TW201108205A - Method and apparatus for vector quantization codebook search - Google Patents

Method and apparatus for vector quantization codebook search Download PDF

Info

Publication number
TW201108205A
TW201108205A TW098145596A TW98145596A TW201108205A TW 201108205 A TW201108205 A TW 201108205A TW 098145596 A TW098145596 A TW 098145596A TW 98145596 A TW98145596 A TW 98145596A TW 201108205 A TW201108205 A TW 201108205A
Authority
TW
Taiwan
Prior art keywords
search
codebook
elements
code
vector
Prior art date
Application number
TW098145596A
Other languages
English (en)
Inventor
Rama Muralidhara Reddy Nandhimandalam
Pengjun Huang
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201108205A publication Critical patent/TW201108205A/zh

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • G10L19/038Vector quantisation, e.g. TwinVQ audio

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

201108205 六、發明說明: 【發明所屬之技術領域】 本發明大體而言係關於向 里置化且更特疋s之,择y 於降低向量量化搜尋複雜柯 ^ ’、。本發明之實施例係關於碼簿 搜哥。 【先前技術】 通节’向m為來自信號處理之量化技術,1慮及藉 由原型向量之分布來模型化機率密度函數。可將向量量化 應用於信號’其中信號為至少—其他參數(諸如時間)之連 續或離散函數。連續信號可為類比信號,且離散信號可為 數位信細如資料)。因此,信號可指代在任何時間具有 為實數或只向里之值的序列或波形。信號可指代圖片或影 像,其具有取決於複數個空間座標(諸如兩個空間座標)而 非時間變數的振幅。信號亦可指代動g影像,纟中振幅為 兩個空間變數及-時間變數之函數。信號亦可關於將應用 疋向至特疋目的之抽象參數。舉例而言,在話語寫碼中, L號可扣代一參數序列(諸如增益參數、碼薄索引參數' 間距參數及線性預測寫碼(「LPC」)參數)。信號之特徵亦 可為,可被觀測、被儲存及/或被傳輸。因此,信號常常 經寫碼及/或變換以適合特定應用。除非另外指出,否則 術語信號及資料可在全文中互換使用。 與向量量化相關聯之技術發展自由Shann〇n、C E開發 並也述於「A Mathematical Theory of Communication」 (Bel1 Syst· Tech· J.,第 27卷,1948年 7月,第 379-423 頁、 145606.doc 201108205 623-656頁)中的通信理論與信號寫碼。因此,在該文獻 中’可將向量量化替代地稱作「保真度準則下之源寫 碼」。常常將與向量量化相關聯之技術應用於信號壓縮。 若可自經寫碼的信號完美地重建信號’則該信號寫碼為 「無雜訊寫碼」或「無損寫碼」。若資訊在寫碼期間損 耗,藉此抑制了精確重建,則將該寫碼稱作「有損壓縮」 或「有損寫碼」。常常將與有損壓縮相關聯之技術用於話 語、影像及視訊寫碼中。 常常將與向量量化相關聯之技術應用於經由數位轉換 (諸如類比話語或音樂信號至數位信號之轉換)所獲得之信 號。因此,數位轉換處理程序之特徵可為取樣及量化,該 取樣使連續時間離散,且該量化將經取樣振幅之無限範圍 減小至一有限可能值集合❶在取樣期間,出現一種現象, 其中不同連續信號在被取樣時可能變得無法區分(亦即, 彼此之「假訊」)。為防止此事件發生,公認地,將取樣 頻率選擇為比頻寬或最大分量頻率之2倍要高。該最大分 量頻率亦被稱為尼奎斯頻率。因此,在傳統電話服務(亦 稱為POTS」)中’類比話語信號之頻帶被限制在则 至3400 HZ ’且類比話語信號係在8000 Hz下被取樣。為對 向量量化產生概念’提供標量量化之簡要概述。 性的圖1 00。在量化期間,一 _ 逯續振幅之輸入信號(例如: 16位元數位化信號)由χ軸表 、 且轉換成由y轴表示之离 散振幅信號。輸入信號盥輪屮 /、跑出k唬之間的差異被稱為「i 145606.doc 201108205 ㈣差」或「雜訊」且有限振幅位準《間的距離被稱為量 「°° Δ 102參看圖1 ’顯而易見’在X軸上的「4」與 之㈣輸人值量化成y軸上的且由二進位碼^ • :100」表示。與在「4」肖「5」之間的無限可變輸入資 • ^相比較’碼子之儲存及’或傳輸表示顯著壓縮。在均勻 量化器中,-般將位準數目選擇為形式”,以有效地使用 B個一進位碼子’且選擇以涵蓋輸入樣本範圍。因 此,在均句量化器中,通常藉由增加位元數目來減少量化 誤差。 圖2說明-展示-例示性非均句標量量化器之輸入輸出 特性的圖200。為提高信號與量化雜訊之比率,對於每樣 本之給定數目個位元而言,通常選擇量化器之步長△ 2〇2 以匹配待量化之信號的機率密度函數。舉例而言,類似於 話語之信號不具有均勻機率密度函數,其中較小振幅之出 現頻率比較高振幅之出現頻率高得多且較小振幅之意義大 過較高振幅。圖2說明具有步長△之一非均勻量化器,步長 △關於更高的輸入信號值而增加。因此,對應於在「7」與 「8」之間的輸入值的碼字「mj具有比對應於碼字 「100」之步長△ 204大得多的步長△ 2〇2,因為彼等值出 •㈣頻率更小。此提供兩個主要優點。第一,話語機率密 度函數的匹配更精確,藉此產生更高之信雜比。第二,更 低之振幅(其說明於圖200之原點周圍)更促成話語之可懂度 且因此其量A更精確。實ϋ,話語一般遵循對數標度 (logarithmic scale)。因此,在1972年,ITU電信標準化部 145606.doc 201108205 門(ITU-T)在標準ITU-T G.711中定義了兩種主要對數話語 壓縮演算法。該兩種對數演算法被稱為壓擴μ律(用於北美 及曰本)及壓擴Α律(用於歐洲及世界其他地方),且一般而 言其特徵為遵循對數標度之步長A。根據G.711標準,μ律 及Α律演算法分別將14位元及13位元帶符號線性pcM樣本 編碼為對數8位元樣本且藉此針對在8 kHz下取樣之信號而 產生64 kbit/s之位元流。 如上文所陳述,若首先估計輸入信號(諸如話語)之機率 密度函數,則可在量化之前調整量化位準。此技術被稱為 「前向調適」且具有減少量化雜訊之效應。一些信號(諸 如話語)高度相關使得在鄰近話語樣本之間僅存在小的差 異。對於高度相關之信號而言’量化器可視情況編碼輸入 值(亦即,PCM值)與預測值之間的差異。此等量化技術被 稱為差動(或△)脈衝碼調變(r DPCM」p ITU電信標準化 部門(ITU-T)於1990年將調適與差動脈衝碼調變此兩種概 念標準化為ITU-T ADPCM話語編解碼器G.726 e如通常所 使用,ITU-T G.726在32 kbit/s下操作,此使網路容量比 G.711下的網路容量增加1〇〇%。 【發明内容】 種裝置包含:一碼薄,其包含複數個碼薄元素,其中 該等元素經分離為第一搜尋區間及第二搜尋區間;及一搜 尋模組,其經組態以判定—輸人向量之—所要碼薄元素是 在第一搜尋區間中或是在第二搜尋區間中。 -種搜尋-碼薄之方法包含:提供具有複數個竭簿元素 145606.doc 201108205 之-行動台螞薄,其中該 間及第二搜尋區間,·判定一輸入二…"尋區 在第-撞霖、 —所要碼薄元素是 品間中或是在第二搜尋區間中. 的搜尋卩„山』, 1u π,及在该所判定 哥£間中搜尋該所要的碼薄元素。 —種含有軟體之電腦可讀取媒 雷聪舳V- 田研仃時,该軟體使 電胳執仃以下動作:提供具有複數個 碼薄,其中咳草 π素之订動台 4碼^素經分離為第—搜尋區間及第二搜 =二輸入向量之一所要碼簿元素是在第-搜尋 中搜、疋在第二搜尋區間t;及在該所判定的搜尋區間 中搜号5亥所要的碼薄元素。 么-種器件包含:用於提供具有複數個碼簿元素之—行動 。碼溥的構件’其中該等碼薄元素經分離為第一搜尋區間 =第:搜尋區間;用於判L向量之_所要碼簿元: 疋在第-搜尋區間中或是在第二搜尋區間中的構件;及用 於在所判定的搜尋區間中搜尋話語碼薄元素的構件。 -種根據-處理程序組態之碼薄產品包含:提供複數個 碼薄元素,其令該等碼薄元素經分離為第一搜尋區間及第 一搜尋區間;判定一輸入向量之一所要的話語碼薄元素是 在第一搜尋區間中或是在第二搜尋區間中;及在所判定的 搜尋區間中搜尋所要的話語碼簿元素。 【實施方式】 參考圖式,其中貫穿諸圖相似部分以相似數字表示。更 特定言之’預期本發明可實施於多種電子器件中或可與多 種電子器件相關聯’該等電子器件為諸如(但不限於)行動 145606.doc 201108205 电5舌、無線器件及個人資料助理(「PDA」)〇 圖3說明—向量量化器3〇〇之示意性方塊圖。向量量化替 代地被稱為「區塊量化」或「型樣匹配量化」。通常且如 =圖3所說明,向量量化提供將一組離散參數振幅值聯合 里化為單個向量。信號χ(η)由輸入向量緩衝器302緩衝且經 輸出作為如下定義之Ν维向量X : X ’···’〜] 等式 1 其中r指不向量量化中之轉置。變數χ可由具有實值、連續 田隧機變化之分量Xk( 來例示《碼薄3 〇4儲存如 下定義之—組碼薄資料Y(亦稱為「參考模板」): Y = y>=^yn,yi2,-,yiN]T 等式2 其中L為碼薄3〇4之大小,且力為碼薄向量其中β匕[。 向里匹配單元306接著將向量乂與複數個碼薄項L相比較且 輸出碼薄索引i。如下文予以更詳細陳述,存在許多用以 蝎盡地或非竭盡地搜尋碼薄304以判定適當索引丨的技術。 ‘ =4係說明分割為複數個單元之二維碼薄的圖*⑻。將橫 座紅定義為Xl且將縱座標定義為X2。為設計二維碼薄,將 二維n空間分割為1個區域或「單元」Ci(l处L)。自量yi與每 —單元q相關聯且由形心(諸如形心4〇4及4〇6)表示。如 說*明,h —y , 么乃母一形心為位於每一單元Ci内中心的點。當然,若 ::空間N等於…,則向量量化降低至標量量化。在向 里I化期間,位於單元Ci 402中之任何輸入向量乂經量化為 馬薄设计處理程序亦稱為訓練或填充碼薄。應不難觀 測到,出於碼薄最佳化之目的,單元Ci之形狀可變化以反 1456〇6.d〇c 201108205 映步長位準△之二維改變,藉此提供優於標量量化之優 點。出於圖4中之清晰性,已移除與橫座標軸&及縱座標 軸相關聯的值。然而’顯而易見,單元4〇2將涵蓋沿χ丨軸 之值範圍及沿X2軸之值範圍。 大體而言,將沿Xix2軸且落在單元術内的值定義為叢 聚(ClUSter)於形心彻周®。當將圖4之二维空間擴展至轉 空間時,保持將資料叢聚於形心周圍的特徵。 圖5A係說明-音訊信號5〇2(諸如話語)之取樣及量化的 圖_。樣本504出現於值「4」貞「5」之間,且經量化成 值「4」。 圖5 B係說明與圖5 A之音訊信號5 〇 2相關聯之複數個量化 樣本的圖51〇。以實例說明之,—對量化樣本512可為藉由 二維量化量化成圖4之對應於冲,3]之單個單元的向^。 同樣,-對量化樣本514可為經量化成對應於χ=[4, 6]之單 個單元的向量。一顯而易見之優點係傳輸及/或儲存蛊一 對值相關聯之單個碼薄索W的能力。因此,當盘伊量旦 化相比較時,壓縮增加至兩倍。進一步參看圖5β,亦變: 顯而易見,由三個量化檨太 _ 7本,、且成的二維向量可與三維碼簿 相關聯,等。同;):¾, . 纟®之日訊資料可用影像資料、視气 育料或與原始信號資料相關聯之其他參數來代替。其他炎 數之-實例將為用於話語寫碼中之線性預數 (「LPC」)。 7 跃 八當向量大小增加時,—般使用數學表示來代替視覺概 念。此外,已開發各種演算法來用於增強碼簿搜尋^ 145606.doc 201108205 而,提供大多數瑪薄設計來將資料叢聚於形心周圍…廣 受歡迎的碼薄·演算法為如下^義之κ均值演算法·· 給定迭代索引m,盆巾Γ &产.出在, -、rii為在迭代m中之第丨個叢聚,其 中yim為形心: 初始化:設定m = 〇且選擇一組初始碼薄向量乂 (1 处L) 〇 2. 將一組訓練向量Xn, 則等式3 分類.藉由最近相鄰者規則而 (1SMM)分割為叢聚q, 若 d[x,yim]sd[x,yjm](所有, 3.碼薄更新 m-m+1。藉由計算每一叢聚中之訓練向 量的形心來更新每一叢聚之碼薄向量β 4.終止測試··若相對於爪-丨在迭代m中之總失真之減小 低於一特定臨限值,則停止;否則,轉至步驟2。 K均值演算法大體由K〇nd〇z,A M描述於「Digital Speech, Coding for Low Bit Rate Communication Systems j (第一版本,2004年,John Wiley & Sons,Ltd·,第 3章,第 23 54頁)中。κ均值决算法收斂至局部最佳值且一般被即 蚪執行以達成最佳解。然而,通常,任何此解並非為唯一 的。一般藉由將碼薄向量初始化至不同值且對若干組初始 化進行重複以獲得具有最小化失真之碼薄,來提供碼簿最 佳化。公認地,與完整碼薄搜尋相關聯之計算及儲存需求 與石馬字位元之數目呈指數相關。此外,因為通常藉由使一 輸入向量與碼字交叉相關來提供碼字選擇,所以竭盡式即 時碼薄搜尋需要大量乘法·加法運算。因此,已著手努力 145606.doc •10- 201108205 來降低計m雜性,此轉化為處理器效率之提高及功率消 耗之減少。在話語及視訊處理之技術中,減少之功率消耗 轉化為掌上型單元(諸如膝上型電腦及無線手機)之電池壽 命增加。 已開發了二元搜尋方法(亦稱為階層式叢聚),作為對竭 盡式K均值演算法之改良。由Buz〇,A等人在「SpMch Coding Based Upon Veetor Quantizati(>n」(臟e
Transactions on Acoustics, Speech and Signal Processing (ASSP),第28卷,編號5,198〇年1〇月,第562_574頁)中 提供一種用於二元叢聚之眾所周知的技術。基於unde、 Buzo 及 Gray之名為「An Alg〇rithm f〇r ν_〇Γ q咖
Design」(IEEE Transactions on Communicati〇ns,第 28 卷,編號1 ’ ^肋年丨月,第84-95頁)的論文而將此技術稱 作「LBG演算法」。儘管LBG演算法與在線性預測寫碼 (「LPC」)系統中量化10維向量有關,但該技術可概括如 下。 在二元搜尋碼簿中,首先將N維空間劃分為具有兩個初 始向量之兩個區域(例如,使用K均值演算法)。接著,將 該兩個區域中之每一者進一步劃分為兩個子區域,如此類 推’直至將該空間劃分為L個區域或單元。因此,[為2之 冪(L=2B) ’其中b為整數位元數目。如上文,每—區域與 形心相關聯。在第一次二元劃分時,將新向量、及V2計算 為總空間之兩個半部分的形心。在第二次二元劃分時,v 經劃分為兩個區域,其中每一區域具有經計算為彤心v及 145606.doc 11 201108205 的向篁。同樣,向量V2經劃分 域具有經計算為形心V5h…[域#中母一區 具有盛K均… 6之向置,如此類推,直至獲得 U自值叢聚相關聯之形心的區域。因為在—給定時 間僅將輸入向量χ與兩個 ’ ν 、者相崎,所以計算花費為 額元數目的線性函數。另-方面,必須預先計算 /。將之儲存於碼薄内,藉此增加儲存需求。 建構一 "°搜尋碼薄之變體使得來自先前階段之每—向旦、在 指向兩個以上之向量。因此在計算花費與儲:需 求之間存在權衡。 2值演算法可與二元搜尋方法相區分,因為對於&均 值演算法而言,僅對訓練序列進行分類。換言之,Κ均值 演算法規;t以低失真方式(其對於分組而言係具計算效率 的)來對向量序列分組,但直至完成搜尋程序並未產生量 化器。另一方面,在二元搜尋或「叢聚分析」方法中,目 標係產生自預先計算之形心建構之一時間不變量化器路 控’其可用於在訓練序列之外的未來資料上。 該文獻中所陳述之其他類型之碼薄為自適應碼薄及分裂 向量碼薄。在自適應碼薄中,以與另一碼薄(諸如固定碼 薄)級聯之方式使用第二碼薄。該固定碼薄提供初始向 量’而自適應碼薄則回應於輸入資料集合(諸如對應於個 別者之話語的特定參數)而經連續更新及組態。在分裂竭 薄方法(亦稱為分裂向量量化或分裂VQ)中,首先將N維輸 入向量分,裂為複數個部分,其中分離的碼薄用以量化N維 輸入向量之每一部分。然而’上述類型之碼薄之_共同特 145606.doc 201108205 性為執行失真之量測以便選擇判定沿搜尋路徑之對應碼字 或適當形心。 自然出現之信號(諸如話語、地球物理信號、影像等)具 有大量固有冗餘。此等信號給予其自己壓縮表示以改良資 訊之儲存、傳輸及提取。向量量化係一種用於一維及多維 號之有效表示的有效技術。亦可將其視為至多種複雜信 號處理任務(包括分類及線性變換)的前端。一旦獲得一最 佳向篁s化器,在某些設計約束下及對於一給定效能目標 而言’便達成非常顯著之效能增益。 已成功地將向量量化技術應用於各種信號類別(特別係 t取樣話,吾、影像、視訊等)。向量直接自信號波形形成 (波形向1量化器」)或自自信號提取之線性預測 (旦,型參數形成(基於模式之向量量化11 )。波形向 置量化器常常編碼信號向量之線性變換、域表示或其使用 多2析度子波分析之表示。基於模型之信號特徵化的前提 為兔頻帶、頻譜平土曰、激_點山 十—激勵由—全極點濾波器(all p〇le filter)處理以產生信號β此表示具有包括信號塵縮及辨識 之有用應用(尤其係#使用向量量化來編碼模型參數時)。° 可在許夕領域中發生向量量化瑪薄搜尋。下文中 就行動通信來描述向量詈,,,^ ^ 里里化。然而,向量量化並不限於科 動通信,因為其可庳用於甘 丁 w ; 他應用(例如,視訊寫碼、每 語寫碼、話語辨識等)。 兩 述,—激勵波形犧含-系列激勵波形。 編碼期間’執行碼薄搜尋可需求密集之計算
145606.doc S.J 201108205 及儲存需求(尤其對於大碼薄而言)。一實施例係提供一改 良之向量量化碼薄搜尋的系統及方法,該改良之向量量化 碼薄搜尋使用支援向量機(「SVM」)以使用更少之資源來 執行更快速之碼薄搜尋。SVM係一組用於分類之相關受監 督學習方法。在一實施例中,碼薄波形經分離為多個區 間。在碼薄搜尋期間,作出以下判定:哪一區間保持恰當 之激勵波形,且接著僅搜尋彼區間。藉由將碼薄分離為兩 個或兩個以上之區間或子部分,可降低搜尋複雜性,因為 不需要搜尋全部的碼薄波形。 根據一實施例,當離線時,控制器使用svm來計算碼薄 、水!生可77離超平面,接著使用自SVM導出之超平面而將 碼薄元素分離為複數個區間(例如,兩個區間' 四個區 間八個區間等)。存在可用以將給定碼薄元素分離為多 個區間的許多線性分類器(例如,超平面)。自SVM計算之 超平面達錢間之間的最大分離。此分離規定在超平面一 側上之碼溥兀素與在超平面另一侧上之碼薄元素之間的最 近距離經最大化。在每―區間之元素之間的此大距離之情 況下’在將元素分類至類別或區間中之—者中可存在更少 在另一實施例中,蕤ώ — 精由计鼻一個維度(非超平面)中之平 ,一在平㈣ __ 搜碼器或_ ' 态之話6吾型樣來判定哪一區間 145606.doc 201108205 含有—所要之話語碼薄元素。一 該所要I —搜哥處理程序判定含有 斤要碼之心素之恰當㈣,料理料便在最 件下搜尋彼區間中之所有元素㈣㈣所要Μ 整個碼薄此極大減小了搜尋負擔’因為不需要控制器搜尋 適當二,r:t控制器搜尋為整個碼薄之-子部分的 =:此 尋複雜性降低,因為碼薄元素為靜態 且因此-旦離線便可計算超平面且接著在搜尋之 時間期間多次使用該超平面。 =薄之完整搜尋中,隨機定位碼向量。該搜尋等於 目標向量與碼薄中之每-碼向量之間的最小失 果。搜尋複雜性_成比例。二元碼薄基於至針 對此業所定義之形心的距離而將碼向量分割為叢聚。 匕叢錢行預先搜尋使得可配置㈣㈣^有效之搜 -。在:增加記憶體需求為代價來儲存形心節點的情況 下’搜尋複雜性與log2N成比例。 :6A說明待量化之代表性資料6〇。’且圖沾說明分割為 叢聚之貧料60〇。實例叢聚為[VI、[v2、[v21、[v22 [v211及[v2l2。該等分割區係基於碼向量至對應叢聚妒心 之距離來判定的。將形心向量儲存為碼薄中之節點且用於 搜哥演异法中以遍曆碼簿(亦即,樹)中之路徑(亦即,八 枝)。 η 圖6C說明一搜尋樹圖,其對應於對圖6β中之 …。」進行的搜尋。由一等指示之變數表 樹中之形心節點’其中圖60之變數對應於圖= 145606.doc •15· 201108205 聚0 圖6m兒明一流程圖,其對應於對圖犯及圖此中之目標 輸入向量「。」進行的搜尋。在操作652中,計算輸入話: 目標向量與…之間的失真及輸入話語目標與以之間的失 真在知作654中,比較並選擇最小失真(將選擇V2)。 在操作656中,计异輸入話語目標向量與v21之間的失真 及輸入話語目標與v22之間的失真。在操作658中,比較並 選擇最小失真(將選擇V2 1)。 在操作66G中,計算輸人話語目標向量與V211之間的失 真及輸入話語目標與v212之間的失真。在操作⑹中,比 較並選擇最小失真(將選擇v2 1 1)。 在操作664中,古+笪於λ t < , 彳异輸入活语目標向量與v21 1所關聯之 瑪向量之間的失真。 圖7 A說明一瑪薄中之沖本从格β ^ ^尋甲之代表性碼溥資料7〇〇,該碼薄可使 用超平面710及支揸向吾φ八士, 一 叉後向里來分割。該等支援向量並未如在 上述凡搜号"碼薄中其热^ t 孕1P基於最小距離準則而進行叢聚。實情 為’基於一預定準則蔣古垃 ^ 將支板向置分類為兩類且計算超平面 以藉此將支援向量分離為區間。 圖7Β說明具有邊_ 之碼薄資料7〇〇 ’該邊距720被定 義為自超平面至支接命旦Λ 里730及732的距離。藉由尋找一最 大化該邊距之曲線”式來判定超平面710。 圖7C說明具有比圖π更接 更佳之超平面71〇的碼薄7〇〇。圖 7D說明當函數(超平面)去丨^八 J疋;7割區而非單個點(形心)時搜 尋誤差得以減少。舉例 + 一 5 ’圖7D表示目標向量78〇及應 145606.doc 201108205 基於最小距離而在搜尋中選擇之支援向量79〇。 圖8Α說明在二元碼薄資料8〇〇之搜尋中的一代表性第一 最小距離的計算。在此情況下’將歸因於更小之距離而選 擇與vl相關聯之叢聚。圖犯說明一定位於二元碼簿資料 800中之超平面之下的支援向量集合之選擇。 因此,一旦借助於上文所陳述之反均值演算法或演 算法來訓練VQ碼薄,便針對待量化之任何輸入向量來執 行整個碼·薄之竭t式搜#。因此,避免碼薄之竭盡式搜 尋。 圖9係方塊圖,其說明一種包括耦接至記憶體9〇4之控制 器902的處理器件90〇。根據實施例,處理器件9〇〇可為影 像處理器件、視訊處理器件或話語處理器件(諸如無線手 機)。或者,處理器件900可包括(除其他器件外)不用手之 車電話系統、陸上室内線路電話、會議呼叫電話、蜂巢 式電話、安裝於房間之系統(其使用天花板揚聲器及桌上 之麥克風)、行動通信器件、藍芽器件及電話會議器件 等。在—實施例中,處理器件900在gsm、UMTS4CDMA 型無線網路上操作。 如所說明,記憶體9〇4儲存碼薄WO。碼薄91〇包含表示 靜態激勵波形或元素之碼薄元素92〇。碼薄元素92〇包含表 示π S參數之輸入碼向量。因此,碼薄9 1 〇提供一種用於 提供複數個碼薄元素920之方法。在此實施例中,將碼薄 91〇說明為具有第一搜尋區間940及第二搜尋區間950,其 中該等搜尋區間藉由超平面930而分離。 145606.doc -17- 201108205 超平面930將碼薄元素92〇分離為複數個區間。在所說明 之實施例中,超平面93G將碼薄91()劃分為兩個區間剛及 950。然巾,在其他實施例中’可將碼薄進一步分割為四 個區間、人個區間、十六個區間等。藉由將碼薄元素92〇 分離,複數個區間,每—區間含有少於全部之碼薄元素。 在實把例中,接近超平面之碼簿元素經置於兩個區間中 以減少分類誤差。在所說明之實施例中,區間94〇及95〇各 自含有接近-半或稍多於一半的碼薄元素 '结果,搜尋在 兩個區間中之一者中的碼薄元素可比搜尋所有碼薄元素快 大致一倍。 自控制Θ 9G2中之至少—分離模組97()來計算超平面 93〇。在一實施例中,分離模組97〇為支援向量機 L SVM」r72°因此’SVM 972提供—種用於自複數個碼 、·’、兀:计忙超平面的方法。SVM包含一組用於資料點(諸 %簿元素)之刀类員及回歸的方法。因❿,SB⑺藉由最 在超平面每側上之資料之間的幾何邊距來最小化分 、誤差SVM 972月包夠產生在類別(亦即,區間)中之每— 者中的碼薄元素之間的最大可能分離或邊距。因此,分離 模組970提供-種用於將碼薄元素分離為第—搜尋區間及 第二搜尋區間的方法。 。2) ' (X3, 972對超 ,q為正 ,且Xi為 數學上,一般藉由考慮為形式{(Xi,Cl}、(X2,
、) (n’ Cn)}之一組訓練資料來解釋由SVM MM 最大化分離或邊距。在丨練資料中 -或負-’其指示資料點Xi所屬之類別或區間 145606.doc 201108205 η」維實向量。此訓練資料(Xi,Ci)指示SVM應最終藉由 其來加以區別之所要分類。SVM藉由用一分割區(諸二刳 分之超平面)來劃分訓練資料點而實現此分類。超平面1 以下之數學形式:w.Xi-b=0,其中w為與超平面垂直之輪 入向量,且b為偏移參數,其判定自原點沿法向向量w之2 平面偏移,允許增加邊距,避免需要使超平面穿過原點。 為最大化分離,SVM計算最接近碼薄向量之平行超平 面。藉由以下等式來描述平行超平面' :wxi_b=1及 。若訓練資料(Xi,Ci)為線性可分離的,則SVM可計算在釗 練貢料之間無點的超平面,其最大化分離距離。為實現 此,SVM最小化支援向4w之值,同時仍保持上述超平面 等式。已計算用於支援向量评之兩種解。帛一,在 ΚΙ)對於14分的條件下,原始形式為% 之二次程式最 佳化。第二’對偶形式w=aiCiXi(之和)〇自!變化至η卜因 而’針對給定-組碼薄元素或項而對上述等式求解以找出 最大化分離之超平面。 SVM實施例降餘何料編解碼μ之碼薄搜尋的搜尋 複雜性。可使用自支援向量機導出之線性可分離超平面而 將碼薄中之所有元素分離或隔離為兩個或兩個以上之區 間。為減少由分類誤差產生之搜尋誤差’可將接近超平面 之碼薄項或元素包括至一個以上之區間中。 在另一實施例中,分離模組970為分裂向量量化 (「SVQ」)結構。SVQ結構將每一碼薄向量劃分為兩個或 兩個以上之子向量,該耸不一曰丄 . , 〆 邊寺子向夏中之每一者經受單調特性 145606.doc -19- 201108205 而經獨立量化。分裂藉由 積田將碼溥向量劃分為一系列子向 而降低搜尋複雜性。 可在任何數目之維唐r & 又(包括一個維度至16維度)中發生分 離。在一個維度中,點 點刀割為一維線。在兩個維度中,線 分割為二維平面。在=個 '· … 個維度中’I面分割為2維表面。 SVQ減小資料維度。因此 此刀離杈組970(諸如SVQ)及超平 面930之計算可離線執行, 且接者在執行時間期間加以使 用。 可將S VQ應用於與線性;带丨音,「 、深’生預測寫碼(「LPC」)相關聯之技 1 &以低速率進行話語壓縮之已為吾人所接受 的技術α為達成LPC參數之读明θ ^ ^ m之透明夏化,通常在標量量化中 品要30至40個位元。向量量化(「VQ」)可將位元速率減小 至職^/訊框,但此位元速率下Lpc參數之向量寫碼引入 大的頻谱失真,其可餅於古σ糾 、 ;同ηο貝話語通信而言為不可接受 的。在過去,已福笔^士4& L > 已美4,,,σ構上受限制之v 餘)VQ及分割(分裂)卩(^來 夕及(奴 _、 Y木具兄如里量化與向量量化之間的 位^速率中之空隙。在多級方案中,VQ級經級聯連接, 1 吏得其之每一者對先前級之殘餘部分操作。在分裂向量方 案令,輸入向量經分裂為兩個或兩個以上之子向量,且每 量經獨立地量化。最近’已僅使用Μ位元/訊框分 裂向置方案來達成線譜頻率(「LSF」)參數之透明量化。 /9中亦展示搜尋模組_。在執行時間期間執行之搜尋 、80可判疋哪一區間含有所要之話語碼薄元素。因 此’搜尋模組980提供一種用於列定一所要碼薄元素是在 145606.doc •20· 201108205 第一搜尋區間中或是在第二搜尋區間中的方法。搜尋模組 980可藉由基於—輸人向量而將第—搜尋區間_定義為具 有-正結果且基於該輸入向量而將第二搜尋區間咖定義 為具有一負結果來實現此。在判定哪一區間含有所要碼薄 疋素之後,搜尋模組_在彼區間中搜尋所要碼薄元素。 因此,搜尋模組提供-種在所判定的搜尋區間中搜尋 所要碼薄元素的方法D Λ — φ. . θ 下们万居在貫施例中,搜尋模組980包含 一向量量化碼薄搜尋。在另眘 ㈢ 守役+隹另貫細•例中,搜尋模組980在 最小均方誤差條件下搜尋碼薄元素。 圖10係說明搜尋一碼薄之處理程序之流程圖。該處理程 序在操作刪處開始。在操作1()1()處提供—行動二碼 薄。該碼薄包含表示揚聲器之語音之特性的複數個㈣元 素1後,在操作剛處,該處理程序計算—線性可分離 =平面中’ SVM自該複數個碼薄元素計算碼 溥中之超平面,其中該超平面形成碼薄中之兩個搜尋區 間。儘管在一實施例中,碼薄分割為兩個搜尋區間,但在 其他實施例中,可將碼薄進一步分割為四個區間、八個區 間三十六個區間等。緊接著’該處理程序在操作刪中將 碼溥7L素分離為搜尋區間。儘管可針對冗餘及為減少誤差 而將某-碼薄元素置於多個搜尋區間中,但每一搜尋區間 含有少於全部之碼薄元素。與在搜尋所有碼薄元素之情況 下相比’此使得能夠以更少之資源來進行更快速之搜尋。 進仃至#作1040 ’正在進行行動通信對話。緊接著,該 處理程序在操作刪申藉由碼薄元素來表示行動台揚聲器 Γ 145606.doc •21· 201108205 者的w。在行動通信期間,代替發送實際語音參 :二改為發送表示實際語音參數的向量。接著,該處理程 序在#作!_中判定哪—搜尋區間具有對應於揚聲器語音 之特定話語碼薄元素。在操作咖處,該處理程序在所判 定的搜尋區間中搜尋特定話語碼薄元素。可藉由在最小均 :誤差條件下搜尋來實現此搜尋。該處理程序在操作刪 處結束。 圖11係說明在自適應多速率寬頻帶(「amr_wb」)話扭 編解瑪器中搜尋碼薄的處理程序之流程圖。AMR_WB將音 訊頻寬擴展至7 k Η z且給出優良之話語品質及語音自然性 (與固線電話網路及第二代及第三代行動通信系統中之現 有編解碼器相比)。將AMR_WB引入至gsm及寬頻帶割碼 ^重存取(「WCDMA」)第三代(「3G」)系统帶來話語品 質之基本改良,從而將其提高至以前在行動通信系統中從 未、’二歷的水準》其遠超窄頻帶話語品質之當前高品質基準 且改k行動系統中高品質話語通信的期待。已藉由將新穎 技術併入至代數碼激勵線性預測(「ACELp」)模型中以便 改良見頻f k號之效能而使AMR-WB編解碼器之良好效能 變得可能。 該處理程序在操作11〇〇處開始。在操作111〇處,該處理 程序以f(x)=ax+b計算超平面,其中X為一給定輸入向量, 且a與b為常數。在一實施例中,計算超平面。在另一 貫施例中’計算不同於超平面之線性分類器。在一實施例 中’計算一平均分割值。進行至操作1120,在離線時使用 145606.doc •22· 201108205 超平面以將碼薄元素分割為兩個區間。在一實施例中,使 用線性可分離超平面。在操作1 13 0中,將接近超平面之碼 薄元素置於多個區間中以減少分類誤差。 繼續至操作1140 ’在以隶小誤差搜尋之前,搜尋演算法 判定哪一區間含有給定輸入向量。數學上,若f(x)>〇,則 輸入向量在第一區間中,而若f(x)<〇,則輸入向量在第二 區間中。緊接著,在操作1150中,搜尋演算法判定輸入向 量與碼薄中之每一碼薄向量之間的距離。在操作1160中, 搜尋演算法尋找並傳回所有碼薄向量當中之最小距離碼薄 向量的碼薄索引。該處理程序在操作1170處結束。 提供用於對應於圖11之至少搜尋操作1140至1170的改良 搜尋演算法之偽碼,使得熟習此項技術者可更好地理解碼 薄搜尋。上文在圖9中解釋了使用SVM之達成碼薄項之間 的最大分離的超平面之計算。一旦計算分離碼薄項之此超 平面’便使用以下最佳化之搜尋演算法以執行具有降低之 複雜性的搜尋。用於二維碼薄之超平面為以下形式: f(x) = (w0*x(0)+wl*x(l)-b) x = input code vector; dist_min = 0x7FFFFFFF; p_dico = dico; index =0; code book size = 64; indexl = 0; /*dico-碼薄開始位址*/ /*超平面被定義為 f(x) = (0.04546*x[0] -0.000514*x[l] -12.515) */ result = (〇·〇4546*χ[〇] -0.000514*x[l] -12.515);
If (result > 〇) /*「codebook_positive」僅含有落在超平面之正側上之瑪 薄項及其索引*/ 145606.doc •23· 201108205 p_dico = &codebook_positive[0]; dico size = 32;
Else if /* 「codebook_negative」僅含有落在超平面之負側上之碼 薄項及其索引*/ p dico = &codebook_negative[0]; dico size = 32;
Endif pdicol =p_dico;
For i = 0 to code book size set dist to 0;
For j = 0 to dim temp = (x[j] - *p_dico++); dist = dist + (temp*temp);
Endfor if (dist - dist min) < 0) dist—min = dist; indexl = i; /*自此索引獲得原始碼薄索引*/ Index = *p_dico++;
Else if *p_dic〇-H-;
End if End for * distance = dist_min; /* 讀取選定向量 */ p_dico = &p_dicol [indexl * dim]
For j = 0 to dim x[j] = *p_dico++;
End for Return index; 145606.doc - 24 - 201108205 上述偽碼有效地判定哪一區間含有輸入向量且接著搜尋 彼區間。為比較,下文提供用於判定AMR-WB話語編解碼 器中之最小距離向莖索引的普通方法。首先,此方法尋找 輸入向量與碼薄中之每一碼薄向量之間的距離。其次,該 方法尋找所有碼薄向量當中之最小距離碼薄向量的碼薄索 引。 X = input code vector; /* dico -碼薄開始位址*/ dist_min = 0x7FFFFFFF; /* p_dico =碼薄位址;*/ p_dico = &codebook[0]; index = 0; code book size = 64; indexl = 0;
For i = 0 to code book size set dist to 0;
For j = 0 to dim temp = (x[j] - *p_dico++); dist = dist + (temp*temp);
Endfor if (dist - dist—min) < 0) dist_min = dist; index = i;
End if
End for * distance = dist—min; /* 讀取選定向量 */ p dico = &codebook[index * dim]
For j = 0 to dim x[j] = *p_dico++;
End for Return index; 145606.doc -25- 201108205 下表1中為來自二維及三維中之改良碼薄搜尋方法的測 試結果,其展示改良之效率。在此實施例中,所使用之分 離模組為SVM及SVQ。結果,用以獲得所要輸入向量之循 環的數目經降低17%與58%之間。 表1 碼薄搜尋之結果 碼薄名稱 碼薄 維度 碼薄 大小 碼薄搜尋 之總循環 碼薄搜尋之 最好情況循 環節省 完整搜尋 之循環節 省% 最好情況或 最壞情況 dicol isf noise 2 64 64(2*2+3) 37(2*2+3) 58% 最好情況 dico3 isf noise 3 64 64(3*2+6) 29(3*2+6) 45% 最好情況 dicol isf noise 2 64 64(2*2+3) 37(2*2+3) 30% 最壞情況 dico3 isf noise 3 64 64(3*2+6) 11(3*2+6) 17% 最壞情況 藉由上述描述應瞭解,所描述之實施例提供行動台中之 碼薄搜尋。根據上文所描述之一實施例,針對無線通信系 統中之雙模式行動台而提供碼薄搜尋。儘管將實施例描述 為應用於雙模式AMPS及CDMA系統中之通信,但一般熟 習此項技術者將不難瞭解,如何在類似情形(其中在無線 通信系統中需要碼薄搜尋)中應用本發明。 熟習此項技術者將理解,可使用多種不同技術及技藝中 的任一者來表示資訊及信號。舉例而言,可由電壓、電 流、電磁波、磁場或磁粒子、光場或光粒子或其任何組合 來表示可遍及以上描述所引用之資料、指令、命令、資 訊、信號、位元、符號及碼片。 熟習此項技術者將進一步瞭解,結合本文中所揭示之實 145606.doc •26· 201108205 施例所描述之各種說明性邏輯區塊、模組、電路及演算法 步驟可實施為電子硬體、電腦軟體或兩者之組合。為清楚 地說明硬體與軟體之此互換性,上文已對各種說明性組 件、區塊、模組、電路及操作大體上就其功能性進行了描 述。此功能性係實施為硬體或是軟體視特定應用及強加於 整個系統之设計約束而定。熟習此項技術者可針對每一特 定應用以變化之方式實施所描述之功能性,但不應將此等 實施決策解釋為導致背離本發明之範轉。 釔σ本文中所揭示之該等實施例描述之各種說明性邏輯 區塊、模組及電路可藉由經設計以執行本文中所描述之功 2的以下各物來建構或實施:通用處理器、數位信號處理 器(「DSP」)、特殊應用積體電路(「ASIC」)、場可程式 化閘㈣列(「FPGA」)或其他可程式化邏輯器件、離㈣ 或電晶體邏輯、離散硬體組件或其任何組合。通用處理器 可為微處理器,但在替代例中’處理器可為任何習:處= 器、控制器、微控制器或狀態機。處理器亦可經實施為計 算器件之組合,例如,Dsp與微處理器之,且合、複數個捣 處理器、結合一Dsp核心之一或多個微處理器宜 他此組態。 ^彳订其 結合本文中所揭示之實施例而描述的方法或 作:直接體現於電腦或電子儲存器中、硬體中、由處理Γ 體:Γ中或其組合中。軟體模組可駐存於電腦: 中(诸如RAM記憶體、快閃記憶體、咖 、 憶體、EEPR〇M記憶體、暫存器、硬碟、抽取式
E 145606.doc -27· 201108205 碟片、CD-ROM或此項技術中已知的任何其他形式之儲存 媒體中)。一例示性儲存媒體輕接至處理器,使得該處理 器可自儲存媒體讀取資訊及寫入資訊至儲存媒體。在替代 例中,儲存媒體可整合至處理器。處理器及儲存媒體可駐 存於ASIC中。ASIC可駐存於行動台中。在替代例中,處 理器及儲存媒體可作為離散組件而駐存於行動台中。 提供所揭示之實施例之先前描述以使熟f此項技術者能 夠製作或使用本發明。熟習此項技術者將顯而易見對此等 實施例之各種修改,且在m本”之精神或範缚的情 況下可將本文中所定義之一般原理應用於其他實施例。因 此’本發明並不意欲受限於本文中所展示之實施例,而是 將符合與本文中所揭示之原理及新穎特徵相—致之最廣範 »#。 【圖式簡單說明】 圖1係說明一例示性均句標量量化器之輸入輸出特性的 圖; 圖2係說明—例示性非均勾標量量化器之輸人輸出特性 的圖; 圖3說明一向量量化器之一示意性方塊圖; 圖4係說明—分割為複數個單元之二維碼薄的圖; 圖5A係說明一音訊信號(諸如話語)之取樣及量化的圖; 圖⑽說明與圖5A之音訊信號相關聯之量化樣本的 I ; 圖6A說明待量化之代表性資料; 145606.doc -28- 201108205 圖6B說明分割為叢聚之圖6A之資料; 圖6C a兒明-搜哥樹圖,其對應於對圖6β中之目標輸入 向量進行的搜尋; 圖6 D 6兄明一流程圖,盆^ -kK El A T-. m 其對應於對圖6B及圖6C中之目標 輸入向量進行的搜尋; 圖7A說明一碼薄中夕主-欠,丨 之代表性肓料,該碼薄可使用超平面 及支援向量來分割; 圖7 Β說明具有邊距之—成锋 、立 ^ 碼溥,该邊距被定義為自一超平 面至對應支援向量之距離; 圖7C說明具有一最佳化超平面之一碼薄; 圖7D說明當一函數(超平面)判定一分割區而非一單個點 (形心)時搜尋誤差之減少; · 圖8Α說明二元碼薄搜尋中一 π 之代表性第一隶小距離的計 算; 圖8Β說明—定位於超平面之下的支援向量集合的選擇 圖9係說明-儲存碼薄之記憶體及—控制器的方塊圖; 圖10係言兒明搜尋碼薄之處理程序的流程圖;及 圖11係說明搜尋碼薄之處理程序的流程圖。 【主要元件符號說明】
100 圖 102 量化器△ 200 圖 202 步長△ 204 步長A 145606.doc 201108205 300 向量量化器 302 輸入向量緩衝器 304 碼薄 306 向量匹配單元 400 圖 402 單元Ci 404 形心 406 形心 408 形心 500 圖 502 音訊信號 504 樣本 510 圖 512 量化樣本 514 量化樣本 600 代表性資料 700 代表性碼簿資料 710 超平面 720 邊距 730 支援向量 732 支援向量 780 目標向量 790 支援向量 800 二元瑪簿資料 145606.doc - 30 - 201108205 810 超平面 820 支援向量集合 900 處理器件 902 控制器 904 記憶體 910 碼溥 920 碼簿元素 930 超平面 940 區間 950 區間 970 972 980 Vj ' v2 X x(n) yi [v 1、[v2、[v21、[v22、 [v211 ' [v212 分離模組 支援向量機(「 搜尋模組 向量 向量 信號 碼薄向量 叢聚
SVM 145606.doc -31 -

Claims (1)

  1. 201108205 七、申請專利範圍: 1· 一種裝置,其包含: 一碼薄,其包含複數個碼薄元素,其中該等元素經分 離為一第一搜尋區間及一第二搜尋區間;及 一搜尋模組,其經組態以判定一輸入向量之一所要碼 薄元素是在該第一搜尋區間中或是在該第二搜尋區間 中。 2. 如咕求項1之裝·置’其中5亥等碼薄元素經進一步分離為 一第三搜尋區間及一第四搜尋區間。 3. 4. 5. 如請求項1之裝置,其中該裝置包含一無線電話。 如喷求項1之裝置,其中該等元素係使用一支援向量機 而分離為一第一搜尋區間及一第二搜尋區間。 如請求項4之裝置,其中該支援向 數個石馬薄元素計算一線性分類器, —超平面。 量機經組態以自該複 其中5亥線性分類器為 其中該超平面為 6,如請求項5之裝置 面0 一線性可分離超平 薄搜尋,且中該搜❹組包含—向量量 8如_ 等碼溥元素表示信號參數。 戈盆他項1之裝置,其中該搜尋模組在一最】妁 或其他誤差度量 仕最小均方 9·如請求们之裝Γ 搜尋該複數個㈣元素。 數之輪人㉟向量/其中該等碼薄元素包含表示語 10.—種拽尋— 巧尋之方法,其包含: ί s 145606.doc 201108205 提供具有複數個碼薄元素之—行動台碼薄,其中該等 碼薄7L素經分離為—第_搜尋區間及—第二搜尋區間; 判定一輸入向ft之—所要碼薄元素是在胃第一搜尋區 間中或是在該第二搜尋區間中;及 n. 12. 13. 14. 15. 16. 在"亥所判定的搜尋1 Μ中搜尋該所要的碼薄元素。 Θ求項1G之方法’其中該等元素係、使用—支援向量機 而^離為-第-搜尋區間及—第二搜尋區間。 求項11之方法,其中該支援向量機經組態以自該複 數個碼薄元素計算一線性分類器中該線性分類器為 一超平面。 如。月求項10之方法,且中命膽_措4 Α人 八中°亥搜咢杈組包含一向量量化碼 '咢,且該等碼薄元素表示信號參數。 :睛求項U)之方法,其中該等m素包含表示語音參 數之輸入碼向量。 2 =軟體之電腦可讀取媒體,當執行時,該軟體使 〇玄电恥執行以下動作: :供具有複數個碼薄元素之一行動台碼薄,其中該等 碼薄元素緩合雜或你 '、 、.刀離為-第-搜尋區間及一第二搜尋區間; 間中:::入向量之一所要碼薄元素是在該第-搜尋區 或疋在該第二搜尋區間中;及 ^所判定的搜尋區間中搜尋該所要的碼薄元素。 二1Γ電腦可讀取媒體,其中該等元素係使用-間。$而刀離為-第-搜尋區間及-第二搜尋區 145606.doc 201108205 17. 如請求項16之電腦可讀取媒體,其’ 態以自該複數個碼薄元夸〃、省支援向量機經組 性分類器為-超平面。、*線性分類器’其中該線 其中該搜尋模組包含一 元素表示信號參數。 其中該等碼薄元素包含 18. 如請求項15之電腦可讀取媒體, 向量量化碼簿搜尋,且該等碼薄 19. 如請求項15之電腦可讀取媒體, 表示語音參數之輸入碼向量。 20. —種器件,其包含: 一行動台碼薄的構 一搜尋區間及一第 用於提供具有複數個碼薄元素之 件,其中該等碼薄元素經分離為二第 二搜尋區間; 用於判定一輸入向量之一 尋區間中或是在該第二搜尋 用於在該所判定的搜尋區間中 構件。 所要喝薄元素是在該第一 區間中的構件;及 搜尋該話語碼薄元素 搜 的 21. 22. 士叻求項20之器件,其中該等元素係使用一支援向量機 而分離為一第一搜尋區間及一第二搜尋區間。 如請求項2丨之器件,其中該支援向量機經組態以自該複 數個碼薄元素計算—線性分類器,其中該線性分類器為 一超平面。 23. 如請求項20之器件,其中該搜尋模組包含一向量量化碼 薄搜尋’且該等碼薄元素表示信號參數。 24. 如請求項21之器件’其中該等碼薄元素包含表示語音參 數之輸入碼向量。 145606.doc 201108205 25. —種根據—處理程序組態之碼簿產品,其包含: 提供複數個碼簿元素,其中該等碼薄元素經分離為一 第一搜尋區間及一第二搜尋區間; 判定—輸入向量之一所要的話語碼薄元素是在該第一 搜尋區間中或是在該第二搜尋區間中;及 在該所判定的搜尋區間中搜尋該所要的話語碼薄元 素。 26·^請求項25之碼薄產品’其中該等元素係使用一支援向 量機而分離為一第一搜尋區間及一第二搜尋區間。 如請求項26之碼薄產品,其中該支援向量機經組態以自 該複數個碼薄元素計算一線性分類器,其中該線性分類 益為^超平面。 28. 女咕求項27之碼薄產品,其中該搜尋模組包含一向量量 化碼簿搜哥,且該等碼薄元素表示信號參數。 29. U項25之碼薄產品,其中該等碼薄元素包含表示語 音參數之輸入碼向量。 145606.doc
TW098145596A 2009-01-06 2009-12-29 Method and apparatus for vector quantization codebook search TW201108205A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/349,327 US20100174539A1 (en) 2009-01-06 2009-01-06 Method and apparatus for vector quantization codebook search

Publications (1)

Publication Number Publication Date
TW201108205A true TW201108205A (en) 2011-03-01

Family

ID=41698451

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098145596A TW201108205A (en) 2009-01-06 2009-12-29 Method and apparatus for vector quantization codebook search

Country Status (3)

Country Link
US (1) US20100174539A1 (zh)
TW (1) TW201108205A (zh)
WO (1) WO2010080663A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9253481B2 (en) 2012-01-13 2016-02-02 Qualcomm Incorporated Determining contexts for coding transform coefficient data in video coding

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959079B1 (fr) * 2010-04-20 2012-05-11 Commissariat Energie Atomique Dispositif de quantification, recepteur de signaux radiofrequence comprenant un tel dispositif et procede de quantification
US8422802B2 (en) 2011-03-31 2013-04-16 Microsoft Corporation Robust large-scale visual codebook construction
US20130031063A1 (en) * 2011-07-26 2013-01-31 International Business Machines Corporation Compression of data partitioned into clusters
US9015044B2 (en) * 2012-03-05 2015-04-21 Malaspina Labs (Barbados) Inc. Formant based speech reconstruction from noisy signals
TR201911121T4 (tr) * 2012-03-29 2019-08-21 Ericsson Telefon Ab L M Vektör niceleyici.
DK2958913T3 (en) 2013-02-20 2018-11-05 Lg Chemical Ltd SPHINGOSIN-1 PHOSPHATRECEPTOR AGONISTS, PROCEDURES FOR PREPARING IT AND PHARMACEUTICAL COMPOSITIONS CONTAINING SAME AS AN ACTIVE AGENT
KR101348959B1 (ko) * 2013-06-04 2014-01-14 한국항공우주연구원 4 행로 나무구조 벡터 양자화 방법
US10567060B2 (en) * 2014-10-24 2020-02-18 Samsung Electronics Co., Ltd. Efficient vector quantizer for FD-MIMO systems
US10008218B2 (en) 2016-08-03 2018-06-26 Dolby Laboratories Licensing Corporation Blind bandwidth extension using K-means and a support vector machine
CN106373576B (zh) * 2016-09-07 2020-07-21 Tcl科技集团股份有限公司 一种基于vq和svm算法的说话人确认方法及其系统
US10373630B2 (en) * 2017-03-31 2019-08-06 Intel Corporation Systems and methods for energy efficient and low power distributed automatic speech recognition on wearable devices
CN109416748B (zh) * 2017-11-30 2022-04-15 深圳配天智能技术研究院有限公司 基于svm的样本数据更新方法、分类系统和存储装置
US11308152B2 (en) * 2018-06-07 2022-04-19 Canon Kabushiki Kaisha Quantization method for feature vector, search method, apparatus and storage medium
CN112560505A (zh) * 2020-12-09 2021-03-26 北京百度网讯科技有限公司 一种对话意图的识别方法、装置、电子设备及存储介质
US20240242032A1 (en) * 2021-03-23 2024-07-18 Wells Fargo Bank, N.A. Systems and methods for unsupervised named entity recognition

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680508A (en) * 1991-05-03 1997-10-21 Itt Corporation Enhancement of speech coding in background noise for low-rate speech coder
DE69712537T2 (de) * 1996-11-07 2002-08-29 Matsushita Electric Industrial Co., Ltd. Verfahren zur Erzeugung eines Vektorquantisierungs-Codebuchs
WO1999010719A1 (en) * 1997-08-29 1999-03-04 The Regents Of The University Of California Method and apparatus for hybrid coding of speech at 4kbps
US6332030B1 (en) * 1998-01-15 2001-12-18 The Regents Of The University Of California Method for embedding and extracting digital data in images and video
US6390986B1 (en) * 1999-05-27 2002-05-21 Rutgers, The State University Of New Jersey Classification of heart rate variability patterns in diabetics using cepstral analysis
US6678267B1 (en) * 1999-08-10 2004-01-13 Texas Instruments Incorporated Wireless telephone with excitation reconstruction of lost packet
US7970718B2 (en) * 2001-05-18 2011-06-28 Health Discovery Corporation Method for feature selection and for evaluating features identified as significant for classifying data
US7574351B2 (en) * 1999-12-14 2009-08-11 Texas Instruments Incorporated Arranging CELP information of one frame in a second packet
WO2002035856A2 (en) * 2000-10-20 2002-05-02 Bops, Inc. Methods and apparatus for efficient vocoder implementations
US6633839B2 (en) * 2001-02-02 2003-10-14 Motorola, Inc. Method and apparatus for speech reconstruction in a distributed speech recognition system
US6785646B2 (en) * 2001-05-14 2004-08-31 Renesas Technology Corporation Method and system for performing a codebook search used in waveform coding
EP1428206B1 (en) * 2001-08-17 2007-09-12 Broadcom Corporation Bit error concealment methods for speech coding
WO2003071522A1 (fr) * 2002-02-20 2003-08-28 Matsushita Electric Industrial Co., Ltd. Procede de production de vecteur de source sonore fixe et table de codage de source sonore fixe
JP3887598B2 (ja) * 2002-11-14 2007-02-28 松下電器産業株式会社 確率的符号帳の音源の符号化方法及び復号化方法
US7698132B2 (en) * 2002-12-17 2010-04-13 Qualcomm Incorporated Sub-sampled excitation waveform codebooks
US7027979B2 (en) * 2003-01-14 2006-04-11 Motorola, Inc. Method and apparatus for speech reconstruction within a distributed speech recognition system
JP2007526669A (ja) * 2003-06-26 2007-09-13 アジャイル ティーヴィー コーポレーション ゼロサーチ、ゼロメモリベクトル量子化
JP5188990B2 (ja) * 2006-02-22 2013-04-24 フランス・テレコム Celp技術における、デジタルオーディオ信号の改善された符号化/復号化

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9253481B2 (en) 2012-01-13 2016-02-02 Qualcomm Incorporated Determining contexts for coding transform coefficient data in video coding
TWI559736B (zh) * 2012-01-13 2016-11-21 高通公司 於視訊寫碼中判定用於寫碼變換係數資料之上下文
US9621894B2 (en) 2012-01-13 2017-04-11 Qualcomm Incorporated Determining contexts for coding transform coefficient data in video coding

Also Published As

Publication number Publication date
WO2010080663A1 (en) 2010-07-15
US20100174539A1 (en) 2010-07-08

Similar Documents

Publication Publication Date Title
TW201108205A (en) Method and apparatus for vector quantization codebook search
KR101190875B1 (ko) 차원 벡터 및 가변 분해능 양자화
JP6174266B2 (ja) ブラインド帯域幅拡張のシステムおよび方法
JP2013539548A (ja) 複数段階の形状ベクトル量子化のためのシステム、方法、装置、およびコンピュータ可読媒体
Gupta et al. Speech bandwidth extension with wavenet
CN102158692A (zh) 编码方法、解码方法、编码器和解码器
JP6096896B2 (ja) ベクトル量子化
Vali et al. End-to-end optimized multi-stage vector quantization of spectral envelopes for speech and audio coding
Pandey et al. Optimal non-uniform sampling by branch-and-bound approach for speech coding
CA2803273A1 (en) Encoding method, decoding method, encoding device, decoding device, program, and recording medium
CN110291583B (zh) 用于音频编解码器中的长期预测的系统和方法
US20210287038A1 (en) Identifying salient features for generative networks
Moreau Tools for Signal Compression: Applications to Speech and Audio Coding
So Efficient block quantisation for image and speech coding
Bouzid et al. Multi-coder vector quantizer for transparent coding of wideband speech ISF parameters
Nordén et al. Companded quantization of speech MDCT coefficients
Shoham Hierarchical vector quantization with application to speech waveform coding
CN116631418A (zh) 语音编码、解码方法、装置、计算机设备和存储介质
Mirrezaie et al. A particle swarm optimization-based approach to speaker segmentation based on independent component analysis on gsm digital speech
Tan et al. Quantization of speech features: source coding
JP5098458B2 (ja) 音声符号化装置、音声符号化方法、及び、プログラム
Kain et al. Compression of line spectral frequency parameters using the asynchronous interpolation model.
Chatterjee et al. Structured Gaussian mixture model based product VQ
Gersho et al. Vector Quantization II: Optimality and Design
Chen et al. Sub-band Unvoiced/Voiced parameter extraction and efficient quantization for speech signal