TW201106621A - Phase shifter and related load device - Google Patents
Phase shifter and related load device Download PDFInfo
- Publication number
- TW201106621A TW201106621A TW98126722A TW98126722A TW201106621A TW 201106621 A TW201106621 A TW 201106621A TW 98126722 A TW98126722 A TW 98126722A TW 98126722 A TW98126722 A TW 98126722A TW 201106621 A TW201106621 A TW 201106621A
- Authority
- TW
- Taiwan
- Prior art keywords
- node
- varactor
- voltage
- unit
- phase shifter
- Prior art date
Links
Landscapes
- Amplifiers (AREA)
Abstract
Description
201106621 六、發明說明: 【發明所屬之技術領域】 本發明有關於線性化變容器(varactor)裝置的C-V曲 線’更具體地,有關於使用線性化技術移相器(phase shifter) 以及相關的負载裝置’以減輕變容器的非線性c-ν曲線所帶 來的影響。 【先前技術】 移相器為各種無線通信應用的常用組件。例如,相位陣 列接收器需要移相器以達到期望的成束(beamforming)。特別 地’移相器為非視線(Non-Light Of Sight,NLOS)應用的關鍵 組件之一。請參閱第丨圖,第1圖為傳統的反射型 (reflection-type)移相器。傳統的反射型移相器丨〇〇包含正交 耦合器(quadrature coupler) 102以及多個負載裝置,負載裝置 104A和負載裝置ι〇4Β。如第1圖所示,正交耦合器1〇2包 含輸入埠(input port)Pl、直通璋(through port)P2、耗合槔 (coupled port)P3 以及隔離埠(isolated port)(輸出埠)P4。正交 耗合器102也稱之為90度混合輕合器(hybrid coupler),用於 將輸入訊號S_IN分為兩個相差為90度的訊號。 負載裝置104A以及負載裝置104B分別實現為用作反 射負載。傳統的負載装置104A以及負載裝置104B的每一 者都包含一個傳輸線L、一個旁通電容器(bypass capacitor)Cbypass以及多個變容器c卜分別反射自負載裝置 201106621 140A以及負載裝置104B的訊號在隔離埠(輸出埠)P4合併, 形成了隔離埠(輸出埠)P4產生(induced)的一個輸出訊號 S_OUT。透過適當的調整實現在負載裝置104A以及負載裝 置104B中的變容器C1的電容性值(capacitive values)(電容 值,capacitance values),傳統的反射型移相器1 〇〇可用作提 供任何期望的相移。換言之,傳統的移相器100應用變容器 C1以提供用於引導(steering)訊號波束角(beam angle)的相位 調整(tuning)功能。 儘管如此,因為變容器的非線性的C-V曲線,如第2圖 所示的移相器100的相位調整曲線為非線性的。從第2圖可 以看出,當施加到變容器上的控制電壓V增加/減少時,電 容值C非線性地增加/減少。特別地,當控制電壓v在特定 範圍内,C-V曲線的斜率很尖銳,暗示出用於設定變容器的 控制電壓V的數位至類比轉換器(Digital-To_Analog201106621 VI. Description of the Invention: [Technical Field] The present invention relates to a CV curve of a linearized varactor device. More specifically, it relates to a phase shifter using a linearization technique and an associated load. The device 'to mitigate the effects of the nonlinear c-ν curve of the varactor. [Prior Art] Phase shifters are common components for various wireless communication applications. For example, phase array receivers require a phase shifter to achieve the desired beamforming. In particular, the phase shifter is one of the key components of the Non-Light Of Sight (NLOS) application. Please refer to the figure. Figure 1 shows the traditional reflection-type phase shifter. A conventional reflective phase shifter 丨〇〇 includes a quadrature coupler 102 and a plurality of load devices, a load device 104A and a load device 〇4〇. As shown in Fig. 1, the orthogonal coupler 1〇2 includes an input port P1, a through port P2, a coupled port P3, and an isolated port (output port). P4. The quadrature snubber 102 is also referred to as a 90 degree hybrid coupler for dividing the input signal S_IN into two signals having a phase difference of 90 degrees. The load device 104A and the load device 104B are respectively implemented to function as a reflection load. Each of the conventional load device 104A and the load device 104B includes a transmission line L, a bypass capacitor Cbypass, and a plurality of varactors c. The signals reflected from the load devices 201106621 140A and the load device 104B are isolated.埠 (output 埠) P4 is combined to form an output signal S_OUT that is isolated (output 埠) P4. The capacitive values (capacitance values) of the varactor C1 in the load device 104A and the load device 104B are achieved by appropriate adjustments, and the conventional reflective phase shifter 1 can be used to provide any desired Phase shift. In other words, the conventional phase shifter 100 applies the varactor C1 to provide a phase tuning function for steering the beam angle of the signal. Nevertheless, because of the non-linear C-V curve of the varactor, the phase adjustment curve of the phase shifter 100 as shown in Fig. 2 is non-linear. As can be seen from Fig. 2, when the control voltage V applied to the varactor is increased/decreased, the capacitance value C is nonlinearly increased/decreased. In particular, when the control voltage v is within a certain range, the slope of the C-V curve is sharp, indicating the digital to analog converter for setting the control voltage V of the varactor (Digital-To_Analog)
Converter,DAC)—般需要具有高解析度(resolution),以恰當 地將變容器設定為期望的電容值。因此,如果考量到數位控 制值的預失真(pre-distortion)特性’建議使用數位補償方案將 預失真施加到進入(incoming)的數位控制值,從而使整體的 相位調整曲線變得更加線性化。 移相器100的相位調整曲線的線性化可以簡化數位補償 方案的實際實現,而且相應地節省數位區塊面積(例如,查 找表,lookup table)。除此之外,當變容器的控制電壓在前 述特定範圍内時,因為DAC轉換雜訊很嚴重,其中,c_v 201106621 曲線的斜率很尖銳,所以線性化c-v曲線以降低斜率可以有 效地減少通過後續訊號處理級(多級)的DAC轉換雜訊。 因此,高度需要新穎以及有效的方法,來線性化應用裝 置的非線性特性(例如,移相器的非線性相位調整曲線),該 非線性特性由變容器的非線性C-V曲線引起。 【發明内容】 根據本發明的實施例,提出了應用線性技術的移相器和 相關的負载裝置,以減輕變容器的非線性c_v曲線所帶來 影響。 • ^豕个I啊的一方面,揭示了包含移相器核心和多個養 载裝置的移相器。該移相器核心具有一輸入槔,用於接收一 一輸出琿,用於輸出一輸出訊號,以及多個連為 f置載裝置分別耦接到該多個連接埠。該多個負《 ;容器單元的每-者具有-第-節點以及一第:;第: 中,該多個第一變容 〃叹*一卽點’其 該多個第一變容器單 、'卽點耦接到-第-電壓, 壓,該多個第二電的第-卽點分別耦接到多個第二電 根據本發;的固不同的電壓。 負,的移相器。該移相器核心4:二相,和多個 接琿。該多個負載二=出-輸出訊號,以及多個連 載裝置之每一者包接:該多個連接埠。該多個負 y第一變容器單元,該至少一第一 201106621 變容器早元具有一篦一妒机、 ^ ^ ^ , P ’”占以及一第二節點。包含在今多個 負載裝置中的該多個第1容Hkn^3f5亥夕個 第-電麗,該多個第—變容〜即點輕接到一 個第二電壓,以及唁多個笛疋之第二卽點分別耦接到多 壓。 及該夕個第二電壓包含至少兩個不同的電 =本發明的再一方面’揭示了包含 二ΐΓ單元之每,有-第-節點以及士 第一卽點。该多個第一變容器單元之 電壓,以及該多個第_變容, ρ相接到一第一 個第二電壓,其中,該第:電Γ包=?分別_ 定 ,接到該多個第一變容器的單元的兩個特 1谷器単元的第一節點之間。 【實施方式】 :於本領域的技術人員來說’閱讀了以各種圖示以及附 t出的優選實施例的如下詳細描述之後,本發明的這些以 及其他對象,無疑是很明顯的。 在說明書及後續的中請專利範圍當中使用了某些詞囊 來指稱特定讀。所屬領域t具有通常知識者應可理解,製 造商可能會用不同的名詞來稱刊—個元件。本朗書及後 ,的申,專利範圍並不以名稱的差異來作為區分元件的方 f,而是以兀件在功能上的差異來作為區分的準則。在通篇 °兒明書及後續的請求項當中所提及的“包括”和“包含” 201106621 係為-開放式的用語,故應解釋成“包含但不限定於,,。以 外’ “祕”-詞在聽包含任何直接及間接的電氣連接手 段。間接的钱連接手段包括通過其他裝置進行連接。 為了線性化變容器的c-v曲線,本發明提出了兩種示例 的線性化技術。一種是將變容器分為多個平行連接的變容器 單元,其中,多個變容器單元被提供不同的參考電壓(即: 偏移電壓)或者控制電壓,而另外一種是將多個變容器單元 均勻地(unifomly)或者非均句地(n〇n_unif〇rmiy)分佈 (distribute)在感性組件中,其中多個變容器被提供不同的參 考電墨(即’偏置電壓’ bias voltage)或者控制電壓。為了說 明本發明,給出如下實施例。 第3圖為根據本發明的負載裝置的第一實施例的示意 圖。負載裝置300使用前述的將變容器分為多個平行連 接的變容器單元302一卜302一2、…、302—N的線性化技術實 現。多個變容器單元3〇2」、3〇2_2、…、3〇2—N的每一者都 具有第一節點N1以及第二節點N2。如第3圖所示,多個變 容器單兀302—1、302_2、 、3〇2-N的第一節點犯耦接到 第一電壓VA,而變容器單元的第二節點N2分別耦接到多 個第二電壓VB—卜VB—2、...、VB_N。應當注意到,多個 第二電壓1、VB一2、...、VB_N不必具有相同的電壓準 位’也就是說,多個第二電壓VB_1、VB_2、…、VB—N包 含至少兩個不同的電壓。例如,在一個實施例中,第二電壓 、VBJ2、…、VB—N配置為具有彼此不同的電壓準位。 應當注意到’依賴於實際的設計需求,包含在負載裝置300 201106621 中的變容器單元的數量是可以調整的,。換言之,如第3圖 所示的負載裝置300中的變容器單元3〇2j、3〇2_2、…、 302_N僅用以説明。 一般說來,變容器的電容性值(電容值)由變容器兩端的 電壓來確定。例如,變容器C1&電容性值可以由可調(tunable) 控制電壓Vctrl以及固定的參考電壓yref之間的電壓差所控 制。因此,在一個實現中,第一電壓VA為控制電壓,配置 為用於調整多個變容器單元302—1、302_2、…、3〇2—N的電Converter, DAC) generally requires a high resolution to properly set the varactor to the desired capacitance value. Therefore, if the pre-distortion characteristic of the digital control value is considered, it is recommended to apply the pre-distortion to the incoming digital control value using the digital compensation scheme, thereby making the overall phase adjustment curve more linear. Linearization of the phase adjustment curve of phase shifter 100 simplifies the practical implementation of the digital compensation scheme and correspondingly saves the digital block area (e.g., lookup table). In addition, when the control voltage of the varactor is within the aforementioned specific range, since the DAC conversion noise is very serious, wherein the slope of the c_v 201106621 curve is sharp, linearizing the cv curve to reduce the slope can effectively reduce the subsequent Signal processing stage (multi-level) DAC conversion noise. Therefore, there is a high need for novel and efficient methods to linearize the nonlinear characteristics of the application (e.g., the nonlinear phase adjustment curve of the phase shifter) caused by the nonlinear C-V curve of the varactor. SUMMARY OF THE INVENTION In accordance with an embodiment of the present invention, a phase shifter and associated load device employing linear techniques are proposed to mitigate the effects of the nonlinear c_v curve of the varactor. • One aspect of the I, revealing a phase shifter that includes a phase shifter core and multiple carrier devices. The phase shifter core has an input port for receiving an output port for outputting an output signal, and a plurality of connected f-loading devices are respectively coupled to the plurality of ports. The plurality of negatives; each of the container units has a -th node and a first:; in the first: the plurality of first variable sighs * a point 'the plurality of first varactors, The 卽 point is coupled to the -first voltage, the voltage, the first 卽 point of the plurality of second electric charges are respectively coupled to the plurality of second electric power according to the present invention; Negative, phase shifter. The phase shifter core 4: two phases, and a plurality of interfaces. The plurality of load two=out-output signals, and each of the plurality of serial devices are packaged: the plurality of ports. The plurality of negative y first varactor units, the at least one first 201106621 varactor early element has a 妒 妒 , ^ ^ ^ , P ' ” and a second node. The plurality of first ones are Hkn^3f5, and the plurality of first varactors, that is, the light points are connected to a second voltage, and the second ones of the plurality of flutes are respectively coupled To the multi-voltage. And the second voltage of the night includes at least two different electric powers = a further aspect of the present invention 'discloses each of the two units including the --node and the first point. The voltage of the first varactor unit, and the plurality of _ _ varactors, ρ phase is connected to a first second voltage, wherein the first: electrical packet = ? respectively, is determined to be connected to the plurality of first Between the first nodes of the two cells of the varactor. [Embodiment]: The following details of the preferred embodiments in various figures and accompanying drawings are read by those skilled in the art. After the description, these and other objects of the present invention are undoubtedly obvious. Patent in the specification and subsequent patents Some words are used in the encirclement to refer to a specific reading. Those who have the usual knowledge in the field t should be understandable, and the manufacturer may use different nouns to name the journal. The contents of this book and the later, the patent scope The difference between the names is not used as the component f to distinguish the components, but the difference in function between the components is used as the criterion for distinguishing. The “includes” mentioned in the entire article and subsequent claims are included. And "include" 201106621 is an open-ended term, so it should be interpreted as "including but not limited to,. Outside the 'secret' - the word contains any direct and indirect electrical connection. Indirect money connection means including connection through other devices. To linearize the c-v curve of a varactor, the present invention proposes two exemplary linearization techniques. One is to divide the varactor into a plurality of varactor units connected in parallel, wherein the plurality of varactor units are provided with different reference voltages (ie: offset voltage) or control voltage, and the other is to have multiple varactor units Unifomly or non-uniformly distributed (n〇n_unif〇rmiy) in an inductive component in which multiple varactors are provided with different reference inks (ie, 'bias voltage') Voltage. In order to illustrate the invention, the following examples are given. Figure 3 is a schematic illustration of a first embodiment of a load device in accordance with the present invention. The load device 300 is implemented using the aforementioned linearization technique of dividing the varactor into a plurality of parallelly connected varactor units 302, 302-2, ..., 302-N. Each of the plurality of varactor units 3〇2", 3〇2_2, ..., 3〇2-N has a first node N1 and a second node N2. As shown in FIG. 3, the first node of the plurality of varactors 302-1, 302_2, 3〇2-N is coupled to the first voltage VA, and the second node N2 of the varactor unit is coupled respectively. To a plurality of second voltages VB - VB - 2, ..., VB_N. It should be noted that the plurality of second voltages 1, VB - 2, ..., VB_N do not have to have the same voltage level 'that is, the plurality of second voltages VB_1, VB_2, ..., VB_N contain at least two Different voltages. For example, in one embodiment, the second voltages, VBJ2, ..., VB-N are configured to have different voltage levels from each other. It should be noted that the number of varactor units included in the load device 300 201106621 is adjustable depending on the actual design requirements. In other words, the varactor units 3〇2j, 3〇2_2, ..., 302_N in the load device 300 as shown in Fig. 3 are for illustration only. In general, the capacitance value (capacitance value) of a varactor is determined by the voltage across the varactor. For example, the varactor C1 & capacitance value can be controlled by the voltage difference between the tunable control voltage Vctrl and the fixed reference voltage yref. Therefore, in one implementation, the first voltage VA is a control voltage configured to adjust the power of the plurality of varactor units 302-1, 302_2, ..., 3〇2-N
容性值,而第二電壓VBj、VB_2、··.、vb—n用作參考電 壓(例如,每個參考電壓都具有固定的電壓準位)。在另一個 實見中第一電麗VA用作參考電壓(例如,具有固定的電壓 準位的參考電壓),以及第二電壓VB_1、VB_2、…、VB NThe capacitance values, while the second voltages VBj, VB_2, ..., vb-n are used as reference voltages (e.g., each reference voltage has a fixed voltage level). In another embodiment, the first battery VA is used as a reference voltage (e.g., a reference voltage having a fixed voltage level), and the second voltages VB_1, VB_2, ..., VB N
為控制電壓’配置為用於調整變容器302_卜302_2、...、:302 N 的電容性值。無論採用哪個實現,都可以達到調整負載裝置 300的等效電容性值的同樣目的。 基於如第3圖所示的負載裝置3〇〇的示例配置,傳統的 負載裝置,例如如第i圖所示的負載裝置1〇4a/1〇4b,可以 由如第4圖所示的示例的負載裝置働所替代。第4圖為根 據本發明的負載裝置的第二實施例的示意圖。多個變容器單 元02__1 402一2、...、402—1的組合,具有耦接到第一電壓 VA的第一節點,以及分別耦接到多個第二電壓vbj、 VB_2、···、vb—I的第二節點,多個變容器單元4〇2j、 402:2、...、402—〗的組合用於替代傳統的變容器,以及多個 變容器404」、4G4—2、...、402_;的組合具有輕接到第一電 201106621 二v:的第一卽點,以及分別键到多個第二電愿、 了 2、...、VB’j的第二節點,而多個變容器4。… =4一 2、...、402_j的組合用於替代另一個傳統的變容 =主意到,依賴於實際的設計要求,多個變容器術1: -·*.、402-1的數量可與多個變容器404 1、4(M 402_J的數量相等或者不相等。 -…、 ^圖為根據本發明的負餘置的第三實施例的示音 圖。負裁裝i 500使用前述的將多個變容S! 了 輸線)^ Γ 5〇2多1、5〇2—N分佈在多個感性組件(例如—,傳 5〇? ~…、中的線性化技術實現。變容器單元 r點:2—2 V··、5〇2—&1、5〇2—N中的每一者具有第-二1、5二第二節點N2。如第5圖所示,變容器單元 第ml…i5〇2—N_1、5〇2_N的第一節,點N1輕接到 二^第 器單元5。2-1、5^ ντΓ,的第一卽2分別麵接到多個第二電壓VB1、 Vb—2 · VB-N-1、VB—N ° 相似地’第二電壓 VB—1、 就是說:第 至少*徊τ η — -2…VB-N-1、VB_N包含 VB ! 同的電壓。例如,在一個實現中,第二電壓 電壓準位1、. ·.、YU·丨、VB_N配置為具有彼此不同的 載裝進1說’依賴於實際的設計需要,包含在負 整^。 的變容11的數量以及感性組件的數量是可以調 201106621 更進一步說’如第5圖所示的變容器單元502 1、 502一2、…、502—N-1、502_N 以及感性組件 、 、l_m 的連接配置僅作為一種可能的實現。也就是說,如第5圖的 示例配置所示,多個感性組件的每一者均具有兩個節點,節 點N1,以及節點N2,,而多個感性組件L一卜…、l_m的節 點N1’以及節點N2,的每一者,接到多個變容器單元5〇2^、 5〇2_2、…、502—N-1、502_N的其中一者上。儘管如此了包 合至少一個感性組件(例如,感性組件Lj)的任何負載裝置 均遵循本發明的精神,其中,該至少一個感性組件(例如, 感性組件L_l)耦接在如第5圖所示的多個感性組件工、 5〇2_2、…、502—N-1、502_N的兩個特定變容器單元(例如, 變容器502—1以及502_2)的第一節點N1之間。 如上所述,變容器的電容性值(電容值)由變容器兩端的 電壓確定。因此’在-個實現中,如第5圖所示的第一電壓 VA,作為控制電壓,配置為用於調整變容器單元$⑽1、 502—2、…、502-N-1、502_N的電容性值,而如第5圖所示 的第二電壓VBJ、VB_2、...、VB—N]、VB_N作為參考電 壓(例如,多個參考電壓的每一者具有固定的電壓準位卜在 另-個實現中’如第5圖所示的第一電壓VA作為參考電壓 (例如,一個具有固定的電壓準位的參考電壓),如第$圖 示的第二電壓VBJ、VB—2、…、VB,卜VB—N作為控 電壓,配置為用於調整變容器單元5〇2j、5〇2 2、玉 502_N-1、502_N的電容性值。 ~ 201106621 °月參考第6圖,第6圖為根據本發明的負載裝置的第四 實施例的示意圖。基於如第5圖所示的負載裝置500的‘例 配置,傳統的負載裝置,例如如第丨圖所示的負載裝置 104A/104B’可以由第6圖所示的示意負載裝置6〇0所替代。 本領域的習知技藝者在閱讀了上述與上述示例負載裝置直 接相關的段落之後可以了解如第6圖所示的示例負載裝置 600的技術特點,簡潔起見,進一步的描述在此不再贅述。 在上述示例實現中,負載裝置配置為使用單端 (single-ended)拓撲。儘管如此,負載裝置也可以使用差動 (differential)拓撲來滿足特定應用的需求。例如,安排為差動 拓撲的負載裝置可以用在差動應用設備上,例如差動移相 器。請聯合參考第7圖以及第4圖,第7圖為根據本發明的 負載裝置的第五實施例的示意圖。負載裝置7〇〇包含多個第 一變谷器單元 702一 1、702一2、…、702—1,704 1、704 2、、 704_J,多個第二變容器單元 7〇6—!、7〇6—2、 、7〇6」、7〇8—i、 708_2、…、708_J,以及多個感性組件(例如,傳輸線)L以 及L,,其中,第一變容器單元702」、7〇2_2、…、7〇2 ι、 7〇4_1、704—2、…、704_J以及第二變容器單元7〇6j、 706_2、…、706_1、708_1、708—2、…、7〇8_J 安排為差無 拓撲。第一變容器單元702_1、702_2、.…、術」、7⑴^、 704一2、…、704一J具有耦接到第一電壓VA的第一節點, 以及分別麵接到多個第二電壓VB 1、VB 2、The control voltage ' is configured to adjust the capacitive value of the varactor 302_b 302_2, ..., : 302 N . The same purpose of adjusting the equivalent capacitance value of the load device 300 can be achieved regardless of which implementation is employed. Based on the example configuration of the load device 3A as shown in FIG. 3, a conventional load device such as the load device 1〇4a/1〇4b as shown in FIG. 4 can be exemplified by the example shown in FIG. The load device is replaced by a load device. Figure 4 is a schematic illustration of a second embodiment of a load device in accordance with the present invention. a combination of a plurality of varactor units 02__1 402-2, ..., 402-1 having a first node coupled to the first voltage VA and coupled to the plurality of second voltages vbj, VB_2, . . . a second node of vb-I, a combination of a plurality of varactor units 4〇2j, 402:2, ..., 402-] is used to replace the traditional varactor, and a plurality of varactors 404", 4G4-2 The combination of ..., 402_; has the first point of lightly connected to the first electric 201106621 two v:, and the second key to the plurality of second electric wish, 2, ..., VB'j Node, and multiple varactors 4. ... = 4 - 2, ..., 402_j combination is used to replace another traditional variable capacity = idea, depending on the actual design requirements, multiple varactors 1: -·*., 402-1 It may be equal or unequal to the number of varactors 404 1 , 4 (M 402_J. - . . , ^ is a phonogram of the third embodiment of the negative remainder according to the present invention. Negative cutting i 500 uses the foregoing The transformation of a plurality of S! The transmission line) ^ Γ 5 〇 2 more 1, 5 〇 2 - N distributed in a number of inductive components (for example -, pass 5 〇? ~ ..., the realization of linearization technology. Container unit r: each of 2-2 V··, 5〇2—&1, 5〇2-N has a second node N2 of the first two, five, and two. As shown in FIG. 5, The first section of the variable container unit ml...i5〇2-N_1, 5〇2_N, the point N1 is lightly connected to the second unit 5. The first 卽2 of 2-1, 5^ ντΓ, respectively The second voltages VB1, Vb-2, VB-N-1, VB-N° are similarly 'the second voltage VB-1, that is to say: the at least *徊τ η — -2...VB-N-1, VB_N Contains the same voltage as VB ! For example, in one implementation, the second voltage voltage level 1, . . . , YU· VB_N is configured to have different loads from each other into one said 'depending on the actual design needs, the number of varactors 11 included in the negative integer and the number of inductive components can be adjusted 201106621. Further, as shown in Figure 5 The illustrated configuration of the varactor units 502 1 , 502 - 2, ..., 502 - N-1, 502_N and the inductive component, l_m is only possible as one possible implementation. That is, the example configuration as in Figure 5 It is shown that each of the plurality of inductive components has two nodes, a node N1, and a node N2, and each of the plurality of inductive components L1, l_m, and N2 is connected to each other. Any one of a plurality of varactor units 5〇2^, 5〇2_2, ..., 502-N-1, 502_N. However, any load device that includes at least one inductive component (eg, inductive component Lj) According to the spirit of the present invention, the at least one inductive component (for example, the inductive component L_1) is coupled to a plurality of inductive component workers, 5〇2_2, ..., 502-N-1, 502_N as shown in FIG. Two specific varactor units (eg, varactor 502-1 and Between the first node N1 of 502_2). As described above, the capacitance value (capacitance value) of the varactor is determined by the voltage across the varactor. Therefore, in the first implementation, the first voltage as shown in Fig. 5 VA, as the control voltage, is configured to adjust the capacitance values of the varactor units $(10)1, 502-2, ..., 502-N-1, 502_N, and the second voltages VBJ, VB_2, as shown in FIG. ..., VB - N], VB_N as a reference voltage (for example, each of the plurality of reference voltages has a fixed voltage level in another implementation) as the first voltage VA shown in FIG. 5 as a reference voltage (for example, a reference voltage having a fixed voltage level), such as a second voltage VBJ, VB-2, ..., VB, and VB-N as the control voltage, configured to be used for adjusting the voltage Capacitive values of the container units 5〇2j, 5〇2 2, jade 502_N-1, 502_N. ~ 201106621 ° month Referring to Fig. 6, Fig. 6 is a schematic view showing a fourth embodiment of the load device according to the present invention. Based on the 'example configuration of the load device 500 as shown in FIG. 5, the conventional load device, for example, the load device 104A/104B' as shown in FIG. 6 can be represented by the schematic load device 6〇0 shown in FIG. Alternative. Those skilled in the art can understand the technical features of the example load device 600 as shown in FIG. 6 after reading the above paragraphs directly related to the above-described example load device. For the sake of brevity, further description will not be repeated here. . In the example implementation described above, the load device is configured to use a single-ended topology. Nevertheless, the load device can also use a differential topology to meet the needs of a particular application. For example, a load device arranged in a differential topology can be used on a differential application device, such as a differential phase shifter. Referring to Figure 7 and Figure 4 in conjunction, Figure 7 is a schematic illustration of a fifth embodiment of a load device in accordance with the present invention. The load device 7A includes a plurality of first variator units 702-1, 702-2, ..., 702-1, 704 1, 704 2, 704_J, and a plurality of second varactor units 7 〇 6 -! 7〇6-2, 7〇6”, 7〇8—i, 708_2, . . . , 708_J, and a plurality of inductive components (eg, transmission lines) L and L, wherein the first varactor unit 702”, 7 〇2_2, ..., 7〇2 ι, 7〇4_1, 702-4, ..., 704_J and the second varactor unit 7〇6j, 706_2, ..., 706_1, 708_1, 708-2, ..., 7〇8_J are arranged as Poor topology. The first varactor unit 702_1, 702_2, . . . , 7(1)^, 704-2, ..., 704-J has a first node coupled to the first voltage VA, and respectively connected to the plurality of second voltages VB 1, VB 2
VBVB
第二變容器單 ···、708—J 具 VB’一 1 ' VB’一2、…、VB’_J 的第二節點 N2。 元 706_1、706_2 ' ...、706一I、708 1、708 2、 12 201106621 有耗接到第三電壓vc的笛外 多個笛-带r 的苐一即點N1,以及分別耦接到前述 夕卿弟—電壓VB 1、VPi 〇 J的第二㈣N2。相似地,第二電屋vb_ i、Μ—2、.、 VB了 2具有至少兩個不同的電麼,以及第二電壓VB,-1、 '.~ 、VB’j具有至少兩個*同的電Μ。除此以外, 於實際的料要求,第—變容器單元7G2」、7G2—2、.·.、 7^1以及對等(C〇UnterPart)的第二變容器單元706-1、 —2、...、7〇6J的數量,以及第一變容器單元704^1、 ~2 ...、7〇4-1以及對等的第二變容器單元708__1、 一2、...、708一J的數量,均為可以調整的。 在一個實現中,第一電壓VA以及第三電壓%為控制 電麼,配置為分別用於調整第—變容器單&皿—卜 —…702—1、704__1、7〇4_2、…、704—J 以及第二變 容器單元 706—卜寫―2、...、7〇6 一卜· 17〇82、、 _J的電容性值;而第二電壓VB—1、vb」、、vb—工、 一1 VB _2 ···、VB _J作為參考電壓(例如,多個參考 電壓的每一者具有固定的電壓準位)。在另-個實現中,第 -電壓VA以及第三電壓vc作為參考電壓(例如,多個參考 電壓的每-者具有固定的電壓準位),而第二電壓 VB一2、...、VB_I、VB,J、VB,_2、…、VB,」為控制電壓, 配置為用於調整第一變容器單元702」、7〇2_2、...、7〇2工、 704_1、704—2、…、704」以及第二變容器單元湯」、 — —’⑽—1、708—2、···、708j 的電容性值。 C "r 13 201106621The second varactor list ···, 708-J has a second node N2 of VB'-1' VB'-2, ..., VB'_J. Element 706_1, 706_2 ' ..., 706 I, 708 1, 708 2, 12 201106621 have a flute of a plurality of flute-band r that is connected to the third voltage vc, that is, point N1, and are respectively coupled to The aforementioned Xi Qingdi - the second (four) N2 of the voltage VB 1, VPi 〇 J. Similarly, the second electric house vb_i, Μ-2, ., VB 2 has at least two different electric powers, and the second voltage VB, -1, '.~, VB'j has at least two * same Electric eel. In addition to the actual material requirements, the first varactor unit 7G2", 7G2-2, .., 7^1, and the second varactor unit 706-1, -2 of the peer (C〇UnterPart) ..., the number of 7〇6J, and the first varactor unit 704^1, ~2 ..., 7〇4-1, and the equivalent second varactor unit 708__1, one 2, ..., 708 The number of J can be adjusted. In one implementation, the first voltage VA and the third voltage % are control powers, configured to respectively adjust the first varactor single & s... - 702 - 1, 704__1, 7 〇 4_2, ..., 704 -J and the second varactor unit 706 - write the capacitance values of "2, ..., 7 〇 6 卜 · 17 〇 82, _J; and the second voltage VB-1, vb", vb - A 1 VB _2 ···, VB _J is used as a reference voltage (for example, each of the plurality of reference voltages has a fixed voltage level). In another implementation, the first voltage VA and the third voltage vc are used as reference voltages (eg, each of the plurality of reference voltages has a fixed voltage level), and the second voltage VB is 2, ..., VB_I, VB, J, VB, _2, ..., VB," are control voltages, configured to adjust the first varactor unit 702", 7〇2_2, ..., 7〇2, 704_1, 704-2 , ..., 704" and the second varactor unit soup", - (10)-1, 708-2, ..., 708j capacitance values. C "r 13 201106621
明的參考第8圖以及第6圖。第8圖為根據本發 、負载裝置的第六實施例的示意圖。負載裝置8G 使用前述⑽性化技術的實現,其中,前述料性化為 將多個第-變容器單元搬」、搬—2、、搬身卜術NRefer to Figure 8 and Figure 6 for a clear reference. Figure 8 is a schematic illustration of a sixth embodiment of a load device in accordance with the present invention. The load device 8G is realized by the above-described (10) technology, in which the above-described materialization is to move a plurality of first-variable container units, to move, and to move
一— · · . 〇 V L Μ中,以 、804_N-1 、 ' ...、L,_M 、802—N-l 、 804 N_1 、 分佈在多個感性組件(例如,傳輸線)、 及也將多個第二變容器單元8〇4_1、804 2、 804—N分佈在多個感性組件(例如,傳輸線)l, 中,其中,第一變容器單元8〇2_1、802__2、 8〇2_N以及第二變容器單元8〇4_j、804=2、 804_N安排為差動拓撲。特別地,第一變容器單元肋2 802—2、…、802—n]、802_N的第一節點m耦接到第二 壓VA,以及第一變容器單元8〇2一卜8〇2一2、. 、8〇2—N ^、 804_2 、 壓VC VB_2、 VB_2、 此之外 802_2 , 804 1, 件L 1 8〇2_N的第二節點N2分別耦接到多個第二電壓vb卜 VB 2、.··、VB_N]、VB—N;對於第二變容器單元謝:卜 …804:Ν·1、804—N ’第一節點N1耦接到第三電 而第二節點分別耦接到前述的第二電壓、 …VB_N 1、。相似地,第二電壓vb 1、 VB_N 1 VB—N具有至少兩個不同的電壓。除 依賴於實際的設計要求,第-變容器單it 802_1、 …802_N-1、802—N以及對等的第二變容器單元 804—2…、804—N-1、8〇4_N的數量,以及感性組 …L_M、L-1、,..、L’—M的數量均為可以調整的。 在-個實現中,第-電壓VA以及第三電壓vc為控制 電壓,配置為用於調整第一變容器單元8〇2卜肋之2、、 201106621 802_N-1、802_N以及第二變容器單元謝」、綱一2、、 804_N-1、804_N 的電容性值;第二電壓 vBj、vb一2、...、 VB_N-1、VB_N作為參考電壓(例如,多個參考電壓的每一 者都具有固定的電壓準位)。在另一個實現中,第一電壓¥八 以及第三電壓VC作為參考電壓(例如,多個參考電壓的每一 者都具有固定的電壓準位),而第二電壓VBj、VB—2、、 VB_N-1、VB_N為控制電壓,配置為用於調整第一變容器單 元802一 1、802—2、…、802—N-1、802_N以及第二變容器單 元 804—1、804一2、…、804__Ν·1、804_n 的電容性值。 應當注意到,前述的差動拓撲具有很多好處/優點。例 如’第一電壓VA的插入損耗(inserti〇n 1〇ss)也與第三電壓 VC的插入損耗呈線性關係;除此之外,用在單端拓撲中的 旁通電容器Cbypass可以省略。 上述示例負載裝置的至少一者可以用在需要具有可調 電谷性值的負載的應用裝置上。例如,使用一個或者多個上 述示例負載裝置的移相器可以具有線性化的相位調整 (phase-tuning)曲線。以一個移相器為例,某些示例移相器設 計可提供如下用作說明。 第9圖為根據本發明的移相器的第一實施例的示意圖。 移相器900包含移相器核心902以及多個負載裝置 904一1 ' ···、9〇4_n。本發明不集中在移相器核心9〇2的設計 上移相器核心902因此可以使用任何適當的配置而實現。 例如,在移相器900為反射型移相器的情況下,移相器核心 902可以使用正交耦合器(也稱為90度混合耦合器)實現。如———————— 〇VL ,, 804_N-1, '..., L, _M, 802-Nl, 804 N_1, distributed in multiple inductive components (eg, transmission line), and also multiple The two variable container units 8〇4_1, 804 2, 804-N are distributed among a plurality of inductive components (for example, transmission lines) 1, wherein the first varactor units 8〇2_1, 802__2, 8〇2_N and the second varactor Units 8〇4_j, 804=2, 804_N are arranged in a differential topology. Specifically, the first node m of the first varactor unit rib 2 802-2, ..., 802-n], 802_N is coupled to the second pressure VA, and the first varactor unit 8 〇 2 〇 8 〇 2 2., 8, 〇2-N ^, 804_2, pressure VC VB_2, VB_2, 802_2, 804 1, the second node N2 of the L 1 8〇2_N is respectively coupled to the plurality of second voltages vb VB 2.···, VB_N], VB—N; for the second varactor unit: ...... 804: Ν·1, 804—N 'The first node N1 is coupled to the third power and the second node is coupled respectively To the aforementioned second voltage, ... VB_N 1 . Similarly, the second voltage vb 1 , VB_N 1 VB-N has at least two different voltages. In addition to relying on actual design requirements, the number of the first varactors single 802_1, ... 802_N-1, 802-N and the equivalent second varactor units 804-2..., 804-N-1, 8〇4_N, And the number of inductive groups...L_M, L-1,,.., L'-M can be adjusted. In an implementation, the first voltage VA and the third voltage vc are control voltages, configured to adjust the first varactor unit 8 〇 2, 2, 201106621 802_N-1, 802_N, and the second varactor unit Capacitance values of Xie, Gang-2, 804_N-1, 804_N; second voltages vBj, vb-2, ..., VB_N-1, VB_N as reference voltages (eg, each of a plurality of reference voltages) Both have a fixed voltage level). In another implementation, the first voltage ¥8 and the third voltage VC are used as reference voltages (eg, each of the plurality of reference voltages has a fixed voltage level), and the second voltages VBj, VB-2, VB_N-1, VB_N are control voltages, and are configured to adjust the first varactor unit 802-1, 802-2, ..., 802-N-1, 802_N and the second varactor unit 804-1, 804-2. Capacitive values of ..., 804__Ν·1, 804_n. It should be noted that the aforementioned differential topology has many benefits/advantages. For example, the insertion loss of the first voltage VA (inserti〇n 1 〇 ss) is also linear with the insertion loss of the third voltage VC; in addition, the bypass capacitor Cbypass used in the single-ended topology can be omitted. At least one of the above exemplary load devices can be used on an application device that requires a load having an adjustable electric valley value. For example, a phase shifter using one or more of the above example load devices can have a linearized phase-tuning curve. Taking a phase shifter as an example, some example phaser designs can be provided as follows for illustration. Figure 9 is a schematic illustration of a first embodiment of a phase shifter in accordance with the present invention. The phase shifter 900 includes a phase shifter core 902 and a plurality of load devices 904 - 1 '···, 9〇4_n. The present invention does not focus on the design of the phase shifter core 〇2. The phase shifter core 902 can thus be implemented using any suitable configuration. For example, where phase shifter 900 is a reflective phase shifter, phase shifter core 902 can be implemented using a quadrature coupler (also known as a 90 degree hybrid coupler). Such as
15 201106621 第9圖所示,移相器核心902包含用於接收輸入訊號S_IN 的輸入埠P_IN,用於輸出輸出訊號S_OUT的輸出埠 P_OUT,以及多個連接埠P_1、...、P_N,其中,基於移相 器核心902的實際設計需求,連接埠的數量N為等於或者大 於2的整數。多個負載裝置904_1、...、904_N分別耦接到 多個連接埠PJ、…、p_N。多個負載裝置904_1、...、904_N 的每一者使用如第3圖所示的示例負載裝置實現。因此,負 載裝置904_1包含多個變容器單元906_1、906_2、...、 906_L,而該多個變容器單元906_1、906_2、...、906_L具 有耦接到第一電壓VA_1的第一節點以及分別耦接到多個第 二電壓VB_1、VB_2、…、VB_L的第二節點;除此之外, 負載裝置904_N包含多個變容器單元908_1、908_2、…、 908_K,多個變容器單元908_1、908_2、...、908_K具有耦 接到第一電壓VA_N的第一節點,以及分別耦接到第二電壓 VB’_1、VB’—2、…、VB’_K的第二節點。與第9圖所示的 負載裝置直接相關的細節以及替換設計已經在上述段落中 進行了描述,簡潔起見,此處不再贅述。 應當注意到,在多個負載裝置904_1、...、904_N的每 一者都安排為單端拓撲以滿足單端設計需求的情況下,多個 旁通電容器可以包含在内,而且多個旁通電容器的每一者均 耦接在AC接地端以及多個第二電壓VB_1、VB_2、…、 VB_L、…、VB’_1、VB’_2、…、VB’_K的對應第二電壓之 間。本領域習知技藝者在閱讀了與第4圖所示的示例負載裝 置400直接相關的上述段落之後,很容易了解到負載裝置 16 201106621 904_1、…、904_N的每一者的單端配置,簡潔起見,此處 不再贅述。 第10圖為根據本發明的移相器的第二實施例的示意 圖。移相器1000包含移相器核心1002以及多個負載裝置 1004_1、...、1004_N。相似地,因為本發明不集中在移相器 核心1002的設計上,所以移相器核心1002可以使用任何適 當的配置而實現,如正交耦合器(也稱為90度混合耦合器)。 移相器核心1002包含用於接收輸入訊號S_IN的輸入埠 P_IN,用於輸出輸出訊號S_OUT的輸出埠P_OUT,以及多 個連接埠P_1、...、P_N,其中,基於移相器核心1002實際 設計需求,連接埠的數量N為等於或者大於2的整數。多個 負載裝置1〇〇4_1、...、1004_N分別耦接到多個連接埠 P_1、...、P_N。負載裝置 1004_1、...、1004_N 的每一者使 用如第5圖所示的示例負載裝置實現。因此,負載裝置 1004_1包含多個感性組件L_l, ...,L_,以及多個變容器單元 1006—1、1006_2、…、1006_L-1、1006_L,而該多個變容器 單元 1006_1、1006_2、...、1006_L-1、1006_L 具有耦接到 第一電壓VA_1的第一節點以及分別耦接到第二電壓 VB_1、VB_2、…、VB_L的第二節點;除此之外,負載裝 置1004_N包含多個感性組件L’_l、...、L’_K,以及多個變 容器單元 1008_1、1008_2、…、1008JC-1、1008JC,其中, 多個變容器單元 1〇〇8_1、1008_2、…、1008JC-1、1008JC 具有耦接到第一電壓VA_N的第一節點,以及分別耦接到第 二電壓 VB,_J、VB’_2、…、VB’_K-1、VB’—K 的第二節點。 E S 3 17 201106621 與第ίο圖所示的負載裝置配置直接相關的細節以及替換設 計已經在上述段落中進行了描述,簡潔起見,此處不再贅述。 應當注意到,在負載裝置1004_1、…、1004_N的每一 者都安排為單端拓撲以滿足單端設計需求的情況下,多個旁 通電容器可以包含在内,而且多個旁通電容器的每一者均耦 接在AC接地端以及多個第二電壓VB_1、VB_2、…、 VB_L-卜 VB_L、…、VB’J、VB,_2、...、VB,_K-1、VB,—K 的對應第二電壓之間。本領域習知技藝者在閱讀了與第6圖 所示的示例負載裝置600直接相關的上述段落之後,很容易 了解到多個負載裝置1004_1、…、1004_N的每一者的單端 配置,進一步的描述在此處,簡潔起見不再進行。 如上所述,如第7圖以及第8圖所示,為了滿足特定的 應用需求負載裝置可以配置為差動拓撲。因此,在替換設計 中,包含在移相器900、移相器1000中的負載裝置可以使用 每個安排為差動拓撲的負載裝置來替代。這些也落入本發明 的保護範圍。例如,對於安排為差動拓撲的負載裝置 904_1、…、904_N中的每一者,多個第二電壓VB_1、 VB—2、...、VB_L、...、VB,J、VB,_2、…、VB,_K 的每一 者,都可以作為一個示例實現中的虛接地(virtual ground);相 似地,對於安排為差動拓撲的負載裝置1〇〇4_1、...、1004_N 的每一者,多個第二電壓VB_1、VB_2、…、VB—L-1、 VB_L、…、VB,_1、VB,_2、...、VB,_K-1、VB,_K 的每一 者都可以作為一個示例實現中的虛接地。本領域習知技藝者 在閱讀了與如第7圖所示的示例負載裝置7〇〇以及第8圖中 18 201106621 的示例負載裝置800直接相關的上述段落之後,可以容易了 解到如何將多個負載裝置904一1、…、904—N以及 1004—1、...、1004—N的每一者的組件安排到差動拓撲中, 簡潔起見,此處不再贅述。 鑑於上述内容,用於將移相器的相位調整曲線線性化的 本發明的一般概念為將至少兩個變容器的第一節點耦接到 第一電壓,以及將至少兩個變容器的第二節點耦接到多個不 同的第二電壓,其中在一個實現中,第一電壓為控制電壓, 而第二電壓為參考電壓,在另一個實現中,第—電壓為參考 電壓,而第二電壓為控制電壓。以此方式,由於變容器的 C-V曲線的線性化’移相||的相位調整曲線就可以有效地線 性化。基於這樣的觀察,相應地提出移相器的替換設計。請 參閱第11圖,第11圖為根據本發明的移相器的第三實施例 的示意圖。移相器1100包含移相器核心11〇2以及多個負載 裝置1104J、...、1004_N。相似地,本發明不集中在移相 器核〜1102的5又§十上’所以’移相器核心ιι〇2就可以使用 任何適當的配置而實現,例如正絲合器⑼度混合輕合 器)。移相器核心1102包含用於接收輸入訊號SJN的輸入 皡P一IN’以及用於輸出輸出訊號8-贿的輸出缚卩瞻, 以及多個連料p一卜·..、〇,其中,基於移相器核:1102 的實際^需求’多㈣接埠的數量N為等 整數。負載裝置1004 iχτ ν 的 Ρ 1、...、ΡΝ。負财置跑_-Ν*別麵接到連接璋 在如第11圖所示的實施例中,變容 20110662115 201106621 As shown in FIG. 9, the phase shifter core 902 includes an input 埠P_IN for receiving the input signal S_IN, an output 埠P_OUT for outputting the output signal S_OUT, and a plurality of connections 埠P_1, . . . , P_N, wherein Based on the actual design requirements of the phase shifter core 902, the number N of connections is an integer equal to or greater than two. A plurality of load devices 904_1, ..., 904_N are coupled to a plurality of ports 埠 PJ, ..., p_N, respectively. Each of the plurality of load devices 904_1, . . . , 904_N is implemented using an example load device as shown in FIG. Therefore, the load device 904_1 includes a plurality of varactor units 906_1, 906_2, . . . , 906_L, and the plurality of varactor units 906_1, 906_2, . . . , 906_L have a first node coupled to the first voltage VA_1 and a second node coupled to the plurality of second voltages VB_1, VB_2, . . . , VB_L, respectively; in addition, the load device 904_N includes a plurality of varactor units 908_1, 908_2, . . . , 908_K, a plurality of varactor units 908_1, 908_2, . . . , 908_K have a first node coupled to the first voltage VA_N, and a second node coupled to the second voltages VB'_1, VB'-2, ..., VB'_K, respectively. Details and alternative designs directly related to the load device shown in Fig. 9 have been described in the above paragraphs, and will not be described again here for brevity. It should be noted that where each of the plurality of load devices 904_1, . . . , 904_N is arranged in a single-ended topology to meet single-ended design requirements, multiple bypass capacitors may be included, and multiple Each of the pass capacitors is coupled between the AC ground and a corresponding second voltage of the plurality of second voltages VB_1, VB_2, . . . , VB_L, . . . , VB'_1, VB'_2, . . . , VB'_K. One skilled in the art can easily understand the single-ended configuration of each of the load devices 16 201106621 904_1, ..., 904_N after reading the above paragraphs directly related to the example load device 400 shown in FIG. For the sake of reference, we will not repeat them here. Figure 10 is a schematic view of a second embodiment of a phase shifter in accordance with the present invention. The phase shifter 1000 includes a phase shifter core 1002 and a plurality of load devices 1004_1, ..., 1004_N. Similarly, because the present invention is not focused on the design of phase shifter core 1002, phase shifter core 1002 can be implemented using any suitable configuration, such as a quadrature coupler (also known as a 90 degree hybrid coupler). The phase shifter core 1002 includes an input 埠P_IN for receiving the input signal S_IN, an output 埠P_OUT for outputting the output signal S_OUT, and a plurality of connections 埠P_1, . . . , P_N, wherein the actual phase based on the phase shifter core 1002 Design requirements, the number N of connections 为 is an integer equal to or greater than 2. A plurality of load devices 1〇〇4_1, ..., 1004_N are respectively coupled to a plurality of ports _1 P_1, ..., P_N. Each of the load devices 1004_1, ..., 1004_N is implemented using the example load device as shown in Fig. 5. Therefore, the load device 1004_1 includes a plurality of inductive components L_1, ..., L_, and a plurality of varactor units 1006-1, 1006_2, ..., 1006_L-1, 1006_L, and the plurality of varactor units 1006_1, 1006_2, . . . . , 1006_L-1, 1006_L have a first node coupled to the first voltage VA_1 and a second node coupled to the second voltages VB_1, VB_2, . . . , VB_L, respectively; in addition, the load device 1004_N includes more Inductive components L'_l, ..., L'_K, and a plurality of varactor units 1008_1, 1008_2, ..., 1008JC-1, 1008JC, wherein the plurality of varactor units 1〇〇8_1, 1008_2, ..., 1008JC -1, 1008JC having a first node coupled to a first voltage VA_N and a second node coupled to a second voltage VB,_J, VB'_2, ..., VB'_K-1, VB'-K, respectively. E S 3 17 201106621 Details and alternative designs directly related to the configuration of the load device shown in Fig. 00 have been described in the above paragraphs, and will not be described again here for brevity. It should be noted that where each of the load devices 1004_1, . . . , 1004_N is arranged in a single-ended topology to meet single-ended design requirements, multiple bypass capacitors may be included, and each of the plurality of bypass capacitors One is coupled to the AC ground and a plurality of second voltages VB_1, VB_2, ..., VB_L-Bu VB_L, ..., VB'J, VB, _2, ..., VB, _K-1, VB, -K Corresponding to the second voltage between. One skilled in the art can easily understand the single-ended configuration of each of the plurality of load devices 1004_1, . . . , 1004_N after reading the above paragraph directly related to the example load device 600 shown in FIG. The description here is no longer carried out for the sake of brevity. As described above, as shown in Figs. 7 and 8, the load device can be configured as a differential topology in order to meet specific application requirements. Thus, in an alternative design, the load devices included in phase shifter 900, phase shifter 1000 can be replaced with each load device arranged in a differential topology. These also fall within the scope of protection of the present invention. For example, for each of the load devices 904_1, . . . , 904_N arranged as a differential topology, a plurality of second voltages VB_1, VB-2, . . . , VB_L, . . . , VB, J, VB, _2 Each of ..., VB, _K can be used as a virtual ground in an example implementation; similarly, for each of the load devices 1〇〇4_1, ..., 1004_N arranged in a differential topology In one case, each of the plurality of second voltages VB_1, VB_2, ..., VB_L-1, VB_L, ..., VB, _1, VB, _2, ..., VB, _K-1, VB, _K Can be used as a virtual ground in an example implementation. It will be readily apparent to those skilled in the art after reading the above paragraphs directly related to the example load device 7 第 shown in FIG. 7 and the example load device 800 at 18 201106621 in FIG. The components of each of the load devices 904-1, ..., 904-N and 1004-1, ..., 1004-N are arranged in a differential topology, which will not be described herein for brevity. In view of the above, a general concept of the invention for linearizing a phase adjustment curve of a phase shifter is to couple a first node of at least two varactors to a first voltage and a second of at least two varactors The node is coupled to a plurality of different second voltages, wherein in one implementation, the first voltage is a control voltage and the second voltage is a reference voltage, and in another implementation, the first voltage is a reference voltage and the second voltage is To control the voltage. In this way, the phase adjustment curve of the linearized phase shift || of the C-V curve of the varactor can be effectively linearized. Based on such observations, an alternative design of the phase shifter is accordingly proposed. Please refer to Fig. 11, which is a schematic view of a third embodiment of a phase shifter in accordance with the present invention. The phase shifter 1100 includes a phase shifter core 11〇2 and a plurality of load devices 1104J, ..., 1004_N. Similarly, the present invention is not concentrated on the 5 and § 10 of the phase shifter core ~ 1102 'so' the phase shifter core ιι 〇 2 can be implemented using any suitable configuration, such as a positive wire combiner (9) degree mixing light Device). The phase shifter core 1102 includes an input port 一P_IN' for receiving the input signal SJN and an output binding view for outputting the output signal 8-bride, and a plurality of linings p.., 〇, wherein Based on the phase shifter core: the actual ^ demand of the 1102 'the number of multiple (four) interfaces N is an equal integer.负载 1, ..., ΡΝ of the load device 1004 i χ τ ν. Negative wealth run _-Ν* other face to connect 璋 In the embodiment shown in Figure 11, change capacity 201106621
節點N1耦接到第一電 一N的第二節點N2 的電壓的第二電壓 電壓 VB—1、...、VBN 器單元1106_1 '…、1106_N的第一 壓VA,而變容器單元11〇6_1、...、 分別柄接到包含至少兩個不同 VB_1、…、VB_N。例如,多個第二 的全部,都具有彼此不同的電壓。 在第11圖中,圖示的每個負載裝置内部都具有— -的變容器單元。儘管如此’沒有脫離本發明的精神 ^ η圖所示的負載裝置也可以配置為包含耗接在第— 及第二電壓之間的多於-個的變容器。第12圖為用在 11圖所示的示例移相器1100的負餘置的替換設計 12圖所示的賴負載裝置⑽包含多個變容器單元 :單二1?以及變容器單元1208以及一個感性組件(例 如,傳輸線)L,該感性組件(例如,傳輸線)L _ 單元鶴以及變容器單元12G8之間。從帛12圖可以看/ 的每一者都具有麵接到第-電壓μ 的第-即點m,以及耦接到第二電壓 應當注意到,基於如第12圖所干的一…:弟一卽請。 . 園所不的不例負載裝置1204的任 可變形/修改,㈣遵循本發明的精神。例如,以負載= 1204作為基礎單元,可以很容 、 單元的倉哉驻番夕 也侍到具有夕於兩個變容器 =兀的負載裝置’㈣多於兩個變容器的每— 第一電壓VA以及第二電壓VB之間。 * J〇" —應當注意到,在多個負载裳置1104J、…、11〇4 N的 母一者都絲在f端㈣-、 個旁通電容ϋ可以包含在其中,,求的情況下,多 、甲5亥多個旁通電容器的每一者 20 201106621 均耦接到AC接地端以及第二電壓VB—丨、..,、VB_N的對應 第二電Μ之間。本領域習知技藝者在_與如第4圖所示的 示例負载裝置400以及第6圖所示的示例負載裝置6〇〇直接 相關的上述段落之後,可以很容易理解多個負載裝置 ⑽—i、…、1104_Ν的每一者的單端配置,簡潔起見:此 處不再贅述。 進步說,負載裝置也可以配置為差動拓撲以滿足特定 應用的需求,例如,差動移相器。因此,在替換的移相器設 計中,包含在移相器1100中的負載裝置U04j、 、11()4_n 可以使用負載裝置1104,—而替代,而負載 裝置1104,—1、·..、1104,—Ν的每一者都配置為差動拓 也就是說,在負載裝置11〇4_1、...、1104_Ν的每一者安排 為差動拓撲的情況下,第二電壓VB—1、…、νΒ Ν的每一 者都可以作為本發明的示例實現的虛接地。如第^圖所示, 負載裝置1104’_1包含如第11圖所示的變容器單元ι1〇6 ^ 以及另一個變容器單元1306_1,其中,變容器單元11〇6 i 的第郎點N1以及第一師點N2分別輕接到第一電壓VA以 及第二電壓VB_1,而變容器單元13〇6_的第一節點Ni以及 第二節點N2分別耦接到第三電壓VC以及第二電壓VB i ; 除此之外,負載裝置1104,—N包含如第11圖所示的變容器 單元1106一Ν以及另一個變容器單元ΐ3〇6_Ν,其中,變容器 單元1106一Ν的第一節點Ν1以及第二節點Ν2分別輕接到第 一電壓VA以及第二電壓VB_N,而變容器單元η〇6_Ν的 第一郎點Ν1以及第一郎點Ν2分別搞接到第三電壓以及 21 201106621 第二電壓VB_N。特別地,在一個實現中,第一電壓VA以 及第三電壓VC作為控制電壓,配置為用於調整變容器單元 1106_1、…、1106_N、1306_1、...、1306_N 的電容性值, 而第二電壓VB_1、...、VB_N作為參考電壓(例如,多個參 考電壓的每一者均具有固定的電壓準位)。在另一個實現 中,第二電壓VB_1、...、VB_N作為控制電壓,配置為用 於調整多個變容器單元11〇6_1、…、1106_N、1306_1、…、 1306_N的電容性值,以及第一電壓VA以及第三電壓VC作 為參考電壓(例如,多個參考電壓的每一者均具有固定的電 壓準位)。 進一步說,如果結果大致相同,那麼附加的組件就可以 添加到示例移相器900、1000以及1100上。例如,在示例 移相器900、1000以及1100的每一者中,具有大電容性值 的一個電容器可插入到連接埠以及對應的負載裝置之間。 在一個實施例中,施加到上述變容器單元的控制電壓可 以自數位至類比轉換器(Digital-To-Analog Converter,DAC) 而產生,而數位至類比轉換器將數位控制值轉換為期望的控 制電壓。在一個替換設計中,可以使用控制電壓的直接數位 控制。以如第4圖所示的負載裝置400為例。在第一電壓作 為參考電壓用於所有變容器單元的情況下,第二電壓 VB_1、VB_2、...、VB_N的每一者作為控制電壓,用於對 應的變容器單元,每個控制電壓均數位控制為具有對應邏輯 高值“1”的第一電壓準位(例如,VDD)或者對應邏輯低值 “0”的第二電壓準位(例如,GND)。換言之,多個變容器單 22 201106621 元的每一者均數位控制為具有最大的電容性值或者最小的 電容性值。以此方式,使用控制電壓的恰當的控制,就可以 設定負載裝置的期望的電容性值。更具體地,實現的變容器 單元的總數依賴於期望的電容解析度(resolution)以及範圍 (range)。應當注意到,控制電壓的前述數位控制方案對於上 述的示例多個負載裝置的每一者均適用。 在上述示例移相器900、1000以及1100的每一者中, 移相器核心902、1002以及1102為所需組件,儘管如此, 這絕沒有暗示任何具有本發明實現的示例負載裝置的移相 器應該包含移相器核心,例如正交耦合器。第14圖為根據 本發明的移相器的第四實施例的示意圖。移相器1400包含 如第7圖所示的負載裝置700,而且移相器1400用於根據差 動輸入訊號,在差動輸出璋1404產生一個差動輸出訊號, 差動輸出訊號包含S_OUT+以及S_OUT-,而在差動輸入埠 1402接收到的差動輸入訊號包含S_IN+以及S_IN-。應當注 意到,在移相器1400中沒有使用移相器核心。舉例說明, 但是不限於此,移相器1400的核心功能僅僅使用負載裝置 700實現,而負載裝置700配置為使用差動拓撲。因此,如 第14圖所示,第一變容器單元702_1的第一節點N1以及第 二變容器單元7〇6_1的第一節點N1分別耦接到差動輸入埠 1402的第一輸入端P_IN+以及第二輸入端P_IN-,而第一變 容器單元7〇4_J的第一節點N1以及第二變容器單元708_J 的第一節點N1分別耦接到差動輸出埠1404的第一輸出端 P—OUT+以及第二輸出端P_OUT-。 23 201106621 第15圖為根據本發明的移相器的第五實施例的示意 圖。移相器1500包含如第8圖所示的負載裝置800,而移相 器1500用於根據一個差動輸入訊號,在一個差動輸出埠 1504,產生包含S__OUT+以及S_OUT-的差動輸出訊號,而 該差動輸入訊號為在差動輸入埠1502接收的包含S_IN+以 及S_IN-的差動輸入訊號。應當注意到,在移相器1500中沒 有使用移相器核心。舉例說明,然不以此為限,移相器1500 的核心功能僅僅使用負載裝置800而實現。因此,如第15 圖可以看出,第一變容器單元802_1的第一節點N1以及第 二變容器單元804_1的第一節點N1分別耦接到差動輸入埠 1502的第一輸入端Ρ_ΙΝ+以及第二輸入端P_IN-,而第一變 容器單元802_N的第一節點N1以及第二變容器單元804_N 的第一節點N1分別耦接到差動輸出埠1504的第一輸出端 P_OUT+以及第二輸出端P_OUT-。 進一步說,如果結果大致相同,那麼附加的組件(例如, 具有大電容性值的電容器)就允許插入到示例移相器700以 及800與差動輸入埠1402以及1502之間;相似地,附加的 組件(例如,具有大電容性值的電容器)就允許插入到示例移 相器700以及800與差動輸出埠1404以及1504之間。 請注意,包含在本發明的上述示例負載裝置以及移相器 的每一者中的電路組件的數量僅用於說明本發明。例如,本 發明的一個圖示中一個示例負載裝置的變容器單元的數 量,絕不暗示出在本發明的另一個圖示中的另一個示例負載 裝置就需要實現相同或者不同的數量變容器單元;本發明的 24 201106621 個圖示中個示例負载裝置的感性組件的 ^本㈣料-個圖示中的另_個示例負載裝 =現相同或者不同數量的感性組件;以及本發明的-個圖干 =個示例移相器的負載裝置的數量,絕不暗示出在本發明 不難,不中的另—個示例移相11就需要實現相同或者 人5 $的負载裝置。簡而言之’基於實際的設計需求,包 έ在本發0㈣上述示例貞餘置以及移相n巾的電路细件 的數量均為可以調整的。 _任何本領域習知技藝者可以了解到,受到本發明的啟 不以對本發明的裝置和方法進行更動與潤飾。因此,上 述揭路不應理解為僅用於限制本發明,本發明的保護範圍視 所附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖為傳統的反射型移相器的示意圖。 第2圖為根據先前技術的變容器的非線性c_v曲線的示 意圖。 第3圖為根據本發明的負載裝置的第一實施例的示意 圖。 第4圖為根據本發明的負載裝置的第二實施例的示意 圖。 第5圖為根據本發明的負載裝置的第三實施例的示意 圖0The node N1 is coupled to the second voltage voltage VB-1 of the voltage of the second node N2 of the first electric one N2, the first voltage VA of the VBN unit 1106_1 '..., 1106_N, and the varactor unit 11〇 6_1,..., respectively, the handle is connected to contain at least two different VB_1, ..., VB_N. For example, all of the plurality of seconds have voltages different from each other. In Fig. 11, each of the illustrated load devices has a varactor unit inside. Nonetheless, the load device shown in the 'n' diagram may be configured to include more than one varactor that is between the first and second voltages. Figure 12 is a diagram showing an alternative design of the negative phase of the example phase shifter 1100 shown in Figure 11 (10) comprising a plurality of varactor units: a single two 1? and a varactor unit 1208 and a An inductive component (eg, a transmission line) L, between the inductive component (eg, transmission line) L_unit crane and the varactor unit 12G8. Each of the / can be seen from the 帛12 diagram has the face-to-point m of the first-voltage μ, and the coupling to the second voltage should be noted, based on a picture as shown in Fig. 12: Please ask. Any variation/modification of the unloaded load device 1204 that is not in the garden, (iv) follows the spirit of the present invention. For example, with load = 1204 as the basic unit, it can be very convenient, and the unit is also loaded with the load device with two varactors = 兀 (four) more than two varactors - the first voltage Between VA and the second voltage VB. * J〇" - It should be noted that the mothers of 1104J, ..., 11〇4 N are placed in multiple loads at the f-end (four)-, and a bypass capacitor can be included in the case. Next, each of the multiple bypass capacitors 20 201106621 is coupled between the AC ground and the corresponding second power of the second voltage VB—丨, .., and VB_N. Those skilled in the art can readily understand a plurality of load devices (10) after the above paragraphs directly related to the example load device 400 shown in FIG. 4 and the example load device 6 shown in FIG. The single-ended configuration of each of i, ..., 1104_Ν, for the sake of brevity: no further details are provided here. Progressively, the load device can also be configured as a differential topology to meet the needs of a particular application, such as a differential phase shifter. Therefore, in the alternative phase shifter design, the load devices U04j, 11() 4_n included in the phase shifter 1100 can use the load device 1104, instead, the load devices 1104, -1, .., 1104, each of which is configured as a differential topology, that is, in the case where each of the load devices 11〇4_1, . . . , 1104_Ν is arranged in a differential topology, the second voltage VB-1, ... Each of νΒ 可以 can be used as a virtual ground for the example implementation of the present invention. As shown in FIG. 4, the load device 1104'_1 includes the varactor unit ι1 〇 6 ^ as shown in FIG. 11 and another varactor unit 1306_1, wherein the varactor point N1 of the varactor unit 11 〇 6 i and The first point N2 is lightly coupled to the first voltage VA and the second voltage VB_1, respectively, and the first node Ni and the second node N2 of the varactor unit 13〇6_ are respectively coupled to the third voltage VC and the second voltage VB. i; in addition, the load device 1104, -N comprises a varactor unit 1106 as shown in Fig. 11 and another varactor unit ΐ3〇6_Ν, wherein the first node 变1 of the varactor unit 1106 And the second node Ν2 is lightly connected to the first voltage VA and the second voltage VB_N, respectively, and the first 朗 point Ν1 of the varactor unit η〇6_Ν and the first lang point Ν2 are respectively connected to the third voltage and 21 201106621 second Voltage VB_N. In particular, in one implementation, the first voltage VA and the third voltage VC are configured as control voltages for adjusting capacitive values of the varactor units 1106_1, . . . , 1106_N, 1306_1, . . . , 1306_N, and second The voltages VB_1, . . . , VB_N are used as reference voltages (eg, each of the plurality of reference voltages has a fixed voltage level). In another implementation, the second voltages VB_1, . . . , VB_N are configured as control voltages for adjusting capacitance values of the plurality of varactor units 11〇6_1, . . . , 1106_N, 1306_1, . . . , 1306_N, and A voltage VA and a third voltage VC are used as reference voltages (eg, each of the plurality of reference voltages has a fixed voltage level). Further, if the results are substantially the same, additional components can be added to the example phase shifters 900, 1000, and 1100. For example, in each of the example phase shifters 900, 1000, and 1100, a capacitor having a large capacitive value can be inserted between the port and the corresponding load device. In one embodiment, the control voltage applied to the varactor unit can be generated from a digital to a analog-to-analog converter (DAC), and the digital to analog converter converts the digital control value to a desired control. Voltage. In an alternative design, direct digital control of the control voltage can be used. The load device 400 as shown in Fig. 4 is taken as an example. In the case where the first voltage is used as the reference voltage for all the varactor units, each of the second voltages VB_1, VB_2, . . . , VB_N is used as the control voltage for the corresponding varactor unit, and each control voltage is The digital control is a first voltage level (eg, VDD) having a corresponding logic high value of "1" or a second voltage level (eg, GND) corresponding to a logic low value of "0". In other words, each of the plurality of varactors 22 201106621 elements is controlled to have the largest capacitive value or the smallest capacitive value. In this way, the desired capacitive value of the load device can be set using appropriate control of the control voltage. More specifically, the total number of varactor units implemented depends on the desired capacitance resolution and range. It should be noted that the aforementioned digital control scheme for control voltage is applicable to each of the above-described example multiple load devices. In each of the example phase shifters 900, 1000, and 1100 described above, phaser cores 902, 1002, and 1102 are required components, however, this in no way implies any phase shifting of an example load device having implementations of the present invention. The device should contain a phase shifter core, such as a quadrature coupler. Figure 14 is a schematic view of a fourth embodiment of a phase shifter in accordance with the present invention. The phase shifter 1400 includes a load device 700 as shown in FIG. 7, and the phase shifter 1400 is configured to generate a differential output signal at the differential output port 404 according to the differential input signal, and the differential output signals include S_OUT+ and S_OUT. -, and the differential input signal received at the differential input 埠 1402 includes S_IN+ and S_IN-. It should be noted that no phase shifter core is used in phase shifter 1400. By way of example, but not limited to, the core functionality of phase shifter 1400 is only implemented using load device 700, while load device 700 is configured to use a differential topology. Therefore, as shown in FIG. 14, the first node N1 of the first varactor unit 702_1 and the first node N1 of the second varactor unit 7〇6_1 are respectively coupled to the first input terminal P_IN+ of the differential input port 1402 and The second input terminal P_IN-, and the first node N1 of the first varactor unit 7〇4_J and the first node N1 of the second varactor unit 708_J are respectively coupled to the first output terminal P-OUT+ of the differential output 埠1404 And a second output terminal P_OUT-. 23 201106621 Figure 15 is a schematic view of a fifth embodiment of a phase shifter in accordance with the present invention. The phase shifter 1500 includes a load device 800 as shown in FIG. 8, and the phase shifter 1500 is configured to generate a differential output signal including S__OUT+ and S_OUT- at a differential output 埠1504 according to a differential input signal. The differential input signal is a differential input signal including S_IN+ and S_IN- received at the differential input 埠1502. It should be noted that no phase shifter core is used in phase shifter 1500. For example, the core function of the phase shifter 1500 is only implemented by using the load device 800. Therefore, as can be seen from FIG. 15, the first node N1 of the first varactor unit 802_1 and the first node N1 of the second varactor unit 804_1 are respectively coupled to the first input terminal Ρ_ΙΝ+ of the differential input port 1502 and a second input terminal P_IN-, and the first node N1 of the first varactor unit 802_N and the first node N1 of the second varactor unit 804_N are respectively coupled to the first output terminal P_OUT+ and the second output of the differential output port 1504 End P_OUT-. Further, if the results are substantially the same, then additional components (e.g., capacitors having large capacitive values) are allowed to be inserted between the example phase shifters 700 and 800 and the differential inputs 埠 1402 and 1502; similarly, additional Components (eg, capacitors having large capacitive values) are allowed to be inserted between the example phase shifters 700 and 800 and the differential output ports 1404 and 1504. It is noted that the number of circuit components included in each of the above-described example load devices and phase shifters of the present invention is merely illustrative of the present invention. For example, the number of varactor units of one exemplary load device in one illustration of the present invention does not imply that another example load device in another illustration of the present invention would require the same or different number of varactor units. 24 of the inventions of the present invention, the fourth embodiment of the inductive component of the exemplary load device, the other example load device = the same or a different number of inductive components; and the present invention Figure = the number of load devices of an example phase shifter, which in no way implies that it is not difficult in the present invention, and another example of phase shifting 11 requires the implementation of the same or a human $5 load device. In short, based on the actual design requirements, the number of circuit details of the above example 贞 remaining and phase shifting n-bands can be adjusted. Anyone skilled in the art will appreciate that the apparatus and method of the present invention may be modified and retouched by the present invention. Therefore, the above description should not be taken as limiting the invention, and the scope of the invention is defined by the scope of the appended claims. [Simple description of the drawing] Fig. 1 is a schematic view of a conventional reflective phase shifter. Figure 2 is a schematic illustration of a non-linear c_v curve of a varactor according to the prior art. Figure 3 is a schematic illustration of a first embodiment of a load device in accordance with the present invention. Figure 4 is a schematic illustration of a second embodiment of a load device in accordance with the present invention. Figure 5 is a schematic view of a third embodiment of a load device in accordance with the present invention.
25 201106621 第6圖為根據本發明的負载襞置的第四實施例的示意 圖。 第7圖為根據本發明的負載裳置的第五實施例的示意 圖。 第8圖為根據本發明的負載褽置的第六實施例的示意 圖。 第9圖為根據本發明的移相器的第一實施例的示意圖。 第10圖為根據本發明的移相器的第二實施例的示意圖。 第11圖為根據本發明的移相器的第三實施例的示意圖。 第12圖為如第11圖所示的示例移相器所用的負載裝置 的替換設計。 第13圖為配置為差動拓撲(t〇p〇l〇gy)的負載裝置的示例 實現的示意圖。 第14圖為根據本發明的移相器的第四實施例的示意圖。 第15圖為根據本發明的移相器的第五實施例的示意圖。 【主要元件符號說明】 100〜移相器; 102〜正交耦合器; 104A、104B〜負載裝置; S JN〜輸入訊號; S_0UT〜輸出訊號; P1〜輸入埠; P2〜直通埠; 26 201106621 P3〜耦合埠; P4〜隔離埠;25 201106621 Figure 6 is a schematic illustration of a fourth embodiment of a load device in accordance with the present invention. Fig. 7 is a schematic view showing a fifth embodiment of the load skirt according to the present invention. Fig. 8 is a schematic view showing a sixth embodiment of the load device according to the present invention. Figure 9 is a schematic illustration of a first embodiment of a phase shifter in accordance with the present invention. Figure 10 is a schematic illustration of a second embodiment of a phase shifter in accordance with the present invention. Figure 11 is a schematic illustration of a third embodiment of a phase shifter in accordance with the present invention. Figure 12 is an alternative design of the load device used in the example phase shifter shown in Figure 11. Figure 13 is a schematic diagram of an example implementation of a load device configured as a differential topology (t〇p〇l〇gy). Figure 14 is a schematic view of a fourth embodiment of a phase shifter in accordance with the present invention. Figure 15 is a schematic view of a fifth embodiment of a phase shifter in accordance with the present invention. [Main component symbol description] 100~ phase shifter; 102~ quadrature coupler; 104A, 104B~ load device; S JN~ input signal; S_0UT~ output signal; P1~ input 埠; P2~ straight through; 26 201106621 P3 ~ coupling 埠; P4 ~ isolation 埠;
Cl〜變容器;Cl~ variable container;
Cbypass〜旁通電容器; L〜感性組件,傳輸線; 300〜負載裝置; 302_1、302_2、...、302_N 〜變容器單元; N1〜第一節點; N2〜第二節點; VA〜第一電壓; VB_1、VB_2、VB_N〜第二點壓;Cbypass~bypass capacitor; L~ inductive component, transmission line; 300~ load device; 302_1, 302_2, ..., 302_N~varactor unit; N1~first node; N2~second node; VA~first voltage; VB_1, VB_2, VB_N~ second point pressure;
Vctrl〜控制電壓;Vctrl~ control voltage;
Vref〜參考電壓; 400〜負載裝置; 402_1、402_2、...、402_1 〜變容器單元; VB_1、VB_2、…、VB_I、VB,_1、VB,_2、…、VB,_J 〜第二電壓; 4〇4_1、404_2、…、404_J〜變容器單元; 500〜負載裝置; L_1、…、L_M〜感性組件; 502_1、502_2、…、502_N-1、502_N〜變容器單元;Vref~reference voltage; 400~ load device; 402_1, 402_2, ..., 402_1~ varactor unit; VB_1, VB_2, ..., VB_I, VB, _1, VB, _2, ..., VB, _J ~ second voltage; 4〇4_1, 404_2, ..., 404_J~ varactor unit; 500~ load device; L_1, ..., L_M~ inductive component; 502_1, 502_2, ..., 502_N-1, 502_N~ varactor unit;
Nl,、N2’〜節點; 600〜負載裝置; 602_1、602_2、…、602_N-1、602_N〜變容器單元; 27 201106621 700〜負載裝置; 702_卜 702_2、…' 702_I,704J、704_2、…、704_J〜 第一變容器單元; 706J、706_2、…、706_1、708_卜 708_2、…、708_J〜 第二變容器單元; L以及L’〜感性組件; VC〜第三電壓; 800〜負載裝置; 802J、802_2、…、802_N-卜802_N〜第一變容器單元; 804_1、804_2、…、804_N-1、804—N〜第二變容器單元; L’_l、…、L’_M〜感性組件; 900〜移相器; 902〜移相器核心; S_IN~輸入訊號, P_IN〜輸入璋; S_OUT〜輸出訊號; P_1、…、P_N〜連接埠; P_OUT〜輸出埠; 904_1〜負載裝置; 906J、906_2、…、906_L、908_卜 908_2、...、908—K 〜變容器單元; VA_1、VA_N~第一電壓; VB’ l、VB’_2、...、VB’_K〜第二電壓; 1000〜移相器; 28 201106621 1002〜移相器核心; 1004_1、…、1004_N〜負載裝置; 1006一 1、1006_2、…、1006JL-1、1006_L、1008_1、 1008_2、…、1008_K-1、1008_K〜變容器單元; 1100〜移相器; 1102〜移相器核心; 1104_1、...、1104_Ν〜負載裝置; 1106_1、...、1106_Ν〜變容器單元; 1204〜負載裝置; 1206、1208〜變容器單元; 1104’_1、…、1104’_Ν〜負載裝置; 1306J、1306_Ν〜變容器單元; 1400〜移相器; 1402〜差動輸入埠; 1404〜差動輸出埠; S_OUT+、S_OUT-〜差動輸出訊號; S_IN+、S_IN-〜差動輸入訊號; 1500〜移相器; 1502〜差動輸入埠; 1504〜差動輸出埠。Nl, N2'~ node; 600~ load device; 602_1, 602_2, ..., 602_N-1, 602_N~ varactor unit; 27 201106621 700~ load device; 702_b 702_2, ...' 702_I, 704J, 704_2,... 704_J 〜 _ _ _ _ _ _ _ 802J, 802_2, ..., 802_N-b 802_N~ first varactor unit; 804_1, 804_2, ..., 804_N-1, 804-N~ second varactor unit; L'_l, ..., L'_M~ inductive component 900~ phase shifter; 902~ phase shifter core; S_IN~ input signal, P_IN~ input 璋; S_OUT~ output signal; P_1, ..., P_N~ connection 埠; P_OUT~ output 埠; 904_1~ load device; 906J, 906_2, ..., 906_L, 908_b 908_2, ..., 908-K ~ varactor unit; VA_1, VA_N~ first voltage; VB' l, VB'_2, ..., VB'_K ~ second voltage ; 1000~ phase shifter; 28 201106621 1002~ phase shifter core; 1004_1,...,1004_N~loading device; 1 006-1, 1006_2, ..., 1006JL-1, 1006_L, 1008_1, 1008_2, ..., 1008_K-1, 1008_K~ varactor unit; 1100~ phase shifter; 1102~ phase shifter core; 1104_1,...,1104_Ν ~ load device; 1106_1, ..., 1106_Ν~ variable container unit; 1204~ load device; 1206, 1208~ varactor unit; 1104'_1, ..., 1104'_Ν~ load device; 1306J, 1306_Ν~ variable container unit; 1400~ phase shifter; 1402~ differential input 埠; 1404~ differential output 埠; S_OUT+, S_OUT-~ differential output signal; S_IN+, S_IN-~ differential input signal; 1500~ phase shifter; 1502~ differential Input 埠; 1504~ differential output 埠.
2929
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98126722A TW201106621A (en) | 2009-08-10 | 2009-08-10 | Phase shifter and related load device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98126722A TW201106621A (en) | 2009-08-10 | 2009-08-10 | Phase shifter and related load device |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201106621A true TW201106621A (en) | 2011-02-16 |
Family
ID=44814400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98126722A TW201106621A (en) | 2009-08-10 | 2009-08-10 | Phase shifter and related load device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201106621A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10734972B1 (en) | 2019-11-28 | 2020-08-04 | Industrial Technology Research Institute | Switch-type phase shifter |
-
2009
- 2009-08-10 TW TW98126722A patent/TW201106621A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10734972B1 (en) | 2019-11-28 | 2020-08-04 | Industrial Technology Research Institute | Switch-type phase shifter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106209093B (en) | A kind of digital fractional frequency-division phase-locked loop structure | |
US9065453B2 (en) | Signal distribution networks and related methods | |
Zhu et al. | A 21 to 30-GHz merged digital-controlled high resolution phase shifter-programmable gain amplifier with orthogonal phase and gain control for 5-G phase array application | |
US9148156B2 (en) | Phase detection circuits and methods | |
CN101917195B (en) | High-precision and low-offset charge comparator circuit | |
WO2016029000A2 (en) | Split transformer based lc-tank digitally controlled oscillator | |
CN107040484B (en) | Mixed analog-digital pulse width modulator and application method and system thereof | |
US20080252386A1 (en) | Quadrature-phase voltage controlled oscillator | |
US8779867B2 (en) | Split varactor array with improved matching and varactor switching scheme | |
KR20080043978A (en) | High resolution time-to-digital converter | |
TW202223584A (en) | Wideband quadrature phase generation using tunable polyphase filter | |
US9231549B2 (en) | Phase shifter and and related load device | |
CN104601148A (en) | Digital voltage ramp generator | |
CN104320112B (en) | A kind of accurate adjustable two-way clock generation circuit of phase place | |
CN107046417B (en) | Integrated analog delay line for pulse width modulator | |
TW201106621A (en) | Phase shifter and related load device | |
US20110012684A1 (en) | Local oscillator | |
Yu et al. | A 60-GHz vector summing phase shifter with digital tunable current-splitting and current-reuse techniques in 90 nm CMOS | |
US8576106B2 (en) | Analog-digital converter | |
US20210376466A1 (en) | Phase shifter system and method | |
TWI279073B (en) | Linearable tuning varactor circuit has and its linear tuning method | |
Voorman | The gyrator as a monolithic circuit in electronic systems | |
Tsimpos et al. | Multi-rate phase interpolator for high speed serial interfaces | |
CN106209088B (en) | A kind of orthogonal two-divider of high energy efficiency high-precision | |
Chabchoub et al. | Highly linear voltage-to-time converter based on injection locked relaxation oscillators |