TW201109158A - Method for manufacturing micro/nano three-dimensional structure - Google Patents

Method for manufacturing micro/nano three-dimensional structure Download PDF

Info

Publication number
TW201109158A
TW201109158A TW98130260A TW98130260A TW201109158A TW 201109158 A TW201109158 A TW 201109158A TW 98130260 A TW98130260 A TW 98130260A TW 98130260 A TW98130260 A TW 98130260A TW 201109158 A TW201109158 A TW 201109158A
Authority
TW
Taiwan
Prior art keywords
micro
flexible substrate
layer
manufacturing
dimensional structure
Prior art date
Application number
TW98130260A
Other languages
Chinese (zh)
Inventor
Yung-Chun Lee
Chun-Hung Chen
Te-Hui Yu
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW98130260A priority Critical patent/TW201109158A/en
Priority to US12/699,892 priority patent/US20100193469A1/en
Publication of TW201109158A publication Critical patent/TW201109158A/en

Links

Abstract

A method for manufacturing a micro/nano three-dimensional structure comprising the following steps is described. A moldis provided, and a pattern structure comprising a plurality of convex portions and a plurality of concave portions is set in a surface of the mold. A transfer material layer including a first portion on the convex portions and a second portion on the concave portions is formed. A flexible substrate is disposed on the mold, wherein a surface of the flexible substrate contacts with the first portion of the transfer material layer. A heating step is performed to partially heat the flexible substrate through the first portion of the transfer material layer. A pressure is applied on the flexible substrate to make the first portion of the transfer material layer be adhered to or be pressed into the surface of the flexible substrate. The mold is removed. An etching step is performed on the flexible substrate by using the first portion of the transfer material layer as a mask to form a micro/nano three-dimensional structure in the surface of the flexible substrate.

Description

201109158 六、發明說明: 【發明所屬之技術領域] 本發明是有關於一種微^半 Printing Process),且特別是有 ^ 轉户製程(Micro/nano 術製造微奈米立體結構之方法_於—種利用微奈米轉印技 【先前技術】 隨著電子元件之尺寸的曰κ _ 面臨嚴重考驗。在目前之電子元件製2件之圖案定義也 光學微影技術來進行元件特徵圖案 般大都採用 光學繞射_限,光學《彡技術所能定ί。“,受限於 也受到嚴重限制。 ^斤此疋義之圖案特徵尺寸 有鑑於此,近年來發展出之 (Micro/Nano-impriming Technology)已被印技術 能超:並,傳統之微奈米先學微影製 7。在目前已開發出的壓印技術中,接觸式二 印技術為近來常見之壓印技術。接二 術係將轉印材料層設置在模仁之圖案結構:== 圖案結構相對壓合,以使圖案結構之凸狀部上的轉 P材料層與基板表面接合,接著透過加熱轉印材料層的方 工來增加模仁之凸狀部上的轉印材料層與基板表面之間 2黏附力,然後移除模仁,即可將模仁圖案結構中之凸狀 部上的轉印材料層轉移至基板表面上,而完成微奈米圖案 的轉印。 然而,實際上轉移圖案之尺寸的持續縮減至微奈米尺 201109158 :圖宏㉟仁之圖案結構的凸狀部之間的高度落差將大幅降 板上塑补移之均勻度、精確度、可靠度。尤其是可撓性基 成的献出微奈米圖案’必須克服溫度對可撓性基板所造 化與二丨形或是可撓性基板在光學微影製程時,顯影及 化予蝕刻所造成的基板損害。201109158 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a micro-printing process, and in particular to a process for transferring a micro-nano structure by a micro/nano method. The use of micro-nano transfer technology [prior art] With the size of electronic components 曰 κ _ is facing a serious test. In the current electronic components, the pattern definition of two pieces is also used in optical lithography technology for component feature patterns. Optical diffraction _ limit, optical "彡 technology can be set.", is limited by also severely limited. ^ Jin this pattern of feature size in view of this, developed in recent years (Micro / Nano-impriming Technology) Has been printed technology can be super: And, the traditional micro-nano first learn micro-shadow system 7. In the currently developed imprint technology, contact two-print technology is a recent common imprint technology. The transfer material layer is disposed on the pattern structure of the mold core: == The pattern structure is relatively pressed so that the layer of the P material on the convex portion of the pattern structure is bonded to the surface of the substrate, and then the layer of the transfer material layer is heated. The adhesion material layer on the convex portion of the mold pattern structure is transferred to the surface of the substrate by increasing the adhesion between the transfer material layer on the convex portion of the mold core and the surface of the substrate, and then removing the mold core. However, the transfer of the micro-nano pattern is completed. However, the size of the transfer pattern is actually reduced to the micro-nano ruler 201109158: the height difference between the convex portions of the pattern structure of the figure macro 35 will be greatly reduced on the plate. Uniformity, accuracy, and reliability of shifting. Especially for flexible bases, the micro-nano pattern must overcome the temperature of the flexible substrate and the two-dimensional or flexible substrate in the optical lithography process. At the time of development, the substrate is damaged by the etching.

可吉^此i亟需一種新穎並簡單的微奈米圖案轉印技術, 勻声、因模仁之圖案結構的高低差而對圖案轉移製程之均 可;精確度、可靠度與成功率所造成之負面影響,同時 作見服可撓性基板上製作出微奈米圖案,因溫度產生的熱 支形或是顯影及化學蝕刻所造成的基板損害。 【發明内容】 因此,本發明之一態樣就是在提供一種微奈米立體結 構之製造方法,其可藉由直接接觸壓印技術,將具有微奈 米圖案之轉印層轉印於可撓性基板上,並可利用轉印層作 ,遮罩蝕刻可撓性基板,而順利在可撓性基板上形成微奈 米立體結構。 丁 由上述之實施例可知,本發明之另一態樣是在提供一 種微奈米立體結構之製造方法,其可利用轉移至可撓性基 板上的轉印層作為蝕刻遮罩之方式,移除未受到轉印層所 遮罩的部分,而形成一遮罩,可利用此遮罩作為電子束微 影製程之遮罩或是氣相沉積法形成微奈米圖案所需的遮 罩。 本發明之另一態樣是在提供一種微奈米立體結構之製 ^方法,其可藉由滚印或施加均佈壓力的方式,來壓合模 201109158 仁與可撓性基板。因此,可有 接觸面之間可能存在之高低差鱼解決模仁與可撓性基板之 轉印製程之可靠度,進而可利;^句度的問題,而可提高 利地轉移至可撓性基板上。 印製程將微奈米圖案順 本發明之又一態樣是在接 &#、、#·,^供一種微奈米立體結構之製 垅方法,其可利用舉離(Lift-〇 撓性基板之立體結構的凹陷部中形成;=層=了吉吉^This i need a novel and simple micro-nano pattern transfer technology, uniform, due to the difference in the pattern structure of the mold, the pattern transfer process can be; accuracy, reliability and success rate The negative effects, at the same time, make micro-nano patterns on the flexible substrate, thermal deformation due to temperature or substrate damage caused by development and chemical etching. SUMMARY OF THE INVENTION Accordingly, one aspect of the present invention provides a method for fabricating a micro-nanoscopic structure in which a transfer layer having a micro-nano pattern can be transferred to a flexible state by direct contact imprint technique. On the substrate, the transfer layer can be used to cover the etched flexible substrate, and the micro-nano structure can be formed smoothly on the flexible substrate. According to the above embodiments, another aspect of the present invention provides a method for manufacturing a microscopic three-dimensional structure, which can be transferred by using a transfer layer transferred onto a flexible substrate as an etching mask. A mask is formed in addition to the portion not covered by the transfer layer, and the mask can be used as a mask for the electron beam lithography process or a mask required for forming a micro-nano pattern by vapor deposition. Another aspect of the present invention provides a method of fabricating a microscopic three-dimensional structure which can be used to press and mold a 201109158 core and a flexible substrate by means of a roll or a uniform pressure. Therefore, there may be a difference in height between the contact surfaces, which solves the reliability of the transfer process of the mold core and the flexible substrate, thereby facilitating the problem of the degree of sentence, and improving the transfer to the flexibility. On the substrate. The printing process of the micro-nano pattern in accordance with another aspect of the invention is a method for making a micro-nano structure in connection with &#,,#·, ^, which can utilize lifting (Lift-〇 flexibility) Formed in the recessed portion of the three-dimensional structure of the substrate; = layer =

:利用此另-轉印層作為蝕刻遮罩,移除立體結構之凸狀 和而可順利形成與模仁之圖案互補的微奈米立體結構。 、本發明之再-態樣是在提供一種微奈米立體結構之製 造方法,其局部接觸加財撓性基板而有效解決因溫 度產生的基板熱變形,進而可利用轉印製㈣微奈米圖案 順利地轉移至可撓性基板上。By using the further transfer layer as an etch mask, the convex shape of the three-dimensional structure is removed and the micro-nano structure complementary to the pattern of the mold core can be smoothly formed. The re-state of the present invention provides a method for manufacturing a micro-nanoscopic three-dimensional structure, which locally contacts a rich flexible substrate to effectively solve the thermal deformation of the substrate due to temperature, and further utilizes a transfer system (four) micro-nano The pattern is smoothly transferred to the flexible substrate.

根據本發明之上述目的,提出一種微奈米立體結構之 製造方法,包含下列步驟。提供模仁,其中此模仁具有相 對之第一表面與第二表面,且第一表面設有一圖案結構, 此圖案結構包含數個第一凸狀部與數個第一凹陷部。可依 模仁表面的抗沾黏性的強弱選擇性地形成抗沾黏層於模仁 第一表面,然後形成轉印材料層,其中此轉印材料層包含 第一部分位於前述之第一凸狀部、以及第二部分位於第一 凹陷部上。設置可撓性基板於模仁上,其中此可撓性基板 具有相對之第一表面與第二表面,且可撓性基板之第一表 面與轉印材料層之第一部分接觸。從模仁之第二表面進行 加熱步驟,以經由轉印材料層之第一部分局部加熱可撓性 基板。施加壓力於可撓性基板之第二表面上,以使轉印材 201109158 料層之第一部分黏附或壓入於可撓性基板之第一表面上。 移除模仁。以轉印材料層之第一部分作為遮罩,對可撓性 基板進行蝕刻步驟,以在可撓性基板之第一表面中形成第 一微奈米立體結構。 依照本發明一較佳實施例,上述之微奈米立體結構之 製造方法於蝕刻步驟後,更包含下列步驟。形成遮罩層, 其中遮罩層包含第一部分位於轉印材料層之第一部分上、 以及第二部分位於第一微奈米立體結構之數個第二凹陷部 上。進行舉離步驟,以移除轉印材料層之第一部分與遮罩 層之第一部分。以遮罩層之第一部分為遮罩,進行另一蝕 刻步驟,以移除未受到遮罩層遮罩之可撓性基板,而形成 第二微奈米立體結構。 【實施方式】 請參照第1圖至第7圖,其係繪示依照本發明之一實 施方式的一種微奈米立體結構之製程剖面圖。在本實施方 式中,製作微奈米立體結構時,可先提供轉印用之模仁 1〇〇,其中模仁100具有相對之表面102與104。如第1圖 所示,模仁100之表面102上預設有欲進行轉印之圖案結 構110,其中此圖案結構110包含數個凸狀部108與數個凹 陷部106。在本發明中,圖案結構110之圖案尺寸較佳可 為微米級或奈米級。在一實施例中,模仁100之材料例如 可為石夕(Si)、高分子聚合物(polymer)系列材料、有機材料、 塑膠材料、半導體材料、金屬材料、石英、玻璃材料、陶 瓷材料、無機材料、或上述材料中任二者或任二者以上所 201109158 合成之材料。 接下來,如第2圖所示,可選According to the above object of the present invention, a method of manufacturing a micro-nanoscopic structure is proposed, which comprises the following steps. A mold core is provided, wherein the mold core has a first surface and a second surface, and the first surface is provided with a pattern structure comprising a plurality of first convex portions and a plurality of first concave portions. The anti-adhesion layer is selectively formed on the first surface of the mold core according to the anti-adhesion property of the surface of the mold core, and then the transfer material layer is formed, wherein the transfer material layer comprises the first portion located at the first convex shape The portion and the second portion are located on the first recess. A flexible substrate is disposed on the mold core, wherein the flexible substrate has opposing first and second surfaces, and the first surface of the flexible substrate is in contact with the first portion of the transfer material layer. A heating step is performed from the second surface of the mold core to locally heat the flexible substrate via the first portion of the transfer material layer. Pressure is applied to the second surface of the flexible substrate such that the first portion of the transfer material 201109158 is adhered or pressed onto the first surface of the flexible substrate. Remove the mold kernel. The first substrate of the transfer material layer is used as a mask, and the flexible substrate is subjected to an etching step to form a first micro-nano structure in the first surface of the flexible substrate. According to a preferred embodiment of the present invention, the method for fabricating the above-described microscopic three-dimensional structure further comprises the following steps after the etching step. A mask layer is formed, wherein the mask layer comprises a first portion on the first portion of the transfer material layer and a second portion on the plurality of second recess portions of the first micro-nano structure. A lift-off step is performed to remove the first portion of the transfer material layer and the first portion of the mask layer. With the first portion of the mask layer as a mask, another etching step is performed to remove the flexible substrate that is not covered by the mask layer to form a second micro-nano structure. [Embodiment] Referring to Figures 1 to 7, there is shown a process cross-sectional view of a micro-nanoscopic structure according to an embodiment of the present invention. In the present embodiment, when the microscopic three-dimensional structure is formed, the mold core for transfer can be provided first, wherein the mold core 100 has opposing surfaces 102 and 104. As shown in Fig. 1, the surface 102 of the mold core 100 is preliminarily provided with a pattern structure 110 to be transferred, wherein the pattern structure 110 includes a plurality of convex portions 108 and a plurality of concave portions 106. In the present invention, the pattern size of the pattern structure 110 is preferably on the order of micrometers or nanometers. In an embodiment, the material of the mold core 100 can be, for example, Si Xi (Si), polymer series materials, organic materials, plastic materials, semiconductor materials, metal materials, quartz, glass materials, ceramic materials, An inorganic material, or a material synthesized by any one or both of the above materials, 201109158. Next, as shown in Figure 2, optional

如具抗沾黏效果的含氟高分子聚合物(PGlymer)系 特性,例 列材質, '、,可選擇性地利用例如熱蒸鑛 黏骐層112,其中抗沾黏膜層 案結構110上。在另一實施例 的材料本身具有抗沾黏特性,例 上額外設置上述之抗沾黏 模仁100之材料可例如為 則可無需於模仁100之表面1〇2 膜層112。在此另一實施例中, 具抗沾黏效果的金屬、無機材料、高分子聚合物(p〇lymer) 系列材質、陶瓷材料、半導體材料、有機材料或上述材料 中任二者或任二者以上所合成之材料。在一例子中,此具 抗沾黏效果的含氟高分子聚合物系列材質可為乙烯_四氟 乙烯共聚物(ethylene tetrafluoroethylene),例如杜邦(DuPont) 公司所生產的乙婦-四氟乙嫦共聚物。 接著,利用例如熱蒸鑛或電子束蒸鑛法,或者化學氣 相沉積或物理氣相沉積等方式並配合一般圖案定義技術, 而在抗沾黏膜層112上形成轉印材料層114。如第2圖所 籲 示,轉印材料層114包含二部分114a與114b。其中,轉印 材料層114之部分114a覆蓋在圖案結構11〇之凹陷部1〇6 中之抗沾黏膜層112上,而轉印材料層114之部分114b則 覆蓋在圖案結構110之凸狀部108之頂面上之抗沾黏膜層 112上。在一些實施例中,當模仁100的材料本身具有抗 沾黏特性時’轉印材料層114則可直接覆蓋在模仁1〇〇之 圖案結構I10上。其中,轉印材料層U4之部分114a直接 覆蓋在圖案結構110之凹陷部106的底面上’而轉印材料 201109158 ’ 層114之另一部分114b則直接覆蓋在圖案結構110之凸狀 部108之頂面上。轉印材料層114之材料與後續所提供之 可撓性基板116(請先參照第3圖)之材料之間具有較大之蝕 刻選擇比。轉印材料層114之材料一般可例如為無機材 料陶瓷材料、金屬材料、高分子聚合物(p〇lymer)系列材 料、有機材料、塑膠材料、半導體材料或上述材料中任二 者或任二者以上所合成之材料。在一實施例中,轉印材料 層114之材料可例如為金屬,例如鉻(Cr)金屬。 • 藉由抗沾黏膜層U2的設置,或者藉由採用其本身之 材料就具有抗沾黏特性的模仁1〇〇,可在後續轉印過程中, 使模仁100之凸出部108上之轉印材料層114的部分114b 順利脫離模仁1〇〇之凸狀部。 接下來’提供可撓性基板116。此可撓性基板116具有 相對之表面118與120。在一實施例中,可撓性基板116 之材料例如可為有機材料、塑膠材料、高分子材料、或上 述材料中任二者或任二者以上所合成之材料。在一示範實 籲施例中,可撓性基板11ό之材料可例如為聚乙婦對苯二甲 酸醋。接著,請參照第3圖,將可撓性基板U6設置在模 仁100之表面102上,並使可撓性基板116之表面U8與 模仁100之表© 102相對,且使可繞性基板116之表面118 與模仁100之圖案結構110之凸狀部1〇8上之轉印材料層 114的部分114b接觸。 隨後,請參照帛4 η,提供加熱源122,並利用此加 •熱源122從模仁100之表面104進行加熱步驟。在此加熱 •步驟中’加熱源122從模仁100之表面104對模仁100加 201109158 熱。經過熱傳導及熱幅射效應而加熱模仁1〇〇之另一表面 102的凸㈣108上之轉印材料層114、的部分⑽。受敎 之轉印材料層m的部分U4b進—步對與其接觸之可挽性 基板116之表面118部分加熱。如此—來,可局部加孰可 撓性基板116’而在與轉特朗114之部分⑽接觸的 可撓性基板116的局部區域上形成加熱部分124。在一示 範實施例中,此-加熱步驟包含控制加熱溫度,以使與模 仁100之凸狀部108上之轉印材料層的部分1Mb接觸 之可撓性基板116㈣熱部分124達到玻_變溫度⑽ 熱熔融狀態,並控制溫度在避免或減少使可撓性基板116 的受熱部分124以外的部分產生軟化熔融現象的範圍内, 而使可撓性基板116的受熱部分124產生軟化現象。因此, 與可撓性基板116之受熱部分124壓合之轉印材料層114 的部分114b可黏附或壓入在可撓性基板116之已軟化熔融 的i熱部分124中。在一些實施例中,上述之加熱步驟所 採用之加熱源122例如可為雷射光式加熱源、燈源照光式 加熱源、熱電阻式加熱源、渦電流式加熱源、微波加熱式 加熱源或超音波加熱式加熱源。 在一實施方式中’如第5A圖所示,在局部加熱可撓 性基板116時,可提供滾輪126,並將此滾輪126設置在 可挽性基板116之表面120上,以從可撓性基板116之表 面120來對可撓性基板116施壓。滾輪126之材質可為透 光材質或不透光材質。滾輪126之材料例如可為玻璃、金 屬、塑膠、高分子聚合物(polymer)系列材料、無機材料、 陶究材料、半導體材料、有機材料或上述材料中任二者或 201109158 任二者以上所合成之材料。 請參照第5A圖,利用滾輪126在可撓性基板116之表 面120上進行滾印步驟,可使模仁1〇〇之圖案結構110中 的所有凸狀部108上之轉印材料層114的部分114b均與可 撓性基板116之表面118更為緊密地接觸。 在另一實施方式中,如第5B圖所示,從可撓性基板 116之表面12〇來對可撓性基板116施加均勻分布的均佈壓 力’例如氣壓,同樣可使模仁100之圖案結構110中的所 0 有凸狀部108上之轉印材料層114的部分114b均與可撓性 基板116之表面118更為緊密地接觸。 此時,由於可撓性基板116之受熱部分124已經軟化 熔融’因而經滾印或施加均佈壓力後,可使所有凸狀部1〇8 上之轉印材料層114的部分n4b完全轉印於可撓性基板 116之表面118。因此,藉由滾印或施加均佈壓力,可有效 解決模仁100之凸狀部108上的轉印材料層114的部分 114b與可撓性基板116之接觸面之間可能存在之高低差與 φ 均勻度的問題,彌補接觸面平整度不足之缺失,如此一來 可提高轉印製程之可靠度。 在一示範實施例中,模仁100之材料可例如為石夕,可 撓性基板116之材料可例如為聚乙稀對笨二甲酸酉旨,而加 熱步驟所採用之加熱源122則可例如為紅外紐源加轨 器。由於紅外光對石夕所構成之模仁1〇〇的透光率高,因^ 除了間接之熱傳導加熱外,紅外光亦可直接對模仁刚之 •另一表面102上的轉印材料層114加熱,而可使加熱源122 •之能量有效傳遞,進而可提高製程效率。在此示範實施例 201109158 。中上迷之加熱步驟之加熱溫度可例如控制在介於實質80 與實質110。之間,以能使可撓性基板116與轉印材料層 114接觸之部分達熱熔融為主。 然後’自可撓性基板116之表面120上移除滚輪126 f解除均佈壓力的施加’再將模仁100與可撓性基板II6 分離。此時,由於模仁1〇〇與轉印材料層114之間設有抗 沾黏膜層112,或者模仁1〇〇本身之材料具有抗沾黏特性。 再加上’模仁10〇之圖案結構110之凸狀部108上之轉印 眷材料層114的部分114b黏附或壓入於可撓性基板116之經 加熱而局部軟化熔融的加熱部分124。因此,模仁100之 狀· 4 108上的轉印材料層I"的部分11扑可順利脫離模 100之凸狀部1〇8 ’而順利地轉印黏附或壓入至可撓性 基板116之表面118上,並在可撓性基板116之表面118 形成轉印之微奈米圖形結構,如第6圖所示。如此 來,即已完成將模仁10〇之圖案結構u〇的圖案直接轉 印於可撓性基板116的程序。 • 接著’利用轉移至可撓性基板116之表面118上之轉 層114的部分114b作為遮罩,對可撓性基板116之 暴露。P分進行麵刻。如第7圖所示,在此钱刻步驟中,移 ^ β撓H基板116之暴露部分的—部分,而將微奈米圖形 了構128之圖案進—步轉移至可撓性基板116巾,進而在 可撓性基板116中形成微奈米立體結構130。其中,微奈 ;'體σ構丨3〇包含數個凸狀部136與數個凹陷部134。 •在本實施方式中,由於微奈米立體結構130之圖案係轉移 .自微'τ、米圖&結構128 ’因此微奈米立體結構13()之圖案 12 201109158 與微奈米圖形結構128之圖案相同。 蝕刻可撓性基板116之暴露部分時,可利用乾式蝕刻 方式或濕式蚀刻方式。在一示範實施例中,可利用例如反 應性離子蝕刻方式來蝕刻可撓性基板116,且可利用例如 氧電漿來作為蝕刻劑。 如第8圖所示,在另一實施例中,可於可撓性基板116 中形成微奈米立體結構130後,再將轉印材料層114的部 分114b予以移除。 如第9圖所示,在又一實施例中’利用轉印材料層ι14 的部分114b作為遮罩,來蝕刻可撓性基板116之暴露部分 時,可完全移除而蝕穿可撓性基板116之未受到轉印材料 層114之部分114b遮罩的部分,而形成微奈米立體結構。 132。 如第10圖所示,在另一實施例中,可於可撓性基板 116中形成微奈米立體結構132後,再將轉印材料層114 的部分114b予以移除。 在另一實施方式中’可在形成如第7圖所示之結構 後,再利用例如蒸鍍方式形成遮罩層138。垆置展 含二部分H0舆M2。其中,遮罩層138之For example, the fluorine-containing polymer (PGlymer) having an anti-sticking effect, the example material, ', can selectively utilize, for example, a hot-steamed adhesive layer 112, wherein the anti-adhesion film layer structure 110 is used. The material of another embodiment itself has anti-adhesive properties, and the material of the above-described anti-adhesive mold core 100 may be additionally provided, for example, without the need for the surface layer 112 of the mold core 100. In another embodiment, any one or both of a metal, an inorganic material, a p〇lymer series material, a ceramic material, a semiconductor material, an organic material or the above materials having an anti-sticking effect The materials synthesized above. In one example, the anti-adhesive fluoropolymer series material may be ethylene tetrafluoroethylene, such as the uterus-tetrafluoroethylene hydrazine produced by DuPont. Copolymer. Next, a transfer material layer 114 is formed on the anti-adhesion film layer 112 by, for example, hot steam or electron beam evaporation, or chemical vapor deposition or physical vapor deposition, in conjunction with general pattern definition techniques. As recalled in Fig. 2, the transfer material layer 114 includes two portions 114a and 114b. Wherein, a portion 114a of the transfer material layer 114 covers the anti-adhesion layer 112 in the recess portion 1〇6 of the pattern structure 11〇, and a portion 114b of the transfer material layer 114 covers the convex portion of the pattern structure 110. The top of the 108 is on the anti-adhesion layer 112. In some embodiments, the transfer material layer 114 can be directly overlaid on the pattern structure I10 of the mold core when the material of the mold core 100 itself has anti-stick properties. Wherein, the portion 114a of the transfer material layer U4 directly covers the bottom surface of the recess portion 106 of the pattern structure 110, and the other portion 114b of the transfer material 201109158' layer 114 directly covers the top of the convex portion 108 of the pattern structure 110. On the surface. The material of the transfer material layer 114 has a large etch selectivity ratio between the material of the subsequently provided flexible substrate 116 (please refer to Figure 3 first). The material of the transfer material layer 114 may generally be, for example, an inorganic material ceramic material, a metal material, a polymer material series, an organic material, a plastic material, a semiconductor material, or both or both of the above materials. The materials synthesized above. In one embodiment, the material of the transfer material layer 114 can be, for example, a metal such as chromium (Cr) metal. • The embossing portion 108 of the mold core 100 can be placed in the subsequent transfer process by the setting of the anti-adhesion film layer U2 or by the use of the material itself to have the anti-adhesive property of the mold core 1〇〇. The portion 114b of the transfer material layer 114 is smoothly separated from the convex portion of the mold core 1〇〇. Next, a flexible substrate 116 is provided. The flexible substrate 116 has opposing surfaces 118 and 120. In one embodiment, the material of the flexible substrate 116 may be, for example, an organic material, a plastic material, a polymer material, or a material synthesized by any two or more of the above materials. In an exemplary embodiment, the material of the flexible substrate 11 can be, for example, polyethylene terephthalate. Next, referring to FIG. 3, the flexible substrate U6 is placed on the surface 102 of the mold core 100, and the surface U8 of the flexible substrate 116 is opposed to the surface 102 of the mold core 100, and the flexible substrate is made. The surface 118 of the 116 is in contact with the portion 114b of the transfer material layer 114 on the convex portion 1〇8 of the pattern structure 110 of the mold core 100. Subsequently, referring to 帛4 η, a heating source 122 is provided, and the heating source 122 is used to perform a heating step from the surface 104 of the mold core 100. In this heating step, the heating source 122 heats the mold core 100 from the surface 104 of the mold core 100 to 201109158. The portion (10) of the transfer material layer 114 on the convex (four) 108 of the other surface 102 of the mold core 1 is heated by the heat conduction and heat radiation effects. The portion U4b of the transfer material layer m is partially heated to the surface 118 of the contactable substrate 116 in contact therewith. In this manner, the flexible substrate 116' can be partially twisted to form the heating portion 124 on a partial region of the flexible substrate 116 that is in contact with the portion (10) of the transitional portion 114. In an exemplary embodiment, the heating step includes controlling the heating temperature such that the flexible substrate 116 (four) hot portion 124 in contact with the portion 1Mb of the transfer material layer on the convex portion 108 of the mold core 100 reaches the glass transition. The temperature (10) is in a hot-melt state, and the temperature is controlled to prevent or reduce the softening and melting phenomenon of the portion other than the heat-receiving portion 124 of the flexible substrate 116, and the heat-receiving portion 124 of the flexible substrate 116 is softened. Therefore, the portion 114b of the transfer material layer 114 which is pressed against the heated portion 124 of the flexible substrate 116 can be adhered or pressed into the softened and melted i-heat portion 124 of the flexible substrate 116. In some embodiments, the heating source 122 used in the heating step may be, for example, a laser light heating source, a light source illumination source, a thermal resistance heating source, an eddy current heating source, a microwave heating heating source, or Ultrasonic heated heating source. In one embodiment, as shown in FIG. 5A, when the flexible substrate 116 is locally heated, a roller 126 can be provided and the roller 126 can be disposed on the surface 120 of the slidable substrate 116 for flexibility. The surface 120 of the substrate 116 is used to press the flexible substrate 116. The material of the roller 126 can be a light transmissive material or an opaque material. The material of the roller 126 can be, for example, a glass, a metal, a plastic, a polymer series material, an inorganic material, a ceramic material, a semiconductor material, an organic material or any of the above materials or a combination of any of the above-mentioned materials. Material. Referring to FIG. 5A, the roller 126 is used to perform a roll printing step on the surface 120 of the flexible substrate 116, so that the transfer material layer 114 on all the convex portions 108 in the pattern structure 110 of the mold core can be made. Portions 114b are in closer contact with surface 118 of flexible substrate 116. In another embodiment, as shown in FIG. 5B, a uniformly distributed uniform pressure 'for example, air pressure is applied to the flexible substrate 116 from the surface 12 of the flexible substrate 116, and the pattern of the mold 100 can also be obtained. Portions 114b of the transfer material layer 114 on the embossed portion 108 of the structure 110 are in closer contact with the surface 118 of the flexible substrate 116. At this time, since the heated portion 124 of the flexible substrate 116 has been softened and melted, the portion n4b of the transfer material layer 114 on all the convex portions 1〇8 can be completely transferred after the printing or applying the uniform pressure. On the surface 118 of the flexible substrate 116. Therefore, by scrolling or applying a uniform pressure, the possible difference between the portion 114b of the transfer material layer 114 on the convex portion 108 of the mold core 100 and the contact surface of the flexible substrate 116 can be effectively solved. The problem of uniformity of φ compensates for the lack of flatness of the contact surface, which improves the reliability of the transfer process. In an exemplary embodiment, the material of the mold core 100 may be, for example, a stone eve, and the material of the flexible substrate 116 may be, for example, polyethylene to stearic acid, and the heating source 122 used in the heating step may be, for example, For the infrared new source rail. Since the infrared light has a high transmittance to the mold core of Shi Xi, because of the indirect heat conduction heating, the infrared light can directly directly on the transfer material layer on the other surface 102 of the mold core. The heating of 114 can effectively transfer the energy of the heating source 122, thereby improving the process efficiency. In this exemplary embodiment 201109158. The heating temperature of the heating step of the upper middle can be controlled, for example, between the substantial 80 and the substantial 110. The portion where the flexible substrate 116 is in contact with the transfer material layer 114 is thermally melted. Then, the roller 126 f is removed from the surface 120 of the flexible substrate 116 to release the application of the uniform pressure, and the mold core 100 is separated from the flexible substrate II6. At this time, since the anti-adhesion layer 112 is provided between the mold core 1 and the transfer material layer 114, or the material of the mold core itself has anti-stick property. Further, the portion 114b of the transfer enamel material layer 114 on the convex portion 108 of the pattern structure 110 of the mold core 10 is adhered or pressed into the heated portion 124 of the flexible substrate 116 which is heated and partially softened and melted. Therefore, the portion 11 of the transfer material layer I" on the shape of the mold 100 can be smoothly removed from the convex portion 1〇8' of the mold 100 and smoothly transferred or pressed into the flexible substrate 116. On the surface 118, a transferred micro-nano pattern is formed on the surface 118 of the flexible substrate 116, as shown in FIG. Thus, the procedure for directly transferring the pattern of the pattern structure u〇 of the mold core 10 to the flexible substrate 116 has been completed. • The flexible substrate 116 is then exposed by the portion 114b of the transfer layer 114 transferred to the surface 118 of the flexible substrate 116 as a mask. P points are engraved. As shown in FIG. 7, in the step of engraving, the portion of the exposed portion of the H substrate 116 is moved, and the pattern of the micro-nano pattern 128 is transferred to the flexible substrate 116. Further, the microscopic three-dimensional structure 130 is formed in the flexible substrate 116. Wherein, the micro-nine; 'body 丨 structure 3 〇 includes a plurality of convex portions 136 and a plurality of concave portions 134. • In the present embodiment, since the pattern of the micro-nano-stereo structure 130 is transferred. Since the micro 'τ, mitu & structure 128 ', thus the pattern of the micro-nano-stereostructure 13 () 12 201109158 and the micro-nano pattern structure The pattern of 128 is the same. When the exposed portion of the flexible substrate 116 is etched, a dry etching method or a wet etching method may be employed. In an exemplary embodiment, the flexible substrate 116 can be etched using, for example, a reactive ion etch, and an oxygen plasma can be utilized as an etchant, for example. As shown in Fig. 8, in another embodiment, after the micro-nanostructure 130 is formed in the flexible substrate 116, the portion 114b of the transfer material layer 114 is removed. As shown in FIG. 9, in another embodiment, when the exposed portion of the flexible substrate 116 is etched by using the portion 114b of the transfer material layer ι14 as a mask, the flexible substrate can be completely removed and etched through. The portion of 116 that is not covered by portion 114b of transfer material layer 114 forms a micro-nanostructure. 132. As shown in Fig. 10, in another embodiment, the portion 114b of the transfer material layer 114 can be removed after the micro-nanostructure 132 is formed in the flexible substrate 116. In another embodiment, the mask layer 138 may be formed by, for example, vapor deposition after forming the structure as shown in Fig. 7. The exhibition has two parts H0舆M2. Wherein, the mask layer 138

轉印材料層之部分114b上’而遮罩層ι38之另一部分 142則位於微奈米立體結構13〇之凹陷部134上,如^ u 圖所示。遮罩層138之材料可例如為無機材料、陶瓷材料、 金屬材料、高分子聚合物(polymer)系列材料、有機材 塑膠材料、半導體材料或上述材料中任二者或任二者以上 所合成之材料。 13 201109158 接著,利用例如舉離方式,藉由移除轉印材料層114 之部分114b,來移除上方之遮罩層138的部分140 ’而暴 露出微奈米立體結構130之凸狀部136 ’如第12圖所示。 在一實施例中,轉印材料層114之材料採用金屬。因此, 在此舉離步驟中,由於轉印材料層114與遮罩層138 質明顯不同於可撓性基板116,因此蝕刻移除轉印材料層 114之部分114b以舉離遮罩層138之部分140時,可有致 避免所採用之蝕刻劑損傷可撓性基板116。The portion 114b of the transfer material layer and the other portion 142 of the mask layer ι38 are located on the recess 134 of the micro-nanostructure 13 , as shown in the figure. The material of the mask layer 138 can be, for example, an inorganic material, a ceramic material, a metal material, a polymer series material, an organic material plastic material, a semiconductor material or any one or more of the above materials. material. 13 201109158 Next, the convex portion 136 of the micro-nanostructure 130 is exposed by removing portions 114b of the upper mask layer 138 by removing portions 114b of the transfer material layer 114, for example, by lift-off. 'As shown in Figure 12. In one embodiment, the material of the transfer material layer 114 is metal. Therefore, in this lifting step, since the transfer material layer 114 and the mask layer 138 are significantly different from the flexible substrate 116, the portion 114b of the transfer material layer 114 is etched away to lift away from the mask layer 138. At portion 140, the etchant employed can be prevented from damaging the flexible substrate 116.

然後’可利用位在微奈米立體結構130之凹陷部i34 上之遮罩層138的部分142為遮罩,完全蝕刻移除可撓性 基板116未受到遮罩層138之部分142所遮罩的部分,而 形成微奈米立體結構144,如第13圖所示。因此,微奈米 立體結構144之圖案與微奈米立體結構13〇之圖案互補。 在-實施例中,_可撓性基板116之暴露部分時, :利用乾式㈣方式或濕式㈣方式q —示範實施例 中,可利關如反應性離子#财式來㈣可撓性基 116,且可利用例如氧電漿來作為蝕刻劑。 如第14圖所示,在另一實施例中,可於可 ΓηΓ™ 138 ^ :利=之轉印層壓印於可撓性基板上,I 基板上形^奈米讀撓性基板,而糊在可魏 201109158 , 由上述之實施例可知,本發明之另一優點就是因為本 - 發明之微奈米立體結構之製造方法可藉由滾印或施加均佈 壓力的方式,來壓合模仁與可撓性基板。因此’可有效解 決模仁與可撓性基板之接觸面之間可能存在之高低差與均 勻度的問題,而可提高轉印製程之可靠度’進而可利用壓 印製程將微奈米圖案順利地轉移至可撓性基板上。 由上述之實施例可知’本發明之又一優點就是因為本 發明之微奈米立體結構之製造方法可利用舉離(1^冶_0印轉 印層之方式’順利在可撓性基板之立體結構的凹陷部中形 • 成另一轉印層。因此,可利用此另一轉印層作為蝕刻遮罩, 移除立體結構之凸狀部,而可順利形成與模仁之圖案互補 的微奈米立體結構。 由上述之實施例可知,本發明之又一優點就是因為本 發明之微奈米立體結構之製造方法可利用轉移至可撓性基 板上的轉印層作為钱刻遮罩之方式,移除未受到轉印層所 遮罩的部分,而形成-遮罩,可利用此遮罩作為電子束微 影製程之遮罩或是氣相沉積法形成微奈米圖錢需的遮 罩。 恭曰由士二補可知’本發明之再-優點就是因為才 結構之製造方法利用局部接觸加_ 性基度產生的基板熱變形,進而可利用 廢印裝程將微奈米圖案順利地轉移至可撓性基板上。 雖然本發明已財施巧揭露如上 之領域中具有通常知識=不: 離本發明之精神和範圍内’告 ^ 田可作各種之更動與潤飾,因 15 201109158 =本發明之保護範圍當視後附之”專利範_界定者為 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵 能更明顯易懂,所關式之說明如下:實施你 第1圖至第7圖騎示依照本發明之 種微奈米立體結構之製程剖面圖。 > 、The portion 142 of the mask layer 138 that is positioned over the recess i34 of the micro-nano-stereostructure 130 is then masked, and the fully etch-removed flexible substrate 116 is unmasked by the portion 142 of the mask layer 138. The portion of the micro-nano structure 144 is formed as shown in FIG. Therefore, the pattern of the micro-nano structure 144 is complementary to the pattern of the micro-nano structure 13〇. In the embodiment, when the exposed portion of the flexible substrate 116 is exposed, the dry (four) mode or the wet (four) mode q is used in the exemplary embodiment, and the reactive ion can be used as the reactive ion. 116, and for example, an oxygen plasma can be utilized as an etchant. As shown in FIG. 14, in another embodiment, the transfer substrate can be printed on a flexible substrate on a transfer substrate, and the flexible substrate can be read on the I substrate. According to the above embodiments, another advantage of the present invention is that the manufacturing method of the micro-nano structure of the present invention can be pressed by means of printing or applying uniform pressure. Ben and flexible substrates. Therefore, 'the problem of the height difference and uniformity between the contact surface of the mold core and the flexible substrate can be effectively solved, and the reliability of the transfer process can be improved', and the micro-nano pattern can be smoothly processed by the imprint process. Transfer to the flexible substrate. According to the above embodiments, another advantage of the present invention is that the manufacturing method of the microscopic three-dimensional structure of the present invention can be smoothly performed on a flexible substrate by means of lifting (1^ smelting the transfer layer) The recessed portion of the three-dimensional structure is shaped into another transfer layer. Therefore, the other transfer layer can be used as an etch mask to remove the convex portion of the three-dimensional structure, and the micro-complementary pattern can be smoothly formed. Nanoscopic structure. According to the above embodiments, another advantage of the present invention is that the manufacturing method of the microscopic three-dimensional structure of the present invention can utilize the transfer layer transferred onto the flexible substrate as a mask. By removing the portion not covered by the transfer layer and forming a mask, the mask can be used as a mask for the electron beam lithography process or a vapor deposition method to form a cover for the micro-nano graph.罩. The second advantage of the invention is that the manufacturing method of the structure uses the local contact plus the cation base to generate thermal deformation of the substrate, and the waste printing process can be used to smooth the micro-nano pattern. Transfer to flexibility Although the present invention has been disclosed in the above-mentioned fields, it has the usual knowledge that it does not: from the spirit and scope of the present invention, the singer can make various changes and refinements, as a result of the protection scope of the present invention. The above-mentioned and other objects and features of the present invention can be more clearly understood. The description of the closed type is as follows: Implementing your first to seventh embodiments The figure rides a process sectional view of a micro-nano structure according to the present invention. >

第8 _繪示依照本發明之另 米立體結狀剖面圖。 :9 _繪核照本發明之又—實施方式的_種微奈 水立體結構之剖面圖。 第10圖係緣示依照本發明之再一實施方式的一種微 奈米立體結構之剖面圖。 第11圖至第13圖係纟會示依照本發明之再一實施方式 的一種微奈米立體結構之製程剖面圖。Fig. 8 is a cross-sectional view showing a three-dimensional knot in accordance with the present invention. : 9 _ A cross-sectional view of the three-dimensional structure of the micro-nano water of the embodiment of the present invention. Figure 10 is a cross-sectional view showing a microscopic three-dimensional structure according to still another embodiment of the present invention. 11 to 13 are schematic cross-sectional views showing a process of a micro-nano structure according to still another embodiment of the present invention.

第14圖係緣示依照本發明之再一實施方式的一種微 奈米立體結構之剖面圖。 102 :表面 106 :凹陷部 110 :圖案結構 114 :轉印材料層 114b :部分 【主要元件符號說明】 1〇〇 :模仁 104 ·表面 108 :凸狀部 112 .抗沾黏膜層 114a :部分 201109158 116 :可撓性基板 118 120 :表面 122 124 :加熱部分 126 128 :微奈米圖形結構 130 132 :微奈米立體結構 134 136 :凸狀部 138 140 :部分 142 144 :微奈米立體結構 表面 加熱源 滾輪 微奈米立體結構 凹陷部 遮罩層 部分Figure 14 is a cross-sectional view showing a microscopic three-dimensional structure according to still another embodiment of the present invention. 102: surface 106: depressed portion 110: pattern structure 114: transfer material layer 114b: part [main element symbol description] 1 〇〇: mold core 104 · surface 108: convex portion 112. anti-stick layer 114a: part 201109158 116: flexible substrate 118 120: surface 122 124: heating portion 126 128: micronial pattern structure 130 132: micronanoscopic structure 134 136: convex portion 138 140: portion 142 144: micronial solid structure surface Heating source roller micro-nano three-dimensional structure depressed portion of the mask layer

1717

Claims (1)

201109158 七、申請專利範圍: 1. 一種微奈米立體結構之製造方法,包含·· 提供一模仁’其中該模仁具有相對之一第一表面與一 第二表面’且該第一表面設有一圖案結構,該圖案結構包 含複數個第一凸狀部與複數個第一凹陷部; 形成一轉印材料層,其中該轉印材料層包含一第一部 分位於該些第一凸狀部、以及一第二部分位於該些第一凹 陷部上; _ 設置一可撓性基板於該模仁上,其中該可撓性基板具 有相對之一第一表面與一第二表面,且該可撓性基板之該 第一表面與該轉印材料層之該第一部分接觸; 從該模仁之該第二表面進行一加熱步驟,以經由該轉 印材料層之該第一部分局部加熱該可撓性基板; 施加一壓力於該可撓性基板之該第二表面上,以使該 轉印材料層之該第一部分轉貼於該可撓性基板之該第一表 面上:以及 # 移除該模仁;以及 以該轉印材料層之該第一部分作為遮罩’對該可撓性 基板進行一蝕刻步驟’以在該可撓性基板之該第一表面中 形成一第一微奈米立體結構。 2. 如請求項1所述之微奈米立體結構之製造方法’其 中該蝕刻步驟完全移除該可撓性基板未受到該第一部分遮 ' 住的部分。 201109158 3. 如請求項1所述之微奈米立體結構之製造方法,於 該蝕刻步驟後,更包含移除該轉印材料層之該第一部分。 4. 如請求項1所述之微奈米立體結構之製造方法,於 該触刻步驟後,更包含: 形成一遮罩層,其中該遮罩層包含一第一部分位於該 轉印材料層之該第一部分上、以及一第二部分位於該第一 微奈米立體結構之複數個第二凹陷部上; φ 進行一舉離(Lift-off)步驟,以移除該轉印材料層之該 第一部分與該遮罩層之該第一部分;以及 以該遮罩層之該第一部分為遮罩,進行另一#刻步 驟,以移除未受到該遮罩層遮罩之該可撓性基板,而形成 一第二微奈米立體結構。 5. 如請求項4所述之微奈米立體結構之製造方法,其 中該轉印材料層之材料為無機材料、陶瓷材料、金屬材料、 φ 高分子聚合物(polymer)系列材料、有機材料、塑膠材料、 半導體材料或上述材料中任二者或任二者以上所合成之材 料。 6.如請求項4所述之微奈米立體結構之製造方法,其 中該遮罩層之材料為無機材料、陶瓷材料、金屬材料、高 分子聚合物(polymer)系列材料、有機材料、塑膠材料、半 導體材料或上述材料中任二者或任二者以上所合成之材 料。 19 201109158 7·如請求項4所述之微奈米立體結構之製造方法,其 中該第二微奈米立體結構之圖案與該第一微奈米立體結構 之圖案互補。 8. 如請求項4所述之微奈米立體結構之製造方法,於 該另一蝕刻步驟後,更包含移除該遮罩層之該第一部分。 9. 如請求項4所述之微奈米立體結構之製造方法,其 中該另一蝕刻步驟係利用一乾式蝕刻法或一濕式蝕刻法。 10. 如請求項4所述之微奈米立體結構之製造方法, 其中該另一蝕刻步驟係利用一反應性離子蝕刻法。 11. 如請求項10所述之微奈米立體結構之製造方法, 其中該另一蝕刻步驟係利用一氧電漿。 12. 如請求項1所述之微奈米立體結構之製造方法, 其中該可撓性基板之材料為有機材料、塑膠材料、高分子 材料、或上述材料中任二者或任二者以上所合成之材料。 13. 如請求項1所述之微奈米立體結構之製造方法, 其中該模仁之材料為石夕(Si)、高分子聚合物(polymer)系列材 料、有機材料、塑勝材料、半導體材料、金屬材料、石英、 20 201109158 玻璃材料、陶究材料、無機材料、或上述材料中任二者或 - 任二者以上所合成之材料。 14. 如請求項1所述之微奈米立體結構之製造方法, 其中該轉印材料層之材料為無機材料、陶瓷材料、金屬材 料、高分子聚合物(polymer)系列材料、有機材料、塑膠材 料、半導體材料或上述材料中任二者或任二者以上所合成 之材料。 15. 如請求項1所述之微奈米立體結構之製造方法, 其中該加熱步驟係採用一雷射光式加熱源、一燈源照光式 加熱源、一熱電阻式加熱源、一渦電流式加熱源、一微波 加熱式加熱源或一超音波加熱式加熱源。 16. 如請求項1所述之微奈米立體結構之製造方法, 其中該加熱步騍至少包含使該可撓性基板與該轉印材料層 φ 接觸之部分達到破璃轉變溫度(Tg)。 17·如請求項1所述之微奈米立體結構之製造方法, 其中該加熱步驟至少包含使該可撓性基板與該轉印材料層 接觸之部分達到熔融狀態。 18.如請求項1所述之微奈米立體結構之製造方法, * 其中設置該可撓性基板之步驟更至少包含從該可撓性基板 . 之該第二表面姆該模仁施加一預壓力,以使該可撓性基板r 21 201109158 之該第一表面與該轉印材料層之該第一部分緊密接觸。 19. 如請求項1所述之微奈米立體結構之製造方法, 其中該滾輪之材質為透光材質或不透光材質。 20. 如請求項1所述之微奈米立體結構之製造方法, 其中該滚輪之材質可為玻璃、金屬、塑膠、高分子聚合物 (polymer)系列材料、無機材料、陶竞材料、半導體材料、 有機材料或上述材料中任二者或任二者以上所合成之材 料。 21. 如請求項1所述之微奈米立體結構之製造方法, 其中 該模仁之材料為矽; 該可撓性基板之材料為聚乙烯對笨二曱酸酯(PET); 該加熱步驟係採用紅外光燈源加熱器。 22. 如請求項21所述之微奈米立體結構之製造方法, 其中該加熱步驟之加熱溫度介於實質80°與實質110°之 間。 23.如請求項1所述之微奈米立體結構之製造方法, 其中該模仁之材料為乙烯-四氟乙烯共聚物(ethylene tetrafluoroethylene) ° 22 201109158 24. 如請求項1所述之微奈米立體結構之製造方法, 其中該模仁之材料為具抗沾黏效果的含氟高分子聚合物 (polymer)系列材質。 25. 如請求項1所述之微奈米立體結構之製造方法, 其中該模仁之材料為具抗沾黏效果的金屬、無機材料、高 分子聚合物(polymer)系列材質、陶瓷材料、半導體材料、 有機材料或上述材料中任二者或任二者以上所合成之材 料。 26. 如請求項1所述之微奈米立體結構之製造方法, 其中施加該壓力之步驟包含利用一滾輪在該可撓性基板上 進行一滚印步驟。 27. 如請求項1所述之微奈米立體結構之製造方法, 其中施加該麼力之步驟包含施加一均佈壓力。 28. 如請求項1所述之微奈米立體結構之製造方法, 於形成該轉印材料層之步驟前,更包含形成一抗沾黏膜層 於該些第一凸狀部與該些第一凹陷部上。 23201109158 VII. Patent application scope: 1. A manufacturing method of micro-nano three-dimensional structure, comprising: providing a mold core, wherein the mold core has a first surface and a second surface, and the first surface is provided a pattern structure comprising a plurality of first convex portions and a plurality of first concave portions; forming a transfer material layer, wherein the transfer material layer comprises a first portion located at the first convex portions, and a second portion is disposed on the first recesses; _ a flexible substrate is disposed on the mold core, wherein the flexible substrate has a first surface and a second surface, and the flexible portion The first surface of the substrate is in contact with the first portion of the transfer material layer; a heating step is performed from the second surface of the mold core to locally heat the flexible substrate via the first portion of the transfer material layer; Applying a pressure to the second surface of the flexible substrate such that the first portion of the transfer material layer is affixed to the first surface of the flexible substrate: and # removing the mold; The flexible substrate is subjected to an etching step by using the first portion of the transfer material layer as a mask to form a first micro-nano structure in the first surface of the flexible substrate. 2. The method of manufacturing a micro-nanostructure according to claim 1, wherein the etching step completely removes a portion of the flexible substrate that is not covered by the first portion. The method of manufacturing the micro-nano structure according to claim 1, further comprising removing the first portion of the transfer material layer after the etching step. 4. The manufacturing method of the micro-nano structure according to claim 1, after the step of etching, further comprising: forming a mask layer, wherein the mask layer comprises a first portion located in the transfer material layer The first portion and the second portion are located on the plurality of second recesses of the first micro-nano structure; φ performing a Lift-off step to remove the layer of the transfer material layer a portion of the first portion of the mask layer; and the first portion of the mask layer is a mask, and another step is performed to remove the flexible substrate that is not covered by the mask layer. And forming a second micro-nano structure. 5. The method of manufacturing a microscopic three-dimensional structure according to claim 4, wherein the material of the transfer material layer is an inorganic material, a ceramic material, a metal material, a φ polymer series material, an organic material, A material synthesized from a plastic material, a semiconductor material, or any two or more of the above materials. 6. The method for manufacturing a microscopic three-dimensional structure according to claim 4, wherein the material of the mask layer is an inorganic material, a ceramic material, a metal material, a polymer series material, an organic material, a plastic material. A material synthesized by any one or more of a semiconductor material or the above materials. The method of manufacturing a micro-nanostructure according to claim 4, wherein the pattern of the second micro-nano structure is complementary to the pattern of the first micro-nano structure. 8. The method of fabricating a micro-nanostructure according to claim 4, further comprising removing the first portion of the mask layer after the further etching step. 9. The method of fabricating a micro-nanostructure according to claim 4, wherein the another etching step utilizes a dry etching method or a wet etching method. 10. The method of fabricating a micro-nanostructure as claimed in claim 4, wherein the another etching step utilizes a reactive ion etching method. 11. The method of fabricating a micro-nanostructure as claimed in claim 10, wherein the another etching step utilizes an oxygen plasma. 12. The method of manufacturing a microscopic three-dimensional structure according to claim 1, wherein the material of the flexible substrate is an organic material, a plastic material, a polymer material, or any two or more of the above materials. Synthetic material. 13. The method for manufacturing a microscopic three-dimensional structure according to claim 1, wherein the material of the mold core is a stone (Si), a polymer series material, an organic material, a plastic material, a semiconductor material, Metal material, quartz, 20 201109158 glass material, ceramic material, inorganic material, or any of the above materials or materials synthesized by either or both. 14. The method for manufacturing a microscopic three-dimensional structure according to claim 1, wherein the material of the transfer material layer is an inorganic material, a ceramic material, a metal material, a polymer series material, an organic material, and a plastic material. A material, a semiconductor material, or a material synthesized from any two or more of the above materials. 15. The method of manufacturing the micro-nano structure according to claim 1, wherein the heating step is a laser light heating source, a light source illumination heating source, a thermal resistance heating source, and an eddy current type. A heating source, a microwave heating source or an ultrasonic heating source. 16. The method of manufacturing a microscopic three-dimensional structure according to claim 1, wherein the heating step comprises at least a portion where the flexible substrate is in contact with the transfer material layer φ to reach a glass transition temperature (Tg). The method of producing a microscopic three-dimensional structure according to claim 1, wherein the heating step comprises at least a portion in which the flexible substrate and the transfer material layer are brought into a molten state. 18. The method of fabricating a micro-nanostructure according to claim 1, wherein the step of disposing the flexible substrate further comprises at least applying a pre-mould from the second surface of the flexible substrate. The pressure is such that the first surface of the flexible substrate r 21 201109158 is in intimate contact with the first portion of the transfer material layer. 19. The method for manufacturing a microscopic three-dimensional structure according to claim 1, wherein the material of the roller is a light transmissive material or an opaque material. 20. The method for manufacturing a microscopic three-dimensional structure according to claim 1, wherein the material of the roller is glass, metal, plastic, polymer series material, inorganic material, ceramic material, semiconductor material. , an organic material or a material synthesized by any two or more of the above materials. 21. The method of manufacturing a micro-nanostructure according to claim 1, wherein the material of the mold core is ruthenium; the material of the flexible substrate is polyethylene versus stearate (PET); An infrared light source heater is used. 22. The method of fabricating a micro-nanostructure according to claim 21, wherein the heating step has a heating temperature between substantially 80° and substantially 110°. 23. The method for producing a micro-nanostructure according to claim 1, wherein the material of the mold is ethylene tetrafluoroethylene (22), and the micro-nano as described in claim 1 The manufacturing method of the three-dimensional structure, wherein the material of the mold core is a fluorine-containing polymer series material having an anti-sticking effect. 25. The method for manufacturing a microscopic three-dimensional structure according to claim 1, wherein the material of the mold core is a metal, an inorganic material, a polymer material series, a ceramic material, a semiconductor material having an anti-sticking effect. , an organic material or a material synthesized by any two or more of the above materials. 26. The method of fabricating a micro-nanostructure according to claim 1, wherein the step of applying the pressure comprises performing a roll printing step on the flexible substrate using a roller. 27. The method of fabricating a micro-nanostructure according to claim 1, wherein the step of applying the force comprises applying a uniform pressure. 28. The method of fabricating a microscopic three-dimensional structure according to claim 1, further comprising forming an anti-adhesion layer on the first convex portions and the first portions before the step of forming the transfer material layer On the depression. twenty three
TW98130260A 2009-02-05 2009-09-08 Method for manufacturing micro/nano three-dimensional structure TW201109158A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW98130260A TW201109158A (en) 2009-09-08 2009-09-08 Method for manufacturing micro/nano three-dimensional structure
US12/699,892 US20100193469A1 (en) 2009-02-05 2010-02-04 Method for manufacturing micro/nano three-dimensional structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98130260A TW201109158A (en) 2009-09-08 2009-09-08 Method for manufacturing micro/nano three-dimensional structure

Publications (1)

Publication Number Publication Date
TW201109158A true TW201109158A (en) 2011-03-16

Family

ID=44835824

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98130260A TW201109158A (en) 2009-02-05 2009-09-08 Method for manufacturing micro/nano three-dimensional structure

Country Status (1)

Country Link
TW (1) TW201109158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI556942B (en) * 2015-07-23 2016-11-11 Aurotek Corp Roller imprinting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI556942B (en) * 2015-07-23 2016-11-11 Aurotek Corp Roller imprinting system

Similar Documents

Publication Publication Date Title
US8092737B2 (en) Method of micro/nano imprinting
US20100193469A1 (en) Method for manufacturing micro/nano three-dimensional structure
CN102910579B (en) Nanoimprinting method capable of improving depth-to-width ratio of graph and product thereof
TWI335490B (en) Nano-imprinting process
JP2006148055A (en) Method of hot embossing lithography
JP5499668B2 (en) Imprint mold and pattern forming method using the mold
JPWO2005057634A1 (en) Pattern formation method using nanoimprint and apparatus for executing the method
US20080217819A1 (en) Micro/Nano-Pattern Film Contact Transfer Process
TW201518067A (en) Patterned stamp manufacturing method, patterned stamp imprinting method and imprinted article
TW200936363A (en) Imprint lithography apparatus and method
TWI374115B (en) Method for directly roller contact printing micro/nano pattern to flexible substrate
TW201109158A (en) Method for manufacturing micro/nano three-dimensional structure
TWI342986B (en) Optical thermal nano-imprinting process
JP2011224916A5 (en)
JP2007266308A (en) Pattern transfer method, pattern transfer device, and method for manufacturing electronic device
TW201026513A (en) Imprinting process of polyimide
KR100940846B1 (en) Process for fabricating the micro mushroom structure
TW201127741A (en) Method to produce a micro-structure
TW200907562A (en) Template having a silicon nitride, silicon carbide or silicon oxynitride film
Shen A novel fabrication method for the mold insert of microlens arrays by hot embossing molding
TWI395657B (en) A clamping device of micro/nano imprint process
JP2009028996A (en) Stamper and stamper attaching method
KR20150054725A (en) Glass surface forming method
KR101298410B1 (en) high speed roll-to-roll hot embossing apparatus and process using the same
TWI301804B (en) Roller-based directed imprinting process