TW201107373A - Carbon nanotube dispersing/solubilizing agent - Google Patents

Carbon nanotube dispersing/solubilizing agent Download PDF

Info

Publication number
TW201107373A
TW201107373A TW099114664A TW99114664A TW201107373A TW 201107373 A TW201107373 A TW 201107373A TW 099114664 A TW099114664 A TW 099114664A TW 99114664 A TW99114664 A TW 99114664A TW 201107373 A TW201107373 A TW 201107373A
Authority
TW
Taiwan
Prior art keywords
group
carbon nanotube
composition
carbon
branched structure
Prior art date
Application number
TW099114664A
Other languages
Chinese (zh)
Other versions
TWI494346B (en
Inventor
Naoya Nishimura
Masahiro Hida
Original Assignee
Nissan Chemical Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Ind Ltd filed Critical Nissan Chemical Ind Ltd
Publication of TW201107373A publication Critical patent/TW201107373A/en
Application granted granted Critical
Publication of TWI494346B publication Critical patent/TWI494346B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/40Nitrogen atoms
    • C07D251/54Three nitrogen atoms
    • C07D251/70Other substituted melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/40Nitrogen atoms
    • C07D251/42One nitrogen atom
    • C07D251/44One nitrogen atom with halogen atoms attached to the two other ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0273Polyamines containing heterocyclic moieties in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/0644Poly(1,3,5)triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/005Hyperbranched macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Colloid Chemistry (AREA)

Abstract

Disclosed is a carbon nanotube dispersing/solubilizing agent which is composed of a hyperbranched polymer that contains a triazine ring represented, for example, by formula (14), (15) or (16) as a repeating unit and has a weight average molecular weight of 1,000-4,000,000 in terms of polystyrene as determined by gel permeation chromatography. Since the hyperbranched polymer has excellent carbon nanotube dissolving power, a composition in which carbon nanotubes are isolatedly dissolved can be obtained using the hyperbranched polymer as a solubilizing agent.

Description

201107373 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種碳奈米管分散.可溶化劑,更詳而 言之’係有關一種含有三嗪環作爲重複單元之高支化聚合 物所構成的碳奈米管分散.可溶化劑。 【先前技術】 碳奈米管(以下,有時亦簡稱爲CNT)就奈米技術之 有用的材料而言,已在廣泛的領域中硏究應用之可能性。 其用途係大致區分爲:如電晶體或顯微鏡用探針等, 使用單獨之CNT其本身之方法、與如電子釋出電極或燃 料電池用電極、或分散CNT之導電性複合體等,收集多 數之CNT而形成塊體來使用之方法。 使用單獨之CNT時,使CNT添加於溶劑中而再照射 超音波後,以電泳等只取出單一分散之CNT之方法等已 被使用。 另外,以塊體使用之導電性複合體中,必須於成爲基 質材之聚合物等之中良好地分散CNT。 但,CNT —般係很難分散者,在以一般之分散方法所 得到的複合體中其分散成爲不完全的狀態。因此,硏究藉 由CNT之表面改質、或表面化學修飾等之各種方法而提 高其分散性。 改質CNT之表面的方法,有例如將CNT添加於含有 十二碳基磺酸鈉等之界面活性劑的水溶液中之方法(參照 -5- 201107373 專利文獻1 :特開平6-22 8 824號公報)。 但,在此方法中,因於CNT表面附著非導電性之有 機物,故損及導電性。 又,亦已知於CNT表面附著具有螺旋狀構造之聚合 物的方法,具體上,係於含有聚-間-伸苯基伸乙烯基-共· 二辛氧-對-伸苯基伸乙烯基的溶劑中加入CNT,使沈澱之 CNT複合材進行分離、精製之方法已被提出(專利文獻2 :特開2000-442 1 6號公報),此聚合物係共軛系不完全 ,此時亦損及CNT之導電性》 進一步,藉由於單層CNT加成官能基等,實施化學 修飾,提昇分散性之方法亦已爲人知(非專利文獻1 : Science,Vol.2 82,1 99 8 年)。 但,在此方法中,藉化學修飾構成CNT之π共軛系 易被破壞,此時亦損及CNT原來之特性。 如以上般,改質CNT之表面時,CNT之分散性雖可 多少改善,但產生損及高導電性等之CNT具有的原來特 性之另一問題。 又,在以上敘述之方法中係可使數mm級之CNT的塊 體縮小至數μ m之塊體,但要溶解(分散)至CNT單獨之 尺寸(直徑0.8〜100nm ),亦即孤立溶解係不可能。 此點,在專利文獻2中係表示於1條之CNT周圍附 著聚合物的情形,但此文獻之方法係暫分散至某程度後, 凝集.沈澱而捕捉CNT者,並非可使CNT經長期而以孤 立溶解狀態保存者。 -6- 201107373 另外’在專利文獻1中係使用共軛系聚合物作爲可溶 化劑(分散劑),CNT表面被共軛系聚合物被覆之結果, CNT均一地分散於樹脂中,故可發揮CNT原來之導電性 已被報告。在此技術中,其特徵在於:可使用來作爲分散 劑之共轭系聚合物係因共軛系構造很發達,故利用導電性 或半導體特性時很有利。 但’在專利文獻1中係共軛系聚合物僅只於揭示直鏈 狀聚合物,有關高支化聚合物之見識尙未明確。 又,解決上述問題點之方法,藉由如聚乙烯基吡咯烷 酮之水溶性聚合物,分散CNT之方法亦已爲人知(非專 利文獻 2: Carbon > Vol.41 , pp.797 -8 09 * 2003 年),但爲 水溶性,故其應用範圍受限。 另外’使用有機溶劑之方法,已提出使用具有鹼性官 能基之化合物’分散於酮系之有機溶劑的方法(專利文獻 3:特開2008-24568號公報),但無有關鹼性官能基之詳 細規定,可安定地分散之CNT的直徑被限定。 進一步’使用非離子性界面活性劑之聚氧乙烯系化合 物,分散於醯胺系之極性有機溶劑中之方法(專利文獻4 :特開2005-7566 1號公報)、藉聚乙烯基吡咯烷酮分散 於醯胺系極性有機溶劑中之方法(專利文獻5 :特開 2005-162877號公報)’及分散於醇系有機溶劑中之方法 (專利文獻6 :特開2008-24522號公報)等亦已被提出。 但,即使在此技術中,被使用來作爲分散劑之聚合物 係直鏈狀聚合物,有關高支化聚合物之見識尙未明確。 201107373 又,就CNT之分散劑而言著眼於高支化聚合物1之 技術(非專利文獻3:第56次高分子學會年次大會預稿集 ’ Vol_56,No.l,p.1 463,2007 年)亦已被提出。 所謂高支化聚合物係如星狀聚合物、或被分類爲樹枝 狀之聚合物的樹枝狀聚合物(Dendrimer)、超支化聚合 物等,於骨架內具有分枝之聚合物。此等之高支化聚合物 係習知之高分子一般爲繩狀之形狀,但積極導入分枝,故 使用此作爲分散劑,與直鏈狀之聚合物比較而有可能發揮 優異之CNT的孤立分散、溶解能。 但’在使用高支化聚合物作爲分散劑之非專利文獻3 的技術中’爲經長期保持CNT之孤立分散狀態,除了機 械性處理外亦必須熱處理,CNT之可溶化能並非那麼高。 先前技術文獻 專利文獻 專利文獻1 :特開平6-228 824號公報 專利文獻2:特開2000-44216號公報 專利文獻3 :特開2003-292801號公報 專利文獻4 :特開2005-75 66 1號公報 專利文獻5:特開2005-162877號公報 專利文獻6:特開2008-24522號公報 非專利文獻 非專利文獻 1 : Science,Vol.282,1998 年 非專利文獻 2: Carbon,Vol.41,pp.797-809,2003 年 非專利文獻3:第56次高分子學會年次大會預稿集, -8- 201107373 ν〇1·56,Νο·1,ρ.1 463,2007 年。 【發明內容】 發明之槪要 發明欲解決之課題 本發明係有鑑於如此之事情者,目的在於提供一種在 有機溶劑等之介質中可使碳奈米管孤立溶解至其單獨大小 之碳奈米管可溶化劑.分散劑。 用以解決課題之手段 本發明人等係爲達成上述目的,經累積專心硏究之結 果,發現含有三嗪環作爲重複單元之高支化聚合物爲碳奈 米管之分散·溶解能優,以及使用此高支化聚合物作爲碳 奈米管分散·可溶化劑時,可使碳奈米管(之至少一部分 )孤立溶解至其單獨大小,終完成本發明。 亦即,本發明係提供: 1 ·—種碳奈米管分散·可溶化劑,其係由含有三嗪環 作爲重複單元,且以凝膠滲透色層分析所得到的聚苯乙烯 換算所測定的重量平均分子量爲1,000〜4,000,000的高支 化聚合物所構成。 2.如第1項之碳奈米管分散·可溶化劑,其中前述重 複單元爲以下述式(1)所示。 201107373201107373 VI. Description of the Invention: [Technical Field] The present invention relates to a carbon nanotube dispersion, a solubilizing agent, and more particularly, to a highly branched polymer containing a triazine ring as a repeating unit The carbon nanotubes are composed of a dispersing agent. [Prior Art] Carbon nanotubes (hereinafter, sometimes referred to simply as CNTs) have been studied for a wide range of applications in terms of useful materials for nanotechnology. The use is roughly divided into: a transistor or a microscope probe, etc., using a separate method of CNT itself, and an electron-releasing electrode or a fuel cell electrode, or a conductive composite of dispersed CNT, etc., collecting a majority The method of using CNTs to form a block. When a single CNT is used, a method in which CNTs are added to a solvent and irradiated with ultrasonic waves, and only a single dispersed CNT is taken out by electrophoresis or the like is used. Further, in the conductive composite used for the block, it is necessary to satisfactorily disperse the CNT in the polymer or the like which becomes the base material. However, CNTs are generally difficult to disperse, and their dispersion is incomplete in a composite obtained by a general dispersion method. Therefore, the dispersion is improved by various methods such as surface modification of CNT or surface chemical modification. For the method of modifying the surface of the CNT, for example, a method of adding CNT to an aqueous solution containing a surfactant such as sodium dodecylsulfonate (refer to -5 to 201107373 Patent Document 1: JP-A-6-22 8 824 Bulletin). However, in this method, since the non-conductive organic substance adheres to the surface of the CNT, the conductivity is impaired. Further, a method of attaching a polymer having a helical structure to a surface of a CNT is known, and specifically, a solvent containing a poly-m-phenylene-vinyl-co-dioctyloxy-p-phenylene-vinyl group A method of separating and refining a precipitated CNT composite by adding CNTs has been proposed (Patent Document 2: JP-A-2000-442166), and the polymer-based conjugate system is incomplete, and is also damaged at this time. Conductivity of CNTs Further, a method of performing chemical modification to enhance dispersibility by a single-layer CNT addition functional group or the like is also known (Non-Patent Document 1: Science, Vol. 2 82, 1989). However, in this method, the π-conjugated structure which constitutes the CNT by chemical modification is easily destroyed, and the original characteristics of the CNT are also impaired at this time. As described above, when the surface of the CNT is modified, the dispersibility of the CNT can be somewhat improved, but another problem that the original characteristic of the CNT having high conductivity or the like is damaged is caused. Further, in the above-described method, a block of CNTs of several mm order can be reduced to a block of several μm, but dissolved (dispersed) to a size of CNT alone (diameter: 0.8 to 100 nm), that is, isolated and dissolved It is impossible. In this case, Patent Document 2 discloses a case where a polymer is attached around one CNT, but the method of this document is temporarily dispersed to a certain extent, and agglomerates and precipitates to capture CNTs, which does not allow CNTs to pass through for a long period of time. Save in a dissolved state. -6-201107373 In addition, in Patent Document 1, a conjugated polymer is used as a solubilizing agent (dispersant), and as a result of coating the CNT surface with a conjugated polymer, CNTs are uniformly dispersed in the resin, so that they can be used. The original conductivity of CNT has been reported. In this technique, a conjugated polymer which is used as a dispersing agent is developed because of a conjugated structure, and it is advantageous in terms of conductivity or semiconductor characteristics. However, in Patent Document 1, the conjugated polymer is only for revealing a linear polymer, and the knowledge about the highly branched polymer is not clear. Further, in order to solve the above problems, a method of dispersing CNTs by a water-soluble polymer such as polyvinylpyrrolidone is also known (Non-Patent Document 2: Carbon > Vol. 41, pp. 797 -8 09 * 2003), but it is water soluble, so its application range is limited. In addition, a method of dispersing a compound having a basic functional group in an organic solvent of a ketone type has been proposed as a method of using an organic solvent (Patent Document 3: JP-A-2008-24568), but no basic functional group is involved. It is specified in detail that the diameter of the CNT which can be stably dispersed is limited. Further, a method of dispersing a polyoxyethylene compound of a nonionic surfactant in a polar organic solvent of a guanamine type (Patent Document 4: JP-A-2005-7566 1), and dispersing it by polyvinylpyrrolidone The method of the melamine-based polar organic solvent (Patent Document 5: JP-A-2005-162877) and the method of dispersing it in an alcohol-based organic solvent (Patent Document 6: JP-A-2008-24522) have also been put forward. However, even in this technique, a polymer which is used as a dispersing agent is a linear polymer, and the knowledge about the highly branched polymer is not clear. 201107373 In addition, the technology of the high-branched polymer 1 is focused on the CNT dispersant (Non-Patent Document 3: The 56th Polymer Society Annual Conference Pre-Collection Vol. 56, No. 1, p. 1 463, 2007) has also been proposed. The highly branched polymer is a star polymer, a dendrimer classified as a dendritic polymer, a hyperbranched polymer or the like, and has a branched polymer in the skeleton. Such a highly branched polymer is generally a rope-like shape, but is actively introduced into a branch, so that it is used as a dispersing agent, and it is possible to exhibit excellent CNT isolation as compared with a linear polymer. Disperse and dissolve energy. However, in the technique of Non-Patent Document 3 in which a highly branched polymer is used as a dispersing agent, the state in which the CNT is isolated and dispersed for a long period of time is required, and heat treatment is required in addition to the mechanical treatment, and the solubilization energy of the CNT is not so high. CITATION LIST PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT Patent Document 4: JP-A-2005-292801 Patent Document 5: JP-A-2005-162877, Patent Document 6: JP-A-2008-24522, Non-Patent Document Non-Patent Document 1: Science, Vol. 282, 1998 Non-Patent Document 2: Carbon, Vol. , pp. 797-809, 2003 Non-Patent Document 3: The 56th Annual Meeting of the Polymer Society Annual Conference, -8-201107373 ν〇1·56, Νο·1, ρ.1 463, 2007. SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object thereof is to provide a carbon nanotube which can be dissolved in a medium of an organic solvent or the like to its individual size. Tube solubilizer. Dispersant. Means for Solving the Problem The inventors of the present invention have found that the highly branched polymer containing a triazine ring as a repeating unit is excellent in dispersion and dissolution energy of a carbon nanotube, in order to achieve the above object. And when the hyperbranched polymer is used as the carbon nanotube dispersion/solubilizing agent, the carbon nanotubes (at least a part of them) can be dissolved in isolation to their individual sizes, and the present invention is completed. That is, the present invention provides: 1 - a carbon nanotube dispersion/solubilizing agent, which is determined by a polystyrene conversion obtained by a gel permeation chromatography layer containing a triazine ring as a repeating unit. It is composed of a highly branched polymer having a weight average molecular weight of 1,000 to 4,000,000. 2. The carbon nanotube dispersion/solubilizing agent according to Item 1, wherein the repeating unit is represented by the following formula (1). 201107373

(式中,R及R1表示氫原子或亦可具有碳數1〜l〇的 分枝構造之烷基,Ar表示亦可具有取代基之芳基)。 3.如第1項之碳奈米管分散·可溶化劑,其中前述Ar 爲以式(2 ) ~ ( 1 2 )所示之至少一種。 [化2] R1 R2 ϋ (2) (3) R?5 R24 R?3 R22Jrh 一 (6)(wherein R and R1 represent a hydrogen atom or an alkyl group which may have a branched structure of 1 to 10 carbon atoms, and Ar represents an aryl group which may have a substituent). 3. The carbon nanotube dispersion/solubilizing agent according to Item 1, wherein the Ar is at least one of the formulae (2) to (12). [Chemical 2] R1 R2 ϋ (2) (3) R?5 R24 R?3 R22Jrh one (6)

R3^ R33 R35 ⑷ R31 R33R3^ I ^R30 R28 (5) 、R29 40 R39R3^ R33 R35 (4) R31 R33R3^ I ^R30 R28 (5) , R29 40 R39

R41 - W ⑻ iRf R37A:.R41 - W (8) iRf R37A:.

(7) (10)(7) (10)

R (11) R78 R77 R?6R (11) R78 R77 R?6

〔式中,R1〜R8Q互相獨立表示氫原子、鹵原子、羧基 颯基、亦可具有碳數1〜1〇之分枝構造的烷基、或亦可 -10- 201107373 具有碳數1〜10之分枝構造的烷氧基,w1及W2互相獨立 表示單鍵、CR81R82(R81及R82互相獨立表示氫原子或亦 可具有碳數1~1〇的分枝構造的烷基(但,此等亦可成爲 — 起而形成環))、C = 0、0、S、S0、S02、或NR83( R83表示氫原子或亦可具有碳數1~1〇的分枝構造的烷基) ,X1及X2互相獨立表示單鍵、亦可具有碳數1~1〇的分枝 構造的之伸烷基、或以式(13) [化3] J(R87 R 明 R* Y2-^. Π3) (式中,R84〜R87互相獨立表示氫原子、鹵原子、羧 基、颯基、亦可具有碳數1~1〇之分枝構造的烷基、或亦 可具有碳數1~1〇之分枝構造的烷氧基’ Υ1及γ2互相獨立 表示單鍵或亦可具有碳數1〜10之分枝構造的伸烷基)所 示之基〕。 4.如第2項之碳奈米管分散.可溶化劑’其中前述重 複單元爲以下述式(14)所示。 -11 - 201107373 [化4][wherein R1 to R8Q independently represent a hydrogen atom, a halogen atom, a carboxyl group, or an alkyl group having a branched structure having a carbon number of 1 to 1 Å, or may be -10-201107373 having a carbon number of 1 to 10 The alkoxy group of the branched structure, w1 and W2 independently of each other represent a single bond, and CR81R82 (R81 and R82 independently represent a hydrogen atom or an alkyl group having a branched structure of 1 to 1 carbon atoms (however, such It may also be - to form a ring)), C = 0, 0, S, S0, S02, or NR83 (R83 represents a hydrogen atom or an alkyl group which may also have a branched structure of 1 to 1 carbon number), X1 And X2 independently of each other to represent a single bond, or a branched alkyl group having a branched structure of 1 to 1 Å, or a formula (13) [Chemical 3] J (R87 R: R* Y2-^. Π 3) (wherein R84 to R87 independently represent a hydrogen atom, a halogen atom, a carboxyl group, a fluorenyl group, or an alkyl group having a branched structure having a carbon number of 1 to 1 Å, or may have a carbon number of 1 to 1 Å. The alkoxy group ''1' and γ2 of the branched structure each independently represent a single bond or a group which may also have a branched alkyl group having a branched structure of 1 to 10 carbon atoms). 4. The carbon nanotube dispersion according to item 2, the solubilizing agent' wherein the above-mentioned repeating unit is represented by the following formula (14). -11 - 201107373 [化4]

(14) 5 .如第2項之碳奈米管分散·可溶化劑,其中前述重 複單元爲以下述式(15)所示。(14) The carbon nanotube dispersion/solvent according to item 2, wherein the repeating unit is represented by the following formula (15).

6.如第2項之碳奈米管分散·可溶化劑,其中前述重 複單元爲以下述式(16)所示。 [化6]6. The carbon nanotube dispersion/solubilizing agent according to Item 2, wherein the repeating unit is represented by the following formula (16). [Chemical 6]

7.—種組成物,其特徵係含有第2〜6項中任一項之碳 -12- 201107373 奈米管分散.可溶化劑與碳奈米管。 8. 如第7項之組成物,其中前述碳奈米管分散·可溶 化劑爲附著於前述碳奈米管的表面而形成複合體。 9. 如第7或8項之組成物,其中進一步含有有機溶劑 〇 10. 如第9項之組成物,其中前述碳奈米管分散於前 述有機溶劑中。 11. 如第9項之組成物,其中前述複合體分散或溶解 於前述有機溶劑中。 12. 如第2〜1 1項中任一項之組成物,其中前述碳奈米 管爲選自單層碳奈米管、2層碳奈米管及多層碳奈米管之 至少一種。 1 3 . —種薄膜,其係可由第7〜1 2項中任一項之組成物 得到。 1 4 · 一種組成物之製造方法,其係混合第1〜6項中任 一項之碳奈米管分散·可溶化劑、碳奈米管與有機溶劑而 調製混合物,再機械性處理此混合物。 I5·如第14項之製造方法,其中前述機械性處理爲超 音波處理。 16.如第15項之製造方法,其中在使前述碳奈米管分 散·可溶化劑溶解於前述有機溶劑而成之溶液中添加碳奈 米管而調製前述混合物,並超音波處理此混合物。 發明之效果 -13- 201107373 本發明之碳奈米管分散·可溶化劑係由含有三嗪環之 高支化聚合物所構成者,故於碳奈米管之分散·溶解能優 ,可使碳奈米管孤立溶解至其單獨大小。 因此,以使用本發明之可溶化劑’可容易得到碳奈米 管(之至少一部分)以孤立溶解狀態分散之含碳奈米管的 組成物。 此組成物係可容易調整碳奈米管之量,故可適宜使用 來作爲半導體材料、導電體材料等。 用以實施發明之形態 以下,更詳細說明本發明。 本發明之碳奈米管分散·可溶化劑係由含有三嗪環作 爲重複單元,且以凝膠滲透色層分析(以下稱爲GPC)所 得到的聚苯乙烯換算所測定的重量平均分子量爲 1,〇〇〇〜4,000,000的高支化聚合物所構成者。 含有此三嗪環作爲重複單元之高支化聚合物係安定性 優’同時顯示優異之電洞輸送性,故亦期待於有機EL之 應用。又,以使用適當的摻雜劑例如過氣酸離子、碘離子 、溴離子、硫酸離子等之陰離子,顯示近似於導電體之値 ’故亦期待作爲導電性高分子之利用。 在本發明中’若該聚合物之重量平均分子量釋不足 1 0 00,碳奈米管之可溶化能明顯降低,或,有其可溶化能 無法發揮之虞,若超過4,〇〇〇,〇〇〇,有碳奈米管之可溶化 處理時很難處理之虞。更宜重量平均分子量爲 -14- 201107373 1,000〜2,000,000之高支化聚合物。 含有三嗪環之重複單元係無特別限定,但在本發明中 ,適宜爲以下述式(1)所示者。 [化7]7. A composition comprising the carbon-12-201107373 nanotube dispersion of any one of items 2 to 6. a solubilizing agent and a carbon nanotube. 8. The composition according to Item 7, wherein the carbon nanotube dispersion/solubilizing agent is attached to a surface of the carbon nanotube to form a composite. 9. The composition according to Item 7 or 8, which further comprises an organic solvent. The composition according to item 9, wherein the carbon nanotube is dispersed in the organic solvent. 11. The composition according to item 9, wherein the aforementioned complex is dispersed or dissolved in the aforementioned organic solvent. 12. The composition according to any one of items 2 to 11, wherein the carbon nanotube is at least one selected from the group consisting of a single carbon nanotube, a two carbon nanotube, and a multilayer carbon nanotube. A film which can be obtained from the composition of any one of items 7 to 12. 1 a method for producing a composition by mixing a carbon nanotube dispersion/solubilizing agent, a carbon nanotube, and an organic solvent according to any one of items 1 to 6 to prepare a mixture, and mechanically treating the mixture . The manufacturing method of item 14, wherein the mechanical treatment is ultrasonic treatment. 16. The production method according to item 15, wherein the mixture is prepared by adding a carbon nanotube to a solution obtained by dissolving the carbon nanotube dispersion/solubilizing agent in the organic solvent, and ultrasonically treating the mixture. EFFECTS OF THE INVENTION-13-201107373 The carbon nanotube dispersion/solubilizing agent of the present invention is composed of a highly branched polymer containing a triazine ring, so that the carbon nanotubes can be dispersed and dissolved in an excellent energy. The carbon nanotubes are dissolved in isolation to their individual sizes. Therefore, a carbon nanotube-containing composition in which the carbon nanotubes (at least a part thereof) are dispersed in an isolated dissolved state can be easily obtained by using the solubilizing agent' of the present invention. Since this composition can easily adjust the amount of the carbon nanotubes, it can be suitably used as a semiconductor material, a conductor material, or the like. MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The carbon nanotube dispersion/solubilizing agent of the present invention has a weight average molecular weight measured by polystyrene conversion obtained by a gel permeation chromatography (hereinafter referred to as GPC) containing a triazine ring as a repeating unit. 1, 〇〇〇 ~ 4,000,000 high-branched polymer. The highly branched polymer containing the triazine ring as a repeating unit is excellent in stability and exhibits excellent hole transportability, and is therefore expected to be applied to organic EL. Further, the use of an appropriate dopant such as an anion such as a peroxy acid ion, an iodide ion, a bromide ion or a sulfate ion to exhibit an approximate conductivity of the conductor is also expected to be utilized as a conductive polymer. In the present invention, if the weight average molecular weight of the polymer is less than 100 00, the solubilization energy of the carbon nanotubes is remarkably lowered, or if the solubilization energy cannot be exerted, if it exceeds 4, 〇〇〇, 〇〇〇, it is difficult to handle when the carbon nanotubes are solubilized. More preferably, the weight average molecular weight is -14 to 201107373 1,000 to 2,000,000 of highly branched polymer. The repeating unit containing a triazine ring is not particularly limited, but in the present invention, it is preferably one represented by the following formula (1). [Chemistry 7]

(式中,R及R1表示氫原子或亦可具有碳數1〜10的 分枝構造之烷基,Ar表示亦可具有取代基之芳基)° 亦可具有碳數1~1〇的分枝構造之院基並無特別限定 ,可舉例如甲基、乙基、正丙基、異丙基、環丙基、正丁 基、異丁基、第二丁基、第三丁基、環丁基、1_甲基-環丙 基、2 -甲基-環丙基、正戊基、丨-甲基-正丁基、2 -甲基-正 丁基、3-甲基·正丁基、1,1-二甲基_正丙基、1,2_ —甲基_ 正丙基、2,2-二甲基·正丙基、丨·乙基_正丙基、環戊基、1_ 甲基-環丁基、2 -甲基-環丁基、3 -甲基-環丁基、l2-二甲 基-環丙基、2,3-二甲基-環丙基、1_乙基-環丙基、2-乙基-環丙基、正己基、1-甲基-正戊基、2_甲基-正戊基、3_甲 基-正戊基、4-甲基-正戊基、込1-二甲基-正丁基、丨,2-二 甲基-正丁基、1,3-二甲基-正丁基、2,2_二甲基_正丁基、 2,3-二甲基·正丁基、3,3-二甲基-正丁基、N乙基·正丁基 、2-乙基-正丁基、1,1,2-三甲基-正丙基、丨,2,2-二甲基-正 丙基、1-乙基-1-甲基-正丙基、1-乙基_2-甲基-正丙基、環 -15- 201107373 己基、1-甲基-環戊基、2-甲基-環戊基、3-甲基-環戊基、 1-乙基-環丁基、2-乙基-環丁基、3-乙基-環丁基、1,2-二 甲基-環丁基、1,3-二甲基-環丁基、2,2-二甲基-環丁基、 2,3-二甲基-環丁基、2,4-二甲基-環丁基、3,3·二甲基-環 丁基、1-正丙基-環丙基、2-正丙基-環丙基、1-異丙基-環 丙基、2-異丙基-環丙基、1,2,2-三甲基-環丙基、1,2,3-三 甲基-環丙基、2,2,3-三甲基-環丙基、1-乙基-2-甲基-環丙 基、2-乙基-1-甲基-環丙基、2-乙基-2-甲基-環丙基、2-乙 基-3-甲基-環丙基等。 在式(1)中,亦可具有取代基之芳基,並無特別限 定,但若考量提高碳奈米管之分散·溶解能,在本發明中 ,宜使用以下述式(2)〜(12)所示之至少一種,因可得 到碳奈米管之溶解(分散)能更優異之高支化聚合物,故 尤宜爲以式(4) 、(6)及(12)所示之芳基。 -16- 201107373 [化8] R1 R2(wherein R and R1 represent a hydrogen atom or an alkyl group which may have a branched structure having a carbon number of 1 to 10, and Ar represents an aryl group which may have a substituent) ° may also have a carbon number of 1 to 1 Å. The base of the branch structure is not particularly limited, and examples thereof include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a cyclopropyl group, a n-butyl group, an isobutyl group, a second butyl group, a third butyl group, and a ring. Butyl, 1-methyl-cyclopropyl, 2-methyl-cyclopropyl, n-pentyl, 丨-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl 1,1,1-dimethyl-n-propyl, 1,2-methyl-n-propyl, 2,2-dimethyl-n-propyl, oxime-ethyl-n-propyl, cyclopentyl, 1_Methyl-cyclobutyl, 2-methyl-cyclobutyl, 3-methyl-cyclobutyl, 1-2-dimethyl-cyclopropyl, 2,3-dimethyl-cyclopropyl, 1_ Ethyl-cyclopropyl, 2-ethyl-cyclopropyl, n-hexyl, 1-methyl-n-pentyl, 2-methyl-n-pentyl, 3-methyl-n-pentyl, 4-methyl - n-pentyl, indole 1-dimethyl-n-butyl, anthracene, 2-dimethyl-n-butyl, 1,3-dimethyl-n-butyl, 2,2-dimethyl-n-butyl Base, 2,3-dimethyl-n-butyl, 3,3-dimethyl-n-butyl, N Ethyl n-butyl, 2-ethyl-n-butyl, 1,1,2-trimethyl-n-propyl, hydrazine, 2,2-dimethyl-n-propyl, 1-ethyl-1 -methyl-n-propyl, 1-ethyl-2-methyl-n-propyl, cyclo-15- 201107373 hexyl, 1-methyl-cyclopentyl, 2-methyl-cyclopentyl, 3-methyl -cyclopentyl, 1-ethyl-cyclobutyl, 2-ethyl-cyclobutyl, 3-ethyl-cyclobutyl, 1,2-dimethyl-cyclobutyl, 1,3-di Methyl-cyclobutyl, 2,2-dimethyl-cyclobutyl, 2,3-dimethyl-cyclobutyl, 2,4-dimethyl-cyclobutyl, 3,3·dimethyl -cyclobutyl, 1-n-propyl-cyclopropyl, 2-n-propyl-cyclopropyl, 1-isopropyl-cyclopropyl, 2-isopropyl-cyclopropyl, 1,2,2 -trimethyl-cyclopropyl, 1,2,3-trimethyl-cyclopropyl, 2,2,3-trimethyl-cyclopropyl, 1-ethyl-2-methyl-cyclopropyl 2-Ethyl-1-methyl-cyclopropyl, 2-ethyl-2-methyl-cyclopropyl, 2-ethyl-3-methyl-cyclopropyl, and the like. In the formula (1), the aryl group which may have a substituent is not particularly limited. However, in consideration of the improvement of the dispersing and dissolving energy of the carbon nanotubes, in the present invention, it is preferable to use the following formula (2) to (() 12) at least one of the above, since a highly branched polymer which is more excellent in dissolution (dispersion) of the carbon nanotubes can be obtained, it is particularly preferable to exhibit the formulas (4), (6) and (12). Aryl. -16- 201107373 [Chem. 8] R1 R2

⑹ R31 rK3r3vVr3° R r28 (7) (8)(6) R31 rK3r3vVr3° R r28 (7) (8)

d77 d76D77 d76

(12) R70 R71 R66 r67 ri (11) 在式(2)〜(12)中,R1〜R8°互相獨立表示氫原子、 鹵原子、羧基、颯基、亦可具有碳數1〜1〇之分枝構造的 烷基、或亦可具有碳數1~1〇之分枝構造的烷氧基。 W1及W2互相獨立表示單鍵、CR81R82(R81及R82互 相獨立表示氫原子或亦可具有碳數1〜10的分枝構造的烷 基(但,此等亦可成爲一起而形成環))、C = 0、0、S、 SO、S02、或NR83(R83表示氫原子或亦可具有碳數1~10 的分枝構造的烷基)。 鹵原子可舉例如氟原子、氯原子、溴原子、碘原子。 亦可具有碳數1~1〇之分枝構造的烷基,係可舉例如 與上述同樣者。 -17- 201107373 又,R81及R82成爲一起而形成之環可舉例如環戊烷 環、環己烷環等。 亦可具有碳數1〜10之分枝構造的烷氧基可舉例如甲 氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、第二丁 氧基、第三丁氧基、正戊氧基等。 X1及X2互相獨立表示單鍵、亦可具有碳數1〜10的分 枝構造的之伸烷基、或以式(13)所示之基。 [化9](12) R70 R71 R66 r67 ri (11) In the formulae (2) to (12), R1 to R8° independently of each other represent a hydrogen atom, a halogen atom, a carboxyl group or a fluorenyl group, and may have a carbon number of 1 to 1 Å. An alkyl group having a branched structure or an alkoxy group having a branched structure having a carbon number of 1 to 1 Å. W1 and W2 independently of each other represent a single bond, CR81R82 (R81 and R82 independently represent a hydrogen atom or an alkyl group which may have a branched structure having a carbon number of 1 to 10 (however, these may form a ring together)), C = 0, 0, S, SO, S02, or NR83 (R83 represents a hydrogen atom or an alkyl group which may also have a branched structure of 1 to 10 carbon atoms). The halogen atom may, for example, be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. Further, the alkyl group having a branched structure having a carbon number of 1 to 1 Å may be, for example, the same as described above. -17-201107373 Further, a ring formed by R81 and R82 together may, for example, be a cyclopentane ring or a cyclohexane ring. The alkoxy group which may have a branched structure having a carbon number of 1 to 10 may, for example, be a methoxy group, an ethoxy group, a n-propoxy group, an isopropoxy group, a n-butoxy group, a second butoxy group, or a third group. Butoxy, n-pentyloxy and the like. X1 and X2 each independently represent a single bond, and may have an alkyl group having a branched structure of 1 to 10 carbon atoms or a group represented by the formula (13). [Chemistry 9]

〇3) R84〜R87互相獨立表示氫原子、鹵原子、羧基、颯基 、亦可具有碳數1~10之分枝構造的烷基、或亦可具有碳 數1〜10之分枝構造的烷氧基,Y1及Y2互相獨立表示單鍵 或亦可具有碳數1~10之分枝構造的伸烷基。 此等鹵原子、亦可具有碳數1~1〇之分枝構造的烷基 、及烷氧基可舉例如與上述同樣者。 亦可具有碳數1~10的分枝構造的之伸院基可舉例如 亞甲基、亞乙基、亞丙基、三亞甲基、四亞甲基、五亞甲 基等。 以上述式(2 )〜(1 2 )所示之芳基的具體例可舉例如 以下述式所示者’但不限定於此等。 -18- 201107373 [化 10]〇3) R84 to R87 independently represent a hydrogen atom, a halogen atom, a carboxyl group, a fluorenyl group, an alkyl group having a branched structure of 1 to 10 carbon atoms, or a branched structure having a carbon number of 1 to 10. The alkoxy group, Y1 and Y2, independently of each other, represents a single bond or an alkylene group which may have a branched structure having a carbon number of 1 to 10. The halogen atom, the alkyl group which may have a branched structure having a carbon number of 1 to 1 Å, and the alkoxy group may, for example, be the same as described above. Examples of the stretching base having a branched structure of 1 to 10 carbon atoms include a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, and a pentamethylene group. Specific examples of the aryl group represented by the above formulas (2) to (1 2) are, for example, those represented by the following formulas, but are not limited thereto. -18- 201107373 [化10]

含有在本發明中所適宜使用之高支化聚合物中的三嗪 環之重複單元之具體例,可舉例如以下述式(1 4 )〜(1 6 )所示者,但不限定於此等。 [化 11]Specific examples of the repeating unit of the triazine ring in the hyperbranched polymer which is suitably used in the present invention include those represented by the following formulas (14) to (16), but are not limited thereto. Wait. [化11]

-19- 201107373 舉出一例而說明有關可使用來作爲本發明之碳奈米管 分散·可溶化劑的高支化聚合物的製造法。 例如,如表示於下述機構1般,具有重複構造(15’ )之高支化聚合物係可使鹵化三聚氰酸(17)及具有胺基 之雙胺基苯基芴化合物(18)在適當的有機溶劑中反應而 得到。 又,如表示於下述機構2般,具有重複構造(15,) 之高支化聚合物係從可使鹵化三聚氰酸(17)及具有胺基 之雙胺基苯基芴化合物(18)在適當的有機溶劑中使用等 量而反應所得到之化合物(1 9 )亦可進行合成。 以此等之式(1 7 )及(1 8 )所示的化合物例如可得自 Aldrich公司製或東京化成工業(股)製之市售品。 使用此方法,可廉價而且簡便且安全地製造高支化聚 合物。此製造方法係較合成一般聚合物時之反應時間明顯 更短’故適合於近年之環境的考量之製造方法,可降低 C〇2排出量。又,即使大幅地增加製造規模,亦可安定製 造’無損在工業化程度之安定供給體制。 -20- 201107373 [化 12]-19-201107373 An example of a method for producing a hyperbranched polymer which can be used as a carbon nanotube dispersion/solubilizing agent of the present invention will be described. For example, as shown in the following mechanism 1, a highly branched polymer having a repeating structure (15') can be used to halogenate cyanuric acid (17) and a bisaminophenyl hydrazine compound having an amine group (18). It is obtained by reacting in a suitable organic solvent. Further, as shown in the following mechanism 2, the highly branched polymer having a repeating structure (15) is a halogenated cyanuric acid (17) and a bisaminophenyl hydrazine compound having an amine group (18). The compound (1 9 ) obtained by reacting in an appropriate amount in an appropriate organic solvent can also be synthesized. The compound represented by the formulas (17) and (18) can be, for example, a commercially available product manufactured by Aldrich Co., Ltd. or Tokyo Chemical Industry Co., Ltd. Using this method, highly branched polymers can be produced inexpensively, simply and safely. This production method is significantly shorter than the reaction time when a general polymer is synthesized. Therefore, it is suitable for a manufacturing method in consideration of the environment in recent years, and the amount of C〇2 discharged can be reduced. In addition, even if the manufacturing scale is greatly increased, it is possible to create a stable supply system that is not degraded in industrialization. -20- 201107373 [Chem. 12]

機構1 XAgency 1 X

N人NN person N

X义N人X (17) +X Yi N people X (17) +

(式中,X互相獨立表示鹵原子。R表示與上述相同 的意義) 機構2 [化 13](wherein X represents each other independently of a halogen atom. R represents the same meaning as described above.) Mechanism 2 [Chem. 13]

S 201107373 (式中,X互相獨立表示鹵原子。R表示與上述相同 的意義) 機構1之方法時,各原料之饋入量在只得到目的之聚 合物爲任意,但相對於鹵化三聚氰酸化合物(1 7 ) 1當量 ,宜爲二胺基化合物(18) 0.01~10當量。 有機溶劑係可使用在此種反應中一般所使用的各種溶 劑,可舉例如四氫呋喃、二噁烷、N,N-二甲基甲醯胺、二 甲基亞颯、N-甲基-2-吡咯烷酮、四甲基尿素、六甲基磷 醯胺、N,N-二甲基乙醯胺、N-甲基-2-哌啶酮、N,N-二甲 基乙烯尿素、>4少,^1’,1^’-四甲基馬來酸醯胺、:^-甲基己內 醯胺、N-乙醯基吡咯啶、N,N-二乙基乙醯胺、N-乙基-2-吡咯烷酮、N,N-二甲基丙酸醯胺、N,N-二甲基異丁基醯胺 、N-甲基甲醯胺、Ν,Ν’-二甲基丙烯尿素等之醯胺系溶劑 、及其等之混合溶劑。 其中,宜爲Ν,Ν-二甲基甲醯胺、二甲基亞颯、Ν-甲 基-2-吡咯烷酮、Ν,Ν-二甲基乙醯胺、及其等之混合系, 尤宜爲Ν,Ν-二甲基乙醯胺、Ν-甲基-2-吡咯烷酮。 在機構1之反應及機構2之第2階段的反應中,反應 溫度只要在從所使用之溶劑的融點至溶劑之沸點的範圍適 當設定即可,但尤宜爲〇〜150。(:左右,更宜爲60〜100。(^ 在機構2之第1階段中,反應溫度只要在從所使用之 溶劑的融點至溶劑之沸點的範圍適當設定即可,但尤宜 爲-10〜50。〇左右,更宜爲-10〜l〇°C。 在上述機構1之反應及機構2之第2階段的反應中, -22- 201107373 可使用一般所使用之各種鹼。 此鹼之具體例可舉例如碳酸鉀、氫氧化鉀、碳酸鈉、 氫氧化鈉、碳酸氫鈉、乙氧基鈉、醋酸鈉、三乙胺、碳酸 鋰、氫氧化鋰、氧化鋰、醋酸鉀、氧化鎂、氧化鈣、氫氧 化鋇、磷酸三鋰、磷酸三鈉、磷酸三鉀、氟化鉋、氧化鋁 、三甲胺、三乙胺、二異丙胺、二異丙基乙胺、N-甲基六 氫吡啶、2,2,6,6-四甲基-N-甲基六氫吡啶、吡啶、4-二甲 基胺基吡啶、N-甲基嗎啉等。 鹼之添加量相對於鹵化三聚氰酸化合物(17) 1當量 ,宜爲1~100當量,尤宜爲1〜10當量。又,此等之鹼亦 可形成水溶液而使用。 以式(1 7 )及式(1 8 )所示之化合物作爲原料而得到 之高分子宜爲原料成分不殘存,但若無損本發明之效果, 亦可一部分之原料殘存。 即使在任一者之機構的方法中,反應終了後,生成物 係可藉再沈澱法等而容易精製。 又,在本發明中,亦可使至少一個的末端三曉環的鹵 原子之一部分以烷基、芳烷基、芳基、烷基胺基、含烷氧 基甲矽烷基之烷基胺基、芳烷基胺基、芳基胺基、烷氧基 、芳烷氧基、芳氧基、酯基等進行封端。 上述烷基、烷氧基可舉例如與上述同樣者。 酯基之具體例可舉例如甲氧基羰基、乙氧基羰基等。 芳基之具體例可舉例如苯基、鄰-氯苯基、間-氯苯基 、對-氯苯基、鄰-氟苯基、對-氟苯基、鄰-甲氧基苯基、 -23- 201107373 對-甲氧基苯基、對-硝基苯基、對-氰基苯基、α-萘基、 冷-萘基、鄰-聯苯基、間-聯苯基、對-聯苯基、1 -蔥基、 2 -菌基、9 -菌基、1-菲基、2 -菲基、3 -菲基、4 -菲基、9 -菲 基等。 芳烷基之具體例可舉例如苯甲基、對-甲基苯基甲基 、間-甲基苯基甲基、鄰-乙基苯基甲基、間-乙基苯基甲基 、對-乙基苯基甲基、2 -丙基苯基甲基、4 -異丙基苯基甲基 、4-異丁基苯基甲基、α-萘基甲基等。 烷基胺基之具體例可舉例如甲基胺基、乙基胺基、正 丙基胺基、異丙基胺基、正丁基胺基、異丁基胺基、第二 丁基胺基、第三丁基胺基、正戊基胺基、1-甲基-正丁基胺 基、2 -甲基-正丁基胺基、3 -甲基-正丁基胺基、1,卜二甲 基-正丙基胺基、1,2-二甲基-正丙基胺基、2,2-二甲基·正 丙基胺基、1-乙基-正丙基胺基、正己基胺基' 1-甲基-正 戊基胺基、2-甲基-正戊基胺基、3-甲基-正戊基胺基、4-甲基-正戊基胺基、1,1-二甲基-正丁基胺基、1,2-二甲基-正丁基胺基、1,3-二甲基-正丁基胺基、2,2-二甲基-正丁基 胺基、2,3 -二甲基-正丁基胺基、3,3 -二甲基-正丁基胺基、 1-乙基-正丁基胺基、2-乙基-正丁基胺基、1,1,2-三甲基-正丙基胺基、1,2,2-三甲基-正丙基胺基、1-乙基-1-甲基· 正丙基胺基、1-乙基-2-甲基-正丙基胺基。 芳烷基胺基之具體例可舉例如苯甲基胺基 '甲氧基羰 基苯基甲基胺基、乙氧基羰基苯基甲基胺基、對-甲基苯 基甲基胺基、間-甲基苯基甲基胺基、鄰-乙基苯基甲基胺 -24- 201107373 基、間-乙基苯基甲基胺基、對-乙基苯基甲基胺基、2-丙 基苯基甲基胺基、4-異丙基苯基甲基胺基、4-異丁基苯基 甲基胺基、萘基甲基胺基、甲氧基羰基萘基甲基胺基、乙 氧基羰基萘基甲基胺基等。 芳基胺基之具體例可舉例如苯基胺基、甲氧基羰基苯 基胺基、乙氧基羰基苯基胺基、萘基胺基、甲氧基羰基萘 基胺基、乙氧基羰基萘基胺基、蔥基胺基、芘基胺基、聯 苯基胺基、三聯苯基胺基、芴基胺基等。 含烷氧基甲矽烷基之烷基胺基係含單烷氧基甲矽烷基 之烷基胺基、含二烷氧基甲矽烷基之烷基胺基、含三烷氧 基甲矽烷基之烷基胺基的任一者亦可,其具體例可舉例如 3 -三甲氧基甲矽烷基丙基胺基、3 -三乙氧基甲矽烷基丙基 胺基、3 -二甲基乙氧基甲矽烷基丙基胺基、3 -甲基二乙氧 基乙氧基甲矽烷基丙基胺基、N-( 2-胺基乙基)-3-二甲基 甲氧基甲矽烷基丙基胺基、N- (2-胺基乙基)-3-甲基二甲 氧基甲矽烷基丙基胺基、N- (2-胺基乙基)-3-三甲氧基甲 矽烷基丙基胺基等。 芳基氧基之具體例可舉例如苯氧基、萘氧基、蔥氧基 、芘基氧基、聯苯基氧基、三聯苯基氧基、芴基氧基等。 芳烷基氧基之具體例可舉例如苯甲基氧基、對-甲基 苯基甲基氧基、間-甲基苯基甲基氧基、鄰-乙基苯基甲基 氧基、間-乙基苯基甲基氧基、對-乙基苯基甲基氧基、2-丙基苯基甲基氧基、4-異丙基苯基甲基氧基、4-異丁基苯 基甲基氧基、α-萘基甲基氧基等。 -25- 201107373 此等之基係以得到對應三嗪環上之鹵原子的取代基之 化合物進行取代可容易取代,例如下述式機構3所示般, 加入苯胺衍生物而反應,可得到於至少一個末端具有苯基 胺基之高支化聚合物(20)。 [化 14]S 201107373 (wherein X represents a halogen atom independently of each other. R represents the same meaning as described above.) In the method of the mechanism 1, the feed amount of each raw material is arbitrary only for the purpose of obtaining the polymer, but is relative to the halogenated melamine. The acid compound (17) is 1 equivalent, preferably 0.01 to 10 equivalents based on the diamine compound (18). As the organic solvent, various solvents generally used in such a reaction can be used, and examples thereof include tetrahydrofuran, dioxane, N,N-dimethylformamide, dimethylammonium, and N-methyl-2-. Pyrrolidone, tetramethyl urea, hexamethylphosphoniumamine, N,N-dimethylacetamide, N-methyl-2-piperidone, N,N-dimethylethylene urea, > ,^1',1^'-tetramethyl maleate amide, :^-methyl caprolactam, N-acetylpyridinium, N,N-diethylacetamide, N-B Base-2-pyrrolidone, N,N-dimethylpropionate decylamine, N,N-dimethylisobutylguanamine, N-methylformamide, hydrazine, Ν'-dimethyl propylene urea, etc. A solvent such as a guanamine solvent or a mixed solvent thereof. Among them, it is preferably a mixture of hydrazine, hydrazine-dimethylformamide, dimethyl hydrazine, hydrazine-methyl-2-pyrrolidone, hydrazine, hydrazine-dimethylacetamide, and the like, particularly suitable It is Ν, Ν-dimethylacetamide, Ν-methyl-2-pyrrolidone. In the reaction of the mechanism 1 and the second stage of the reaction of the mechanism 2, the reaction temperature may be appropriately set within a range from the melting point of the solvent to be used to the boiling point of the solvent, but is preferably 〇150. (: Left and right, more preferably 60 to 100. (^) In the first stage of the mechanism 2, the reaction temperature may be appropriately set within a range from the melting point of the solvent to be used to the boiling point of the solvent, but particularly preferably - 10~50. About 〇, more preferably -10~l 〇 ° C. In the reaction of the above mechanism 1 and the second stage of the reaction of the mechanism 2, -22-201107373 can use various bases generally used. Specific examples thereof include potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, sodium hydrogencarbonate, sodium ethoxide, sodium acetate, triethylamine, lithium carbonate, lithium hydroxide, lithium oxide, potassium acetate, and oxidation. Magnesium, calcium oxide, barium hydroxide, trilithium phosphate, trisodium phosphate, tripotassium phosphate, fluorinated planer, alumina, trimethylamine, triethylamine, diisopropylamine, diisopropylethylamine, N-methyl Hexahydropyridine, 2,2,6,6-tetramethyl-N-methylhexahydropyridine, pyridine, 4-dimethylaminopyridine, N-methylmorpholine, etc. The amount of base added relative to halogenation The cyanuric acid compound (17) is preferably used in an amount of from 1 to 100 equivalents, particularly preferably from 1 to 10 equivalents. Further, these bases may also be used in the form of an aqueous solution. The polymer obtained by using the compound represented by the formula (1 8 ) and the formula (1 8 ) as a raw material is preferably such that the raw material component does not remain. However, if the effect of the present invention is not impaired, a part of the raw material may remain. Even in any of the institutions In the method, after the reaction is completed, the product can be easily purified by a reprecipitation method, etc. Further, in the present invention, at least one of the halogen atoms of the terminal triamethylene ring may be an alkyl group or an aralkyl group. An aryl group, an alkylamino group, an alkylamino group containing an alkoxycarbenyl group, an aralkylamino group, an arylamine group, an alkoxy group, an aralkyloxy group, an aryloxy group, an ester group, etc. The alkyl group and the alkoxy group are, for example, the same as those described above. Specific examples of the ester group include a methoxycarbonyl group and an ethoxycarbonyl group. Specific examples of the aryl group include a phenyl group and an o-chloro group. Phenyl, m-chlorophenyl, p-chlorophenyl, o-fluorophenyl, p-fluorophenyl, o-methoxyphenyl, -23- 201107373 p-methoxyphenyl, p-nitro Phenylphenyl, p-cyanophenyl, α-naphthyl, cold-naphthyl, o-biphenyl, m-biphenyl, p-biphenyl, 1-onion, 2 - a group, a 9-bacteria group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, etc. Specific examples of the aralkyl group include a benzyl group and a p-methyl group. Phenylmethyl, m-methylphenylmethyl, o-ethylphenylmethyl, m-ethylphenylmethyl, p-ethylphenylmethyl, 2-propylphenylmethyl, 4-isopropylphenylmethyl, 4-isobutylphenylmethyl, α-naphthylmethyl, etc. Specific examples of the alkylamine group include, for example, a methylamino group, an ethylamino group, and a positive C-propyl group. Amino group, isopropylamino group, n-butylamino group, isobutylamino group, second butylamino group, tert-butylamino group, n-pentylamino group, 1-methyl-n-butyl group Amino, 2-methyl-n-butylamino, 3-methyl-n-butylamino, 1, dimethyl-n-propylamino, 1,2-dimethyl-n-propylamine , 2,2-dimethyl-n-propylamino, 1-ethyl-n-propylamino, n-hexylamino '1-methyl-n-pentylamino, 2-methyl-n-pentyl Amino, 3-methyl-n-pentylamino, 4-methyl-n-pentylamino, 1,1-dimethyl-n-butylamino, 1,2-dimethyl-n-butyl Amino group, 1,3-dimethyl-n-butylamino group, 2,2- Methyl-n-butylamino, 2,3-dimethyl-n-butylamino, 3,3-dimethyl-n-butylamino, 1-ethyl-n-butylamino, 2- Ethyl-n-butylamino, 1,1,2-trimethyl-n-propylamino, 1,2,2-trimethyl-n-propylamino, 1-ethyl-1-methyl · n-propylamino, 1-ethyl-2-methyl-n-propylamino. Specific examples of the aralkylamino group include a benzylamino group 'methoxycarbonylphenylmethylamino group, an ethoxycarbonylphenylmethylamino group, a p-methylphenylmethylamino group, and m-Methylphenylmethylamino, o-ethylphenylmethylamine-24- 201107373, m-ethylphenylmethylamino, p-ethylphenylmethylamino, 2- Propyl phenylmethylamino, 4-isopropylphenylmethylamino, 4-isobutylphenylmethylamino, naphthylmethylamino, methoxycarbonylnaphthylmethylamino And ethoxycarbonylnaphthylmethylamino group and the like. Specific examples of the arylamine group include a phenylamino group, a methoxycarbonylphenylamino group, an ethoxycarbonylphenylamino group, a naphthylamino group, a methoxycarbonylnaphthylamino group, and an ethoxy group. A carbonylnaphthylamino group, an onionylamino group, a mercaptoamine group, a biphenylamino group, a terphenylamino group, a mercaptoamine group, or the like. The alkylamino group containing an alkoxycarbenyl group is an alkylamino group containing a monoalkoxycarbenyl group, an alkylamino group containing a dialkoxycarbenyl group, and a trialkoxycarboalkyl group. Any of the alkylamino groups may also be exemplified, and specific examples thereof include 3-trimethoxycarbamidopropylamino group, 3-triethoxymethanealkylpropylamino group, and 3-dimethyl group. Oxyformyl propylamino group, 3-methyldiethoxyethoxyformamidopropylamino, N-(2-aminoethyl)-3-dimethylmethoxyformane Alkylamino, N-(2-aminoethyl)-3-methyldimethoxycarbamidopropylamino, N-(2-aminoethyl)-3-trimethoxymethyl Alkylpropylamino group and the like. Specific examples of the aryloxy group include a phenoxy group, a naphthyloxy group, an onionoxy group, a decyloxy group, a biphenyloxy group, a terphenyloxy group, a decyloxy group and the like. Specific examples of the aralkyloxy group include a benzyloxy group, a p-methylphenylmethyloxy group, a m-methylphenylmethyloxy group, an o-ethylphenylmethyloxy group, and the like. m-Ethylphenylmethyloxy, p-ethylphenylmethyloxy, 2-propylphenylmethyloxy, 4-isopropylphenylmethyloxy, 4-isobutyl Phenylmethyloxy, α-naphthylmethyloxy, and the like. -25- 201107373 These groups are easily substituted by a compound which gives a substituent corresponding to a halogen atom on a triazine ring. For example, as shown in the following formula 3, an aniline derivative is added and reacted to obtain A hyperbranched polymer (20) having a phenylamine group at least one end. [Chem. 14]

(式中,X及R表示與上述相同的意義) 本發明之含有碳奈米管的組成物係含有以上說明之碳 奈米管分散·可溶化劑、與碳奈米管者。 碳奈米管(CNT )係可藉由電弧放電法、化學氣相成 長法(CVD法)、雷射剝離法等而製作,但於本發明所使 用之CNT亦可藉由任一者的方法而得到者。又,於CNT 有1片之碳膜(Graphen Sheet)被捲成圓筒狀之單層CNT (以下,記載爲SWCNT)、與2片之石墨烯片被捲成同 心圓狀之2層CNT (以下,記載爲DWCNT )、與複數之 石墨烯片被捲成同心圓狀之多層CNT (以下,記載爲 MWCNT ),但,在本發明中,可使 SWCNT、DWCNT、 -26- 201107373 MWCNT分別以單體,或組合複數而使用。 以上述之方法製作SWCNT、DWCNT或MWCNT時, 同時地生成富勒烯或石墨、非晶性碳作爲副生成物,又, 鎳、鐵、鈷、釔等之觸媒金屬亦殘存,故有時必須除去此 等之雜質並精製。於雜質之除去,係以硝酸、硫酸等進行 酸處理同時超音波處理很有效。但,以硝酸、硫酸等進行 酸處理中,係構成CNT之7Γ共軛系被破壞,有可能損及 CNT原來之特性,故宜不精製而使用。 CNT係藉石墨烯片之捲取方法(螺旋度、對掌性)電 氣特性從金屬性變化至半導體者。 CNT之對掌性係受圖1所示之對掌光譜(R = nai+ma2 ,但m、η爲整數)規定,n = m及n-m = 3p (但p爲整數) 時係金屬性質’其以外之時(n m,η - m表3 p )分別表示 半導體性質爲已知。因此,特別使用SWCNT時,使某種 之對掌性選擇性可溶化(分散)之組成物爲很重要。 使用本發明之三嗪環系高支化聚合物作爲CNT之可 溶化劑(分散劑),有可能得到具有某特定之對掌性的 CNT選擇性溶解之組成物。 本發明之組成物係進一步亦可含有具上述分散.可溶 化劑(高支化聚合物)的溶解能之有機溶劑。 如此之有機溶劑係可舉例如THF、二乙基醚等之醚系 化合物;二氯甲烷、氯仿等之鹵化烴;二甲基甲醯胺、N_ 甲基吡咯烷酮(NMP )等之醯胺系化合物;丙酮、甲乙酮 、甲基異丁基酮 '環己酮等之酮系化合物;甲醇、乙醇、 -27- 201107373 異丙醇、丙醇等之醇類;正庚烷、正己烷、環己烷等之脂 肪族烴類、苯、甲苯、二甲苯、乙基苯等之芳香族烴類等 ,其中,宜爲THF、氯仿、NMP、環己烷。又’上述有機 溶劑係可1種單獨或混合2種以上而使用。尤其,從可提 昇CNT之孤立溶解的比率,宜爲THF、NMP,進一步, 適宜爲亦可提昇組成物之製膜性的NMP單獨溶劑或含有 此之溶劑。 本發明之組成物的調製法爲任意,分散·可溶化劑( 聚合物)爲液狀時,適宜混合該分散·可溶化劑與CNT, 分散·可溶化劑爲固體時,使此熔融後,可與CNT混合 而調製。 又,使用有機溶劑時,只要以任意的順序混合分散· 可溶化劑、CNT及有機溶劑而調製組成物即可。 此時,宜爲使由分散·可溶化劑、CNT及有機溶劑所 構成之混合物進行可溶化處理,藉此處理,可更提昇CNT 之孤立溶解之比率。可溶化處理可舉例如球磨機、粒磨機 、噴射硏磨機等之濕式處理,或使用浴型或探針型之超音 波洗淨機的超音波處理,但若考量處理效率,宜爲超音波 處理。 可溶化處理之時間爲任意,但宜爲5分鐘至1 〇小時 左右,更宜爲30分鐘至5小時左右。 又,於上述可溶化處理之前,亦可進行適當加熱處理 〇 本發明之組成物中的可溶化劑與CNT之混合比率就 -28- 201107373 質量比爲1000: 1〜1: 100左右。 又,使用有機溶劑之組成物中的可溶化劑之濃度,只 要爲可使CNT可溶化於有機溶劑之濃度即可,並無特別 限定,但,在本發明中係宜於組成物中爲0.00 1 ~20質量% ,更宜爲0.005〜10質量%。 進一步,於此組成物中之CNT的濃度只要至少CNT 之一部分進行孤立溶解(可溶化)爲任意,但在本發明中 ,宜於組成物中爲0.0001~10質量%,更宜爲0.001〜5質 量%。 如以上般做法所調製之本發明的組成物中係推測可溶 化劑附著於CNT之表面而形成複合體者。 本發明之組成物係亦可與可溶於上述各種有機溶劑之 汎用合成樹脂混合而複合化。 汎用合成樹脂之具體例可舉例如聚乙烯(PE )、聚丙 烯(PP)、乙烯-醋酸乙烯酯共聚物(EVA )、乙烯-乙基 丙烯酸酯共聚物(EE A )等之聚烯烴系樹脂、聚苯乙烯( PS)、耐衝擊性聚苯乙烯(HIPS),丙烯腈-苯乙烯共聚 物(AS)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)等之苯 乙烯系樹脂、氯化乙烯樹脂、聚胺基甲酸酯樹脂、酚樹脂 '環氧樹脂、胺基樹脂、不飽和聚酯樹脂等。 汎用合成工程塑膠之具體例可舉例如聚醯胺樹脂、聚 碳酸酯樹脂、聚苯醚樹脂、改性聚苯醚樹脂、聚對苯二甲 酸乙二酯(PET)、聚對苯二甲酸丁二酯(PBT)等之聚 酯樹脂、聚縮酮樹脂、聚颯樹脂、聚苯硫醚樹脂、聚醯亞 -29- 201107373 胺樹脂等。 ITO等 塗佈法 金屬性 用半導 本發明之含有CNT的組成物係於p E T、玻璃、 之適當的基板上藉湊鐘法、旋塗法、棒塗佈法、輕 、浸漬塗佈法等之適當方法進行塗佈而製膜。 所得到之薄膜係可適宜使用於活用碳奈米管之 質之抗靜電膜、透明電極等之導電性材料、或、活 體性質之光電變換元件、電解發光元件等。 【實施方式】 實施例 發明, JEOL- 以下,舉出實施例及比較例,更具體地說明本 但本發明係不限定於下述之實施例。 〔1 H-NMR〕 裝置:Varian NMR System 400NB ( 400MHz) EC A 700 ( 700MHz ) 測定溶劑:D M S O - d 6 基準物質:四甲基矽烷(TMS) ( 6 O.Oppm ) 〔GPC〕 裝置:Tosoh (股)製 HLC-8200 GPC 管柱:Shodex KF-804L + KF-8 05L 管柱溫度:4 0 °C 溶劑:四氫呋喃 檢測器:UV ( 2 54nm ) 檢量線:標準聚苯乙烯 -30 - 201107373 〔紫外線可見光分光光度計〕 裝置:(股)島津製作所製:SHIMADSUUV-3600 〔實施例1〕高分子化合物〔1〕之合成 [化 15](wherein, X and R have the same meanings as described above.) The carbon nanotube-containing composition of the present invention contains the carbon nanotube dispersion/solubilizing agent described above and a carbon nanotube. The carbon nanotube (CNT) system can be produced by an arc discharge method, a chemical vapor deposition method (CVD method), a laser lift-off method, or the like, but the CNT used in the present invention can also be produced by any of the methods. And get it. In addition, a single-layer CNT (hereinafter referred to as SWCNT) in which one carbon film of CNT is wound into a cylindrical shape, and two layers of CNTs in which two graphene sheets are wound into a concentric shape ( Hereinafter, it is described as DWCNT), and a plurality of CNTs (hereinafter referred to as MWCNT) which are concentrically wound with a plurality of graphene sheets. However, in the present invention, SWCNT, DWCNT, and -26-201107373 MWCNT can be respectively Monomers, or a combination of plurals. When SWCNT, DWCNT, or MWCNT is produced by the above method, fullerene, graphite, or amorphous carbon is simultaneously produced as a by-product, and catalytic metals such as nickel, iron, cobalt, and antimony remain, and thus sometimes These impurities must be removed and refined. The removal of impurities is carried out by acid treatment with nitric acid, sulfuric acid or the like while ultrasonic treatment is effective. However, in the acid treatment with nitric acid, sulfuric acid or the like, the conjugated CNTs which constitute the CNTs are destroyed, and the original properties of the CNTs may be impaired. Therefore, it is preferred to use them without purification. CNT is a method in which the electrical properties of the graphene sheet are taken from the metallic property to the semiconductor by the coiling method (helicality, palmarity). The palm-to-palm line of CNT is defined by the palm spectrum (R = nai + ma2 , but m, η is an integer) as shown in Figure 1. When n = m and nm = 3p (but p is an integer), the metal properties are At other times (nm, η - m, Table 3 p ), the properties of the semiconductor are known, respectively. Therefore, when SWCNT is particularly used, it is important to selectively dissolve (disperse) a certain composition. By using the triazine ring-based hyperbranched polymer of the present invention as a solubilizing agent (dispersing agent) for CNT, it is possible to obtain a composition which selectively dissolves CNT having a specific palmity. The composition of the present invention may further contain an organic solvent having a dissolving power of the above-mentioned dispersion, solubilizing agent (hyperbranched polymer). Examples of such an organic solvent include ether compounds such as THF and diethyl ether; halogenated hydrocarbons such as dichloromethane and chloroform; and guanamine compounds such as dimethylformamide and N-methylpyrrolidone (NMP). ; ketone compounds such as acetone, methyl ethyl ketone, methyl isobutyl ketone 'cyclohexanone; methanol, ethanol, -27- 201107373 alcohols such as isopropanol and propanol; n-heptane, n-hexane, cyclohexane An aliphatic hydrocarbon such as an aliphatic hydrocarbon, an aromatic hydrocarbon such as benzene, toluene, xylene or ethylbenzene, and the like, and preferably THF, chloroform, NMP or cyclohexane. Further, the organic solvent may be used alone or in combination of two or more. In particular, the ratio of the isolated dissolution of the CNTs is preferably THF or NMP, and further, it is preferably a NMP alone solvent or a solvent containing the film forming property of the composition. When the preparation method of the composition of the present invention is arbitrary, and the dispersion/solubilizer (polymer) is in a liquid state, the dispersion/solubilizer and CNT are appropriately mixed, and when the dispersion/solubilizer is a solid, after melting, It can be prepared by mixing with CNTs. Further, when an organic solvent is used, the composition may be prepared by mixing a dispersion/solubilizing agent, a CNT, and an organic solvent in an arbitrary order. In this case, it is preferable to subject the mixture composed of the dispersion/solubilizing agent, the CNT, and the organic solvent to a solubilization treatment, thereby further increasing the ratio of isolated dissolution of the CNT. The solubilization treatment may be, for example, a wet treatment such as a ball mill, a granulating mill or a jet honing machine, or an ultrasonic treatment using a bath type or probe type ultrasonic cleaning machine, but if the treatment efficiency is considered, it is preferable to be super Sound processing. The time for the solubilization treatment is arbitrary, but it is preferably from about 5 minutes to about 1 hour, more preferably from about 30 minutes to about 5 hours. Further, before the solubilization treatment, appropriate heat treatment may be carried out. 混合 The mixing ratio of the solubilizing agent to the CNT in the composition of the present invention is 280-201107373. The mass ratio is about 1000:1 to 1:100. In addition, the concentration of the solubilizing agent in the composition using the organic solvent is not particularly limited as long as it can dissolve the CNT in the organic solvent, but in the present invention, it is preferably 0.00 in the composition. 1 to 20% by mass, more preferably 0.005 to 10% by mass. Further, the concentration of the CNT in the composition is preferably at least a part of the CNTs solubilized (solubilized), but in the present invention, it is preferably 0.0001 to 10% by mass, more preferably 0.001 to 5 in the composition. quality%. The composition of the present invention prepared as described above is a presumed that a solubilizing agent adheres to the surface of the CNT to form a composite. The composition of the present invention may be compounded by mixing with a general-purpose synthetic resin which is soluble in the above various organic solvents. Specific examples of the synthetic resin for general use include polyolefin resins such as polyethylene (PE), polypropylene (PP), ethylene-vinyl acetate copolymer (EVA), and ethylene-ethyl acrylate copolymer (EE A ). , styrene resin such as polystyrene (PS), impact-resistant polystyrene (HIPS), acrylonitrile-styrene copolymer (AS), acrylonitrile-butadiene-styrene copolymer (ABS), A vinyl chloride resin, a polyurethane resin, a phenol resin, an epoxy resin, an amine resin, an unsaturated polyester resin, or the like. Specific examples of the synthetic synthetic engineering plastics include, for example, polyamide resin, polycarbonate resin, polyphenylene ether resin, modified polyphenylene ether resin, polyethylene terephthalate (PET), and polybutylene terephthalate. Polyester resin such as diester (PBT), polyketal resin, polyfluorene resin, polyphenylene sulfide resin, polyamine -29-201107373 amine resin, and the like. Coating method for ITO, etc. Metallic semiconductive The CNT-containing composition of the present invention is applied to a suitable substrate of p ET or glass, by a clock method, a spin coating method, a bar coating method, a light or dip coating method. The film is formed by coating by a suitable method. The film obtained can be suitably used for an antistatic film using a carbon nanotube or a conductive material such as a transparent electrode, or a photoelectric conversion element or an electroluminescent device having a biological property. [Embodiment] Embodiments of the Invention JEOL- Hereinafter, examples and comparative examples will be described more specifically, but the present invention is not limited to the following examples. [1 H-NMR] Apparatus: Varian NMR System 400 NB (400 MHz) EC A 700 (700 MHz) Measurement solvent: DMSO - d 6 Reference material: tetramethyl decane (TMS) (6 O.Oppm) [GPC] Apparatus: Tosoh (Stock) HLC-8200 GPC Pipe Column: Shodex KF-804L + KF-8 05L Column Temperature: 40 °C Solvent: Tetrahydrofuran Detector: UV ( 2 54nm ) Calibration Line: Standard Polystyrene -30 - 201107373 [Ultraviolet visible light spectrophotometer] Device: (share) manufactured by Shimadzu Corporation: SHIMADSUUV-3600 [Example 1] Synthesis of polymer compound [1] [Chem. 15]

[1] nh2 於安裝有回流塔之5 0 0ml四口燒瓶中,於四氫呋喃( THF) 220ml 溶解萘-1,5-二胺(6.33g,0.02mol),於冰 浴冷卻至3 °C。冷卻後,徐緩滴下溶解於THF 30ml之 2,4,6·三氯-1,3,5-三嗪(3.68g,0.02mol,東京化成工業( 股)製),滴下後,攪拌1 〇分鐘。從冰浴將燒瓶移至油 浴中,昇溫至7(TC,滴下1〇%碳酸鉀水溶液。滴下後,攪 拌4小時。攪拌停止後,除去水相,濃縮有機相,以甲醇 ( 500ml)與離子交換水( 200ml)之混合溶劑進行再沈澱 。過濾沈澱物,再溶解於 THF ( 50ml )中,以甲醇( 5 00ml )與離子交換水(50ml )再沈澱。過濾紫色之沈澱 物,以減壓乾燥機在4 0 °C下進行乾燥6小時’得到目的之 高分子化合物〔1〕 (3.68g)。將高分子化合物〔1〕之 1 Η-NMR光譜的測定結果表示於圖2中。所得到之高分子 化合物〔1〕係具有以示(1 )所示之構造單元的化合物, -31 - 201107373 以G P C所得到之聚苯乙烯換算所測定的重量平均分子量 Mw爲1500,多分散度Mw (重量平均分子量)/Μη (數目 平均分子量)爲1.13。 〔實施例2〕高分子化合物〔2〕之合成 [化 16][1] nh2 Naphthalene-1,5-diamine (6.33 g, 0.02 mol) was dissolved in 220 ml of tetrahydrofuran (THF) in a 500 ml four-necked flask equipped with a reflux column, and cooled to 3 ° C in an ice bath. After cooling, 2,4,6·trichloro-1,3,5-triazine (3.68 g, 0.02 mol, manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 30 ml of THF was slowly dropped, and after stirring, it was stirred for 1 〇. . The flask was transferred from an ice bath to an oil bath, and the temperature was raised to 7 (TC, 1% aqueous potassium carbonate solution was dropped. After the dropwise addition, the mixture was stirred for 4 hours. After the stirring was stopped, the aqueous phase was removed, and the organic phase was concentrated to methanol (500 ml). The mixed solvent of ion-exchanged water (200 ml) was reprecipitated. The precipitate was filtered, dissolved in THF (50 ml), and re-precipitated with methanol (500 ml) and ion-exchanged water (50 ml). The pressure dryer was dried at 40 ° C for 6 hours to obtain the desired polymer compound [1] (3.68 g). The measurement results of the Η-NMR spectrum of the polymer compound [1] are shown in Fig. 2 . The obtained polymer compound [1] is a compound having a structural unit represented by (1), -31 - 201107373, and the weight average molecular weight Mw measured by GPC is 1500, and the polydispersity is obtained. Mw (weight average molecular weight) / Μη (number average molecular weight) was 1.13. [Example 2] Synthesis of polymer compound [2] [Chem. 16]

將實施例1所使用之萘-1,5-二胺取代成9,9-雙(4-胺 基苯基)芴(Aldrich製)以外,其餘係與實施例1同樣 做法而合成,得到目的之高分子化合物〔2〕 ( 1.74g)。 將高分子化合物〔2〕之1H-NMR光譜的測定結果表示於 圖3中。所得到之高分子化合物〔2〕係具有以示(1 )所 示之構造單元的化合物,以GPC所得到之聚苯乙烯換算 所測定的重量平均分子量Mw爲2700 ’多分散度Mw (重 量平均分子量)/Μη (數目平均分子量)爲1·40。 〔實施例3〕高分子化合物〔3〕之合成 -32- 201107373 [化 17]The naphthalene-1,5-diamine used in Example 1 was substituted with 9,9-bis(4-aminophenyl)anthracene (manufactured by Aldrich), and the same procedure as in Example 1 was carried out to obtain the object. The polymer compound [2] (1.74 g). The measurement results of the 1H-NMR spectrum of the polymer compound [2] are shown in Fig. 3 . The polymer compound [2] obtained has a structural unit represented by the formula (1), and the weight average molecular weight Mw measured by GPC is 2700' polydispersity Mw (weight average) The molecular weight) / Μ η (number average molecular weight) was 1.40. [Example 3] Synthesis of polymer compound [3] -32- 201107373 [Chem. 17]

將實施例1所使用之萘-1,5·二胺取代成3,4-二胺基二 苯甲酮以外,其餘係與實施例1同樣做法而合成,得到目 的之高分子化合物〔3〕 ( 1.68g )。將高分子化合物〔3 〕之1H-NMR光譜的測定結果表示於圖4中。所得到之高 分子化合物〔3〕係具有以示(1 )所示之構造單元的化合 物,以GP C所得到之聚苯乙烯換算所測定的重量平均分 子量Mw爲2100,多分散度Mw (重量平均分子量)/Mn (數目平均分子量)爲1.29。 〔實施例4The naphthalene-1,5.diamine used in Example 1 was substituted with 3,4-diaminobenzophenone, and the same procedure as in Example 1 was carried out to obtain the desired polymer compound [3]. ( 1.68g ). The measurement results of the 1H-NMR spectrum of the polymer compound [3] are shown in Fig. 4 . The polymer compound [3] obtained has a structural unit represented by the formula (1), and the weight average molecular weight Mw measured in terms of polystyrene obtained by GP C is 2100, and the polydispersity Mw (weight) The average molecular weight) / Mn (number average molecular weight) was 1.29. [Example 4

〔4〕的合成 -33- 201107373Synthesis of [4] -33- 201107373

於空氣下、200ml四口燒瓶中’加入9,9 -雙(4 -胺基 苯基)芴(9.29g、〇.〇27mol),溶解於 80ml之二甲基乙 醯胺,以油浴加熱至l〇〇°C。其後,加入溶解於20ml之 二甲基乙醯胺的1,3,5-三氯-2,4,6-三曉(3.698,〇.〇2111〇1 )而開始聚合。5分鐘後,加入苯胺(3_34g、〇.036mol ) ,攪拌10分鐘而停止聚合。放冷至室溫後,於已溶解碳 酸鉀(15g ' 0.1 1 mol )之1 000ml水溶液中再沈澱。過濾 沈澱物,再溶解於THF 50m1’於己烷540ml與乙醇60ml 中再沈澱。過濾所得到之沈澱物’以減壓乾燥機在4〇°C下 乾燥6小時,得到目的之高分子化合物〔4〕(以下,簡 稱爲 HB-TFA90) 12.4g。將 HB-TFA90 之1H-NMR 光譜的 測定結果表示於圖5中。所得到之HB-TFA9〇係具有以示 (1 )所示之構造單元的化合物,以GPC所得到之聚苯乙 烯換算所測定的重量平均分子量Mw爲9200 ’多分散度 Mw/Mn 爲 2.33° -34- 201107373 〔實施例5〕以分子量相異之末端苯胺封端所得到之 高分子化合物〔4〕的合成 使用 9,9-雙(4-胺基苯基)芴(6.93g、〇.〇20mol)、 1,3,5-三氯-2,4,6-三嗪(3.69g,0.02 0mol )、苯胺(3.36g 、0.036mol),與實施例4同樣做法而進行合成’得到分 子量與實施例4相異之高分子化合物〔4〕(以下’簡稱 爲 HB-TFA42) l〇.2g。將 HB-TFA42 之1H-NMR 光譜的測 定結果表示於圖6中。所得到之HB-TFA56係具有以示( 1)所示之構造單元的化合物’以GPC所得到之聚苯乙嫌 換算所測定的重量平均分子量 Mw爲 4200 ’多分散度 Mw/Mn 爲 1'. 96。 〔實施例6〕以分子量相異之末端苯胺封端所得到之 高分子化合物〔4〕的合成 使用9,9-雙(4-胺基苯基)芴(5.9(^、0.017111〇1)、 1,3,5-三氯-2,4,6-三嗪(3.69g,0.020mol)、苯胺(3.35g 、0.06mol),與實施例4同樣做法而進行合成,得到分 子量與實施例4相異之高分子化合物〔4〕(以下,簡稱 爲 HB-TFA20) 10_8g。將 HB-TFA20 之1H-NMR 光譜的測 定結果表示於圖7中。HB-TFA20係具有以示(1 )所示之 構造單元的化合物,以GPC所得到之聚苯乙烯換算所測 定的重量平均分子量Mw爲2900,多分散度Mw/Mn爲 1.68。 -35- 201107373 〔實施例7〕SWCNT分散液之調製 使實施例1所得到之高分子化合物〔1〕1 mg溶解於 NMP 5ml而調製 NMP溶液,再加入 SWCNT ( Unydim· Inc.製品名 Unydim (註冊商標)Carbon Nanotubes) 〇.5mg。使用浴型超音波照射裝置(東京硝子器械(股) 制、Fine FU-6H型)而於室溫下超音波處理1小時,進一 步,以1 0000G (室溫)離心分離1小時(小型高速冷卻 離心機,(股)Tommy精工製SRX-201 ),形成上清液而 得到黑色透明之含SWCNT的溶液。 〔實施例8〕SWCNT分散液之調製 除使用於實施例2所得到之高分子化合物(;2卩j^外 ,其餘係與實施例 7同樣做法而得到黑色透明之含 SWCNT的溶液。 〔實施例9〕SWCNT分散液之調製 除使用於實施例3所得到之高分子化合物I; 3彳& % ,其餘係與實施例 7同樣做法而得到黑色μ日月2 # SWCNT的溶液。 〔實施例1〇〕SWCNT分散液之調製 除使用於實施例4所得到之高分子化合物I; 4 ;) ( HB. TFA9〇)以外,其餘係與實施例7同樣做法而得到黑色透 明之含SWCNT的溶液。 -36- 201107373 〔實施例11〕SWCNT分散液之調製 除使用於實施例5所得到之高分子化合物〔4彳(HB TFA42 )以外,其餘係與實施例7同樣做法而得到黑色透 明之含SWCNT的溶液。 〔實施例12〕SWCNT分散液之調製 除使用於實施例6所得到之高分子化合物〔4」(hb. TFA20 )以外,其餘係與實施例7同樣做法而得到黑色透 明之含SWCNT的溶液。 測定於上述實施例7〜12所得到之各含SWCNT溶液的 紫外線可見光近紅外線吸收光譜後(測定裝置: SHIMADZU UV-3600 ),明確觀察到半導體性Sll帶( 1400 〜lOOOnm) 、S22 帶(1000~600nm)、及金屬性帶( 60 0〜45 Onm )之吸收,確認出SWCNT孤立溶解(參照圖 8~1 3 ) 〔比較例1〕 除了使用聚乙燃基Π比咯院酮(PVP)以外,其餘係與 實施例4同樣做法而調製SWCNT分散液,但SWCNT之 分散性低(參照圖1 4 )。 【圖式簡單說明】 圖1係表示碳奈米管之對掌光譜的圖。 -37- 201107373 圖2係表示於實施例1所得到之高分子化合物〔!〕 的1H-NMR圖譜之圖。 圖3係表示於實施例2所得到之高分子化合物〔2〕 的1H-NMR圖譜之圖。 圖4係表示於實施例3所得到之高分子化合物〔3〕 的1H-NMR圖譜之圖。 圖5係表示於實施例4所得到之高分子化合物〔4〕 的1H-NMR圖譜之圖。 圖6係表示於實施例5所得到之高分子化合物〔4〕 的1H-NMR圖譜之圖。 圖7係表示於實施例6所得到之高分子化合物〔4〕 的1H-NMR圖譜之圖。 圖8係表示於實施例7所得到之高分子化合物〔1〕 /SWCNT分散液的紫外線_可見光-近紅外線吸收光譜之圖 〇 圖9係表示於實施例8所得到之高分子化合物〔2〕 /SWCNT分散液的紫外線-可見光-近紅外線吸收光譜之圖 〇 圖1 〇係表示於實施例9所得到之高分子化合物〔3〕 /SWCNT分散液的紫外線-可見光-近紅外線吸收光譜之圖 〇 圖11係表不於實施例1 0所得到之高分子化合物〔4 〕/SWCNT '液@紫外線_可見光近紅外線吸收光譜之 圖。 -38- 201107373 圖12係表不於實施例11所得到之高分子化合物〔4 )/SWCNT分散液的紫外線_可見光_近紅外線吸收光譜之 圖。 圖1 3係表示於實施例1 2所得到之高分子化合物〔4 〕/SWCNT分散液的紫外線-可見光-近紅外線吸收光譜之 圖。 圖14係表示於比較例1所得到的PVP/SWCNT分散液 的紫外線-可見光-近紅外線吸收光譜之圖。 -39-Add 9,9-bis(4-aminophenyl)phosphonium (9.29 g, 〇.〇27 mol) to a 200 ml four-necked flask under air, dissolved in 80 ml of dimethylacetamide, and heated in an oil bath. To l〇〇 °C. Thereafter, polymerization was started by adding 1,3,5-trichloro-2,4,6-tris(3.698, 〇.〇2111〇1) dissolved in 20 ml of dimethylacetamide. After 5 minutes, aniline (3_34 g, 〇.036 mol) was added, and the mixture was stirred for 10 minutes to stop the polymerization. After allowing to cool to room temperature, it was reprecipitated in a 1000 ml aqueous solution of dissolved potassium carbonate (15 g '0.1 1 mol). The precipitate was filtered, and redissolved in THF 50 m1' in 540 ml of hexane and 60 ml of ethanol. The precipitate obtained by filtration was dried in a vacuum dryer at 4 ° C for 6 hours to obtain 12.4 g of the desired polymer compound [4] (hereinafter, simply referred to as HB-TFA90). The results of measurement of 1H-NMR spectrum of HB-TFA90 are shown in Fig. 5. The obtained HB-TFA9 fluorene has a structural unit represented by the formula (1), and the weight average molecular weight Mw measured by GPC is 9200' polydispersity Mw/Mn is 2.33°. -34-201107373 [Example 5] 9,9-bis(4-aminophenyl)anthracene (6.93 g, ruthenium) was used for the synthesis of the polymer compound [4] obtained by blocking the end of aniline having a different molecular weight. 20 mol), 1,3,5-trichloro-2,4,6-triazine (3.69 g, 0.02 0 mol), aniline (3.36 g, 0.036 mol), and synthesized in the same manner as in Example 4 to obtain a molecular weight The polymer compound [4] (hereinafter referred to as "HB-TFA42") which is different from that of Example 4 was used. The results of the measurement of the 1H-NMR spectrum of HB-TFA42 are shown in Fig. 6. The obtained HB-TFA56 has a weight average molecular weight Mw of 4,200' polydispersity Mw/Mn as a compound of the structural unit shown in (1), which is determined by GPC. . 96. [Example 6] 9,9-bis(4-aminophenyl)anthracene (5.9 (^, 0.017111〇1)) was used for the synthesis of the polymer compound [4] obtained by blocking the terminal aniline having a different molecular weight. 1,3,5-trichloro-2,4,6-triazine (3.69 g, 0.020 mol), aniline (3.35 g, 0.06 mol), which was synthesized in the same manner as in Example 4 to obtain a molecular weight and Example 4 The polymer compound [4] (hereinafter abbreviated as HB-TFA20) is 10_8 g. The measurement results of the 1H-NMR spectrum of HB-TFA20 are shown in Fig. 7. The HB-TFA20 system has the formula (1). The weight average molecular weight Mw of the compound of the structural unit measured by GPC was 2,900, and the polydispersity Mw/Mn was 1.68. -35 - 201107373 [Example 7] Preparation of SWCNT dispersion was carried out 1 mg of the polymer compound [1] obtained in Example 1 was dissolved in NMP 5 ml to prepare an NMP solution, and then SWCNT (Unydim· Inc. product name Unydim (registered trademark) Carbon Nanotubes) 〇. 5 mg was added. Bath-type ultrasonic irradiation was used. The device (Tokyo Glass Instruments Co., Ltd., Fine FU-6H type) was subjected to ultrasonic treatment at room temperature for 1 hour. Further, the mixture was centrifuged at 1 0000 G (room temperature) for 1 hour (small high-speed cooling centrifuge, manufactured by Tommy Seiko SRX-201) to form a supernatant to obtain a black transparent SWCNT-containing solution. [Example 8] Preparation of SWCNT Dispersion A black transparent SWCNT-containing solution was obtained in the same manner as in Example 7 except that the polymer compound obtained in Example 2 was used (2 卩 ^). [Example 9] SWCNT dispersion The preparation of the liquid was carried out in the same manner as in Example 7 except that the polymer compound I obtained in Example 3; 3 彳 & % was obtained, and a solution of black μ yue 2 # SWCNT was obtained. [Example 1 〇] SWCNT Preparation of Dispersion A black transparent SWCNT-containing solution was obtained in the same manner as in Example 7 except that the polymer compound I; 4;) (HB. TFA9®) obtained in Example 4 was used. [Embodiment 11] Preparation of SWCNT dispersion liquid A black transparent SWCNT-containing solution was obtained in the same manner as in Example 7 except that the polymer compound [4彳 (HB TFA42) obtained in Example 5 was used. 〔real Dispersion of SWCNT] Preparation Example 12 except that in Example 6 of the obtained polymer compound [4 '(hb. TFA20), the rest of the train do the same in Example 7 to obtain a solution of a black transparent SWCNT-containing embodiment. The ultraviolet-visible near-infrared absorption spectrum of each of the SWCNT-containing solutions obtained in the above Examples 7 to 12 was measured (measurement device: SHIMADZU UV-3600), and the semiconductor S11 band (1400 to 100om) and the S22 band (1000) were clearly observed. ~600nm), and the absorption of the metallic band (60 0~45 Onm), confirming that SWCNT is dissolved in isolation (refer to Figures 8~13) [Comparative Example 1] In addition to the use of poly(ethylene) ruthenium ketone (PVP) The SWCNT dispersion liquid was prepared in the same manner as in Example 4 except that the SWCNT dispersion was low (see Fig. 14). BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the spectrum of the palm of the carbon nanotube. -37- 201107373 Figure 2 shows the polymer compound obtained in Example 1 [! a plot of the 1H-NMR spectrum. Fig. 3 is a view showing a 1H-NMR chart of the polymer compound [2] obtained in Example 2. Fig. 4 is a view showing a 1H-NMR chart of the polymer compound [3] obtained in Example 3. Fig. 5 is a view showing a 1H-NMR chart of the polymer compound [4] obtained in Example 4. Fig. 6 is a chart showing the 1H-NMR chart of the polymer compound [4] obtained in Example 5. Fig. 7 is a chart showing the 1H-NMR chart of the polymer compound [4] obtained in Example 6. Fig. 8 is a view showing the ultraviolet-visible-near-infrared absorption spectrum of the polymer compound [1] /SWCNT dispersion obtained in Example 7, and Figure 9 is a view showing the polymer compound obtained in Example 8 [2]. FIG. 1 is a diagram showing the ultraviolet-visible-near-infrared absorption spectrum of the polymer compound [3] /SWCNT dispersion obtained in Example 9. Fig. 11 is a graph showing the polymer compound [4]/SWCNT 'liquid@UV-visible near-infrared absorption spectrum obtained in Example 10. -38-201107373 Fig. 12 is a graph showing the ultraviolet-visible-near-infrared absorption spectrum of the polymer compound [4)/SWCNT dispersion obtained in Example 11. Fig. 1 is a graph showing the ultraviolet-visible-near-infrared absorption spectrum of the polymer compound [4]/SWCNT dispersion obtained in Example 12. Fig. 14 is a graph showing the ultraviolet-visible-near-infrared absorption spectrum of the PVP/SWCNT dispersion obtained in Comparative Example 1. -39-

Claims (1)

201107373 七、申請專利範圍: 1. 一種碳奈米管分散.可溶化劑’其係由含有三曉 環作爲重複單元,且以凝膠滲透色層分析所得到的聚苯乙 烯換算所測定的重量平均分子量爲i,000〜4,000,000的高 支化聚合物所構成。 2. 如申請專利範圍第1項之碳奈米管分散·可溶化 劑,其中前述重複單元爲以下述式(1)所示201107373 VII. Patent application scope: 1. A carbon nanotube dispersion. The solubilizer' is a weight determined by polystyrene conversion containing a triamethylene ring as a repeating unit and analyzed by gel permeation chromatography. It is composed of a highly branched polymer having an average molecular weight of i,000 to 4,000,000. 2. The carbon nanotube dispersion/solvent according to claim 1, wherein the repeating unit is represented by the following formula (1) (式中,R及R1表示氫原子或亦可具有碳數1~1〇的 分枝構造之院基’ Ar表示亦可具有取代基之芳基)。 3.如申請專利範圍第2項之碳奈米管分散·可溶化 劑,其中前述Ar爲以式(2 )〜(1 2 )所示之至少一種 -40- 201107373(wherein R and R1 represent a hydrogen atom or a group of a branch structure which may have a branched structure of 1 to 1 Å, and Ar represents an aryl group which may have a substituent). 3. The carbon nanotube dispersion/solvent according to claim 2, wherein the Ar is at least one of the formulas (2) to (1 2) -40 - 201107373 〔式中,R1〜R8Q互相獨立表示氫原子、鹵原子、羧基 、颯基、亦可具有碳數1〜10之分枝構造的烷基、或亦可 具有碳數1〜10之分枝構造的烷氧基, w1及W2互相獨立表示單鍵、CR81R82 ( R81及R82互 相獨立表示氫原子或亦可具有碳數1〜10的分枝構造的烷 基(但,此等亦可成爲一起而形成環))、C = 0、0、S、 SO、S〇2、或NR83 (R83表示氫原子或亦可具有碳數1〜10 的分枝構造的烷基), ' X1及X2互相獨立表示單鍵、亦可具有碳數1〜10的分 枝構造的之伸烷基、或以式(13) -41 - 201107373In the formula, R1 to R8Q independently represent a hydrogen atom, a halogen atom, a carboxyl group, a fluorenyl group, an alkyl group having a branched structure having a carbon number of 1 to 10, or a branched structure having a carbon number of 1 to 10. The alkoxy group, w1 and W2 independently of each other represent a single bond, and CR81R82 (wherein R81 and R82 independently represent a hydrogen atom or an alkyl group which may have a branched structure having a carbon number of 1 to 10 (however, these may be combined together) Forming a ring)), C = 0, 0, S, SO, S〇2, or NR83 (R83 represents a hydrogen atom or an alkyl group which may also have a branched structure of 1 to 10 carbon atoms), and 'X1 and X2 are independent of each other An alkyl group which may have a single bond or a branched structure having a carbon number of 1 to 10, or a formula (13) -41 - 201107373 (13) (式中,R84〜R87互相獨立表示氫原子、鹵原子、羧 基、颯基、亦可具有碳數1~10之分枝構造的烷基、或亦 可具有碳數1〜10之分枝構造的烷氧基, Y1及Y2互相獨立表示單鍵或亦可具有碳數1〜10之分 枝構造的伸烷基) 所示之基〕。 4.如申請專利範圍第2項之碳奈米管分散·可溶化 劑,其中前述重複單元爲以下述式(14)所示 [化4](13) (wherein R84 to R87 each independently represent a hydrogen atom, a halogen atom, a carboxyl group, a fluorenyl group, an alkyl group having a branched structure of 1 to 10 carbon atoms, or may have a carbon number of 1 to 10; The alkoxy group of the branched structure, Y1 and Y2 independently of each other represent a single bond or a group which may also have a branched alkyl group having a branched structure of from 1 to 10). 4. The carbon nanotube dispersion/solvent of claim 2, wherein the repeating unit is represented by the following formula (14). 5 ·如申請專利範圍第2項之碳奈米管分散,可溶化 劑,其中前述重複單元爲以下述式(15)所示 -42- 2011073735. The carbon nanotube dispersion according to item 2 of the patent application scope, the solubilizing agent, wherein the aforementioned repeating unit is represented by the following formula (15) -42- 201107373 6.如申請專利範圍第2項之碳奈米管分散·可溶化 劑,其中前述重複單元爲以下述式(16)所示 [化6]6. The carbon nanotube dispersion/solvent of claim 2, wherein the repeating unit is represented by the following formula (16). 7. —種組成物,其特徵係含有申請專利範圍第2〜6 項中任一項之碳奈米管分散.可溶化劑與碳奈米管。 8 ·如申請專利範圍第7項之組成物,其中前述碳奈 米管分散·可溶化劑爲附著於前述碳奈米管的表面而形成 複合體。 9 ·如申請專利範圍第7或8項之組成物,其中進一 步含有有機溶劑。 10.如申請專利範圍第9項之組成物,其中前述碳奈 米管分散於前述有機溶劑中。 -43- 201107373 11. 如申請專利範圍第9項之組成物’其中前述複合 體分散或溶解於前述有機溶劑中。 12. 如申請專利範圍第2〜11項中任一項之組成物’ 其中前述碳奈米管爲選自單層碳奈米管、2層碳奈米管及 多層碳奈米管之至少一種。 13. —種薄膜,其係可由申請專利範圍第7〜12項中 任一項之組成物所得到。 1 4 · 一種組成物之製造方法,其係混合申請專利範圍 第1〜6項中任一項之碳奈米管分散.可溶化劑、碳奈米管 與有機溶劑而調製成混合物,再機械性處理此混合物。 15. 如申請專利範圍第14項之製造方法,其中前述 機械性處理爲超音波處理。 16. 如申請專利範圍第15項之製造方法,其中在使 前述碳奈米管分散·可溶化劑溶解於前述有機溶劑而成之 溶液中添加碳奈米管而調製成前述混合物,並超音波處理 此混合物。 -44 -A composition comprising a carbon nanotube dispersion, a solubilizing agent and a carbon nanotube according to any one of claims 2 to 6. 8. The composition of claim 7, wherein the carbon nanotube dispersion/solubilizing agent is attached to a surface of the carbon nanotube to form a composite. 9) A composition according to claim 7 or 8 which further contains an organic solvent. 10. The composition of claim 9, wherein the carbon nanotubes are dispersed in the aforementioned organic solvent. -43- 201107373 11. The composition of claim 9 wherein the aforementioned composite is dispersed or dissolved in the aforementioned organic solvent. 12. The composition of any one of claims 2 to 11 wherein the carbon nanotube is at least one selected from the group consisting of a single carbon nanotube, a two carbon nanotube, and a multilayer carbon nanotube. . A film obtained by the composition of any one of claims 7 to 12 of the patent application. 1 4 . A method for producing a composition, which is obtained by mixing a carbon nanotube dispersion of any one of the first to sixth aspects of the patent application, a solubilizing agent, a carbon nanotube and an organic solvent to prepare a mixture, and then mechanically This mixture was treated sexually. 15. The manufacturing method of claim 14, wherein the aforementioned mechanical treatment is ultrasonic processing. 16. The production method according to claim 15, wherein a carbon nanotube is added to a solution obtained by dissolving the carbon nanotube dispersion/solubilizing agent in the organic solvent to prepare the mixture, and ultrasonicizing Treat this mixture. -44 -
TW099114664A 2009-05-07 2010-05-07 Carbon nanotubes dispersed ‧ Solvents TWI494346B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009112885 2009-05-07

Publications (2)

Publication Number Publication Date
TW201107373A true TW201107373A (en) 2011-03-01
TWI494346B TWI494346B (en) 2015-08-01

Family

ID=43050158

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099114664A TWI494346B (en) 2009-05-07 2010-05-07 Carbon nanotubes dispersed ‧ Solvents

Country Status (3)

Country Link
JP (1) JP5880044B2 (en)
TW (1) TWI494346B (en)
WO (1) WO2010128660A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431489A (en) * 2013-07-31 2016-03-23 日产化学工业株式会社 Carbon material dispersed film formation composition
CN114728795A (en) * 2019-11-15 2022-07-08 花王株式会社 Method for producing semiconductor-type single-walled carbon nanotube dispersion
TWI831854B (en) * 2018-10-26 2024-02-11 日商大阪瓦斯化學股份有限公司 Solid additive and resin composition, and methods for manufacturing solid additive and resin composition
US12006218B2 (en) 2019-11-15 2024-06-11 Kao Corporation Method for producing semiconducting single-walled carbon nanotube dispersion

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716392B2 (en) * 2010-07-09 2015-05-13 東ソー株式会社 Novel arylamine dendrimer-like compound, production method thereof and use thereof
JP5742852B2 (en) 2010-11-01 2015-07-01 日産化学工業株式会社 Triazine ring-containing polymer and film-forming composition containing the same
CN103270115B (en) * 2010-11-02 2015-09-30 日产化学工业株式会社 Film-forming compositions
JP5870720B2 (en) * 2011-07-08 2016-03-01 宇部興産株式会社 Carbon nanotube dispersant made of polyamic acid
JP5832277B2 (en) * 2011-12-22 2015-12-16 大阪瓦斯株式会社 Zinc compound-coated carbon material, method for producing the same, and composite material using the zinc compound-coated carbon material
CN103059272B (en) * 2013-01-17 2015-02-25 山东轻工业学院 Hyperbranched conjugated polymer and preparation method and application thereof
JP6308388B2 (en) * 2014-05-30 2018-04-11 国立大学法人 熊本大学 Graphene dispersion and method for producing graphene
JP6766653B2 (en) * 2015-01-23 2020-10-14 日産化学株式会社 Method for Purifying Triazine Ring-Containing Polymer
JP5854159B2 (en) * 2015-02-13 2016-02-09 日産化学工業株式会社 Hyperbranched polymer
JP6954125B2 (en) * 2016-02-09 2021-10-27 日産化学株式会社 Triazine ring-containing polymer and composition containing it

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768449B2 (en) * 1987-05-02 1995-07-26 住友化学工業株式会社 Thermosetting resin composition
US5240499A (en) * 1990-12-21 1993-08-31 Hoechst Aktiengesellschaft Surfactant triazine compounds and their use
IT1270587B (en) * 1994-07-06 1997-05-07 Enichem Spa THERMOPLASTIC COMPOSITION REINFORCED AND FLAME RESISTANT
JP2004315716A (en) * 2003-04-18 2004-11-11 Toyo Ink Mfg Co Ltd Pigment dispersant and pigment composition and pigment dispersion using the same
JP4501445B2 (en) * 2004-02-06 2010-07-14 東洋インキ製造株式会社 Carbon nanotube composition and carbon nanotube dispersion containing the same
JP2008174600A (en) * 2007-01-17 2008-07-31 Toyo Ink Mfg Co Ltd Resin composition
JP2008174602A (en) * 2007-01-17 2008-07-31 Toyo Ink Mfg Co Ltd Resin composition
JP2009067933A (en) * 2007-09-14 2009-04-02 Toyo Ink Mfg Co Ltd Coating composition comprising carbon nano-tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431489A (en) * 2013-07-31 2016-03-23 日产化学工业株式会社 Carbon material dispersed film formation composition
CN105431489B (en) * 2013-07-31 2018-06-08 日产化学工业株式会社 Carbon material dispersion membrane formation composition
TWI831854B (en) * 2018-10-26 2024-02-11 日商大阪瓦斯化學股份有限公司 Solid additive and resin composition, and methods for manufacturing solid additive and resin composition
CN114728795A (en) * 2019-11-15 2022-07-08 花王株式会社 Method for producing semiconductor-type single-walled carbon nanotube dispersion
US12006218B2 (en) 2019-11-15 2024-06-11 Kao Corporation Method for producing semiconducting single-walled carbon nanotube dispersion

Also Published As

Publication number Publication date
JPWO2010128660A1 (en) 2012-11-01
TWI494346B (en) 2015-08-01
JP5880044B2 (en) 2016-03-08
WO2010128660A1 (en) 2010-11-11

Similar Documents

Publication Publication Date Title
TWI494346B (en) Carbon nanotubes dispersed ‧ Solvents
TWI532763B (en) A triazine-containing polymer and a film-forming composition containing the polymer
TWI515226B (en) Containing three nitrogen And a film-forming composition containing the same
TWI585124B (en) A film-forming composition
TWI568771B (en) A triazine-containing polymer and a film-forming composition containing the polymer
JP5598258B2 (en) Electronic device comprising a triazine ring-containing polymer-containing high refractive index film
JP2014098101A (en) Method of producing triazine ring-containing hyperbranched polymer
TWI541266B (en) Containing three acridines Ring polymer
TWI568772B (en) A triazine-containing polymer and a film-forming composition containing the polymer
JP5794235B2 (en) Triazine ring-containing polymer and film-forming composition containing the same
TW201533216A (en) Organic electroluminescent element
JP5842959B2 (en) High refractive index material comprising triazine ring-containing polymer and composition for forming high refractive index film containing the same
JP2016033230A (en) High refractive index material comprising triazine ring-containing polymer
JP5854159B2 (en) Hyperbranched polymer
JP5811547B2 (en) Method for producing carbon nanotube dispersion composition
JP6699067B2 (en) Fluorescent material and its use
JP6544241B2 (en) Method for producing triazine ring-containing hyperbranched polymer
JP6669206B2 (en) Composition for forming high refractive index film containing triazine ring-containing polymer
JP5573603B2 (en) Triazine ring-containing polymer and film-forming composition containing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees