets, lens sheets, etc. especially More preferably, the following arrangement pattern is used: the main peak angle of the light distribution measured by the variable angle photometer when two pieces of 55 〇 11111 monochromatic light are incident at an incident angle of 60 degrees on the side of the light source surface of the light diffusing plate are a pattern of an optical film of 35 degrees to 45 degrees; or a light distribution measured by a variable angle photometer when the cymbal is incident on the opposite side of the light diffusing plate at an incident angle of 60 degrees. An optical film having a main peak angle of 35 to 45 degrees, and further having an arrangement pattern of the cymbal thereon. The prior light diffusion plate is, for example, a light diffusion plate having a concave quadrangular pyramid shape on the surface, for Ρ/Η = At least 9 or more optical films having condensing properties are required to achieve brightness and brightness uniformity under the conditions of 1.9. However, when the light diffusing plate of the present embodiment is used, the optical film can be similar in two pieces. The performance of the optical film is greatly reduced, and the economical effect is remarkably increased. In the direct type backlight device of the present embodiment, the light source angle is preferably -25 to 25 as a preferred point light source. High light intensity 148960.doc 31 201109741 Point light source (for example, LED light source with Lambertian light distribution), or LED light source with a wide-angle light distribution with a light peak angle of more than 25. The laser light source of the wide-angle light distribution is particularly preferably used directly above the light intensity Stronger, for example, has a peak intensity of light of -25 to 25. The light distribution is as shown in FIG. 9 , and has a Lambertian light distribution with a peak angle of light of 0 degrees and a half value angle of 60 degrees. The point light source (LED light source) is not particularly limited as a condition other than the light distribution described above, and for example, the type of the yellow phosphor is excited by the blue LED, or the green and red phosphors are excited by the blue LED. A single-wafer type of suspected white LED; a combination of red/green/blue LEDs to produce a white light multi-chip type, which in turn combines a suspected white LED of a single-wafer type of near-ultraviolet LED and red/green/blue phosphor, Red/green/blue laser group: etc. "The shape of the direct-type point source backlight is particularly excellent in brightness uniformity when the arrangement of the plurality of point sources is in a specific relationship with the triangular pyramid shape of the convex portion provided on the surface of the light diffusion plate. - Specifically From the viewpoint of brightness uniformity, t is preferably such that the surface of the light diffusing plate is periodically arranged in parallel with each other in a manner in which the sides of the adjacent convex portions are parallel to each other, and the plurality is straight (10) The point light sources are periodically arranged into a lattice skin, and the total light is cut and the light diffusing plate is in the same light... The at least one side of the angular center is in a positional relationship with the above-mentioned complex straight lines. The four corners are parallel or perpendicular to each other. The 'about the parallel position relationship' also includes the self-parallel offset 148960.doc

•32· 201109741 士2。以内,關於上述垂直之位置關係,亦包含自垂直 土 20以内。 此處所謂格子,係指以相鄰之四角形之邊與頂點一致之 方式而以四角形填滿平面時之四角形之各頂點之配置。 四角形例如可列舉正方形、長方形、平行四邊形等。 就亮度均勾性、色不均特性之觀點而言,尤佳為點光源 與光擴散板處於光擴散板之各凸部之底面三角形之至少一 邊、與構成上述複數個點光源之格子狀配置之格子的四角 形之對角線中之較短的對角線垂直之位置_ β 又,如圖11所示’於光擴散板之凸部即三角錐之底面三 角形為等腰三角形的情形時’就亮度均勾性之觀點而言更 佳為’上述凸部之底面等腰三角形之底邊與構成點光源之 格子狀配置之格子的四角形之對角線處於平行或垂直之位 置關係’進而較佳為構成上述格子狀配置之格子之四角形 為以等腰三角形之底邊相對之方式而排列的菱形形狀。 關於上述平行之位置關係,亦包含自平行偏移土2。以 内,關於上述垂吉夕々r @ Μ衫 置關係’亦包含自垂直偏移±2。以 内0 就亮度均勻性、$ π 句特性之觀點而言’尤佳為上述凸 之底面等腰二角形之底邊與構成點光源之格子狀配置之 格子的四角形之斟备娩击 係。 線中較短之對角線處於垂直的位置關 進而於擴散板凸部三角錐之底面三角形為正三角形之 ❹時’就亮度均勻性之觀點而言進而較佳為,上述凸部 148960.doc 33- 201109741 底面正三角形之一邊與構成點光源之格子狀配置之格子的 四角形之對角線處於平行或垂直之位置關係,如圖】2所 示’進而較佳為構成上述格子狀配置之格子之四角形為以 正二角形之底面相對之方式而排列的菱形形狀。 關於上述平行之位置關係,亦包含自平行偏移土2。以 内,關於上述垂直之位置關係…亦包含自垂直偏移±2。以 内0 ^斤尤允度均勾性、色不均特性之觀點而言,尤佳為上述凸 部底面正三角形之_•邊與構成點光源之格子狀配置之格子 的四角形之對角線中較短之對角線處於垂直的位置關係。 構成本實施形態之直下型點光源背光裳置之點光源較佳 為儘可能均勻地配置各點光源間距。 具體而言’可較佳地採用:將點光源於晝面之、即光擴 散板之縱向與橫向上分別等間隔地配置成正方格子或長方 格子狀的排列方法(圖13,構成格子之 :方Μ,或者將點光源於晝面縱向與橫向上分 地配置成鋸齒(格子)狀(=角槐 ^ 心m 狀)之排列方法等(圖Η, 構成格子之四角形:菱形形狀)。 尤其,就提高亮度均句性之觀點而言更佳為, 配置成鑛ω狀如圖14所示,當將配置成 斤 之背光(光擴散板)之橫向及縱向的光_距u 1 時,nl/n2較佳為〇 26〜3 87 .....η2 為0.46〜0.75或1.33〜2 進而較佳 [用途] 2_18最佳為一。 148960.doc 34· 201109741 合光擴散板係於其表面(較佳為與光源組 為出光面之側)具有複數個大致三角錐形狀之 二部,藉此於用作直下型點光源背光用之 : 時,表現亮度提高及亮度均句性之提高'特別是正面= ::視方向之亮度均勻性之提高效果。因此, 之直下型點光源背光’可達成先前技術中無法達成之點^ 源個數之削減、光學膜之削減以及背光之薄化 地用於包含直下型點光源背光裝置之液晶τν⑽一, ==照明裝置、或者廣告料數位看板。 以下’列舉具體之實施例及卜 1J汉比季父例加以說明,但本發明 並不限定於該等。 實施例中之主要之測定值係利用以下方法進行測定。 (1 ·光擴散板之出光面形狀) &lt;1-1表面形狀&gt; 利用Keyence製k之雷射顯微鏡Generati〇nII νκ·97〇〇對 光擴散板之出光面側進行觀察,而觀察凸部之形狀。 &lt;1 -2 b、c、d、呂值 &gt; 關於b、c、d、g值,對於在通過凸部或凹部多角錐形狀 之凸。卩頂點(或凹部底點)且與底面三角形之一邊垂直之平 面切斷的剖面,與上述〈丨-^同樣地進行觀察,而觀察其 形狀》 b、c及d係例如圖5所示分別為,於在通過以下〗點、】點 及6部頂點(於凸部為三角錐台形狀之情形時,為頂部三 I48960.doc •35- 201109741 角形之重心)3點之平面切斷上述凸部時出現之切斷面中, 將凸部之一側面之切平面與底面所成之角θ,滿足以下式〇,) 及(2 )之部分Β投影至水平面之投影線段的長度&amp;值”將 位於較B更凸部之底部側之部分⑽影至水平面之投影線 段的長度(c值);及將位於較B更頂部側之部分〇投影至水 平面之投影線段的長度(d值)。 (1') . · · ΘΊ40Α〇 + 115·2ο I點.將凸部之頂點(於ΑΑ μ , 1凸°Ρ為二角錐台形狀之情形時,為 頂部三角形之重心)垂直投影至底面三角形之點。 J點:自上述m,對於構成底面三角形之邊中之與上述⑽ 之距離最近的邊繪製垂線時之該垂線與該邊之交點。 g值係例如圖23(A)、⑻所示,於在與底面三角形垂直之 平面且通過以下I,點、了,科 切斷而的由切斷上述凸部時出現之 切斷面的、中心至&amp;冬Γ 點之早側部分中,將上述凸 -側面之㈣中之位於較該㈣與底面所成之角θ,滿足⑺ :之:分更頂部側的部分投影至水平面之投影線段之 8二 在複數個滿足上述條件之切斷面之情妒 時,採用g之值最大之切斷面。 卸之障形 峨情形‘ 面三角形之頂點t:二直近:::底面三角形之點、與底 連結之線段之中點。 又減之底面三角形的頂點 J'點:自上述I·點 對於構成底面三角形之邊 中之與上述Γ l4S960.doc •36- 201109741 點之距離最近的邊繪製垂線時之該垂線與該邊之交點。 〈卜3凸部(凹部)之側面相對於底面(開口面)之傾斜角Θ(度)&gt; 與上述&lt;1-2&gt;同樣地進行光擴散板出光面之剖面觀察, 測定側面與底面所成之傾斜角(Θ)。 &lt;1-4凸部之底面三角形之一邊與構成點光源之格子狀配 置之格子的四角形之對角線所成之角F值(度)&gt; 與上述&lt; 1 - 1 &gt;同樣地,觀察光擴散板之出光面側之凸部 之三角錐形狀,如圖15所示,將構成光源之格子狀配置之 格子的四角形之對角線中之較短的對角線、與凸部底面三 角形之一邊所成之角度中之最小的角度設為F值(度)。 &lt;1-5凸部之底面三角形之内角(α、β、γ)&gt; 與上述&lt;1-1&gt;同樣地,以雷射顯微鏡觀察光擴散板之出 光面侧,如圖6所示’求出凸部之底面三角形之内角α、 β、γ 〇 (2·折射率a) (a)使用用於透鏡層之材料中之透明者(透明樹脂),製作 0.3 mm厚之薄片’依據;18 K7142,使用阿貝折射計而求 出折射率Α。 (3_平均反射率R(〇/〇)) 使用島津製作所公司製造iUV3i5〇分光光度計,自光 擴散板之人光面側,以自相對於光擴散板水平面之垂線傾 斜7度之入射角度入射波長45〇〜75〇⑽之光,針對每波長1 长出反射率’將其平均值設為平均反射率R(%)。 平均反射率R(%)係將作為標準板之硫酸鎖之平均 I48960.doc -37· 201109741 反射率設為麵’以其相對值而求出 (4_全光線透射率) &lt;4-1.光擴散板之全光線透射率几(%)&gt; 曰本電色工業公司製造之濁度計 K7105之方法測定全光線透射率 關於光擴散板,使用 NDH2000 ’利用依據JIS Tb。 再者於上述光擴散板之⑷透鏡層與⑻擴散層為同— 層之情形時、於⑷層與(b)層為連續層之情形時、及於⑷ 層與(b)層為分離層之情形時,於重疊⑷層與⑻層之狀態 下利用熱壓機等使表面平滑之後,進行上述壓製成形品之 測定。 於自出光面側入射光之情形時之全光線透射率丁(%)&gt; 使用日本電色工業公司製造之濁度計,利用依 據J1S K 71 〇 5之方法而求出於自光擴散板之出光面側入射 光之情形時之全光線透射率τ(%)。 再者,當(a)透鏡層與(b)擴散層為分離層時,將重疊q) 層與(b)層以使⑷層之形成有凸部之側朝向外側,自⑷層 之透鏡側入射光而求出的數值設為全光線透射率τ(%)。 (5.擴散率S(%)) 使用日本電色工業公司製造之GC5〇〇〇L變角光度計進 行於透射模式下以光入射角〇度入射之光的透射光之亮度 之測定,利用下述式而求出光擴散板之擴散率s。 再者,於上述光擴散板之(a)透鏡層與(b)擴散層為同一 層之情形時、於(a)層與(b)層為連續層之情形時、及於 148960.doc -38- 201109741 層與(b)層為分離層之情形時,在重疊層與(^層之狀態 下利用熱壓機等使表面平滑之後,進行上述壓製成形品之 測定。 擴散率 S = 100x(L(20度)+L(7〇度))/(L(5度)x2) 此處, . L(5度)表示朝向5度之角度出光之透射光亮度(cd/m2), L(20度)表示朝向20度之角度出光之透射光亮度(cd/m2), L(70度)表示朝向70度之角度出光之透射光亮度(cd/m2)。 (6.擴散板入光面凸凹部之平均傾斜角u(度)) 利用雷射顯微鏡觀察光擴散板之入光面,於擴散板之長 度方向與短邊方向上以1000 μιη寬度分析剖面形狀以 1000 μπι寬度連續求出i μιη寬度之平均傾斜角(相對於水平 面之傾斜角),計算出各長度方向之平均傾斜角與短邊方 向之平均傾斜角,進而算出其平均值,設為平均傾斜角 U。 (7.平均LED間隔Ρ) 將使用LED光源背光進行顯示之螢幕面積除以所 安裝之LED之數量,將該值之平方根設為平均led間隔 P(mm)。 • (8. 最上部與光擴散板之平均距離η) 對於所安裝之所有LED,測量LED光源背光中所安裝之 LED之最上部與光擴散板之間的距離(mm),將其平均值設 為LED最上部與光擴散板之平均距離η。 (9.平均亮度) 148960.doc 39· 201109741 於LED光源背光中配置光擴散板及特定光學膜,使LED 點亮,使用Cybernet公司之Prometric測定亮度及色差。 再者,將相機配置於距LED光源背光之中心正上方1米 之位置而進行測定。 實施例、比較例中所使用之LED光源背光之晝面部尺寸 為 306 mm&gt;&lt;306 mm、340 mm&gt;&lt;340 mm、或者 400 mm&gt;&lt;400 mm,亮度測定部位為上述畫面部之中心部200 mmx200 mm部分,且以縱橫300x300解像度測定亮度。 將以上述方式而測定之党度之平均值設為平均梵度。 (10.亮度均勻性) &lt;10-1.亮度不均(正面)&gt; 使用上述(9.平均亮度)中測定之上述200 mm&gt;&lt;200 mm部 分之亮度資料,計算出亮度不均。 具體而言,如圖22所示,對於LED背光之通過LED正上 方之螢幕縱線上el、e2、e3(最接近螢幕中心之3條線上)、 及螢幕橫線上Π、f2、f3(最接近螢幕中心之3條線上)之亮 度資料,分別求出各線之亮度比(亮度/亮度之移動平均值) 之標準偏差,將所求出之標準偏差值之平均值設為亮度不 均。 測定點為縱157χ橫157之24649點。 此處,所謂移動平均值,係指特定區間之平均值,具體 而言,係指連結相鄰LED之線上之平均亮度。 例如,於將上述通過LED正上方之e 1上之亮度之資料設 為A、B、C、D、E、F、G、H、I、J、K、L、M、N之情 148960.doc -40- 201109741 形時’ LED正上方之亮度資料為a、e、i、n。 於該it形時’於c點之移動平均值為A〜E(相鄰LED所存 在之間隔)之亮度平均值Cav,於D點之移動平均值為B〜F 之平均值Dav。 根據上述要點求出於各點之移動平均。 ”-人,求出於各點之亮度比(亮度/亮度之移動平均值), 例如 C/Cav、R/R ca^ -r- X- B/Bav、...,進而求出上述亮度比之標準偏 差。 以上述方式求出之標準偏差為關於el上亮度資料之亮度 比之標準偏差。 &amp; 根據以上之要點,對於其他e2、e3、η、乜、〇亦同樣 地求出標準偏差,最後計算出上述求出之標準偏差之平均 值,設為正面之亮度不均值。 &lt;10-2.允度不均(斜視)&gt; ;自者光之中心離開正上方1米、橫向1米之位置,使相 機朝向背光之方向傾斜45度,使用Pr〇metHc測定亮度分 佈。 j與上述&lt;9-1&gt;相同之方法算出亮度不均值,設為斜視 之1^度不均值。 再者’亮度不均之評價依據以下之基準。 &lt;亮度不均評價&gt; ◎:亮度不均值$〇.0035 —以目測完全未觀察到亮度不均之級別 ◦ · 〇_〇036$亮度不均值$〇 〇〇49 148960.doc -41 · 201109741 —以目測稍微觀察到亮度不均之級別 X : 0.0050S亮度不均值 〜以目測觀察到亮度不均之級別 (11 ·色不均) 使用上述(9·平均亮度)中測定之上述200 mm&gt;&lt;200 mm部 分之色差資料,計算出色不均(最大色差)。 測定點為將上述2〇〇 mmX2〇〇 mm分割157x 157之共24649 點。 具體而s ’所謂色差資料,係指自圖22中所圖示之色不 均基準點起的上述2〇〇 mmx2〇〇 mm範圍中的以下述式所表 示之色差資料。 上述色差資料中將最大色差值作為最大色差。 色不均=((、-1^叫))2,,丨』&lt;利))2广 u'i,j、ν' : 24649點之各色度 U'ref(i,j)、V’refm :基準點(畫面中心(座標(〇,〇))之色度 &lt;色不均評價&gt; ◎:色不均值S 0.0035 —以目測完全未觀察到色不均之級別 〇 : 0.0036 $ 色不均值 $ 〇 0049 —以目測稍微觀察到色不均之級別 X : 0.0050$色不均值 —以目測觀察到色不均之級別 其次’對製造實施例、比較例中之光擴散板時所使用之 壓製原板之製造方法加以說明。 148960.doc -42· 201109741 下述之壓製原板係如下述之實施例、比較例所記載般, 藉由進行熱壓處理而加工成光擴散板。 (1.壓製原板1) 利用亨舍爾混合機,將折射率1.59之聚苯乙烯樹脂(PS Japan公司製造,Styron G9504)99.97質量份、與平均粒徑5 μιη之丙烯酸系交聯粒子(積水化成品工業公司製造, Techpolymer ΜΒΧ-5)0.3質量份混合,以雙轴擠出機(東芝 機械公司製造之ΤΕΜ-58)於樹脂溫度230°C之條件下進行熔 融混練而加以造粒。 以TEX-90單軸擠出機再次熔融混練上述顆粒,自1 000 mm寬度之T模中擠出,而製作1.5 mm厚之薄片。 (2.壓製原板2) 利用亨舍爾混合機,將折射率1.59之聚苯乙烯樹脂(PS Japan公司製造,Styron G9504)99.95質量份、與平均粒徑5 μιη之丙烯酸系交聯粒子(積水化成品工業公司製造, Techpolymer ΜΒΧ-5)0·5質量份混合,以雙軸擠出機(東芝 機械公司製造ΤΕΜ-5 8)於樹脂溫度23 0°C之條件下進行熔融 混練而加以造粒。 以TEX-90單軸擠出機再次熔融混練上述顆粒,自1000 mm寬度之T模中擠出,而製作1.5 mm厚之薄片。 (3.壓製原板3) 利用亨舍爾混合機,將折射率1.59之聚苯乙烯樹脂(PS Japan公司製造,Styron G95〇4)99.92質量份、與平均粒徑5 μιη之丙烯酸系交聯粒子(積水化成品工業公司製造, 148960.doc •43- 201109741•32·201109741 士2. Within the above, the vertical positional relationship is also included from the vertical soil 20. The term "lattice" as used herein refers to the arrangement of the vertices of the square shape when the plane of the adjacent quadrilateral is coincident with the apex and the plane is filled in a square shape. Examples of the square shape include a square, a rectangle, a parallelogram, and the like. From the viewpoint of brightness uniformity and color unevenness characteristics, it is particularly preferable that the point light source and the light diffusing plate are at least one side of the bottom surface triangle of each convex portion of the light diffusing plate, and a lattice arrangement constituting the plurality of point light sources. The position of the shorter diagonal of the diagonal of the square of the square _β, as shown in Fig. 11, 'in the case where the convex portion of the light diffusing plate, that is, the triangular face of the triangular pyramid is an isosceles triangle' From the viewpoint of the brightness uniformity, it is more preferable that the bottom edge of the isosceles triangle of the convex portion and the diagonal line of the square of the lattice of the lattice arrangement of the point light source are in a parallel or perpendicular positional relationship. Preferably, the square shape of the lattice constituting the lattice-like arrangement is a rhombic shape in which the bottom edges of the isosceles triangles are arranged to face each other. Regarding the above parallel positional relationship, the self-parallel offset soil 2 is also included. Within the above, the relationship between the above-mentioned 吉吉々々r @Μ衣Μ' also includes a vertical offset of ±2. From the viewpoint of the uniformity of luminance and the characteristics of the π sentence, it is preferable that the base of the base of the convex base and the base of the lattice of the point light source are arranged in a square shape. The shorter diagonal line of the line is in a vertical position and is further closed when the triangle of the triangular pyramid of the diffuser plate is an equilateral triangle. It is further preferred from the viewpoint of brightness uniformity, the above-mentioned convex portion 148960.doc 33-201109741 One side of the regular triangle of the bottom surface and the diagonal line of the square of the lattice of the grid-like arrangement of the point source are in a parallel or perpendicular position relationship, as shown in FIG. 2, and further preferably constitute a grid of the above-mentioned lattice configuration. The square shape is a rhombic shape in which the bottom faces of the regular squares are opposed to each other. Regarding the above parallel positional relationship, the self-parallel offset soil 2 is also included. Within the above, the positional relationship of the above vertical direction also includes a shift of ±2 from the vertical. From the viewpoint of the uniformity of the 0 cm and the color unevenness, it is particularly preferable that the _• side of the convex triangle on the bottom surface of the convex portion and the diagonal of the square of the lattice which constitutes the lattice arrangement of the point light source are The shorter diagonal is in a vertical positional relationship. It is preferable that the point light sources constituting the backlight of the direct type point light source of the present embodiment are arranged such that the distances of the respective point light sources are arranged as uniformly as possible. Specifically, it is preferable to adopt a method of arranging a point light source on a kneading surface, that is, a longitudinal square and a lateral direction of the light diffusion plate at equal intervals, in a square lattice or a rectangular lattice shape (FIG. 13, which constitutes a lattice) : Fang Fang, or a method in which the point light source is arranged in a zigzag (lattice) shape in the longitudinal direction and the lateral direction of the kneading surface (Fig. Η, the square shape of the lattice: the rhombic shape). In particular, it is more preferable from the viewpoint of improving the brightness uniformity, and the arrangement of the ore-like shape is as shown in FIG. 14, when the horizontal and vertical light of the backlight (light diffusing plate) disposed in a jin is arranged as u 1 , nl / n2 is preferably 〇 26~3 87 ..... η2 is 0.46~0.75 or 1.33~2 and further preferably [use] 2_18 is best one. 148960.doc 34· 201109741 The light diffusing plate is tied to The surface (preferably the side opposite to the light source side of the light source group) has two portions of a plurality of substantially triangular pyramid shapes, thereby being used for backlighting of a direct type point source: when the brightness is increased and the brightness is uniform. Improve the effect of 'especially positive = :: brightness uniformity in the direction of view. Therefore, The direct-type point source backlight can achieve the point that the prior art cannot achieve the reduction of the number of sources, the reduction of the optical film, and the thinning of the backlight for the liquid crystal τν (10) including the direct-type point source backlight device, == illuminating device The advertisements are digitally kanban. The following is a description of specific examples and examples of the fathers of the Hanbi season. However, the present invention is not limited to these. The main measurement values in the examples were measured by the following methods. (1. Shape of the light-emitting surface of the light-diffusing sheet) &lt;1-1 Surface shape&gt; The light-emitting surface side of the light-diffusing sheet was observed by a laser microscope of Gener's k-Generati〇nII νκ·97〇〇, and the convex surface was observed. The shape of the part. &lt;1 -2 b, c, d, LV value&gt; Regarding the values of b, c, d, and g, for the convex shape of the convex pyramid or the concave portion, the apex (or the bottom point of the concave portion) A section cut along a plane perpendicular to one side of the bottom triangle is observed in the same manner as the above-mentioned <丨-^, and the shape is observed. b, c, and d are respectively shown in Fig. 5, and are passed through the following points. ,] point and 6 vertices (in the convex part) In the case of the shape of the triangular frustum, the top surface of the convex portion is cut and the bottom surface of the convex portion is cut into the cut surface where the convex portion is cut at the plane of the three points of the top three I48960.doc •35-201109741 The angle θ formed, which satisfies the following formulas 〇,) and (2), the length & value of the projection line segment projected onto the horizontal plane will be located on the bottom side of the convex portion B (10) to the projection line of the horizontal plane The length (c value); and the length (d value) of the projection line segment that projects the portion 〇 located on the top side of B to the horizontal plane. (1') . · · ΘΊ40Α〇+ 115·2ο I point. The apex (in the case of ΑΑ μ , 1 convex ° Ρ is the shape of the truncated cone shape, the center of gravity of the top triangle) is vertically projected to the point of the bottom triangle. Point J: From the above m, the intersection of the perpendicular line and the side when the perpendicular line is drawn from the side closest to the above (10) among the sides of the bottom triangle. For example, as shown in Fig. 23 (A) and (8), the g-values are formed on the plane perpendicular to the bottom triangle and are cut by the following I, point, and cut. In the early side portion of the center to the & winter Γ point, the angle θ formed by the above-mentioned convex-side (4) is located at an angle θ with respect to the (four) and the bottom surface, and satisfies (7): the projection of the portion on the top side to the horizontal plane When the plurality of segments of the line segment 8 are in a plurality of cut surfaces satisfying the above conditions, the cut surface having the largest value of g is used. Unloading Obstacle 峨 Case ′ The apex of the face triangle t: two straight::: the point of the bottom triangle, the point in the line connecting the bottom. And subtracting the vertex J' point of the bottom triangle: the vertical line and the side when the vertical line is drawn from the edge of the edge of the bottom triangle which is the closest to the point of the above Γ l4S960.doc • 36-201109741 Intersection. (the inclination angle Θ (degree) of the side surface of the convex portion (concave portion) with respect to the bottom surface (opening surface) &gt; The cross-sectional observation of the light-emitting surface of the light-diffusing sheet is performed in the same manner as in the above &lt;1-2&gt;, and the side surface and the bottom surface are measured. The resulting tilt angle (Θ). &lt; 1-4 The angle F (degree) formed by one side of the bottom face triangle of the convex portion and the diagonal of the square lattice constituting the lattice of the point light source&gt; is the same as the above &lt;1 - 1 &gt; Observing the triangular pyramid shape of the convex portion on the light-emitting surface side of the light-diffusing sheet, as shown in FIG. 15, the shorter diagonal line and the convex portion among the diagonals of the square shape constituting the lattice-arranged lattice of the light source The smallest angle among the angles formed by one side of the bottom triangle is set to the F value (degrees). &lt;1-5 Internal angle of the bottom triangle of the convex portion (α, β, γ)&gt; Similarly to the above &lt;1-1&gt;, the light-emitting surface side of the light-diffusing sheet was observed by a laser microscope, as shown in Fig. 6 'Evaluate the internal angles α, β, γ 〇 (2·refractive index a) of the bottom triangle of the convex portion. (a) Use a transparent (transparent resin) in the material for the lens layer to make a sheet of 0.3 mm thick. 18 K7142, using the Abbe refractometer to find the refractive index Α. (3_Average reflectance R(〇/〇)) The iUV3i5〇 spectrophotometer manufactured by Shimadzu Corporation was used, and the incident angle of the self-light diffusing plate was inclined by 7 degrees from the vertical line with respect to the horizontal plane of the light diffusing plate. The light having an incident wavelength of 45 〇 to 75 〇 (10) has a reflectance for each wavelength 1 'the average value is set to an average reflectance R (%). The average reflectance R (%) is obtained as the average value of the sulfuric acid lock of the standard plate I48960.doc -37·201109741 The reflectance is determined as the surface 'with the relative value (4_total light transmittance) &lt;4-1 .The total light transmittance of the light diffusing plate is several (%)&gt; The method of measuring the total light transmittance of the turbidity meter K7105 manufactured by Sakamoto Denshoku Industries Co., Ltd. regarding the light diffusing plate using NDH2000' is based on JIS Tb. Further, when the (4) lens layer and the (8) diffusion layer of the light diffusion plate are the same layer, when the (4) layer and the (b) layer are continuous layers, and the (4) layer and the (b) layer are separated layers, In the case of the layer (4) layer and the (8) layer, the surface of the press-molded article is measured by smoothing the surface by a hot press or the like. The total light transmittance (%) in the case of incident light from the light-emitting side is determined by a method using J1S K 71 〇5 using a turbidimeter manufactured by Nippon Denshoku Industries Co., Ltd. The total light transmittance τ (%) in the case where the light is incident on the light side. Further, when the (a) lens layer and the (b) diffusion layer are separate layers, the q) layer and the (b) layer are overlapped so that the side of the (4) layer in which the convex portion is formed faces outward, from the lens side of the (4) layer. The value obtained by the incident light is the total light transmittance τ (%). (5. Diffusion rate S (%)) Measurement of the brightness of transmitted light of light incident at a light incident angle in a transmission mode using a GC5〇〇〇L variable angle photometer manufactured by Nippon Denshoku Industries Co., Ltd. The diffusivity s of the light diffusing plate was obtained by the following formula. Furthermore, in the case where the (a) lens layer and the (b) diffusion layer of the light diffusion plate are the same layer, when the (a) layer and the (b) layer are continuous layers, and 148960.doc - 38-201109741 When the layer and the layer (b) are separated layers, the surface of the press-formed product is measured after the surface is smoothed by a hot press or the like in the state of the layer and the layer. The diffusion rate is S = 100x ( L (20 degrees) + L (7 degrees)) / (L (5 degrees) x 2) Here, . L (5 degrees) represents the transmitted light brightness (cd/m2) of the light emitted toward the angle of 5 degrees, L ( 20 degrees) indicates the transmitted light brightness (cd/m2) of the light emitted toward the angle of 20 degrees, and L (70 degrees) indicates the transmitted light brightness (cd/m2) of the light emitted toward the angle of 70 degrees. (6. The average tilt angle u (degrees) of the convex and concave portions) The light incident surface of the light diffusing plate was observed by a laser microscope, and the cross-sectional shape was analyzed at a width of 1000 μm in the longitudinal direction and the short-side direction of the diffusing plate to obtain a continuous width of 1000 μπι. The average tilt angle of the μιη width (inclination angle with respect to the horizontal plane), the average tilt angle of each length direction and the average tilt angle of the short side direction are calculated. Then calculate the average value and set the average tilt angle U. (7. Average LED interval Ρ) Divide the screen area of the display using the LED light source backlight by the number of installed LEDs, and set the square root of the value to the average LED interval. P(mm). (8. Average distance η between the uppermost part and the light diffusing plate) For all LEDs installed, measure the distance between the uppermost part of the LED installed in the backlight of the LED light source and the light diffusing plate (mm) The average value is set to the average distance η between the uppermost part of the LED and the light diffusing plate. (9. Average brightness) 148960.doc 39·201109741 A light diffusing plate and a specific optical film are arranged in the backlight of the LED light source to light the LED. The brightness and chromatic aberration were measured using Prometric of Cybernet Inc. Further, the camera was placed at a position 1 m above the center of the backlight of the LED light source, and the measurement was performed on the face of the backlight of the LED light source used in the examples and the comparative examples. 306 mm&gt;&lt;306 mm, 340 mm&gt;&lt;340 mm, or 400 mm&gt;&lt;400 mm, the brightness measurement portion is the 200 mm x 200 mm portion of the center portion of the above picture portion, and the brightness is measured with a resolution of 300x300. The average value of the party degree measured by the above method is set to the average vanguard. (10. Brightness uniformity) &lt;10-1. Unevenness of brightness (front side)&gt; The above 200 measured using the above (9. Average brightness) The luminance data of the mm&gt;&lt;200 mm portion is calculated to be uneven in brightness. Specifically, as shown in FIG. 22, for the LED backlight, the vertical line on the screen directly above the LED, el, e2, and e3 (the three lines closest to the center of the screen), and the horizontal line on the screen, f, f2, and f3 (closest to The luminance data of the three lines on the screen center are used to determine the standard deviation of the luminance ratio (the moving average of the luminance/brightness) of each line, and the average value of the obtained standard deviation values is set as the brightness unevenness. The measurement point is 24649 points of 157 χ horizontal 157. Here, the moving average means the average value of a specific section, and specifically, the average luminance of a line connecting adjacent LEDs. For example, the data of the brightness on the e 1 directly above the LED is set as A, B, C, D, E, F, G, H, I, J, K, L, M, N. Doc -40- 201109741 When the shape is 'the brightness data directly above the LED is a, e, i, n. In the case of the it shape, the moving average value at point c is A to E (the interval at which the adjacent LEDs exist), and the moving average value at point D is the average value Dav of B to F. The moving average of each point is obtained from the above points. "- Person, find the brightness ratio at each point (the moving average of brightness/brightness), for example, C/Cav, R/R ca^ -r- X- B/Bav, ..., and then find the above brightness The standard deviation obtained in the above manner is the standard deviation of the luminance ratio of the luminance data on el. &amp; Based on the above points, the standard is also obtained for other e2, e3, η, 乜, 〇 The deviation is finally calculated as the average value of the standard deviation obtained above, and is set as the luminance unevenness of the front side. &lt;10-2. Unevenness of latitude (strabismus)&gt;; The center of the light is 1 m above the center, At a position of 1 m in the horizontal direction, the camera is tilted 45 degrees toward the backlight, and the luminance distribution is measured using Pr〇metHc. j The luminance unevenness is calculated in the same manner as the above <9-1>, and the unevenness of the 1^ degree of the squint is set. Furthermore, the evaluation of the brightness unevenness is based on the following criteria. &lt;Brightness unevenness evaluation&gt; ◎: Brightness unevenness value 〇.0035 - The level of uneven brightness is not observed at all by visual inspection ◦ · 〇_〇036$ Brightness unevenness $〇〇〇49 148960.doc -41 · 201109741 — Observed slightly by visual inspection Degree of unevenness X: 0.0050S luminance unevenness value - level of uneven brightness observed by visual observation (11 · color unevenness) The above 200 mm &lt; 200 mm portion measured in the above (9·average luminance) was used. Color difference data, calculate excellent unevenness (maximum color difference). The measurement point is to divide the above 2〇〇mmX2〇〇mm into 157x 157 of 24649 points. Specifically, s 'so-called color difference data refers to the figure shown in Figure 22. The color difference data represented by the following formula in the range of 2 〇〇 mm x 2 〇〇 mm from the color unevenness reference point. The maximum color difference value is taken as the maximum color difference in the color difference data. Color unevenness = ((, -1^) Called))) 2), 丨 』 &lt;利)) 2 wide u'i, j, ν': 24649 points of each color U'ref (i, j), V'refm: reference point (screen center (coordinates (色, 〇)) Chromaticity &lt;Color unevenness evaluation&gt; ◎: Color unevenness S 0.0035 - Level of color unevenness observed completely by visual inspection 0.00: 0.0036 $ Color unevenness $ 〇0049 - slightly observed by visual inspection To the level of color unevenness X: 0.0050$ Color unevenness - the level of color unevenness observed by visual inspection second 'for manufacturing examples The method for producing the pressed original sheet used in the light diffusing plate of the comparative example will be described. 148960.doc -42·201109741 The following pressed original sheets are subjected to hot pressing treatment as described in the following examples and comparative examples. The film was processed into a light-diffusing sheet. (1. Pressing the original plate 1) Using a Henschel mixer, a polystyrene resin having a refractive index of 1.59 (Styron G9504, manufactured by PS Japan Co., Ltd.) was 99.97 parts by mass and an average particle diameter of 5 μm. 0.3 parts by mass of acrylic cross-linked particles (manufactured by Sekisui Chemicals Co., Ltd., Techpolymer ΜΒΧ-5), and melted at a resin temperature of 230 ° C in a twin-screw extruder (ΤΕΜ-58, manufactured by Toshiba Machine Co., Ltd.). Mix and granulate. The pellets were again melt-kneaded in a TEX-90 single-axis extruder and extruded from a T-die of a width of 1 000 mm to produce a sheet of 1.5 mm thickness. (2. Pressing the original plate 2) 99.95 parts by mass of a polystyrene resin having a refractive index of 1.59 (Styron G9504, manufactured by PS Japan Co., Ltd.) and an acrylic crosslinked particle having an average particle diameter of 5 μm by a Henschel mixer (water storage) Manufactured by Chemical Industries, Inc., Techpolymer ΜΒΧ-5) 0.5 parts by mass, mixed with a twin-screw extruder (manufactured by Toshiba Machine Co., Ltd. ΤΕΜ-5 8) at a resin temperature of 23 °C. grain. The pellets were again melt-kneaded by a TEX-90 single-axis extruder and extruded from a T-die of a width of 1000 mm to produce a sheet of 1.5 mm thickness. (3. Pressing the original plate 3) Using a Henschel mixer, 99.92 parts by mass of a polystyrene resin having a refractive index of 1.59 (Styron G95 4 manufactured by PS Japan Co., Ltd.) and an acrylic crosslinked particle having an average particle diameter of 5 μm (Manufactured by Sekisui Chemicals, Inc., 148960.doc •43-201109741

Techpolymer MBX_5)〇.8質量份混合,以雙軸擠出機(東芝 機械公司製造TEM-58)於樹脂溫度230°C之條件下進行熔融 混練而加以造粒。 以TEX-90單軸擠出機再次熔融混練上述顆粒,自丨〇〇〇 mm寬度之T模中擠出,而製作1 5 mm厚之薄片。 (4.壓製原板4) 利用亨舍爾混合機,將折射率159之聚苯乙烯樹脂(ps Japan公司製造,G9504)99 9〇質量份、與平均粒徑5 μιη之 丙烯酸系交聯粒子(積水化成品工業公司製造, TeChP〇lymer ΜΒχ·5)^質量份混合,以雙軸擠出機(東芝 機械公司製造TEM-5 8)於樹脂溫度23(rc之條件下進行熔融 混練而加以造粒。 以TEX-90單軸擠出機再次熔融混練上述顆粒,自1〇〇〇 mm寬度之T模中擠出,而製作15111〇1厚之薄片。 (5_壓製原板5) 利用予舍爾混合機,將折射率丨63之聚酯樹脂(〇saka Gas Chemicals公司製造,〇Κϊ&gt;4ΗΤ)99 97質量份、與平均 粒徑5 μιη之MS系交聯粒子(積水化成品工業公司製造, 丁响017· SMX_5R)0·50質量份混合,以雙軸擠出機(東 芝機械公司製造TEM-5 8)於樹脂溫度27〇〇c之條件下進行熔 融混練而加以造粒。 以TEX-90單軸擠出機再次熔融混練上述顆粒,自ι〇〇〇 mm寬度之T模中擠出,而製作15〇1〇1厚之薄片。 (6_壓製原板6) 148960.doc •44· 201109741 利用亨舍爾混合機,將折射率1.53之環烯烴樹脂(曰本 Zeon公司製造,Zeonex 480)99.97質量份、與平均粒徑4.5 pm(Momentive公司製造,Tospearl T145)之聚石夕氧系交聯 粒子0.30質量份混合,以雙軸擠出機(東芝機械公司製造 TEM-5 8)於樹脂溫度270°C之條件下進行熔融混練而加以造 粒。 以TEX-90單軸擠出機再次熔融混練上述顆粒,自1000 mm寬度之T模中擠出,而製作1.5 mm厚之薄片。 (7.壓製原板7) 利用亨舍爾混合機,將折射率1.49之聚曱基丙烯酸曱酯 樹脂(旭化成化學公司製造,Delpet 80N)99.97質量份、與 平均粒徑5 μηι之聚苯乙烯系交聯粒子(總研化學公司製 造,SX-350H)0.30質量份混合,以雙軸擠出機(東芝機械 公司製造TEM-5 8)於樹脂溫度240°C之條件下進行熔融混練 而加以造粒。 以TEX-90單軸擠出機再次熔融混練上述顆粒,自1000 mm寬度之T模中擠出,而製作1.5 mm厚之薄片。 (8.壓製原板8) 利用亨舍爾混合機,將折射率1.42之聚三氟氣乙烯樹脂 (大金工業公司製造,M-300P)99.95質量份、與平均粒徑5 μιη之丙烯酸系交聯粒子(積水化成品工業公司製造, Techpolymer SMX-5R)0.50質量份混合,以雙軸擠出機(東 芝機械公司製造TEM-58)於樹脂溫度250°C之條件下進行熔 融混練而加以造粒。 14B960.doc -45- 201109741 以TEX-90單軸擠出機再次熔融混練上述顆粒,自1 〇〇〇 mm寬度之T模中擠出,而製作1 5 mm厚之薄片。 (9.壓製原板9) 利用亨舍爾混合機,將折射率丨59之聚苯乙烯樹脂(psTechpolymer MBX_5) was mixed in an amount of 8 parts by mass, and granulated by melt-kneading at a resin temperature of 230 ° C in a twin-screw extruder (TEM-58, manufactured by Toshiba Machine Co., Ltd.). The pellets were again melt-kneaded in a TEX-90 single-axis extruder and extruded from a T-die of 丨〇〇〇 mm width to produce a sheet of 15 mm thick. (4. Pressing the original plate 4) Using a Henschel mixer, a polystyrene resin having a refractive index of 159 (manufactured by ps Japan Co., Ltd., G9504) 99 9 parts by mass and an acrylic crosslinked particle having an average particle diameter of 5 μm ( Manufactured by Sekisui Chemicals Co., Ltd., TeChP〇lymer 5·5)^ parts by mass, mixed with a twin-screw extruder (TEM-5 8 manufactured by Toshiba Machine Co., Ltd.) at a resin temperature of 23 (rc) The pellets were melted and kneaded again by a TEX-90 single-axis extruder, and extruded from a T-die of 1 mm width to prepare a sheet of 15111 〇 1 thick. (5_Prepressed original sheet 5) A mixture of 99 97 parts by mass of polyester resin (manufactured by 〇saka Gas Chemicals Co., Ltd., 〇Κϊ&gt;4ΗΤ) and MS-based crosslinked particles having an average particle diameter of 5 μm (manufactured by Sekisui Kogyo Co., Ltd.) , Ding 017, SMX_5R) 0. 50 parts by mass, and granulated by melt-kneading at a resin temperature of 27 〇〇c in a twin-screw extruder (TEM-5 8 manufactured by Toshiba Machine Co., Ltd.). -90 single-axis extruder remelting and mixing the above particles again, from ι〇〇〇mm Extruded in a T-die of width to make a sheet of 15〇1〇1 thick. (6_Prepressed original board 6) 148960.doc •44· 201109741 Using a Henschel mixer, a cycloolefin resin with a refractive index of 1.53 (曰99.97 parts by mass of Zeonex 480), mixed with 0.30 parts by mass of agglomerated crosslinked particles having an average particle diameter of 4.5 pm (manufactured by Momentive Co., Ltd., Tospearl T145), as a twin-screw extruder (Toshiba Machine Co., Ltd.) Manufacture of TEM-5 8) granulation by melt-kneading at a resin temperature of 270 ° C. The granules were again melt-kneaded by a TEX-90 single-axis extruder and extruded from a T-die of a width of 1000 mm. A sheet having a thickness of 1.5 mm was produced. (7. Pressing the original sheet 7) 99.97 parts by mass and an average particle diameter of a polydecyl acrylate resin (Delpet 80N manufactured by Asahi Kasei Chemical Co., Ltd.) having a refractive index of 1.49 using a Henschel mixer 5 μηι of polystyrene-based crosslinked particles (manufactured by Konica Chemical Co., Ltd., SX-350H), 0.30 parts by mass, and a biaxial extruder (TEM-5 8 manufactured by Toshiba Machine Co., Ltd.) at a resin temperature of 240 ° C Melt and knead for granulation. TEX-90 uniaxial extrusion The above particles were melted and kneaded again, and extruded from a T-die of a width of 1000 mm to form a sheet of 1.5 mm thick. (8. Pressing the original plate 8) Using a Henschel mixer, a polytrifluoro gas having a refractive index of 1.42 was used. 99.95 parts by mass of vinyl resin (manufactured by Daikin Industries Co., Ltd., M-300P), mixed with 0.50 parts by mass of acrylic crosslinked particles (manufactured by Sekisui Chemicals Co., Ltd., Techpolymer SMX-5R) having an average particle diameter of 5 μm, in two-axis An extruder (TEM-58 manufactured by Toshiba Machine Co., Ltd.) was melt-kneaded at a resin temperature of 250 ° C to be granulated. 14B960.doc -45- 201109741 The above pellets were again melt-kneaded in a TEX-90 single-axis extruder and extruded from a T-die of 1 mm width to make a sheet of 15 mm thick. (9. Pressing the original plate 9) Using a Henschel mixer, a polystyrene resin having a refractive index of 丨59 (ps)

Japan公司製造,Styron G9504)99.97質量份、與平均粒徑5 μηι之丙烯酸系交聯粒子(積水化成品工業公司製造, Techpolymer ΜΒΧ-5)0.045質量份混合,以雙軸擠出機(東 芝機械公司製造ΤΕΜ-5 8)於樹脂溫度230。(:之條件下進行熔 融混練而加以造粒。 分別使用TEX-90單軸擠出機與ΤΕχ_65單軸擠出機,將 上述顆粒及聚本乙浠樹脂(PS japan公司製造, G95 04)再次熔融混練,以層厚丨〇爪爪及〇 5爪爪之2種2層之 層構成,自1000 mm寬度之T模(進料模組鑄模)中擠出,而 製作1.5 mm厚之薄片。 (10.壓製原板10) 利用TEX-90單軸擠出機,於樹脂溫度23〇度之溫度條件 下,將折射率1.59之聚笨乙烯樹脂(PS Japan公司製造, Styron G9504)自1000 mm寬度之τ模中擠出’而製作〇3 mm厚之薄片。 (11.壓製原板11) 利用TEX-90單軸擠出機,於樹脂溫度23〇度之溫度條件 下’將折射率1.59之聚笨乙烯樹脂(ps japan公司製造,Made of Japan, Styron G9504) 99.97 parts by mass, mixed with 0.045 parts by mass of acrylic crosslinked particles (manufactured by Sekisui Chemicals Co., Ltd., Techpolymer ΜΒΧ-5) having an average particle diameter of 5 μηι, in a twin-screw extruder (Toshiba Machine) The company manufactures ΤΕΜ-5 8) at a resin temperature of 230. (The granulation was carried out by melt-kneading under conditions: PTFE-90 single-axis extruder and ΤΕχ_65 single-axis extruder, respectively, and the above pellets and polyacetonitrile resin (manufactured by PS japan, G95 04) were again The melt-kneading was carried out by two layers of two layers of a layer thickness jaw claw and a jaw claw, and was extruded from a T-die (feed module mold) having a width of 1000 mm to prepare a sheet having a thickness of 1.5 mm. (10. Pressing the original plate 10) Using a TEX-90 single-axis extruder, a polystyrene resin having a refractive index of 1.59 (manufactured by PS Japan, Styron G9504) was used to have a width of 1000 mm at a resin temperature of 23 Torr. The τ mold was extruded to produce a 〇 3 mm thick sheet. (11. Pressing the original sheet 11) Using a TEX-90 single-axis extruder, the refractive index of 1.59 was gathered at a resin temperature of 23 Torr. Stupid vinyl resin (made by ps japan)

Styron G9504)自1000 mm寬度之T模中擠出,而製作^^ mm厚之薄片。 148960.doc -46- 201109741 (12.壓製原板12) 利用亨舍爾混合機,將折射率丨.59之聚苯乙烯樹脂(ps Japan公司製造,Styr〇n G95〇4)99 95質量份、與平均粒徑$ μιη之丙烯酸系交聯粒子(積水化成品工業公司製造, TeChP〇lymer ΜΒΧ_5)〇.2質量份混合,以雙軸擠出機(東芝 機械公司製造ΤΕΜ-5 8)於樹脂溫度23〇。(:之條件下進行熔融 混練而加以造粒。 以丁EX-90單軸擠出機再次熔融混練上述顆粒,自1〇〇〇 mm寬度之T模中擠出,而製作! 5 mm厚之薄片。 (13.壓製原板13) 以TEX-90單軸擠出機,於樹脂溫度24〇度之溫度條件 下,,將折射率1.49之聚甲基丙烯酸甲酯樹脂(旭化成化學 公司製造,Delpet 80N)自1000 mm寬度之丁模中擠出,而 製作1 ·0 mm厚之薄片。 (14.壓製原板14) 利用予舍爾混合機,將折射率丨5 3之環烯烴樹脂(曰本 Zeon公司製造,Ze〇nex 480)99.97質量份、與平均粒徑45 em(M〇mentiVe公司製造,T〇speari T145)之聚矽氧系交聯 粒子0.05質重份混合,以雙軸擠出機(東芝機械公司製造 ΤΕΜ-5 8)於樹脂溫度270。(:之條件下進行熔融混練而加以造 粒。 以TEX-90單軸擠出機再次熔融混練上述顆粒,自1〇〇〇 mm寬度之T模中擠出,而製作匕万瓜瓜厚之薄片。Styron G9504) extruded from a T-die of 1000 mm width to make a sheet of ^^ mm thick. 148960.doc -46-201109741 (12. Pressing the original plate 12) Using a Henschel mixer, a polystyrene resin having a refractive index of 5959 (manufactured by ps Japan, Styr〇n G95〇4) 99 95 parts by mass, Acrylic-based crosslinked particles (manufactured by Sekisui Seisakusho Co., Ltd., TeChP〇lymer ΜΒΧ_5) 〇. 2 parts by mass, mixed with a biaxial extruder (manufactured by Toshiba Machine Co., Ltd. ΤΕΜ-5 8) in a resin The temperature is 23 〇. (The conditions were: melt-kneaded under the conditions of granulation. The pellets were melted and kneaded again in a D-EX-90 single-axis extruder, and extruded from a T-die of 1 mm width to make! 5 mm thick (13. Pressing the original plate 13) A polymethyl methacrylate resin having a refractive index of 1.49 at a resin temperature of 24 Torr in a TEX-90 single-axis extruder (made by Asahi Kasei Chemical Co., Ltd., Delpet) 80N) Extrusion from a die of 1000 mm width to produce a sheet of 1.0 mm thick. (14. Pressing the original plate 14) Using a Shelter mixer, a cycloolefin resin having a refractive index of 35 3 (曰本99.97 parts by mass of Zeon Nex 480), mixed with 0.05 mass parts of polyanthracene-based crosslinked particles having an average particle diameter of 45 em (manufactured by M〇mentiVe, T〇speari T145), and extruded in two axes. The machine (manufactured by Toshiba Machine Co., Ltd., ΤΕΜ-5 8) was granulated by melt-kneading at a resin temperature of 270. The granules were again melt-kneaded by a TEX-90 single-axis extruder, from 1 mm. Extruded in the width of the T-die, and made a thin slice of melon.

其次,對實施例、比較例中與光擴散板組合使用之LED I48960.doc •47- 201109741 光源背光之光源部中的LED種類及LED之配置方法加以說 明。 (1. LED種類) &lt;1-1. LED-1&gt; 使用Cree公司製造之光峰值角度為0度i*gLED(LM6-£”1^1-03^3)(出光分佈參照圖9)。 &lt;1-2. LED-2&gt; 使用Philips Lumileds公司製造之LED之光峰值角度為 ±25度的白色LED(LUXION EMITTER)(出光分佈參照圖 19) ° &lt;1-3. LED-3&gt; 使用Philips Lumileds公司製造之LED之光峰值角度為 ±37度之白色LED(LUXION EMITTER)(出光分佈參照圖 20) ° (2.LED背光) &lt;2-1. LED 背光 1&gt; 於LED 底座(PCB(printed circuit board,印刷電路板))上 將白色LED如圖1 4所示,以LED間隔η 1 : 55.8 mm、n2 : 3 2.2 mm之鋸齒狀配置(配置1)安裝104個(nl/n2 = 0.58(參照 圖14)),製作晝面尺寸為306x306 mm之LED光源背光評價 裝置。 此時,平均LED間隔P為3 0 mm。 利用雙面膠,於安裝有LED之LED底座(PCB)上貼附擴 散反射率95%之MC-PET(古河電工公司製造)作為反射膜, 148960.doc -48- 201109741 將反射膜與LED最上部之間之距離h保持為1.5 mm(參照圖 8)。 其次,以LED最上部與光擴散板之間之距離Η為16 mm 之方式而將光反射板固定於反射膜上方,而形成LED背光 1(參照圖8)。 背光係於1個LED中流通20 mA之電流而點亮。亮度及亮 度不均之測定係於LED點亮後,使背光老化1小時之後進 行。 &lt;2-2. LED 背光 2&gt; 以使LED最上部與光擴散板之間之距離Η為14 mm之方 式而將光擴散板固定於反射膜上方。 其他條件與上述&lt;2-l.LED背光1&gt;同樣地,製作背光評價 裝置,而形成LED背光2。 &lt;2-3. LED 背光 3&gt; 以LED最上部與光擴散板之間之距離Η為12 mm之方式 而將光擴散板固定於反射膜上方。 其他條件與上述&lt;2-1.LED背光卜同樣地,製作背光評價 裝置,而形成LED背光3。 &lt;2-4. LED 背光 4&gt; 於LED底座(PCB)上,將白色LED如圖14所示,以LED間 隔nl : 63 ·3 mm、n2 : 36.5 mm之鑛齒狀配置(配置2)安裝 100個(nl/n2=0.5 8(參照圖14)),製作畫面尺寸為340x340 mm之LED光源背光裝置。 此時,平均LED間隔P為34 mm。 148960.doc -49- 201109741 其他條件與上述&lt;2-l.LED背光1&gt;同樣地,形成LED背光 4 ° &lt;2-5. LED 背光 5&gt; 於LED底座(PCB)上,將白色LED如圖14所示,以LED間 隔nl : 74_4 mm、n2 : 43.0 mm之鑛齒狀配置(配置3)安裝 100個(nl/n2 = 0.58(參照圖14)),製作畫面尺寸為400x400 mm之LED光源背光裝置。 此時,平均LED間隔P為40 mm。 其他條件與上述&lt;2-l.LED背光1&gt;同樣地,形成LED背光 5。 其次,對實施例、比較例中所使用之光學膜加以說明。 (1.光學膜1) 擴散薄片:BS-912(惠和股份有限公司) 使用變角光度計(日本電色工業公司製造之GC5000L), 測定以入射角60度入射5 5 0 nm之單色光時的出光分佈之主 峰值角度,結果為38度。. (2.光學膜2) 透鏡薄片:PTR733(Shinwha Intertek公司製造) 使用變角光度計(曰本電色工業公司製造之GC5000L), 測定以入射角60度入射550 nm之單色光時的出光分佈之主 峰值角度,結果為42度。 (3.光學膜3) 稜鏡片:BEFIII(住友3M公司製造) 使用變角光度計(日本電色工業公司製造之GC5000L), 148960.doc -50- 201109741 測定以入射角60度入射550 nm之單色光時的出光分佈之主 峰值角度,結果為27度。 (4.光學膜4) 亮度提高薄片:DBEF-D400(住友3M公司製造) 使用變角光度計(日本電色工業公司製造之GCsoooq, 測定以入射角60度入射550 nm之單色光時的出光分佈之主 峰值角度,結果為56度。 [實施例1] 將以上述方式製作之壓製原板1夾入至賦形為特定形狀 之壓模中,投入至壓製機中,於壓製板溫度l8〇〇c、表面 壓力100 kg/cm2之條件下壓製30分鐘。 其後,將夾入壓製原板1之壓模更換放入至已水冷卻之 壓製機中,冷卻10分鐘。 冷卻後,自壓模取出賦形為特定形狀之厚度15 mm之光 擴散板^ 所得之光擴散板中’入光面侧之表面為具有平均傾斜角 為10度之凹凸形狀之糙面形狀,出光面側之表面為週期性 地形成之凸部大致三角錐形狀(正三角錐台形狀)(參照圖 21)。 又’該光擴散板之凸.部之大致三角錐之傾斜角Θ為62 度’剖面形狀係使用圖5所說明之b部為89 pm、c部為1 μιη、d部為10 μηι、使用圖23(A)、(Β)所說明之g部為1 μπι 〇 進而,對於該光擴散板,測定於自凸透鏡側入射光之情 148960.doc 201109741 形時之全光線透射率τ,結果為84%。 又’確認到該光擴散板之平均反射率R為46%,不具有 複歸反射特性。 將以上述方式製作之光擴散板以光擴散板之各凸部之底 面正二角形之一邊與構成led背光】之led配置】之格子的 四角形之對角線平行(F==0。)之方式而安裝於LED背光i中, 於該光擴散板上重疊放置2片擴散薄片、〗片亮度提高膜, 測疋焭度、允度不均(正面及斜視)以及色不均,結果亮度 為5340 cd/cm2,正面之亮度不均為〇 〇〇44,自傾斜45度觀 察之斜視之亮度不均為〇〇〇48,色不均(最大色差)為 0.0045 ’表現出良好之結果。 將評價結果示於下述表1。 [實施例2〜8]、[比較例1〜4] 變更壓模。 其他條件與實施例1同樣地製作光擴散板,與實施例i同 樣地測定背光之亮度、亮度不均(正面及斜視)以及色不 均。 所得之光擴散板中,入光面側之表面為具有平均傾斜角 為10度之凹凸形狀之糙面形狀,出光面側之表面為週期性 地形成之凸部大致三角錐形狀(正三角錐台形狀)(參照圓 21) ° 各實施例、比較例中所得之光擴散板之凸部之大致三角 錐之傾斜角Θ如下述表1所示。 關於亮度、亮度不均(正面及斜視)、色不均,各實施例 148960.doc -52- 201109741 之光擴散板均表現出良好之結果。 將評價結果示於下述表1。 [實施例9〜17]、[比較例5、6] 變更壓模,使用壓製原板5,於壓製板溫度2〇〇。(:、表面 壓力100 kg/cm2之條件下進行壓製成形。 其他條件與實施例1同樣地製作光擴散板,與實施例1同 樣地測定背光之亮度、党度不均(正面及斜視)以及色不 均。 所得之光擴散板中,入光面側之表面為具有平均傾斜角 為10度之凹凸形狀之糙面形狀,出光面側之表面為週期性 地形成之凸部大致三角錐形狀(正三角錐台形狀)(參照圖 21)。 各實施例、比較例中所得之光擴散板之凸部之大致三角 錐之傾斜角Θ如下述表2所示。 關於亮度、亮度不均(正面及斜視)以及色不均,各實施 例之光擴散板均表現出良好之結果。 將評價結果示於下述表2。 [實施例18] 於實施例3中所記載之壓模上,塗佈厚度為3〇〇 ^瓜之 Lumipulse LPB-110(三菱瓦斯化學公司製造)後,將壓製原 板1載置於塗佈層上’以金屬鹵化物照射裝置照射2 J/cm2。於將上述塗佈層紫外線硬化後,自模具剝離密著 有紫外線硬化層之壓製原板1 ’與實施例1同樣地測定背光 之亮度、亮度不均(正面及斜視)以及色不均。 148960.doc •53· 201109741 所得之光擴散板中’人光面側之表面為具有平均傾斜角 為1〇度之凹凸形狀之縫面形&amp;,以面側之表面為週期性 地形成之凸部大致三角錐形狀(正三角錐台形狀)(參照 21)。 、、 實施例中所得之光擴散板之四部之大致三角錐之傾斜角 Θ如下述表3所示。 關於7C度、亮度不均(正面及斜視)以及色不均,實施例 之光擴散板皆表現出良好之結果。 將評價結果示於下述表3。 [實施例19〜23]、[比較例7、8] 變更壓模,使用壓製原板6,於壓製板溫度2〇〇〇c、表面 壓力100 kg/cm2之條件下進行壓製成形。 其他條件與實施例1同樣地製作光擴散板,與實施例丄同 樣地測定背光之亮度、亮度不均(正面及斜視)以及色不 均0 所得之光擴散板中,入光面側之表面為具有平均傾斜角 為10度之凹凸形狀之糙面形狀,出光面側之表面為週期性 地形成之凸部大致三角錐形狀(正三角錐台形狀)(參照圖 21) ° 各實施例、比較例中所得之光擴散板之凸部之大致三角 錐之傾斜角Θ如下述表3所示。 關於亮度、亮度不均(正面及斜視)以及色不均,各實施 例之光擴散板均表現出良好之結果。 將評價結果示於下述表3。 148960.doc -54- 201109741 [實施例24〜26]、[比較例9、1 〇] 變更壓模,使用壓製原板7。 其他條件與實施例1同樣地製作光擴散板,與實施例【同 樣地測定背光之亮度、亮度不均(正面及斜視)以及色= 均0 所得之光擴散板中,入光面側之表面為具有平均傾斜角 為10度之凹凸形狀之縫面形狀’出光面側之表面為週期性 地形成之凸部大致三角錐形狀(正三角錐台形狀)(參照 21)。 各實施例、比較例中所得之光擴散板之凸部之大致三角 錐之傾斜角Θ如下述表3所示。 關於亮度、亮度不均(正面及斜視)以及色不均,各實施 例之光擴散板均表現出良好之結果。 評價結果示於下述表3。 [比較例11] 變更壓模,使用壓製原板8。 又,於壓製板溫度20(TC、表面壓》1〇〇kg/cm2之條件下 進行壓製成形。 其他條件與實施例i同樣地製作光擴散板,與實施例}同 樣地測定背光之亮度、亮度不均(正面及斜視)以及色不 均。 所得之光擴散板中,人光面側之表面為具有平均傾斜角 為10度之凹凸形狀之糙面形狀,出光面側之表面為週期性 地形成之凸部大致三角錐形狀(正三角錐台形狀)(參照圖 148960.doc -55- 201109741 21)。 所得之光擴散板之凸部之大致三角 表3所示。 二角錐之傾斜角Θ如 下述 而未達成本案 °平&gt;^結果係正面及斜視亮度不均均變 課題。 將詳細之評價結果示於下述表3。 [比較例12〜20] 變更壓模。 其他條件與實施例i同樣地製作光擴散板,測定背光之 受度、亮度不均(正面及斜視)以及色不均。 所得之光擴散板中,入光面側之表面為具有平均傾斜角 為丨〇度之凹凸形狀之糙面形狀,出光面側之表面為週期地 形成之凹部大致三角錐台形狀(比較例12〜14)、凸部大致 四角錐台形狀(比較例15〜17)或者凹部大致三角錐台形狀 (比較例18〜20)。 將所得之光擴散板之評價結果示於下述表4。 [比較例21 ] 與上述比較例20同樣地製作光擴散板,安裝於LED背光 1中,於該光擴散板上重疊放置2片擴散薄片、各1片之稜 鏡片、亮度提高膜,測定亮度、亮度不均(正面及斜視)以 及色不均。 將評價結果示於下述表4。 [比較例22] 與上述比較例20同樣地製作光擴散板,安裝於LED背光 148960.doc -56- 201109741 片擴散薄片、各1片之稜 免度不均(正面及斜視)以 1中,於該光擴散板上重疊放置3 鏡片、亮度提高膜,測定亮度、 及色不均。 將評價結果示於下述表4。 [比較例27〜42] 變更壓模。 古其他條件與實施例i同樣地製作光擴散板,測定背光之 冗度、焭度不均(正面及斜視)以及色不均。 所得之光擴散板中,人光面側之表面為具有平均傾斜角 為H)度之凹凸形狀之链面形狀,出光面側之表面為週期性 地形成之凸部大致正三角錐形狀。 將所得之光擴散板之評價結果示於下述表5。 [比較例43〜50] 變更壓模。 其他條件與上述實施例9同樣地製作光擴散板,測定背 光之売度、亮度不均(正面及斜視)以及色不均。 所知之光擴散板中,入光面侧之表面為具有平均傾斜角 為10度之凹凸形狀之糙面形狀,出光面側之表面為週期性 地形成之凸部大致正三角錐形狀。 將所得之光擴散板之評價結果示於下述表6。 [實施例 51、52、53、56、57] 作為壓製原板,分別使用壓製原板i丨(實施例5丨)、壓製 原板12(實施例52)、壓製原板2(實施例53)、壓製原板3(實 施例56)、壓製原板4(實施例57)。 148960.doc -57- 201109741 其他條件與上述實施例3同樣地製作光擴散板,測定背 光之亮度、亮度不均(正面及斜視)以及色不均。 所得之光擴散板中,入光面側之表面為具有平均傾斜角 為10度之凹凸形狀之糙面形狀,出光面側之表面為週期性 地形成之凸部大致三角錐形狀(正三角錐台形狀)(參照圖 21)〇 將所得之光擴散板之評價結果示於下述表7。 [實施例58] 使用壓製原板12。 其他條件與上述實施例5同樣地製作光擴散板,測定背 光之免度、亮度不均(正面及斜視)以及色不均。 所得之光擴散板中,入光面側之表面為具有平均傾斜角 為10度之凹凸形狀之糙面形狀,出光面側之表面為週期性 地形成之凸部大致三角錐形狀(正三角錐台形狀)(參昭 21)。 “、' 將所得之光擴散板之評價結果示於下述表7。 [實施例59] 使用壓製原板14。 其他條件與上述實施例19同樣地製作光擴散板,測定背 光之亮度、亮度不均(正面及斜視)以及色不均。 所得之光擴散板中’入光面側之表面為具有平均傾斜角 為10度之凹凸形狀之糙面形狀,出光面側之表面為週期性 地形成之凸部大致三角錐形狀(正三角錐台形狀)(參照圖 21)。 148960.doc •58· 201109741 將所得之光擴散板之評價結果示於下述表7。 [實施例54] 與上述實施例53同樣地製作光擴散板,安裝於LED背光 1中,於該光擴散板上重疊放置各1片之擴散薄片、稜鏡 片、亮度提高膜,測定亮度、亮度不均(正面及斜視)以及 色不均。 將評價結果示於下述表7。 [實施例55] 與上述實施例53同樣地製作光擴散板,安裝於LED背光 1中’於該光擴散板上重疊放置2片透鏡薄片、1片亮度提 高膜’測定亮度、亮度不均(正面及斜視)以及色不均。 將評價結果示於下述表7。 [比較例23] 使用壓製原板13。 變更壓模,使入光面側之表面為平滑面,除此以外,與 實施例1同樣地製作光擴散板。 測定背光之亮度、亮度不均(正面及斜視)以及色不均。 所得之光擴散板係入光面側之表面為平均傾斜角〇度之 平滑面,出光面側之表面為週期性地形成之凸部大致三角 錐形狀(角隅稜鏡(三角錐)形狀),具有複歸反射特性。 結果,壳度下降顯著,亮度均勻性(正面、斜視均)亦 差。 將評價結果示於下述表7。 [實施例60] 148960.doc -59- 201109741 使用壓製原板9,使用與實施例3相同之壓模。 其他條件與實施例1同樣地製作光擴散板,測定背光之 亮度、亮度不均(正面及斜視)以及色不均。 所得之光擴散板中,入光面側之表面為具有平均傾斜角 為10度之凹凸形狀之糙面形狀,出光面側之表面為週期性 地形成之凸部大致三角錐形狀(正三角錐台形狀)(參照 21) ° 將所得之光擴散板之評價結果示於下述表8。 [實施例61] 將壓製原板10夾入至賦形為特定形狀之壓模中投入至 壓製機中,於壓製板溫度18(TC、表面壓力1〇〇 kg/cm2之條 件下壓製30分鐘後,將夾入壓製原板!之壓模更換放入至 已水冷卻之壓製機中,冷卻10分鐘。 冷卻後,自壓模取出賦形為特定形狀之厚度〇 3 (a)透鏡層9Next, the LED type and the arrangement method of the LEDs in the light source unit of the light source backlight of the LED I48960.doc • 47-201109741 used in combination with the light diffusing plate in the examples and the comparative examples will be described. (1. LED type) &lt;1-1. LED-1&gt; The peak angle of light manufactured by Cree is 0 degree i*gLED(LM6-£"1^1-03^3) (light distribution is shown in Figure 9) &lt;1-2. LED-2&gt; A white LED (LUXION EMITTER) with a peak angle of ±25 degrees of LED light manufactured by Philips Lumileds Co., Ltd. (light distribution is shown in Fig. 19) ° &lt;1-3. LED-3&gt LUXION EMITTER with LED peak angle of ±37 degrees by Philips Lumileds (light distribution is shown in Figure 20) ° (2.LED backlight) &lt;2-1. LED backlight 1&gt; (PCB (printed circuit board)) The white LED is mounted as shown in Fig. 14 and installed in a sawtooth configuration (configuration 1) with LED spacing η 1 : 55.8 mm and n2 : 3 2.2 mm (nl /n2 = 0.58 (refer to Figure 14)), an LED light source backlight evaluation device with a face size of 306x306 mm is produced. At this time, the average LED interval P is 30 mm. Using a double-sided tape, the LED base is mounted with an LED ( MC-PET (manufactured by Furukawa Electric Co., Ltd.) with a diffuse reflectance of 95% is attached as a reflective film, 148960.doc -48- 201109741 The distance h between the reflective film and the uppermost portion of the LED is maintained. It is 1.5 mm (refer to Fig. 8). Next, the light reflection plate is fixed above the reflection film so that the distance Η between the uppermost portion of the LED and the light diffusion plate is 16 mm, and the LED backlight 1 is formed (refer to FIG. 8). The backlight is lit by a current of 20 mA flowing through one LED. The measurement of brightness and brightness unevenness is performed after the LED is turned on, and the backlight is aged for one hour. <2-2. LED backlight 2> The light diffusing plate was fixed above the reflecting film so that the distance between the uppermost portion of the LED and the light diffusing plate was 14 mm. Other conditions were the same as in the above-mentioned <2-l. LED backlight 1&gt; LED backlight 2 is formed. &lt;2-3. LED backlight 3&gt; The light diffusion plate is fixed above the reflection film so that the distance Η between the uppermost portion of the LED and the light diffusion plate is 12 mm. &lt;2-1. LED backlighting Similarly, a backlight evaluation device is fabricated to form an LED backlight 3. <2-4. LED backlight 4&gt; On the LED base (PCB), a white LED is shown in Fig. 14, Install 100 pieces in the ore configuration (configuration 2) with LED spacing nl : 63 ·3 mm, n2 : 36.5 mm (nl/n2=0.5 8) 14)), to produce a screen size of 340x340 mm LED light source of the backlight apparatus. At this time, the average LED interval P is 34 mm. 148960.doc -49- 201109741 Other conditions are the same as the above <2-l. LED backlight 1>, forming an LED backlight 4 ° &lt; 2-5. LED backlight 5 &gt; On the LED base (PCB), the white LED As shown in Fig. 14, 100 pieces (nl/n2 = 0.58 (refer to Fig. 14)) are mounted in the ore-shaped configuration (configuration 3) with LED spacing nl: 74_4 mm and n2: 43.0 mm, and the screen size is 400x400 mm. LED light source backlight device. At this time, the average LED interval P is 40 mm. Other conditions are the same as the above-mentioned <2-l. LED backlight 1&gt;, and the LED backlight 5 is formed. Next, the optical films used in the examples and comparative examples will be described. (1. Optical film 1) Diffusion sheet: BS-912 (Huihe Co., Ltd.) Using a variable angle photometer (GC5000L manufactured by Nippon Denshoku Industries Co., Ltd.), a single color of 550 nm incident at an incident angle of 60 degrees was measured. The main peak angle of the light distribution at the time of light is 38 degrees. (2. Optical film 2) Lens sheet: PTR733 (manufactured by Shinwha Intertek Co., Ltd.) Using a variable angle photometer (GC5000L manufactured by Sakamoto Denshoku Industries Co., Ltd.), when monochromatic light of 550 nm is incident at an incident angle of 60 degrees The main peak angle of the light distribution is 42 degrees. (3. Optical film 3) Bracts: BEFIII (manufactured by Sumitomo 3M Co., Ltd.) Using a variable angle photometer (GC5000L, manufactured by Nippon Denshoku Industries Co., Ltd.), 148960.doc -50-201109741 550 nm is incident at an incident angle of 60 degrees. The main peak angle of the light distribution in monochromatic light is 27 degrees. (4. Optical film 4) Brightness-enhanced sheet: DBEF-D400 (manufactured by Sumitomo 3M Co., Ltd.) Using a variable angle photometer (GCsoooq, manufactured by Nippon Denshoku Industries Co., Ltd.), when monochromatic light of 550 nm is incident at an incident angle of 60 degrees The main peak angle of the light distribution was found to be 56 degrees. [Example 1] The pressed original sheet 1 produced in the above manner was sandwiched into a stamper shaped into a specific shape, and put into a press at a press plate temperature of 18 〇〇c, pressing at a surface pressure of 100 kg/cm2 for 30 minutes. Thereafter, the stamper sandwiched between the pressed original sheets 1 was placed in a water-cooled press and cooled for 10 minutes. The light-diffusing sheet having a thickness of 15 mm which is shaped into a specific shape is taken out. The surface of the light-diffusing sheet obtained in the light-incident surface is a rough surface having a concave-convex shape having an average inclination angle of 10 degrees, and the surface on the light-emitting surface side. The convex portion formed periodically has a substantially triangular pyramid shape (a regular triangular frustum shape) (see FIG. 21). Further, the inclination angle 大致 of the substantially triangular pyramid of the convex portion of the light diffusion plate is 62 degrees. The part b shown in Fig. 5 is 89 pm, part c 1 μιη, d part is 10 μηι, and the g portion described in Fig. 23(A) and (Β) is 1 μπι 〇, and the light diffusing plate is measured for incident light from the convex lens side. 148960.doc 201109741 The total light transmittance τ was 84%, and it was confirmed that the average reflectance R of the light diffusing plate was 46%, and there was no return reflection characteristic. The light diffusing plate produced in the above manner was used as a light diffusing plate. The one side of the bottom right side of each convex portion is mounted in the LED backlight i in such a manner that the diagonal of the square of the square of the led arrangement of the LED backlight is parallel (F==0.), and the light diffusing plate is mounted on the light diffusing plate Two diffusion sheets, a brightness enhancement film, and measurement unevenness (front and squint) and color unevenness are placed on top of each other. The brightness is 5340 cd/cm2, and the brightness of the front side is not 〇〇〇. 44. The brightness of the squint observed from the inclination of 45 degrees was not 〇〇〇48, and the color unevenness (maximum color difference) was 0.0045'. The results of the evaluation were shown in Table 1 below. [Example 2~ 8], [Comparative Examples 1 to 4] The stamper was changed. Other conditions were the same as in Example 1. The light diffusing plate was prepared in the same manner, and the luminance, unevenness in brightness (front and squint), and color unevenness of the backlight were measured in the same manner as in Example i. In the obtained light diffusing plate, the surface on the light incident surface side had an average tilt angle of The rough surface shape of the unevenness of 10 degrees, the surface of the light-emitting surface side is a periodically formed convex portion having a substantially triangular pyramid shape (a regular triangular frustum shape) (reference circle 21) ° Light diffusion obtained in each of the examples and the comparative examples The inclination angle of the substantially triangular pyramid of the convex portion of the plate is as shown in the following Table 1. Regarding the luminance, uneven brightness (front and squint), and color unevenness, the light diffusing plates of the respective embodiments 148960.doc - 52 - 201109741 are Shows good results. The evaluation results are shown in Table 1 below. [Examples 9 to 17], [Comparative Examples 5 and 6] The stamper was changed, and the pressed original sheet 5 was used at a press plate temperature of 2 Torr. (:: press-forming was carried out under the conditions of a surface pressure of 100 kg/cm 2 . Other conditions were the same as in Example 1 to prepare a light-diffusing sheet, and the luminance of the backlight, the degree of unevenness of the party (front and squint), and the like were measured in the same manner as in Example 1. In the obtained light-diffusing sheet, the surface on the light-incident surface side has a rough surface shape having an uneven shape with an average inclination angle of 10 degrees, and the surface on the light-emitting surface side is a periodically formed convex portion having a substantially triangular pyramid shape. (Positive triangle frustum shape) (see Fig. 21) The inclination angle of the substantially triangular pyramid of the convex portion of the light diffusing plate obtained in each of the examples and the comparative examples is as shown in the following Table 2. Unevenness in brightness and brightness (positive The light diffusing plate of each of the examples showed good results. The evaluation results are shown in the following Table 2. [Example 18] On the stamper described in Example 3, the coating was carried out. After the thickness of the cloth is 3 〇〇^, the Lumipulse LPB-110 (manufactured by Mitsubishi Gas Chemical Co., Ltd.), the pressed original plate 1 is placed on the coating layer, and the metal halide irradiation device is irradiated with 2 J/cm 2 . After the layer is cured by ultraviolet light, In the same manner as in Example 1, the brightness of the backlight, unevenness in brightness (front and squint), and color unevenness were measured in the same manner as in Example 1. The light diffusing plate obtained in the obtained light diffusing plate was measured in the same manner as in Example 1. The surface of the human glossy side is a slit surface shape having an uneven shape having an average inclination angle of 1 degree, and the surface of the surface side is a periodically formed convex portion having a substantially triangular pyramid shape (a regular triangular frustum shape) ( Refer to 21). The inclination angles of the substantially triangular pyramids of the four portions of the light-diffusing sheet obtained in the examples are as shown in the following Table 3. Regarding the 7C degree, uneven brightness (front and squint), and color unevenness, examples The light diffusing panels all showed good results. The evaluation results are shown in Table 3 below. [Examples 19 to 23], [Comparative Examples 7, 8] The stamper was changed, and the pressed original sheet 6 was used at the press plate temperature 2压制c and a surface pressure of 100 kg/cm2 were subjected to press molding. Other conditions were the same as in Example 1. A light diffusing plate was produced, and the brightness and brightness unevenness (front and squint) of the backlight were measured in the same manner as in Example 丄. And uneven color 0 In the obtained light-diffusing sheet, the surface on the light-incident surface side has a rough surface shape having an uneven shape having an average inclination angle of 10 degrees, and the surface on the light-emitting surface side is a periodically formed convex portion having a substantially triangular pyramid shape (a regular triangular frustum shape) (shape) (see Fig. 21) ° The inclination angle of the substantially triangular pyramid of the convex portion of the light-diffusing sheet obtained in each of the examples and the comparative examples is as shown in the following Table 3. Regarding brightness and brightness unevenness (front and squint) and The light-diffusing sheets of the examples exhibited good results. The evaluation results are shown in Table 3 below. 148960.doc -54-201109741 [Examples 24 to 26], [Comparative Examples 9, 1 〇 ] Change the stamper and use the pressed original plate 7. In the same manner as in Example 1, a light-diffusing sheet was produced in the same manner as in Example 1, and the surface of the light-incident surface of the light-diffusing sheet obtained by measuring the brightness of the backlight, uneven brightness (front and squint), and color = 0 was measured in the same manner. The surface of the slit surface having the uneven shape having an average inclination angle of 10 degrees is a substantially triangular shape (positive triangular frustum shape) of the convex portion formed periodically (see 21). The inclination angle of the substantially triangular pyramid of the convex portion of the light-diffusing sheet obtained in each of the examples and the comparative examples is as shown in Table 3 below. Regarding luminance, uneven brightness (front and squint), and color unevenness, the light diffusing plates of the respective examples exhibited good results. The evaluation results are shown in Table 3 below. [Comparative Example 11] The stamper 8 was changed by changing the stamper. Further, press molding was carried out under the conditions of a press plate temperature of 20 (TC, surface pressure) of 1 〇〇 kg/cm 2 . Other conditions were the same as in Example i, and a light diffusing plate was produced, and the brightness of the backlight was measured in the same manner as in Example}. The unevenness of the brightness (front and squint) and the color unevenness. In the obtained light diffusing plate, the surface of the human light side is a rough surface having an uneven shape with an average inclination angle of 10 degrees, and the surface of the light emitting surface is periodic. The convex portion formed in the ground has a substantially triangular pyramid shape (a shape of a regular triangular frustum) (refer to FIG. 148960.doc-55-201109741 21). The convex portion of the obtained light diffusing plate is substantially shown in the triangular table 3. The inclination angle of the double pyramid The results of the above-mentioned case are not as follows: The results of the front and squint brightness unevenness are changed. The detailed evaluation results are shown in Table 3 below. [Comparative Examples 12 to 20] The stamper was changed. Other conditions and implementation Example i A light diffusing plate was produced in the same manner, and the degree of acceptance of the backlight, uneven brightness (front and squint), and color unevenness were measured. In the obtained light diffusing plate, the surface on the light incident side has an average tilt angle of 丨〇. Rough shape of concave and convex shape In the shape, the surface on the light-emitting surface side has a substantially triangular truncated cone shape (Comparative Examples 12 to 14) in which the concave portion is formed periodically, a substantially quadrangular frustum shape of the convex portion (Comparative Examples 15 to 17), or a substantially triangular frustum shape of the concave portion (Comparative Example) 18 to 20) The evaluation results of the obtained light-diffusing sheet are shown in the following Table 4. [Comparative Example 21] A light-diffusing sheet was produced in the same manner as in Comparative Example 20 described above, and was mounted on the LED backlight 1 in the light-diffusing sheet. Two diffusion sheets, one sheet each, and a brightness enhancement film were placed one on top of the other, and luminance, uneven brightness (front and squint), and color unevenness were measured. The evaluation results are shown in Table 4 below. [Comparative Example 22] A light-diffusing sheet was produced in the same manner as in Comparative Example 20 described above, and was attached to an LED backlight 148960.doc-56-201109741, a sheet of diffusion sheet, and an unevenness of the ribs of each sheet (front side and squint) to be 1 in the light diffusing sheet. The lens and the brightness enhancement film were placed one on top of the other, and the brightness and color unevenness were measured. The evaluation results are shown in the following Table 4. [Comparative Examples 27 to 42] The stamper was changed. Other conditions were the same as in Example i. Diffuser plate, measure the redundancy and brightness of the backlight (front side and squint) and color unevenness. In the obtained light diffusing plate, the surface of the human light side is a chain shape having a concave-convex shape having an average inclination angle of H), and the surface on the light-emitting surface side is periodically formed. The convex portion is substantially in the shape of a triangular pyramid. The evaluation results of the obtained light diffusing plate are shown in Table 5 below. [Comparative Examples 43 to 50] The stamper was changed. On the other hand, a light diffusing plate was produced in the same manner as in the above-mentioned Example 9, and the degree of back light, uneven brightness (front and squint), and color unevenness were measured. In the known light diffusing plate, the surface on the light-incident surface side has a rough surface shape having an uneven shape with an average inclination angle of 10 degrees, and the surface on the light-emitting surface side has a substantially regular triangular pyramid shape in which the convex portion is periodically formed. The evaluation results of the obtained light diffusing plate are shown in Table 6 below. [Examples 51, 52, 53, 56, 57] As the pressed original sheets, the pressed original sheets i (Example 5), the pressed original sheets 12 (Example 52), the pressed original sheets 2 (Example 53), and the pressed original sheets were respectively used. 3 (Example 56), the original plate 4 was pressed (Example 57). 148960.doc -57-201109741 Other conditions were prepared in the same manner as in the above-described Example 3, and luminance, uneven brightness (front and squint), and color unevenness of the backlight were measured. In the obtained light-diffusing sheet, the surface on the light-incident surface side has a rough surface shape having an uneven shape having an average inclination angle of 10 degrees, and the surface on the light-emitting surface side is a periodically formed convex portion having a substantially triangular pyramid shape (a regular triangular frustum shape) Shape) (Refer to Fig. 21) The evaluation results of the obtained light diffusing plate are shown in Table 7 below. [Example 58] The pressed original plate 12 was used. On the other hand, a light-diffusing sheet was produced in the same manner as in the above-mentioned Example 5, and the degree of relief of the backlight, uneven brightness (front and squint), and color unevenness were measured. In the obtained light-diffusing sheet, the surface on the light-incident surface side has a rough surface shape having an uneven shape having an average inclination angle of 10 degrees, and the surface on the light-emitting surface side is a periodically formed convex portion having a substantially triangular pyramid shape (a regular triangular frustum shape) Shape) (see 21). "," The evaluation results of the obtained light-diffusing sheet are shown in the following Table 7. [Example 59] The pressed original plate 14 was used. Other conditions were the same as in the above-described Example 19, and a light diffusing plate was produced, and the brightness and brightness of the backlight were measured. The surface of the light-diffusing sheet of the obtained light-diffusing sheet is a rough surface having a concave-convex shape having an average inclination angle of 10 degrees, and the surface on the light-emitting surface side is periodically formed. The convex portion has a substantially triangular pyramid shape (a regular triangular frustum shape) (see Fig. 21). 148960.doc • 58· 201109741 The evaluation results of the obtained light diffusing plate are shown in the following Table 7. [Example 54] In Example 53, a light-diffusing sheet was produced in the same manner, and the light-diffusing sheet was mounted on the light-diffusing sheet, and a diffusion sheet, a sheet, and a brightness enhancement film were placed one on top of each other, and luminance and brightness unevenness (front and squint) were measured. The results of the evaluation are shown in the following Table 7. [Example 55] A light diffusing plate was produced in the same manner as in the above Example 53 and mounted in the LED backlight 1 'two lens sheets were placed on the light diffusing plate. 1 piece of brightness The film was measured for measurement of brightness, brightness unevenness (front and squint), and color unevenness. The evaluation results are shown in the following Table 7. [Comparative Example 23] The pressed original plate 13 was used. The stamper was changed so that the surface on the light incident side was changed. A light-diffusing sheet was produced in the same manner as in Example 1. The brightness of the backlight, uneven brightness (front and squint), and color unevenness were measured. The surface of the obtained light-diffusing sheet on the light-surface side was The smooth surface of the average tilt angle, and the surface on the light-emitting surface side is a substantially triangular pyramid shape (corner cone shape) formed periodically, and has a reversion reflection characteristic. As a result, the shell degree drops significantly. The brightness uniformity (both front and squint) was also inferior. The evaluation results are shown in the following Table 7. [Example 60] 148960.doc -59-201109741 Using the pressed original sheet 9, the same stamper as in Example 3 was used. In the same manner as in Example 1, a light diffusing plate was produced, and luminance, unevenness in brightness (front and squint), and color unevenness of the backlight were measured. In the obtained light diffusing plate, the surface on the light incident side had an average tilt angle of 10 degrees The rough surface shape of the uneven shape, the surface on the light-emitting surface side is a substantially triangular shape of a convex portion (a regular triangular frustum shape) (see 21). The evaluation results of the obtained light-diffusing sheet are shown in Table 8 below. [Example 61] The pressed original plate 10 was placed in a press mold shaped into a specific shape and put into a press, and pressed at a pressing plate temperature of 18 (TC, surface pressure of 1 〇〇 kg/cm 2 for 30 minutes). After that, the stamper is clamped into the pressed original plate! The stamper is replaced and placed in a water-cooled press and cooled for 10 minutes. After cooling, the thickness of the specific shape is taken out from the stamper 〇3 (a) Lens layer 9

成型之光擴散板。Formed light diffuser.

壳度不均(正面及斜視)以 與實施例1同樣地測定亮度、 及色不均。 示於下述表8。 將所得之光擴散板之評價結果矛 148960.doc -60. 201109741 [實施例62] 與上述實施例61同樣地製作(a)透鏡層,於其上重疊壓製 原板作為(b)擴散層,而形成分離層構成型之光擴散板。 與上述實施例61同樣地測定背光之亮度、亮度不均(正 面及斜視)以及色不均。 將所得之光擴散板之評價結果示於下述表8。 [實施例63〜66] 與上述實施例3同樣地製作光擴散板,分別使用led背 光2、3、4、5。 其他條件與實施例3同樣地測定背光之亮度、亮度不均 (正面及斜視)以及色不均。 將所得之光擴散板之評價結果示於下述表9。 [實施例67] 如圖22所示,於LED底座(PCB)上,將白色LED以LED間 隔nl : 5 5.8 mm、n2 : 32.2 mm之錯齒狀配置安裝1〇4個 (nl/n2=0.58(參照圖14)),製作畫面尺寸32〇x32〇 mm之 LED光源背光評價裝置。此時’平均LED間隔P為3 0 mm。 其次’於安裝有LED之LED底座(PCB)上,以雙面膠貼 附擴散反射率95%之Lumirror E6SL(東麗製造)作為反射薄 片,將反射薄片與LED最上部之間之距離h保持為1.9 mm(參照圖8)。繼而,以LED最上部與光擴散板之平均距 離Η成為20 mm之方式而將光反射板固定於反射薄片上 方’於光擴散板之上方配設2片擴散薄片,進而於上方配 設1片亮度提高薄片。上述光擴散板係與實施例3同樣地製 148960.doc -61 · 201109741 作於F值(對光擴散板表面所賦形之凸部三角錐形狀之底 面三角形之一邊、與點光源之格子所成的角)成為表示_5度 之角度之方式t裝於LED背光中。又,背光係於丨個LED中 流通20 mA之電流而點亮。 其後,將LED最上部與上述光擴散板之平均距離11每】 mm地縮紐,而求出正面、傾斜之亮度不均及色不均成為 ◎之表小距離’結果為1 8 mm。 將詳細之結果示於圖7。 再者,亮度不均之測定係於led點亮後,使背光老化i 小時之後進行。 將所得之光擴散板之評價結果示於下述表i 〇。 [實施例68〜77] 背光之LED配置與光擴散板之凸三角錐形狀所成之角: 變更F值,與實施例67同樣地將led最上部與上述光擴散 板之平均距離Η每1 mm地縮短,求出正面、傾斜之亮度不 均及色不均為◎之最小距離。 當上述F值為-2、0、2度時,於H= 16 mm時可獲得正 面、傾斜之亮度不均及色不均成為◎之優異之結果。 又’當F值為28、30、32度時,於14 mm時可獲得正 面 '傾斜之亮度不均及色不均成為◎之顯著優異之結果。 另方面,當F值為5、15、25、35度時,正面、傾斜之 亮度不均及色不均成為◎之最小距離為18 mm。 將所得之光擴散板之評價結果示於下述表1 0。 [實施例78〜80] 148960.doc •62· 201109741 變更壓模,除此以外,與實施例3同樣地製作光擴散 板’與實施例69同樣地將光擴散板安裝於背光中,將LED 最上部與上述光擴散板之平均距離Η每1 mm地縮短,求出 正面、傾斜之亮度不均及色不均成為◎之最小距離。 將所得之光擴散板之評價結果示於下述表1〇。 [實施例81] 將LED背光1之Η(自光源至光擴散板為止之距離)變更為 1 5 mm。 其他條件與上述實施例3同樣地製作光擴散板,測定背 光之亮度、亮度不均(正面及斜視)以及色不均。 將所得之光擴散板之評價結果示於下述表11。 [實施例82;) 將LED背光1之η(自光源至光擴散板為止之距離)變更為 15 mm。 又’將LED種類變更為LED-2。 其他條件與實施例3同樣地製作光擴散板,測定背光之 亮度、亮度不均(正面及斜視)以及色不均。 將所得之光擴散板之評價結果示於下述表11。 [實施例83] 將LED背光1之H(自光源至光擴散板為止之距離)變更為 15 mm。 又’將LED種類變更為LED-3。 其他條件與實施例3同樣地製作光擴散板,測定背光之 亮度、亮度不均(正面及斜視)以及色不均。 將所得之光擴散板之評價結果示於下述表11。 148960.doc -63- 201109741 背光特性 色不均 最大色差 X X 〇 ◎ ◎ ◎ 〇 〇 〇 〇 X X 0.0057 0.0055 _1 0.0045 0.0031 a ο d 0.0031 0.0047 0.0040 00042 0.0040 [α〇052 0.0054 亮度不均值 _1 斜視 X X 〇 ◎ ◎ ◎ 〇 〇 〇 〇 X X 0.0172 0.0124 0.0048 0.0022 0.0020 0.⑻21 0.0045 0.0036 0.0037 0.0042 0.0071 0.0112 正面 X X 〇 ◎ ◎ ◎ 〇 ◎ ◎ 〇 〇 X 0.0158 0.0108 0.0044 0.0020 0.0017 0.0018 0.0042 0.0023 0.0025 0.0036 0.0038 0.0114 cd/cm2 5350 5340 __J 5340 5320 5330 5300 5010 5310 5300 5340 5350 5330 ※ η S 5 % =tt j BLU規格 P/H I _1 00 00 00 00 -: 00 00 -: 00 00 二 00 oo —· 1.88 1.88 00 00 二 00 00 1.88 00 oo 二 00 00 “ X mm \Ω v〇 Ό v〇 ο Q-. mm S 沄 S 沄 s 光擴散板特性 層構成※ i i i s i 9 i s i i 擴散率 έ? (N (N CN (N (N &lt;N CN (N CN &lt;N &lt;N (N 全光線透射率 〇 r-&gt; Q\ ΓΛ OS ΓΟ OS m 〇\ 〇\ m ON ΓΟ ON m ON m ON m OS E- 00 Ό oo s 00 SO 00 v〇 00 o 00 00 00 00 00 00 00 反射率 oi r〇 PO P; 00 V) s〇 ON •n m »〇 m 入射面i D ttsi 〇 o o o 〇 〇 o O o o o 〇 出射面賦形形狀 &amp;〇 ε — 一 — — — — — — Ό ε =L 〇 o o o o o o o o o o o 〇 ε a. — — — — — — ε =t OS 00 oo OS 00 Os 00 &lt;J\ 00 On 00 〇\ 00 On 00 ON 00 〇\ 00 ON 00 ON 00 &lt; ON Ό 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 ON o\ Ο Ό s s s 55.5 54.5 m cs JO 凸凹部形狀 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 i大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 比較例1 比較例2 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 實施例8 比較例3 比較例4 -64· 148960.doc 201109741 表1中’所5胃「光學犋配設※」巾所示之「#l」,係指光 擴散板/擴散薄片/擴散薄片/亮度提高膜之構成。 i述擴散薄片為BS-912(惠和股份有限公司製造)。 上述免度提尚膜為DBEF-D400(住友3M公司製造)。 表1中’所謂「層構成※」中所示之「※1」,係指單一 層。 148960.doc •65· 201109741The unevenness of the shell (front and squint) was measured for luminance and color unevenness in the same manner as in the first embodiment. Shown in Table 8 below. Evaluation result of the obtained light-diffusing sheet 148960.doc -60.201109741 [Example 62] A (a) lens layer was produced in the same manner as in the above-described Example 61, and the original plate was superposed thereon as (b) a diffusion layer. A light diffusing plate of a separation layer configuration type is formed. In the same manner as in the above Example 61, luminance, luminance unevenness (front and squint), and color unevenness of the backlight were measured. The evaluation results of the obtained light diffusing plate are shown in Table 8 below. [Examples 63 to 66] A light diffusing plate was produced in the same manner as in the above Example 3, and led back lights 2, 3, 4, and 5 were used, respectively. In the same manner as in Example 3, the luminance, unevenness in brightness (front and squint), and color unevenness of the backlight were measured in the same manner. The evaluation results of the obtained light diffusing plate are shown in Table 9 below. [Embodiment 67] As shown in Fig. 22, on a LED base (PCB), white LEDs are mounted in an erroneous configuration with LED spacing nl: 5 5.8 mm, n2: 32.2 mm (nl/n2= 0.58 (refer to FIG. 14)), an LED light source backlight evaluation device having a screen size of 32 〇 x 32 〇 mm was produced. At this time, the average LED interval P is 30 mm. Secondly, on the LED base (PCB) on which the LED is mounted, Lumirror E6SL (manufactured by Toray Industries, Inc.) with a diffuse reflectance of 95% is attached as a reflective sheet, and the distance h between the reflective sheet and the uppermost portion of the LED is maintained. It is 1.9 mm (refer to Figure 8). Then, the light reflection plate is fixed to the upper side of the reflection sheet so that the average distance Η between the uppermost portion of the LED and the light diffusion plate is 20 mm. Two diffusion sheets are disposed above the light diffusion plate, and one piece is disposed above the light diffusion plate. Brightness increases the sheet. In the same manner as in the third embodiment, the light diffusing plate is made of 148960.doc -61 · 201109741 as the F value (one side of the bottom triangular shape of the convex triangular pyramid shape formed on the surface of the light diffusing plate, and the lattice of the point light source) The angle formed into the angle of _5 degrees is mounted in the LED backlight. Further, the backlight is lit by circulating a current of 20 mA in one of the LEDs. Thereafter, the average distance 11 between the uppermost portion of the LED and the light diffusing plate was reduced by φ mm, and the unevenness of the front and the inclination and the unevenness of the color were determined as a small distance ◎, which was 18 mm. The detailed results are shown in Fig. 7. Furthermore, the measurement of the uneven brightness is performed after the LED is turned on and the backlight is aged for one hour. The evaluation results of the obtained light diffusing plate are shown in the following Table i. [Examples 68 to 77] The angle between the LED arrangement of the backlight and the convex triangular pyramid shape of the light diffusing plate: The F value was changed, and the average distance between the uppermost portion of the LED and the light diffusing plate was changed every 1 in the same manner as in the example 67. The mm was shortened, and the minimum distance between the front side and the inclined brightness unevenness and the color unevenness was determined. When the F value is -2, 0, or 2 degrees, when H = 16 mm, the unevenness of the front surface and the inclination and the unevenness of the color are obtained as excellent results. Further, when the F value is 28, 30, or 32 degrees, at 14 mm, the unevenness of the luminance of the front surface and the color unevenness are remarkably excellent. On the other hand, when the F value is 5, 15, 25, or 35 degrees, the unevenness of the front and the inclination and the unevenness of the color are ◎, and the minimum distance is 18 mm. The evaluation results of the obtained light diffusing plate are shown in Table 10 below. [Examples 78 to 80] 148960.doc • 62·201109741 A light diffusing plate was produced in the same manner as in Example 3 except that the stamper was changed. The light diffusing plate was attached to the backlight in the same manner as in Example 69, and the LED was mounted. The average distance 最 between the uppermost portion and the light diffusing plate is shortened by 1 mm, and the luminance unevenness of the front surface and the tilt and the minimum unevenness of the color unevenness are obtained. The evaluation results of the obtained light diffusing plate are shown in Table 1 below. [Example 81] The enthalpy of the LED backlight 1 (distance from the light source to the light diffusing plate) was changed to 15 mm. On the other hand, a light-diffusing sheet was produced in the same manner as in the above-mentioned Example 3, and luminance, uneven brightness (front and squint), and color unevenness of the backlight were measured. The evaluation results of the obtained light diffusing plate are shown in Table 11 below. [Example 82;] The η (the distance from the light source to the light diffusion plate) of the LED backlight 1 was changed to 15 mm. Also, change the LED type to LED-2. On the other hand, a light diffusing plate was produced in the same manner as in Example 3, and luminance, uneven brightness (front and squint), and color unevenness of the backlight were measured. The evaluation results of the obtained light diffusing plate are shown in Table 11 below. [Example 83] The H of the LED backlight 1 (the distance from the light source to the light diffusing plate) was changed to 15 mm. Also, change the LED type to LED-3. On the other hand, a light diffusing plate was produced in the same manner as in Example 3, and luminance, uneven brightness (front and squint), and color unevenness of the backlight were measured. The evaluation results of the obtained light diffusing plate are shown in Table 11 below. 148960.doc -63- 201109741 Backlight characteristic color unevenness maximum color difference XX 〇 ◎ ◎ ◎ 〇〇〇〇 XX 0.0057 0.0055 _1 0.0045 0.0031 a ο d 0.0031 0.0047 0.0040 00042 0.0040 [α〇052 0.0054 brightness unevenness value _1 squint XX 〇 ◎ ◎ ◎ 〇〇〇〇 XX 0.0172 0.0124 0.0048 0.0022 0.0020 0. (8) 21 0.0045 0.0036 0.0037 0.0042 0.0071 0.0112 Front XX 〇 ◎ ◎ ◎ 〇 ◎ ◎ X 0.0158 0.0108 0.0044 0.0020 0.0017 0.0018 0.0042 0.0023 0.0025 0.0036 0.0038 0.0114 cd/cm2 5350 5340 __J 5340 5320 5330 5300 5010 5310 5300 5340 5350 5330 ※ η S 5 % =tt j BLU specification P/HI _1 00 00 00 00 -: 00 00 -: 00 00 2 00 oo —· 1.88 1.88 00 00 2 00 00 1.88 00 oo 2000 00" X mm \Ω v〇Ό v〇ο Q-. mm S 沄S 沄s Light diffuser characteristic layer composition ※ iiisi 9 isii Diffusion rate έ? (N (N CN (N (N &lt;;N CN (N CN &lt;N &lt;N (N total light transmittance 〇r-&gt; Q\ ΓΛ OS ΓΟ OS m 〇\ 〇\ m ON ΓΟ ON m ON m ON m OS E- 00 Ό oo s 00 SO 00 v〇 00 o 00 00 00 00 00 00 00 Reflectance oi r〇PO P; 00 V) s〇ON •nm »〇m Incident surface i D ttsi 〇ooo 〇〇o O ooo 〇Outlet shape shape &amp;〇ε — 一 — — — — — — Ό ε =L 〇ooooooooooo 〇ε a. — — — — — — ε =t OS 00 oo OS 00 Os 00 &lt;J\ 00 On 00 〇\ 00 On 00 ON 00 〇\ 00 ON 00 ON 00 &lt; ON Ό 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 ON o\ Ο Ό sss 55.5 54.5 m cs JO convex and concave shape roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex Triangular cone substantially convex triangular cone substantially convex triangular cone substantially convex triangular cone i substantially convex triangular cone substantially convex triangular cone substantially convex triangular cone substantially convex triangular cone comparative example 1 Comparative Example 2 Example 1 Example 2 Example 3 Example 4 Implementation Example 5 Example 6 Example 7 Example 8 Comparative Example 3 Comparative Example 4 -64· 148960.doc 201109741 The "#l" shown in the '5 stomach "optical 犋 ※ ※ ※" towel in Table 1 refers to light. Diffusion plate / diffusion sheet / diffusion sheet / brightness Constituting the film. The diffusion sheet is BS-912 (manufactured by Huihe Co., Ltd.). The above-mentioned exemption film is DBEF-D400 (manufactured by Sumitomo 3M Co., Ltd.). "※1" shown in the "layer composition ※" in Table 1 means a single layer. 148960.doc •65· 201109741

(N 背光特性 色不均 最大色差 X 〇 ◎ ◎ ◎ ◎ 〇 〇 〇 〇 X 0.0056 0.0046 0.0033 0.0028 0.0028 0.0032 0.0045 0.0043 0.0044 0.0045 0.0053 亮度不均值 斜視 X 〇 ◎ ◎ ◎ ◎ 〇 〇 〇 〇 X 0.0152 0.0049 0.0027 0.0021 0.0020 0.0021 0.0043 0.0037 :0.0049 00109 正面 X 〇 ◎ ◎ ◎ ◎ 〇 ◎ ◎ 〇 〇 0.0144 0.0047 0.0024 0.0017 0.0016 0.0018 〇&gt; m ο ο 0.0023 w 0.0039 0.0048 亮^ cd/cm2 5340 5340 5330 5340 5330 5310 5000 5320 1 5300 5320 5330 光學膜配設※ % S % % :«: BLU規格 Ρ/Η 00 oo 00 00 二 1.88 00 00 二 00 00 1.88 00 00 00 00 二 00 00 “ 00 oo 00 00 — X mm VO VO VO v〇 ο VO VO ν〇 CU mm s 沄 光擴散板特性 1 層構成※ i i i i 5 S s 擴散率 (N fN &lt;N &lt;N fN (N (Ν (N (N (Ν &lt;N 全光線透射率 r*-&gt; OS m ON ΓΛ ON ΓΛ ON CO Qs 〇\ ΟΝ ro ON m 〇\ ON ON Η \〇 OO v〇 00 00 Ό 00 \r\ 00 00 00 Ό 00 v〇 00 ss 00 反射率 οί so m 00 »n 〇\ v£&gt; SO S »η 艺 00 入射面 D o o o o 〇 o Ο Ο o o o 出射面賦形形狀 GO B η — 一 — — — 一 — ___ ! ;, rmm ο Ε 2L o O o o o o ο ο o o o u Β =L — 一 — — — — — 一 — — — ε =L Os OO ON 00 OS 00 OS 00 Os 00 ON 00 α\ 00 〇\ 00 ON 00 00 ON oo &lt; m ΡΛ m ΡΛ r^i νο ΓΛ 1.63 m v〇 &lt;x&gt; Ό r-&gt; v〇 S 55.5 V) 54.5 凸凹部形狀 大致凸三角錐 大致凸三角錐 ... 大致凸三角錐 大致凸三角錐 大致£b三角錐 大致β三角錐 大致凸三角錐 大致凸三角錐 1 大致凸三角錐 大致凸三角錐 大致凸三角錐 比較例5 實施例9 實施例10 實施例11 實施例12 實施例13 實施例14 實施例15 實施例16 實施例17 比較例6 -66· 148960.doc 201109741 表2 t ’所謂「光學膜配設※」中所示之Γ 」,係指光 擴散板/擴散薄片/擴散薄片/亮度提高膜之構成。 上述擴散薄片為BS_912(惠和股份有限公司製造)。 上述亮度提高膜為DBEF-D400(住友3M公司製造)。 表2中’所謂「層構成※」中所示之「※1」,係指單一 層。 148960.doc •67· 201109741 m 背光特性 色不均 最大色差 ◎ X 〇 〇 〇 〇 〇 X X 〇 〇 〇 X X 0.0028 0.0055 _I 0.0044 0.0038 0.0042 0.0048 0.0043 0.0052 0.0052 0.0047 0.0043 Ό.0049 0.0052 亮度不均值 | 斜視I ◎ X 〇 ◎ ◎ Ο 〇 X X 〇 ◎ 〇 X X 0.0020 0.0121 _ί 0.0048 0.0033 0.0035 0.0045 0.0048 0.0082 0.0071 0.0046 0.0034 0.0047 0.0063 0.0066 正面 ◎ X 〇 ◎ ◎ 〇 〇 〇 X 〇 ◎ 〇 X X 0.0016 0.0101 _1 0.0046 0.0028 0.0033 0.0041 0.0042 0.0047 0.0063 0.0040 0.0033 0.0044 1_ 0.0059 0.0061 亮度 cd/cm2 5470 5240 ; _1 5250 5240 5240 4920 5230 5230 5050 5060 5070 1 5040 4730 4900 ※ a Ξ % % % % BLU規格 P/H 1.88 00 00 二 00 00 00 CO “ 00 00 — 00 00 00 00 “ 00 00 二 1.88 1.88 00 oo 1.88 00 00 二 1.88 X mm ^5 \〇 VO ο Ό v〇 〇 \D 0^ mm s 沄 光擴散板特性 i 1 1 層構成※ i i i s i i S i i 擴散率^ 〇0 cs &lt;N CN (N (N (Ν (N &lt;Ν &lt;N &lt;N &lt;N (N CN 全光線透射率 -D ο m os cn ON m ON ON ΓΛ 〇\ m Os Γ〇 σ\ m Ο m σ\ ΓΛ Os m ON m ON m 〇 Η s; V) 00 00 00 00 00 ό 00 Ό 00 00 *r&gt; 00 00 irj 00 00 00 反射率 oC 00 Ό tn m V-J &lt;n jn 妄 α\ m *r\ 写 00 m 入射面 D Ο 〇 o 〇 〇 Ο o ο ο Ο o o o o 出射面賦形形狀 Ofl ε — — — — 一 一 — — — — 一 — . *〇 ε Λ. Ο 〇 o o o ο o ο ο ο o o o o (J Β ZL — — — — — — 一 — — — — — ,, JD ε η ο 00 OS 00 ON 00 ON 00 o 00 ΟΝ 00 Os 00 ΟΝ 00 OS 00 〇\ 00 o\ 00 ON 00 ON 00 o\ 00 &lt; 1.71 ΓΛ ro «η r-j W-J m 1.53 1.53 1.49 1.49 1.49 1.49 I 1.49 ① !?; (N VO 55.5 «ο «ο &lt;Ν •Ο s 00 v〇 »n 凸凹部形狀 大致凸三角錐 1 大致凸三角錐 — _1 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 1大致凸三角錐 實施例18 比較^ 實施例19 實施例20 實施例21 實施例22 實施例23 比較例8 比較例9 實施例24 實施例25 實施例26 比較例10 比較例11 -68- 148960.doc 201109741 表3中’所謂「光學膜配設※」中所示之「#丨」,係指光 擴散板/擴散薄片/擴散薄片/亮度提高膜之構成。 上述擴散薄片為BS_912(惠和股份有限公司製造)。 上述亮度提高膜為DBEF-D400(住友3M公司製造)。 表3中,所謂「層構成※」中所示之「※丨」,係指單一 層0 148960.doc •69· 201109741 *&lt; 寸 背光特性 色不均 最大色差 X X X X X X X X X X 〇 0.0061 0.0059 0.0060 0.0059 0.0057 0.0055 0.0059 0.0058 0.0058 0.0052 0.0040 1 亮度不均值 斜視 X X X X X X X X X X 〇 0.0251 0.0198 0.0197 0.0211 0.0145 0.0114 0.0241 0.0182 0.0185 0.0055 ;0.0036 1 正面 X X X X X X X X X 〇 ◎ 0.0229 0.0177 0.0171 0.0158 0.0091 0.0103 0.0215 0.0179 0.0175 0.0047 0.0028 1 亮度 cd/cm2 1 5290 5320 5310 5330 5320 5320 5320 5330 5430 5010 4650 光學膜 =tt % % % &lt;N % m =tfc BLU規格 P/H 1.88 1.88 00 00 00 〇0 -: 1.88 00 oo 一: 00 oo 1.88 00 OO “ OO 00 00 00 二 X mm VO v£&gt; VO ο CU mm 沄 s 沄 光擴散板特性 層構成 i i i i s S i i 擴散率 (/&gt; (N &lt;N &lt;N CN CN (N (N (N (N &lt;N 透射率 m Os m m Os 〇\ m OS m σ\ m Os m Os OS m On 反射率 o &lt;N &lt;N ΓΛ 00 m ON &lt;N 00 m Os CN m ΓΛ 〇\ m 〇\ &lt;J\ m 入射面 ! P 〇 〇 o 〇 o 〇 o 〇 o o 〇 出射面賦形形狀 00 ε . 麵 麵 _ Ό ε =L o o O o o O o 〇 〇 〇 O B a . , , _ _ — J3 ε a as 00 〇\ 00 ON 00 a\ 00 〇\ 00 〇\ 00 Os 00 Os 00 ON 00 Os 00 Os 00 &lt; 1.59 1.59 Os 1.59 1.59 1.59 1.59 1.59 o Os 1.59 s v-&gt; § ir&gt; 凸凹部形狀 大致凹三角錐 大致凹三角錐 大致凹三角錐 大致凸四角錐 大致凸四角錐 大致凸四角錐 大致凹四角錐 大致凹四角錐 大致凹四角雖 大致凹四角錐 大致凹四角錐 比較例12 比較例13 比較例14 比較例15 比較例16 比較例17 比較例18 比較例19 比較例20 比較例21 比較例22 -70- 148960.doc 201109741 表4中,所謂「光學膜配設※」中所示之「#2」,係指光 擴散板/擴散薄片/擴散薄片/稜鏡片/亮度提高膜之構成。 表4中’所謂「光學膜配設※」中所示之「#3」,係指光 擴散板/擴散薄片/擴散薄片/擴散薄片/棱鏡片/亮度提高膜 之構成。 上述擴散薄片為BS-9 12(惠和股份有限公司製造)。 上述稜鏡片為BEFIII(住友3M公司製造)。 上述亮度提高膜為DBEF-D400(住友3M公司製造)。 表4中,所謂「層構成※」中所示之「※1」,係指單 層。 148960.doc 201109741 背光特性 神I ◎ ◎ ◎ ◎ 〇 〇 〇 〇 〇 ◎ ◎ ◎ ◎ 〇 〇 〇 〇 〇 0.0031 ι a ο ο 0.0033 0.0034 0.0041 0.0044 0.0046 0.0048 0.0049 0.0033 0.0031 f〇0032 0.0036 0.⑻ 42 丨 0.0044 0.0045 0.0047 0.0048 亮度不均值 斜視 ◎ ◎ ◎ ◎ 〇 〇 〇 〇 〇 ◎ ◎ ◎ ◎ 〇 〇 〇 〇 〇 0.0023 ι 0.0020 0.0023 0.0033 0.0038 0.0041 0.0043 0.0046 0.0048 0.0023 0.0021 10.0021 0.0033 0.0037 0.0040 0.⑻ 45 0.0048 0.0049 正面 ◎ ◎ ◎ ◎ ◎ ◎ 〇 〇 〇 ◎ ◎ ◎ ◎ ◎ ◎ 〇 〇 〇 0.0020 ι 0.0017 s ο ο 0.0027 0.0031 0.0035 ο ο ο 0.0044 0.0046 0.0021 0.0018 10.0020 0.0029 0.0033 Ό.0034 0.0041 0.0045 0.0047 亮度 cd/cm2 5010 1 5330 5280 5310 5290 5290 5320 5320 5310 4980 5300 丨 5310 5330 5310 '5320 5340 5330 5340 光學膜配設※ % % % S =tt BLU規格 5 CU 00 00 二 00 00 00 00 “ 00 00 00 00 “ 00 〇〇 00 00 “ 〇〇 οο SS 00 〇0 00 00 00 00 “ 〇〇 00 二 00 00 二 00 00 00 00 00 00 X S ε VO VO ο Ό \〇 VO CU ε ε s 沄 光擴散板特性 層構成 i i i i i i i i i i i i i i i i i 擴散率 C/D ίΝ (Ν &lt;Ν (N (N (N (Ν (Ν (N (N (N CN (N CN CS (N (N cs 全光線透射率 自 m ΟΝ ΓΛ Os ΓΛ ON m ON CO 〇\ m ON ΓΛ Ο m ON S ON Os Os m 〇\ m OS m OS CO OS m a\ m Os Η Ό 00 VO 00 VO 00 ο 00 00 Ό 00 \ο 00 Ό 00 VO 00 v〇 οο v〇 00 SO 00 00 v〇 00 VO 00 v〇 00 S 反射率 c&lt; σ\ \ο 'Ο 3 ν〇 写 妄 00 VO ON Ό V*J m \ri ζ- 等 JO 入射面 P ο ο Ο ο 〇 ο Ο ο 〇 Ο Ο o o o ο o o o 出射面賦形形狀 | to ε η ο — — ο 〇 s s Ο — 厂, o o s s 沄 α ε α ο ο Ο ο 〇 ο Ο ο ο ο o o o ο o O 沄 ο ε α ο — ν〇 Ό m 宕 s ο Ό v〇 ΡΛ r*i s s χ&gt; ε ZL σ\ 00 Μ Γ- p- ο ο § 〇\ 00 s r- P o o &lt; ΟΝ os «ο ON tr&gt; Os Ό Os ΟΝ V*) ON «Τϊ 〇\ 〇\ OS «η 〇\ w-&gt; On »n ON OS OS OS φ !〇 55.5 55.5 55.5 55.5 55.5 1 55.5 55.5 55.5 55.5 凸凹部形狀 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐ι 大致凸三角錐 大致凸三角錐 1大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 實施例27 t施例3 實施例28 ! 實施例29 實施例30 實施例31 實施例32 實施例33 實施例34 1實施例35j 1實施例4 施例36j 施例37 I 實施例38 實施例39 實施例40 實施例41 實施例42 -72- 148960.doc 201109741 表5中,所謂「光學膜配設※」中所示之「#lj’係指光 擴散板/擴政薄片/擴散薄片/亮度提高膜之構成。 .. 上述擴散薄片為BS-9 12(惠和股份有限公句製造)’上述 亮度提高膜為DBEF-D400(住友3M公司製造)。 表5中 層0 所謂「層構成」 中所示之「※1」,係指單— 148960.doc -73· 201109741 背光特性 色不均 最大色差 ◎ ◎ ◎ 〇 Ο 〇 〇 〇 0.0033 0.0028 0.0032 0.0034 0.0039 0.0043 0.0045 0.0045 ! 0.0048 亮度不均值 斜視 ◎ ◎ ◎ ◎ 〇 〇 〇 〇· 〇 0.0024 i _1 0.0020 0.0021 0.0024 〇 〇 0.0039 0.0044 丨0.0045 0.0047 正面 ◎ ◎ ◎ ◎ ◎ ◎ 〇 〇 〇 0.0019 0.0016 0.0020 「 0.0023 0.0029 1 0.0033 0.0041 0.0042 0.0045 亮度 cd/cm2 5020 5330 5330 5320 5340 5350 5340 丨5350 5350 光學膜配設※ =tt ^t: :«: % % % 7 BLU規格 P/H 1.88 00 00 二 1.88 00 oo 二 00 oo oo oo 1.88 1.88 二 X mm v〇 VO VO 〇- mm 沄 s s s 光擴散板特性 層構成 i i i i i i i i i 擴散率 00 (N n cs (N (N (N CM (N CN 全光線透射率 * m ON ro ON ΓΛ as m 〇\ 〇\ m ON m a\ m Ο m 〇\ 卜 VO 00 00 o 00 v〇 00 Ό 00 v〇 OO Ό 00 s 反射率 0^ o VO o fS 〇\ «η m un 入射面 口 o o 〇 〇 o O 〇 ο 〇 出射面賦形形狀 ε =L o — o o s 〇 B a. o o o o o o o ο 〇 £ a. o — v〇 VO 宕 宕 _〇 ε λ. σν 〇〇 s s r- o ο &lt; m m m v〇 ΓΛ V〇 m v〇 VO s S &lt;x&gt; 5 凸凹部形狀 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致£b三角錐 大致凸三角錐 大致凸三角錐 大致&amp;三角雖 1 大致凸三角錐 大致凸三角錐 實施例43 實施例12 實施例44 實施例45 實施例46 實施例47 實施例48 實施例49 實施例50 -74 - 148960.doc 201109741 表6中’所謂「光學膜配設※」中所示之「# 1」,係指光 擴散板/擴散薄片/擴散薄片/亮度提高膜之構成。 上述擴散薄片為BS-912(惠和股份有限公司製造),上述 亮度提高膜為DBEF-D400(住友3M公司製造)。 表6中,所謂「層構成」中所示之「※1」,係指單一 層0 148960.doc -75- 201109741 背光特性 色不均 最大色差 〇 〇 ◎ ◎ ◎ 〇 〇 〇 〇 X 0.0045 0.0038 0.0030 0.0029 0.0029 0.0037 0.0044 0.0047 0.0049 j 0.0058 亮度不均值 斜視 〇 ◎ ◎ ◎ ◎ ◎ 〇 〇 〇 X 0.0048 0.0034 0.0020 0.0019 0.0020 0.0034 0.0047 0.0045 0.0048 1 0.0144 正面 〇 ◎ ◎ ◎ ◎ ◎ 〇 〇 〇 X 0.0047 0.0033 0.0016 0.0015 0.0015 0.0029 0.0045 0.0043 0.0045 0.0125 亮度 cd/cm2 5100 5280 5310 5430 5380 5360 5340 4880 4860 4620 光學膜配設※ 5 (Ν % 2 % BLU規格 P/H 00 oo 1.88 00 00 二 00 00 — 1.88 s§ 一· 1.88 1.88 1.88 :1.88 X mm &lt;〇 \〇 \〇 VO CU mm s s 光擴散板特性 層構成 i i i i i i i i i i 擴散率 C/3 fS 卜 卜 卜 00 (N v〇 m Ό V*J (N 全光線透射率 Λ 3; σ! s; 00 m Os ΓΛ 〇\ m 〇s Η 冢 m 00 ΓΟ 00 m 00 g JO 5; tn ON 反射率 οί 00 VO VO W-ί v〇 v〇 un U&quot;l |〇 «Λ» (N 入射面 D 〇 ο ο ο ο 〇 o o Ο 〇 出射面賦形形狀 ϋύ E d. — 一 一 — — 一 o T3 B a o ο ο ο ο o o o Ο o Ο S Λ 一 ,. — , . o •D ε a. Ό\ 00 ο 00 σ\ 00 〇\ 00 〇\ 00 s ON 00 OS 00 σ\ 00 100 &lt; 1.59 1.59 1.59 1.59 1.59 5; On Os in Γ*-&gt; ν&gt; 1.49 Ο 5 5 5 «η «〇 ιη •ο 凸凹部形狀 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 i大致凸三角錐 實施例51 實施例52 實施例53 實施例54 實施例55 實施例56 實施例57 實施例58 實施例59 比較例23 -76- 148960.doc 201109741 係指光 德指光 係指光 指單/ 表7中’所謂「光學膜配設※」中所示之「#1 _ι 擴散板/擴散薄片/擴散薄片/亮度提高膜之構成。 表7中,所謂「光學膜配設※」中所示之「#2」 擴散板/擴散薄片/稜鏡片/亮度提高膜之構成。 表7中,所謂「光學膜配設※」中所示之「#3 j ’ 擴散板/透鏡薄片/透鏡薄片/亮度提高膜之構成。 表7中,所謂「層構成」中所示之「※1」,係 層0 上述擴散薄片為BS-912(惠和股份有限公司製造)° 上述稜鏡片為BEFIII(住友3M公司製造)》 上述透鏡薄片為PTR733(Shinwha Intertek公司製造)。 上述亮度提高膜為DBEF-D400(住友3M公司製造)。 148960.doc •77· 201109741 oo 背光特性 色不均 最大色差 ◎ ◎ ◎ 0.0028 0.0029 0.0029 亮度不均值 斜視 ◎ ◎ ◎ 0.0021 0.0022 0.0022 正面 ◎ ◎ ◎ 0.0018 0.0019 0.0018 亮度 cd/cm2 5310 5300 5340 光學膜配設※ % BLU規格 P/H 00 00 二 00 00 二 00 00 X mm o CU mm 沄 沄 光擴散板特性 層構成 &lt;N ※ rf ※ 擴散率 00 (N &lt;N (N 全光線透射率 m σ\ O CO ON Η V~) 00 s 00 反射率 U, s s 入射面 D o o o 出射面賦形形狀 ε — , — Ό ε =L o o o U B , ε =L 00 00 o 00 &lt; 1.59 1.59 1.59 Φ 凸凹部形狀 大致凸三角錐 大致凸三角錐 大致凸三角錐 實施例60 實施例61 實施例62 148960.doc -78 201109741 表8中,所謂「光學膜配設※」中所示之「#1 ^ 擴散板/擴散薄片/擴散薄片/亮度提高膜之構成。」係指光 係指2種2層 表8中’所謂「層構成」中所示之「※之」, 擴散板。 表8中,所謂「層構成」中所示之「※3」,係指賦形膜 賦形無擴散板之構成。 表8中’所謂「層構成」中所示之「※4」,係指赋形無 擴散板+賦形膜之構成。 上述擴散薄片為BS-912(惠和股份有限公司製造)。 上述亮度提高膜為DBEF-D400(住友3M公司製造)。 148960.doc 79- 201109741(N backlight characteristic color unevenness maximum color difference X 〇 ◎ ◎ ◎ ◎ 〇〇〇〇 X 0.0056 0.0046 0.0033 0.0028 0.0028 0.0032 0.0045 0.0043 0.0044 0.0045 0.0053 Brightness unevenness squint X 〇 ◎ ◎ ◎ ◎ 〇〇〇〇 X 0.0152 0.0049 0.0027 0.0021 0.0020 0.0021 0.0043 0.0037 :0.0049 00109 Front X 〇 ◎ ◎ ◎ ◎ 〇 ◎ ◎ 〇〇 0.0144 0.0047 0.0024 0.0017 0.0016 0.0018 〇&gt; m ο ο 0.0023 w 0.0039 0.0048 Bright ^ cd/cm2 5340 5340 5330 5340 5330 5310 5000 5320 1 5300 5320 5330 Optical film arrangement ※ % S % % : «: BLU size Ρ / Η 00 oo 00 00 21.88 00 00 2 00 00 1.88 00 00 00 00 2 00 00 " 00 oo 00 00 — X mm VO VO VO v 〇ο VO VO ν〇CU mm s Twilight diffuser characteristics 1 layer composition ※ iiii 5 S s diffusivity (N fN &lt; N &lt; N fN (N (Ν (N (N (Ν &lt; N total light transmission) Rate r*-&gt; OS m ON ΓΛ ON ΓΛ ON CO Qs 〇\ ΟΝ ro ON m 〇\ ON ON Η \〇OO v〇00 00 Ό 00 \r\ 00 00 00 Ό 00 v〇00 ss 00 Reflectance Ίί so m 00 »n 〇\ v£ &gt; SO S » η Art 00 Incident plane D oooo 〇o Ο Ο ooo Exit surface shaping shape GO B η — one — — — one — ___ ! ;, rmm ο Ε 2L o O oooo ο ο ooou Β =L — One — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — &lt;x&gt; Ό r-&gt; v〇S 55.5 V) 54.5 convex and concave shape substantially convex triangular cone substantially convex triangular cone... roughly convex triangular cone substantially convex triangular cone roughly £b triangular cone roughly β triangular cone substantially convex triangle Cone substantially convex triangular cone 1 substantially convex triangular cone substantially convex triangular cone substantially convex triangular cone Comparative Example 5 Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 Example 15 Example 16 Example 17 Comparative Example 6 -66· 148960.doc 201109741 Table 2 t ′′ “Optical film arrangement ※” is a structure of a light diffusing plate/diffusion sheet/diffusion sheet/brightness improving film. The above diffusion sheet is BS_912 (manufactured by Huihe Co., Ltd.). The brightness enhancement film described above is DBEF-D400 (manufactured by Sumitomo 3M Co., Ltd.). In the table 2, "※1" as shown in the "layer composition ※" refers to a single layer. 148960.doc •67· 201109741 m Backlight characteristic color unevenness maximum color difference ◎ X 〇〇〇〇〇XX 〇〇〇XX 0.0028 0.0055 _I 0.0044 0.0038 0.0042 0.0048 0.0043 0.0052 0.0052 0.0047 0.0043 Ό.0049 0.0052 Brightness unevenness | Strabismus I ◎ X 〇 ◎ ◎ Ο 〇 XX 〇 ◎ 〇 XX 0.0020 0.0121 _ί 0.0048 0.0033 0.0035 0.0045 0.0048 0.0082 0.0071 0.0046 0.0034 0.0047 0.0063 0.0066 Front ◎ X 〇 ◎ ◎ 〇〇〇 X 〇 ◎ 〇 XX 0.0016 0.0101 _1 0.0046 0.0028 0.0033 0.0041 0.0042 0.0047 0.0063 0.0040 0.0033 0.0044 1_ 0.0059 0.0061 Brightness cd/cm2 5470 5240 ; _1 5250 5240 5240 4920 5230 5230 5050 5060 5070 1 5040 4730 4900 ※ a Ξ % % % % BLU specification P/H 1.88 00 00 2 00 00 00 CO “ 00 00 — 00 00 00 00 “ 00 00 21.88 1.88 00 oo 1.88 00 00 21.88 X mm ^5 \〇VO ο Ό v〇〇\D 0^ mm s Twilight diffuser characteristics i 1 1 layer composition ※ iiisii S ii Diffusion rate ^ 〇0 cs &lt;N CN (N (N (Ν (N &lt;Ν &lt;N &lt;N &lt;N (N CN) Rate -D ο m os cn ON m ON ON ΓΛ 〇\ m Os Γ〇σ\ m Ο m σ\ ΓΛ Os m ON m ON m 〇Η s; V) 00 00 00 00 00 ό 00 Ό 00 00 * r&gt; 00 00 irj 00 00 00 Reflectance oC 00 Ό tn m VJ &lt;n jn 妄α\ m *r\ Write 00 m Incident plane D Ο 〇〇Οo 〇〇Ο o ο ο Ο oooo Exit surface shaping shape Ofl ε — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 00 OS 00 ON 00 ON 00 o 00 ΟΝ 00 Os 00 ΟΝ 00 OS 00 〇\ 00 o\ 00 ON 00 ON 00 o\ 00 &lt; 1.71 ΓΛ ro «η rj WJ m 1.53 1.53 1.49 1.49 1.49 1.49 I 1.49 1 ! (N VO 55.5 «ο «ο &lt;Ν •Ο s 00 v〇»n convex and concave shape roughly convex triangular cone 1 roughly convex triangular cone - _1 roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangle Cone substantially convex triangular cone substantially convex triangular cone substantially convex triangular cone substantially convex triangular cone substantially convex triangular cone substantially convex triangular cone substantially convex triangular cone 1 roughly convex triangle Example 18 Comparison Example 19 Example 20 Example 21 Example 22 Example 23 Comparative Example 8 Comparative Example 9 Example 24 Example 25 Example 26 Comparative Example 10 Comparative Example 11 -68- 148960.doc 201109741 Table 3 "#丨" shown in "The so-called "optical film arrangement ※" refers to a configuration of a light diffusion plate, a diffusion sheet, a diffusion sheet, and a brightness enhancement film. The above diffusion sheet is BS_912 (manufactured by Huihe Co., Ltd.). The brightness enhancement film described above is DBEF-D400 (manufactured by Sumitomo 3M Co., Ltd.). In Table 3, "※丨" shown in "Layer Configuration*" means a single layer 0 148960.doc •69· 201109741 *&lt; Inch backlight characteristic color unevenness Maximum color difference XXXXXXXXXX 〇0.0061 0.0059 0.0060 0.0059 0.0057 0.0055 0.0059 0.0058 0.0058 0.0052 0.0040 1 Brightness unevenness squint XXXXXXXXXX 〇0.0251 0.0198 0.0197 0.0211 0.0145 0.0114 0.0241 0.0182 0.0185 0.0055 ;0.0036 1 Positive XXXXXXXXX 〇◎ 0.0229 0.0177 0.0171 0.0158 0.0091 0.0103 0.0215 0.0179 0.0175 0.0047 0.0028 1 Brightness cd/cm2 1 5290 5320 5310 5330 5320 5320 5320 5330 5430 5010 4650 Optical film = tt % % % &lt; N % m = tfc BLU specification P / H 1.88 1.88 00 00 00 〇 0 -: 1.88 00 oo One: 00 oo 1.88 00 OO " OO 00 00 00 Two X mm VO v£&gt; VO ο CU mm 沄s The characteristic layer of the diffractive diffuser constitutes the iiiis S ii diffusivity (/&gt; (N &lt; N &lt; N CN CN (N (N (N (N (N & N) N Transmittance m Os mm Os 〇\ m OS m σ\ m Os m Os OS m On Reflectance o &lt;N &lt;N ΓΛ 00 m ON &lt;N 00 m Os CN m ΓΛ 〇\ m 〇\ &lt;J\ m Incident surface! P 〇〇o 〇o 〇o 〇oo 〇Outcut surface shape 00 ε . Face _ Ό ε =L oo O oo O o 〇〇〇OB a . , , _ _ — J3 ε a as 00 〇\ 00 ON 00 a\ 00 〇\ 00 〇\ 00 Os 00 Os 00 ON 00 Os 00 Os 00 &lt; 1.59 1.59 Os 1.59 1.59 1.59 1.59 1.59 o Os 1.59 s v -&gt; § ir&gt; convex-concave shape substantially concave triangular pyramid substantially concave triangular cone substantially concave triangular cone substantially convex four-corner cone substantially convex four-corner cone substantially convex four-corner cone substantially concave four-corner cone substantially concave four-corner cone substantially concave four-corner substantially concave four-corner cone Concave quadrilateral cone Comparative Example 12 Comparative Example 13 Comparative Example 14 Comparative Example 15 Comparative Example 16 Comparative Example 17 Comparative Example 18 Comparative Example 19 Comparative Example 20 Comparative Example 21 Comparative Example 22 -70-148960.doc 201109741 In Table 4, "optical" "#2" shown in the film arrangement ※" refers to the configuration of the light diffusion plate, the diffusion sheet, the diffusion sheet, the sheet, and the brightness enhancement film. "#3" shown in "The optical film arrangement ※" in Table 4 means a configuration of a light diffusion plate, a diffusion sheet, a diffusion sheet, a diffusion sheet, a prism sheet, and a brightness enhancement film. The above diffusion sheet was BS-9 12 (manufactured by Huihe Co., Ltd.). The above bracts are BEFIII (manufactured by Sumitomo 3M). The brightness enhancement film described above is DBEF-D400 (manufactured by Sumitomo 3M Co., Ltd.). In Table 4, "※1" as shown in "Layer Configuration*" means a single layer. 148960.doc 201109741 Backlight characteristics of God I ◎ ◎ ◎ ◎ 〇〇〇〇〇 ◎ ◎ ◎ ◎ 〇〇〇〇〇 0.0031 ι a ο ο 0.0033 0.0034 0.0041 0.0044 0.0046 0.0048 0.0049 0.0033 0.0031 f〇0032 0.0036 0. (8) 42 丨 0.0044 0.0045 0.0047 0.0048 Brightness unevenness squint ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 〇〇〇〇〇 0.0023 ι 0.0020 0.0023 0.0033 0.0038 0.0041 0.0043 0.0046 0.0048 0.0023 0.0021 10.0021 0.0033 0.0037 0.0040 0. (8) 45 0.0048 0.0049 Front ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 0.0020 ι 0.0017 s ο ο 0.0027 0.0031 0.0035 ο ο ο 0.0044 0.0046 0.0021 0.0018 10.0020 0.0029 0.0033 Ό.0034 0.0041 0.0045 0.0047 Brightness cd/cm2 5010 1 5330 5280 5310 5290 5290 5320 5320 5310 4980 5300 丨5310 5330 5310 '5320 5340 5330 5340 Optical film arrangement ※ % % % S =tt BLU size 5 CU 00 00 2 00 00 00 00 " 00 00 00 00 " 00 〇〇00 00 " 〇〇οο SS 00 〇0 00 00 00 00 “ 〇〇00 00 00 2 00 00 0 0 00 00 00 XS ε VO VO ο Ό \〇VO CU ε ε s Twilight diffuser characteristic layer composition iiiiiiiiiiiiiiiii diffusivity C/D ίΝ (Ν &lt;Ν (N (N (N (N (N (N (N (N (N (N (N (N (N (N CN (N c CS (N cs total light transmittance from m ΟΝ ΓΛ Os ΓΛ ON m ON CO 〇\ m ON ΓΛ Ο m ON S ON Os Os m 〇\ m OS m OS CO OS ma\ m Os Η Ό 00 VO 00 VO 00 ο 00 00 Ό 00 \ο 00 Ό 00 VO 00 v〇οο v〇00 SO 00 00 v〇00 VO 00 v〇00 S Reflectance c&lt; σ\ \ο 'Ο 3 ν妄 妄 00 VO ON Ό V*J m \ri ζ- etc. JO incident surface P ο ο Ο ο 〇ο Ο ο 〇Ο Ο ooo ο ooo Exit surface shaping shape | to ε η ο — — ο 〇ss Ο — factory, ooss 沄α ε α ο ο Ο ο 〇 ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο Γ- p- ο ο § 〇 00 s r- P oo &lt; ΟΝ os «ο ON tr&gt; Os Ό Os ΟΝ V*) ON «Τϊ 〇\ 〇\ OS «η 〇\ w-&gt; On »n ON OS OS OS φ ! 55.5 55.5 55.5 55.5 55.5 1 55.5 55.5 55.5 55.5 convex and concave shape roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone Convex triangular cone substantially convex triangular cone substantially convex triangular cone ι substantially convex triangular cone substantially convex triangular cone 1 substantially convex triangular cone substantially convex triangular cone substantially convex triangular cone substantially convex triangular cone embodiment 27 t embodiment 3 embodiment 28 ! 29 Example 30 Example 31 Example 32 Example 33 Example 34 1 Example 35j 1 Example 4 Example 36j Example 37 I Example 38 Example 39 Example 40 Example 41 Example 42 -72- 148960 .doc 201109741 In Table 5, "#lj" shown in "Optical Film Layout*" refers to a structure of a light diffusing plate, a spread sheet, a diffusion sheet, and a brightness improving film. The above-mentioned diffusion sheet is BS-9 12 (manufactured by Huihe Co., Ltd.). The brightness enhancement film described above is DBEF-D400 (manufactured by Sumitomo 3M Co., Ltd.). In the layer 0 in Table 5, the "※1" shown in the "layer composition" refers to the single - 148960.doc -73· 201109741 Backlight characteristic color unevenness Maximum color difference ◎ ◎ ◎ 〇Ο 〇〇〇 0.0033 0.0028 0.0032 0.0034 0.0039 0.0043 0.0045 0.0045 ! 0.0048 Brightness unevenness squint ◎ ◎ ◎ ◎ 〇〇〇〇· 〇0.0024 i _1 0.0020 0.0021 0.0024 〇〇0.0039 0.0044 丨0.0045 0.0047 Front ◎ ◎ ◎ ◎ ◎ ◎ 〇〇〇0.0019 0.0016 0.0020 ” 0.0023 0.0029 1 0.0033 0.0041 0.0042 0.0045 Brightness cd/cm2 5020 5330 5330 5320 5340 5350 5340 丨5350 5350 Optical film configuration ※ =tt ^t: :«: % % % 7 BLU specification P/H 1.88 00 00 21.88 00 oo 2 00 oo oo oo 1.88 1.88 two X mm v〇VO VO 〇- mm 沄sss light diffusing plate characteristic layer composition iiiiiiiii diffusivity 00 (N n N (N CM (N CM total light transmittance * m ON ro ON ΓΛ as m 〇\ ON\ m ON ma\ m Ο m 〇\ VO 00 00 o 00 v〇00 Ό 00 v〇OO Ό 00 s Reflectance 0^ o VO o fS 〇\ «η m un Incident face oo 〇 o O 〇ο 〇Outcut shape Shape ε =L o — oos 〇B a. ooooooo ο 〇£ a. o — v〇VO 宕宕_〇ε λ. σν 〇〇ss r- o ο &lt; mmmv〇 ΓΛ V〇mv〇VO s S &lt;x&gt; 5 convex and concave shape substantially convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly ±b triangular cone roughly convex triangular cone roughly convex triangular cone roughly &amp; triangle although 1 roughly convex triangle Cone substantially convex triangular cone embodiment 43 embodiment 12 embodiment 44 embodiment 45 embodiment 46 embodiment 47 embodiment 48 embodiment 49 embodiment 50 -74 - 148960.doc 201109741 "the so-called "optical film arrangement ※ "#1" shown in the figure refers to a configuration of a light diffusing plate/diffusion sheet/diffusion sheet/brightness improving film. The diffusion sheet was BS-912 (manufactured by Hohsen Co., Ltd.), and the brightness enhancement film was DBEF-D400 (manufactured by Sumitomo 3M Co., Ltd.). In Table 6, "※1" shown in "layer composition" means a single layer. 0 148960.doc -75- 201109741 Backlight characteristic color unevenness Maximum color difference 〇〇 ◎ ◎ ◎ 〇〇〇〇X 0.0045 0.0038 0.0030 0.0029 0.0029 0.0037 0.0044 0.0047 0.0049 j 0.0058 Luminance unevenness squint ◎ ◎ ◎ ◎ ◎ 〇〇〇 X 0.0048 0.0034 0.0020 0.0019 0.0020 0.0034 0.0047 0.0045 0.0048 1 0.0144 Front 〇 ◎ ◎ ◎ ◎ ◎ 〇〇〇 X 0.0047 0.0033 0.0016 0.0015 0.0015 0.0029 0.0045 0.0043 0.0045 0.0125 Brightness cd/cm2 5100 5280 5310 5430 5380 5360 5340 4880 4860 4620 Optical film distribution ※ 5 (Ν % 2 % BLU specification P/H 00 oo 1.88 00 00 2 00 00 — 1.88 s§ 1· 1.88 1.88 1.88 : 1.88 X mm &lt;〇\〇\〇VO CU mm ss Light diffusing plate characteristic layer composition iiiiiiiiii Diffusion rate C/3 fS Bub 00 (N v〇m Ό V*J (N total light transmittance Λ 3 ; σ! s; 00 m Os ΓΛ 〇\ m 〇s Η 冢m 00 ΓΟ 00 m 00 g JO 5; tn ON reflectance οί 00 VO VO W-ί v〇v〇un U&qu Ot;l |〇«Λ» (N incident surface D 〇ο ο ο ο 〇 oo Ο 〇 〇 射 赋 d E d. — 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一Λ一,. — , . o •D ε a. Ό\ 00 ο 00 σ\ 00 〇\ 00 〇\ 00 s ON 00 OS 00 σ\ 00 100 &lt; 1.59 1.59 1.59 1.59 1.59 5; On Os in Γ* -&gt;ν&gt; 1.49 Ο 5 5 5 «η «〇ιη •ο convex and concave shape roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone substantially convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex Triangular cone substantially convex triangular cone i substantially convex triangular cone embodiment 51 embodiment 52 embodiment 53 embodiment 54 embodiment 55 embodiment 56 embodiment 57 method embodiment 59 method comparison example 23 -76- 148960.doc 201109741 The term "light" refers to the configuration of the "#1_ι diffusion plate/diffusion sheet/diffusion sheet/brightness enhancement film" shown in 'Soy "Optical film arrangement*" in Table 7. In Table 7, the "#2" diffuser, the diffusion sheet, the cymbal, and the brightness enhancement film are shown in "Optical Film Layout*". In Table 7, "#3 j ' diffuser plate, lens sheet, lens sheet, and brightness enhancement film are shown in "Optical film arrangement ※". In Table 7, "layer structure" is shown in " *1", layer 0 The diffusion sheet is BS-912 (manufactured by Hohhot Co., Ltd.) The above sheet is BEFIII (manufactured by Sumitomo 3M Co., Ltd.) The lens sheet is PTR733 (manufactured by Shinwha Intertek Co., Ltd.). The brightness enhancement film described above is DBEF-D400 (manufactured by Sumitomo 3M Co., Ltd.). 148960.doc •77· 201109741 oo Backlight characteristic color unevenness Maximum color difference ◎ ◎ ◎ 0.0028 0.0029 0.0029 Brightness unevenness squint ◎ ◎ ◎ 0.0021 0.0022 0.0022 Front ◎ ◎ ◎ 0.0018 0.0019 0.0018 Brightness cd/cm2 5310 5300 5340 Optical film distribution ※ % BLU specification P/H 00 00 2 00 00 00 00 X mm o CU mm Diffusion plate characteristic layer composition &lt;N ※ rf ※ Diffusion rate 00 (N &lt; N (N total light transmittance m σ\ O CO ON Η V~) 00 s 00 Reflectance U, ss Incident plane D ooo Exit surface shaping shape ε — , — Ό ε =L ooo UB , ε =L 00 00 o 00 &lt; 1.59 1.59 1.59 Φ Concave and concave General shape convex triangular pyramid substantially convex triangular cone substantially convex triangular cone embodiment 60 Example 61 Example 62 148960.doc -78 201109741 In Table 8, the "#1 ^ diffusion plate" shown in "Optical film arrangement ※" The structure of the "diffusion sheet/diffusion sheet/brightness enhancement film" means the "※" and the diffusion plate shown in the "so-called "layer structure" of the two types of two layers in Table 8. In Table 8, " Layer composition "*3" refers to the configuration of the shaped film-free non-diffusion plate. The "※4" shown in the "layer composition" in Table 8 refers to the composition of the shaped non-diffusion plate + the shaped film. The above diffusion sheet is BS-912 (manufactured by Hohsen Co., Ltd.) The brightness enhancement film is DBEF-D400 (manufactured by Sumitomo 3M Co., Ltd.) 148960.doc 79-201109741

ON 背光特性 色不均 最大色差 ◎ 〇 ◎ 〇 0.0034 0.0046 0.0032 0.0046 亮度不均值 斜視 ◎ 〇 ◎ 〇 0.0032 0.0048 0.0031 0.0048 正面 ◎ 〇 ◎ 〇 0.0027 0.0043 0.0027 5 Ο Ο 光學膜配設※ BLU規格 LED 配置 配置1 配置1 配置1 配置1 P/H 2.14 V-) CN 2.13 (Ν X mm (N ο CU mm Ο 光擴散板特性 層構成 i i i i 擴散率 C/0 (N &lt;N &lt;N (Ν 全光線透射率j -Ο ΓΟ 〇\ 〇\ 〇\ Os Η v〇 00 v〇 oo 00 00 反射率 οί \r&gt; v〇 w〇 to Ό 入射面 口 o 〇 o Ο 出射面賦形形狀 ε λ — — — — *σ Ε n o o o Ο ο ε α — — — — •Ο ε ZL 00 ON 00 as 00 ΟΝ 00 C 1.59 1.59 C\ 1.59 &lt;χ&gt; 5 凸凹部形狀 大致凸三角錐 大致凸三角錐 大致ώ三角錐 大致凸三角錐 實施例63 實施例64 實施例65 實施例66 •80- 148960.doc 201109741 係指光 指單— 表9中’所謂「光學膜配設※」中所示之r # i」, 擴散板/擴散薄片/擴散薄片/亮度提高膜之構成。 表9中,所謂「層構成」中所示之r※1」,係 層。 上述擴散薄片為BS-912(惠和股份有限公司製造) 上述亮度提高膜為DBEF-D400(住友3M公司製造) 148960.doc • 81 - 201109741 背光特性 色不均 最大色差 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 0.0033 0.0029 0.0029 0.0030 0.0031 0.0034 0.0033 0.0031 0.0030 0.0030 0.0032 0.0029 i- 0.0034 0.0032 亮度不均值 | 斜視 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 0.0032 0.0026 0.0023 0.0028 0.0030 0.0034 0.0031 0.0029 0.0027 0.0028 0.0032 0.0030 0.0031 0.0031 正面 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 0.0022 0.0019 0.0019 0.0018 0.0019 0.0023 0.0021 0.0020 0.0019 0.0019 0.0022 0.0019 0.0022 0.0020 亮度 Γ1 cd/cm 5310 5300 5280 5300 5320 5330 5300 5320 5320 5320 5310 5300 5290 5300 1 光學膜配設※ % % % 5 % =«: % % % % % BLU規格 LED 配置 配置1 配置1 配置1 配置1 配置1 配置1 配置1 配置1 i配置1 1配置1 配置1 配置1 配置I 配置1 P/H 1.76 (Ν CN rN 1.76 !S 1.76 m &lt;N ΡΛ &lt;Ν &lt;N JO (Ν JO ν〇 X mm 卜 Ό »n U-ϊ r-· 00 卜 卜 «Λ&gt; oo 二 1 mmi 1 ο m 光擴散板特性 α/β/γ | 60/60/60 60/60/60 60/60/60 60/60/60 60/60/60 60/60/60 60/60/60 60/60/60 60/60/60 60/60/60 60/60/60 58/60/62 155/60/65 56/68/56 Uh CN ο cs v-&gt; w-j IT) CN 00 &lt;N s (N m ΡΟ ο ο o 擴散率 C/3 (Ν (Ν &lt;N CN (Ν CM ΓΜ CN (Ν (N ίΝ CM ΓΊ (N 全光線透射率 ΓΟ ο ΓΛ ON m σ\ m 〇 ON 〇\ Ό\ OS ΓΛ os ΓΛ OS σΝ m ON m OS m ON Η 00 00 Ό 00 v〇 00 Ό 00 00 \〇 00 v〇 00 Ό 00 00 VO 00 00 Ό 00 00 反射率 cC *n \o yn \〇 U-J \D v〇 V) Ό \ο so SO Ό VO \〇 3 5; 入射面 D o o o 〇 o o ο o Ο 〇 ο o ο o 出射面賦形形狀 bX) ε α T3 Β η o o o 〇 o o ο o Ο o ο o ο O o ε λ. — 一 — — — — Μ — — 一 X) ε On 〇0 〇\ 00 OS oo OS 00 OS 00 ON 00 〇\ 00 ON 00 00 On 00 ΟΝ 00 00 σ\ 00 On 00 &lt; 1.59 Os 〇\ V) O\ ON 〇\ Ον 0's ΟΝ Ό On ΟΝ σ\ 1.59 〇\ &lt;x&gt; 5 5 卜 卜 Γ ιο 凸凹部形狀 1 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 大致凸三角錐 實施例67 實施例68 實施例69 實施例70 實施例71 實施例72 實施例73 實施例74 實施例75 實施例76 實施例77 實施例78 實施例79 實施例80 ·82· 148960.doc 201109741 表10中’所謂「光學膜配設※」中所示之「# l」,係指 光擴散板/擴散薄片/擴散薄片/亮度提高膜之構成。 上述擴散薄片為BS-912(惠和股份有限公司製造)。 上述亮度提高膜為DBEF-D400(住友3M公司製造)。 表ίο中,所謂「led配置」之「配置1」,係指門 為32.2 mm之鋸齒配置(參照圖16〜圖18)。 曰1巨 148960.doc 83· 201109741 【II ί 背光特性 色不均 最大色差 ◎ ◎ 〇 0.0029 0.0033 0.0041 亮度不均值 斜視 ◎ ◎ ◎ 0.0023 0.0023 0.0025 正面 ◎ ◎ ◎ 0.0019 1 J0.0018 0.0021 亮度 cd/cm2 5280 5190 4860 光學膜配設※ BLU規格 LED配置 配置1 1 配置1 配置1 LED種類 LED-1 LED-2 LED-3 P/H fS cn fN X mm ν〇 ν-ϊ Cu mm S 光擴散板特性 擴散率 C/D &lt;Ν &lt;N (N 全光線透射率 Λ ΓΛ 〇\ m 〇\ m Os Η ν〇 00 vo 00 00 反射率 cd Ό 入射面 D Ο 〇 o 出射面賦形形狀 ε — — T3 ε Ο o o o Β ZL — — X) ε η. Os 00 ON 00 〇\ 00 &lt; 1.59 〇\ «〇 1.59 ① 卜 *Ti 卜 m 卜 v&gt; 凸凹部形狀 大致凸三角錐 大致凸三角錐 大致凸三角錐 實施例81 實施例82 實施例83 148960.doc -84 201109741 表11中,所謂「光學膜配設※」中所示之「#1」,係指 光擴散板/擴散薄片/擴散薄片/亮度提高膜之構成。 上述擴散薄片為BS-912(惠和股份有限公司製造)。 上述亮度提高膜為DBEF-D400(住友3M公司製造)。 表11中’所謂「LED配置」之「配置,係指LED間距 為32.2 mm之鑛齒配置(參照圖μ〜圖j 8)。 本申請案係基於在2009年9月11曰向曰本專利廳申請之 曰本專利申請案(曰本特願2009·211115)、同樣於2〇〇9年9 月11曰向日本專利廳申請之曰本專利申請案(曰本特願 2009-211117)者,且將其内容作為參照引用於此。 產業上之可利用性 本發明之光擴散板係以配置有點光源、特別是光峰值角 度為-25〜25度之直上光之光線強度較強的點光源之背光, 存在產業上之可利用性。 配設有本發明之光擴散板之點光源背光可於所期望之背 光厚度下,使用較少之光學膜,實現顯著優異之亮度、亮 度均勻性(正面及斜視)以及色不均特性,因此例如對於 LED光源液晶電視、LED光源廣告牌、LED光源照明等廣 泛用途有用。 【圖式簡單說明】 圖1係對光擴散板表面所賦形之凸型三角錐形狀之一例 之立體圖。 圖2係對光擴散板表面所賦形之頂點為曲面形狀之凸型 三角錐形狀之一例的立體圖。 148960.doc •85· 201109741 圖3係對光擴散板表面所 取囬所賦形之凸型三角錐台形狀之一 例之立體圖。 圖4係本發明請求項1中所描 Τ所規疋的凸型三角錐形狀之傾斜 角Θ與形成凸型三角錐形狀 狀t Μ舳之折射率Α的關聯圖。 圖5係對光擴散板表面所賦丑彡夕几讲,丨一&amp; 叫听賊形之凸型三角錐形狀之正視 圖及其剖面圖。 圖6係表示對光擴散板表面 伋衣面所賦形之凸型三角錐形狀之 底面三角形之内角圖的圖。 圖7係光擴散板之層構成圖(因 « 再驭圖一層、連續層、分離 層)。 圖 圖8係本實施形態之點光源背光裝 置之一例之縱剖面 圖9係LED-1之出光分佈圖。ON Backlight characteristic color unevenness Maximum color difference ◎ 〇◎ 〇0.0034 0.0046 0.0032 0.0046 Brightness unevenness squint ◎ 〇◎ 〇0.0032 0.0048 0.0031 0.0048 Front ◎ 〇◎ 〇0.0027 0.0043 0.0027 5 Ο 光学 Optical film distribution ※ BLU specification LED configuration configuration 1 Configuration 1 Configuration 1 Configuration 1 P/H 2.14 V-) CN 2.13 (Ν X mm (N ο CU mm 特性 Light diffuser characteristic layer constitutes iiii diffusivity C/0 (N &lt; N &lt; N (Ν total light transmission Rate j -Ο ΓΟ 〇\ 〇\ 〇\ Os Η v〇00 v〇oo 00 00 Reflectance οί \r&gt; v〇w〇to Ό Incident face o 〇o Ο Exit face shape ε λ — — — — *σ Ε nooo Ο ο ε α — — — — Ο ε ZL 00 ON 00 as 00 ΟΝ 00 C 1.59 1.59 C\ 1.59 &lt;χ&gt; 5 convex and concave shape roughly convex triangular cone roughly convex triangular cone roughly triangular cone Approximate convex triangular cone embodiment 63 Example 64 Example 65 Example 66 • 80-148960.doc 201109741 refers to the light finger list - r # i" shown in 'so-called "optical film arrangement ※" in Table 9, Diffuser / diffusion sheet / In the ninth embodiment, the r*1" shown in the "layer structure" is a layer. The diffusion sheet is BS-912 (manufactured by Hohsen Co., Ltd.). DBEF-D400 (manufactured by Sumitomo 3M Co., Ltd.) 148960.doc • 81 - 201109741 Backlight characteristic color unevenness maximum color difference ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 0.0033 0.0029 0.0029 0.0030 0.0031 0.0034 0.0033 0.0031 0.0030 0.0030 0.0032 0.0029 i - 0.0034 0.0032 不 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 32 32 32 32 32 32 32 32 32 32 0.0032 0.0026 0.0023 0.0028 0.0030 0.0034 0.0031 0.0029 0.0027 0.0028 0.0032 0.0030 0.0031 0.0031 ◎ 0.0022 0.0019 0.0019 0.0018 0.0019 0.0023 0.0021 0.0020 0.0019 0.0019 0.0022 0.0019 0.0022 0.0020 Brightness Γ1 cd/cm 5310 5300 5280 5300 5320 5330 5300 5320 5320 5320 5310 5300 5290 5300 1 Optical film distribution ※ % % % 5 % =«: % % % % % BLU specification LED configuration configuration 1 configuration 1 configuration 1 configuration 1 configuration 1 1 Configuration 1 Configuration 1 i Configuration 1 1 Configuration 1 Configuration 1 Configuration 1 Configuration I Configuration 1 P/H 1.76 (Ν CN rN 1.76 !S 1.76 m &lt;N ΡΛ &lt;Ν &lt;N JO (Ν JO ν〇X mm Ό »n U-ϊ r-· 00 Bu Bu «Λ> oo 2 1 mmi 1 ο m Light diffuser characteristics α/β/γ | 60/60/60 60/60/60 60/60/60 60/ 60/60 60/60/60 60/60/60 60/60/60 60/60/60 60/60/60 60/60/60 60/60/60 58/60/62 155/60/65 56/ 68/56 Uh CN ο cs v-&gt; wj IT) CN 00 &lt;N s (N m ΡΟ ο ο o Diffusion rate C/3 (Ν (Ν &N; N CN (Ν CM ΓΜ CN (Ν (N Ν N CM ΓΊ (N total light transmittance ο ο ΓΛ ON m σ\ m 〇ON 〇\ Ό\ OS ΓΛ os ΓΛ OS σΝ m ON m OS m ON Η 00 00 Ό 00 v〇00 Ό 00 00 \〇00 v〇 00 Ό 00 00 VO 00 00 Ό 00 00 Reflectance cC *n \o yn \〇UJ \D v〇V) Ό \ο so SO Ό VO \〇3 5; Incident surface D ooo 〇oo ο o Ο 〇ο o ο o Exit surface shaping shape bX) ε α T3 Β η ooo 〇oo ο o Ο o ο o ο O o ε λ. — one — — — — Μ — — one X) ε On 〇0 〇\ 00 OS Oo OS 00 OS 00 ON 00 〇\ 00 ON 00 00 On 00 ΟΝ 00 00 σ\ 00 On 00 &lt; 1.59 Os 〇\ V) O\ ON 〇\ Ον 0's ΟΝ Ό On ΟΝ σ\ 1.59 〇\ &lt;x&gt; 5 5 卜卜Γ ιο convex and concave shape 1 roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone roughly convex triangular cone Convex triangular cone substantially convex triangular cone substantially convex triangular cone substantially convex triangular cone embodiment 67 embodiment 68 embodiment 69 embodiment 70 embodiment 71 embodiment 73 embodiment 74 embodiment 74 embodiment 76 78 Example 79 Example 80 · 82· 148960.doc 201109741 "# l" shown in 'The so-called "optical film arrangement ※" in Table 10 refers to a light diffusing plate/diffusion sheet/diffusion sheet/brightness improving film. The composition. The above diffusion sheet is BS-912 (manufactured by Hohsen Co., Ltd.). The brightness enhancement film described above is DBEF-D400 (manufactured by Sumitomo 3M Co., Ltd.). In the table, "Arrangement 1" of the "led configuration" refers to a sawtooth arrangement of 32.2 mm (see Figs. 16 to 18).曰1巨148960.doc 83· 201109741 【II ί Backlight characteristic color unevenness maximum color difference ◎ ◎ 〇0.0029 0.0033 0.0041 Brightness unevenness squint ◎ ◎ ◎ 0.0023 0.0023 0.0025 Front ◎ ◎ ◎ 0.0019 1 J0.0018 0.0021 Brightness cd/cm2 5280 5190 4860 Optical film arrangement ※ BLU specification LED configuration 1 1 Configuration 1 Configuration 1 LED type LED-1 LED-2 LED-3 P/H fS cn fN X mm ν〇ν-ϊ Cu mm S Light diffusion plate characteristic diffusion Rate C/D &lt;Ν &lt;N (N total light transmittance Λ ΓΛ 〇\ m 〇\ m Os Η ν〇00 vo 00 00 reflectance cd Ό incident surface D Ο 〇o exit surface shaping shape ε — — T3 ε Ο ooo Β ZL — — X) ε η. Os 00 ON 00 〇\ 00 &lt; 1.59 〇\ «〇1.59 1 卜*Ti 卜m 卜v> The convex and concave shape is roughly convex, the triangular cone is roughly convex, the triangular cone is roughly convex Triangle cone embodiment 81 Example 82 Example 83 148960.doc -84 201109741 In Table 11, "#1" shown in "Optical film arrangement*" means a light diffusing plate/diffusion sheet/diffusion sheet/ Brightness enhances the composition of the film. The above diffusion sheet is BS-912 (manufactured by Hohsen Co., Ltd.). The brightness enhancement film described above is DBEF-D400 (manufactured by Sumitomo 3M Co., Ltd.). The "configuration of the so-called "LED configuration" in Table 11 refers to the configuration of the ore teeth with an LED pitch of 32.2 mm (refer to Figure μ~Fig. 8). This application is based on the patent issued on September 11, 2009. The application for this patent application (Sakamoto's special request 2009.211115), and the patent application filed by the Japanese Patent Office on September 11, 2009 (Sakamoto's special request 2009-211117) Industrial Applicability The light diffusing plate of the present invention has a strong light intensity with a light source, in particular, a straight light having a light peak angle of -25 to 25 degrees. The backlight of the light source has industrial availability. The point source backlight provided with the light diffusing plate of the present invention can achieve significantly superior brightness and brightness uniformity under the desired backlight thickness using less optical film. (front and squint) and color unevenness characteristics, so it is useful, for example, for a wide range of applications such as LED light source LCD TVs, LED light source billboards, and LED light source illumination. [Simplified Schematic] Figure 1 shows the shape of the light diffusing plate. Convex triangular pyramid shape Fig. 2 is a perspective view showing an example of a convex triangular pyramid shape in which the apex of the surface of the light diffusing plate is curved. 148960.doc •85· 201109741 Fig. 3 is a view of the surface of the light diffusing plate Fig. 4 is a perspective view showing a shape of a convex triangular frustum shape as defined in the claim 1 of the present invention, and a tilt angle Θ of a convex triangular pyramid shape as described in the claim 1 of the present invention and forming a convex triangular pyramid shape t Μ舳Figure 5 is a diagram showing the ugly appearance of the surface of the light diffusing plate. The front view and the cross-sectional view of the convex triangular pyramid shape of the thief-shaped figure are shown in Fig. 6. Figure 7 is a diagram showing the inner corner of the triangular shape of the convex triangular shape of the surface of the light diffusing plate. Figure 7 is a layered structure of the light diffusing plate (due to «layer, continuous layer, separation layer) Fig. 8 is a longitudinal sectional view showing an example of a point source backlight device of the present embodiment. Fig. 9 is a light distribution diagram of LED-1.

三角錐形狀與LED 三角錐形狀與LEDTriangle cone shape with LED triangle cone shape and LED

角錐形狀與LED 圖10係對光擴散板表面所賦形之凸部 配置之關聯圖。 圖11係對光擴散板表面所賦形之凸部 配置之關聯圖。 圖12係對光擴散板表面所賦形之凸部 配置之關聯圖。 置)之—例之圖(平面 圖13係表示背光之LED配置(格子配 圖)。 圖14係表示背光之LED配置(鋸齒配置)之一 } 例之圖(平面 圖)。 圖1 5係對光擴散板表面所賦形之凸部三角錐开彡狀、 148960.doc • 86 - 201109741 配置之關聯圖。Pyramid shape and LED Figure 10 is a correlation diagram of the convex portion configuration of the surface of the light diffusing plate. Fig. 11 is a correlation diagram showing the arrangement of the convex portions formed on the surface of the light diffusing plate. Fig. 12 is a correlation diagram of the arrangement of the convex portions formed on the surface of the light diffusing plate. Figure 7 is a diagram showing the LED configuration of the backlight (grid map). Fig. 14 is a diagram showing the LED configuration (sawtooth configuration) of the backlight. The convex triangular pyramid shape formed on the surface of the diffuser plate, 148960.doc • 86 - 201109741 Correlation diagram of the configuration.

凸—角錐形狀與LEDConvex-corner shape and LED

凸二角錐形狀與LED 圖16係對光擴散板表面所賦形之 配置之關聯圖。 圖17係對光擴散板表面所賦形之 配置之關聯圖。Convex pyramid shape and LED Figure 16 is a correlation diagram of the configuration of the surface of the light diffusing plate. Fig. 17 is a correlation diagram of the configuration of the shape of the surface of the light diffusing plate.

角錐形狀與LED 圖1 8係對光擴散板表面所賦形之凸部三 配置之關聯圖。 圖19係LED-2之出光分佈圖。 圖20係LED-3之出光分佈圖。 例之出光面側的正視 圖21係本實施形態之光擴散板之一 圖(凸型三角錐形狀)。 圖22係實施例中之亮度不均之測定方法之說明圖。 圖23(A)係用以說明g之定義之凸部之上視圖圖23(b) 表示用以說明g之定義之凸部之部分剖面圖。 圖24係對光擴散板表面所賦形之頂點及脊線為曲面形狀 之凸型三角錐形狀之一例的立體圖。 【主要元件符號說明】 B 於凸部之剖面中滿足(1')及(2,)之部分 C 於凸部之剖面中較B更底部側之部分 D 於凸部之剖面中較C更頂部側之部分 F 肖光擴散板表面所賦形之凸部2角錐形狀之底 面三角形之一邊、與構成點光源之格子之四角 形之對角線所成的角 nl LED鋸齒配置之LED間距 148960.doc -87 · 201109741 n2 LED鑛齒配置之LED間距 α 對光擴散板表面所賦形之凸部三角錐形狀之底 面三角形的内角 β 對光擴散板表面所賦形之凸部三角錐形狀之底 面三角形的内角 γ 對光擴散板表面所賦形之凸部三角錐形狀之底 面三角形的内角 148960.doc •88-The shape of the pyramid and the LED Figure 18 shows the relationship between the three configurations of the convex portion on the surface of the light diffusing plate. Figure 19 is a light distribution diagram of LED-2. Figure 20 is a light distribution diagram of LED-3. Front view of the light-emitting surface side of the example Fig. 21 is a view (a convex triangular pyramid shape) of the light-diffusing sheet of the present embodiment. Fig. 22 is an explanatory view showing a method of measuring luminance unevenness in the embodiment. Fig. 23(A) is a top view of a convex portion for explaining the definition of g. Fig. 23(b) is a partial cross-sectional view showing a convex portion for explaining the definition of g. Fig. 24 is a perspective view showing an example of a convex triangular pyramid shape in which the apex and the ridge line of the surface of the light diffusing plate are curved. [Description of main component symbols] B The portion C satisfying (1') and (2,) in the cross section of the convex portion is the portion D on the bottom side of the convex portion in the cross section of the convex portion, and the top portion of the convex portion is more top than the C portion. The part of the side of the F-shaped light diffusing plate is shaped by the convex portion 2, one side of the triangular shape of the pyramid shape, and the angle formed by the diagonal of the square of the square forming the lattice of the point source. The LED spacing of the LED sawtooth configuration is 148960.doc -87 · 201109741 n2 LED pitch of LED ore configuration α The inner corner of the triangle of the triangular pyramid shape shaped on the surface of the light diffusing plate β The triangular triangle of the convex triangular shape of the surface of the light diffusing plate Inner angle γ The internal angle of the underside triangle of the convex triangular pyramid shape shaped on the surface of the light diffusing plate 148960.doc •88-

Claims (1)

201109741 七、申請專利範圍: 1. 一種點光源用光擴散板,其係於表面形成有複數個凸部 之光擴散板, 上述凸部係底面為三角形之大致三角錐形狀, 上述大致三角錐形狀之側面相對於底面之傾斜角θ及 形成上述凸部之材料之折射率Α滿足下述式(1)及(2): (1) . . . -40A° + 115.2° (2) · · · 25A0+22.25、 2. 如請求項1之點光源用光擴散板,其中上述傾斜角θ及上 述折射率Α滿足下述式(3)及(4): (3) · · · -40Αο + 116.2ο (4) · · · 25Αο + 20.25ο。 3 ·如请求項1或2之點光源用光擴散板,其中上述傾斜角0 為 θ#55°。 4. 如請求項1至3中任一項之點光源用光擴散板,其相對於 自與上述凸部形成面側相反之面側入射之可見光,不表 現複歸反射特性, 進而滿足下述條件(1), 條件(1):使用分光光度計,自與凸部相反之面,以對 相對於光擴散板之水平面之垂線傾斜7度之入射角度入 射波長450〜750 nm之光時的平均反射率r為45%以上。 5. 如請求項1至4中任一項之點光源用光擴散板,其滿足下 述式(5): (5) * · . g/(b+c+d)^ 0.30 148960.doc 201109741 (式(5)中,b、c及d分別表示,於在通過以下〗點、j點 及凸部頂點(於凸部為三角錐台形狀之情形時,為頂部三 角形之重心)3點之平面切斷上述凸部時出現之切斷面 中, 將凸部之一側面之切平面與底面所成之角Θ,滿足以下 式(1 )及(2’)之部分b投影至水平面之投影線段的長度, 將位於較B更凸部之底部側之部分c投影至水平面之投 影線段的長度, 及將位於較B更頂部側之部分D投影至水平面之投影線 段的長度, (1丨)· · · θ'^ -40Αο+115.2° (2')· . · θ'^ 25A° + 22.25° I點:將凸部之頂點(於凸部為三角錐台形狀之情形時, 為頂部三角形之重心)垂直投影至底面三角形之點, J點.自上述I點,對於構成底面三角形之邊中的與上述工 點之距離最近之邊繪製垂線時的該垂線與該邊之交點, 又,式(5)中,g表示於在與底面三角形垂直之平面且通 過以下1'點、J,點之平面切斷上述凸部時出現之切斷面 的、中心至包含J|點之單側部分中,將上述凸部之一側 面之切線中的位於較該切線與底面所成之角0,滿足(丨,)及 (Ο之部分更頂部側的部分投影至水平面之投影線段之 長度,其中,於存在複數個滿足上述條件之切斷面之情 形時,採用g之值最大之切斷面, I,點:將使凸部之頂點(於凸部為三角錐台形狀之情形 148960.doc 201109741 時為頂部二角形之重心)垂直投影至底面三角形之點、 底面—角形之頂點中之最接近該投影點之底面三角形 的頂點連結之線段之中點, J點.自上述r點,對於構成底面三角形之邊中的與上述 I點之距離最近之邊繪製垂線時的該垂線與該邊之交 點)。 6. 如明求項5之點光源用光擴散板,其中上述b、^及d之和 為 5〜200 。 7. 如明求項1至6中任一項之點光源用光擴散板,其包含至 少0)透鏡層與(b)擴散層, 上述(a)透鏡層與上述(1))擴散層係選自由同一層、連 續層及分離層所組成之群中之任一者, 上述凸部形成於上述(a)透鏡層之表面。 8. 如5月求項7之點光源用光擴散板,其中上述(b)擴散層包 含透明樹脂與擴散劑,擴散率S為2〜40〇/〇。 9. 如請求項7或8之點光源用光擴散板,其係包含(a)透鏡層 與(b)擴散層, 上述(a)透鏡層與(b)擴散層之厚度之和為〇 5〜3 〇 mm。 10. —種直下型點光源背光裝置,其包含: 複數個點光源; 如請求項1至9中任一項之光擴散板,其係配設於上述 點光源之上方,且於與該點光源相對向之面側之相反側 的面側,且於表面形成有複數個底面為三角形之大致三 角錐形狀之凸部;以及 148960.doc 201109741 11. 12 13 14 15 16. 擴散性反射片’其係配設於上述點光源之下方。 如請求項10之直下型點光源背光裝置,其中上述點光源 係光峰值角度為-25〜25。之LED光源。 如請求項1 〇或1丨之直下型點光源背光裝置, 丹甲上返擴 散性反射片之擴散反射率為9〇%以上。 如請求項10至12中任一項之直下型背光裝置,其中於上 述光擴散板之出光面側進而包含至少2片具有聚光功&amp; 之光學膜。 匕 .如請求項10至13中任一項之直下型背光裝置,其中於將 點光源之平均間距設為p, 將自點光源至光擴散板之距離設為Η之情形時, P/Η處於1.5〜2·5之範圍内。 一種直下型背光裝置,其係包含 複數個點光源、及 如請求項1至9中任一項之光擴散板者, 上述複數個點光源週期性地配置成格子狀, 上述光擴散板之複數個凸部係以相鄰之凸部之底面三 角形之一邊彼此平行的方式而週期性地配置,且 上述複數個點光源與上述光擴散板係以該光擴散板之 各凸部之底面三角形的任一邊、與構成上述點光源之格 子狀配置之格子之四角形的對角線平行或垂直之方式而 積層。 一種直下型背光裝置,其係包含 複數個點光源、及 I48960.doc 201109741 如4求項1至9中任—項之光擴散板者, 上述複數個點光源週期性地配置成格子狀, 上述複數個凸部係底面為等腰三角形之大致三角錐形 狀, 上述光擴散板之複數個凸部係以相鄰之凸部之底面等 腰三角形之底邊彼此平行的方式而週期性地配置,且 上述複數個點光源與上述光擴散板係以該光擴散板之 各凸部之底面等腰三角形的底邊、與構成上述點光源之 格子狀配置之格子之四角形的對角線平行或垂直之方式 而積層。 17. 一種直下型背光裝置,其係包含 複數個點光源、及 如請求項1至9中任-項之光擴散板者, 上述複數個點光源週期性地配置成格子狀, 面為正三角形之大致三角錐形 上述複數個凸部係底 狀, W W &lt;低卸止二角形之— 邊彼此平行的方式而週期性地配置,且 上述複數個點光源與上述光 ’κ散板係以該光擴散板之 各凸部之底面正三角形的任一 邊、與構成上述點光源之 格子狀配置之格子之四角形 對角線平行或垂直之方式 而積層。 飞 148960.doc201109741 VII. Patent application scope: 1. A light diffusing plate for a point light source, which is a light diffusing plate having a plurality of convex portions formed on a surface thereof, wherein the convex portion has a triangular triangular shape and a substantially triangular pyramid shape. The inclination angle θ of the side surface with respect to the bottom surface and the refractive index 材料 of the material forming the convex portion satisfy the following formulas (1) and (2): (1) . . . -40A° + 115.2° (2) · · 25A0+22.25, 2. The light diffusing plate for a point source according to claim 1, wherein the inclination angle θ and the refractive index Α satisfy the following formulas (3) and (4): (3) · · · -40Αο + 116.2 ο (4) · · · 25Αο + 20.25ο. 3. A light diffusing plate for a point source according to claim 1 or 2, wherein said tilt angle 0 is θ#55°. 4. The light-diffusing sheet for a point light source according to any one of claims 1 to 3, which does not exhibit a return reflection characteristic with respect to visible light incident from a side opposite to a surface side of the convex portion forming surface, and further satisfies the following Condition (1), Condition (1): When a light having a wavelength of 450 to 750 nm is incident on the opposite side of the convex portion from an incident angle inclined by 7 degrees with respect to a perpendicular to the horizontal plane of the light diffusion plate, using a spectrophotometer The average reflectance r is 45% or more. 5. The light diffusing plate for a point light source according to any one of claims 1 to 4, which satisfies the following formula (5): (5) * · . g/(b+c+d)^ 0.30 148960.doc 201109741 (In the formula (5), b, c, and d respectively represent the point, the j point, and the apex of the convex portion (the center of gravity of the top triangle when the convex portion is in the shape of a triangular frustum) at 3 o'clock. In the cut surface which is formed when the convex portion is cut by the plane, the angle formed by the tangent plane of one side surface of the convex portion and the bottom surface satisfies the projection of the portion b of the following formulas (1) and (2') to the horizontal plane. The length of the line segment, the length of the projection line segment that projects the portion c located on the bottom side of the B more convex portion to the horizontal plane, and the length of the projection line segment that projects the portion D located on the more top side of the B to the horizontal plane, (1丨) · · · θ'^ -40Αο+115.2° (2')· . · θ'^ 25A° + 22.25° I point: the apex of the convex part (the top triangle when the convex part is in the shape of a triangular frustum The center of gravity is the point of vertical projection to the bottom triangle, J point. From the above point I, the distance from the above work point in the side of the bottom triangle In the equation (5), g is expressed on the plane perpendicular to the bottom triangle and is cut by the following 1' point, J, and the plane of the point. In the one-side portion of the cut surface that is present at the center to the J| point, the angle between the tangent to one side of the convex portion is greater than the angle between the tangent and the bottom surface, satisfying (丨,) and ( The portion of the top portion of the crucible is projected to the length of the projection line segment of the horizontal plane, wherein, in the case where there are a plurality of cut surfaces satisfying the above conditions, the cut surface having the largest value of g is used, I, point: The apex of the convex portion (in the case where the convex portion is in the shape of a triangular frustum, the center of gravity of the top quadrilateral is 148960.doc 201109741), the point vertically projected to the bottom triangle, and the bottom surface - the bottom triangle of the apex of the angle closest to the projection point The point in the line segment connecting the vertices, J point. From the above r point, the intersection of the vertical line and the side when the vertical line is drawn from the side closest to the I point in the side of the bottom triangle is formed.) Mingzhi item 5 The light diffusing plate for a point light source, wherein the sum of b, ^ and d is 5 to 200. 7. The light diffusing plate for a point light source according to any one of the items 1 to 6, comprising at least 0) a lens layer and (b) a diffusion layer, wherein the (a) lens layer and the (1)) diffusion layer are selected from the group consisting of a same layer, a continuous layer, and a separation layer, wherein the convex portion is formed in the above (a) The surface of the lens layer. 8. The light diffusing plate for a point light source of claim 7, wherein the (b) diffusion layer contains a transparent resin and a diffusing agent, and the diffusivity S is 2 to 40 Å/〇. 9. The light diffusing plate for a point source according to claim 7 or 8, comprising (a) a lens layer and (b) a diffusion layer, wherein a sum of thicknesses of said (a) lens layer and (b) diffusion layer is 〇5 ~3 〇mm. 10. A direct-type point source backlight device, comprising: a plurality of point light sources; the light diffusing plate according to any one of claims 1 to 9, which is disposed above the point light source, and at the point a surface of the light source opposite to the side opposite to the surface side, and a plurality of convex portions having a substantially triangular pyramid shape with a bottom surface formed thereon; and 148960.doc 201109741 11. 12 13 14 15 16. Diffusion reflective sheet It is disposed below the point light source. The direct-type point light source backlight device of claim 10, wherein the point light source has a light peak angle of -25 to 25. LED light source. For example, if the direct-type point source backlight device of claim 1 or 1 is used, the diffuse reflectance of the diffuse reflection sheet on Danjia is 9〇% or more. The direct type backlight device according to any one of claims 10 to 12, wherein the light-emitting surface side of the light-diffusing sheet further comprises at least two optical films having a light-concentrating function. The direct type backlight device according to any one of claims 10 to 13, wherein when the average pitch of the point light sources is set to p, and the distance from the point source to the light diffusing plate is set to Η, P/Η It is in the range of 1.5 to 2.5. A direct type backlight device comprising a plurality of point light sources and a light diffusing plate according to any one of claims 1 to 9, wherein the plurality of point light sources are periodically arranged in a lattice shape, and the plurality of light diffusing plates are plural The convex portions are periodically arranged such that one side of the bottom surface of the adjacent convex portions is parallel to each other, and the plurality of point light sources and the light diffusing plate are triangularly arranged on the bottom surface of each convex portion of the light diffusing plate Either side is laminated in parallel or perpendicular to the diagonal of the square of the lattice constituting the lattice arrangement of the point light source. A direct type backlight device comprising a plurality of point light sources and a light diffusing plate of any one of the items 1 to 9 of the above-mentioned items 1 to 9, wherein the plurality of point light sources are periodically arranged in a lattice shape, The bottom surface of the plurality of convex portions is a substantially triangular pyramid shape of an isosceles triangle, and the plurality of convex portions of the light diffusion plate are periodically arranged such that the bottom sides of the isosceles triangles of the bottom surfaces of the adjacent convex portions are parallel to each other. And the plurality of point light sources and the light diffusing plate are parallel or perpendicular to a bottom line of an isosceles triangle of a bottom surface of each convex portion of the light diffusing plate and a diagonal line of a square of a lattice arranged in a lattice shape of the point light source. The way it is layered. A direct type backlight device comprising a plurality of point light sources and a light diffusing plate according to any one of claims 1 to 9, wherein the plurality of point light sources are periodically arranged in a lattice shape, and the surface is an equilateral triangle The plurality of convex portions are periodically arranged in a substantially triangular shape, and the WW &lt;low relief quadrilaterals are arranged in a manner parallel to each other, and the plurality of point light sources and the light 'κ scattering plate are One side of the right triangle of each convex portion of the light diffusing plate is laminated in parallel or perpendicular to the diagonal of the square forming the lattice of the point light source. Fly 148960.doc
TW099119336A 2009-09-11 2010-06-14 Point light source with light diffusion plate and straight type point light source backlight device TWI427333B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009211115 2009-09-11
JP2009211117 2009-09-11

Publications (2)

Publication Number Publication Date
TW201109741A true TW201109741A (en) 2011-03-16
TWI427333B TWI427333B (en) 2014-02-21

Family

ID=43732271

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099119336A TWI427333B (en) 2009-09-11 2010-06-14 Point light source with light diffusion plate and straight type point light source backlight device

Country Status (6)

Country Link
US (1) US9341754B2 (en)
JP (1) JPWO2011030594A1 (en)
KR (1) KR101234975B1 (en)
CN (1) CN102597819B (en)
TW (1) TWI427333B (en)
WO (1) WO2011030594A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459336B (en) * 2012-04-26 2014-11-01
TWI499804B (en) * 2013-04-24 2015-09-11 Asukanet Co Ltd Stereoscopic image display device and method for displaying stereoscopic image
TWI697718B (en) * 2019-09-19 2020-07-01 暘旭光電股份有限公司 Optical film and backlight module
US11143914B2 (en) 2019-03-13 2021-10-12 Keiwa Inc. Multilayer of light diffusers, backlight unit, and liquid crystal display device
CN114077096A (en) * 2020-08-21 2022-02-22 株式会社Lms Optical film, backlight unit and liquid crystal display device

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5698498B2 (en) * 2010-11-10 2015-04-08 旭化成イーマテリアルズ株式会社 Light beam control unit, direct type backlight device, and liquid crystal display device
JP5791386B2 (en) * 2011-06-20 2015-10-07 旭化成イーマテリアルズ株式会社 Direct type point light source backlight device
JP2013041722A (en) * 2011-08-12 2013-02-28 Asahi Kasei E-Materials Corp Direct-downward point light source backlight device
KR20130047334A (en) * 2011-10-31 2013-05-08 엘지이노텍 주식회사 Illuminating member and illumination device including the illuminating member
CN103206618A (en) * 2012-01-13 2013-07-17 刘武强 Method and device capable of scattering directional light beams, and lighting lamp
CN103032738A (en) * 2012-12-21 2013-04-10 江苏晶和金江照明有限公司 LED (Light-Emitting Diode) lamp and lampshade
TWI545296B (en) * 2012-12-24 2016-08-11 鴻海精密工業股份有限公司 Backlight module
WO2014123145A1 (en) * 2013-02-08 2014-08-14 ウシオ電機株式会社 Fluorescent light source device
CN103234172B (en) * 2013-04-16 2015-03-11 冠捷显示科技(厦门)有限公司 Diffusion plate structure and application thereof in backlight module
CN103353626B (en) * 2013-06-13 2016-04-20 北京大学深圳研究生院 Three dimensional grating anti-reflection structure and components and parts
US9971165B2 (en) * 2014-12-30 2018-05-15 Shenzhen China Star Optoelectronics Technology Co., Ltd. 3D display apparatus
EP3262447A4 (en) * 2015-02-27 2018-10-24 3M Innovative Properties Company Optical film including collimating reflective polarizer and structured layer
WO2017024250A1 (en) * 2015-08-05 2017-02-09 Playhard, Inc. Systems and methods for a stellate beam splitter
TWM519090U (en) * 2015-11-17 2016-03-21 駿福交通器材股份有限公司 Light emitter capable of emitting uniform light source
GB2545404B (en) * 2015-12-10 2019-08-28 Polyway Ind Co Ltd Illuminating device capable of uniformly diffusing light beams and side view mirror assembly including same
CN105700049B (en) * 2016-04-26 2018-11-30 京东方科技集团股份有限公司 A kind of prismatic lens and preparation method thereof, backlight module and VR display device
JP2020506417A (en) * 2017-01-16 2020-02-27 スリーエム イノベイティブ プロパティズ カンパニー Faceted microstructured surface
WO2018151097A1 (en) * 2017-02-15 2018-08-23 ナルックス株式会社 Diffusion element
CN111670317A (en) 2018-01-30 2020-09-15 亮视技术公司 Microstructures for converting light having a lambertian distribution to a batwing distribution
JP6845372B2 (en) * 2018-02-14 2021-03-17 日本特殊陶業株式会社 Optical wavelength converter
WO2019177755A1 (en) 2018-03-13 2019-09-19 Apple Inc. Displays with direct-lit backlight units
JP6886992B2 (en) 2018-03-30 2021-06-16 恵和株式会社 Light diffusing plate laminate, backlight unit, and liquid crystal display device
US11106086B2 (en) * 2018-04-20 2021-08-31 Chimei Corporation Optical plate with protrusions, optical structure, backlight module and display device
CN113260815B (en) * 2019-01-03 2024-02-13 亮视技术公司 Color conversion film for backlight display and backlight unit
US11822158B2 (en) 2019-09-11 2023-11-21 Brightview Technologies, Inc. Back light unit for backlit displays
WO2021126792A1 (en) * 2019-12-20 2021-06-24 Arkema France High spectral uniformity acrylic light diffusion material
WO2021150813A1 (en) 2020-01-24 2021-07-29 Brightview Technologies, Inc. Optical film for back light unit and back light unit including same
JP7064722B2 (en) * 2020-03-31 2022-05-11 大日本印刷株式会社 Surface light source device and display device
TWI738458B (en) * 2020-08-12 2021-09-01 達運精密工業股份有限公司 Optical plate and display apparatus
TWI750935B (en) * 2020-12-04 2021-12-21 穎台科技股份有限公司 Diffusion plate and backlight module having the diffusion plate
CN117555059A (en) * 2020-12-14 2024-02-13 颖台科技股份有限公司 Diffusion plate and backlight module with same
WO2022145575A1 (en) * 2021-01-04 2022-07-07 삼성전자주식회사 Display device and light source device thereof
US11422407B2 (en) 2021-01-04 2022-08-23 Samsung Electronics Co., Ltd. Display apparatus and light source device thereof
TWI767549B (en) * 2021-02-03 2022-06-11 云光科技股份有限公司 Backlight device
TW202232142A (en) 2021-02-09 2022-08-16 暘旭光電股份有限公司 A backlight module having optical film with inclined structure
CN216719374U (en) * 2021-07-11 2022-06-10 富盛光电(吴江)有限公司 Height and angle setting framework for triangular pyramid of MINI LED light splitting plate
CN113687532B (en) * 2021-08-19 2022-12-06 深圳市华星光电半导体显示技术有限公司 Optical film and display device
CN115166879A (en) * 2022-08-17 2022-10-11 富盛光电(吴江)有限公司 Co-extrusion diffusion plate

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196808A (en) 1992-01-21 1993-08-06 Sumitomo Dow Ltd Light diffusion plate and liquid crystal display unit constituted by using the same
JPH078805U (en) 1993-06-29 1995-02-07 第二しなのポリマー株式会社 Directional diffuser and its applications
JPH10246805A (en) 1997-03-06 1998-09-14 Dainippon Printing Co Ltd Optical sheet for diffused light control, back light device, and liquid crystal display device
WO1998044475A1 (en) 1997-03-31 1998-10-08 Idec Izumi Corporation Display and lighting device
JP3165388B2 (en) 1997-03-31 2001-05-14 和泉電気株式会社 Display device and lighting device
KR20060035051A (en) 2004-10-20 2006-04-26 삼성전자주식회사 Diffuser sheet, method for manufacturing thereof and liquid crystal display device having the same
JP5228314B2 (en) 2005-12-01 2013-07-03 東レ株式会社 Diffusion sheet and backlight unit using the same
JP2007178875A (en) * 2005-12-28 2007-07-12 Takiron Co Ltd Light diffusion sheet
JP4640188B2 (en) * 2006-01-18 2011-03-02 三菱電機株式会社 Surface light source device
JP4863357B2 (en) 2006-01-24 2012-01-25 株式会社エンプラス Light emitting device, surface light source device, display device, and light flux controlling member
CN101025516A (en) 2006-02-23 2007-08-29 鸿富锦精密工业(深圳)有限公司 Backlight module
CN100587567C (en) * 2006-03-30 2010-02-03 京东方科技集团股份有限公司 LED back light module
EP2003390A4 (en) 2006-03-31 2011-01-19 Zeon Corp Direct-type backlight device
JP2007299572A (en) 2006-04-28 2007-11-15 Mitsubishi Rayon Co Ltd Surface light source device using optical mixing means
JPWO2008026540A1 (en) 2006-08-29 2010-01-21 タキロン株式会社 Light diffusion sheet and backlight unit using the same
JPWO2008050763A1 (en) 2006-10-27 2010-02-25 日本ゼオン株式会社 Direct backlight unit
US7789538B2 (en) 2006-11-15 2010-09-07 3M Innovative Properties Company Back-lit displays with high illumination uniformity
CN101196581A (en) 2006-12-08 2008-06-11 鸿富锦精密工业(深圳)有限公司 Optical plate
KR20090022171A (en) * 2007-08-29 2009-03-04 주식회사 나노옵틱스 Brightness-enhanced optical sheet which has a diffusion fuction
CN101393281B (en) * 2007-09-21 2011-02-09 鸿富锦精密工业(深圳)有限公司 Back light module unit and prismatic lens thereof
TWI382204B (en) 2007-12-31 2013-01-11 Ind Tech Res Inst Optical diffusion plate and fabricating method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459336B (en) * 2012-04-26 2014-11-01
TWI499804B (en) * 2013-04-24 2015-09-11 Asukanet Co Ltd Stereoscopic image display device and method for displaying stereoscopic image
US9618757B2 (en) 2013-04-24 2017-04-11 Asukanet Company, Ltd. Stereoscopic image display device and stereoscopic image display method
US11143914B2 (en) 2019-03-13 2021-10-12 Keiwa Inc. Multilayer of light diffusers, backlight unit, and liquid crystal display device
TWI697718B (en) * 2019-09-19 2020-07-01 暘旭光電股份有限公司 Optical film and backlight module
CN114077096A (en) * 2020-08-21 2022-02-22 株式会社Lms Optical film, backlight unit and liquid crystal display device
TWI756905B (en) * 2020-08-21 2022-03-01 南韓商Lms股份有限公司 Optical film, backlight unit and liquid crystal display device
US11442204B2 (en) 2020-08-21 2022-09-13 Lms Co., Ltd. Optical film

Also Published As

Publication number Publication date
CN102597819A (en) 2012-07-18
US9341754B2 (en) 2016-05-17
WO2011030594A1 (en) 2011-03-17
CN102597819B (en) 2014-08-06
JPWO2011030594A1 (en) 2013-02-04
KR101234975B1 (en) 2013-02-20
KR20120023184A (en) 2012-03-12
US20120176772A1 (en) 2012-07-12
TWI427333B (en) 2014-02-21

Similar Documents

Publication Publication Date Title
TW201109741A (en) Light diffusing plate for point-light sources and direct-lighting backlight device using point-light-source
TWI362468B (en) Back-light portion
JP2010117707A (en) Light diffusion plate and direct point-like light source backlight device
JP2013225058A (en) Optical plate and direct point light source backlight device
JP4380795B1 (en) Lens sheet, optical sheet, and backlight unit and display device using the same
TW200916844A (en) Prism sheet, backlight unit and liquid crystal display device using the same
JP2011123379A (en) Light beam control unit, direct backlight apparatus and liquid crystal display apparatus
JP5698498B2 (en) Light beam control unit, direct type backlight device, and liquid crystal display device
JP2009258621A (en) Lens sheet, optical sheet for display, back light unit using the same, and display
JP4522938B2 (en) Light control member provided in illumination device and image display device using the same
JP2010097034A (en) Microlens sheet and back light unit display using the same
JP2010192246A (en) Light diffusion plate, optical sheet, backlight unit, and display device
JP2008139869A (en) Optical plate
JP5012221B2 (en) Backlight unit and display device
JP2010054995A (en) Lens sheet, backlight unit and display apparatus
JP5791386B2 (en) Direct type point light source backlight device
TWI750935B (en) Diffusion plate and backlight module having the diffusion plate
JP5256723B2 (en) Light diffusion plate, optical sheet, backlight unit, and display device
JP5749005B2 (en) Direct backlight unit
JP2013041722A (en) Direct-downward point light source backlight device
JP2013218092A (en) Light diffusion laminate, surface light source device, and display device and illumination device using surface light source device
JP5195069B2 (en) Backlight unit and display device
JP5311034B2 (en) Light source device, backlight unit, and display device
JP5217404B2 (en) Optical sheet, display backlight unit and display device
JP2010175759A (en) Optical sheet, backlight unit for display, and image display

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees