TW201106408A - Nanotube ESD protective devices and corresponding nonvolatile and volatile nanotube switches - Google Patents
Nanotube ESD protective devices and corresponding nonvolatile and volatile nanotube switches Download PDFInfo
- Publication number
- TW201106408A TW201106408A TW98126838A TW98126838A TW201106408A TW 201106408 A TW201106408 A TW 201106408A TW 98126838 A TW98126838 A TW 98126838A TW 98126838 A TW98126838 A TW 98126838A TW 201106408 A TW201106408 A TW 201106408A
- Authority
- TW
- Taiwan
- Prior art keywords
- nanotube
- electrode
- volatile
- switch
- conductive
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
201106408 六、發明說明: 【相關申請案之交互參照資料】 本發明主張美國專利申請案號12/537,651之優先權,其申 請曰為2009年8月7日,名稱為「奈米管靜電放電保護 裝置及對應的非揮發性與揮發性奈米管開關(Nanotube ESD Protective Devices and Corresponding Nonvolatile and Volatile Nanotube Switches)」。 【發明所屬之技術領域】 本發明一般而言是有關於靜電放電(ESD)保護,且特別是 有關於在電路之形成中使用奈米管開關元件以提高半導 體、混合式半導體與奈米管以及唯-奈米管電路 (nanotube-only circuits)之靜電放電(EDS)保護。 【先前技術】 在每個世代之電子裝置中,由靜電放電(ESD)所產生的電 氣過壓係為一項主要問題,其譬如產生氧化物並導致例如 串聯電阻破裂、開路與短路之接合故障。奈米管電阻可能 用以置換譬如目釗所使用的例如多晶體之串聯電阻,並改 善對於ESD感應故障之保護裝置電阻。 圖1說明一種習知技術之保護裝置(PD)概要圖1〇,其包含 一串聯電阻16與數個半導體式二極體18。施加至輸入焊 墊12之一 ESD脈波係藉由電阻16與半導體式二極體18 而衰減,其降低施加至節點Π之ESD電壓,藉以避免損 4 201106408 壞所保護的電路14,如參考書HB Bakoglu,「供VLSI 用之電路、互連以及封裝」,Addison-Wesley出版公司, 1990年,第46-51頁中所說明的。對於某些輸入或輸出焊 塾而言’不存在有串聯電阻16,而只使用半導體式二極體 18。電阻16可能藉由使用譬如多晶體或擴散層,或其他 適當的電阻式材料而製造’且可能在譬如10炱100,000 歐姆之範圍内。藉由使用多晶體或擴散層而製造之習知電 阻,譬如無法以ESD脈波的形式存在,而由於電流密度 與溫度之組合,使電阻譬如變成開路。 例如那些概要顯示於圖丨中之習知技術之保護裝置結構 10八有s如1.5 pF之南相對電容值’如說明於Bertin 等人之美國專利6,141,245中。如果一個輸出驅動器在一 記憶體位址線中驅動譬如八個並聯晶片,則對電容負荷有 貢獻之保護裝置係為12pF。圖3顯示美國專利6,141,245 所顯不之習知技術結構39,其中熔絲4〇係與習知保護裝 置連同㈣焊—射義加,錢電流可被強迫在輸入 悍塾鏡絲焊塾之間。在將此元件m㈣之後,電流 被迫經由溶絲’直到其開路地切斷這些受保護電路與保 裝置之連接,以減少電容負冑,如說明於美國專利 6,141,245。因為熔絲燒斷操作是不可逆的’所以無法在沒 有ESD損壞之高風險的情況下再移除與處理此元件。201106408 VI. Description of the invention: [Reciprocal reference material of the relevant application] The present invention claims the priority of U.S. Patent Application Serial No. 12/537,651, which is filed on August 7, 2009, entitled "Nano-tube Electrostatic Discharge Protection" The device and the corresponding non-volatile and volatile nanotube switch (Nanotube ESD Protective Devices and Corresponding Nonvolatile and Volatile Nanotube Switches). TECHNICAL FIELD OF THE INVENTION The present invention relates generally to electrostatic discharge (ESD) protection, and more particularly to the use of nanotube switching elements in the formation of circuits to enhance semiconductors, hybrid semiconductors, and nanotubes, and Electrostatic discharge (EDS) protection of nanotube-only circuits. [Prior Art] In each generation of electronic devices, electrical overvoltages generated by electrostatic discharge (ESD) are a major problem, such as the generation of oxides and the failure of, for example, series resistance cracking, open circuit and short circuit. . The nanotube resistance may be used to replace, for example, the series resistance of the polycrystal used, and to improve the resistance of the protection device for ESD induced faults. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates a prior art protection device (PD) schematic diagram comprising a series resistor 16 and a plurality of semiconductor diodes 18. The ESD pulse applied to one of the input pads 12 is attenuated by the resistor 16 and the semiconductor diode 18, which reduces the ESD voltage applied to the node , to avoid damage to the circuit 14 protected by the 201106408, as described. Book HB Bakoglu, "Circuits, Interconnects, and Packages for VLSI," Addison-Wesley Publishing Company, 1990, pp. 46-51. For some input or output solder dies, there is no series resistor 16 and only the semiconductor diode 18 is used. Resistor 16 may be fabricated by using, for example, a polycrystalline or diffusion layer, or other suitable resistive material, and may be in the range of, for example, 10 炱 100,000 ohms. Conventional resistors fabricated by using polycrystals or diffusion layers, for example, cannot exist in the form of ESD pulses, which, due to the combination of current density and temperature, cause the resistance to become an open circuit. For example, the structure of the protective device of the prior art shown in Fig. 10 has a relative capacitance value of, e.g., 1.5 pF, as described in U.S. Patent No. 6,141,245 to Bertin et al. If an output driver drives, for example, eight parallel chips in a memory address line, the protection device that contributes to the capacitive load is 12pF. Figure 3 shows a prior art structure 39 not shown in U.S. Patent No. 6,141,245, in which a fuse 4 is attached to a conventional protective device along with (4) solder-and-sense, and the current can be forced into the input mirror wire. Between the welds. After this element m(d), the current is forced to sever the connection of the protected circuit to the protection device via the filament ' until it is open circuited to reduce the capacitance 胄, as illustrated in U.S. Patent 6,141,245. Because the fuse blow operation is irreversible, it is not possible to remove and process this component without the high risk of ESD damage.
石炭奈米管可以谷§午超過鋼之電流密度100倍之電流密产 顯現高熱傳導係數,且並未由於過度加熱而失效,如★兒明 於參考文獻Srivastava與Banei.jee,「一種供奈米級^LSI 201106408 技術用之金屬與碳奈米管互連之比較縮放分析」,21世紀 國際VLSI多重内連線學術研討會(VMIC)之會議記錄, 2004 年 9 月 39-10 月 2 日,Waikoloa,HI,第 393-398 頁。 碳奈米官之這些與其他特性’係說明於於此所併入之 Nantero碳奈米管專利、專利公開、明細表等。 【發明内容】 本發明提供非揮發性奈米管開關用之裝置設計方法。 尤ί L本發明提供—種奈米管開關,其包含:—控制電極; 奈米官兀件(奈米管元件包含單壁奈米管);至少一信號 ,極:電痛接至奈米管元件;非導電奈米粒子,黏 不米皆疋件之至少一表面’且其中該等非導電奈米粒 奈米管元件料於㈣電極_L方。 於另一實施例中,本發明提供一種奈米管開關,其包 :控制電極;;奈米管元件(奈米管元件包含單壁奈米 至少-信號電極’電氣祕至奈来管 米t子,黏接至奈求管元件之至少-表面,且其4;; 於奈米管元件二:二:使至少一導電奈米粒子位 中’Λ發明提供—種奈綺關,其包含: 管);至少r,:官兀件(奈米管元件包含單壁奈米 罨不未s(早層網之非導電奈米 洞)’且其中單層網之非導電奈米管係位於與二 6 201106408 接’孔洞露出控制電極之 於橫越過_,以料贿供—奈歸元件係位 【實施方式】 碳奈米管保㈣ 子裝置保護之機备,1 '種拯间目刖的電 置添加至需要’、、猎將非揮發性碳奈米管保護裝 知技術它們的結構之一部分之習 具有比目前所使用‘tit發性奈米管保護裝蝴 將非揮發性夺判°政置低得多的附屬電容值,因此 骆π厶二 保護裝置添加至既存的電子仵镬梦署 護裝置置換因此以非揮發性碳奈米管保 且俠纪些裊置減少了輸入盥 一 促進較高的操作速度。碳夺f管二出:電☆負何,猎以 何基板(例如石夕、陶蔓裝置可能被使用在任 任何層級之也件(例如θ '且可㈣此被附加於 在於-,個層級二:二=二及可能存 右蚀米官(nanotube-only)邏輯或記憶體(於此沒 f之半導2技術之保護裝置結構之例如半導體式二極 夫體結構)的情況下,非揮發性奈米管保護裝置可 此被代替使用以提供靜電放電(ESD)倾。於操作中,晶 片及/或基板及/或卡及/或板可能被設定在停留在一定: 置之啟動的非揮發性ESD保護模式下以供元件處理目的 用’接耆當系統被通電時,ESD保護模式可能未被啟動。 201106408 如果70件待被移除,且受到更進一步的處理,則非揮發性 保濩模式可能在從系統移除之前被啟動。非揮發性奈米管 保濩裝置亦可被使用以保護系統免受系統通電問題影 曰/其係藉由首先啟動之非揮發性奈米管保護裝置,接著 使系統電源通電’然後使非揮發性奈米管保護裝置未啟動 以供系統操作於任何層級之組件(晶片、基板、卡、板)或 在一個層級以上之組件上。 或者’在唯·奈米管邏輯或記憶體(於此沒有使用於習 知技術保護裝置結構之例如半導體式二極體之半導體結 的情況下,揮發性奈米管保護裝置可能被代替使用以 提供靜電放電保護。於操作中,可能利用正常地藉由£SD 感應電壓而未被啟動(〇FF)與被啟動(turned_〇n)之揮發性 奈米官保護裝置,來保護晶片及/或基板及/或卡及/或板。 電子組件可能受到揮發性與非揮發性奈米管保護裝 置之組合保護。 使用電流保護裝置方法之SWNT電阻以供更好的 ESD保護用 圖2A顯示保護裝置結構2〇之平面視圖,而圖2B顯 示保濩裝置結構20之剖面AA,,其中保護裝置10中之習 知串如電阻16已被碳奈米管電阻24所置換。碳奈米管電 阻係說明於美國臨時專利申請案第6G/6U,765號中,其名 稱為「使用碳奈米管之阻抗元件」,申請日為2004年9月 21曰,其全部藉此列入作參考。如圖2A與2β所示,對 8 201106408 應於圖1中之焊墊12之焊墊21 連接至碳奈米管電阻24,且碳夺ftt 22,其因而 由另一導體25連接至受賴且24之相對側藉 聯石炭奈米管電阻36之保護裝置^二圖2。顯示使用串 圖2A與沈所亍之π太半其t、誇之概要圖3〇。對應於 所不之兔奈未官電阻24 係藉由使用锼夺乎管不蚪右之奴奈永官電阻36 N論續=;;、'^;成=說:於所提及之 導體層與奈,管織物之_接 r田表::相較於在 ΐ二二“導體可具有在5至500 nm之範圍内的 知的較料體沈積方法而受到良 好控制’且可能由例如RU、Ti'cr、Ab W、Cu、Mo、、In、Tr、Ph c 认入感 11之金屬,與其他適當 的至屬,叹這些之組合所構成。金屬合金(例如Mu、The carbon-carbon nanotubes can exhibit a high heat transfer coefficient at a current density of 100 times the current density of the steel, and do not fail due to excessive heating. For example, the children are listed in the references Srivastava and Banei.jee, "a kind of Meter Grade LSI 201106408 Comparative Scale Analysis of Metal and Carbon Nanotube Interconnections for Technology", Proceedings of the 21st Century International VLSI Multiple Inline Symposium (VMIC), September 39-October 2, 2004 , Waikoloa, HI, pp. 393-398. These and other characteristics of the carbon nanotubes are described in the Nantero carbon nanotube patent, patent disclosure, schedule, etc. incorporated herein. SUMMARY OF THE INVENTION The present invention provides a device design method for a non-volatile nanotube switch.尤ί L The present invention provides a nanotube switch comprising: - a control electrode; a nano-manifold (a nanotube element comprising a single-walled nanotube); at least one signal, a pole: electroporation to the nano a tube element; a non-conductive nanoparticle, at least one surface of the binder, and wherein the non-conductive nanoparticle nanotube element is coated on the (four) electrode _L side. In another embodiment, the present invention provides a nanotube switch comprising: a control electrode; a nanotube element (the nanotube element comprises a single-walled nano-at least a signal electrode' electrical secret to a nai tube meter t Bonded to at least the surface of the tube element, and 4;; in the nanotube element 2: 2: at least one of the conductive nanoparticle sites in the 'invention provided by the invention, the species contains: Tube); at least r,: bureaucracy (nanotube element contains single-walled nano-twisted s (non-conductive nano-hole of early-layer mesh)' and the non-conductive nano-tube system of single-layer network is located 2 6 201106408 Connected to the hole to expose the control electrode to cross the _, to feed the bribe - Naigui component system [implementation] carbon nanotube protection (four) sub-device protection machine, 1 'vegetation witnessed The addition of electric devices to the need for ',, hunting, non-volatile carbon nanotube protection technology, a part of the structure of their habits than the current use of 'tit hair nanotube protection device will be non-volatile The government has a much lower value of the attached capacitor, so the Luo 厶 2 protection device is added to the existing electronic nightmare The replacement of the protection device is therefore protected by the non-volatile carbon nanotubes and the chirping reduces the input 盥 to promote the higher operating speed. The carbon captures the tube two out: the electricity ☆ negative, the hunting substrate (such as stone) In the evening, the pottery device may be used in any level (eg θ ' and (4) this is attached to -, level 2: 2 = 2 and may store the nanotube-only logic or memory In the case of a body (such as a semiconductor type diode structure), the non-volatile nanotube protection device can be used instead to provide an electrostatic discharge (ESD) tilt. In operation, the wafer and/or substrate and/or card and/or board may be set to stay in a certain: non-volatile ESD protection mode for startup purposes for component processing purposes. ESD protection mode may not be activated. 201106408 If 70 pieces are to be removed and further processed, the non-volatile protection mode may be activated before being removed from the system. Non-volatile nano tube protection濩 device can also be used to protect the system The system is protected from system power-on problems / it is powered by the first activated non-volatile nanotube protection device, then the system power is turned on' and then the non-volatile nanotube protection device is not activated for the system to operate at any level Components (wafer, substrate, card, board) or components above one level. Or 'in nanotube logic or memory (here not used in conventional technology to protect device structures such as semiconductor diodes In the case of a semiconductor junction, a volatile nanotube protection device may be used instead to provide electrostatic discharge protection. In operation, it may be initiated (〇FF) and activated using the voltage normally induced by £SD. (turned_〇n) a volatile nano-protective device to protect the wafer and/or substrate and/or card and/or board. Electronic components may be protected by a combination of volatile and non-volatile nanotube protection devices. The SWNT resistor using the current protection device method for better ESD protection is shown in FIG. 2A as a plan view of the protection device structure 2A, while FIG. 2B shows the profile AA of the security device structure 20, wherein the protection device 10 is known. A string such as resistor 16 has been replaced by carbon nanotube resistor 24. The carbon nanotube resistance is described in U.S. Provisional Patent Application No. 6G/6U, 765, entitled "Impact Element Using Carbon Nanotubes", and the application date is September 21, 2004, all of which For inclusion as a reference. As shown in FIGS. 2A and 2β, the pair of 201106408 is connected to the carbon nanotube resistor 24 of the pad 12 of the pad 12 of FIG. 1, and the carbon defts 22, which is thus connected to the reliance by another conductor 25. And the opposite side of 24 borrows the protective device of the tantalum carbon nanotube resistor 36 ^ 2 Figure 2. The use of the string is shown in Fig. 2A and Shen's π is too half, and the outline is shown in Fig. 3〇. Corresponding to the unrecognized rabbit Naiwei resistance 24, by using the 锼 锼 锼 蚪 蚪 奴 奴 奴 奴 36 36 36 36 36 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;奈,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Ti'cr, Ab W, Cu, Mo, In, Tr, Ph c recognize the metal of the sensation 11, and other suitable genus, sigh these combinations. Metal alloy (such as Mu,
TlCu、TAd、PbIn、Tiw)以及其他適當導體(包含cnt它 們本身(譬如單壁、包含雙壁之多壁)),或導電氮化物、氧 化物’或石夕化物或導電氮化物、氧化物,或石夕化物(例如TlCu, TAd, PbIn, Tiw) and other suitable conductors (including cnt themselves (such as single-wall, multi-wall containing double walls), or conductive nitrides, oxides or orthocyanides or conductive nitrides, oxides , or Shi Xi Compound (for example
RuN、RuO、TiN、TaN、CoSiJ TiSix)可能被使用。亦可 使用其他種類的導體或半導體、材料。圖案化導體之較佳 方法可能使用熟知的光刻技術與熟知的蝕刻技術,例如濕 蚀刻與反應性離子蚀刻(RJE)。 舉例而言,導體對於個別SWNT接觸電阻尺〇之典型 數值大約為10,000歐姆。因為有兩個串聯之接點,且相 較於Rc之個別S WNT電阻係可忽略的’所以對個別s wnt 而言’ SWNT電阻係為2 Rc。奈米管電阻值係2 Rc/N,於 201106408 此N係為形成奈米管 舉例而古,私盅+ 1 丁彳丁又個別SWNT之數目。 10 , ° $要的串聯電阻係為2,GGG歐姆,則需要 1〇個並聯的奈米管單纖維(N,。 唯-奈米管非揮發性奈米 -種關於附加如圖2〇斤示蔓裝置 所示之例如熔絲4〇之料 電阻36,或圖3 入譬如低更多的的解決方法,係用以導 米管保護裝ΐ S (約60 (0.060 pf))之唯-奈 方面係比^有1.5 F於圖1更進—步說明於下,其在電容 ,,' .P之電容的習知之保護裝置低更多,;^ 例而吕,如說明於美國專利等=置低更夕舉 號。這種軸護裝置係為對 了 一非揮發性奈米管保護裝置, ^二開關兀件之 聽_中,名稱為國專利申請案號 件」,申請曰為2004年8月^上制之奈米管式開關元 國專利申請案號_18,181 ^製造係說明於美 製造方法」,申請曰為2_年8 米管裝置結構與 :裝置需要供數個半導體式二曰。—不:= 板,如關於圖i所說明的個+導體基 需要半導體基板。因此,非未官保護裝置並不 + V體基板和譬如絕緣(非半導 板,而且與譬如剛性與撓性基板整合^璃从及有機基 說明的。非揮發性奈米管保 下所更進一步 裝置可能於一個或多個層級 201106408 之組件,例如於晶片級;及/或基板層級;及/或卡層級; 及/或板層級被附加,如關於圖u所更進一步說明於下。 非揮發性奈米管保護裝置可能用以保護習知之雙载子、 CMOS、SiGe、GaN、GaAs與其他化合物半導體裝置與電 路。又,非揮發性奈米管保護袭置亦可用以保護各種不同 之例如互補碳奈米管邏輯(CCNT邏輯)之唯·奈米管(沒有 半導體裝置/電路)邏輯晶片,化合式⑽⑽奈米管邏輯 晶片,如說明於美國專利申請案?虎1〇/917,794,名稱為「奈 米管式開關元件」’申請日為2〇〇4年8月13日;美國專 利申請錢議8,齡,名稱為「具有多重控制之奈米管 式;關兀件」’申請曰為2004年Μ 13曰;以及美國專 (NL〇GIC)m,巾請^「轉發性碳奈米管邏輯 部藉此併入作參考。e日為聰年UH)日,其全 一種提出的非揮發性+半〜 於圖4A之橫剖面400與圖^ Μ呆護裝置結構400係顯示 奈米管通道元件之上的之平面視圖中’其具有在 奈米管通道it件之下的放制)電極與輸出電極以及在 說明於下。結構400之擊與對向電極’如更進—步 號議8,⑻,名稱為國專利申請案 申請日為丽年Ml3/=置結構與製造方法」, 、,·由日。裝置働之操作係更進—+ 况明於美國專利中請案號聽18,〇85,名稱為「 = 制之奈米管式開關元件」,申請曰為2〇〇4年8月'3曰, 請注意在美國專利申請案號1〇/918,〇85中,名稱為「具多 201106408 重控制之奈米管式開關元件」,中請日為雇年 二Γ位置相對於奈米管通道元件已改變,以使輸入雷 /、輸出電極係在奈米管通道元件之下,*放電電極與對 =電:係在奈米管通道元件之上。這些電極對於奈米管通 、兀件之相触置縣影響裝置操作。可⑽下述= 利申請案之朗中總結出裝置結構特徵錢作;美國 申清案號10/918,18卜名稱為「奈米管裝置結構與製 法」’申請日為2004年8月η曰;以及美國專利申 说10/918,085 ’名稱$「具多重控制之奈米管式開心 件」,申請曰為2004年8月13曰。 於此所說明之非揮發性奈米管保護裝置結構* 〇 〇係適 合於寬廣範圍之尺寸與操作電壓。舉例而言,假設13〇 技術節點,且懸浮長度Lnt係屬於325 nm。切換寬度 係被設計成確保足夠數目之導電碳奈米管長達懸浮長$ LSUSP以達到期望電阻值。舉例而言,Wnt可能是坊伽。 然而,非揮發性奈米管保護裝置結構彻可能譬如被按比 例調整成20 nm之懸浮長度。 圖4A與4B顯不非揮發性奈米管保護裝置結構4㈨ 之橫别面與對應的平面視圖。NT裝置結構4〇〇之下部係 由埋入於絕緣層417中之放電電極(板)412與對向電極 (板)414與416所組成。在切換區域中,放電電極412係 與奈米管通道it件426隔開了厚度m之絕緣層(薄膜)应 間隙區域G2。電極414與41M系與奈米管通道元件似 隔開了厚度D2之絕緣層與間隙區域G1<jNT裝置結構働 12 201106408 ^部係由在切換區域中之輸入(控制)電極(板)4ιι、輸 =(板卵與415所組成。輸出電極413與415係盘太 =通道讀426之表面隔開了間隙G3。輸入電極411 、有厚度D3之下表面絕緣體,其係與奈米管通道元件你 1表面隔開了間隙G4。奈米管通道元件426在厚度上— 2 nm ’其係比其他導體、絕緣體與間隙尺寸來的 ::夕。奈米管通道元件426係電連接至信號電極(端 口 =22與424。信號電極422與424係位於相同的電壓下。 ς :個端子422或424之其中一個需要供裝置操作用。 =%極413與415係、藉由接點418與418,而分別連接至 被;:輸出對向電極414與416。於此例中,兩個輸出亦 電連接(未顯示)以形成單一輸出。 卿圖化係為非揮發性奈米管保護裝置400之概要描綠 笋# 2要的輪入電極411 ’與相關的絕緣體係對應至非揮 .奈米管保護裝置400之輸入411與相關的絕緣體 捏^具有相關的絕緣體之概要的放電電極412,係對應至非 陡$米官保護裝置400之放電電極412與相關的絕緣 卉/ L,概要的輸出電極413,與415’分別對應至非揮發性 不米管保護裴置400之對應的輸出電極413與415 ;概要 =奈米管通道元件4261係對應至非揮發性奈米管保護裝 八400之奈米管通道元件426;概要的信號電極422,與424, 二別對應至非揮發性奈米管保護裝置400之信號電極422 ” 24,以及概要的對向電極414’與416'與相關的絕緣體 201106408 係分別對應至非揮發性奈米管保護裝置400之對向電極 414與416與相關的絕緣體D2。 參見圖4所示之裝置結構400,在尺寸上’絕緣體D1、 D2與D3之厚度範圍可能譬如從2至50 nm。間隙區域 Gl、G2、G3與G4之厚度範圍可能譬如從2至50 nm。 參見圖4所示之裝置結構400,對於譬如範圍是從20 至500 nm之總懸浮長度lsusp而言,沿著奈米管通道元件 426之段SI、S2、S3、S4與S5之長度尺寸之長度範圍可 能譬如從4至1〇〇 nm,如以下所更進一步說明的。 參見圖4所示之裝置結構400,奈米管通道元件426 之寬度WNt取決於SWNT之數目與間距(SWNT織物密 度)。SWNT織物密度隨著溶液中之個別的SWNT之數目 (SWNT之密度)’所塗敷之塗層之數目,以及說明於併入 之參考文獻中之其他因子之函數而變化。於此例中,係假 設密度為每200 X 200 nm區域中有10個個別的奈米管。 請參見下述之類似裝置結構:美國專利申請案號 10/918,085,名稱為「具多重控制之奈米管式開關元件」, 申請曰為2004年8月13曰;以及美國專利申請案號 11/033,216 ’名稱為「非揮發性碳奈米管邏輯(NL0GIC) 晶片外驅動器」’申請曰為2〇〇5年1月1〇曰,其藉由使 用類似的SWNT織物密度,對具有15個個別的奈米管之 奈米管通道元件426而言,WNT=325 nm。 圖4A顯示分別與輸出電極413和415與對向電極414 和416相關的非揮發性奈米管保護裝置4〇〇之尺寸S4與 201106408 稱農置中’㈣。尺寸si係與 ^ 4 1與放電電極412相關;尺寸S2與S3係分別 II使411與輸出電極413和415分離之絕緣體相 二矛4l!、2^3係分別與使放電電極412與對向電極 ΓΠ:離之絕緣體相關。舉例而言,奈米管通道元 心 /于長度 Lsusp=S1+S2+S3+S4+S5,且如果 S^S3=S4=S5 ’則Lsusp=5Sl。懸浮奈米管切換長度 _糸叉限於奈米管通道元件中之個別的SWNT之長 度,以使導電的個別的SWNT可以跨越切換區域之長度 LSUSP〃。對於目前可利用的SWNT而言,l讀之較佳的 =為300至35〇 nm。這個例子係選擇l细聰, 因此 si, nm,且 ShS2=S3,=S5=65 。舉例而言, 為了=持懸浮長度與間隙比率大約為·,則間隙⑺與 G 4大約為3 〇 n m。然而,可縮放非揮發性奈米管保護裝置 4〇0以使用奈米管通道元件料長度LSUSP, rnn,於此 月况下,S卜S2=S3=S4=S5=4 nm,而間隙G2與G4大約 為2 nm ’舉例而言。尺寸Sl_ %可能藉由使用獨立於特 別的$刻操作點之側壁間隙方法而達成,如說明於美國專 =申明案唬10/918,181中,名稱為「奈米管裝置結構與製 造方法」,申請日為2004年8月13曰。 一於操作中,當奈米管通道元件426係處於如圖5A所 不之奈米管通道元件位置428時,圖4A與4B所示之非 揮發性奈米管保護裝置400係處於啟動(ON)狀態、與輸入 電才° 11上之一絕緣層接觸以及與輸出碑子413與415接 15 201106408RuN, RuO, TiN, TaN, CoSiJ TiSix) may be used. Other types of conductors or semiconductors and materials can also be used. A preferred method of patterning the conductors may use well known photolithographic techniques and well known etching techniques such as wet etching and reactive ion etching (RJE). For example, a typical value for a conductor for a single SWNT contact resistance scale is approximately 10,000 ohms. Since there are two contacts in series, and the individual S WNT resistances of Rc are negligible, the SWNT resistance is 2 Rc for individual s wnt. The resistance value of the nanotube is 2 Rc/N, which is the number of individual SWNTs in the case of the formation of the nanotubes. 10, ° $ The series resistance is 2, GGG ohms, then 1 并联 parallel nano tube single fiber (N, only - nano tube non-volatile nano-species as shown in Figure 2 The material resistance 36 such as the fuse 4 shown in the vine device, or the lower solution of Fig. 3, is used for the protection of the rice tube protection device S (about 60 (0.060 pf)). The aspect of the Nai is more than the 1.5 F in Figure 1. The following is a description of the capacitors, the capacitance of the '.P capacitor is lower, and the protection device is much lower. ^^ Example, as illustrated in US patents, etc. = lowering the eve of the number. This kind of shaft guard is a pair of non-volatile nanotube protection devices, ^ two switches, the name is the national patent application number," the application is In August 2004, the patented application number of the nano-tube switch is _18,181 ^Department of manufacturing is described in the US manufacturing method", the application is 2 years 8 meters, the structure of the device and the device need A semiconductor type diode. - No: = board, such as the one + conductor base described in Figure i requires a semiconductor substrate. Therefore, non-defective protection devices are not + V body substrates and Edge (non-semi-conductive plates, and integrated with, for example, rigid and flexible substrates). Non-volatile nanotubes are further protected by components that may be component of one or more levels 201106408, for example The wafer level; and/or the substrate level; and/or the card level; and/or the board level are appended, as further described below with respect to Figure u. The non-volatile nanotube protection device may be used to protect conventional dual loads. Sub-, CMOS, SiGe, GaN, GaAs and other compound semiconductor devices and circuits. Furthermore, non-volatile nanotube protection can also be used to protect a variety of different complementary carbon nanotube logic (CCNT logic) Meter tube (without semiconductor device / circuit) logic chip, compound (10) (10) nano tube logic chip, as described in the US patent application? Tiger 1〇 / 917, 794, the name "nano tube type switching element" 'application date is 2 8August 13th; U.S. Patent Application No.8, Age, Named "Nano-tube with Multiple Controls; Related Conditions" 'Applicable for 2004 Μ 13曰; and US Special (NL〇 GIC)m, towel please ^"forwarding The logic of the carbon nanotubes is hereby incorporated by reference. E-day is the UH) day, and all of the proposed non-volatile + half ~ the cross-section 400 of Figure 4A and the figure 400 The display shows the electrode and the output electrode in the plan view above the nanotube channel element, which has a discharge under the nanotube channel member, and is described below. Further advancement - Step No. 8, (8), the name of the application for the national patent application is Lilian Ml3 / = structure and manufacturing method", ,, · by day. The operation of the device is further improved. - In the case of the US patent, please call the number 18, 〇85, the name is "= the nano tube type switching element", and the application number is 2, 4 years, August '3曰, Please note that in US Patent Application No. 1〇/918, 〇85, the name is “Nano-tube switch element with multiple 201106408 heavy control”, the date of the application is the second year of the position relative to the nanotube. The channel elements have been altered such that the input lightning/output electrode is below the nanotube channel element, *discharge electrode and pair = electricity: above the nanotube channel element. These electrodes operate on the device that affects the phase of the nanotubes and the contact zone. (10) The following = the application of the Langzhong summed up the structural characteristics of the device Qian Zuo; US Shenqing case number 10/918, 18 name "Nano tube device structure and system" 'application date is August 2004 η曰; and the US patent application 10/918,085 'name $ "Nemi-tube happy pieces with multiple controls", the application was August 13, 2004. The non-volatile nanotube protection device structure described herein* is suitable for a wide range of sizes and operating voltages. For example, assume a 13〇 technology node and the levitation length Lnt is 325 nm. The switching width is designed to ensure that a sufficient number of conductive carbon nanotubes are up to a suspension length of $ LSUSP to achieve the desired resistance value. For example, Wnt might be Fang Ga. However, the structure of the non-volatile nanotube protection device may be adjusted, for example, to a suspension length of 20 nm. Figures 4A and 4B show the transverse plane and corresponding plan view of the non-volatile tube protection device structure 4 (9). The lower portion of the NT device structure is composed of a discharge electrode (plate) 412 and counter electrodes (plates) 414 and 416 buried in the insulating layer 417. In the switching region, the discharge electrode 412 is separated from the nanotube passage member 426 by an insulating layer (film) gap region G2 of a thickness m. The electrodes 414 and 41M are separated from the nanotube channel element by a thickness D2 of the insulating layer and the gap region G1<jNT device structure 働12 201106408 ^The system is input (control) electrode (plate) 4 ιι in the switching region Transmission = (plate egg and 415. The output electrodes 413 and 415 are too much = the gap G3 is separated from the surface of the channel read 426. The input electrode 411 has a surface insulator below the thickness D3, which is connected to the nanotube channel element The surface of your 1 is separated by a gap G4. The nanotube channel element 426 is - 2 nm in thickness - compared to other conductors, insulators and gap sizes: the nanotube channel element 426 is electrically connected to the signal electrode (Ports = 22 and 424. Signal electrodes 422 and 424 are at the same voltage. ς: One of the terminals 422 or 424 is required for device operation. = % poles 413 and 415, with contacts 418 and 418 And connected to the electrodes 414 and 416 respectively. In this example, the two outputs are also electrically connected (not shown) to form a single output. The pattern is a non-volatile nanotube protection device 400. The summary of the green shoots # 2 to the wheel electrode 411 'related The discharge system 412 corresponding to the input 411 of the non-volatile tube protection device 400 and the associated insulator kneading has an associated discharge electrode 412 corresponding to the discharge electrode 412 of the non-steep $ meter protection device 400 and related The insulating material / L, the summary output electrode 413, and 415' respectively correspond to the corresponding output electrodes 413 and 415 of the non-volatile tube protection device 400; the summary = the nanotube channel element 4261 corresponds to the non-volatile The nanotubes protect the eight 400 nanotube channel elements 426; the summary signal electrodes 422, and 424, the two correspond to the signal electrodes 422 of the non-volatile nanotube protection device 400" 24, and the outline of the opposite The electrodes 414' and 416' and associated insulators 201106408 correspond to the counter electrodes 414 and 416 of the non-volatile nanotube protection device 400 and the associated insulator D2, respectively. See device structure 400 shown in Figure 4, in size The thickness of the insulators D1, D2 and D3 may range, for example, from 2 to 50 nm. The thickness of the gap regions G1, G2, G3 and G4 may range, for example, from 2 to 50 nm. See device structure 400 shown in Figure 4, for example Range is For a total suspension length lsusp of 20 to 500 nm, the length of the lengths of the segments SI, S2, S3, S4 and S5 along the nanotube channel element 426 may range, for example, from 4 to 1 〇〇 nm, as follows Referring further to the device structure 400 illustrated in Figure 4, the width WNt of the nanotube channel member 426 is dependent upon the number and spacing of SWNTs (SWNT fabric density). The SWNT fabric density varies with the number of coatings applied to the number of individual SWNTs in solution (density of SWNTs) and as a function of other factors as described in the incorporated references. In this case, it is assumed that there are 10 individual nanotubes in the region of 200 x 200 nm. Please refer to the similar device structure described below: U.S. Patent Application Serial No. 10/918,085, entitled "Nano-Tube Switching Element with Multiple Controls", filed on August 13, 2004; and U.S. Patent Application Serial No. /033,216 'The name is "Non-volatile carbon nanotube logic (NL0GIC) off-chip driver" 'Applicable for January 1st, 2nd, 5th, by using similar SWNT fabric density, pair has 15 For individual nanotube tube channel elements 426, WNT = 325 nm. Figure 4A shows the dimensions S4 and 201106408 of the non-volatile nanotube protection device 4 associated with the output electrodes 413 and 415 and the counter electrodes 414 and 416, respectively, (4). The dimensions si are related to the discharge electrode 412; the dimensions S2 and S3 are respectively II, the insulators 411 and the output electrodes 413 and 415 are separated, and the discharge electrodes 412 and the opposite are respectively Electrode ΓΠ: related to the insulator. For example, the nanotube channel element / length Lsusp = S1 + S2 + S3 + S4 + S5, and if S^S3 = S4 = S5 ' then Lsusp = 5Sl. The suspended nanotube switching length _ 糸 is limited to the length of the individual SWNTs in the nanotube channel elements so that the individual SWNTs that are conductive can span the length of the switching region LSUSP〃. For SWNTs currently available, the preferred = read is 300 to 35 〇 nm. This example is chosen to be fine, so si, nm, and ShS2 = S3, = S5 = 65. For example, for the ratio of the suspension length to the gap is approximately , the gaps (7) and G 4 are approximately 3 〇 n m. However, the scalable non-volatile nanotube protection device 4〇0 is used to use the nanotube channel member material length LSUSP, rnn, in this case, Sb=S3=S4=S5=4 nm, and the gap G2 For example, G4 is about 2 nm '. The size S1_% may be achieved by using a sidewall gap method that is independent of the special etched operating point, as described in US Patent Application No. 10/918,181, entitled "Nanotube Device Structure and Manufacturing Method", Application The date is August 13th, 2004. In operation, when the nanotube channel element 426 is in the nanotube channel element location 428 as shown in Figure 5A, the non-volatile nanotube protection device 400 illustrated in Figures 4A and 4B is activated (ON). ) state, contact with one of the insulating layers on the input voltage 11 and with the output monuments 413 and 415 15 201106408
圖5B顯示處於啟動(ON)狀態之概要的非揮發性奈米 管保護裝置400,,其對應於如圖5A所示之處於啟動(〇N) 狀態之非揮發性奈米管保護裝置400。圖5B係為圖4C中 之概要的400’之修改型式,其中在啟動(〇N)之奈米管通道 70件位置42 8 ’中所顯示之概要的奈米管通道元件426,係對 應於如圖5A所示之在奈米管通道元件位置428中之奈米 官通道元件426。在概要的奈米管通道元件位置428’中之 概要的奈米管通道元件426,,顯示出在圖5A中之奈米管 通道元件428與輸出電極413與415之間的導體對奈米管 接觸電阻Rsw之示意圖。 於操作中’當奈米管通道元件426係處於如圖6a所 示之奈米管通道元件位置43〇時,圖4A與4B所示之非 揮發性奈米管保濩裝置4〇〇係處於非啟動(〇FF)狀態,與 放電電極412上之絕緣層接觸以及與絕緣的對向電極414 與416上之絕緣層接觸。 或者’因為奈米管通道元件426並未與輸出端子413 與415接觸,所以概要的奈米管通道元件426纟法與下層 端子接觸(如^从所示),而仍然是處於非啟動(OFF)狀態。 圖6B顯不處於非啟動(OFF)狀態之概要的非揮發性 奈米管保護裝置卿’其對應於如圖6A所示之處於非啟 動(OFF)狀態1揮發性奈米管保護裝置·。圖6β係為 圖4C中之概要4〇0之修改型式,於其中在非啟動(OFF) 之奈米管通道讀位置伽情顯示之概要的奈米管通 201106408 道元件:26,:對應於如圖6a所示之在奈米管通道元件位 ί 二Γ卡官通道元件426。在概要的奈米管通道元 位置4, M t概要的奈米管通道元件426,顯示斷路絕緣 體對奈米管接觸之示意圖。 將唯-奈米管_發性奈料保護裝置整合於習知之半導 體式半一體/奈米管或者唯-奈米管晶片設計中 顯不於圖4A與4B中之多數非揮發性保護裝置結構 400可能用以提供靜電放電(ESD)放電保護給電子組件中 之裝置與電路。非揮發性保護裝置結構働可能於組件之 晶片’及/或基板,及/或卡,及/或板層級被附加,如以下 更進-步說明的。非揮發性奈米管保護裝置係在腿感 應電壓與電流之前被啟動與未被啟動,如以下更進一步說 明的。包含輸出電極413與415以及絕緣的對向電極414 與416之輸出電極結構形成輸出節點,其係電連接至待被 ESD保護之焊塾。錢電極、放電電極與輸人電極係分別 連接至接地端、電源供應部與模式選擇焊墊。輸出電^結 構(輸出卽點)被建構並配置,俾能使通道之形成實質丄夫 受輸出節點之狀態影響,並避免ESD感應電壓或衩 壓擾亂非揮發性奈米管保護裝置之狀態,如說明於=直 利申請案號1 〇 /917,606,名稱為「供可偏轉的奈米^國專 用之隔離結構」,申請曰為2004年8月13曰。’、元件 圖7A顯示圖4A與4B所顯示之非揮發性奈米您二 裝置722,其於晶片、基板、卡或板層級整合二保濩 电子組件 17 201106408 中,連接至焊墊726與共通導體730、734與738。焊塾 726’共通導體730、734、738,用來互連之所/有其他導體, 在非揮發性奈米管保護裝置400中使用作為電極之導體可 藉由使用已知較佳的導體沈積方法而具有5至$〇〇 nm之 範圍内之厚度’並具有受良好控制的厚度,其可能由例如Figure 5B shows a non-volatile nanotube protection device 400 in an active (ON) state corresponding to a non-volatile nanotube protection device 400 in a startup (〇N) state as shown in Figure 5A. Figure 5B is a modified version of 400' of the schematic of Figure 4C, wherein the outline of the nanotube channel element 426 shown in the 70-bit position 42 8 ' of the (〇N) nanotube channel corresponds to The nano-channel element 426 in the nanotube channel element location 428 is shown in Figure 5A. The nanotube tunneling element 426 in the schematic nanotube interface element location 428' shows the conductor-to-nanotube between the nanotube channel element 428 and the output electrodes 413 and 415 in Figure 5A. Schematic diagram of contact resistance Rsw. In operation, when the nanotube channel element 426 is at the position of the nanotube channel element 43 as shown in Figure 6a, the non-volatile nanotube protection device 4 shown in Figures 4A and 4B is in The non-start (〇FF) state is in contact with the insulating layer on the discharge electrode 412 and with the insulating layers on the insulated counter electrodes 414 and 416. Or 'because the nanotube channel element 426 is not in contact with the output terminals 413 and 415, the outline nanotube channel element 426 is in contact with the lower terminal (as shown) and is still inactive (OFF) )status. Fig. 6B shows a non-volatile nanotube protection device of the outline of the non-activated (OFF) state, which corresponds to the non-activated (OFF) state 1 volatile nanotube protection device shown in Fig. 6A. Figure 6β is a modified version of the outline 4〇0 in Figure 4C, in which the nanotubes in the non-activated (OFF) nanotube channel read position illuminate the display of the nanotubes 201106408 channel components: 26,: corresponding to As shown in Figure 6a, the nanotube channel element 426 is located in the nanotube channel element. At the outline of the nanotube channel element position 4, the M t outline of the nanotube channel element 426 shows a schematic representation of the disconnection insulator to the nanotube contact. Integrating the V-Nylon tube protection device into a conventional semiconductor-type semi-integral/nanotube or V-nanotube wafer design does not show most of the non-volatile protection device structures in Figures 4A and 4B. 400 may be used to provide electrostatic discharge (ESD) discharge protection to devices and circuits in electronic components. The non-volatile protective device structure may be attached to the wafer' and/or substrate, and/or card, and/or board level of the assembly, as further described below. The non-volatile nanotube protection device is activated and not activated before the leg senses voltage and current, as further explained below. The output electrode structure including output electrodes 413 and 415 and insulated counter electrodes 414 and 416 form an output node that is electrically connected to the pad to be protected by ESD. The money electrode, the discharge electrode and the input electrode are respectively connected to the ground terminal, the power supply portion and the mode selection pad. The output structure (output point) is constructed and configured so that the formation of the channel is substantially affected by the state of the output node, and the ESD induced voltage or voltage is prevented from disturbing the state of the non-volatile nanotube protection device. For example, the application number is 1 〇/917,606, and the name is “isolated structure for the deflectable nanometer country”. The application is August 13, 2004. Figure 7A shows the non-volatile nano-device 722 shown in Figures 4A and 4B, which is integrated in the wafer, substrate, card or board level integrated security component 17 201106408, connected to the pad 726 and common Conductors 730, 734 and 738. The solder 726' common conductors 730, 734, 738 are used to interconnect the other conductors. The conductors used as electrodes in the non-volatile nanotube protection device 400 can be deposited by using known conductors. The method has a thickness in the range of 5 to $ 〇〇 nm and has a well-controlled thickness, which may be for example
Ru、Ti、Cr、A卜 Au、Pd、Ni、W、Cu、Mo、Ag、In、Ru, Ti, Cr, A, Au, Pd, Ni, W, Cu, Mo, Ag, In,
Ir、Pb、Sn之金屬與其他適當金屬及其組合所構成。例如 TiAu、TiCu、TiPd、PbIn、TiW之金屬合金,其他適當的 導體,包含CNT本身(譬如單壁、多壁及/或雙壁的)或導 電氮化物、氧化物或矽化物(例如RuN、Ru〇,ΉΝ、TaN、The metal of Ir, Pb, Sn is composed of other suitable metals and combinations thereof. Metal alloys such as TiAu, TiCu, TiPd, PbIn, TiW, other suitable conductors, including CNTs themselves (such as single-walled, multi-walled and/or double-walled) or conductive nitrides, oxides or tellurides (eg RuN, Ru〇, ΉΝ, TaN,
CoSix與TiSix)可能被使用。其他種類之導體,或半導體、 材料亦可被使用。圖案化導體之較佳方法可能使用例如濕 蝕刻與反應性離子蝕刻(RIE)之熟知的光刻技術與熟知的 I虫刻技術。 非揮發性奈米管保護裝置722之輸出電極725與725, 係分別對應於非揮發性奈米管賴裝置彻(圖4)輸出電 極413與415 ’並藉由使用導體724而並聯連接。接點745 與745分別將輸出電極725與725•電連接至它們的對應的 對向電極(未顯不),其因而對應至圖4A與4B所示之對向 電極414與416。輸出電極725與725,係藉由導體724與 接點723而並聯連接並連接至焊墊(端子)726。如果非揮發 性奈米管保護裝置722係處於圖5所示之啟動(ON)狀態, =輸出電極725與725’係與對應至圖4A與4B中之奈米 e通道兀件426之奈米管通道元件728作電氣接觸。在控 201106408 其之H 25或725與奈米管通道元件728中之個別的奈米 亓株7,?接,包阻RSW〜般為10,000歐姆。奈米管通道 要兆播&係藉由使用並聯之多重個別的奈米管而形成。如 性奈米管保護巢置722係處於〇酬〇卯)狀 ,士輸出電才亟725或725,與奈米管通道元件728之間 不存在有電氣連接。 枯味^揮發性奈米官保幾裳置722之信號電極729(對應於 二j似)係被延伸,崎觸—錢接至共通接地焊塾 ’、〇體730。對應於信號電極424之信號電極729,亦 伸’以接觸共通導體73〇。因此,信號電極W與乃9, =者並聯^言號電極729與?29,係與對應於圖4A與犯 =不米g通道兀件426之奈米管通道元件728作物理與 “氣接觸,其具有接觸電阻&,於此對每個導體對個別 的SWNT接觸而言’ rc〜般為1〇,麵歐姆。圖$所示之 不米官通道元件728 -般係藉由使用多重個別的SWNt 而形成。 如果非揮發性保護裴置722係處於啟動(0N)狀態,則 焊墊726具有一條到達共通接地導體73〇之導電路徑,其 經由接點723、導體724、輸出電極725與725'、奈米警 通道元件728以及導體729與729,而到達共通導體73〇, 而連接至焊塾726或導體724之裝置或電路將受到保護免 於ESD感應電壓/電流突波的影響。如果非揮發性奈米督 保護裝置722係處於非啟動(OFF)狀態,則不存在有導電 路徑,因此已移除ESD保護。 19 201106408 共通導體734與738係分別藉由導體732與736而連 接至非揮發性奈米管保護裝置722之放電與輸入電極,並 用以控制裝置722之狀態。導體732可能是對應至圖4A 與4B所示之放電電極412之放電電極740之延伸,而導 體736可能是對應至圖4A與4B中之輸入電極411之輸 入電極742之延伸。舉例而言,共通導體734可能是例如 Vdd之電源供應部連接。共通導體738可能連接至模式焊 墊(或模式端子)’其決定非揮發性奈米管保護裝置722是 否處於OPEN(OFF)狀態或CLOSED(ON)狀態。施加至焊 墊726之ESD感應電壓無法影響非揮發性保護裝置722 之狀態,其乃因為輸出電極725與725以及對應的對向電 極之結構避免了因設計之擾亂,請參見:美國專利申請案 唬10/917,794,名稱為「奈米管式開關元件」,申請曰為 2004年8月13曰,美國專利申請案號1〇/918,085,名稱 為「具多重控制之奈米管式開關元件」,巾請日為2〇〇4年 8月13曰,以及美國專利申請案號1〇/918,181,名稱為「奈 米官裝置結構與製造方法」,申請曰為2〇〇4年8月13曰。 模式焊墊可能是分離焊墊,或可能與另一焊墊共用。 圖7B係為非揮發性奈米管保護裝置722之示意圖, 其包含至對應於非揮發性奈米管保護裝置722之焊塾盘此 通導體之連接部,與圖7A所示之連接部。圖7a所^ 非揮發性奈米管保護裝置722係對應至圖4A所示之 發性奈米管保護裝置·以及以概要形式顯科圖⑺之 非揮發性奈米f賴裝置75G。電連接至® 7B所示之對 20 201106408 向电極755’之輸出電極755,係對應至圖7a所示 電::25與725與相關的對向電極(未顯示)之並•且:. L唬包極760係對應至兩個並聯信號電極729與η 、, 聯組合;絕緣的輸人電極77G顧應至絕緣的輸= 7 2,絕緣的放電電極鳩係對應至絕緣的放電電極。 輸出電極755係藉由對應至導體724與接㉟伯之㈣ IS:連t焊墊756。受保護電路757係連接至以概要 之非揮發性奈米管保護裝置心 4吕號電極760係如圖76戶斤千'++(7 1^1^、由_1* 至丑通連接邱77二 連接部762連接 至八通連接。P 775,於此信號電極76〇係對應至圖 不之並聯之信號電極729與729,,連接部加係對岸 7A所示之信號電極切與砂之延伸部,而共輯接立圖 775係對應至圖从所示之共通導體73〇。專門用語「導妾體 剖面與平域關财所示之導電結構,而專門」 ^。連接1^」表示對應至導體之概要圖式所顯示之配線 共通連接器780係藉由連接器鳩而連接至絕緣的放 電電極766,如由非揮發性奈米管保護裝置概要7 =的,於此共通連接器调係對應至共通導體734,而連員 接益768係對應至導體732。共通連接器7 = 請而連接至絕緣的輸入電極77〇,如由非揮發性$ :保:裝顯750所顯示的,於此共通連接器785係二 應至,、通導體73 8,而連接n 772係對應至導體顶。 201106408 圖7C以概要形式顯示具有被啟動(〇N)之ESD保護之 啟動(ON)之非揮發性奈米管保護裝置75〇,以使奈米管通 道元件764係與輸出電極755以及與共通電極7乃作電氣 接觸。如果將靜電電荷施加至焊墊756,則啟動(〇N)之非 揮發性奈米管保護裝置750'經由奈米管通道元件764將靜 電電荷傳導至共通連接部775,藉以限制在焊墊756上所 感應生成之電壓’從而保護電路757。非揮發性奈米管保 護裝置750可能藉由將電壓(正或負)施加至相對於共通連 接器775與780之共通連接器785而被啟動(導通),其中 共通連接器775與780譬如位於零(接地)電壓。 在受保護電路之操作期間,非揮發性奈米管保護裝置 750必須處於非啟動(OFF)狀態。圖7D以概要形式顯示具 有未被啟動(OFF)之ESD保護之非啟動(OFF)之非揮發性 奈米管保護裝置750。非啟動(OFF)之非揮發性奈米管保護 裝置750"在晶片操作期間將電容負荷cWIRE+2C0UT加至焊 墊756。此種額外電容係比典型的電路電容小得多,如以 下所更進一步說明的。 為了計算電容CWIRE,則需要供導體724用之配置尺 寸。如果對應於圖7D中之概要互連754之圖7A所示之 導體724譬如是200 nm寬,且如果在焊墊726與非揮發 性奈米管保護裝置722之間的距離係為10個方格 (squares) ’則為了電容計算之目的,導體724之長度係為 2 um。配線電容一般大約為1 pF/cm或0.1 fF/um,因此 Cwire大約為0.2 fF。請注意專門用語「10個方格」通常 22 201106408 使用於電子設借玉辈φ,、 此例的% ^ ㈣s指串聯的十個方袼,且在 广况下,此緖之每_邊係為·⑽。 马了計算電容c0UT,則需 係對應於顯示非塏辂阽*而要不未吕裝置尺寸。圖7E 4A,並米管保護裝置結構400之圖 ^,⑽係譬如被選擇為心…中二 ^^,,而間隙區域⑺與: Γ7,ϊ 由圖犯中之接點418所顯示。ί f =表示輸出電極415與4ΐ6係電氣互連,如由圖犯 之接點418,所顯不的。個別的8職了之直徑一 ⑽,而SWNT織物厚度—般小於2 nm。每-段S1.又s;、之 長,(又顯示於圖4A中}係為65 nm。供類似於非揮發性齐 米官保護裝置795之非揮發性奈米管裝置用之電容c〇ut 之數值,已在美國臨時專利申請案6〇/581,〇74中被算出听 名稱為「非揮發性碳奈米管邏輯(nl〇Gic)晶片外驅動 器」’申5青日為2004年6月18日。對於一種所製造之具 有擁有15個個別的SWNT之奈米管通道元件428之裝置 而言,C0UT大約為〇.〇3〇fF(或30aF),於此奈米管織物密 度係為每200 X 200 mm面積大約有10個個別的swNT, 而15個個別的SWNT對應至325 nm之装置寬度Wnt(顯 示於圖4B中)。為了決定供非揮發性奈米管保護裝置722 用之C0UT之數值,概要顯示為750,靜電放電(esd)保護 所需要的個別的SWNT之數目必須被算出。然後,對於 23 201106408 ^個個別的SWNT裝置而言,電容c〇ut可藉由從 C〇uT-0.030 fF縮放而算出。 為了計算ESD賴所需要的_^swnt之數目, 則需要界定非揮發性奈料保護|置75()在晶片或封裝上 之配置,並需要ESD源之模型,如以下所更進一步說明 的0 雖然亦可使用區域陣列焊塾,圖认顯示具有周邊焊 塾之晶片800。晶片800可能是半導體晶片或半導 體與奈米管裝置之混合式晶片,或唯·奈米管晶片、。除非 另有說明’否則專門用言吾「焊墊」意指信號焊塾,孽如代 ^焊塾謂與840,可能是輸入焊塾、輸出焊墊或輸入/ 輸出焊墊兩者。每個個別的焊墊具有非揮發性保護裝置。 舉例而言,焊墊8 3 0係受到代表非揮發性奈米管保護裝置 810之ESD保護,而焊墊840係受到代表非揮發性奈米管 保護裝置820之ESD保護。非揮發性奈米管保護裝置81〇 與820對應至圖7B所示之保護裝置75〇。每個焊墊係連 接至藉由使用電極與對向電極而形成之非揮發性奈米管 保s蔓裝置知子’如顯示於圖7B與4A和4B中,以使焊塾 电壓無法擾亂裝置之狀悲。電極與對向電極輸出節點之操 作係說明於:美國專利申請案號10/917,794,名稱為「奈 米管式開關元件」,申請曰為2004年8月13曰;美國專 利申請案號1〇/918,085 ’名稱為「具多重控制之奈米管式 開關元件」’申請曰為2004年8月13曰;以及美國專利 申請案號1〇/918,181,名稱為「奈米管裝置結構與製造方 24 201106408 法」,申請日為2004年8月13日。電源供應部與模式烊 墊使用其他供ESD保護用之結構,如以下所更進—牛 說明的。 乂 9 電源供應部焊墊865連接至許多晶片上電路(未顯 不)’且亦直接地或以分別於圖8B與8B'中所表示之方式 地經由電阻而連接至共通連接器86〇(對應至圖7B中之= 通連接器780)’其連接至例如裝置810與82〇之所有非揮 發性奈米管保護裝置之絕緣的放電板。電源供應部焊墊 865形成耦接至接地端之大的cDEC電容器之第一板之— 部分’其為晶片電路設計需求之一部分。 接地焊墊855連接至許多晶片上電路(未顯示),且亦 連接至共通連接器850(對應至圖7中之共通連接器775), 連接至例如裝置810與820之所有非揮發性奈米管保错 裝置之絕緣的奈米管通道元件信號電極。接地焊塾855形 成耦接至電源供應部之大的CDEC電容器之第二板之一部 分。 。 模式控制焊墊875係直接地或經由分別如圖8B與8B' 所示之電阻而連接至共通連接器870(對應至圖7中之共通 連接器785)’其連接至例如裝置81〇與820之所有非揮發 欧不米管保5蒦裝置之絕緣的輸入板。模式控制焊墊875形 成轉接至第二板之大的CM0DE電容器之第一板之一部 分,而第二板連接至接地端。模式控制焊墊875亦可與另 —焊墊(未顯示)共用,以代替使用專用的模式控制焊墊 875。 25 201106408 广圖/B與8B’以概要形式顯示啟動(〇N)之非揮發性奈 米%*保護裝置’其包含具有啟動(qN)的ESD保護之啟動 (ON)之非揮發性奈米管保護裝置81(),與請,,以使奈米管 通道兀件係分別與連接至焊墊83〇與84〇之輸出電極作電 乳^觸’ j亦與共通電極請作電氣接觸。舉例而言,如 果靜電電荷被施加至例如焊塾83〇與請之任何焊塾,則 言如啟動(ON)之非揮發性奈米管保護裝置81〇與82〇係經 =啟動之奈米管通道元件而將靜電電荷傳導至共通連接 器850 ^藉以限制焊墊830與840上所感應生成之電壓, ,,保㈣部之受保護電路。非揮發性奈米管保護裝置可 月t*藉由%加電壓(正或負)至相對於共通連接器與漏 之共通連接H 870而被導通(被啟動),其中共通連接器85〇 與860譬如於零(接地)電壓。 在义保》蒦邊路之操作期間,例如非揮發性奈米管保護 裝置810與82G之非揮發性奈米管保護裝置必須處於非啟 動(OFF)狀態。圖8C以概要形式顯示非啟動卿)之非揮 ,性奈米%»保護裝置,其包含具有未雌(〇ff)的咖保 護之非啟動(QFF)之非揮發性奈米管保護裝置810”與 82=。在晶片操作期間,非啟動(OFF)之非揮發性奈米管 保4裝置將電容負冑Cwire+2 C,(圖7D)附加至例如焊 墊830與840之焊墊。此種額外電容係比典型的電路電容 小付多二以下所更進—步說明的。非揮發性奈米管保護 裝置可能藉由施加電壓(正或負)至相對於共通連接器850 與870之共通連接器860而未被啟動(turned_〇FF),其中 26 201106408 共通連接器850與870譬如於零(接地)電壓。 靜電放電(ESD)源 圖9A顯示譬如由NASA所提出之人體模型(hbm)之 習知技術之等效電路 900(參考: http://eed.gsfc.nasa.gov/562/ESD_Purpose.htm),用以計算 靜電放電之強度。電壓VESD出現橫越過1〇〇 ρρ電容器 922,並經由1.500歐姆之電阻925被施加至端子91〇與 920。端子910與920變成與晶片焊墊接觸(譬如可能經由 封裝晶片中之接腳)。放電電流93〇從如由圖9B所示之 NASA HBM所提供之電路9〇〇流動。放電電流930於1〇 ns 到達1安培之尖峰電流,於115 ns降至〇 5安培,接著, 在180 ns之後降至0.37安培(37%的尖峰電流值),然後放 電至零電流。 基於NASA ESD模型之必須處理放電電流之非揮發 性奈米管保護裝置特徵 圖8B與8B'顯示晶片8〇〇之示意圖,於其中例如啟 動之非揮發性奈米管保鹱裴置81〇,與82〇ι之啟動之非揮發 性奈米管保護裝置係處於〇N(被啟動)狀態,其對應於圖 7C中之啟動之非揮發性奈米管保護裝置75〇,。於此例中, 由火干墊756上之ESD所感應生成並被施加至受保護電路 757之電壓’係被假設成受非揮發性奈米管保護裝置限制 至5伏特之最大容許電壤。ESd電流路徑係從焊墊756、 27 201106408 經由導體(配線)754、經由輸出電極755、經由奈米管通道 兀件764、經由導體(配線)762巾到達共通導體了乃。個別 SWNT之路徑電阻主要為與導體至接觸電阻〜/2 串聯之導體至SWNT接觸電gRsw/2,其乃因為其他接點 之電阻小彳禮多(譬如t歐姆),且個別§顆了之電阻與在 導體與SWNT之間的接觸電阻、與&比較而言亦是很 小的。啟動_)之_發性奈綺保護裝置電阻係為命行 之個別SWNT之數目N之函數’並可能被表.為 (Rsw/2+Rc/2)/N。 ESD脈波可能以各種方式被施加至晶片。舉例而言, 丈干墊對焊墊、焊墊對接地端,以及以下所更進一步說明的 其他方式。因為電流流經兩個啟動之非揮發性奈米管保護 裝置,例如串聯之保護裝置810,與82〇,,所以ESD感應 電壓係在ESD脈波被施加在兩個焊塾(譬如圖8b與8B’ 所概要顯示之焊墊830與840)之間時產生。因此,在焊整 830與840之間的總電阻係為2 X (Rsw/2+R/2)/N或 (Rsw+Rc)/N ’如由圖l〇A中之等效電路1〇〇〇所概要顯示 的’而在焊墊830或840至共通連接器850之間的總電阻 譬如為(Rsw/2+Rc/2)/N。因為共通連接器850係連接至可 以轉換ESD電流流量之大電容器Cdec,所以最大的感應 焊墊電壓可能小於所估計的最大電壓。圖10A所示之等效 電路1000係對應至ESD靜電放電(ESD)等效電路源900, 其被施加在兩個焊塾(焊塾對焊墊)之間,如上述所更進一 步說明的。ESD等效電路源900之輸出910與920係分別 28 201106408 連接至烊墊830與焊墊840,如於圖8B、犯1鱼1〇 概要表示的。 /、中所 圖7C中之奈米管通道元件764(對應於圖8B中之啟 動之非揮發性奈米管保護裝置810,與820,之奈米管通道元 件)所需要的個別SWNT之數目N,係取決於導體< 接觸電阻Rsw與以及施加ESD電壓之方式。需: ESD感應焊墊對焊墊外加電壓限制至$伏特之個別 之數目N之數例,係為接觸電阻Rsw與Rc之函數,如以 下所更進一步說明的。最大的焊塾電壓係為I (Rsw+Rc)/N=5伏特,於此放電電流93〇(圖9B)最 ΙΜΑχ=1安培,個別SWNT之導體至奈米管接觸電卩且係為 Rsw與Rc ’平行之個別SWNT之數目係為Ν,且最大的 容許電壓係為5伏特。(Rsw+Rc)/N之數值係被調成5歐 姆,俾能於IMAX=1安培下,ESD感應電壓並不超過5伏 特。舉例而言’如果Rsw=Rc=l〇,〇〇〇歐姆,則⑻ 個個別SWNT ;如果Rsw=Rc=2〇,〇〇〇歐姆,則N==8 _ 個個別SWNT ;以及如果rsw=Rc=3〇,〇〇〇歐姆,則 N=12,000個個別SWNT。關於13〇麵之技術節點以及在 200 x200 mm面積中之10個個別奈米管之奈米管密度, 對15個個別SWNT而g,奈米管通道元件寬度 um ;對於4,000個個別SWNT而言,Wnt=87 um ;以及對 8,000個個別SWNT而言’ WNT=i74 um。非揮發性奈米管 保護裝置係為相當大的裝置,其係被置於與焊墊鄰接並在 例如晶片外驅動器(OCD)之電路上面。 29 201106408 對某些應用而言’ 5伏特之ESD感應電壓可能太高。 ,由使用較大密度之奈米管織物,可能減少ESD感應電 壓至小於1伏特’其使用幾乎相同尺寸之裝置。大概高於 以上所更進一步說明的在2〇〇 X 2〇〇 nrn面積中丨〇個個別 SWNT之5X之奈米管織物密度已被存放並可能被使用。 舉例而言,非揮發性奈米管保護裝置具有大概Wnt=1〇〇 um與1 〇,〇〇〇歐姆之rsw與Rc,以及於5χ密度下N=25,〇〇〇 個個別SWNT ’其導致0.8伏特之最大ESD感應電壓。此 種估計的ESD感應電壓係藉由使用圖1〇A中之等效電路 1〇〇〇而做出,於此ιΜΑΧ=1安培之ESD感應電流93〇(圖 9B)經由兩個串聯之啟動之非揮發性奈米管保護裝置電 阻’其具有供0.8伏特之最大ESD感應電壓用之 (Rsw+Rc)/N=20,000/25,000=0.8 歐姆之電阻。雖然於 1 安 培之最大的ESD感應電流下,5伏特之最大的ESD感應 電壓係在說明關於圖8與圖10之等效電路性能時被使 用,但吾人應理解到可能選擇使用替代的較高密度之奈米 管織物來將最大的ESD感應電壓限制至〇.8伏特。或者, 5X較寬之非揮發性奈米管保護裝置亦可被使用於較低的 奈米管織物密度,用以達到0.8伏特之最大ESD感應電壓。 一或者,5X奈米管織物密度可能用以縮小非揮發性奈 米管保護裝置之尺寸,其中最大的ESD感應電壓保護維 持於5伏特。如果使用5X奈米管織物密度,則可能將使 用上述4,〇〇〇個個別SWNT之寬度Wnt=87 umi裝置縮 小至18um之寬度,其亦具有4,〇〇〇個個別SWNT。 201106408 圖10B所不之等效電路1〇1〇係對應至等效電路 ,900之輸出端子91〇與92〇,其連接至焊墊謂與接地 ¥塾855藉以產生放電電流l 93〇。放電電流㈣流經以 ^於烊塾㈣與共通導體850之間的電阻(Rsw/2+Rc/2)/N 表不之啟動之非揮發性奈米管保難置81(),,其係連接至 接地知塾855,如又顯示於圖8B巾。焊墊83〇上相對於 接地焊塾855之最大ESD感應電壓係為2.5伏特,等效電 路1000之焊墊至烊墊最大電壓之一半。 圖i〇c所示之等效電路1020係對應至ESD等效電路 源_之輸出端子910與920,其連接至模式焊墊875與 接地焊塾855’藉以產生圖9B所示之放電電流93〇,而放 電電流930流經共通連接$ 87〇,其係連接至啟動之非揮 發性奈米管保護裝置之絕緣的輪入端子,如由圖犯與犯, 所示之代表保護裝置81〇,與82Gi所顯示的。為了限制共通 連接器請上之ESD感應電壓儲備,可能使用數種方法。 於第一方法中’係使用唯電容器方法,其中電容器〜識 係被附加在模式焊墊875與接地焊塾855之間,如顯示於 圖8B與圖10C中,其不具有串聯電阻(於圖i〇c中 R:’。於第二方法中,串聯電阻知鐵係被附加在模 式焊塾875與共通連接器87〇之間,而並聯電容器 係附加在共通連接器870與接地焊墊855之間,如顯示於 圖8B·與圖i〇c中。 、CoSix and TiSix) may be used. Other types of conductors, or semiconductors, materials can also be used. A preferred method of patterning the conductors may use well known lithographic techniques such as wet etching and reactive ion etching (RIE) with well known I-insert techniques. The output electrodes 725 and 725 of the non-volatile nanotube protection device 722 correspond to the output electrodes 413 and 415' of the non-volatile nanotube device (Fig. 4), respectively, and are connected in parallel by using the conductor 724. Contacts 745 and 745 electrically connect output electrodes 725 and 725, respectively, to their corresponding counter electrodes (not shown), which thus correspond to counter electrodes 414 and 416 shown in Figures 4A and 4B. The output electrodes 725 and 725 are connected in parallel by a conductor 724 and a contact 723 and connected to a pad (terminal) 726. If the non-volatile nanotube protection device 722 is in the ON state shown in FIG. 5, the = output electrodes 725 and 725' are connected to the nanometer corresponding to the nano-e channel element 426 in FIGS. 4A and 4B. The tube channel member 728 is in electrical contact. In the control of 201106408, the H 25 or 725 and the individual nanotubes 7 of the nanotube channel element 728 are connected, and the RSW is generally 10,000 ohms. The nanotube channel is formed by megacasting & by using multiple individual nanotubes in parallel. If the tube is in the form of a 722 722 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The scent of the scented scented volatility of the nano-segment is set to 722. The signal electrode 729 (corresponding to the two j-like) is extended, and the contact is connected to the common grounding 塾 〇 and the 〇 730. The signal electrode 729 corresponding to the signal electrode 424 is also extended to contact the common conductor 73A. Therefore, the signal electrode W and the y9, = are connected in parallel with the 797 electrode and ? 29, physically and in "a gas contact with a nanotube channel element 728 corresponding to Figure 4A and the GM channel member 426, having a contact resistance & here, for each conductor pair of individual SWNT contacts For example, 'rc~ is 1 〇, surface ohms. The non-dimensional channel element 728 shown in Fig. $ is formed by using multiple individual SWNts. If the non-volatile protection device 722 is activated (0N) In the state, the pad 726 has a conductive path to the common ground conductor 73, which reaches the common via the contact 723, the conductor 724, the output electrodes 725 and 725', the nano-channel component 728, and the conductors 729 and 729. Conductor 73A, and the device or circuit connected to pad 726 or conductor 724 will be protected from ESD induced voltage/current surges. If non-volatile nano-protector 722 is in an OFF state , there is no conductive path, so ESD protection has been removed. 19 201106408 Common conductors 734 and 738 are connected to the discharge and input electrodes of the non-volatile nanotube protection device 722 by conductors 732 and 736, respectively, and used Control device 722 Conductor 732 may be an extension of discharge electrode 740 corresponding to discharge electrode 412 shown in Figures 4A and 4B, and conductor 736 may be an extension of input electrode 742 corresponding to input electrode 411 in Figures 4A and 4B. The common conductor 734 may be a power supply connection such as Vdd. The common conductor 738 may be connected to a mode pad (or mode terminal) that determines whether the non-volatile nanotube protection device 722 is in an OPEN (OFF) state or a CLOSED ( The ON state. The ESD induced voltage applied to the pad 726 cannot affect the state of the non-volatile protection device 722 because the output electrodes 725 and 725 and the corresponding counter electrode structure are protected from design disturbances, see: U.S. Patent Application Serial No. 10/917,794, entitled "Nano-Tube Switching Element", filed on August 13, 2004, U.S. Patent Application Serial No. 1/918,085, entitled "Multi-Controlled Nanotubes" "Switching element", the towel is available on August 13th, 2014, and the US patent application number 1〇/918,181, the name is "Nano official device structure and manufacturing method", the application is 2〇 〇4 August 13 said. The pattern pad may be a separate pad or may be shared with another pad. Figure 7B is a schematic illustration of a non-volatile nanotube protection device 722 that includes a connection to the wire of the solder tab corresponding to the non-volatile nanotube protection device 722, and the connection shown in Figure 7A. The non-volatile nanotube protection device 722 of Fig. 7a corresponds to the primary nanotube protection device shown in Fig. 4A and the nonvolatile nanotechnology device 75G in the schematic form (7). The output electrode 755 electrically connected to the pair 20 201106408 to the electrode 755' shown in FIG. 7B corresponds to the electric: 25 and 725 shown in FIG. 7a and the associated counter electrode (not shown) and: The L 唬 package pole 760 corresponds to the two parallel signal electrodes 729 and η , , and the combination; the insulated input electrode 77G takes into account the insulation of the transmission = 7 2 , and the insulated discharge electrode 对应 corresponds to the insulated discharge electrode. The output electrode 755 is connected to the (four) IS: t-pad 756 by a conductor 724. The protected circuit 757 is connected to the outline of the non-volatile nanotube protection device. The heart of the 4th electrode 760 is as shown in Fig. 76 (1 1^^^, from _1* to ugly connection. The 77 connecting portion 762 is connected to the eight-way connection. P 775, the signal electrode 76 is connected to the signal electrodes 729 and 729 connected in parallel, and the connecting portion is connected to the signal electrode shown in the opposite bank 7A. The extension part, and the co-edited connection diagram 775 corresponds to the common conductor 73〇 shown in the figure. The term "conductor body section and the conductive structure shown in the Pingyu Guancai" are specifically used. ^. Connection 1^" The wiring common connector 780 shown in the schematic diagram corresponding to the conductor is connected to the insulated discharge electrode 766 by a connector ,, as defined by the non-volatile nanotube protection device 7 = The tuner system corresponds to the common conductor 734, and the connected subscriber 768 corresponds to the conductor 732. The common connector 7 = please be connected to the insulated input electrode 77, as by the non-volatile $: warranty: installed 750 The common connector 785 is shown here, and the conductor 773 is connected to the n 772 system. 201106408 FIG. 7C shows, in outline form, a non-volatile nanotube protection device 75A having an activated (ON) activated (ON) to enable the nanotube channel element 764 to be connected to the output electrode 755. And in electrical contact with the common electrode 7. If an electrostatic charge is applied to the pad 756, the non-volatile nanotube protection device 750' that initiates (〇N) conducts the electrostatic charge to the common via the nanotube channel element 764. The connection portion 775, thereby limiting the voltage induced on the pad 756, thereby protecting the circuit 757. The non-volatile nanotube protection device 750 may be applied to the common connector 775 by applying a voltage (positive or negative) The common connector 785 of 780 is activated (conducting), wherein the common connectors 775 and 780 are, for example, at a zero (ground) voltage. During operation of the protected circuit, the non-volatile nanotube protection device 750 must be inactive ( OFF) state. Figure 7D shows, in outline form, a non-activated (OFF) non-volatile nanotube protection device 750 with un-erased (OFF) ESD protection. Non-activated (OFF) non-volatile nanotube protection Loading The capacitor load cWIRE+2COUT is applied to pad 756 during wafer operation. This additional capacitance is much smaller than typical circuit capacitance, as explained further below. To calculate capacitance CWIRE, conductor 724 is required. The dimensions are used if the conductor 724 shown in Figure 7A corresponding to the summary interconnect 754 in Figure 7D is 200 nm wide and if the distance between the pad 726 and the non-volatile nanotube guard 722 is The system is 10 squares. For the purpose of capacitance calculation, the length of the conductor 724 is 2 um. The wiring capacitance is typically about 1 pF/cm or 0.1 fF/um, so Cwire is about 0.2 fF. Please note that the special term "10 squares" is usually 22 201106408 used in the electronic design of the Yu φ,, in this case, the % ^ (four) s refers to the ten squares in series, and in the wide range, this _ each side For · (10). If you calculate the capacitance c0UT, you need to correspond to the display non-垲辂阽* and not the device size. Figure 7E 4A, and the diagram of the rice tube protection device structure 400, (10) is selected as the center of the ^ ^ ^, and the gap region (7) and: Γ 7, ϊ are shown by the joint 418 in the diagram. ί f = indicates that the output electrodes 415 are electrically interconnected with the 4 ΐ 6 series, as shown by the junction 418. The individual 8 jobs have a diameter of one (10), while the SWNT fabric thickness is generally less than 2 nm. Each segment S1. and s;, the length, (also shown in Figure 4A) is 65 nm. For a non-volatile nanotube device similar to the non-volatile quaternary protection device 795, the capacitor c〇 The value of ut has been calculated in the US Provisional Patent Application No. 6〇/581, 〇74. The name is “Non-volatile Carbon Nanotube Logic (nl〇Gic) Chip Driver) “申五青日为2004年June 18. For a device manufactured with a nanotube channel element 428 having 15 individual SWNTs, C0UT is approximately 〇.〇3〇fF (or 30aF), where the nanotube fabric density system There are approximately 10 individual swNTs per 200 X 200 mm area, and 15 individual SWNTs correspond to a device width Wnt of 325 nm (shown in Figure 4B). To determine the non-volatile nanotube protection device 722 The value of C0UT is summarized as 750. The number of individual SWNTs required for electrostatic discharge (esd) protection must be calculated. Then, for 23 201106408 ^ individual SWNT devices, the capacitance c〇ut can be obtained from C〇uT-0.030 fF is calculated by scaling. In order to calculate the number of _^swnt required for ESD, you need Set the non-volatile material protection | set 75 () on the wafer or package configuration, and require the model of the ESD source, as described further below 0. Although the area array soldering can also be used, the figure shows that there is peripheral welding The wafer 800 may be a semiconductor wafer or a hybrid wafer of semiconductor and nanotube devices, or a wafer tube. Unless otherwise stated, otherwise, the term "pad" means soldering.塾 孽 孽 ^ 塾 840 840 840 840 840, may be input soldering, output pads or input / output pads. Each individual pad has a non-volatile protection device. For example, the pad 8 30 is protected by ESD representing the non-volatile nanotube protection device 810, and the pad 840 is protected by ESD representing the non-volatile nanotube protection device 820. Non-volatile nanotube protection devices 81 and 820 Corresponding to the protection device 75A shown in Fig. 7B. Each pad is connected to a non-volatile nanotube-protected device formed by using an electrode and a counter electrode as shown in Figs. 7B and 4A. 4B, so that the welding voltage can not be disturbed The operation of the electrode and the counter electrode output node is described in US Patent Application No. 10/917,794, entitled "Nano-tube Switching Element", filed on August 13, 2004; US patent Application No. 1〇/918,085 'named "Nano-tube Switching Element with Multiple Controls"' application was August 13, 2004; and US Patent Application No. 1〇/918,181, entitled "Nai Rice pipe installation structure and manufacturer 24 201106408 Act, the application date is August 13, 2004. The power supply unit and the mode pad use other structures for ESD protection, as described below.乂9 power supply pad 865 is connected to a number of on-wafer circuits (not shown) and is also connected to common connector 86 via resistors either directly or in the manner shown in Figures 8B and 8B', respectively. Corresponding to the = connector 780) of Figure 7B, it is connected to an insulated discharge panel of all non-volatile nanotube protection devices such as devices 810 and 82A. The power supply pad 865 forms a portion of the first plate of the large cDEC capacitor coupled to the ground terminal, which is part of the wafer circuit design requirements. The ground pad 855 is coupled to a plurality of on-wafer circuits (not shown) and is also coupled to a common connector 850 (corresponding to the common connector 775 of FIG. 7) to all non-volatile nanoparticles such as devices 810 and 820. Insulated nanotube channel element signal electrode of the tube protection device. The ground pad 855 is formed as part of a second plate of a large CDEC capacitor coupled to the power supply. . Mode control pads 875 are connected to common connector 870 (corresponding to common connector 785 in FIG. 7) directly or via resistors as shown in Figures 8B and 8B', respectively, which are coupled to, for example, devices 81 and 820. All of the non-volatile Euromium tubes are insulated from the input board of the 5蒦 device. The mode control pad 875 forms part of the first plate that is switched to the large CM0DE capacitor of the second board, and the second board is connected to the ground. The mode control pad 875 can also be shared with another pad (not shown) instead of using a dedicated mode control pad 875. 25 201106408 Extensive/B and 8B' show the start-up (〇N) non-volatile nano%* protection device in summary form. It contains non-volatile nanoparticles with start-up (ON) of start-up (qN) ESD protection. The tube protection device 81 (), and so that the nanotube channel element is electrically connected to the output electrodes connected to the pads 83 and 84, respectively, and is also in electrical contact with the common electrode. For example, if an electrostatic charge is applied to, for example, a solder fillet 83〇 and any solder bumps, then a non-volatile nanotube protection device 81〇 and 82〇 are activated. The tube channel element conducts electrostatic charge to the common connector 850, thereby limiting the voltage induced on the pads 830 and 840, and protecting the circuit of the (four) portion. The non-volatile nanotube protection device can be turned on (activated) by a % applied voltage (positive or negative) to a common connection H 870 with respect to the common connector and the drain, wherein the common connector 85 is 860 is like zero (ground) voltage. Non-volatile nanotube protection devices such as non-volatile nanotube protection devices 810 and 82G must be in an OFF state during operation of the side-by-side road. Figure 8C shows, in summary form, a non-initiated, non-activated (QFF) non-volatile nanotube protection device 810 having a non-initiating (〇ff) coffee protection. And 82 =. During wafer operation, the non-activated (OFF) non-volatile nanotube protection device adds capacitance 胄Cwire+2 C, (Fig. 7D) to pads such as pads 830 and 840. This extra capacitance is more advanced than the typical circuit capacitance. The non-volatile nanotube protection device may be applied with a voltage (positive or negative) to the common connectors 850 and 870. The common connector 860 is not activated (turned_〇FF), where 26 201106408 common connectors 850 and 870 are at zero (ground) voltage. Electrostatic discharge (ESD) source Figure 9A shows a human body model such as that proposed by NASA (hbm) The equivalent circuit 900 of the conventional technique (reference: http://eed.gsfc.nasa.gov/562/ESD_Purpose.htm) is used to calculate the intensity of the electrostatic discharge. The voltage VESD appears across 1〇〇. A ρp capacitor 922 is applied to terminals 91A and 920 via a 1.500 ohm resistor 925. Terminal 91 0 and 920 become in contact with the wafer pads (e.g., via pins in the package wafer). The discharge current 93 is flowing from the circuit 9〇〇 provided by NASA HBM as shown in Figure 9B. The discharge current 930 is at 1〇. The peak current of ns reaching 1 ampere drops to 〇5 amps at 115 ns, then drops to 0.37 amps (37% peak current value) after 180 ns, and then discharges to zero current. The discharge must be processed based on the NASA ESD model. Non-volatile Nanotube Protection Device Features of Currents Figures 8B and 8B' show a schematic diagram of a wafer 8〇〇 in which, for example, a non-volatile nanotube protection device is activated, 81〇, and a start of 82〇ι The volatile nanotube protection device is in a 〇N (activated) state, which corresponds to the activated non-volatile nanotube protection device 75A in Figure 7C. In this example, by the fire pad 756 The voltage induced by the ESD and applied to the protected circuit 757 is assumed to be limited to a maximum allowable voltage by the non-volatile nanotube protection device to 5 volts. The ESd current path is from the pads 756, 27 201106408 via Conductor (wiring) 754, via input The electrode 755 reaches the common conductor via the nanotube channel member 764 and via the conductor (wiring) 762. The path resistance of the individual SWNT is mainly the conductor to the contact resistance ~/2 in series to the SWNT contact electric gRsw/2 It is because the resistance of other contacts is small (such as t ohms), and the resistance of the individual § and the contact resistance between the conductor and the SWNT are also small compared with & The _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ESD pulses can be applied to the wafer in a variety of ways. For example, dry pad pads, pads to grounds, and other ways as described further below. Since the current flows through the two activated non-volatile nanotube protection devices, such as the series-connected protection device 810, and 82〇, the ESD-induced voltage is applied to the ESD pulse waves in the two solder bumps (譬Fig. 8b) This is produced between the pads 830 and 840) shown schematically in 8B'. Therefore, the total resistance between the soldering 830 and 840 is 2 X (Rsw / 2 + R / 2) / N or (Rsw + Rc) / N ' as shown in Figure 1A equivalent circuit 1 The total resistance between the pads 830 or 840 to the common connector 850 is, for example, (Rsw/2+Rc/2)/N. Since the common connector 850 is connected to a large capacitor Cdec that can convert the ESD current flow, the maximum inductive pad voltage may be less than the estimated maximum voltage. The equivalent circuit 1000 shown in Figure 10A corresponds to an ESD Electrostatic Discharge (ESD) equivalent circuit source 900 that is applied between two solder pads (weld pads) as described further above. The outputs 910 and 920 of the ESD equivalent circuit source 900 are connected to the pad 830 and the pad 840, respectively, as shown in Fig. 8B, and the fish 1 is outlined. /, the number of individual SWNTs required for the nanotube tube channel element 764 in Figure 7C (corresponding to the activated non-volatile nanotube protection device 810 of Figure 8B, and the nanotube channel element of 820) N depends on the conductor < contact resistance Rsw and the manner in which the ESD voltage is applied. Requirement: The number of ESD inductive pads to the pad plus voltage limit to the number N of individual volts is a function of the contact resistances Rsw and Rc, as further explained below. The maximum soldering voltage is I (Rsw+Rc)/N=5 volts, and the discharge current is 93 〇 (Fig. 9B). The maximum ΙΜΑχ = 1 amp. The conductors of individual SWNTs are in contact with the nanotubes and are Rsw. The number of individual SWNTs parallel to Rc' is Ν and the maximum allowable voltage is 5 volts. The value of (Rsw+Rc)/N is adjusted to 5 ohms, and 俾 can be IMAX = 1 amp, and the ESD induced voltage does not exceed 5 volts. For example, 'If Rsw=Rc=l〇, 〇〇〇 ohm, then (8) individual SWNTs; if Rsw=Rc=2〇, 〇〇〇 ohm, then N==8 _ individual SWNTs; and if rsw= Rc = 3 〇, 〇〇〇 ohm, then N = 12,000 individual SWNTs. About the technical node of the 13-face and the nanotube density of 10 individual nanotubes in the area of 200 x 200 mm, for 15 individual SWNTs and g, the nanotube channel element width um; for 4,000 individual SWNTs , Wnt=87 um ; and ' WNT=i74 um for 8,000 individual SWNTs. The non-volatile nanotube protection device is a relatively large device that is placed adjacent to the pad and over a circuit such as an off-chip driver (OCD). 29 201106408 For some applications, the ESD induced voltage of '5 volts may be too high. By using a larger density of nanotube fabric, it is possible to reduce the ESD induced voltage to less than 1 volt', which uses almost the same size of the device. A density of 5X nanotube fabric of approximately 1 x 2 x 2 〇〇 nrn area in the area of 2 〇〇 X 2 〇〇 nrn has been stored and may be used. For example, a non-volatile nanotube protection device has approximately Wnt = 1 〇〇 um and 1 〇, 〇〇〇 ohms of rsw and Rc, and N = 25 at 5 χ density, and an individual SWNT ' This results in a maximum ESD induced voltage of 0.8 volts. This estimated ESD induced voltage is made by using the equivalent circuit 1〇〇〇 in Figure 1A, where the ESD induced current 93〇 (Fig. 9B) of ιΜΑΧ=1 amp is activated via two series connections. The non-volatile nanotube protection device resistor has a resistance of (Rsw + Rc) / N = 20,000 / 25,000 = 0.8 ohm for a maximum ESD induced voltage of 0.8 volts. Although the maximum ESD induced voltage of 5 volts is used at the maximum ESD induced current of 1 amp, which is used in the description of the equivalent circuit performance of Figures 8 and 10, we should understand that it is possible to choose an alternative higher Density nanotube fabric to limit the maximum ESD induced voltage to 〇8 volts. Alternatively, a 5X wide non-volatile nanotube protection device can be used for lower nanotube fabric densities to achieve a maximum ESD induced voltage of 0.8 volts. Alternatively, the 5X nanotube fabric density may be used to reduce the size of the non-volatile nanotube protection device, with the largest ESD induced voltage protection maintained at 5 volts. If a 5X nanotube fabric density is used, it is possible to use the above 4, the individual WNT width Wnt = 87 umi device to a width of 18 um, which also has 4, individual SWNTs. 201106408 Figure 10B does not correspond to the equivalent circuit 1〇1〇 corresponds to the equivalent circuit, 900 output terminals 91〇 and 92〇, which are connected to the pad and grounding 塾855 to generate a discharge current l 93〇. The discharge current (4) flows through the non-volatile nanotube protection 81 () which is activated by the resistance (Rsw/2+Rc/2)/N between the 烊塾(4) and the common conductor 850, and It is connected to the grounding 855, as shown in Figure 8B. The maximum ESD induced voltage of the pad 83 相对 relative to the ground pad 855 is 2.5 volts, and the pad of the equivalent circuit 1000 is one-half the maximum voltage of the pad. The equivalent circuit 1020 shown in FIG. 1A corresponds to the output terminals 910 and 920 of the ESD equivalent circuit source, which is connected to the mode pad 875 and the ground pad 855' to generate the discharge current 93 shown in FIG. 9B.放电, and the discharge current 930 flows through a common connection of $87 〇, which is connected to the insulated wheel-in terminal of the activated non-volatile nanotube protection device, as represented by the diagram, representative of the protection device 81〇 , with the 82Gi shown. In order to limit the ESD induced voltage reserve on the common connector, several methods may be used. In the first method, a capacitor-only method is used, in which a capacitor is added between the mode pad 875 and the ground pad 855, as shown in FIGS. 8B and 10C, which does not have a series resistance (in the figure). In the second method, the series resistance iron is attached between the mode pad 875 and the common connector 87A, and the parallel capacitor is attached to the common connector 870 and the ground pad 855. Between, as shown in Figure 8B· and Figure i〇c.
於將並聯電容器Cm〇de係如圖8B所示地附加在模式 焊墊875與接地科855之間之第-方法中,需要將ESD 31 201106408 電壓儲備限制至5伏特之cmode電容之尺寸可能估計如 下。對於電容器I=CAVMT之熟知之電流電壓關係,可能 被重新陳述為Cmode=ImaxATMV,於此iMAX=l安培係為 圖9B所示之ESD電流93〇之最大值,δτ=ι 〇⑽係為到達 最大電流值1max之上升時間,而Δν=5伏特係為共通導體 们〇上之最大容許ESD感應電壓。cm〇de所需要的大小 2’000 pF,其為可能加至晶片8〇〇之電容值,如顯示於圖 8B中。 於將串聯電阻rmode附加在模式焊墊875與共通連接 益870之間且將電容器Cm〇de增加在共通連接器"ο與接 地烊墊855之間之第二方法中,如由圖i〇c中之等效電路 =20與圖8B,所顯示的’ 1^〇沉與cm〇de2數值可能被決 疋如下。串聯電阻rmode減少放電電流930之最大值 Ϊμαχ。如果RM0DE為15,〇〇〇歐姆’則舉例而言,Imax係被 減少了大概10X。對於在共通連接器87〇與接地焊墊855 之間的5伏特之最大的ESD感應電壓而言,當與如圖8β, 所示之串聯電阻rm〇de 一起使用時,圖8b所示之電容In the first method of adding the shunt capacitor Cm〇de to the mode pad 875 and the grounding section 855 as shown in FIG. 8B, it is necessary to limit the ESD 31 201106408 voltage reserve to a 5 volt cmode capacitor. as follows. The well-known current-voltage relationship for capacitor I=CAVMT may be re-stated as Cmode=ImaxATMV, where iMAX=l amperes is the maximum value of ESD current 93〇 shown in Figure 9B, and δτ=ι 〇(10) is the arrival The maximum current value is 1max rise time, and Δν = 5 volts is the maximum allowable ESD induced voltage on the common conductor. The size required for cm〇de is 2'000 pF, which is the capacitance value that may be applied to the wafer 8 , as shown in Figure 8B. In the second method of adding a series resistor rmode between the mode pad 875 and the common connection benefit 870 and increasing the capacitor Cm〇de between the common connector " and the ground pad 855, as shown in FIG. The equivalent circuit in c = 20 and FIG. 8B, the values of '1^ sinking and cm〇de2 shown may be determined as follows. The series resistance rmode reduces the maximum value of the discharge current 930 Ϊμαχ. If RM0DE is 15, 〇〇〇 ohm', for example, Imax is reduced by about 10X. For the maximum ESD induced voltage of 5 volts between the common connector 87A and the ground pad 855, when used with the series resistor rm〇de shown in Fig. 8β, the capacitor shown in Fig. 8b
Cmode=2,〇〇〇 pF可能被減少了大概1〇χ成為cm〇de=2〇〇 pF。 圖10D所示之等效電路1030係對應至ESD等效電路 源9〇〇之輸出端子910與920,其連接至電源供應部焊墊 865與接地焊墊855,藉以產生圖9B所示之放電電流 930,而放電電流930流經共通連接器860,其係連接至啟 動之非揮發性奈米管保護裝置之絕緣的輸入端子,如由圖 32 201106408 8B所示之代表保護裝置81〇,與82〇,所顯示的。為了限制 共通連接器860上之ESD感應電壓儲備,可能使用數個 方法。於第-料巾,唯電容H綠❹在電源供應部焊 墊865與接地焊墊855之間的既存的(電路操作所需要的) 電源供應部至接地解搞電容器Cdec,如顯示於圖8b與圖 1〇D中,其不具有串聯電阻(於圖10D中Rps=〇)。於第二 方法中,串聯電阻Rps係附加在電源供應部焊墊865與共 通連接器86G之間,且並聯電容$ Cps係附加在共通連接 盗860與接地焊墊855之間,如顯示於圖犯,與圖丨⑽中。 於第-方法中,可能使用如圖8B所示之在電源供應 部與接地之間既存的解㈣容n CDEC,並使呈$Cmode=2, 〇〇〇 pF may be reduced by approximately 1〇χ to cm〇de=2〇〇 pF. The equivalent circuit 1030 shown in FIG. 10D corresponds to the output terminals 910 and 920 of the ESD equivalent circuit source 9A, which are connected to the power supply pad 865 and the ground pad 855, thereby generating the discharge shown in FIG. 9B. Current 930, and discharge current 930 flows through a common connector 860 that is connected to the insulated input terminal of the activated non-volatile nanotube protection device, as represented by the representative protection device 81 shown in FIG. 32 201106408 8B, 82〇, what is shown. In order to limit the ESD induced voltage reserve on the common connector 860, several methods may be used. In the first - the towel, only the capacitor H green ❹ between the power supply pad 865 and the ground pad 855 between the power supply (required for circuit operation) power supply to the ground release capacitor Cdec, as shown in Figure 8b In Fig. 1D, it does not have a series resistance (Rps = 于 in Fig. 10D). In the second method, the series resistor Rps is added between the power supply pad 865 and the common connector 86G, and the parallel capacitor $Cps is added between the common connection 860 and the ground pad 855, as shown in the figure. Criminal, with Figure (10). In the first method, it is possible to use the solution (C) capacity n CDEC existing between the power supply portion and the ground as shown in FIG. 8B, and make it appear as $
nrm〇DtRps=0)之圖10D,且沒有_電容 PS 中為開路)被附加。需要將ESD =_至5伏特之^之數值係為 片Τ所=小之解轉電容器通常被使用於晶 片中,所以不需要額外電容。 塾86==Γ ’串聯電阻Rps係附加在電源供應部焊 之間’且電容器Cps係附加在共 ^連^ _與接地焊㈣5之間,如由圖_盘圖犯, 中之寻效電路1030所顯示的。串聯電阻 電電流930之最大值。如果R伤1<: ΛΛ 夕max放 士果PS係15,_歐姆,則舉例而 料大概1GX。對在共通連接器_與接 谇墊之間的5伏特之最大的ESD感應電壓而言, 33 201106408 cPS係藉由使用用以估計關於圖10c之Cmode之相同方法 而被估計為CPS=200 pF。因為CDEC出現在電源供應部焊 墊865與接地焊墊855(電路設計需求)之間,所以最大的 ESD感應電壓將小於5伏特。 圖10E所顯示之等效電路1〇4〇係對應至esd等效電 路源900之輸出端子910與920,其連接至模式焊墊875 與焊塾830,藉以產生放電電流930。放電電流930流經 Rmode(於此譬如Rm〇de=15,000歐姆),並將最大電流減少 了 10X至0.1文培,如關於圖l〇C中之等效電路1〇2〇所 說明的。CMODE=200 pF,如關於圖i〇c中之等效電路1〇2〇 所說明的。啟動(ON)之非揮發性奈米管保護裝置81〇,具有 電阻(Rsw/2+Rc/2)/N=2.5歐姆,且具有〇·ι安培之減少的 最大電流,而橫越過電阻之最大壓降於〇25伏特下是可 忽略的,以使接地焊墊855維持於幾乎零伏特。因此,共 通連接器870上之最大ESD感應電壓使ESD感應電壓需 求符合於5伏特之最大值,與為圖1〇c之等效電路1〇2〇 所計算的相同。 圖10F所示之等效電路1050係對應至ESD等效電路 源900之輸出端子910與920,其連接至電源供應部焊墊 865與焊墊830,藉以產生放電電流930。放電電流93〇 流經Rps(於此譬如RPS=15,000歐姆)’並將最大電流減少 了 10X至0.1女培,如關於圖l〇D中之等效電路1〇3〇所 說明的。CPS=200 pF ’如關於圖i〇D中之等效電路1〇3〇 所說明的。啟動(ON)之非揮發性奈米管保護裴置81〇,具有 34 201106408 電阻(Rsw/2+Rc/2)/N-2·5 I姆’且具有ο」安培之減少的 最大電流,而橫越過電阻之最大壓降於0,25伏特下是可 忽略的’以使接地焊墊855維持於幾乎零伏特。因此,共 通連接器860上之最大ESD感應電壓使ESD感應電壓需 求符合於5伏特之最大值,與為圖i〇D之等效電路1〇3〇 所汁异的相同。一般至少2,000 pF之解耦電容器Cdec* 載放電電流930之一部分遠離共通連接器86〇,以使共通 連接器860之ESD感應最大電壓被減少在5伏特以下。 又,相對於接地焊墊855之電源供應部焊墊865係小於5 伏特焊墊至接地最大電壓,如關於圖1〇D中之等效電路 1030所說明的。 圖10G所示之等效電路1〇6〇係對應至ESD等效電路 源900之輸出端子910與920,其連接至模式焊墊875與 電源供應部焊墊865,藉以產生放電電流93〇。放電電流 93〇流經電阻Rmode=15,000歐姆且Rps=i5,000歐姆,以 使最大電流流量被減少了 20X,從1安培減少至〇 安 培’而在模式焊塾875與電源供應部焊塾865之間的ESD 感應電壓並不超過5伏特。因為cDEC連接接地焊墊855 與電源焊墊865並提供額外電流流動路徑,所以最大的 ESD感應電壓將少於5伏特。 在晶片操作期間之非揮發性奈米管保護裝置電容 在曰曰片刼作期間,非揮發性奈米管保護裝置未被啟 動,如由圖8C中之非啟動之非揮發性奈米管保護裝置 35 201106408 810與820’’所顯示的。非啟動奈米管保護裝置對應至圖 7D中概要顯示的非啟動之非揮發性奈米管保護裝置 750”,以及圖7E中以橫剖面顯示的對應的非啟動(〇FF) 之非揮發性奈米管保護裝置795。類似於非揮發性奈米管 保護裝置795之非揮發性奈米管裝置炙電容c〇UT之數 值,可從說明於美國臨時專利申請案6〇/581,〇74(名稱為 「非揮發性碳奈米管邏輯(NLOGIC)晶片外驅動器」,申請 日為2004年6月18日)中之類似裝置進行縮放,其中對 於在具有15個個別SWNT之奈米管通道元件位置43〇(圖 6A)中擁有奈米管通道元件426(圖4A與B)而製造出之裝 置而言,C0UT大概是0..030 fF(或30 aF),於此奈米管織物 密度大概每200 X 200 mm面積有10個個別SWNT。如上 述所更進一步說明的ESD保護所需要的個別SWNT之數 目N已決定’因此可能縮放非啟動之非揮發性奈米管保護Figure 10D of nrm〇DtRps=0), and no open circuit in _capacitor PS) is added. It is necessary to set the value of ESD = _ to 5 volts to the chip. = The small unwinding capacitor is usually used in the wafer, so no additional capacitance is required.塾86==Γ 'The series resistance Rps is added between the power supply parts' and the capacitor Cps is added between the total connection _ and the grounding (4) 5, as shown by the diagram _ disk diagram, in the circuit Shown in 1030. The maximum value of the series resistance electric current 930. If R hurts 1<: ΛΛ 夕 max 士 士 PS PS, _ ohm, for example, about 1GX. For the maximum ESD induced voltage of 5 volts between the common connector and the pad, 33 201106408 cPS is estimated to be CPS = 200 pF by using the same method used to estimate Cmode for Figure 10c. . Since the CDEC appears between the power supply pad 865 and the ground pad 855 (circuit design requirements), the maximum ESD induced voltage will be less than 5 volts. The equivalent circuit 1〇4 shown in Fig. 10E corresponds to the output terminals 910 and 920 of the esd equivalent circuit source 900, which are connected to the mode pad 875 and the pad 830 to generate a discharge current 930. The discharge current 930 flows through Rmode (here, Rm〇de = 15,000 ohms) and reduces the maximum current by 10X to 0.1 liters, as described with respect to the equivalent circuit 1〇2〇 in Figure 〇C. CMODE = 200 pF, as explained in relation to the equivalent circuit 1〇2〇 in Figure i〇c. The activated (ON) non-volatile nanotube protection device 81 has a resistance (Rsw/2+Rc/2)/N=2.5 ohms and has a reduced maximum current of 〇·ι amps, and traverses the resistance. The maximum voltage drop is negligible at 〇25 volts to maintain the ground pad 855 at almost zero volts. Therefore, the maximum ESD induced voltage on the common connector 870 causes the ESD induced voltage demand to meet the maximum value of 5 volts, which is the same as that calculated for the equivalent circuit 1〇2〇 of Figure 1〇c. The equivalent circuit 1050 shown in Fig. 10F corresponds to the output terminals 910 and 920 of the ESD equivalent circuit source 900, which are connected to the power supply pad 865 and the pad 830, thereby generating a discharge current 930. The discharge current 93 〇 flows through Rps (here, RPS = 15,000 ohms) and reduces the maximum current by 10X to 0.1 pp, as explained in relation to the equivalent circuit 1〇3〇 in Figure 〇D. CPS = 200 pF ' as explained with respect to the equivalent circuit 1〇3〇 in Fig. i〇D. The activated (ON) non-volatile nanotube protection device has 81 〇, with 34 201106408 resistance (Rsw / 2 + Rc / 2) / N - 2 · 5 I m ' and has a maximum current of ο ampere reduction, The maximum voltage drop across the resistor is negligible at 0,25 volts to maintain the ground pad 855 at almost zero volts. Therefore, the maximum ESD induced voltage on the common connector 860 causes the ESD induced voltage demand to meet the maximum value of 5 volts, which is the same as the equivalent circuit 1〇3〇 of Figure i〇D. Typically, at least 2,000 pF of the decoupling capacitor Cdec* load discharge current 930 is partially remote from the common connector 86A such that the ESD induced maximum voltage of the common connector 860 is reduced below 5 volts. Again, the power supply pad 865 relative to the ground pad 855 is less than 5 volts pad to ground maximum voltage as illustrated with respect to the equivalent circuit 1030 of Figures 1A. The equivalent circuit 1 〇 6 所示 shown in Fig. 10G corresponds to the output terminals 910 and 920 of the ESD equivalent circuit source 900, which are connected to the mode pad 875 and the power supply pad 865 to generate a discharge current 93 。. The discharge current 93〇 flows through the resistor Rmode=15,000 ohms and Rps=i5,000 ohms, so that the maximum current flow is reduced by 20X, from 1 amp to ampere ampere, and the pattern 塾875 and the power supply part are soldered 865 The ESD induced voltage between them does not exceed 5 volts. Since cDEC connects ground pad 855 to power pad 865 and provides an additional current flow path, the maximum ESD induced voltage will be less than 5 volts. Non-volatile nanotube protection device capacitors during wafer operation During non-volatile nanotube protection, the non-volatile nanotube protection is not activated, as shown by the non-activated non-volatile nanotubes in Figure 8C. Device 35 is shown on 201106408 810 and 820". The non-activated nanotube protection device corresponds to the non-activated non-volatile nanotube protection device 750" schematically shown in Figure 7D, and the corresponding non-activated (〇FF) non-volatile display in cross section in Figure 7E. Nanotube protection device 795. The value of the non-volatile nanotube device tantalum capacitor c〇UT similar to the non-volatile nanotube protection device 795 can be illustrated in US Provisional Patent Application No. 6/581, 〇74 (Similar devices in the name "NVOC Out-of-Chip Drivers", June 18, 2004), for nanotube channels with 15 individual SWNTs For a device fabricated with a nanotube channel element 426 (Figs. 4A and B) in component position 43 (Fig. 6A), the COUT is approximately 0..030 fF (or 30 aF), and the density of the nanotube fabric is There are approximately 10 individual SWNTs per 200 x 200 mm area. The number N of individual SWNTs required for ESD protection as further explained above has been determined. Thus it is possible to scale non-activated non-volatile nanotube protection.
裝置電容值。如果N=4,000個個別SWNT,則2CWT=16 fF (2 x 0.030 x 4000/15);如果 N=8,000 個個別 swnt,則 2C〇ut=32 fF;而如果 N=12,000 個個別 SWNT,則 2C〇ut=48 fi^CwiRE係更進一步如上被估計為0.2 fF,其相較於2c〇UT 之數值是可能被忽視的。 非揮發性奈米管保護裝置將少於50 fF附加至它們保 護之電路之電容負載。對照之下,習知之保護二極體可能 增加1.5 pF,或1,500 fF,如說明於Bertin等人之美國專 利6,141,245中。非揮發性奈米管保護裝置並未使用半導 體式二極體(或電晶體),因此可能被置放在電子組件之任 36 201106408 何層級上’例如晶片、晶片載體、卡或板。在電子組件之 -個輸入上可能並聯使用數個非揮發性奈米管保護裝 ,’其乃因為它們增加少於習知之保護裝置之電容, 藉以增加電子組件之ESD保護。 將唯-奈来管轉發性奈綺健裝置整合於電子植 件之各種不同層級 圖7Α所示之非揮發性碳奈米管保護裝置722可被置 =組件之任何層級,例如晶片、模組、卡或板層級基板。 為知技術之圖11Α顯示在半導體基板UG1中具有習知之 ^護震置(PD)11G2之半導體晶片1剛之橫剖面之簡化描 其中保護裝置11G2對應於圖1中所概要顯示之保護 ^ 10。保遵裝置1102係藉由絕緣體11〇4中之導電鑲入 :;了與絕緣體之表面上的導體1105而連接至焊 〇6 ’其已被沈積在半導體基板ιΐ()ι之表面上。可能 護雷型之擴散部1107形成圖1中所概要顯示的受保 ι1〇8 , — °p77。擴散部η〇7係藉由導電鑲入層接點 能被與導體1105而連接至保護裝置1102。焊墊1106可 陣列靶置在四周周圍或可能在半導體晶片11〇〇上之區域 係可配置中。在焊墊1106與組件之其他層級之間的連接, 上之、^用知線而直接連至焊塾11〇6(未顯示)或焊塾U〇6 且如t電隆起部ιι〇9(譬如黏焊劑),如圖11Α所顯示的, (KGt)兒月於參考文獻C.Bertin等人之「已知合格晶片 」 弟4早中’其屬於2001年Kluwer Academic出 37 201106408 版社,K. Puttlitv r> π ,t , 匕與P. T〇tta編輯之參考書「區域陣列互連 才曰南」之第149-151頁。 貝示半導體(或混合式半導體/奈米管)晶片 K 11面之簡化描繪’於此非揮發性奈米管保護裝置 FQnf ^加至半導體晶片1UG以供對擴散部U°7之額外 半f業中,半導體晶片是業界很熟知 由往安% 1、導體/奈米管晶片例子可能在下述美國專利 「二找到:美國專利申請案號11/033,089,名稱為 」^發性碳奈米管邏輯(NLOGIC)與CMOS反相器」,申 1 1/033 2η > ^ 月10曰;以及美國專利申請案f虎 稱為「結合的NLOGIC及CMOS雙轨道非 ^性?收器電路」’申請曰為2005年6月10曰,兩者 列入作參考。非揮發性奈米管保護裝置Ul2 ㈣d nm導體1與鎮入層接點1108而連接至 二’並藉由導體1115而連接至焊墊1117。在 ^ ,、組件之其他層級之間的連接,#可能使 線而=,1117(未顯示)或焊連二 如圖㈣所顯示的。裝置1U4 係為白技術之保護裝置(PD),類似於圖i中之PD10。 圖UC顯示半導體(或混合式半導 1120之簡化描繪,於其中習知技置: 以保護擴散部11()7,俾能使㈣/保4裝置1G不再用 發性奈米管_置t m7__非禪 置 之保5楚以免於ESD的影響。邦 38 201106408 揮發性奈米管保護裝置1122 Γ入性⑽嶋置⑽係1ί 鑲入層接點1108而連接至擴散 ^ 1124而連接至焊墊1126。在焊塾η’牛 ;=,2::=r“直接連至焊二 lie所顯示的。^隆起部1128(譬如點焊劑),如圖 ,11D顯示唯·奈米管晶片㈣之橫剖面之描繪,其 絕緣基板1131上之唯·奈米f裝置1路與儲存元 頒不)。絕緣體基板1131可能是陶瓷、破璃陶瓷或有 機的。唯-奈米管裝置與功能之例子可能在下述美國專利 申請案中被朗:美國專利申請案號·17,794,名稱為 「奈米管式開關元件」,申請曰為2〇〇4年8月13曰;美 國專利申請案號10/918,085,名稱為「具多重控制之奈米 管式開關元件」’申請日為2004年8月13曰;美國專利 申請案號11/〇33,215,名稱為「非揮發性碳奈米管邏輯 (NL〇GIC)接收器電路」,申請如為2005年1月10日;以 及美國專利申請案號11/033,216,名稱為「非揮發性碳奈 米官邏輯(NLOGIC)晶片外驅動器」,申請曰為2005年i 月日。因為絕緣體基板1131並非是半導體基板,所以 無法使用需要半導體式二極體之例如圖1中之裝置1〇之 習知之保護裝置。取而代之的是,所需要之保護裝置並不 需要二極體,例如對應至圖7A所顯示之保護裝置722之 非揮發性奈米管保護裝置1133。非揮發性奈米管保護裝置 39 201106408 1133係藉由導體1135連接至烊墊1136。非揮發性保護裝 置1133亦連接至奈米管裝置與電路(未顯示)以提供esd 保護,如以下所更進一步說明的。 圖11E顯示晶片載體1140之橫剖面,其中一個或多 個晶片可能在實體上及電氣上黏著至晶片載體114〇。基板 1141包含例如1143、1144與1146之表面導體,内部配線 (未顯示)’填滿導體的通道孔1145,其使一側上之導體與 另一側上之那些導體連接。非揮發性奈米管保護裝置1142 係對應於圖7A所顯示之奈米管保護裝置722,並藉由導 體1143而連接至焊墊1144。非揮發性奈米管保護裝置 1142在處理期間保護晶片載體114〇免於ESD的損壞,亦 對裝sx至晶片載體1140之晶片提供額外保護。焊墊1144 係藉由填滿導體的通道孔1145而連接至端子焊墊1146。 導電隆起部1147係連接至端子焊墊1146,並連接至組件 之另一層級上之導體(未顯示)。於晶片級與晶片載體層級 所使用之導紐起狀制,可在下収獻巾朗:參考 文獻C.Bertin等人之「已知合格晶片(KGD)」之第4章中, 其屬於 2001 年 Kluwer Academic 出版社,κ. Puttlitz 與 pDevice capacitance value. If N=4,000 individual SWNTs, then 2CWT=16 fF (2 x 0.030 x 4000/15); if N=8,000 individual swnts, then 2C〇ut=32 fF; and if N=12,000 individual SWNTs, then 2C 〇ut=48 fi^CwiRE is further estimated to be 0.2 fF as above, which is negligible compared to the value of 2c〇UT. Non-volatile nanotube protection devices add less than 50 fF to the capacitive load of the circuits they protect. In contrast, conventional protective diodes may increase by 1.5 pF, or 1,500 fF, as described in U.S. Patent 6,141,245 to Bertin et al. The non-volatile nanotube protection device does not use a semiconductor diode (or transistor) and may therefore be placed on any of the electronic components, such as wafers, wafer carriers, cards or boards. Several non-volatile nanotube protection devices may be used in parallel on one input of an electronic component, because they increase the ESD protection of the electronic components because they increase the capacitance of the conventional protection device. Integrating the V-Nei tube forwarding Nerima device into various layers of the e-plants The non-volatile carbon nanotube protection device 722 shown in Figure 7A can be placed at any level of the assembly, such as a wafer, module , card or board level substrate. Fig. 11 shows a simplified cross-section of a semiconductor wafer 1 having a conventional protective substrate (PD) 11G2 in a semiconductor substrate UG1. The protective device 11G2 corresponds to the protection shown in Fig. 1. The compliant device 1102 is mounted by conductive in the insulator 11 〇 4; and is connected to the solder 〇 6 ′ on the surface of the semiconductor substrate 导体 ΐ 导体 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 It is possible that the lightning protection type diffusion portion 1107 forms the protected ι1 〇8, - °p77 as schematically shown in Fig. 1. The diffusion portion η 〇 7 can be connected to the protection device 1102 by the conductor 1105 by a conductive embedded layer contact. Pad 1106 can be placed in an array around the target or possibly in the area on the semiconductor wafer 11A. The connection between the pad 1106 and the other layers of the component is directly connected to the pad 11 〇 6 (not shown) or the pad 塾 U 〇 6 and the wire 隆 ι 〇 9 ( For example, as a flux solder, as shown in Figure 11Α, (KGt) is in the reference C. Bertin et al., "Known Qualified Chips", 4 in the middle of the morning, which belongs to Kluwer Academic, 2001, 2011. Puttlitv r> π , t , 匕 and P. T〇tta edited the reference book "Regional Array Interconnects to the South" on pages 149-151. Simplified depiction of the B-11 surface of the Bethes semiconductor (or hybrid semiconductor/nanotube) wafer. This non-volatile nanotube protection device FQnf ^ is applied to the semiconductor wafer 1UG for an additional half of the diffusion portion U°7. In the industry, semiconductor wafers are well known in the industry. For example, the conductor/nanotube wafer example may be found in the following U.S. Patent "2: U.S. Patent Application Serial No. 11/033,089, entitled "Hybrid Carbon Nanotube" Logic (NLOGIC) and CMOS inverters", 1 1/033 2η > ^ 10 曰; and the US patent application f tiger is called "combined NLOGIC and CMOS dual-track non-receiver circuit" The application was filed on June 10, 2005, and both were included for reference. The non-volatile nanotube protection device Ul2 (iv) d nm conductor 1 is connected to the town layer contact 1108 and connected to the second electrode and connected to the pad 1117 by the conductor 1115. In ^ , the connection between other levels of the component, # may be lined with =, 1117 (not shown) or welded as shown in Figure (4). Device 1U4 is a white technology protection device (PD), similar to PD10 in Figure i. Figure UC shows a simplified depiction of a semiconductor (or hybrid semi-conductor 1120 in which the conventional technique is placed: to protect the diffuser 11 () 7, the ( (4) / 4 device 1G no longer use the hair tube _ t m7__ non-Zang Zhibao 5 Chu to avoid the influence of ESD. State 38 201106408 Volatile Nanotube Protection Device 1122 Intrusive (10) ( (10) 1 1 ί Inlaid into the layer 1108 and connected to the diffusion ^ 1124 and connected To the solder pad 1126. In the solder 塾 ' '牛; =, 2:: = r "directly connected to the solder two lie as shown. ^ ridge 1128 (such as spot solder), as shown, 11D shows only · nano tube The cross section of the wafer (4) is depicted on the insulating substrate 1131, and the memory substrate 1131 may be ceramic, ceramic or organic. The only-tube device and An example of a function may be found in the following U.S. Patent Application: U.S. Patent Application Serial No. 17,794, entitled "Nano-Tube Switching Element", filed on August 13, 2004; US Patent Application No. 10/918,085, entitled "Nano-tube Switching Components with Multiple Controls"' application date is August 13, 2004 U.S. Patent Application Serial No. 11/33,215, entitled "Non-volatile Carbon Nanotube Logic (NL〇GIC) Receiver Circuit," filed January 10, 2005; and U.S. Patent Application Serial No. 11/ 033,216, entitled "NVOIC Out-of-Chip Driver", applied for the month of January 2005. Since the insulator substrate 1131 is not a semiconductor substrate, it is not possible to use a conventional protective device such as the device 1 of Fig. 1 which requires a semiconductor type diode. Instead, the required protection means does not require a diode, such as a non-volatile nanotube protection device 1133 corresponding to the protection device 722 shown in Figure 7A. Non-volatile nanotube protection device 39 201106408 1133 is connected to the mattress 1136 by a conductor 1135. Non-volatile protection device 1133 is also coupled to the nanotube device and circuitry (not shown) to provide esd protection, as further described below. Figure 11E shows a cross section of wafer carrier 1140 in which one or more wafers may be physically and electrically bonded to wafer carrier 114A. Substrate 1141 includes surface conductors such as 1143, 1144, and 1146, and internal wiring (not shown) fills the via holes 1145 of the conductors, connecting the conductors on one side to those on the other side. The non-volatile nanotube protection device 1142 corresponds to the nanotube protection device 722 shown in Figure 7A and is coupled to the pad 1144 by a conductor 1143. The non-volatile nanotube protection device 1142 protects the wafer carrier 114 from ESD damage during processing and also provides additional protection to the wafer containing the sx to wafer carrier 1140. Pad 1144 is connected to terminal pad 1146 by a via hole 1145 filled with a conductor. Conductive bumps 1147 are connected to terminal pads 1146 and to conductors (not shown) on another level of the assembly. The guides used at the wafer level and the wafer carrier level can be used in the following paragraphs: Chapter 4 of the "Knowledge Qualified Chips (KGD)" by C. Bertin et al., which belongs to 2001. Kluwer Academic Press, κ. Puttlitz and p
Totta編輯之參考書「區域陣列互連指南」之第i62_i65 頁。 圖UF顯示圖11A所·顯示之半導體晶片n〇〇與圖nE 所顯示之裝設至晶片載體1140之倒裝晶片以形成電子組 件1150。除了晶片封裝功能以外,電子組件“%已經藉 由將晶片載體1140中之非揮發性奈米管保護裝置1142經 201106408 由導體1143、焊墊1144、導電隆起部1109、焊執11〇6、 導體與獻層接點1⑽而連接至擴散部11G7,來增 加半導體晶片11GG中之擴散部之咖保谁。這^ 頭外ESD誠,可與圖UB中之半導體晶片⑴, 將非揮發性奈米管保護裝置1112附加至半導體 足豹上:之保護裝置1〇之習知之保護裝置可附加 足夠的額外電容負荷以限制晶片性能。如果咖保護可 措由其他手絲達成,财肖除賴裝置i 子組件_’其包含半導體晶片二^ 於其中擴散部11〇7之删保護係藉由使用 二40中之車父低的電容非揮發性奈米管保護裝置 2而貫現。除了具有習知之保護裝置UG2之 因為消除了晶片上咖保護而以具有較低的焊塾 “之+導體晶片1161置換以外,電子 至電子組件1150。在裝設至曰_竹才應 丰導俨"士 Τ 曰片載 之前’當處理 丰W日日片1161日^係需要特殊剛處理警惕 之咖保護係由晶片载體mo上之非揮發性奈米管 保護農置1142所提供。奈米f保護裝置1142係藉由導體 1143、焊墊1144、導電隆起部1162、焊墊1163、導體1165 與鎮入層赫1167錢接至驗部·。電子組件1160 …且件之其他層級之連接係如關於電子組件U5Q所說明 的。 201106408 圖11H顯示電子組件117〇,其包含唯_奈米管晶片 H71與晶片載體1140,於其中連接至焊塾1166之奈米管 裝置與電路(未顯示)之ESD保護,係藉由使用晶片載體 1140中之較低的電容非揮發性奈米管保護裝置ιΐ68而實 現。除了非揮發性奈米管保護裝置1133與導體η%已被 消除以外,唯-奈米管晶片1171係類似於圖UD所顯示之 唯-奈米管晶片1130。在裝設至晶片載體114〇之前,當處 理唯-奈米官晶片1171時,係需要特殊esd處理警惕。連 接至烊墊1166之奈米管裝置與電路(未顯示)之保 邊’係由晶#制1H0上之非揮發性奈米管保護裝置 1168所提供。奈米管保護裝置1168係藉由導體m3、焊 墊1144與導電隆起部1172而連接至焊塾1166。電子組件 ”、、且件之其他層級之連接,係如關於電子組件115〇 所說明的。 一非揮發性奈米管保護裝置可能使用於比晶片載體更 冋的、’且件之層級,例如卡與板。卡層級之電子組件118〇 一般包含陶竞或有機基板、焊墊對附著元件(pads to attach components未顯不)、配線與端子。圖⑴顯示非揮發性 奈米管保護裝置受保護卡層級電子組件118G之平面視 圖而圖111顯示其之橫剖面。卡基板1181上之端子1182 係用以連接至組件之下—層級,並在處理時暴露至 ESD。 非揮發性奈米管保護裝置1184係藉由導體1183連接至端 子1182以乓加保護免於ESD的影響。非揮發性奈米管 保。蒦裝置1184對應至圖7A中之非揮發性奈米管保護裝置 42 201106408 722 圖11J顯示由陶瓷或有機物所構成之板層級電 j190 ’其被計以支持8日日#與連接器之直接安裝 :拔卡基板’如下述文獻所更進一步說明的:二 ^nin等人之「已知合格晶片(KGD)」之第4 = ^ 2001 ^ Kluwer Academic , κ. Putting; 〇ttaj4輯之參考書「區域陣列互連指南」之第邮⑽ 。安裝於板基才反1191上之連接器1192之 93(其連接至可插拔卡層級電子組件118〇之 > 係在處理期間暴露至咖。又,藉子㈣) :rr片1196之接觸焊塾119一 =。為了增加保護免於ESD的影響,非揮發 蠖装置1195係藉由導體1194而連 '、水吕保 非揮發性奈米管保護裝置㈣:由^ 接觸焊墊1198。非揮發性奈米管保魏置ii95 f 中之非揮發性奈米管保護 …曰片U96可能是例如半導體晶片測 導體/奈米管晶片⑽之混合式半導 晶片BS曰片,或例如唯'奈米管晶片測之唯-奈米管 發性= 圖7A所顯示之非揮 可能使用二雪:之非揮發性奈米管保護裝置,係Totta edited the reference book "Regional Array Interconnect Guide" on page i62_i65. Figure UF shows the semiconductor wafer n〇〇 shown in Figure 11A and the flip chip mounted to wafer carrier 1140 shown in Figure nE to form electronic component 1150. In addition to the chip package function, the electronic component "% has passed the non-volatile nanotube protection device 1142 in the wafer carrier 1140 via 201106408 from the conductor 1143, the pad 1144, the conductive bump 1109, the solder 11 〇 6, the conductor Connected to the diffusion portion 11G7 with the junction 1 (10) to increase the diffusion of the semiconductor wafer 11GG. This external ESD can be combined with the semiconductor wafer (1) in Figure UB, which will be non-volatile nano The tube protection device 1112 is attached to the semiconductor leopard: the protection device of the conventional device can be attached with sufficient additional capacitive load to limit the performance of the wafer. If the coffee protection can be achieved by other hand wires, the device The sub-assembly _' contains the semiconductor wafer 2 in which the de-protection of the diffusion portion 11 〇 7 is achieved by using the low-capacity non-volatile nanotube protection device 2 of the lower parent in the second 40. The protection device UG2 replaces the electron-to-electronic component 1150 with a lower solder bump "+ conductor wafer 1161" because the wafer protection is eliminated. In the installation to 曰 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The Nerve Tube Protection is provided by Nongfang 1142. The nano-f protection device 1142 is connected to the inspection unit by a conductor 1143, a pad 1144, a conductive bump 1162, a pad 1163, a conductor 1165, and a town level layer 1167. The electronic components 1160 ... and the other levels of connections of the components are as described with respect to electronic component U5Q. 201106408 FIG. 11H shows an electronic component 117A comprising a wafer-only wafer H71 and a wafer carrier 1140, wherein the ESD protection of the nanotube device and circuit (not shown) connected to the pad 1166 is performed by using a wafer. The lower capacitance non-volatile nanotube protection device ι 68 in the carrier 1140 is implemented. The only-nanotube wafer 1171 is similar to the only-tube wafer 1130 shown in Figure UD, except that the non-volatile nanotube protection device 1133 has been eliminated from the conductor η%. A special esd processing alert is required when processing the V-Nano wafer 1171 prior to installation to the wafer carrier 114. The protection of the nanotube device and circuit (not shown) connected to the mattress 1166 is provided by the non-volatile nanotube protection device 1168 on Form 1H0. The nanotube protection device 1168 is connected to the pad 1166 by a conductor m3, a pad 1144 and a conductive bump 1172. The electronic components", and other levels of connection of the components, are as described with respect to the electronic component 115. A non-volatile nanotube protection device may be used in a more sturdy, and more hierarchical than the wafer carrier, for example Cards and boards. Card-level electronic components 118〇 generally include Tao Jing or organic substrates, pads to attach components (not shown), wiring and terminals. Figure (1) shows the non-volatile nanotube protection device A plan view of the card level electronic component 118G is shown and a cross section is shown in Fig. 111. The terminal 1182 on the card substrate 1181 is used to connect to the under-level of the component and is exposed to ESD during processing. Non-volatile nanotubes The protection device 1184 is pegically protected from ESD by the conductor 1183 being connected to the terminal 1182. The non-volatile nanotube protection device 1184 corresponds to the non-volatile nanotube protection device 42 in Fig. 7A 201106408 722 Fig. 11J shows a board level electric j190 'consisting of ceramic or organic matter, which is counted to support 8 days and direct mounting of the connector: the card-drawing substrate' as further described below. 4 bis ^ nin, who's "known good wafers (KGD)" of = ^ 2001 ^ Kluwer Academic, κ Putting;. The first postal ⑽ 〇ttaj4 series of reference books "area array interconnect Guide" of. The connector 1192 93 mounted on the board base 1191 (which is connected to the pluggable card level electronic component 118) is exposed to the coffee during processing. Also, the borrower (4): rr film 1196 contact Weld 119 a =. In order to increase the protection from the effects of ESD, the non-volatile helium device 1195 is connected by a conductor 1194, and the water-protected non-volatile nanotube protection device (4): contacts the solder pad 1198. Non-volatile nanotube protection in the non-volatile nanotubes weiwei ii95 f... The cymbal U96 may be a hybrid semiconductor wafer BS such as a semiconductor wafer conductor/nanotube wafer (10), or for example 'Nano tube wafer measurement only - nano tube properties = Figure 7A shows the non-swing possible use of two snow: non-volatile nanotube protection device,
“體層級、;層與:二==J 43 201106408 一或多重晶片。 圖不啟動之非揮發性奈米管保護裝置 其具有與8B,顯示處於ESD保護狀態中之晶片咖, 置,例如V動啟之動非(:)狀態中之非揮發性奈米管保護裝 片可動之非揮發性奈米管保護裝置_與82(V。晶 裝從電朗^除之前藉由賴器,或在晶片或封 態中。啟動且移除之前藉由一種系統而處於ESD保護狀 :個或數發裝J可能在電子組件之 “保魏置而連接至共通連接器85G。連接細節係顯示 於圖7C中。電源供應部焊墊865與模式焊墊8乃係受到 亚聯電容器,或電阻與並聯電容器保護,如顯示於圖犯 與8B’中。用以計算供各種焊墊、電源供應部焊墊、模式 焊墊與接地焊抑之ESD錢電壓之等效電路係顯示於 圖1〇中。請注意’模式焊墊可能與其他焊墊(未顯示)共用'。 某些晶片係在製造過程期間由於ESD感應電壓與電 流應力而遺失。圖12顯示在製造期間使用非揮發性奈米 管保護裝置以減少製程期間之ESD相關的沈降 (FALLOUT)之方法 1200。 較佳的方法步驟1210用以製造在共通基板上之多重 晶片。舉例而言’共通基板可能是石夕、陶瓷或有機物。半 導體晶片係藉由使用已知的半導體技術而製造,並包含習 44 201106408 知之保護裝置,其包含半導體式二極體。半導體晶片之 ESD保護可藉由如圖11所顯示之於電子組件之一個或多 個層級附加非揮發性奈米管保護裝置來提高,而不需要大 幅地增加整體電容負載,此乃因為奈米管保護裝置具有小 於1/10之習知保護裝置之電容,如上述所更進一步說明 的。 唯-奈米管邏輯功能係被製造出,如說明於美國專利 申請案號10/918,181中。唯-奈米管邏輯功能包含分別說 明於美國專利申請案號11/033,215以及美國專利申請案 號11/033,216中之接收器與輸出驅動器電路,其連接至焊 墊,並藉由使用啟動之非揮發性奈米管保護裝置而受到保 護免於ESD電壓的影響。舉例而言,因為唯-奈米管功能 可能形成於絕緣基板上,所以習知之保護裝置並非可得到 的,且可能替代使用不需要半導體式二極體之非揮發性奈 米管保護裝置。 具有混合半導體與奈米管功能之混合式晶片,亦可使 用非揮發性奈米管保護裝置。非揮發性奈米管保護裝置具 有比習知之保護裝置低得多的電容(少於1/10),並適合高 速操作電路,於此電容負荷係為一項問題。 接著,較佳的方法步驟1220使用測試器藉由切換保 護裝置至啟動(Ο N)狀態來啟動之非揮發性奈米管保護裝 置ESD保護,如顯示於圖8B、8B'與7C中,而晶片仍然 位於例如晶圓、基板等之共通載體上。非揮發性奈米管保 護裝置可能以下述方式被啟動。包含接地焊墊、電源供應 45 201106408 部焊墊與模式焊墊之所有焊墊係處於接地狀態。模式垾墊 係劇升或脈動(可能使用一個或多個脈波)至例如電源供應 部vDD,正電壓。所有非揮發性奈米管保護裝置係為啟g (ON)狀態,如顯示於圖8B與8B,中。非揮發性奈米管 護裝置並非在模式料與接地料之間被使用,如表2 圖8B與8B’中。取而代之的是,電流流量可能藉由 並聯電容器與串聯電阻之組合而最小化,如圖8 所示。 ,、SB' 六-人 ^ 干又Ί王叼力沄芡驟123〇係藉由使j 術來切割、排序並挑選ESD保護的個別晶片。 ’祕的方法步驟⑽係制習知之内連線手 段將晶片安裝於下-層級封裝上。 逆深手 將封的方法步驟125°係使用習知之 用。十裝曰曰片女裝於測試器上以供最終模組(封裳晶片)測試 護方法㈣126G錢_發性奈米管俘 啟動1驟謂來使_發性奈米管簡嚴置不 啟動’如顯示於圖13中並更進—步說明於下。隻及置不 測試然後’較佳的方法步驟㈣針對封裝W執行最終 其次,較佳的方法步驟128〇藉 良好封裝(通過最终測試之那叫裝法1220對著 保護裝置ESD保„置。測;^裝==„奈米管 稭由使用一個脈波, 46 201106408 數個脈波或多數脈波來啟動保護褒置。測試界可測試信號 =至接地路Lx確認裝懿魏置倾於啟動(〇n) ’並視需要重複啟動順序,直到所有保護裝置被啟動 為止。 —接著,較佳的方法步驟1290係藉由使用已知的工業 貫施將ESD保護裝置載運給消費者。 圖= 員示在系統中使用啟動之非揮發性奈米管保護 f㈣裸晶或域晶丨以在安裝系統中之元件 期間減少ESD相關FALL〇UT之方法i扇。缺後, 發性奈^保護裝置係在安裝之後藉由系統而不被啟動。 =的方法步驟1310將咖保護晶片 OFF狀態之系統中。 ,二t +,保。蔓裳置係藉由使用較佳方法步驟1320 k項或選項2而不被啟動,以允許系統操作。 雷選項^則下—較佳方法步驟刪將接地、 電源供應部與模式電壓置於灾 5 ν 於令伏特。電源電壓VPS係從0 ^ ^ ^ 發性奈米管保護裝置從啟動(ON) 切換成非啟動(OFF),且保護會被移除。 =’較佳的方法步驟135〇開始系統操作。 评項2, _麵方法步驟⑽將電 伏特,模式電厂係從。 陶狀離揮發性奈米管保護裝置保持於啟動 (ON)狀悲。其次,電源電麼、係從。劇 V議Et壓係從Vdd劇升至Q,藉以使非揮發性奈米管保 47 201106408 護裝置從啟動(ON)切換至非啟動(OFF)狀態。 其次,較佳的方法步驟1350開始系統操作。 圖14顯示在系統之ESD保護的封襞晶片中使用非揮 發性奈米管保護裝置,以在從系統移除元件期間減少ESD 相關的FALLOUT之方法1400。 較佳的方法步驟141 〇係中止系統操作(使系統置於 OFF狀態)。 ' 接著,較佳的方法步驟丨4 2 〇為所選擇的晶片啟動E s D 保5蒦。亦即,所選擇的晶片將在系統操作期間從操作狀態 改變成ESD保護的非操作狀態,以供從系統移除與後來 處理用。或者,晶片可能被切換至非操作保護狀態,用以 保護晶片免於輻射場、系統操作問題等的影響,並留在系 統之一疋位置持續一段時間,然後,當系統操作重新開始 時’回頭切換至操作狀態。ESD保護係在Vm〇de=0時被 啟動,而電源電壓vPS係從Vdd劇升至零。其次,Vm〇de 係從0劇升至VDD,而非揮發性奈米管保護裝置從非啟動 (OFF)切換至啟動(ON)狀態。VM0DE接著從Vdd劇升至零, 而晶片(或電子組件)維持受ESD保護。請注意,非揮發性 奈米管保護裝置可能被整合於晶片設計(未顯示)中,用以 保護特別敏感的内部電路。這些非揮發性奈米管保護裝置 係藉由使用實施方法1200、1300與14〇〇之内部電路(未 顯示)而被啟動與不被啟動。 接著,較佳的方法步驟1430從系統移除保護的晶片 或電子組件。 48 201106408 唯-奈米管揮發性奈米管保護裝置 揮發性奈米管保護農置通常是處於〇ff位置。 在ESD感應電壓與電流之前被啟動細㈣姻)或不被啟 動(turned-OFF)之非揮發性奈米管保護裝£,在譬如電子 組件之處理顧’揮發性奈米管保護I置通常是〇ff,而 只有如果連接至ESD源(例如圖9中之靜電放電等效電路 源900)的話是被啟動的。揮發性奈米f保護裝置 動持續ESD感應電壓之期間、避免咖感應電壓超過預 定值(例如5伏特)’然後,回復至它們的通常〇ff(常閉) 狀態。非揮發性與揮發性奈米管保護裝置兩者之電氣特徵 係由裝置之幾何形狀所控制,如顯示於圖4a與4B中。 然而’由於有關非揮發性操作之奈米管通道元件懸浮長度 (LSUSP)與間隙之比率係大概10/1(如圖7E所顯示),所以有 關揮發性操作之奈米管通道元件懸浮長度與間隙之比率 係大概有關揮發性奈米管保護裝置結構1595之5/1(如圖 15A所顯示)。5/1奈米管通道元件懸浮長度與間隙之比 率’係藉由將奈米管通道元件至絕緣輸入(與絶緣放電)電 極間隙之間距從圖7E所示之非揮發性奈米管保護裝置 795之25 nrn增加至5〇 nm之奈米管通道元件至絕緣輸入 (與絕緣放電)電極間隙(圖15A中之間距)而達成。圖15A 所顯示之信號電極1522與1524分別對應至圖4A、4B與 7E所顯不之信號電極422與424 ;輸入電極1511係對應 至輸入電極411 ;放電電極1512係對應至放電電極4U ; 49 201106408 輸出電極1513與1515分別對應至輸出電極413與4i5 . 以及對向電極1514與1516分別對應至對向電極'4i4與 416。奈米管通道元件1526係對應至奈米管通道元^ 426。奈米管通道元件1526係與信號電極1522與1524電 氣接觸’並對應至與信號電極422與424電氣接觸之太米 管通道元件426。輸出電極1513係連接至對向電極 如由連接部iWO所概要顯示的;輸出電極 對向電極1516,由連接 係連接至 揮發性操作而言,心㈣/概要顯不的。又,對於 1522與1524,由連接A电"12係電連接至信號電極 管通道元件1526與·"所概要顯示的,以使在奈米 特。唯-秦米管裝置、電極1512之間的電壓係為零伏 案號11/033,215中,發性操「作係說明於美國專利申請 (NLQGIC)接收器電名稱為「非揮發性碳奈米管邏輯 全部列入作參考。」,申請日為2005年1月10曰,其 揮發性奈米管你 除了已省略放電電才遂°逢裝置1595X係顯示於圖15B中。 相同。因為在揮泰^^^12以外’圖15B幾何上係與圖15八 1526與放電電極操作中,圖15A中之奈米管通道元件 放電電極1512。之間的電壓差是零,所以可能省略 1595X之電氣結構:人將理解到揮發性奈米管保護裝置 護裝置1595。類似係可能被使用以取代揮發性奈米管保 揮發性操作,係說^的不具有放電閘極之唯-奈米管裝置之 名稱為「奈米管月於美國專利申請案號1〇/917,794中, 開關元件」’申請曰為2004年8月13 50 201106408 =唯不米官褲發性奈米管保護裝置整合於習知之半導 _、混合式半導體/奈米管或唯-奈米管晶片設計中 上圖15A所顯示並對應於圖4A與4b之多數非揮發性 =濩裝置結構1595,可能用以提供對於電子組件中之裝置 二電路之靜電Esd保護。如以下所更進一步說明的,可 ,於組件之晶片’及/或基板,及/或卡,及/或板層級附加 軍《〖生保濩裝置結構1595。揮發性奈米管保護裝置係在 哪放電事件期間藉纟ESD錢電壓而倾動,且在ESD 放電事件之前並非被啟動或不被啟動,如於上述關於圖7 所更進一步5兒明的非揮發性奈米管保護裝置之狀況,因此 揮發性奈米管保護裝置將不同地整合於電子組件中,如以 下所更進二步說明的。又,因為ESD感應電壓會啟動揮 發性奈米管保護裝置,所以它們的閾值電壓係被設計成高 於電子組件操作電壓。舉例而言,揮發性奈米管保護裝置 之啟動閾值可能設定於5伏特,但操作電壓可能嬖如是3 伏特。 。 圖16A顯示於晶片、基板、卡或板層級整合於電子組 件中之揮發性奈米管保護裝置1622,其係對應至圖15A 所顯示之揮發性奈米管保護裝置1595,其亦對應至圖4八 與4B,除了較大的奈米管通道元件至絕緣輸入(與絕緣放 電)電極間隙之間距以外。揮發性保護裝置1622係連接至 焊墊1626與共通導體1630。焊墊1626、共通導體163〇 51 201106408 以及所有其他用來互連之導體,以及使用作為揮發性奈米 管保護裝置1595中之電極之導體,係可具有5至500 nm 之範圍内的厚度,其厚度錯由使用已知的較佳導體沈積方 法而受到良好控制,且可能由例如Ru、Ti、Cr、Al、Au、 Pd、Ni、W、Cu、Mo、Ag、In、Ir、Pb、Sn 之金屬,和 其他適當金屬,以及這些之.組合所構成。金屬合金(例如 TiAu、TiCu、TiPd、Pbln、TiW)與其他適當導體(包含 CNT 它們本身(譬如單壁的、多壁的及/或雙壁的)),或導電氮 化物、氧化物,或石夕化物(例如RuN、RuO、TiN、TaN、 C〇Six與TiSix)可被使用。亦可使用其他種類的導體或半導 體、材料。圖案化導體之較佳方法,係可能使用熟知的光 刻技術與熟知的蚀刻技術,例如濕钱刻與反應性離子钮刻 (RIE) 〇 揮發性奈米管保護裝置1622之輸出電極1625與 1625’係藉由一般又連接至接地端之共通導體163〇而並聯 連接。接點1645與1645’分別將輸出電極1625與1625, 電連接至它們對應的對向電極(未顯示)。與奈米管通道元 件1628接觸之信號電極1629與1629,係藉由導體1624而 並聯連接,而導體1624亦藉由接點1623連接至焊墊(端 子)1620 ^放電電極1640亦藉由導體1632、接點1638與 導體1624而連接至信號電極1629與1629,。輸入電極1642 係藉由導體1636連接至共通導體163〇。揮發性奈米管保 。蔓裝置1622通常是處於圖μα所顯示之非啟動(〇ff)狀 態。如果正或負極性之ESD感應電壓相對於共通導體163〇 52 201106408 被施加至焊墊1626,則奈米管通道元件將從#啟動(OFF) 狀態切換至啟動(ON)狀態,於其中奈米管通道元件1628 與輸出電極1625與1625^妾觸,藉以將焊墊1626連接至 共通導體1630。在輸出電極1625或1625,與奈米管通道元 件1628中之一個別SWNT之間的接觸電阻Rsw—般為 10,000歐姆。奈米管通道元件1628係藉由使用並聯之多 重個別SWNT而形成。揮發性奈米管保護震置1622維持 於啟動(ON)狀態’直到ESD感應電壓係在5伏特以下為 止。不具有放電閘極之類似的唯-奈米管装置之揮發性操 作係說明於美國專利申請案號1〇/917,794中,名稱為「齐 米管式開關元件」,申請曰為2004年8月13日。 丁 圖16Β係為揮發性奈米管保護裝置165〇之示意 包含通往焊墊與共通導體之連接部,其對應於圖16八 示之揮發性奈米管保護|置1622與連接部。圖i6 示之揮發性奈米管保護裝置1622係對應至圖i 請 16B中之揮發性奈米管保護裝置1650。夺米^^ 1664係對應至奈米管通道元件1628。垂直於二,件 元件1664之前號係用以表示揮發性操作,通道 力之方向中的數個點。電造姑s国錢械回復 之揮發性奈米管保魏置1595以及以概要 心、員不 中之探發性奋来答乂▽祕# «ρ ‘”、、7R;^圖 力之方向巾的數她1連接至目1όΒ所顯 膨之輸㈣極咖,係對應至圖似 對向電極 極膨與1625’之並聯組合與相關對向電極輪出電 號電極1660係對應至兩個並聯信號電極⑹9 *、不);信 並聯組合;絕緣的輸人電極1670係對應至絕緣1629’之 V轉1入電 201106408 極1642 ;絕緣的放電電極1686係對應至絕緣的放電 1640。輸出電極1655係藉由連接部啊對應至輸出電極 1625與Ϊ625’之延伸)而連接至共通導冑1675 :受保 路1657係連接至焊墊1656,而信號電極漏係藉由 器1654而連接至焊墊1656,其對應於圖7A所顯示 發性奈米官保護裝置1622之信號電極1629與1629,、導 體1624與接點1623。導體元件1668將電極\686連接至 共通節點1660。元件1670係為輸入電極。元件166〇係為 連接至1668與1654之共通節點,於此放電電極μ% ^系 連接至奈米管1664’以便確保在1686與1664之間沒有電 場以確保揮發性操作。 圖16B中之共通連接器1675係對應至圖16A中之共 通導體1630。專門用語「導體」表示以橫剖面與平面視圖 顯示之導電結構,而專門用語「連接器」表示以對應至導 體之概要圖式顯示之配線互連。 圖16C以概要形式顯不啟動(ON)之揮發性奈米管保 護裝置1650',其具有由在焊墊1656與共通連接器1675 之間的ESD感應電壓所啟動(ON)之ESD保護,以使奈米 管通道元件1664藉由導體1662及輸出電極1655而與共 通電極1675接觸。施加至焊塾1656之靜電電荷係經由導 體1654放電至信號電極1660,至奈米管通道元件1664, 至輸出電極1655與導體1662至共通連接器1675。在焊塾 1656已被放電之後’啟動(ON)之揮發性奈米管保護裝置 1650'回復至非啟動(OFF)之揮發性奈米管保護裝置1650。 54 201106408 。圖I?顯示具有周邊焊墊之晶片1700,雖然亦可能使 =域陣列焊墊。日日日片可能是半導體晶片,或具有 一導體與奈米管農置之混合式晶片,或唯_奈米管晶片。 ^非另有說明,否則專門用語「焊墊」意指信號焊墊,譬 代表焊墊173〇與174〇,可能是輸入焊墊、輸出焊墊或 輸出焊墊兩者。每個個別的焊墊具有揮發性奈米管 ,遵裝置。舉_言’焊# 173。係受到代表揮發性奈米 I保護裝置171〇之ESD保護,焊墊丨係受到代表揮 X性奈米管保護裝置172〇2ESD保護。每個焊墊係連接 至揮發性奈米管保護裝置之信號電極,而 ^置之輸出電極係連接至共通連接器㈣,如圖17 = •、貝不的。揮發性奈米管保護裝置17iq與^,對應至圖 所顯示之揮發性奈米管保護裝置165()以及圖i6A所 頌不之1622。揮發性保護裝置171〇與172〇之操作對應至 上述關於圖16所更進一步說明的操作,且亦更進一步說 =於美國專利巾請案號⑽33,215中,名稱為「非揮發性 杈奈米f邏輯(NLOGIC)接收器電路」。 電源供應部焊墊1765使用揮發性奈米管保護裝置 760’其為與用於其他焊墊173()與i74g使用作為信號焊 之代表〖生揮發性奈米管保護裝置171〇與之相同型 式之ESD保護。 ' 性奈米管保護裝置特2 ^處理放電電流所需要的揮發 55 201106408 ESD等效電路NASA人體模型(HBM)9〇〇說明於圖 900中。放電電流93〇從電路900流動至端子,例如電子 組件上之焊墊、接腳與隆起部。 一圖17顯示晶片Π00之示意圖,於其中例如揮發性奈 米管保護裝置1710與1720之揮發性奈米管保護裝置係處 於正常地非啟動(0FF)狀態,其對應於圖16B所顯示之揮 發性奈米管保護裝置165〇。於此例中,由焊塾1656上之 ESD所感應生成並被施加至受保護電路1657之電壓,係 藉由從圖16B所顯示之0FF狀態轉變成圖16(:所顯示之 ON狀態之揮發性奈米管保護裝置而被假設成受限於5伏 特之最大容許電壓。ESD電流路徑係從焊墊ι656經由導 體(配線)1654至信號電極1660,經由奈米管通道元件1664 至輸出電極1655 ’經由導體(配線)1662至共通導體1675。 個別SWNT之路徑電阻主要是與導體至SWNT接觸電阻 Rc/2串聯之導體至s WNT接觸電阻Rsw/2,其乃因為其他 接點之電阻係小得多(譬如毫歐姆),且個別SWNT之電 相較於導體與SWNT之間的接觸電阻尺⑽與Rc而言亦, 很小的。啟動(Ο N)之非揮發性奈米管保護裝置電阻係為灸 行之個別SWNT之數目N之函數,並可能被表吊2 (Rsw/2+Rc/2)/N。 、為 ESD脈波可成以各種方法被施加至晶片。舉例而$ 焊墊至焊墊、焊墊至接地端以及以下所更進一步說明的, 他方法。因為電流流經兩個啟動揮發性奈米管保護筆>、 (例如串聯之保護裝置1710與1720),所以esd感應二, 56 201106408 係在ESD脈波被施加在兩個禪墊(譬如概要顯示於圖17 中之焊塾Π30與1740)之間時產生。因此,在焊塾173〇 與1740之間的總電阻係為2 X (Rsw/2+r/2)/n或 (RSW+RC)/N,如由圖18A中之等效電路18〇〇所概要顯示 的,而在焊塾mo或mo至共通連接器175〇之間的總 電阻譬如是(Rsw/2+Rc/2)/N。因為共通連接器! 75〇係連接 至可以轉移ESD電流流量之大型電容器Cdec,所以最大 的感應生成焊墊電射能小於估計的最大電壓1似所 顯示之等效電路画係對應至施加在兩個焊塾(焊塾至焊 墊)之間的ESD等效電路源9〇〇 ’如上述所更進一步說明 的。ESD靜電放電等效電路源9〇〇之輸出9丨〇與92〇係分 別連接至焊塾㈣與焊墊174G,如圖17與18a中所概 要表不的。 圖18A所示之等效電路]8〇〇係對應至圖9所示之 ESD等效電路源9〇〇之輸出端子91〇與92〇,其連接至焊 墊Π30與1740’藉以在揮發性奈米管保護裝置(例如i7i〇 或172〇)因應於ESD感應電壓而被啟動(turned_〇N)時,產 生圖9所示之放電電流930。電阻值(Rsw/2+Rc/2)/N表示 在從0 F F狀態切換至〇 N狀態之後,揮發性奈米管保護裝 置1710與1720之啟動(0N)狀態。揮發性奈米管保護裝置 1710與1720 —般係以比1〇 ns上升時間快之子毫微秒速 度切換至圖9B所示之ESD感應電流930之峰值電流。揮 如性奈米管保護裝置啟動(〇N)狀態等效電路i (圖18八) 係與非揮發性奈米管保護裝置啟動(0N)等效電路1〇〇〇(圖 57 201106408 10A)相同’藉以產生相同的唯-奈米管裝置需求。因此, 如上述關於圖10A所更進一步討論的’(Rsw+rc)/n之揮 發性奈米管保護裝置之數值係被調整成5歐姆,俾能於 Imax=1安培時,使ESD感應電壓不超過5伏特。如果舉 例而言’ Rsw=Rc=l〇,〇〇〇歐姆,則N=4,0〇〇個個別的 SWNT,其具有Wnt=87 um之通道元件寬度;如果 Rsw=Rc=20,000歐姆,則N=8,000個個別的SWNT,其具 有WNT=174 um之通道元件寬度。揮發性奈米管保護裝置 係為相當大的裝置’其被置於與焊墊鄰接並遍及例如晶片 外驅動器(OCD)之電路。 圖18B所示之等效電路1810係對應至ESD等效電路 源900之輸出端子910與920,其連接至焊墊173〇與接地 焊墊1755,藉以產生放電電流930。放電電流930流經位 於焊墊1730與共通導體1750之間的啟動(on)之揮發性奈 米官保護裝置1710,其以電阻(rsw/2+Rc/2)/N表示(於此 例中為2.5歐姆),其係連接至接地焊墊1755,亦如圖17 所示。焊墊1730上相對於接地焊墊1755之最大的esd 感應電壓係為2.5伏特,等效電路18〇〇之焊墊至焊墊之 最大電壓的一半。圖18B之等效電路181〇係與圖1〇B之 等效電路1_相同,於轉發性與轉發性奈米管保護 裝置兩者分別係處於啟動(ON)狀態。 、圖18C所示之等效電路1820係對應至ESD等效電路 源900之輪出端子910與㈣,其連接至電源供應部焊塾 Π65與接地焊塾1755’藉以產生放電電流。放電電流 58 201106408 930流經位於電源供應部焊墊1765與共通導體175〇之間 的啟動(ON)之揮發性奈米管保護裝置176〇,其以電阻 (Rsw/2+Rc/2)/N表示(於此例中為2.5歐姆),其係連接至 接地焊墊1755,亦如圖17所示。對於ΐΜΑχ=1安培而言, 電源供應部焊墊1765上相對於接地焊墊1755之最大的 ESD感應電壓係為2_5伏特,與等效電路181〇中之焊墊 1730上所的感應生成的相同。電源供應部焊墊1765上之 最大的ESD感應電壓將小於2_5伏特,其乃因為解耦電容 益CDEC將轉移ESD感應電流930之一部分。 圖18D所示之等效電路184〇係對應至ESD等效電路 源900之輸出端子91〇與920,其連接至電源供應部焊墊 1765與焊墊1730,藉以產生放電電流93〇。放電電流93〇 流經位於電源供應部焊墊1765與共通導體175〇之間的啟 動(ON)之揮發性奈米管保護裝置176〇,其以電阻 (Rsw/2+Rc/2)/N表示(於此例中為2 5歐姆),其係連接至 接地焊塾1755 ’並連接^處於啟動(qN)狀之揮發性奈 米管保護裝置ΠΗ),其以_(Rsw/2+Rg/2)/n表示(於此 U中為2.5 ^姆)’其係連接至焊墊173Q。電源供應部焊 墊1765上之最大的ESD感應電壓將是5伏特,ΐΜΑχ=1安 培流經5歐姆。然❿,在電源供應部焊# 1765與接地焊 塾1755之間的解輕電容器CDEC將轉移某些咖感應放 電電流93G ’藉以降低最大電壓至最大5伏特之下。 在晶片刼作期間之揮發性奈米管保護裝置電容 59 201106408 例如圖】7所示之】710、1720與1760之揮發性奈米 管保護裝置係對應於圖16B所示之揮發性奈米管保^ 置1650與圖16Α所示之揮發性奈米管保護裝置1622,且 係在晶片操作期間處於非啟動(0FF)狀態。處於非啟動 (OFF)狀態之揮發性奈米管保護裝置1622(圖16A)電容係 不超過處於非啟動(0FF)狀態之非揮發性奈米管保護骏置 722(圖7A),其如上所述已被估計為小於5〇岱。此乃因為 揮發性奈米管保護裝置結構使用與非揮發性奈米管保蠖 f ^結構相同的尺寸,但具有可能減少電容之較大的間隙 揮發性奈米管保s蔓裝置將小於5〇 附加至它們保復 之電路之電容負載。對照之下,習知之保護二極體可能附 加1·5 pF或1,500 fF,如說明於Bertin等人之美國專利 6,141,245中。揮發性奈米管保護裝置並未使用半導體式 二極體(或電晶體),因此可被置放於電子組件之任何層 級’例如晶片、晶片載體、卡或板。在電子組件之一個輸 入上,可能並聯使用數個揮發性奈米管保護裝置,其乃因 為它們附加習知之保護裝置之小於刚電容,藉以增加 電子組件之ESD保護。 將唯-奈米管觸性奈米管倾裝置整合㈣子組件 之各種不同的層級 圖⑴顯示整合於電子組件之各種不同的層級之 從晶片層級至板層級之雜發性奈米管賴裝置。類似於 201106408 圖7A所示之非揮發性奈米管保護裝置722之非揮發性奈 米管保護裝置係被使用。圖11B-11J中使用下述的非揮發 性奈米管保護裝置:圖11B中使用非揮發性奈米管保護裝 置1112;圖11C中使用1122;圖11D中使用1133;圖11E、 F與G中使用1142 ;圖11H中使用1168 ;圖111中使用 1184 ;以及圖11J中使用1195與1195'。 圖11B-11J中所使用之非揮發性奈米管保護裝置係在 ESD事件之前被啟動,而在電子組件分別藉由使用圖12、 13與14所示之較佳方法1200、1300與1400操作之前未 被啟動。 類似於圖16A中之揮發性奈米管保護裝置1622之揮 發性奈米管保護裝置可能被使用,以取代置換非揮發性奈 米管保護裝置 1112、1122、1133、1142、1168、1184、1195 與1195丨。 置換圖11B-11J中之非揮發性保護裝置1112、1122、 1133、1142、1168、1184、1195 與 1195'之揮發性奈米管 保護裝置係藉由ESD感應電壓而被啟動,而並不需要分 別藉由使用圖12、13與14所示之較佳方法1200、1300 與1400而被啟動與未被啟動。 將唯-奈米管揮發性與非揮發性奈米管保護裝置整合 於電子組件之各種不同的層級 揮發性與非揮發性奈米管保護裝置可能一起(混合)被 使用以提供較寬的覆蓋範圍,藉以結合兩者之最佳特徵。 61 201106408 揮發性與非揮發性奈米管保護裝置可能被置放於相同的 電子組件層級或不同的電子組件層級。 以可應用本發明之原理之實施例之寬廣變化的觀點 而言’吾人應理解到所顯示的實施例只為例示,且不應被 視為限制本發明之範疇。舉例而言,除那些所說明的之 外,流程圖之步驟可能依序被採用,且於圖中可能使用更 多或更少的元件。 將唯-奈米管簡化的非揮發性奈米管保護裝置整合於 習知之半導體、混合式半導體/奈米管、唯·奈米管晶片及/ 或例如模組、卡與板之組件之較高層級中 圖19所不之多數簡化的非揮發性保護裝置結構1910 與1920,可用以提供對於圖19中之例如晶片19〇〇之電子 組件中之裝置與電路之靜電放電(ESD)放電保護。如上述 所更進-步朗的,可能於組件之晶片,及/或基板,及/ 或卡,及/或板層級附加簡化的非揮發性保護裝置社 1910與1920。如上述關於圖12與13所更進一步說明° 簡化的非揮發性奈米管保護裝置係在ESD感應 ^ 流之前被啟動與未被啟動。簡化的麵發性保 、电 1910與1920係更進一步說明於下,且係類似於;置結構 申請案之非揮發性裝置結構:美國專利述專利 10/864,186,名稱為「非揮發性機電場效裝置巧案鱿 電路以及其形成方法」,申請日為2〇〇4年6月9用其之 美國臨時專利申請案6G/624,297,名稱為「日;以及"Body level, layer and: two == J 43 201106408 one or multiple wafers. Figure shows a non-volatile nanotube protection device that does not start. It has 8B, showing the chip in the ESD protection state, such as V The non-volatile nanotube protection device in the non-(:) state is movable non-volatile nanotube protection device _ with 82 (V. crystal package from the electric device before the removal by the device, or In the wafer or the sealed state, it is in ESD protection mode by a system before starting and removing: one or several hairpins J may be connected to the common connector 85G in the electronic component. The connection details are shown in In Fig. 7C, the power supply pad 865 and the mode pad 8 are protected by a triple capacitor, or a resistor and a parallel capacitor, as shown in Figure 8B. For calculation of various pads and power supply parts. The equivalent circuit of the ESD voltage for solder pads, mode pads and grounding is shown in Figure 1. Please note that 'mode pads may be shared with other pads (not shown). Some wafers are manufactured. During the process, it is lost due to ESD induced voltage and current stress. Figure 12 shows A method 1200 showing the use of a non-volatile nanotube protection device during manufacturing to reduce ESD-related settling (FALLOUT) during processing. Preferred method step 1210 is to fabricate multiple wafers on a common substrate. For example, ' The common substrate may be a ceramic, ceramic or organic material. The semiconductor wafer is fabricated by using known semiconductor technology, and includes a protective device known in Japanese Patent No. 44 201106408, which includes a semiconductor diode. ESD protection of the semiconductor wafer can be Adding a non-volatile nanotube protection device to one or more levels of the electronic component as shown in Figure 11 without increasing the overall capacitive load, since the nanotube protection device has less than 1/10 The capacitance of the conventional protection device is further described above. The only-nanotube logic function is manufactured as described in U.S. Patent Application Serial No. 10/918,181. Receiver and output driver circuits in U.S. Patent Application Serial No. 11/033,215, and U.S. Patent Application Serial No. 11/033,216 To the pad and protected from ESD voltage by using a activated non-volatile nanotube protection device. For example, since the only-nanotube function may be formed on an insulating substrate, conventional protection The device is not available and may replace the use of a non-volatile nanotube protection device that does not require a semiconductor diode. Hybrid wafers with hybrid semiconductor and nanotube functions can also be protected with non-volatile nanotubes. The non-volatile nanotube protection device has a much lower capacitance (less than 1/10) than the conventional protection device and is suitable for high-speed operation of the circuit, and this capacitive load is a problem. Method step 1220 uses a tester to initiate ESD protection of the non-volatile nanotube protection device by switching the protection device to a startup (Ο N) state, as shown in Figures 8B, 8B' and 7C, while the wafer is still located, for example, in the crystal On a common carrier such as a circle or a substrate. Non-volatile nanotube protection devices may be activated in the following manner. Included with ground pad, power supply 45 201106408 All pads of the pad and mode pad are grounded. The mode pad is ramped up or pulsed (possibly using one or more pulses) to, for example, the power supply unit vDD, positive voltage. All non-volatile nanotube protection devices are in the g (ON) state as shown in Figures 8B and 8B. The non-volatile nanotube support device is not used between the mode material and the ground material, as shown in Table 2 Figures 8B and 8B'. Instead, the current flow can be minimized by a combination of shunt capacitors and series resistors, as shown in Figure 8. , SB's six-person ^ Ί Ί 叼 叼 〇 〇 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 The secret method step (10) is to fabricate the wafer on the lower-level package by the conventional interconnect method. Reverse deep hand The method step 125° of the seal is used. Ten loaded scorpion women's clothing on the tester for the final module (seal wafer) test protection method (four) 126G money _ hairy nano tube capture start 1 sudden to make the _ hairy tube is not set 'As shown in Figure 13 and further steps are explained below. Only the test is not tested and then the 'best method step (4) is performed for the package W. The preferred method step 128 is to use a good package (by the final test, the method 1220 is placed against the protection device ESD). ;^装==„The tube is made of a pulse wave, 46 201106408 several pulse waves or most pulse waves to start the protection device. The test field can test the signal = to the grounding path Lx to confirm the installation of the device (〇n) 'The sequence of activations is repeated as needed until all protection devices are activated. - Next, the preferred method step 1290 carries the ESD protection device to the consumer by using known industrial practices. The member shows that in the system, the activated non-volatile nanotubes are used to protect the f(4) bare or domain crystals to reduce the ESD-related FALL〇UT during the installation of the components in the system. The system is not activated by the system after installation. The method step 1310 of the method is to protect the wafer in the OFF state of the system. The two t +, the security is set by using the preferred method step 1320 k or the option 2 without being activated, to Allow system operation. Ray option ^ then - better method steps to remove the grounding, power supply and mode voltage to the disaster 5 ν 令 volt. The power supply voltage VPS is from 0 ^ ^ ^ hair tube protection device from Start (ON) Switch to non-start (OFF), and the protection will be removed. = 'Better method step 135 〇 start system operation. Item 2, _ surface method step (10) will be electric volt, mode power plant The ceramic-like volatile nanotube protection device is kept at the start (ON). Secondly, the power supply is powered by the system. The V pressure of the Et system is raised from Vdd to Q, so that the non-volatile nanotubes can be made. Bao 47 201106408 Protection device switches from ON (ON) to OFF (OFF) state. Secondly, the preferred method step 1350 begins system operation. Figure 14 shows the use of non-volatile nanoparticles in the system's ESD-protected packaged wafer. The tube protection device, method 1400 for reducing ESD-related FALLOUT during removal of components from the system. The preferred method step 141 is to suspend system operation (to put the system in an OFF state). 'Next, the preferred method steps丨4 2 启动 Start E s D for the selected wafer 5. That is, the selected wafer will change from an operational state to an ESD-protected non-operational state during system operation for removal from the system and subsequent processing. Alternatively, the wafer may be switched to a non-operational protection state. To protect the wafer from radiation field, system operation problems, etc., and stay in one of the system for a period of time, then, when the system operation restarts, 'return to the operating state. ESD protection system in Vm〇de When =0, it is activated, and the power supply voltage vPS rises from Vdd to zero. Secondly, Vm〇de rises from 0 to VDD, and the non-volatile nanotube protection device switches from non-start (OFF) to start ( ON) status. VM0DE then rises from Vdd to zero, while the chip (or electronic component) remains protected by ESD. Note that non-volatile nanotube protection devices may be integrated into the chip design (not shown) to protect particularly sensitive internal circuitry. These non-volatile nanotube protection devices are activated and not activated by the use of internal circuitry (not shown) that implements methods 1200, 1300 and 14. Next, a preferred method step 1430 removes the protected wafer or electronic component from the system. 48 201106408 Only-nanotube volatile nanotube protection device Volatile nanotube protection farm is usually in the 〇ff position. A non-volatile nanotube protection device that is activated before the ESD senses voltage and current or is turned-off, in the case of electronic components such as the handling of volatile nanotube protection I It is 〇ff and is only activated if connected to an ESD source (such as the ESD equivalent circuit source 900 in Figure 9). The volatile nano-f protection device keeps the ESD-induced voltage during the period, prevents the coffee-induced voltage from exceeding a predetermined value (for example, 5 volts), and then returns to their normal 〇ff (normally closed) state. The electrical characteristics of both the non-volatile and volatile nanotube protective devices are controlled by the geometry of the device, as shown in Figures 4a and 4B. However, since the ratio of the length of the nanotube channel element suspension (LSUSP) to the gap for the non-volatile operation is approximately 10/1 (as shown in Figure 7E), the suspension length of the nanotube device with respect to the volatile operation is The ratio of gaps is approximately 5/1 of the volatile nanotube protection device structure 1595 (as shown in Figure 15A). The ratio of the suspension length to the gap of the 5/1 nanotube channel element is 'from the gap between the nanotube inlet channel element and the insulation input (and the insulation discharge) electrode gap from the non-volatile nanotube protection device shown in FIG. 7E 795 of 25 nrn is increased to 5 〇 nm of the nanotube channel element to the insulation input (with insulation discharge) electrode gap (distance between Figure 15A) to achieve. The signal electrodes 1522 and 1524 shown in Fig. 15A correspond to the signal electrodes 422 and 424 shown in Figs. 4A, 4B and 7E, respectively; the input electrode 1511 corresponds to the input electrode 411; and the discharge electrode 1512 corresponds to the discharge electrode 4U; 201106408 output electrodes 1513 and 1515 correspond to output electrodes 413 and 4i5, respectively, and counter electrodes 1514 and 1516 correspond to counter electrodes '4i4 and 416, respectively. The nanotube channel element 1526 corresponds to the nanotube channel element 426. The nanotube channel element 1526 is in electrical contact with the signal electrodes 1522 and 1524 and corresponds to the nanotube channel element 426 in electrical contact with the signal electrodes 422 and 424. The output electrode 1513 is connected to the counter electrode as schematically shown by the connection portion iWO; the output electrode counter electrode 1516 is connected to the volatile operation by the connection system, and the heart (four)/summary is not shown. Further, for 1522 and 1524, it is schematically connected by the connection A electric "12 series to the signal electrode channel member 1526 and &" to make it in the nanometer. The voltage between the Wei-Qin tube device and the electrode 1512 is zero volt case number 11/033, 215. The characterization of the device is described in the US patent application (NLQGIC). The receiver name is "non-volatile carbon nanotubes." The logic is all included for reference.", the application date is January 10, 2005, and the volatile nanotubes have been omitted from the discharge of the battery. The 1595X system is shown in Figure 15B. the same. The nanotube channel element discharge electrode 1512 in Fig. 15A is in the operation of Fig. 15B and Fig. 15 8 1526 and the discharge electrode operation except for the Fig. 15B geometry. The voltage difference between the two is zero, so the electrical structure of the 1595X may be omitted: one will understand the volatile nanotube protection device 1595. Similar systems may be used to replace the volatile nanotubes to maintain volatility operation. The name of the only-nanotube device that does not have a discharge gate is "Nemitubes in US Patent Application No. 1〇/ In 917,794, the switching element "application" was August 2004. 13 50 201106408 = Only the versatile tube-type nano tube protection device is integrated in the conventional semi-conductor _, hybrid semiconductor / nanotube or Wei - nano The majority of the non-volatile=濩 device structure 1595 shown in Figure 15A and corresponding to Figures 4A and 4b in the tube wafer design may be used to provide electrostatic Esd protection for the device two circuits in the electronic assembly. As further described below, the device "1" can be attached to the wafer ' and/or the substrate, and/or the card, and/or the board level of the module. The volatile nanotube protection device is tilted by the ESD money voltage during which discharge event, and is not activated or activated before the ESD discharge event, as further described above with respect to Figure 7 The condition of the volatile nanotube protection device, and therefore the volatile nanotube protection device will be integrated differently into the electronic component, as explained further below. Also, since the ESD induced voltage activates the volatile nanotube protection device, their threshold voltage is designed to be higher than the operating voltage of the electronic component. For example, the activation threshold of a volatile nanotube protection device may be set at 5 volts, but the operating voltage may be, for example, 3 volts. . Figure 16A shows a volatile nanotube protection device 1622 integrated in an electronic component at the wafer, substrate, card or board level, which corresponds to the volatile nanotube protection device 1595 shown in Figure 15A, which also corresponds to the figure 4 and 4B, except for the distance between the larger nanotube channel components and the insulation input (with insulation discharge) electrode gap. Volatile protection device 1622 is coupled to pad 1626 and common conductor 1630. Pad 1626, common conductor 163〇51 201106408 and all other conductors used for interconnection, and conductors used as electrodes in volatile nanotube protection device 1595, may have a thickness in the range of 5 to 500 nm. The thickness error is well controlled by the use of known preferred conductor deposition methods, and may be, for example, from Ru, Ti, Cr, Al, Au, Pd, Ni, W, Cu, Mo, Ag, In, Ir, Pb, The metal of Sn, and other suitable metals, and combinations of these. Metal alloys (eg TiAu, TiCu, TiPd, Pbln, TiW) and other suitable conductors (including CNTs themselves (eg single-walled, multi-walled and/or double-walled)), or conductive nitrides, oxides, or A lithium compound such as RuN, RuO, TiN, TaN, C〇Six and TiSix can be used. Other types of conductors or semiconductors or materials can also be used. A preferred method of patterning the conductors is to use well-known photolithographic techniques and well-known etching techniques, such as wet etching and reactive ion button etching (RIE), the output electrodes 1625 and 1625 of the volatile nanotube protection device 1622. 'Connected in parallel by a common conductor 163〇 that is typically connected to the ground. Contacts 1645 and 1645' electrically connect output electrodes 1625 and 1625, respectively, to their corresponding counter electrodes (not shown). The signal electrodes 1629 and 1629 in contact with the nanotube channel element 1628 are connected in parallel by a conductor 1624, and the conductor 1624 is also connected to the pad (terminal) 1620 by a contact 1623. The discharge electrode 1640 is also connected by a conductor 1632. Contact 1638 and conductor 1624 are coupled to signal electrodes 1629 and 1629. Input electrode 1642 is coupled to common conductor 163 by conductor 1636. Volatile nano tube protection. The vine device 1622 is typically in the non-activated (〇 ff) state shown by the map μα. If the positive or negative ESD induced voltage is applied to the pad 1626 with respect to the common conductor 163〇52 201106408, the nanotube channel element will switch from the #OFF state to the ON state, in which the nanometer The tube channel component 1628 is in contact with the output electrodes 1625 and 1625 to connect the pad 1626 to the common conductor 1630. The contact resistance Rsw between the output electrodes 1625 or 1625 and one of the individual SWNTs of the nanotube channel member 1628 is typically 10,000 ohms. The nanotube channel element 1628 is formed by using multiple individual SWNTs in parallel. The volatile nanotube protection shock 1622 is maintained in the ON state until the ESD induced voltage is below 5 volts. The volatility operation of a similar V-tube device without a discharge gate is described in U.S. Patent Application Serial No. 1/917,794, entitled "Zimai Tube Switching Element", filed in August 2004. 13th. D. Fig. 16 is a schematic diagram of the volatile nanotube protection device 165. The connection portion to the pad and the common conductor is included, which corresponds to the volatile nanotube protection device 1622 and the connection portion shown in Fig. 16. The volatile nanotube protection device 1622 shown in Figure i6 corresponds to the volatile nanotube protection device 1650 of Figure iB. The rice tapping ^^ 1664 corresponds to the nanotube channel element 1628. Vertically to the second element, the element 1664 is used to indicate a volatile operation, a number of points in the direction of the channel force. Electric 造 s 国 钱 钱 回复 挥发性 挥发性 挥发性 挥发性 挥发性 挥发性 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 595 595 595 595 595 595 595 595 595 595 595 595 1 595 1 595 595 1 595 595 The number of the towel is connected to the eyepiece 1 (4), and corresponds to the parallel combination of the counter electrode and the 1625' and the associated counter electrode. Parallel signal electrode (6) 9 *, no); signal parallel combination; insulated input electrode 1670 corresponds to insulation 1629' V to 1 input 201106408 pole 1642; insulated discharge electrode 1686 corresponds to insulated discharge 1640. Output electrode 1655 Connected to the common via 1675 by the connection portion corresponding to the extension of the output electrode 1625 and the Ϊ 625': the protected path 1657 is connected to the pad 1656, and the signal electrode drain is connected to the pad by the device 1654 1656, which corresponds to signal electrodes 1629 and 1629, conductor 1624 and contacts 1623 of the inductive nano-protection device 1622 shown in Figure 7A. Conductor element 1668 connects electrode \686 to common node 1660. Element 1670 is an input Electrode. Element 166 is connected to 1668 and 1654 The common node, where the discharge electrode μ% is connected to the nanotube 1664' to ensure that there is no electric field between 1686 and 1664 to ensure volatile operation. The common connector 1675 in Fig. 16B corresponds to the one in Fig. 16A. Common conductor 1630. The term "conductor" is used to denote a conductive structure that is shown in cross-section and plan view, and the term "connector" refers to a wiring interconnect that is shown in a schematic view corresponding to a conductor. Figure 16C shows, in schematic form, an ON (ON) volatile nanotube protection device 1650' having ESD protection initiated by an ESD induced voltage between pad 1656 and common connector 1675, The nanotube channel element 1664 is brought into contact with the common electrode 1675 via the conductor 1662 and the output electrode 1655. The electrostatic charge applied to the solder fillet 1656 is discharged via conductor 1654 to signal electrode 1660, to nanotube via channel component 1664, to output electrode 1655 and conductor 1662 to common connector 1675. After the solder fillet 1656 has been discharged, the 'ON' of the volatile nanotube protection device 1650' is returned to the non-activated (OFF) volatile nanotube protection device 1650. 54 201106408 . Figure I shows a wafer 1700 with a peripheral pad, although it is also possible to make a = domain array pad. The day and day film may be a semiconductor wafer, or a hybrid wafer having a conductor and a nanotube, or a wafer. ^ Unless otherwise stated, otherwise the term "pad" means signal pads, 代表 stands for pads 173〇 and 174〇, which may be either input pads, output pads or output pads. Each individual pad has a volatile nanotube, as per the device. _言' welding # 173. It is protected by ESD on behalf of the volatile nano-I protection device 171, and the pad is protected by a representative 172 〇 2ESD. Each pad is connected to the signal electrode of the volatile nanotube protection device, and the output electrode is connected to the common connector (4), as shown in Figure 17 = •. The volatile nanotube protection devices 17iq and ^ correspond to the volatile nanotube protection device 165() shown in the figure and 1622 of Figure i6A. The operation of the volatility protection devices 171 and 172 corresponds to the operation described further above with respect to FIG. 16, and furthermore, in the U.S. Patent Application Serial No. (10) 33,215, the name is "non-volatile Meter f logic (NLOGIC) receiver circuit. The power supply part pad 1765 uses a volatile nanotube protection device 760' which is the same type as the other used pads 173 () and i74g used as a representative of the signal welding, the raw volatile tube protection device 171 ESD protection. 'Negative tube protection device 2 ^Volatilization required to process the discharge current 55 201106408 ESD equivalent circuit NASA Human Body Model (HBM) 9 〇〇 is illustrated in Figure 900. The discharge current 93〇 flows from the circuit 900 to the terminals, such as pads, pins and ridges on the electronic components. Figure 17 shows a schematic view of a wafer Π00 in which, for example, the volatile nanotube protective devices of the volatile nanotube protective devices 1710 and 1720 are in a normally non-activated (OFF) state, which corresponds to the volatilization shown in Figure 16B. The tube protection device 165〇. In this example, the voltage induced by the ESD on the solder fillet 1656 and applied to the protected circuit 1657 is converted from the 0FF state shown in FIG. 16B to the volatile state shown in FIG. 16 (the ON state shown). The nanotube protection device is assumed to be limited to a maximum allowable voltage of 5 volts. The ESD current path is from the pad ι656 via the conductor (wiring) 1654 to the signal electrode 1660, via the nanotube channel element 1664 to the output electrode 1655. 'via conductor (wiring) 1662 to common conductor 1675. The path resistance of the individual SWNT is mainly the conductor to the s WNT contact resistance Rsw/2 in series with the conductor to SWNT contact resistance Rc/2, which is because the resistance of other contacts is small. Much (such as milliohms), and the electrical phase of individual SWNTs is also small compared to the contact resistance scales (10) and Rc between the conductor and the SWNT. Start (Ο N) non-volatile nanotube protection device The resistance is a function of the number N of individual SWNTs of the moxibustion and may be lifted by 2 (Rsw/2+Rc/2)/N. The ESD pulse can be applied to the wafer in various ways. For example, $ Pad to pad, pad to ground and more Step by step, his method. Because the current flows through two activated volatile nanotube protection pens>, (such as series protection devices 1710 and 1720), so esd induction two, 56 201106408 is applied in the ESD pulse wave The two zen mats (such as the outlines shown in Figure 17 of the solder fillets 30 and 1740) are produced. Therefore, the total resistance between the solder bumps 173〇 and 1740 is 2 X (Rsw/2+r/2 ) / n or (RSW + RC) / N, as outlined by the equivalent circuit 18 图 in Figure 18A, and the total resistance between the solder mo or mo to the common connector 175 譬 is ( Rsw/2+Rc/2)/N. Because the common connector! 75〇 is connected to the large capacitor Cdec that can transfer the ESD current flow, the maximum induced generation pad RF energy is less than the estimated maximum voltage 1 The equivalent circuit drawing corresponds to the ESD equivalent circuit source 9〇〇' applied between the two pads (weld to pad) as described above. ESD ESD equivalent circuit source 9〇 The output 9〇 and 92〇 are connected to the soldering iron (4) and the bonding pad 174G, respectively, as shown in the outlines of Figures 17 and 18a. The equivalent circuit]8〇〇 corresponds to the output terminals 91〇 and 92〇 of the ESD equivalent circuit source 9〇〇 shown in FIG. 9, which are connected to the pads Π30 and 1740' for protection by the volatile nanotubes. When the device (for example, i7i〇 or 172〇) is activated (turned_〇N) in response to the ESD induced voltage, the discharge current 930 shown in Fig. 9 is generated. The resistance value (Rsw/2+Rc/2)/N is expressed in The start (0N) state of the volatile nanotube protection devices 1710 and 1720 after switching from the 0 FF state to the 〇N state. The volatile nanotube protection devices 1710 and 1720 typically switch to the peak current of the ESD induction current 930 shown in Fig. 9B at a sub-nanosecond speed faster than the 1 ns rise time. The swing-like nanotube protection device starts (〇N) state equivalent circuit i (Fig. 18). The system is activated with a non-volatile nanotube protection device (0N) equivalent circuit 1〇〇〇 (Fig. 57 201106408 10A) The same 'to generate the same only-nano tube device requirements. Therefore, the value of the '(Rsw+rc)/n volatile nanotube protection device as discussed further above with respect to FIG. 10A is adjusted to 5 ohms, and the ESD induced voltage can be made when Imax = 1 ampere. No more than 5 volts. If, for example, 'Rsw=Rc=l〇, 〇〇〇 ohm, then N=4, 0 个别 individual SWNTs with a channel element width of Wnt=87 um; if Rsw=Rc=20,000 ohms, then N = 8,000 individual SWNTs with a channel element width of WNT = 174 um. The volatile nanotube protection device is a relatively large device that is placed adjacent to the pad and over a circuit such as an off-chip driver (OCD). The equivalent circuit 1810 shown in Fig. 18B corresponds to the output terminals 910 and 920 of the ESD equivalent circuit source 900, which are connected to the pad 173A and the ground pad 1755, thereby generating a discharge current 930. The discharge current 930 flows through an on-state volatile nanoman protection device 1710 between the pad 1730 and the common conductor 1750, which is represented by a resistance (rsw/2+Rc/2)/N (in this example) It is 2.5 ohms), which is connected to the ground pad 1755, as shown in Figure 17. The maximum esd induced voltage on pad 1730 relative to ground pad 1755 is 2.5 volts, which is equivalent to half the maximum pad voltage of the pads. The equivalent circuit 181 of Fig. 18B is the same as the equivalent circuit 1_ of Fig. 1B, and is in an ON state in both the transmissive and transmissive nanotube protection devices. The equivalent circuit 1820 shown in Fig. 18C corresponds to the wheel-out terminals 910 and (4) of the ESD equivalent circuit source 900, which are connected to the power supply portion pad 65 and the ground pad 1755' to generate a discharge current. The discharge current 58 201106408 930 flows through the activated (ON) volatile nanotube protection device 176 位于 between the power supply pad 1765 and the common conductor 175 , with a resistance (Rsw / 2 + Rc / 2) / N indicates (2.5 ohms in this example) which is connected to ground pad 1755, as also shown in FIG. For ΐΜΑχ=1 amps, the maximum ESD induced voltage on the power supply pad 1765 relative to the ground pad 1755 is 2_5 volts, which is the same as the induction on the pad 1730 in the equivalent circuit 181〇. . The maximum ESD induced voltage on the power supply pad 1765 will be less than 2_5 volts because the decoupling capacitor CDEC will transfer a portion of the ESD induced current 930. The equivalent circuit 184 shown in Fig. 18D corresponds to the output terminals 91A and 920 of the ESD equivalent circuit source 900, which are connected to the power supply pad 1765 and the pad 1730, thereby generating a discharge current 93A. The discharge current 93〇 flows through the activated (ON) volatile nanotube protection device 176 located between the power supply pad 1765 and the common conductor 175A, and has a resistance (Rsw/2+Rc/2)/N. Indicates (25 ohms in this example) that is connected to the grounding pad 1755 'and is connected to the activated (qN) shaped volatile nanotube protection device ,), which is _(Rsw/2+Rg) /2) / n means (2.5 ^ m in this U) 'It is connected to the pad 173Q. The maximum ESD induced voltage on the power supply pad 1765 will be 5 volts, ΐΜΑχ = 1 amp through 5 ohms. Then, the de-lighting capacitor CDEC between the power supply portion solder #1765 and the ground pad 1755 will transfer some of the coffee induced discharge current 93G' to lower the maximum voltage to a maximum of 5 volts. Volatile nanotube protection device capacitors during wafer fabrication 59 201106408 For example, the volatile nanotube protection devices of 710, 1720 and 1760 shown in Figure 7 correspond to the volatile nanotubes shown in Figure 16B. The volatile nanotube protection device 1622 shown in Fig. 1650 and Fig. 16A is maintained in a non-start (OFF) state during wafer operation. The volatile nanotube protection device 1622 (Fig. 16A) in the non-activated (OFF) state does not exceed the non-activated (0FF) state of the non-volatile nanotube protection device 722 (Fig. 7A), as described above The description has been estimated to be less than 5〇岱. This is because the volatile nanotube protection device structure uses the same dimensions as the non-volatile nanotube protection structure, but has a large gap that may reduce the capacitance of the volatile nanotubes.电容 A capacitive load attached to the circuit they are backed up. In contrast, conventional protective diodes may be supplemented with 1·5 pF or 1,500 fF as described in U.S. Patent 6,141,245 to Bertin et al. The volatile nanotube protection device does not use a semiconductor diode (or transistor) and can therefore be placed at any level of the electronic component, such as a wafer, wafer carrier, card or board. On one input of an electronic component, several volatile nanotube protection devices may be used in parallel because they add less than a rigid capacitor to the conventional protection device to increase the ESD protection of the electronic component. The various hierarchical diagrams (1) of the integration of the (n) sub-assembly of the V-nanotube touch-sensitive nanotube tilting device show the heterogeneous nanotube device integrated from the wafer level to the plate level integrated into various different levels of the electronic component. . A non-volatile nanotube protection device similar to the non-volatile nanotube protection device 722 shown in Fig. 7A of 201106408 is used. The following non-volatile nanotube protection devices are used in Figures 11B-11J: non-volatile nanotube protection device 1112 is used in Figure 11B; 1122 is used in Figure 11C; 1133 is used in Figure 11D; Figure 11E, F and G 1142 is used; 1168 is used in Figure 11H; 1184 is used in Figure 111; and 1195 and 1195' are used in Figure 11J. The non-volatile nanotube protection devices used in Figures 11B-11J are activated prior to the ESD event, and the electronic components are operated by the preferred methods 1200, 1300, and 1400 shown in Figures 12, 13 and 14, respectively. Not activated before. A volatile nanotube protection device similar to the volatile nanotube protection device 1622 of Figure 16A may be used instead of replacing the non-volatile nanotube protection devices 1112, 1122, 1133, 1142, 1168, 1184, 1195. With 1195 丨. The volatile nanotube protection device replacing the non-volatile protection devices 1112, 1122, 1133, 1142, 1168, 1184, 1195 and 1195' in FIGS. 11B-11J is activated by the ESD induced voltage, and is not required They are activated and not activated, respectively, by using the preferred methods 1200, 1300 and 1400 shown in Figures 12, 13 and 14. The various layers of volatile and non-volatile nanotube protection devices that integrate the V-Nano volatile and non-volatile nanotube protection devices into the electronic components may be used together (mixed) to provide wider coverage. Scope to combine the best features of both. 61 201106408 Volatile and non-volatile nanotube protection devices may be placed at the same electronic component level or at different electronic component levels. The present invention is to be understood as being limited by the scope of the invention, and is not intended to limit the scope of the invention. For example, the steps of the flowcharts may be employed in the sequence, and more or fewer components may be used in the drawings. The non-volatile nanotube protection device of the simplified-nanotube tube is integrated into conventional semiconductors, hybrid semiconductor/nanotubes, only nanotube wafers and/or components such as modules, cards and boards. Most of the simplified non-volatile protection device structures 1910 and 1920, which are not shown in Figure 19, can be used to provide electrostatic discharge (ESD) discharge protection for devices and circuits in electronic components such as wafer 19 in Figure 19. . As described above, it is possible to add simplified non-volatile protective devices 1910 and 1920 to the wafer, and/or substrate, and/or card, and/or board level of the module. As further described above with respect to Figures 12 and 13, the simplified non-volatile nanotube protection device is activated and not activated prior to the ESD sensing flow. Simplified facial hair protection, electricity 1910 and 1920 series are further described below, and are similar to; non-volatile device structure of the structure application: US Patent No. 10/864,186, entitled "Non-volatile electric field "Effective device and circuit" and its method of formation", the US Provisional Patent Application No. 6G/624,297, which was filed on June 9, 2002, is entitled "Day;
CNT 62 201106408 切換操作」,申請日為2004年n月2曰,兩者全部藉此 列入作蒼考。控制電極1915係電連接至例如需要ESD保 護之例示的焊墊1930之焊墊;奈米管元件1917係連接至 共通接地連接器1950,而共通接地連接器195〇係連接至 接地焊墊1955 ;以及放電電極1918係連接至共通模式連 接器1960,而共通模式連接器196〇連接至模式焊墊 1975。簡化的保護結構191〇與192〇係被設計以使切換電 壓V足夠高於電子組件之操作電壓,俾能不啟動例示的簡 化的非揮發性奈米管保護裝置191〇或192〇。計算切換電 壓V之方法係更進一步說明於下。 圖19顯示具有周邊焊塾之晶片19〇〇,雖然亦可使用 區域陣列焊墊。除非另有說明,否則專門用語「焊墊」意 指信號焊墊,譬如代表焊墊193〇與194〇,可能是輸入焊 墊、輸出焊墊或輸入/輸出焊墊兩者。每個個別的焊墊具 有簡化的非揮發性保護裝置。舉例而言,焊墊193〇係受 到代表簡化的非揮發性奈米管保護裝置191〇之ESD保 護,而焊墊1940係受到代表簡化的非揮發性奈米管保護 裝置1920之ESD保護。簡化的非揮發性奈米管保護裝置 1910與1920係更進一步說明於下。舉例而言,電源供應 邛丈干墊1965與模式焊墊1975使用供ESD保護用之其他 結構,例如上述關於圖8B,所更進一步說明的。 電源供應部焊墊1965連接至許多晶片上電路(未顯 示)。接地焊墊1955連接至許多晶片上電路(未顯示),且 亦連接至共通接地連接器1950。模式控制焊塾1975係連 63 201106408 接至^通模歧㈣196G,錢接輯有®化的非揮發性 不米吕保遵裝置例如裝置191〇與192〇之絕緣的放電板。 j晶片操作期間,簡化的非揮發性奈米管保護裝置, ,如簡化的非揮發性奈米管保護裝置191()與192〇,必須 疋處於非啟動(OFF)狀態,如上述所更進一步說明的。簡 化的非揮發性奈料保護裝置可能藉由將電壓(正或負)施 加至相對於共通連接II 195G之共通連接^ 196G而未被啟 動(turned-OFF) ’其中例如控制電極1915之控制電極維持 於接地。 將唯-奈米管簡化的揮發性奈米管保護裝置整合於習 知之半導體、混合式半導體/奈求管、唯·奈米管晶片及/或 例如模組、卡與板之組件之較高層級中 圖20所不之多數簡化的揮發性保護裝置結構2010與 2020,可用以提供對於圖2〇中之例如晶片2〇〇〇之電子組 件中之裝置與電路之靜電放電(ESD)放電紐。如上述所 更進-步說明的’可能於組件之晶片,及/或基板,及域 卡,及/或板層級附加簡化的揮發性保護裝置結構2〇1〇與 搬〇。簡化的揮發性保钱置係藉由ESD錢突波而被 啟動,但在為上述更進一步說明的簡化的非揮發性奈米管 保€襄置而做之晶>;處理之前未被啟動。簡化的揮發性奈 米官保護裝置2010與2020係類似於下述專利申請案之非 揮發性裝置結構:美國專利中請案號蘭64,186,名稱為 非揮發性機電場效裝置與使用其之電路以及其形成方 64 201106408 法」’申睛曰為2004年6月9曰;以及美國臨時專利申請 案60/624,297,名稱為r增進之CNT切換操作」,申請日 為2004年11月2日,但具有省略之絕緣的放電電極,如 以下所更進一步說明的。。 圖20顯不具有周邊焊墊之晶片2000,雖然亦可使用 區域陣列焊塾。除非另有說明,否則專門用語「焊塾」意 才曰仏唬知墊,譬如代表焊墊2030與2040,可能是輸入焊 塾斤輸出焊墊或輪入/輸出焊塾兩者。每個個別的焊塾具 有簡化的揮^性奈米管保護裝置。舉例而言,焊塾2謂 ,受到代表簡化的揮發性奈米管保護裝£ 2 〇! 〇之e s D保 焊塾2〇40係受到代表簡化的揮發性奈米管保護裝 -部、之ESD保護。奈米管元件2017形成PD 2010之 個二塾係連接至簡化的雜 管===?發性奈米管保_之奈米 一二;=連接器其連接至接地焊塾CNT 62 201106408 Switching operation", the application date is 2 months in 2004, and both of them are included in the test. The control electrode 1915 is electrically connected to, for example, a pad of the illustrated pad 1930 requiring ESD protection; the nanotube element 1917 is connected to the common ground connector 1950, and the common ground connector 195 is connected to the ground pad 1955; And the discharge electrode 1918 is connected to the common mode connector 1960, and the common mode connector 196 is connected to the mode pad 1975. The simplified protection structures 191 and 192 are designed such that the switching voltage V is sufficiently higher than the operating voltage of the electronic component to enable the instantiated simplified non-volatile nanotube protection device 191 or 192. The method of calculating the switching voltage V is further described below. Figure 19 shows a wafer 19 with a peripheral pad, although a regional array pad can also be used. Unless otherwise stated, the term "pad" means a signal pad, such as a pad 193 and 194, which may be an input pad, an output pad or an input/output pad. Each individual pad has a simplified non-volatile protection. For example, pad 193 is subjected to ESD protection representative of a simplified non-volatile nanotube protection device 191, while pad 1940 is protected by ESD representing a simplified non-volatile nanotube protection device 1920. Simplified non-volatile nanotube protection devices 1910 and 1920 are further described below. For example, power supply, dry pad 1965 and mode pad 1975 use other structures for ESD protection, such as described above with respect to Figure 8B. The power supply pad 1965 is connected to a number of on-wafer circuits (not shown). The ground pad 1955 is connected to a number of on-wafer circuits (not shown) and is also connected to the common ground connector 1950. Mode Control Welding 1975 Series 63 201106408 Connected to ^Mongmo (4) 196G, the money is replaced by a non-volatile non-Muller device such as the device 191〇 and 192〇 insulated discharge board. During the operation of the wafer, the simplified non-volatile nanotube protection device, such as the simplified non-volatile nanotube protection device 191() and 192, must be in a non-starting state, as further described above. Explain. A simplified non-volatile material protection device may be turned-off by applying a voltage (positive or negative) to a common connection 196 196 with respect to the common connection II 195G, wherein, for example, the control electrode of the control electrode 1915 Maintained at ground. Integrating a simplified nanotube-protected device with a simple-nanotube tube into a higher level of conventional semiconductors, hybrid semiconductor/nanotubes, only nanotube wafers and/or components such as modules, cards and boards Most of the simplified volatile protection device structures 2010 and 2020, which are not shown in Figure 20 of the hierarchy, can be used to provide electrostatic discharge (ESD) discharges for devices and circuits in electronic components such as wafers 2 in Figure 2A. . As described above, it is possible to add a simplified volatile protection device structure to the wafer, and/or the substrate, and the domain card, and/or the board level. Simplified volatile money-savings are initiated by ESD money surges, but are not activated prior to processing for the simplified non-volatile nanotubes described above. . The simplified volatile nanoman protection devices 2010 and 2020 are similar to the non-volatile device structure of the following patent application: U.S. Patent Application Serial No. 64,186, entitled Non-Volatile Electric Field Effect Device and Circuit Using the Same And the formation of the party 64 201106408 Act" 'Shenzhen is June 9th, 2004; and US Provisional Patent Application 60/624,297, the name is r enhanced CNT switching operation", the application date is November 2, 2004, However, a discharge electrode having omitted insulation is further described below. . Figure 20 shows a wafer 2000 having a peripheral pad, although a regional array pad can also be used. Unless otherwise stated, the term "weld" means that the pad, such as the pads 2030 and 2040, may be either an input pad or an in/out pad. Each individual soldering iron has a simplified wave tube protection device. For example, the soldering iron 2 is said to be protected by a representative volatile nanotube protection device. 2 〇 es es D soldering 塾 2〇40 series is represented by a simplified volatile nano tube protection device-part ESD protection. The nanotube element 2017 forms the second line of PD 2010 connected to the simplified miscellaneous tube ===? Nylon tube protection _ Nylon one or two; = connector connected to the grounding pad
裝置2〇Π:ΡΓ墊2〇65使用簡化的揮發性奈米管保護 的揎心’,、為朗於信號焊塾2_與2_之代表簡化 保護Γ生奈米管保護裝4 _與2_相同型式之ESD 管保:子層級力之供非揮發性與揮發性奈米 吕保。蔓裝置用之裝置設計方法 被應:步說明四種型式之奈米管保護裝置,其 用至㊆子組件之晶片,及/或模組,及/或卡,及/或板 65 201106408 層級以供ESD保護用。對於這四個奈米管保護裝置之機 電與原子層級設計最佳化之結構與方法’係關於四個對應 的奈米管開關而更進一步說明於下。設計最佳化係基於應 用的結構與方法,以及結構與方法之延伸’說明於美國臨 時專利申請案60/624,297,名稱為「增進之CNT切換操 作」’申請日為2004年11月2日。這些奈米管開關可能 被應用至上述所更進一步說明的奈米管保護裝置中,且亦 可被應用至下述專利申請案之奈米管式記憶體與邏輯元 件:美國專利申請案號10/864,186,名稱為「非揮發性機 電場效裝置與使用其之電路以及其形成方法」,申請日為 2004年6月9日;美國專利申請案號10/917,794,名稱為 「奈米管式開關元件」,申請曰為2004年8月13曰;美 國專利申請案號10/918,085,名稱為「具多重控制之奈米 管式開關元件」’申請曰為2004年8月13日;以及美國 專利申明案號10/918,181,名稱為「奈米管展置結構與製 造方法」,申請日為2004年8月13曰。 圖19所示之簡化的非揮發性奈米管保護裝置191〇與 1920對應至以下所更進一步說明的第—非揮發性奈米管 開關;圖20所示之簡化的揮發性奈米管保護裝置2〇ι〇、 202—0與2060對應至以下所更進一步說明的第二揮發性奈 米管開關;圖8A所示之非揮發性奈米管保護裝置8\〇 A 820•對應至以下所更進一步說明的第二非揮發性奈米管開 關;以及圖17所示之揮發性奈米管保護裴置i7i〇、 與Π60對應至以下所更進一步說明的第二揮發性奈米管 66 201106408 開關。 例如非揮發性或揮發性奈米管開關操作與對應的切 換電壓之奈米管開關電氣特徵,譬如係藉由使用以下所更 進一步說明的方法而被設計,其係基於控制例如彈性力Device 2〇Π: ΡΓ pad 2〇65 uses simplified volatile nanotube protection for the 'heart', which is simplified for the signal soldering 2_ and 2_ representatives to simplify the protection of the neon tube protection device 4 _ with 2_The same type of ESD pipe protection: the sub-level force for non-volatile and volatile nano-Lub. The device design method for the vine device is to be described as follows: four types of nanotube protection devices are used, which use seven sub-component wafers, and/or modules, and/or cards, and/or plates 65 201106408 level For ESD protection. The structure and method for optimizing the electromechanical and atomic level design of the four nanotube protection devices is further described below with respect to four corresponding nanotube switches. The design optimization is based on the structure and method of the application, and the extension of the structure and method is described in U.S. Provisional Patent Application No. 60/624,297, entitled "Enhanced CNT Switching Operation" on November 2, 2004. These nanotube switches may be applied to the nanotube protection devices described further above and may also be applied to the nanotube memory and logic components of the following patent applications: US Patent Application No. 10 /864,186, entitled "Non-volatile electric field effect device and its use and its formation method", the application date is June 9, 2004; U.S. Patent Application No. 10/917,794, entitled "Nano Tube" "Switching element", filed on August 13, 2004; US Patent Application No. 10/918,085, entitled "Nano-tube Switching Element with Multiple Controls", was filed on August 13, 2004; Patent Application No. 10/918,181, entitled "Nano-tube Construction Structure and Manufacturing Method", the application date is August 13, 2004. The simplified non-volatile nanotube protection devices 191 and 1920 shown in Figure 19 correspond to the first non-volatile nanotube switch as further explained below; the simplified volatile nanotube protection shown in Figure 20 The devices 2〇ι〇, 202-0 and 2060 correspond to the second volatile nanotube switch as described further below; the non-volatile nanotube protection device 8\〇A 820• shown in FIG. 8A corresponds to the following The second non-volatile nanotube switch, further illustrated; and the volatile nanotube protective device i7i〇 shown in FIG. 17, corresponds to the second volatile nanotube 66 as further described below. 201106408 switch. For example, the non-volatile or volatile nanotube switch operation and the corresponding switching voltage of the nanotube switch electrical features are designed, for example, by using methods such as those described below, based on control such as spring force.
Felas 與電力 FELEC ’以及以 Lennard_j〇nes 力 flj、FELAS、 FELEC表不之原子層級凡得瓦爾力之機電力量,而原子層 級Fu力量係基於奈米管開關結構 、材料、尺寸、個別的 SWNT長度控制與方向以及其他以下所更進—步說明的 顯著參數而估計。 使用機電與原子層級力之供第一非揮發性與揮發性 奈米管開關用之裝置設言十方法 斤圖21顯不習知技術之第一非揮發性奈米管開關2100 之簡化橫剖面描繪’如顯示於美國專利申請案號 10/864,186 ’名稱為「非揮發性機電場效裝置與使用其之 電路以及其形成方法」,申請日為2004年6月9日;以及 美國臨日彳專利中請案祕24,297,名稱為「增進之CNT 切換操作」’申請日為雇4年11月2日。於此例中,第 非揮,性奈米官開關21〇〇具有兩個個別SWNT(NT1與 NT2) ^個與放電電極2145上之絕緣體2150隔開了間隙 2 ’且每曰個_與控制電極2140隔開了間隙1,於此間隙1與 間隙2 ,”、頁示對應於非延長的個別NT1與NT2之分 綠距離於此例中,個別的SWNT 與ΝΤ2形成 、我物2155。NT1與NT2可能被延長至位置A,如NT1-A 與ΝΤ2·Α所顯示的,而NT1_A與nt2_a係如習知技術之 67 201106408 2二所顯示的與絕緣體2150接觸;或被延長至 1-Β與Ν丁2-Β所顯示的,而ΝΤ1-Β盥ΝΤ2-Β 制:極2140接觸’如習知技術之圖Μ與仙所 S,1觸t ί管NT1與NT2兩者係與信號電極_與 α而,只需要一個電氣接點2160或2160,,並 聯之兩個接點減少了在信號電極與個別之間的 觸電阻。奈米管NT1與ΝΤ2係被銷接(固定)於每一 種銷接-銷接奈米管讀懸浮結構),且可能被稱為一種懸 浮奈米管離子束結構。介電材料與2清形成swnt 銷接(支持)結構之一部份。絕緣體215〇可能被置放於在 SWNT層之上或之下的電極上,以使控制電極取而代之地 可月b位在S WNT層之上(未顯示),而絕緣的放電電極可能 位在SWNT層之下(未顯示)。美國專利申請案號 10/864,186,名稱為「非揮發性機電場效裝置與使用其之 電路以及其形成方法」’申請曰為2004年6月9曰;以及 美國臨時專利申請案60/624,297,名稱為「增進之CNT 切換操作」,申請日為2004年11月2日’顯示出對應於 處於Ο N與0 F F狀態或處於狀態之間的轉變之第一非揮發 性奈米管開關2100之非揮發性奈米管開關。 於此例中,圖21A-21C顯示第一非揮發性奈米管開關 2100從譬如”0”邏輯狀態之〇FF狀態2100-1切換至譬如 "1”邏輯狀態之ON狀態2100-3。圖21D-21F顯示第—非 揮發性奈米管開關2100從譬如”1”邏輯狀態之〇]s[狀態 2100-3,切換至譬如”0”邏輯狀態之〇FF狀態2100-1。 68 201106408 驾知技術之圖21A顯示處於off位置uooq之第一 性奈米管開關测’在信號電極删、蕭與控 NT1 δ 2140之間不具有傳導路挂。延長的個別SWNT _A與NT2-A係與絕緣體2150接觸。 雷盘ίΓ個別讓丁 NT1與NT2可能在藉由絕緣的放 制電極之間的間隙!與間隙2而形成之間隙區域中 H =長的OFF(〇邏輯)狀態(未顯示)。非延長的⑽ H置之例子係顯示於錢臨時專射請案祕Μ,· 二曰名稱為「增進之CNT切換操作」,申請曰為厕年 月2日’以及說明於美國專利申請案號}◦編,脱中, ^冉為「轉發性機電場效裝置與使用其之電路以及其形 成方法」’申請日為2004年6月9日。 白知技術之® 21B顯示處於過 21〇〇_2(從〇叫大態切換至ON狀態)之第- =關盘:相對於於零(接地)電壓下之信號 之心J、極2140兩者,具有施加至控制電極2140 电i ,如美國臨時專利申請案00/624,297所亍,名稱 為「增進之CNT切換操作」,中請日為讀年;^名日稱 ί =更進—步說明於下之靜電力Felec(未顯 /、),、羯21A所顯示之NT1_A與ΝΤ2·α兩者吸引向控 ,包極214G。局部切換位置21⑽顯示過渡切換,於立 足轉變至與控制電極2140接觸之: 2尚未轉變並維持於位置]STT2-A中。於 此例中,因為NT1具有比ΝΤ2更低的閾值電壓(其可能由 69 201106408 於幾何上的差異而產生),所以NT1在NT2之前轉變。因 為間隙尺寸本質上是相同的,所以閾值電壓之差異可能起 因於個別SWNT之長度變化’其中NT1具有比NT2更長 的長度。 習知技術之圖21C顯示處於ON狀態2100-3之第一 非揮發性奈米管開關2100,其中NT1位於NT1-B位置, 而NT2位於NT2-B位置。位於位置NT1-B之個別SWNT NT1與位於位置NT2-B之NT2兩者係與控制電極2140 接觸’猎以在信號電極2160、2160’與控制電極2140之間 形成兩個平行之電氣路徑。舉例而言,處於ON狀態21 〇〇_3 之開關2100儲存”1”狀態。 習知技術之圖21D顯示對應於圖21C處於ON狀態 2100-3之第一非揮發性奈米管開關21〇〇,其中NT1位於 NT1-B位置而NT2位於NT2-B位置。位於位置NT1_B之 個別SWNTNT1與位於兩者係與控制 電極2140接觸,藉以在信號電極2160、2160'與控制電極 2140之間形成兩個平行之電氣路徑。 習知技術圖之21E顯示處於過渡的局部切換位置 =00-2(從ON狀態切換至〇FF狀態)之第一非揮發性奈米 官開關2100’相對於於零(接地)電塵下之信號電極m 2160與控制電極2140兩者,具有施加至放電電極2i45 之電壓ν’如美國臨時專利申請案祕24,297所示 為「增進之CNT切換操作」,申請日為2〇〇4年u月 外加電壓V建構出更進—步說明於下之靜電力FELEC(未顯 201106408 示),其將圖21D所顯示之NT1-B與NT2_B兩者吸引向放 電電極2145。局部切換位置2100_2顯示過渡切換,於其 中NT1已從位置NT1_B轉變至與放電電極^“上之絕緣 體2150接觸之位SNT1_A,而NT2尚未轉變並維持於位 置NT2-B中。於此例中’因為NT1具有比NT2更低的閾 值電壓(其可能由於幾何上的差異而產生),所以NTl在 NTf之則轉支。因為間隙尺寸本質上是相同的,所以閾值 電壓之差異可能由於個別SWNT之長度變化,其中Ντι 具有比NT2更長的長度。 對應於圖21A之習知技術之圖21F顯示處於〇FF位 置2100-1之開關2100 ’在信號電極2160、2160,與控制電 極2140之間不具有傳導路徑。延長的個別SWNT NT1-A 與NT2-A係與絕緣體2150接觸。 或者,個別SWNTNT1與NT2可能在藉由絕緣的放 電電極與控制電極之間的間隙i與間隙2而形成之間隙區 域中處於非延長的0FF狀態(未顯示)。舉例而言,處於 OFF狀態2100-丨之開關21〇〇儲存”〇”邏輯狀態。非延長的 OFF狀悲裝置之例子係顯示於美國臨時專利申請案 60/624,297中,名稱為「增進之CNT切換操作」,申請日 為2004年11月2曰;以及說明於美國專利申請案號 10/864J86中,名稱為「非揮發性機電場效裝置與使用其 之電路以及其形成方法」,申請日為2004年6月9曰。 圖22A顯示習知技術之橫剖面22〇〇,如顯示於美國 臨時專利申請案6〇/624,297中,名稱為「增進之cnt切 71 201106408 換操作」,帽日為腦年u月2日。三個獨立端子裂 置橫剖面2200係對應至圖21中之開關謂之橫剖面, 於此奈米管元件2255係對應至奈米管元件2155 ;奈米管 信號接點226G與226GI分別對應至奈米f信號接點脑 與2160 ’控制電極2240係對應至控制電極214〇 ;具有絕 、、彖體225〇之放電電極2245係對應至具有絕緣體犯〇之 放電電極2145 °奈米管元件加可能是_配向之個別 SWNT之奈米結構,如顯示於美國專利號6,術,921中, 名稱為「奈米管薄膜與製品」,或奈米管元件2255可能是 2上ΤΙ丁之個別SWNT之奈米結構’如顯示於美國臨 利明案6〇/624,297中,名稱為「增進之CNT切換 Π申請日Λ2004年11月2日。圖22a之結構謂 70件2255係在移除犧牲層以形成間隙1 :f ,如說明於美國專利申請案號_,186 甘π々稱4 #揮發性機電場效裝置與使用其之電路以及 2^ 法」’申請日為2〇04年6月9日。或者,橫剖面 /此言如疋沿著個別奈米管,藉以顯示處於OFF狀 固別SWNT元件2255。處於〇N狀態之個別SWNT 將與控制電極2240接觸(未顯示)。SWNT 2255 而係銷接於每個端,並遍及長度L_地懸浮在間隙 間V?;間隙2以上。SWNT元件2255之懸浮長度L瓣、 的八^間隙2之間隔、絕緣體2250之絕緣體厚度與相 墓興;丨電㊉數、接觸電極2240與放電電極2245之長度、 特性以及橫剖面2200結構之其他特徵,可決定橫剖 72 201106408 面2200所颁示之三個獨立端子裝置之操作電壓,並形成 第一非揮發性奈米管裝置。 舉例而言,導體可包含RU、丁i'Cr、A卜Au、Pd、 Νι、W、Cu、Mo、Ag、In、Ir、Pb、Sn、TiPd、Pbln、TiW、 TiAu、TiCu、CrCuAu、RuN、Ru〇、TiN、TaN、c〇Six 與 TiSix。舉例而言’絕緣體可包含Si〇2、SixNj Al2〇3。舉 例而言,奈米管元件可包含直徑範圍從〇·6至2 nm與懸 洋長度範圍從20 nm至400 nm之隨機方向之個別 SWNT ’或本質上平行方向之個別swnt。舉例而言,間 隙區域可能在2至50 nm之範圍内。發明人想像到,可藉 由使用具有用以使性能最大化而因此所調整之長度與間 隙尚度之雙牆壁或多壁奈米管,來產生類似形態。 一項重要裝置設計參數係為懸浮長度與間隙尺寸之 比率(譬如LSUSP/間隙1),如圖22A所顯示的,此乃因為延 長的個別SWNT之彈性力係為懸浮長度與位移(導致個別 SWNT延伸)之函數,於此最大位移(與延伸)係由間隙尺寸 所決定。對於對應於相同的尺寸間隙之相同的最大位移 (延伸)而言,彈性力隨著奈米管元件懸浮長度Lsusp之減 少而增加,如下述文章所說明的。參考文獻1 :Rueckes,T 等人之供分子計算用之碳奈米管式非揮發性隨機存取記 憶體’科學’第289卷’ 2000年7月7曰,第94-97頁; 參考文獻2 : Dequesnes,Μ等人之「供碳奈米管式奈米機 電開關用之吸附電壓之計算」,奈米科技,13,2002,第 120-131頁,以及參考文獻3 ·· Dequesnes,Μ等人之碳奈 73 201106408 米管式開關之靜態與動態分析,ASME之會報,第126卷, 2004年7月,第230_237頁。圖22B顯示習知技術之橫剖 面2000,如顯示於美國臨時專利申請案6〇/624,297中, 名稱為增進之CNT切換操作」’申請日為2〇〇4年u月 2日。圖22B所顯示之間隙丨與間隙2係在移除犧牲層之 後形臟i與間隙2,如說明於美國專利申請案號 10/86V86中’名稱為「非揮發性機電場效裝置與使用其 之電路以及其形成方法」,中請日為2⑽4年6月9日與 圖22A中之郡些相同,然而’目22B中之懸浮長度:隱 圖22A中之Lsusp已減少,其乃藉由使用縮 小的仏虎電極間距226〇,,與226(),”與藉由附加絕緣體期 延伸絕緣體區域2270與藉由添加絕緣體而延伸絕緣體 區域而。具有絕緣體贿之放電電極黯之長度已 減少’用Μ符合在信號電極226〇"與22,之 =口。在,面22〇〇中’已將控制電極22㈣持二: 然而,同樣可能減少控制電極2240之長度。 奈米官懸浮長度與間隙比率之 置(開關)設計參數,其決定奈米管元件恢復則力重要裝 之大小。另一項重要妒罟Α 汗丨王刀Pelas 操作是否將是揮發性的或-非揮異= 開關係為揮發性的;如果F elas Fu ’則 性。揮發性裝置係處於常閉:態::在::= 〇FF轉變成〇N狀態,但在移除電壓時回復至=: 74 201106408 非揮發性裝置可能處於OFF狀態或處於ON狀態。當電壓 被移除時,非揮發性裝置維持於OFF狀態或ON狀態。非 揮發性奈米管裝置一般具有較大的奈米管懸浮長度與間 隙比率,譬如10或更多,如以下所更進一步顯示的。揮 發性奈米管裝置一般具有較小的奈米管懸浮長度與間隙 比率,譬如5或更少,如以下所更進一步顯示的。 即使針對具有隨機配向之個別SWNT之奈米管元件 之相同的信號電極分離,橫剖面2200與2200'所顯示之個 別SWNT之懸浮長度可能會改變,如以下所更進一步說 明的。當使用隨機配向之個別SWNT時之這樣的變化, 係可能藉由使用提高的佈局與設計方法而減少,如顯示於 美國臨時專利申請案60/624,297中,名稱為「增進之CNT 切換操作」,申請日為2004年11月2日,且如以下所更 進一步說明的。然而,對於具有本質上平行之個別SWNT 之奈米管元件而言,懸浮長度本質上將與顯示於美國臨時 專利申請案60/624,297相同,名稱為「增進之CNT切換 操作」,申請日為2004年11月2日,且如以下所更進一 步說明的。 對於例如圖23A所顯示之第一揮發性奈米管開關 2300與圖23B所顯示之第一揮發性奈米管開關2300’之揮 發性奈米管開關而言,可能省略具有絕緣體2250之放電 電極2245以及具有絕緣體225(V之放電電極2245'。此乃 因為第一揮發性奈米管開關2300與2300'在電壓被移除時 回復至OFF狀態,因此並不需要放電電極。 75 201106408 健f 23A所顯示之第—揮發性奈米管開關23GG呈有兩 : = 控:電極與連接至具有懸浮長度1 米总355之信號電極2360與2360,,而奈 B 70 5與控制電極2340隔開一個間隙J 體 2370盥導體% « , 絕緣體 /、 〇係用以銷接一端上之懸浮奈米管元件 太^絕緣體23W與導體彻以銷接相對端上之 芯子奈米管元件2355。 於操作中,可將 v施加至控制電極卿,其具 可信號電極2360與2360,之接地(零)伏特。或者, ㈣f 施加至信號電極2360與2360,,而可將接地電 至控制電極2340。雖然顯示兩個信號電極2360與 ,但只需要信號電極2360或2360'之其中一個。 圖^了奈米管元件f %之懸浮長度部分之長度相對於 中之Lsusp已藉由使用縮小的信號電極間距2360', =— 以及错由附加絕緣體2375延伸絕緣體區域237〇,, ^猎由附加絕緣體2375,延伸絕緣體區域237〇",而減少至 &乂外,圖23B所顯示之第一揮發性奈米管開關2300, ”^於奈米管2300。在橫剖面2300,中,已將控制電極 維持不變;然而,控制電極2340之長度同樣可能減 如相=23B所示之第一揮發性奈米管開關2300之操作係 γ對於圖23A所示之第一揮發性奈米管開關23〇〇所說 明的。 田 以设計第一非揮發性與揮發性奈米管開關之佈局 76 201106408 結構與方法 圖24顯示與隨機方向之個別SWNT接觸之導電相框 信號電極結構之習知技術之平面視圖240〇,其在形成放電 電極2245與絕緣體2250之前對應至圖22A中之橫剖面 2200。導電的信號電極結構與製造方法係顯示於美國專利 申請案號1〇/864,186中,名稱為「非揮發性機電場效裝置 與使用其之電路以及其形成方法J’申請日為2004年6月 9曰,以及顯示於美國臨時專利申請案60/624,297中,名 稱為「增進之CNT切換操作」,申請日為2004年11月2 曰。平面視圖2400所顯示之習知技術控制電極2440係對 應至圖22A之習知技術橫剖面2200所顯示之控制電極 2240 ;而個別奈米管元件2455-:1、2455-2、2455-3以及其 他個別奈米管元件之兩個銷接端電氣接觸之導電相框信 號電極2460,係對應至圖22A所顯示之習知技術橫剖面 2200中之信號電極2260與2260’。平面視圖2400顯示由 於個別SWNT之隨機方向所導致之個別SWNT懸浮長度 、楚化。個別SWNT 2455-1具有所顯示的個別SWNT之最 短的懸浮長度。水平SWNT 2455-2係比奈米管2455-1長 100%以上,而SWNT 2455-3係比奈米管2455-2長至^ 40%。個別SWNT之長度變化將導致裝置特徵之變化,^ 如切換電壓與性能。請注意,在個別SWNT與控制電極 2440之間的犧牲層並未顯示於圖24中。 修改平面視圖2400以限制與導電相框信號電極246〇 接觸之個別SWNT之數目,會減少長度變化,如顯示於 77 201106408 美國臨時專利申請案60/624,297中,名稱為「增進之CNT 切換操作」’申請曰為2004年11月2日。圖25A中之習 知技術平面視圖2500顯示絕緣體相框2510以作為奈米管 銷接結構之一部分。在藉由使用已知工業技術進行絕緣體 沈積‘與圖案化之較佳製程步驟之後,所有個別SWNT係 電氣隔離。請注意,在個別SWNT與控制電極244〇之間 的犧牲層並未顯示於圖25中。 接著,較佳方法藉由使用如併入之參考文獻所說明的 較佳奈米官處理方法,來圖案化並蝕刻(移除)絕緣體251〇 以形成開口部2520與2520,,藉以暴露所選擇的個別 SWNT之末端。為了電氣接觸的目的,圖25B所顯示之平 面視圖2535顯示具有選定的個別swNT 2455-2、2455-4、 2455-5與2455-6之露出端區域之選定的奈米管。例如Felas and power FELEC 'and the electromechanical power of the atomic level of the Lennard, the FALAS, the FELEC, and the atomic level Fu power based on the nanotube switch structure, material, size, individual SWNT length The control and direction are estimated along with other significant parameters described further below. Apparatus for Electromechanical and Atomic Level Forces for First Non-Volatile and Volatile Nanotube Switches SETTINGS Ten Methods Figure 21 shows a simplified cross section of the first non-volatile nanotube switch 2100 of the prior art. Described as 'U.S. Patent Application Serial No. 10/864,186', entitled "Non-Volatile Electric Field Effect Device and Circuit Using the Same, and Method of Forming the Same", the application date is June 9, 2004; In the patent, the case secretary 24,297, entitled "Enhanced CNT Switching Operation", is filed on November 2nd. In this example, the non-volatile, sexual nanoswitch 21 has two individual SWNTs (NT1 and NT2) ^ and the insulator 2150 on the discharge electrode 2145 is separated by a gap 2' and each _ and control The electrode 2140 is separated by a gap 1 between the gap 1 and the gap 2," the page shows the green distance corresponding to the non-extended individual NT1 and NT2. In this example, the individual SWNTs and ΝΤ2 are formed, and the object 2155. NT1 And NT2 may be extended to position A, as shown by NT1-A and ΝΤ2·Α, while NT1_A and nt2_a are in contact with insulator 2150 as shown in the prior art 67 201106408 2 2; or extended to 1-Β As shown by the 2-Β-Ν, and ΝΤ1-Β盥ΝΤ2-Β system: the pole 2140 contact 'as in the diagram of the conventional technology 仙 and Xian S, 1 touch t ί tube NT1 and NT2 both with the signal electrode _ and α, only one electrical contact 2160 or 2160 is needed, and the two contacts in parallel reduce the contact resistance between the signal electrode and the individual. The nanotubes NT1 and ΝΤ2 are pinned (fixed) to each A pin-pinned nanotube read suspension structure, and may be referred to as a suspended nanotube ion beam structure. Dielectric material and 2 clear shape One part of the swnt pinned (supported) structure. The insulator 215〇 may be placed on the electrode above or below the SWNT layer so that the control electrode can instead be placed on the S WNT layer (not The insulating discharge electrode may be located below the SWNT layer (not shown). US Patent Application No. 10/864,186, entitled "Non-volatile electric field effect device and circuit using the same and method of forming the same "Applicants are June 9th, 2004; and US Provisional Patent Application 60/624,297, entitled "Enhanced CNT Switching Operation", the application date is November 2, 2004, which shows that it corresponds to being in ΟN and Non-volatile nanotube switch of the first non-volatile nanotube switch 2100 with a 0 FF state or a transition between states. In this example, Figures 21A-21C show that the first non-volatile nanotube switch 2100 switches from a 〇 FF state 2100-1 of a logic state such as "0" to an ON state 2100-3 of a logic state such as "1". 21D-21F show that the first non-volatile nanotube switch 2100 is switched from a state of "1" logic state s] [state 2100-3, to a state of "0", FF state 2100-1. 68 201106408 Figure 21A shows that the first nanotube switch in the off position uooq has no conduction path between the signal electrode deletion, Xiao and the control NT1 δ 2140. The extended individual SWNT _A and NT2-A systems Contact with insulator 2150. Thunder plate Γ individual let NT1 and NT2 may be in the gap between the insulating electrodes by insulation! In the gap region formed by gap 2, H = long OFF (〇 logic) state (not shown) The example of the non-extended (10) H is displayed in the temporary secret of the money, the name of the second is "enhanced CNT switching operation", the application for the toilet is 2nd month, and the description is in the US patent application. Case No.} ◦ , , , , , , , , 冉 「 「 转发 转发 转发 转发 转发 转发 转发 转发 转发 转发 转发 转发 转发 转发The road and its method of formation" applied on June 9, 2004. The White Technology® 21B shows that it is over 21〇〇_2 (switching from the squeaking state to the ON state) - = closing: relative to the heart of the zero (grounding) voltage J, pole 2140 Having the application to the control electrode 2140, as exemplified in US Provisional Patent Application No. 00/624,297, the name is "enhanced CNT switching operation", and the date of the request is the year of reading; It is explained that under the electrostatic force Felec (not shown /,), 羯 21A shows that both NT1_A and ΝΤ2·α are attracted to the control, and the pole is 214G. The local switching position 21 (10) shows a transitional switch that transitions to contact with the control electrode 2140: 2 has not been converted and maintained in position] STT2-A. In this example, since NT1 has a lower threshold voltage than ΝΤ2 (which may be due to geometric differences between 69 201106408), NT1 transitions before NT2. Since the gap size is essentially the same, the difference in threshold voltage may result from the length variation of the individual SWNTs where NT1 has a longer length than NT2. Figure 21C of the prior art shows a first non-volatile nanotube switch 2100 in an ON state 2100-3, where NT1 is in the NT1-B position and NT2 is in the NT2-B position. Both the individual SWNT NT1 at position NT1-B and the NT2 at position NT2-B are in contact with control electrode 2140 to form two parallel electrical paths between signal electrodes 2160, 2160' and control electrode 2140. For example, the switch 2100 in the ON state 21 〇〇_3 stores the "1" state. Figure 21D of the prior art shows a first non-volatile nanotube switch 21A corresponding to Figure 21C in an ON state 2100-3, where NT1 is in the NT1-B position and NT2 is in the NT2-B position. The individual SWNTNTs located at the location NT1_B are in contact with the control electrode 2140, thereby forming two parallel electrical paths between the signal electrodes 2160, 2160' and the control electrode 2140. 21E of the prior art diagram shows that the first non-volatile nano-switch 2100' in the transitional local switching position = 00-2 (switching from the ON state to the 〇 FF state) is relative to the zero (ground) dust Both the signal electrode m 2160 and the control electrode 2140 have a voltage ν' applied to the discharge electrode 2i45 as shown in the U.S. Provisional Patent Application Serial No. 24,297, entitled "Enhanced CNT Switching Operation", the application date is 2 to 4 years. The applied voltage V is constructed to further describe the electrostatic force FELEC (not shown as 201106408), which attracts both NT1-B and NT2_B shown in FIG. 21D to the discharge electrode 2145. The local switching position 2100_2 shows a transition switch in which NT1 has transitioned from the position NT1_B to the bit SNT1_A in contact with the insulator 2150 on the discharge electrode, and NT2 has not been converted and maintained in the position NT2-B. NT1 has a lower threshold voltage than NT2 (which may be due to geometric differences), so NTl is traversed at NTf. Because the gap size is essentially the same, the difference in threshold voltage may be due to the length of the individual SWNTs. Variation, wherein Ντι has a longer length than NT 2. Figure 21F corresponding to the prior art of Figure 21A shows that switch 2100' at 〇FF position 2100-1 does not have between signal electrodes 2160, 2160 and control electrode 2140 Conduction path. The extended individual SWNT NT1-A and NT2-A are in contact with the insulator 2150. Alternatively, the individual SWNTNT1 and NT2 may be in the gap region formed by the gap i and the gap 2 between the insulated discharge electrode and the control electrode. In the non-extended 0FF state (not shown). For example, the switch 21 in the OFF state 2100-丨 stores the "〇" logic state. Non-extended OFF An example of this is shown in U.S. Provisional Patent Application Serial No. 60/624,297, entitled "Improved CNT Switching Operation", filed on November 2, 2004; and in the U.S. Patent Application Serial No. 10/864J86, the name of which is incorporated herein by reference. The application date is June 9th, 2004, for the "non-volatile electric field effect device and the circuit using the same and its forming method". Figure 22A shows a cross-section 22 of the prior art, as shown in U.S. Provisional Patent Application Serial No. 6/624,297, entitled "Enhanced cnt Cut 71 201106408 Replacement Operation", and Cap Day is the second day of the brain year. The three independent terminal splitting cross sections 2200 are corresponding to the cross section of the switch in Fig. 21, where the nanotube element 2255 corresponds to the nanotube element 2155; the nanotube signal contacts 226G and 226GI correspond to the respectively. The meter f signal contact brain and the 2160 'control electrode 2240 are corresponding to the control electrode 214 〇; the discharge electrode 2245 having the absolute and the 彖 body 225 对应 corresponds to the discharge electrode having the insulator 2 2145 ° nano tube element plus It is the nanostructure of the individual SWNTs, as shown in U.S. Patent No. 6, 921, entitled "Nanotube Films and Products", or the nanotube element 2255 may be an individual SWNT of 2 The structure of the nanometer is shown in the US Linyi Ming case 6〇/624,297, and the name is “Enhanced CNT Switching Application Date November 2, 2004. The structure of Figure 22a is that 70 pieces of 2255 are removed from the sacrificial layer. The gap 1 : f is formed as described in U.S. Patent Application No. _, 186, 々 々 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 day. Alternatively, the cross section / this statement is along the individual nanotubes to show that the SWNT element 2255 is in the OFF state. The individual SWNTs in the 〇N state will be in contact with the control electrode 2240 (not shown). The SWNT 2255 is pinned to each end and suspended in the gap V? over the length L_; the gap 2 is above. The suspension length L of the SWNT element 2255, the spacing of the gaps 2, the thickness of the insulator of the insulator 2250, and the phase of the tomb; the tenth of the electric current, the length of the contact electrode 2240 and the discharge electrode 2245, the characteristics, and the other structure of the cross section 2200 The characteristic determines the operating voltage of the three independent terminal devices of the cross-section 72 201106408 face 2200 and forms the first non-volatile nanotube device. For example, the conductor may comprise RU, butyl i'Cr, Abu Au, Pd, Νι, W, Cu, Mo, Ag, In, Ir, Pb, Sn, TiPd, Pbln, TiW, TiAu, TiCu, CrCuAu, RuN, Ru〇, TiN, TaN, c〇Six and TiSix. For example, the insulator may comprise Si〇2, SixNj Al2〇3. For example, a nanotube element can comprise individual SWNTs having a diameter ranging from 〇·6 to 2 nm and a suspension length ranging from 20 nm to 400 nm, or individual swnts in a substantially parallel direction. For example, the gap region may be in the range of 2 to 50 nm. The inventors contemplate that a similar configuration can be produced by using a double wall or multi-walled nanotube having a length and gap adjusted to maximize performance. An important device design parameter is the ratio of the levitation length to the gap size (such as LSUSP/gap 1), as shown in Figure 22A, because the extended individual SWNT's elastic force is the levitation length and displacement (resulting in individual SWNTs). The function of the extension, where the maximum displacement (and extension) is determined by the gap size. For the same maximum displacement (extension) corresponding to the same size gap, the elastic force increases as the suspension length Lsusp of the nanotube element increases, as explained in the following article. Reference 1: Rueckes, T et al. Carbon Nanotube Non-volatile Random Access Memory for Molecular Calculations 'Science', Vol. 289, July 7, 2000, pp. 94-97; References 2: Dequesnes, et al., “Calculation of the Adsorption Voltage for Carbon Nanotubes for Nano Electromechanical Switches”, Nanotechnology, 13, 2002, pp. 120-131, and Reference 3 · Dequesnes, Μ Chen Nai 73 et al. 201106408 Static and Dynamic Analysis of Meter Tubular Switches, ASME Report, Vol. 126, July 2004, pp. 230_237. Fig. 22B shows a cross-sectional view 2000 of the prior art, as shown in U.S. Provisional Patent Application Serial No. 6/624,297, entitled "Enhanced CNT Switching Operation". The filing date is 2, 4 years, 2 months. The gaps and gaps 2 shown in Fig. 22B are shaped after the sacrificial layer is removed, and the gaps 2, as described in U.S. Patent Application Serial No. 10/86V86, the name of "non-volatile electric field effect devices and their use" The circuit and the method of forming the same, the day of the request is 2 (10) June 9 and the same as the county in Fig. 22A, but the suspension length in the head 22B: the Lsusp in the hidden picture 22A has been reduced, which is by using The reduced 电极 电极 electrode spacing 226 〇, and 226 (), and the extension of the insulator region 2270 by the additional insulator period and the extension of the insulator region by the addition of the insulator. The length of the discharge electrode 具有 with the insulator bribe has been reduced Μ conforms to the signal electrode 226 〇 " and 22, the = mouth. In the face 22 ' 'the control electrode 22 (four) has been held two: However, it is also possible to reduce the length of the control electrode 2240. Nano suspension length and clearance Ratio setting (switch) design parameter, which determines the size of the force that the nanotube element recovers. Another important factor is whether the Persian operation will be volatile or non-singular = open relationship Volatile; Fruit F elas Fu 'sexuality. Volatile device is normally closed: state:: at::= 〇FF transitions to 〇N state, but returns to == 74 when the voltage is removed 201106408 Non-volatile device may be OFF The state is in the ON state. When the voltage is removed, the non-volatile device is maintained in the OFF state or the ON state. The non-volatile nanotube device generally has a large nanotube suspension length to clearance ratio, such as 10 or more. More, as further shown below. Volatile nanotube devices generally have a smaller nanotube suspension length to gap ratio, such as 5 or less, as further shown below. Even for random orientation The same signal electrodes of individual SWNT nanotube elements are separated, and the length of the individual SWNTs shown in cross sections 2200 and 2200' may vary, as explained further below. When using individual SWNTs with random alignment The change may be reduced by the use of an improved layout and design method, as shown in U.S. Provisional Patent Application Serial No. 60/624,297, entitled "Improved CNT Switching Operation", Application The date is November 2, 2004 and is further explained below. However, for a nanotube element having substantially parallel individual SWNTs, the levitation length will be substantially the same as that shown in U.S. Provisional Patent Application Serial No. 60/624,297, entitled "Improved CNT Switching Operation", application date 2004. November 2, and as further explained below. For a volatile nanotube switch such as the first volatile nanotube switch 2300 shown in FIG. 23A and the first volatile nanotube switch 2300' shown in FIG. 23B, the discharge electrode having the insulator 2250 may be omitted. 2245 and having an insulator 225 (discharge electrode 2245' of V. This is because the first volatile nanotube switches 2300 and 2300' return to the OFF state when the voltage is removed, so that the discharge electrode is not required. 75 201106408 The first-volatile nanotube switch 23GG shown in 23A has two: = control: the electrode is connected to the signal electrodes 2360 and 2360 having a total length of 355 of the suspension length, and the B-7 5 is separated from the control electrode 2340. A gap J body 2370 盥 conductor % « , insulator /, 〇 is used to pin the suspended nano tube element on one end too ^ insulator 23W and the conductor is pinned to the opposite end of the core nano tube element 2355. In operation, v can be applied to the control electrode with grounded (zero) volts of signalable electrodes 2360 and 2360. Alternatively, (d) f can be applied to signal electrodes 2360 and 2360 to ground to control electrode 2340. Although showing two letters Electrode 2360 and, but only one of signal electrodes 2360 or 2360' is required. Figure 2. The length of the suspension length portion of the nanotube element f% relative to the Lsusp has been reduced by using the signal electrode spacing 2360', = - and the extension of the insulator region 237A by the additional insulator 2375, the hunting by the additional insulator 2375, extending the insulator region 237", and reducing to & ,, the first volatile nanotube switch shown in Figure 23B 2300, "^ in the tube 2300. In the cross section 2300, the control electrode has been maintained unchanged; however, the length of the control electrode 2340 may also be reduced as the first volatile nanotube switch shown in phase = 23B The operating system γ of 2300 is illustrated for the first volatile nanotube switch 23A shown in Fig. 23A. The layout of the first non-volatile and volatile nanotube switch is designed by Tian Yi. 76 201106408 Structure and method diagram 24 is a plan view 240 of a conventional technique for displaying a conductive photo frame signal electrode structure in contact with individual SWNTs in a random direction, which corresponds to a cross section 2200 in FIG. 22A prior to forming the discharge electrode 2245 and the insulator 2250. Conductive The signal electrode structure and manufacturing method are shown in U.S. Patent Application Serial No. 1/864,186, entitled "Non-Volatile Machine Field Effect Device and Circuit Using the Same and Its Forming Method J' Application Date is June 2004 9 曰, and shown in US Provisional Patent Application No. 60/624,297, entitled "Enhanced CNT Switching Operation", the filing date is November 2, 2004. The prior art control electrode 2440 shown in plan view 2400 corresponds to the control electrode 2240 shown in the conventional cross section 2200 of FIG. 22A; and the individual nanotube elements 2455-: 1, 2455-2, 2455-3 and The conductive photo frame signal electrodes 2460, which are electrically contacted by the two pin terminals of the other individual nanotube elements, correspond to the signal electrodes 2260 and 2260' of the prior art cross section 2200 shown in FIG. 22A. Plan view 2400 shows the individual SWNT levitation lengths due to the random orientation of individual SWNTs. Individual SWNTs 2455-1 have the shortest suspension length of the individual SWNTs shown. The horizontal SWNT 2455-2 is more than 100% longer than the nanotube 2455-1, while the SWNT 2455-3 is longer than the 40% of the nanotube 2455-2. Changes in the length of individual SWNTs will result in changes in device characteristics, such as switching voltage and performance. Note that the sacrificial layer between the individual SWNTs and the control electrode 2440 is not shown in FIG. Modifying the plan view 2400 to limit the number of individual SWNTs that are in contact with the conductive photo frame signal electrodes 246, will reduce the length variation, as shown in U.S. Provisional Patent Application Serial No. 60/624,297, entitled "Improved CNT Switching Operation". The application deadline is November 2, 2004. The prior art plan view 2500 of Figure 25A shows an insulator frame 2510 as part of a nanotube pinned structure. All individual SWNTs are electrically isolated after a preferred process step of insulator deposition by patterning using known industry techniques. Note that the sacrificial layer between the individual SWNTs and the control electrode 244A is not shown in FIG. Next, the preferred method patterns and etches (removes) the insulator 251 to form the openings 2520 and 2520 by using a preferred nanomanipulation method as described in the incorporated reference, thereby exposing the selected The end of individual SWNTs. For electrical contact purposes, the plan view 2535 shown in Figure 25B shows selected nanotubes having selected exposed end regions of individual swNTs 2455-2, 2455-4, 2455-5, and 2455-6. E.g
2455-1、2455-3之額外個別的SWNT與其他個別的SWNT 具有絕緣的末端區域’用以避免電氣接觸。The additional individual SWNTs of 2455-1, 2455-3 have insulated end regions 'with other individual SWNTs' to avoid electrical contact.
其次,較佳方法藉由使用如併入之參考文獻所說明的 較佳奈米管處理方法,來沈積並圖案化—導體層。圖况 所顯示之平面視圖2545顯*電氣接觸並銷接個別SWNT 2455-2、2455-4、2455-5 盥 24SS < 夕道 + _ ,、^455·6之導電相框信號電極 2560。例如湘]、2455_3之其他個別的swnt與其他 個別的SWNT具有㈣的末純域,其避免與導電相框 信號電極2560電氣接觸。 然後,利用名稱為「非揮發性機電場效襄置與使用其 之電路以及其形成方法」,申請日為2〇〇4年6月9日之美 78 201106408 國專利申請案號1_4,186所說明之較佳方法(未顯示), 來完成對應於圖22A中之橫剖面2200之開關結構,其具 有由包含 2455-2、2455·4、2455_5 與 2455_6 之個別 swNi 所組成之奈米管元件225 5。請注意,圖2 5係對應至圖2 2 A 或圖22B。 藉由以本質上平行之個別SWNT 2655-1、2655-2、 2655-3、2655-4與2655-5(顯示於美國臨時專利申請案 60/624,297中’名稱為「增進之CNT切換操作」,申請曰 為2004年11月2日)置換隨機配向之個別SWNT,來修 改圖25A中之平面視圖2500,圖26A所顯示之平面視圖 2600消除了由個別SWNT之隨機方向所導致的懸浮長度 變化。習知技術平面視圖2600包含絕緣體相框261〇以作 為奈米管銷接結構之一部分。在藉由使用已知工業技術進 行絕緣體沈積與圖案化之較佳製程步驟之後,所有個別的 SWNT係電氣隔離。請注意,在個別SWNT與控制電極 2440之間的犧牲層並未顯示於圖26中。又,請注意圖% 係對應至圖22A或圖22B。 接著’較佳方法藉由使用如併入之參考文獻所說明的 較佳奈米管處理方法#刻(移除),來形成開口部2620與 2620'之絕緣體2610之區域’藉以暴露所選擇的個別 SWNT之末端。圖26B所顯示之平面視圖2635顯示具有 選定的個別奈米管2655-2、2655-3與2655-4之露出端區 域之選定的奈米管。例如2655-1與2655-5之額外個別的 SWNT具有絕緣的末端區域’用以避免電氣接觸。 79 201106408 較佳奈米管處理用如併人之參考文獻所說明的 所顯示之平^目積並圖案化一導體層 所顯不之平面視圖2645顯不 2655-2 、 2655-3 與 2655-4Second, the preferred method deposits and patterns the conductor layer by using a preferred nanotube processing method as described in the incorporated references. The plane view 2545 displayed is electrically contacted and pinned to individual SWNT 2455-2, 2455-4, 2455-5 盥 24SS < 夕道 + _ , , ^455·6 conductive photo frame signal electrode 2560. For example, the other individual swnts of Xiang], 2455_3 and the other individual SWNTs have the (4) end pure domain, which avoids electrical contact with the conductive photo frame signal electrode 2560. Then, the use of the name of the "non-volatile electric field effect device and its use circuit and its formation method", the application date is June 4, 2014, the United States 78 201106408 National Patent Application No. 1_4,186 A preferred method (not shown) is to complete the switch structure corresponding to the cross section 2200 of Figure 22A having a nanotube element 225 comprised of individual swNi comprising 2455-2, 2455.4, 2455_5 and 2455_6. 5. Please note that Figure 2 5 corresponds to Figure 2 2 A or Figure 22B. By the intrinsically parallel individual SWNTs 2655-1, 2655-2, 2655-3, 2655-4 and 2655-5 (shown in US Provisional Patent Application No. 60/624,297, the name is "Enhanced CNT Switching Operation" The application is 11 November 2, 2004) replacing the individual SWNTs of the random alignment to modify the plan view 2500 in FIG. 25A, and the plan view 2600 shown in FIG. 26A eliminates the change in the suspension length caused by the random direction of the individual SWNTs. . The prior art plan view 2600 includes an insulator frame 261 as part of a nanotube pinned structure. All individual SWNTs are electrically isolated after a preferred process step of insulator deposition and patterning using known industry techniques. Note that the sacrificial layer between the individual SWNTs and the control electrode 2440 is not shown in FIG. Also, please note that the figure % corresponds to FIG. 22A or FIG. 22B. Next, the preferred method forms the regions of the insulators 2610 of the openings 2620 and 2620' by using the preferred nanotube processing method described in the incorporated reference, to expose the selected individual. The end of the SWNT. The plan view 2635 shown in Figure 26B shows the selected nanotubes having the exposed end regions of the selected individual nanotubes 2655-2, 2655-3 and 2655-4. For example, an additional individual SWNT of 2655-1 and 2655-5 has an insulated end region' to avoid electrical contact. 79 201106408 The preferred nanotube treatment is based on the displayed product and the patterned conductor layer is shown in the reference. 2645-2, 2655-3 and 2655-4
圖26C 電氣接觸並銷接個別S WNT 如2655-1、265^之導電相框信號電極2660。例 區域,其避免解電之相2=;丽具有絕緣的末端 構2645係用以選擇U亟屬之電氣接觸。結 SWNT之子隼,田、土〜呈物理與電氣並聯之個別 制雷栖,以決定例如在相框信號電極2660與控 制寬極2440之間的電阻 ”子工 個別SWNT具 电1^之電軋特徵。因為本質上平行之 主要^ ^肖除懸浮長度變化,所以結構2645 要並^以減少懸浮的個別奈米管變化。 夕雨接著利用名稱為「麵發性機電場效裝置與使用其 ^路以及其喊方法」之美國專射請錢蘭64,186 明之較佳方法(未顯示),來完成對應於圖22A中之橫 °J面2200之開關結構,其具有由包含2655_2、2655·3與 2655-4之個別SWNT所組成之奈米管元件2255。 ” 圖26C所顯示之平面視圖2645顯示本質上平行之個 別SWNT ’其本質上係垂直於相框信號電極266〇。然而, 個別SWNT並未被要求本質上垂直於相框信號電極 2660,以便控制本質上平行之SWNT之懸浮長度變化。 結構2645可能被修改以減少開口部2620與2620'至 2620"與2620…’由圖26D之平面視圖2650所顯示的。圖 26D所顯示之平面視圖2650顯示電氣接觸並銷接一個別 SWNT 2655-3之導電相框信號電極2660。例如2655-1、 201106408 2655-2、2655-4與2655-5之其他個別SWNT具有絕緣的 末端區域,其避免與導電相框信號電極266〇之電氣接觸。 圖27A顯示與本質上平行方向之個別SWNT接觸之 信號電極結構之平面視圖2700,於此較佳方法將本質上平 行之 SWNT 2655-卜 2655-2、2655-3、2655-4 與 2655-5 沈積在較低的銷接結構2725與2725,,其在形成具有絕緣 體2250之放電電極2245之前,分別對應至圖22八中之橫 剖面2200之較低的銷接結構227〇與227〇,。請注意,在 個別SWNT與控制電極2710之間的犧牲層並未顯示。 ^其次,較佳方法藉由使用如併入之參考文獻所說明的 較佳奈米官處理方法,來圖案化並蝕刻(移除)個別swnt 2655-1與2655-5,且已知工業方法係用以界定較低的銷接 結構2725與2725’以及控制電極2710之對應部分,藉以 產生減少寬度之較低的銷接結構2725"與2725,"及控制電 極2710’ ’如顯示於圖27B之平面視圖2735。 接著,較佳方法藉由使用如併入之參考文獻所說明的 較佳奈米管處理方法,來沈積、圖案化並蝕刻與本質上平 行之SWNT接觸之信號電極2750與2750'。 然後,利用名稱為「非揮發性機電場效裝置與使用其 之電路以及其形成方法」,申請曰為2〇〇4年6月9曰之美 國專利申凊案號10/864,186所說明之較佳方法(未顯示), 來完成對應於圖22A中之橫剖面2200之開關結構,其具 有由個別SWNT 2655-2、2655-3與2655-4所組成之奈米 官元件2255。請注意,圖27係對應至圖22A或圖22B。 81 201106408 藉由使用選擇的結構、尺寸另U + 層級力以設定開關操作電壓之第n蝴機電與原子 之裝置設計料 非揮發性奈米管開關 對應於圖22之圖28A顯示處於〇FF狀態之三個獨立 端子之第-非揮發性奈㈣開關2_之簡化橫剖面圖, 其在長度LSUSP2非延長狀態下具有懸浮奈米管元件 2855。奈米管元件2855係由直徑、之個別所構 成。信號端子2860與2860’分別對應至圖22八中之信號端 子2260與2260,’且係位於相同電壓下,並形成三個獨2 端子第一非揮發性奈米管開關2800之一個端子。奈米管 元件2855係藉由一知上之彳s號電極2860與對應的絕^體 2870以及另一端上之信號電極286〇ι與對應的絕緣體 2 8 70f而銷接於兩端上(一種銷接-銷接之奈米管元件懸浮 結構)。奈米管元件2855係對應至圖22A所顯示之奈米管 元件2255。奈米管元件2855可能譬如由例如圖25C所顯 示之 SWNT 2455-2、2455-4、2455-5 與 2455-6 之隨機配 向SWNT,或者由例如圖27B所顯示之SWNT 2655-2、 2655-3與2655-4之本質上平行之SWNT所組成。 圖28A中之長度LEFF之控制電極2840係對應至圖 22A中之控制電極2240。於OFF狀態中,控制電極2840 係與奈米管元件2855隔離了尺寸z’之間隙1。於ON狀態 中,控制電極2840係與奈米管元件2855接觸,如以下所 更進一步顯示的。 於圖28A中具有厚度TiNS之絕緣體2850之放電電極 82 201106408 2845,係對應至圖22A戶斤顯示之具有絕緣體225〇之放電 電極2245。s月庄思,圖28a係對應至圖22A或22B。 關於第-非揮發性奈米管開關之〇FF至〇N狀態轉變 於操作中,1 28B所顯示之開關力概要28〇〇,(對應於 圖28A中之第-非揮發性奈米管開關2_),回應於:來 自奈米管元件之位移(延長)之彈性力FELAS ;由於在 控制電極测與奈米管元件2855之間的電場之靜電力 1W ;以及如說明於上述所更進—步提供之參考文獻Κ3 中’由於於奈米管元件2855與控制f極之_原子層級 下的凡得瓦爾交互作用之原子層級LennanW()nes力^。 felas係由彈簧與具有彈簧係數k之對應的支持部288〇之 概要表示,如以下所更進—步說明的。在qff至〇N狀態 轉變期間,FLi因為間隔距離是可忽略的,而只有牽涉到 felec與FELAS,其中直徑dcNT之奈米管元件2855具有與 =移(偏轉距離)z成比例之Felas,以及由間隔距離y所決 疋之靜電力FELEC,如圖28B所顯示。對此例而言,個別 ^WNT直徑dCNT=:l。力量felas、Felec與Fu係藉由使用 s如在參考文獻ι_3中所提供之一維近似模型,以及從如 以下所更進一步說明的參考文獻1-3中之〇FF至ON狀態 切換電壓所估計之10之力量倍增係數而計算出。 一維近似模型係總結於有關Felas之表1,有關Felec 之表2,以及有關個別SWNT之原子層級之表3中。 關於奈米管銷接-銷接開關力概要2800',利用表1之felas 83 201106408 之^式,包含具有直徑dCNT=:i nm之個別SWNT,關於奈 米笞元件2855之位移z=z'=2〇 nm,及200 rnn之懸浮長 度可得到FELAS=〇.56x 1〇·10牛頓。利用關於奈米管銷接 -銷接開關力概要2800,(包含具有直徑dcNT=1,關於間隙i 之相對介電常數sR=l,以及y==2〇 ηιη之間隔之個別swnt) 之表2之FELEC之公式,可得到Felec=37x 1〇-12v2牛頓, ^此V係為相對於施加至電極286〇與286〇ι之接地電壓 (零伏特)而施加至控制電極284〇之電壓。放電電極2845 f處於接地電壓。使用因子1〇作為力量倍增器’舉例而 έ,使得FELEC=l〇 FELAS,且V=3.9伏特,其係與在固定· 固定的懸浮第一非揮發性奈米管開關28〇〇結構之個別 SWNT之切換電壓以及更進一步說明於上述參考文獻 之LSUSP/z’《i〇/i之比率相符。當奈米管元件2855係處於 圖28C所顯示之ON位置時,就完成了 〇FF至〇N轉變。 表1 k=384EI/L3 FELAS=kz (384 EI/L3) z 對CNTs而言: E « 1.2 TPa Ι=(π/64) (D〇4 — Dj4) 對1 nm直徑之個別SWNTs而言: E=1.2 TPa D〇=dCNT=l nmFigure 26C electrically contacts and pinches the individual S WNTs such as 2655-1, 265^ conductive photo frame signal electrodes 2660. For example, the region that avoids the de-energization phase 2 =; the insulated terminal structure 2645 is used to select the electrical contact of the U-genus. The son of the SWNT, the field and the soil ~ are physically and electrically connected in parallel to determine the electrical resistance between the frame signal electrode 2660 and the control wide pole 2440. Because the main parallel is the main change, the structure 2645 is required to reduce the individual nanotube changes in suspension. Xi Yu then uses the name "face-effect machine electric field effect device and its use And the US method for the shouting method, please use the preferred method (not shown) of Qianlan 64, 186 to complete the switch structure corresponding to the horizontal J2 2200 in Fig. 22A, which has 2655_2, 2655·3 and 2655. A nanotube element 2255 consisting of -4 individual SWNTs. The planar view 2645 shown in Figure 26C shows an individual SWNT that is essentially parallel 'which is essentially perpendicular to the photo frame signal electrode 266. However, the individual SWNTs are not required to be substantially perpendicular to the photo frame signal electrode 2660, so that control is essentially The suspension length of the parallel SWNTs varies. The structure 2645 may be modified to reduce the openings 2620 and 2620' to 2620" and 2620...' as shown by the plan view 2650 of Figure 26D. The plan view 2650 shown in Figure 26D shows electrical contact. And pinned a conductive photo frame signal electrode 2660 of SWNT 2655-3. Other individual SWNTs such as 2655-1, 201106408 2655-2, 2655-4 and 2655-5 have insulated end regions, which avoid signal electrodes with conductive photo frames 266. Electrical contact. Figure 27A shows a plan view 2700 of the signal electrode structure in contact with individual SWNTs in substantially parallel directions, where the preferred method would be substantially parallel to SWNT 2655-b 2655-2, 2655-3, 2655 -4 and 2655-5 are deposited on the lower pinned structures 2725 and 2725, which correspond to the cross section in Fig. 22, respectively, before forming the discharge electrode 2245 having the insulator 2250 The lower pinned structures 2227 and 227A of 2200. Note that the sacrificial layer between the individual SWNTs and the control electrode 2710 is not shown. ^Secondly, the preferred method is by using the reference as incorporated A preferred nanomanipulation process is illustrated to pattern and etch (remove) individual swnts 2655-1 and 2655-5, and known industrial methods are used to define lower pinned structures 2725 and 2725' and control electrodes The corresponding portion of 2710, thereby resulting in a lower width of the pinned structure 2725" and 2725, " and control electrode 2710'' as shown in the plan view 2735 of Figure 27B. Next, the preferred method is incorporated by use. A preferred nanotube treatment method as described in the reference, depositing, patterning, and etching signal electrodes 2750 and 2750' in contact with substantially parallel SWNTs. Then, using the name "non-volatile machine field effect device and use" The circuit and the method of forming the same are described in the preferred method (not shown) of U.S. Patent Application Serial No. 10/864,186, which is incorporated herein by reference. Cross section 2200 Structure having a SWNT 2655-2,2655-3 nm and individual 2655-4 element 2255 composed of the officer. Note that FIG. 27 corresponds to FIG. 22A or FIG. 22B. 81 201106408 By using the selected structure, size and other U + level force to set the switch operating voltage, the n-th atomic electromechanical and atomic device design material non-volatile nanotube switch corresponds to Figure 28, Figure 28A shows 〇FF state A simplified cross-sectional view of a first-non-volatile nano (four) switch 2_ of three separate terminals having a suspended nanotube element 2855 in a non-extended state of length LSUSP2. The nanotube element 2855 is composed of individual diameters. Signal terminals 2860 and 2860' correspond to signal terminals 2260 and 2260, respectively, in Figure 22, and are located at the same voltage and form one terminal of three unique 2-terminal first non-volatile nanotube switches 2800. The nanotube element 2855 is pinned to both ends by a known 彳s electrode 2860 and the corresponding insulator 2870 and the signal electrode 286〇 at the other end and the corresponding insulator 2 8 70f (a kind of Pin-pinned nano tube component suspension structure). The nanotube element 2855 corresponds to the nanotube element 2255 shown in Figure 22A. The nanotube element 2855 may, for example, be a random alignment SWNT of SWNTs 2455-2, 2455-4, 2455-5 and 2455-6 as shown, for example, in Figure 25C, or SWNT 2655-2, 2655- as shown, for example, in Figure 27B. 3 is composed of SWNTs that are essentially parallel to 2655-4. The control electrode 2840 of length LEFF in Fig. 28A corresponds to the control electrode 2240 in Fig. 22A. In the OFF state, the control electrode 2840 is isolated from the nanotube element 2855 by a gap 1 of dimension z'. In the ON state, control electrode 2840 is in contact with nanotube element 2855, as further shown below. The discharge electrode 82 201106408 2845 having the insulator 2850 having a thickness of TiNS in Fig. 28A corresponds to the discharge electrode 2245 having the insulator 225 显示 shown in Fig. 22A. s 月庄思, Figure 28a corresponds to Figure 22A or 22B. Regarding the 〇FF to 〇N state transition of the first-nonvolatile tube switch in operation, the switching force shown in 1 28B is 28 〇〇, (corresponding to the first-nonvolatile nanotube switch in Fig. 28A) 2_), in response to: the elastic force FELAS from the displacement (extension) of the nanotube element; the electrostatic force 1W due to the electric field between the control electrode and the nanotube element 2855; and as explained above - The reference provided in the step Κ3 is due to the atomic level LennanW() nes force of the interaction between the nanotube element 2855 and the van der Waals under the control atomic level. The felas is schematically represented by a spring and a support portion 288 having a spring coefficient k, as explained further below. During the qff to 〇N state transition, FLi is negligible because of the separation distance, and only feel and FELAS are involved, wherein the nanotube element 2855 of diameter dcNT has Felas proportional to the =shift (deflection distance) z, and The electrostatic force FELEC determined by the separation distance y is as shown in Fig. 28B. For this example, the individual ^WNT diameter dCNT =: l. The powers felas, Felec, and Fu are estimated by using s as one of the dimensional approximation models provided in reference ι_3, and from 〇FF to ON state switching voltages in references 1-3 as further explained below. The power multiplication factor of 10 is calculated. The one-dimensional approximation model is summarized in Table 1 on Felas, Table 2 on Felec, and Table 3 on the atomic hierarchy of individual SWNTs. Regarding the tube-pin-pin-switching force summary 2800' of the tube, using the formula of the felas 83 201106408 of Table 1, the individual SWNTs having the diameter dCNT=:i nm are included, and the displacement z=z' of the nano-device 2855 = 2 〇 nm, and the suspension length of 200 rnn can be obtained as FELAS = 〇.56x 1 〇 · 10 Newtons. Utilizing the table 2800 for the pin-and-pin switch force of the nanotube, (including the individual swnt having the diameter dcNT=1, the relative dielectric constant sR=l of the gap i, and the interval of y==2〇ηη) The formula of FELEC of 2 can be obtained as Felec=37x 1〇-12v2 Newton, which is the voltage applied to the control electrode 284〇 with respect to the ground voltage (zero volts) applied to the electrodes 286〇 and 286〇. The discharge electrode 2845f is at ground voltage. Using factor 1 〇 as a force multiplier's example, let FELEC = l〇FELAS, and V = 3.9 volts, which is separate from the fixed-fixed suspended first non-volatile nanotube switch 28〇〇 structure. The switching voltage of the SWNT and the ratio of LSUSP/z'"i〇/i in the above reference are further explained. When the nanotube element 2855 is in the ON position shown in Fig. 28C, the 〇FF to 〇N transition is completed. Table 1 k=384EI/L3 FELAS=kz (384 EI/L3) z For CNTs: E « 1.2 TPa Ι=(π/64) (D〇4 — Dj4) For individual SWNTs of 1 nm diameter: E=1.2 TPa D〇=dCNT=l nm
Dj =0 84 201106408 L=LSusp z =從非延長位置之位移 FELAS=-22.3 x ΙΟ.24 z/(LSUSP)3 牛頓 表2 對於圓柱狀直徑d &間隔y而言: UELEc=(1/2) C V2 C»27i^Rs0L/y In (y/d)2,關於 y>2dDj =0 84 201106408 L=LSusp z = displacement from non-extended position FELAS=-22.3 x ΙΟ.24 z/(LSUSP)3 Newton Table 2 For cylindrical diameter d & interval y: UELEc=(1/ 2) C V2 C»27i^Rs0L/y In (y/d)2, about y>2d
Felec=_ d (UELEc)/dyFelec=_ d (UELEc)/dy
Felec =7t^R^〇LV2/[y In (y/d)2] ^0=8.85 x ΙΟ'12 F/m 關於具有1 nm直徑之個別的SWNT : π =材料&幾何形狀依從性 L=關於靜電力之LEFF有效長度 y=在個別的SWNT與電極之間之分隔距離 d=DCNT=l nm個別的SWNT直徑 V=外加電壓Felec =7t^R^〇LV2/[y In (y/d)2] ^0=8.85 x ΙΟ'12 F/m About individual SWNTs with a diameter of 1 nm: π = material & geometry compliance L = LEFF effective length for electrostatic force y = separation distance between individual SWNTs and electrodes d = DCNT = l nm individual SWNT diameter V = applied voltage
Felec" 27·8χ ΙΟ·]2 sRLEFFV2/[y ln(y/dCNT)2]牛頓 表3Felec" 27·8χ ΙΟ·]2 sRLEFFV2/[y ln(y/dCNT)2]Newton Table 3
Ulj=^ [(σ/^)12 - (σ/^)6]ΝUlj=^ [(σ/^)12 - (σ/^)6]Ν
Flj^· d (ULj)/dl'=6 (f/σ) [2(σ/γ)13 - (σ/γ)7]Ν 關於碳對碳原子之原子層級力: σ=0.35 X 10'9 m=0.35 nm 85 201106408 ¢=4.6 χ 1(Γ22 焦爾 N=# 原子=NatomsFlj^· d (ULj)/dl'=6 (f/σ) [2(σ/γ)13 - (σ/γ)7]Ν About the atomic level force of carbon to carbon atom: σ=0.35 X 10' 9 m=0.35 nm 85 201106408 ¢=4.6 χ 1(Γ22 Jol N=# Atom = Natoms
Flj=(6 x 4.6 x 1(Γ22/3·5 x l〇-,[2 (〇 35/y)13 _ (0.35/y)7 ]Natoms 關於y=rF-MAX=0.45 nm碳原子之最大力量分離 FLJ=(6x 4.6 xl〇-22/3.5x ΙΟ-iO) [2 (〇 35/〇 (0.35/0.45)7]NatqmsFlj=(6 x 4.6 x 1(Γ22/3·5 xl〇-,[2 (〇35/y)13 _ (0.35/y)7 ]Natoms About y=rF-MAX=0.45 nm The maximum power of carbon atoms Separate FLJ=(6x 4.6 xl〇-22/3.5x ΙΟ-iO) [2 (〇35/〇(0.35/0.45)7]Natqms
Flj=0.76 x 1(T12 Natoms 牛頓 第一非揮發性奈米管開關之非揮發狀態 為了讓第-非揮發性奈米管開關28〇〇操作二 性模式,其係在電壓被移除與Felec=〇日寺維持 ^ 28C之ON狀態,則在延長之奈米管元件28夕、圖 度部分之原子層級力Fu之總和必須大於恢復彈性力 Felas。在包含於奈米管元件2855中之個別SWNT可能進 行力量比較。Lennard-Jones形式之原子層級凡得瓦爾=互 作用力量ELj係由在LEFF區域之延長之奈米管元件π” 與控制電極2840之間之原子層級力所衫。。將隨著使 用作為供㈣電極2840狀導體或半導體之材料產生變 2。在不同材料之原子之任何對之原子之間之原子級力 量’係可能使賴雜與浪費時_原子/分子層級電腦模 擬來估計。於此例子,假設一石墨接地平面,以便利用表 3之Eu力里公式,基於碳對碳原子的力量來執行相當簡 單的计异,用以評估第一非揮發性奈米管開關28⑼之能 86 201106408 力以保留資訊於顯示於圖28c之 元件2855係與控制電極2840接觸。、、中不来管 假設個別的SWNT具有(10, 值。 之首;^ ,則太半其碑p 〇)之手徵(chirality)與丨nm ,直仕則不未官螺旋週期性幾乎是Μ·’且 數目^3提供貢獻、給U能被估計如下: LEFF=⑽伽’有88個位置,於此舉例 謂τ之6個碳原子係顧至在石墨基板之6個碳Λ 所以NATOMS 530 (53〇碳對碳對)。關於53〇碳原子之相對 應的原子層級Lermani.Icmes力係計算成Fy=4 χΐ〇_1〇牛 頓。利用FELEC=0 ’在顯示於圖28c之⑽位置之個別的 SW]:T 之矛力係為 F『Felas=4 χ 1〇-丨、ο.5 X 1〇-1ί>=3.5 X 10牛頓。因為Elj>Felas ’所以裝置是非揮發性的。 關於第一非揮發性奈米管開關之ο N至〇 F F狀態轉變 於操作中,顯示於圖28D之開關力概要2800,係對應 於圖28C之顯示於on位置之第一非揮發性奈米管開關 2800,並顯示出被施加至延長之奈米管元件2855以克服 530對之奴原子之原子層級Lennard-jones力eu之靜電力 FELEC,所利用的是概要地由延長之彈簧與支持部288〇表 示之彈性力Felas之協助,於此彈簧k位移至位置k,。利 用以上所使用之1〇之力量倍增係數來估計〇FF至on開 關轉變電壓,關於ON至OFF轉變之FELEC=i〇 (Fu . Felas) 0 87 201106408 靜電力Felec係藉由施加電壓v至放電電極2845,施 加接地電壓(零伏特)至信號電極 2860與2860',以及施加 ,地f壓至控制電極284G而產生。為了計算Felec,首先 算出關於介電材料與空氣間隙結構2800之有效的介 ^1°使用具有相#面積之兩個串聯電容器,關於在奈 =s兀件2855與放電電極2845之間之距離y之有效介電 吊數可能被計算如下: y/Gn=Tm/em+y/i 對介關於y=4〇 nm,絕緣體285〇材料Si〇2具有絕緣體相 電&數〜-4與T〗NS=i5 nm,而y’=25 nm,關於y=40Flj=0.76 x 1 (T12 Natoms Newton first non-volatile nanotube switch non-volatile state in order to let the first-nonvolatile nanotube switch 28〇〇 operate in a two-sex mode, which is removed at the voltage with Felec =〇日寺 maintains the ON state of ^28C, then the sum of the atomic level forces Fu of the extended portion of the nanotube element 28 must be greater than the recovery elastic force Felas. The individual contained in the nanotube element 2855 The SWNT may perform a power comparison. The atomic level of the Lennard-Jones form is the Vaerwal = the interaction force ELj is the atomic level force between the extended nanotube element π" and the control electrode 2840 in the LEFF region. With the use of a material for the (4) electrode 2840-like conductor or semiconductor, a change is made. The atomic-level force between any pair of atoms of atoms of different materials may cause turbidity and waste when the atomic/molecular level computer simulation To estimate this. In this example, a graphite ground plane is assumed to perform a fairly simple calculation based on the force of carbon on carbon atoms using the Eu force equation of Table 3 to evaluate the first non-volatile nanotube. The energy of the switch 28 (9) 86 201106408 force to retain the information in the element 2855 shown in Figure 28c is in contact with the control electrode 2840., the middle does not come to assume that the individual SWNT has (10, value. The first; ^, then too half of its The chirality of the monument p 〇) and 丨nm, the direct official is not the official spiral periodicity is almost Μ·' and the number ^3 provides contribution, U can be estimated as follows: LEFF=(10) 伽' has 88 Position, here in the example, the six carbon atoms of τ take into account the six carbon 在 on the graphite substrate, so NATOMS 530 (53 〇 carbon vs. carbon pair). The corresponding atomic-level Lermani.Icmes force for the 53 〇 carbon atom It is calculated as Fy=4 χΐ〇_1〇Newton. Using FELEC=0 'in the individual SW of the position shown in (10) of Figure 28c: T's spear force is F『Felas=4 χ 1〇-丨, ο .5 X 1〇-1ί>=3.5 X 10 Newton. Because Elj>Felas', the device is non-volatile. About the first non-volatile nanotube switch ο N to 〇 FF state transitions to operation, shown in The switching force profile 2800 of Figure 28D corresponds to the first non-volatile nanotube switch 2800 shown in the on position of Figure 28C and is shown The electrostatic force FELEC applied to the elongated nanotube element 2855 to overcome the atomic level of the 530 pair of atomic layers of the Lennard-jones force eu, using the elastic force Felas which is schematically represented by the extended spring and the support portion 288〇 Assist, in this case, the spring k is displaced to the position k. The force multiplication factor of 1〇 used above is used to estimate the 〇FF to on switch transition voltage, and the FELEC=i〇(Fu. Felas) 0 87 about the ON to OFF transition. 201106408 Electrostatic force Felec is generated by applying a voltage v to the discharge electrode 2845, applying a ground voltage (zero volts) to the signal electrodes 2860 and 2860', and applying a ground f to the control electrode 284G. In order to calculate the Felec, first calculate the effective dielectric between the dielectric material and the air gap structure 2800 using two series capacitors having a phase # area, with respect to the distance y between the negative and negative electrodes 2855 and the discharge electrode 2845. The effective number of dielectric hangs may be calculated as follows: y/Gn=Tm/em+y/i For y=4〇nm, insulator 285〇 material Si〇2 has insulator phase electric & number ~-4 and T 〖NS=i5 nm, and y'=25 nm, about y=40
Ιΐΐϊΐ 3^· J « 1.4利用表2之felec之公式,舉例而言,felec=3〇 x 10]2 V2_1fwr· ρ v —ιυ (Fu-FELAS)=36 χ ι〇·10 牛頓,而 〇N 至 〇FF 切換電壓可能是V=ii伏特。 《、用以達成足夠靜電力FELEC之V=ll伏特之切換電壓 於石墨平面控制電極284卜然而’控制電極284〇可 月匕疋金屬’例如 RU、Ti、cr、A卜 Au、Pd、Ni、W、Cu、Ιΐΐϊΐ 3^· J « 1.4 Using the formula of the feec of Table 2, for example, fecel=3〇x 10]2 V2_1fwr· ρ v —ιυ (Fu-FELAS)=36 χ ι〇·10 Newton, and 〇N The switching voltage to FF may be V=ii volts. ", to achieve a sufficient electrostatic force FELEC V = ll volt switching voltage on the graphite plane control electrode 284, however, 'control electrode 284 匕疋 匕疋 匕疋 metal' such as RU, Ti, cr, A Bu Au, Pd, Ni , W, Cu,
Mo N A T T TTVMo N A T T TTV
Ag、In、Ir、Pb、Sn及其他適當金屬,及其組合。 亦可使用金屬合金,例如TiAu、TiCu、TiPd、PWn及TiW, 他適當導體,包含它們本身的CNT (譬如具有單一壁 、多重壁面及/或雙重壁面),或導電氮化層、氧化物, 5 矽化物’例如 ruN、Ru〇,TiN、TaN、c〇 介 一 Λ /、 Α Α ^ ΑΧ 一 °使用其他種類的導體或半導體材料。亦可使用半導 广例如是Si、Ge、GaN、GaAs與其他。在個別的SWNT ’、控制電極284G之原子之間之原子層級力,可能導致切 88 201106408 、“壓大於譬如11伏特。又,可能被不同的製造方法所 使用之控制電極材料之改變,係可能導致第一非揮發性奈 米督開關2800之切換電壓v之改變。 藉由添加原子層級層於控制電極上而在第一非揮發 性奈米管開關上之Lennard-Jones原子層級力之控制Ag, In, Ir, Pb, Sn, and other suitable metals, and combinations thereof. Metal alloys such as TiAu, TiCu, TiPd, PWn and TiW may also be used, and their suitable conductors include their own CNTs (such as having a single wall, multiple walls and/or double walls), or conductive nitride layers, oxides, 5 Telluride 'such as ruN, Ru〇, TiN, TaN, c〇 Λ /, Α Α ^ ΑΧ One ° use other types of conductors or semiconductor materials. Semi-conductive materials such as Si, Ge, GaN, GaAs, and others can also be used. The atomic level force between the individual SWNT' and the atoms of the control electrode 284G may result in a cut-off of 201106408, "the pressure is greater than, for example, 11 volts. Again, changes in the control electrode material that may be used by different manufacturing methods may be Resulting in a change in the switching voltage v of the first non-volatile nano switch 2800. Control of the Lennard-Jones atomic level force on the first non-volatile nanotube switch by adding an atomic layer on the control electrode
顯不於圖29之第一非揮發性奈米管開關29〇〇,係對 應於顯tf於圖22A之第-非揮發性奈米管開關22〇〇,並 顯示改變於原子級之原子層、級Len贿(Εω力量之 結構,以便使切換電壓獨立於控制電極材料。一種於原子 級修改顯示於® 29之第-非揮發性奈米管_ 29⑼結構 之方法,係使用開關結構2200之變形例,於此添加本質 上平行之個別的SWNT 2942使其靠近控制電極294〇,1 係對應至顯示於圖22A之控制電極224〇。本質上平行^ SWNT 2942係顯示成剖面圖,並對應至由個別的 所組成之奈米管織物層,這些SWNT例如是顯矛於圖WE 之奈米管2655-2、2655-3及2655-4。於一原子級, 之SWNT 2942可接近(少於譬如〇·5 nm)控制電極u牝仃 並亦與控制電極2940呈電氣接觸。在少於〇 5 nm距離之 下,電子轨道會重疊,因此在非常接近的情況下產生傳 導’所以它呈電氣接觸。顯示在在圖29之平行之個 別的SWNT 2942與控制電極2940之間之空間並非依照比 例繪製,而意欲表示一原子級間距。 奈米管元件2955係銷接於兩端(銷接_銷接奈米管元 89 201106408 件懸浮結構),於此在圖29中之信號電極296〇與絕緣體 2970形成分別對應於在圖22A之信號電極2細與絕緣體 2270之-種銷接結構,且信號電極2_ 形成分別對應於圖22A之作缺+ …色、、象 7〇 。呢電極2260與絕緣體2270 圖29之絕緣體2950之放 之具有絕緣體2250之放電 之另 種銷接結構。具有顯示於 電電極2945分別對應至圖22a 電極2245。 圖30A顯示具有三個猶 二㈤立端子第一非揮發性奈米管 開關3000之間化橫剖面圖,货 .^ 各對應於處於OFF狀態之第 一非揮發性奈米管開關29〇〇,甘 且ώτ ^ , 务具有在非延長狀態下擁有 長度LSUSP之洋奈米管元件 i目女古π j ★加。丨 3055。奈米管元件3055係 由具有直住dCNT之個別的 、 NT所構成。信號端子3060 與3060'分別對應至圖29之卢^ α ^ ls琥端子2960與2960·,處於 相同的電壓,並形成三個端子 ΟΟΛΛ μ * 7 θ 第一非揮發性奈米管開關 2900之一個端子。顯示於圖 Μ川八之絕緣體3070與3070' 對應至顯示於圖29之絕緣體細^ _ 艰啕子2970與2970,。奈米管 元件3055係藉由一端上之作缺 。戏電極3060與對應的絕緣體 070以及3 #上之仏破電極遍〇,與對應的絕緣體 着’ 接奈㈣元件懸浮結 構)。奈米管元件3055係對雁^ β 愿至顯示於圖29之奈米管元 件2955。奈米管元件3〇5s S T ^可能包含譬如隨機配向的 SWNT,例如顯示於圖25C 士 U l < SWNT 2455-2、2455-4、 2455-5與2455-6,或包含本質μ正一 貝上平行之S WNT,例如顯不 於圖 27B 之 SWNT 2655-2、 M55-3 與 2655-4。 201106408 在圖30A具有長度LEFF之控制電極3〇4〇係對應至圖 Μ之控制電極2940。於0FF狀態,控制電極3〇4〇係斑 奈米管元件3055分離開具有尺寸z,之間隙i。於〇N狀 L,奈米官元件3055係與本質上平行之SWNT 3〇42接 觸,SWNT 3042形成-原子層級凡得瓦爾力控制層,其 因而與控制電極3040接觸。 在圖30A之具有厚度TINS之絕緣體3〇5〇之放電電極 3045,係對應至顯示於圖29之具有絕緣體2950之放電電 極 2945 。 關於具有原子層級層於控制電極上之第一非揮發性 奈米管開關之OFF至ON轉變 於操作中,具有足夠大小之靜電力Felec係被施加至 顯示於圖30A之第一非揮發性奈米管開關3〇〇〇結構,以 克服FELAS並將裝置3000從OFF切換至〇N狀態。增加 奈米管元件3042係足夠多孔性的,使得Felec係本質上與 為顯示於圖28A之第一非揮發性奈米管開關28〇〇結構所 計算的相同。因為分離距離之緣故,使得Lennard-Jones 原子級力量是可忽略的。因此,外加電壓V=3.9伏特係與 為圖28A所計算的相同。 在控制電極上具有原子層級層之第一非揮發性奈米 管開關之非揮發狀態 為了使處於圖30B所顯示之ON狀態之第一非揮發性 91 201106408 奈米管開關3000以在非揮發性模式下操作,其係在電壓 被移除且felec=o時,維持於圖30B所顯示之〇N狀態, 則延長的奈米管元件3055,之Leff長度部分中的原子^級 力Fu之總和必須大於回復彈性力Felas。可能針對包含於 奈米管元件3055,中之個別SWNT作出力量比較。原子層 、及凡付瓦爾父互作用力Fu之Lennard·j〇nes格式係由在延 長的奈米管元件3055,與形成原子層級Lennard_J〇nes (凡 知瓦爾)力量控制層之本質上平行之SWNT 3〇42之間的原 子層級力所決定。在奈米管元件3〇55,與控制電極3〇4〇之 間的Fu》,係因為如以下所更進一步說明的額外間隔而 可忽略,且本質上係獨立於控制元件3〇4〇之導體或半導 體材料之選擇。 表3中提供有關FLJi公式,包含碳原子特有的參數 值。假設形成原子層級Fu力控制層之本質上平行之 SWOT 3042譬如具有5 nm之週期性,則對Leff=16〇 nm 而言,存在有32個位置,於此在個別SWNT3〇42中之6 T碳原子係譬如耦接至在個別奈米管元件3〇55,中之6個 奴原子,關於總數為NATOMS=192個碳接合對。192個碳原 子對之相對應的原子層級SWNT至SWNT Unnanl_J()nes 力係被計算成FLJ= 1.5 x 10.1 〇牛頓。利帛,在圖27B 所顯示之ON位置中,個別SWNT上之淨力係為Flj _ FFLAS=1.5 X ΙΟ—丨0 - 0.5 χ 1〇-ι〇=1.〇 χ 1〇-丨〇 牛頓。因為 〉The first non-volatile nanotube switch 29A, which is not shown in Fig. 29, corresponds to the first-nonvolatile nanotube switch 22A shown in Fig. 22A, and shows an atomic layer changed to the atomic level. , Len bribe (Εω power structure, so that the switching voltage is independent of the control electrode material. A method of modifying the structure of the non-volatile nanotube _ 29 (9) shown in the ® 29 at the atomic level, using the switch structure 2200 In the modification, the individual SWNTs 2942 which are substantially parallel are added to be close to the control electrode 294, and the 1 corresponds to the control electrode 224A shown in Fig. 22A. Essentially parallel, SWNT 2942 is shown as a sectional view, and corresponds to To individual layers of nanotube fabrics, these SWNTs are, for example, those of the NE tubes 2655-2, 2655-3 and 2655-4. At one atomic level, the SWNT 2942 is accessible (less) Yu Ruru·5 nm) controls the electrode u牝仃 and also makes electrical contact with the control electrode 2940. Under less than 〇5 nm distance, the electron orbitals will overlap, so the conduction is generated in a very close situation, so it is Electrical contact. Shown in parallel in Figure 29. The space between the individual SWNT 2942 and the control electrode 2940 is not drawn to scale, but is intended to indicate an atomic level spacing. The nanotube element 2955 is pinned to both ends (pinning_pinning nanotube 89 201106408 suspension) The signal electrode 296A and the insulator 2970 in FIG. 29 respectively form a pin-pin structure corresponding to the signal electrode 2 and the insulator 2270 in FIG. 22A, and the signal electrode 2_ is formed corresponding to FIG. 22A, respectively. The electrode 2260 and the insulator 2270 are mounted on the insulator 2950 of FIG. 29 and have a different pin-and-pin structure with the discharge of the insulator 2250. The display has an electrical electrode 2945 corresponding to the electrode 2245 of FIG. 22a. Figure 30A shows a cross-sectional view of the first non-volatile nanotube switch 3000 with three juxta (five) vertical terminals, each corresponding to the first non-volatile nanotube switch 29 in the OFF state. 〇, 甘和ώτ ^ , has a length of LSUSP in the non-extended state of the nanotube element i 目女古 π j ★ 加. 丨 3055. Nano tube element 3055 is composed of an individual with direct dCNT, NT Composition The signal terminals 3060 and 3060' respectively correspond to the λ^^ ls terminal 2960 and 2960· of FIG. 29, are at the same voltage, and form three terminals ΟΟΛΛ μ * 7 θ the first non-volatile nanotube switch 2900 One terminal is shown in Figure 30. The insulators 3070 and 3070' correspond to the insulators shown in Figure 29, _ 啕 啕 2970 and 2970. The nanotube element 3055 is deficient by one end. The electrode 3060 is connected to the corresponding insulators 070 and 3#, and the corresponding insulator is connected to the (four) component suspension structure. The nanotube element 3055 is intended to be shown in Figure 29 of the nanotube element 2955. The nanotube element 3〇5s ST ^ may contain, for example, a randomly aligned SWNT, as shown, for example, in Figure 25C, Ul < SWNT 2455-2, 2455-4, 2455-5, and 2455-6, or contain the essence of μ. Parallel S WNTs on the shell, for example, are not shown in SWNT 2655-2, M55-3 and 2655-4 of Figure 27B. 201106408 In Fig. 30A, the control electrode 3〇4 having the length LEFF corresponds to the control electrode 2940 of the figure. In the 0FF state, the control electrode 3〇4 〇 奈 nanotube element 3055 is separated by a gap i having a dimension z. In the case of N-shaped L, the nano-member 3055 is in contact with the substantially parallel SWNT 3〇42, and the SWNT 3042 forms an atomic-level varnish control layer, which is thus in contact with the control electrode 3040. The discharge electrode 3045 of the insulator 3〇5 having the thickness TINS of Fig. 30A corresponds to the discharge electrode 2945 having the insulator 2950 shown in Fig. 29. Regarding the OFF to ON transition of the first non-volatile nanotube switch having the atomic layer on the control electrode, an electrostatic force of sufficient magnitude is applied to the first non-volatile naphthalene shown in FIG. 30A. The rice tube switch 3〇〇〇 structure overcomes the FELAS and switches the device 3000 from OFF to the 〇N state. The increase in nanotube element 3042 is sufficiently porous such that the Felec system is essentially the same as calculated for the first non-volatile nanotube switch 28〇〇 structure shown in Figure 28A. Because of the separation distance, the atomic power of Lennard-Jones is negligible. Therefore, the applied voltage V = 3.9 volts is the same as that calculated for Fig. 28A. The non-volatile state of the first non-volatile nanotube switch having an atomic layer on the control electrode is such that the first non-volatile 91 201106408 nanotube switch 3000 in the ON state shown in FIG. 30B is non-volatile. Operating in mode, which is maintained in the 〇N state shown in Figure 30B when the voltage is removed and felec=o, then the sum of the atomic force Fu in the Leff length portion of the elongated nanotube element 3055 Must be greater than the recovery elastic force Felas. A power comparison may be made for individual SWNTs included in the nanotube element 3055. The atomic layer and the Lennard·j〇nes format of the Val-French interaction force Fu are essentially parallel to the formation of the atomic-level Lennard_J〇nes power control layer in the elongated nanotube element 3055. The atomic level force between SWNT 3〇42 is determined. The Fu between the nanotube element 3〇55 and the control electrode 3〇4〇 is negligible because of the additional spacing as further explained below, and is essentially independent of the control element 3〇4〇 The choice of conductor or semiconductor material. Table 3 provides the FLJi formula, which contains parameter values specific to carbon atoms. Assuming that the substantially parallel SWOT 3042 forming the atomic-level Fu-force control layer has a periodicity of 5 nm, there are 32 positions for Leff=16〇nm, and 6 T in the individual SWNT3〇42 The carbon atom system is, for example, coupled to six slave atoms in individual nanotube elements 3〇55, for a total of NATOMS=192 carbon bonded pairs. The atomic level SWNT to SWNT Unnanl_J()nes force corresponding to 192 carbon atoms is calculated as FLJ = 1.5 x 10.1 〇 Newton. In the ON position shown in Fig. 27B, the net force on the individual SWNTs is Flj _ FFLAS=1.5 X ΙΟ—丨0 - 0.5 χ 1〇-ι〇=1.〇χ 1〇-丨〇 Newton . Because 〉
Felas,所以第-非揮發性奈米管開關3_係為非揮發性 的,亚在電壓V被移除(FELEC=〇)時維持於〇N狀態中。 92 201106408 本質上平行之個別SWNT 3042之存在導致SWNT元 件3055'與控制電極3040之間的間距增加。為了計算目 的’假設控制元件3040為石墨’碳原子對間隔係為1 9 nm (2 X 0·45 nm碳至碳間隔+1.0 nm SWNT直經),碳原子之 數目係為532-192=340原子,且藉由使用表3中之公式, 在SWNT 3055’與石墨控制元件3〇4〇之間的大概為 FLJ=1.9 X 1〇-】4牛頓。引進本質上平行之個別SWNT 3〇42 之層以使在SWNT元件3055,與石墨控制電極3〇4〇之間的 FLJ 減少了 5,000 倍(l.〇x 1〇-i4)以上。之這種 大於三個等級的減少量,表示用於控制電極3〇4=之二料 可能被改變成用於各種不同的製造方法之各種不同的導 體或半導體,而在第-非揮發性奈米管開關_ 中沒有顯著改變。 … 在控制電極上具有原子層級層之第— 管開關之ON至OFF轉變 干-丨不木 /於操作中’圖30B顯示施加至延長的奈米管元 之靜電力felec,用以利用彈性力Felas《 對之碳原仅料騎Len__力^。^ = 速所更進-步使_ iG之力量倍增係數以 ON開關轉變電壓,對〇N至〇FF轉 °T 至 (Fu-felas)。 s ’ felec=io 靜電力Eelec係藉由施加電壓v至放 接地電壓(零伏特)至信號電極3060與3060,極则5與 及糟由施加 93 201106408 接地電壓至控制電極3〇4〇 計曾出關;^紐人人泰 為了叶异FELec,首先 t。藉由使用兩個同等面積之串聯電容二=:i: 能被計算如下: 之_距離^之有效介電常數可 y/^^TjNs/^+y./i 門距之二半^ _之直徑與離控制電極3〇4〇大概2 nm之 =之奈未以件3G55,而言,y=37 5 nm。對於 =4 Γ-ΒτΤΓ^ Si〇2 ^ ^ 中關於一式, 0 (FLj-FELAS)=10 x 10-IQ 牛頓,於此 ϋ塞定二目_於第—非揮發性奈米管開關之非揮發 狀怨穩疋度而如上述更進一步計算出。 F诂土 U達成足夠靜電力FELEC以克服SWN1^ SWNT式 二:。一 iLAS之估叶的0N至off切換電壓係為v=6.3 猎引進本質上平行之SWNT 3042,切換電壓 ^伏特已從,又有本質上平行之SWNT 3〇42之η伏特 之估片值被減),且係獨立於為控制電極3請所選擇之 材料。 供控制電極3040用之導電材料可能如上述所更進一 步列出。除了導電材料特性以外,供控制電極3請用之 材料亦可被選擇’以使在本質上平行之SWNT 3Q42與控 制電極之間的原子層級力大於在SWNT 3042與奈米管 兀件3055’之間的Fu原子層級SWNT至SWNT力,用以 94 201106408 = swNT购之位置在開關3_,之操作期間並未改 藉=使用^擇的結構、尺寸、材料來控制機電與原 子層級力’並藉由附加原子層級層於控二 開關=電壓之第一揮發性奈米管開關之裝置設計方 圖A係對應於具有加至控制電極234〇之原子層級 層之圖23 A ’並顯示處於〇FF妝能夕笛, 、 T。之 狀態之懸衫米管元件3155。奈米管元件仙係由且有 直徑“之個別SWNT所構成。信號端子3160與3160, 係分別對應至圖23A中之信號端子2360與2360,,且係位 =相同電壓並形成兩個端子開關31〇〇之—個端子。奈米 官兀件3155係藉由一端上之信號電極鳩與對應的絕緣 體3,170以及另一端上之信號電極316〇,與對應的絕緣體 317 0 ’’而銷接於兩端上(一種銷接-銷接奈米管元件懸浮結 構)。奈米管元件3155係對應至圖23A所顯示之奈米管元 件2355。奈米管元件3155可能譬如由例如圖“ο所顯示 之 SWNT 2455-2、2455-4、2455-5 與 2455-6 之隨機配向 SWNT’或者由例如圖27B所顯示之SWNT 2655_2、2655_3 與2655-4之本質上平行之SWNT所組成。 圖31A中之長度leff之控制電極314〇係對應至圖 23A中之控制電極2340。揮發性奈米管開關31〇〇亦包含 控制電極3140上之本質上平行之個別SWNT 3142 (未包 95 201106408 f"),以在開關3100切換至圖 供 Lennard-Jones (Fu)力量々 含於圖23A中), ON位置時,供 用。 ' ^ 3lB所顯示之 <原子層級控制 揮發性奈米管 在控制電極上具有原子層級層之第 開關之OFF至0N狀態轉變 於操作中,電壓V係被施加至控制 IIS)係被施加至信號電極Felas, so the first-nonvolatile tube switch 3_ is non-volatile and is maintained in the 〇N state when the voltage V is removed (FELEC=〇). 92 201106408 The presence of an essentially parallel individual SWNT 3042 results in an increase in the spacing between the SWNT element 3055' and the control electrode 3040. For computational purposes, the hypothetical control element 3040 is a graphite' carbon-pair spacer with a spacing of 19 nm (2 X 0·45 nm carbon to carbon spacing +1.0 nm SWNT direct), and the number of carbon atoms is 532-192=340 Atom, and by using the formula in Table 3, is approximately FLJ=1.9 X 1〇-] 4 Newtons between SWNT 3055' and the graphite control element 3〇4〇. The layers of the individual SWNTs 3〇42 which are substantially parallel are introduced to reduce the FLJ between the SWNT element 3055 and the graphite control electrode 3〇4〇 by 5,000 times (l.〇x 1〇-i4) or more. This reduction of more than three levels means that the second electrode used for the control electrode 3〇4= may be changed to a variety of different conductors or semiconductors for various manufacturing methods, while in the first-non-volatile nai There is no significant change in the rice tube switch _. ... the first to the tube switch on the control electrode - ON to OFF of the tube switch - dry / in the wood / in operation ' Figure 30B shows the electrostatic force felec applied to the extended nanotube element to take advantage of the elastic force Felas "The carbon is only expected to ride Len__ force ^. ^ = Speed is further advanced - Step makes the force multiplication factor of _iG to the ON switch transition voltage, and 〇N to 〇FF to °T to (Fu-felas). s 'felec=io Electrostatic force Eelec is applied by applying voltage v to the grounding voltage (zero volts) to the signal electrodes 3060 and 3060, and the pole is 5 and the application of 93 201106408 grounding voltage to the control electrode 3〇4 Exit; ^ New Zealand people for the Ye FELec, first t. By using two series capacitors of the same area two =: i: can be calculated as follows: _ distance ^ effective dielectric constant y / ^ ^ TjNs / ^ + y. / i gate distance two half ^ _ The diameter is about 2 nm from the control electrode, and the negative is not in the case of 3G55. For example, y=37 5 nm. For =4 Γ-ΒτΤΓ^ Si〇2 ^ ^, for a formula, 0 (FLj-FELAS) = 10 x 10-IQ Newton, where the second target is _ _ the first non-volatile nanotube switch The volatilization is stable and is calculated further as described above. F bauxite U reached enough electrostatic force FELEC to overcome SWN1^ SWNT type II:. The iN estimated leaf's 0N to off switching voltage is v=6.3. The hunting introduces the essentially parallel SWNT 3042, the switching voltage ^volt has been derived from, and the essentially parallel SWNT 3〇42 η volts is estimated. Subtract) and is independent of the material selected for control electrode 3. The conductive material for the control electrode 3040 may be further listed as described above. In addition to the properties of the conductive material, the material for the control electrode 3 may also be selected 'so that the atomic level force between the substantially parallel SWNT 3Q42 and the control electrode is greater than that of the SWNT 3042 and the nanotube element 3055'. Between the atomic level of the SWNT to SWNT force, used for 94 201106408 = swNT purchase position in the switch 3_, during the operation of the switch = use the structure, size, material to control the electromechanical and atomic level force 'and borrow The device design diagram A of the first volatile nanotube switch with the additional atomic layer layer controlling the second switch = voltage corresponds to the figure 23 A ' having the atomic level layer applied to the control electrode 234 , and is shown in 〇 FF Makeup can be whistle, T. The state of the slinger tube element 3155. The nanotube element is composed of individual SWNTs of diameter "signal terminals 3160 and 3160, respectively corresponding to signal terminals 2360 and 2360 in Fig. 23A, and the system bits = the same voltage and form two terminal switches. 31 — - a terminal. The nano-manufacture member 3155 is pinned to the corresponding insulator 3, 170 and the corresponding insulator 317 0 '' by the signal electrode 一端 on one end and the corresponding insulator 3, 170 and the other end of the signal electrode 316 ' On both ends (a pin-pinned nanotube element suspension structure). The nanotube element 3155 corresponds to the nanotube element 2355 shown in Figure 23A. The nanotube element 3155 may be as "for example" The SWNT 2455-2, 2455-4, 2455-5 and 2455-6 random alignment SWNT's are shown or consist of SWNTs substantially parallel to SWNT 2655_2, 2655_3 and 2655-4 as shown in Fig. 27B. The control electrode 314 of the length lff in Fig. 31A corresponds to the control electrode 2340 in Fig. 23A. The volatile nanotube switch 31A also includes an individual SWNT 3142 that is substantially parallel to the control electrode 3140 (not included 95 201106408 f") to switch to the map for the Lennard-Jones (Fu) force at the switch 3100. In Fig. 23A), the ON position is used. ' ^ 3lB shows the atomic level control of the volatile nanotubes on the control electrode with the atomic level of the first switch of the switch to the 0N state transition to the operation, the voltage V is applied to the control IIS) is applied to Signal electrode
Ps Η; & 2 3155,其如圖3认所顯不與控制電極3140 隔開了距離y。在0FF至〇N轉變期間,奈米管元件 係破延長並移走了譬如距離z,而奈米管元件MM盥控制 電極3140之間隔係為圖318所顯示之y。_維近^以^型 係總結於有關FELAS之表1、㈣F臟之表2以及有關原 子層、’及FLJ之表3中。Fu因為間隔距離是可忽略的,而只 有Felec與Felas牽涉到直徑dcNT之奈米管元件3155 ,甘 具有與如圖31B所顯示之位移距離z與由間隔距離y,所^ 疋之靜電力FELEC成比例的FELAS。對此例而言,個別swnt 直徑dCNT=l。力FELAS、FELEC與Fl_j係藉由使用譬如在參 考文獻1-3中所提供之一維近似模型,以及從如以下所更 進一步說明的參考文獻1-3中之OFF至ON狀態切換電壓 所估計之10之力量倍增係數而計算出。 於此例子,第一揮發性奈米管開關3100具有Ps Η; & 2 3155, which is shown in Fig. 3, is not separated from the control electrode 3140 by a distance y. During the 0FF to 〇N transition, the nanotube element is broken and removed by, for example, the distance z, and the spacing of the nanotube element MM盥 control electrode 3140 is y as shown in FIG. _ Wei Jin ^ ^ ^ is summarized in Table 1 of FELAS, Table 4 (F), Table 2 of the F dirty, and Table 3 on the atomic layer, 'and FLJ. Fu because the separation distance is negligible, and only Felec and Felas involve the diameter of the dcNT nanotube element 3155, which has the displacement distance z and the separation distance y as shown in Fig. 31B, and the electrostatic force FELEC Proportional FELAS. For this example, the individual swnt diameter dCNT = l. The forces FELAS, FELEC and Fl_j are estimated by using a one-dimensional approximation model as provided in references 1-3, and from the OFF to ON state switching voltages in references 1-3 as further explained below. The power multiplication factor of 10 is calculated. In this example, the first volatile nanotube switch 3100 has
Lsusp=2〇〇 nm、LEFF= 160 nm 以及 z=40 nm。因為本質上平 行之SWNT 3142層係為多孔性的,且大概與控制電極 96 201106408 3140具有相同的電壓,所以Felec是不變的。於此例中, 藉由使用基於第一揮發性奈米管開關3100之尺寸與表1 與2中之公式之計算’ Felas=1 X 1〇·10牛頓且FELEC=15 X 1〇 V牛頓。藉由使用如上述所更進一步被說明的1〇倍 放大益’ FELEc=i〇 felas ’因此’ V=8.2伏特以產生〇fF 至ON轉變。 在控制電極上具有原子層級層之第一揮發性奈米管 開關之揮發狀態 為了使第一揮發性奈米管開關3100在揮發性模式下 插作’其在電壓被移除且Felec=〇時’並未維持於於圖31B 所顯示之ON狀態,但取而代之回到圖31A所顯示之〇fF 狀態’則施加至延長的奈米管元件3155,之原子層級力Fu 之總和必須小於回復彈性力FELAS。可能針對包含於奈米 管元件3155’中之個別SWNT作出力量比較。原子層級凡 得瓦爾交互作用力Fu之Lennard-Jones格式,係由在延長 的奈米管元件3155與形成原子層級Lermard-J0nes力控制 層之本質上平行之SWNT 3142之間的原子層級力所決 定。在奈米管元件3155,與控制電極3040之間的Fu力, 係因為如以上所更進一步說明的額外間隔而可忽略=且本 質上係獨立於㈣it件3Η()之導體或半導體材料之選擇。 表3中提供有關Flj之公式,包含碳原子特有的參數 值。假設形減子層級凡得瓦_力控制狀 SWNT3142譬如具有10nm之 、十仃之 朋性,則對LEFF=i6〇nm 97 201106408 =»存在有總數為NAT〇MS=96個碳接合對。96個碳原子 對之相對應的原子層級Swnt至SWNT Lennard-Jones力 牛頓。利用Felec=〇,且因為如 係被a十异成Fu=0.7 χ 1〇 上述所更進一步計算出的Felas=1.〇 χ 1〇-ιο牛頓’所以在 圖27B所顯示之〇N位置中,個別SWNT上之淨力係為 Felas _ Fu=l.〇 χ ι〇-ιο _ 〇 7 χ 1〇-ι〇=〇 3 χ 1〇_10 牛頓。因為 所以第一非揮發性奈米管開關3100係為揮發 H,因為如上述所更進一步討論的額外間距,所以在奈 米s元件3155'與控制電極314〇之間不存在有貢獻。 在控制電極上具有原子層級層之第一揮發性奈米管 開關之ON至OFF轉變 、、、因為如上述所更進一步說明的FELAS> Fu,所以當V 被減少至令且Felec==q時,會發生QN至OFF狀態轉變。 關之裝置設計方法Lsusp = 2 〇〇 nm, LEFF = 160 nm, and z = 40 nm. Since the essentially parallel SWNT 3142 layer is porous and approximately has the same voltage as the control electrode 96 201106408 3140, Felec is unchanged. In this example, the calculation is based on the size of the first volatile nanotube switch 3100 and the formulas in Tables 1 and 2 'Felas = 1 x 1 〇 10 Newtons and FELEC = 15 X 1 〇 V Newtons. The 〇fF to ON transition is produced by using a 1 〇 magnification of 'FELEc = i 〇 felas ' as described further above. The volatilization state of the first volatile nanotube switch having an atomic layer on the control electrode is such that the first volatile nanotube switch 3100 is inserted in the volatile mode as 'when the voltage is removed and Felec=〇 'Not maintained in the ON state shown in Fig. 31B, but instead returned to the 〇fF state shown in Fig. 31A, then applied to the elongated nanotube element 3155, the sum of the atomic level forces Fu must be less than the recovery elastic force. FELAS. A power comparison may be made for individual SWNTs included in the nanotube element 3155'. The Lennard-Jones format of the atomic-level van der Waals interaction force Fu is determined by the atomic level force between the elongated nanotube element 3155 and the SWNT 3142 which is essentially parallel to the atomic-level Lermard-J0nes force control layer. . The Fu force between the nanotube element 3155 and the control electrode 3040 is negligible because of the additional spacing as further explained above and is essentially independent of the choice of conductor or semiconductor material of the (4) it piece 3Η(). . Table 3 provides the formula for Flj, which contains the parameter values specific to carbon atoms. Assuming that the sub-levels of the vantage _ force control SWNT3142 have a density of 10 nm and ten ,, then for LEFF=i6〇nm 97 201106408 =» there is a total of NAT 〇 MS = 96 carbon joint pairs. 96 carbon atoms corresponding to the atomic level Swnt to SWNT Lennard-Jones force Newton. Using Felec=〇, and because Fe is=1.〇χ 1〇-ιο Newton's calculated further by the above-mentioned ten-formed Fu=0.7 χ 1〇, so in the 〇N position shown in Fig. 27B The net power on individual SWNTs is Felas _ Fu=l.〇χ ι〇-ιο _ 〇7 χ 1〇-ι〇=〇3 χ 1〇_10 Newton. Because the first non-volatile nanotube switch 3100 is therefore volatile H, there is no contribution between the nanos element 3155' and the control electrode 314A because of the additional spacing as discussed further above. The ON to OFF transition of the first volatile nanotube switch having an atomic level layer on the control electrode, because of FELAS> Fu as further described above, when V is reduced to and Felec == q , a QN to OFF state transition will occur. Off device design method
藉由使用所選擇的結構、尺寸、材料來控制機電與原 g、及力並藉由附加原子層級層於絕緣的輸入電極與輸 電極上以^開關操作電壓之第二非揮發性奈米管開 於非揮發性㈣下舖之具有 非揮發性奈米管開關可 98 201106408 年8月13曰,且其製造係說明於美國專利申請案號 10/918,181中,名稱為「奈米管裝置結構與製造方法」, 申請日為2004年8月13日。四端子裝置可具有一個在開 關之中心之輸出,以及位於輸出與信號電極之間的輸入與 放電電極,其中信號電極連接至奈米管通道元件,其被切 換成與處於ON狀態之輸出電極接觸,並被切換成脫離與 處於OFF狀態之輸出電極接觸。又,四端子裝置可具 在開關之中心之輸入與放電電極,以及位於輸场放j 極與信號電極之間的數個輸出,其中信號電極連接至 管通道元件,其被切換成與處於⑽狀態之輪出命= :,切換成脫離與處於0FF狀態之輪出電極: 第二非揮發性開關操作係由包含原子層級觸 四個獨立端子開關設計所決定,而原子層:力之 藉由使用表3中之Len賭仙⑽力:瓦爾力係 出。輪入電極與輸出電極(端子)可能在懸:式而計算 ,,下’而放電電極可能在懸浮通道元件 ^件之上 k號電極接觸奈米管通道元件之至少一端 或之上,且 中,奈米管通道元件可能處於非延長狀態,。於咖狀態 亚與和輸出電極—錢用之放電與對^能被延長 緣體接觸’⑼平衡與輸出端子上之電 ^構上之絕 II 3:?,Μ顯示—種四端子開關結構之第C。 =〇〇之橫剖面,其具有在開關删之中二非揮發性開 ^卡管通道元件3215之上與之下之的^並分別位於 應的絕緣對向龟極3213與對 电極則。絕緣的輸入電杨如與3211十, 99 201106408 與絕緣的放電電極3212與3212,係位於奈 ,之相對側上,其係用以藉由施加—電壓 輸入電極32η與3211,與信號電極3214與32i4|之、^ 在絕緣的放電電極3212與3212,與信號電極遍與迎· 二來施加靜電力至通道元件3215。信號電極3214盘 214係連接至奈米管通道元件3215,如圖32Α所續示。 開關3·係部分埋人介電材料& 係藉由介電材料3218而维縫品认 ^ 3211 ㈣輸人電極3211,係藉由介 電材枓3218而絕緣,且與奈米管通道元件32丨5隔開了一 個間隙;放電電極3212、3212,與對向電極體係藉由介 電材料而而絕緣,並與奈米管通道元件3215隔開了另 -個間隙。絕緣體322G與絕緣體3217形成一個奈米管通 道70件3215之銷接結構,而絕緣體3220,與絕緣體3217 形成另-個。輪人電極則係與輸出電極3213隔開了絕 緣體獄輸入電極3211,係與輸出電極3213隔 ,迎’。放電電極3212係與對向電極則 體燃放電電極3212,係與對向電極咖關了絕緣^ 3224' ° 圖32B顯示第二非揮發性開關3肅,其具有分別盘 絕緣體 # 3218’呈庫侖接觸之本質上平行之swnt 層3242與3242·’以及與輸出電極加呈庫余接觸之層 3242"。本質上平行之漏丁層3242、迎,與3242,,係藉 由使用類似於圖29所使用_些方法,用以控制如以下 所更進-步說明之處於⑽狀態之原子層級版㈡ 100 201106408 力。於此例中’輸入電極3211與3211,、放電電極3212 與3212'、輸出電極3213以及對向電極3213,之長度全部 為65 nm。例如3222、3222’、3224與3224,之中介絕緣體 全部為65 nm°奈米管通道元件3215之相對應的懸浮長 度 Lsusp 係為 325 nm。 在絕緣的輸入電極與輸出電極上具有原子層級層之 第一非揮發性奈米管開關之〇FF至ON轉變 於操作中,輸出電極3213與對向電極3213,係處於 氣接觸(未顯示)藉以產生在懸浮奈米管通道元件3215上 之對向靜電力並非疋在從至⑽狀態之轉變中的 極32U與32U,係處於電壓V,信號電極3214 训」接地電壓(零伏特),俾能使奈米管通道元件 特。零伏特’而放電電極3212與3212,亦處於零伏 電極3211和3211,與奈米管通道元件3215 幻218^ 2〇 η*""(間隙加氧化物),絕緣體氧化物3218 ^广’、、、聰’本質上平行之SWNT 3242與3242丨為1 nm _,則彈性力W=(U X 10,牛頓。 =二2B之第二非揮發性開關3200,之325 nm之懸 m接姻奈米管通道元件懸浮結構3215而言, 由㈣表1中之彈性力公式而計算出。 法口二表^中關於Felec之公式,在輸入電極3211 ,太半其不米/通道兀件3215之間的間隔大概為20 臟不、入&通道几件3215具有個別SWNT直徑dCNT=l ιοί 201106408 Π::1,輸入電極3211與咖每一個的長度為65 nm’ #電力FELEC,χ 10·12 V2。請注意’本質上平行之咖丁 層係為多孔性的,且並未大幅修改電場與對應的電力 Felec。藉由使用 FELEC=l〇FELAS=l.〇x 1〇-1〇, V=1 85 因為間隔距離太大,所以原子層級Lennard_j〇n F。 並不是在〇砟至0N轉變中之因子。原子層= Lennard-Jones力施加於1 nm等級之間隔。 …在絕緣的輪人電極與輸出電極上具有原子層級層之 第二非揮發性奈米管開關之非揮發性裝置狀態Controlling the electromechanical and original g, and force by using the selected structure, size, and material, and opening the second non-volatile nanotube with a switching operating voltage on the insulated input and output electrodes by adding an atomic layer The non-volatile (four) lower-floor non-volatile nanotube switch can be used on August 13, 2011, and the manufacturing system is described in U.S. Patent Application Serial No. 10/918,181, entitled "Nanotube Device Structure and Manufacturing Method", the application date is August 13, 2004. The four terminal device can have an output at the center of the switch and an input and discharge electrode between the output and the signal electrode, wherein the signal electrode is coupled to the nanotube channel member, which is switched to contact the output electrode in the ON state And is switched to be out of contact with the output electrode in the OFF state. Moreover, the four-terminal device can have input and discharge electrodes at the center of the switch, and a plurality of outputs between the input field and the signal electrode, wherein the signal electrode is connected to the tube channel element, which is switched to be at (10) State wheel output = :, switch to detachment and the wheel electrode in the 0FF state: The second non-volatile switch operation is determined by the design of four independent terminal switches including atomic level touch, and the atomic layer: the force of force Use the Len gambling (10) force in Table 3: Valli is out. The wheeled electrode and the output electrode (terminal) may be calculated in the form of a suspension, and the lower electrode may be at least one end or above the k-electrode contacting the nanotube channel element above the suspension channel element, and The nanotube channel element may be in a non-extended state. In the state of the coffee and the output electrode - the discharge of the money and the contact of the ^ can be extended by the edge of the '(9) balance and the output on the output terminal of the II 2:?, Μ display - a four-terminal switch structure C. = cross section of the crucible having the insulation opposite pole 3213 and the counter electrode respectively located above and below the non-volatile open card tube channel element 3215. The insulated input power, such as the 3211, 99, 201106408, and the insulated discharge electrodes 3212 and 3212, are located on opposite sides of the nano, which are used to apply the voltage input electrodes 32n and 3211 to the signal electrode 3214. 32i4|, in the insulated discharge electrodes 3212 and 3212, and the signal electrodes are applied to the channel element 3215. Signal electrode 3214 disk 214 is coupled to nanotube channel member 3215 as illustrated in Figure 32A. The switch 3 is partially buried with a dielectric material & the dielectric material 3218 is used to sew the product 3211 (4) the input electrode 3211, insulated by the dielectric material 3218, and the nanotube channel element 32丨5 is separated by a gap; the discharge electrodes 3212, 3212 are insulated from the counter electrode system by a dielectric material and are separated from the nanotube channel element 3215 by another gap. The insulator 322G and the insulator 3217 form a pinned structure of the nanotube tube 70 member 3215, and the insulator 3220 forms another one with the insulator 3217. The wheel electrode is separated from the output electrode 3213 by an insulating body input electrode 3211, which is separated from the output electrode 3213. The discharge electrode 3212 and the counter electrode are the body burn discharge electrode 3212, and the opposite electrode is insulated. 3224' °. FIG. 32B shows the second non-volatile switch 3, which has a disc insulator # 3218' as a coulomb. The substantially parallel swnt layers 3242 and 3242·' of the contact and the layer 3242" that are in contact with the output electrode. The essentially parallel drain layers 3242, welcoming, and 3242 are used to control the atomic level version (2) in the (10) state by using methods similar to those used in FIG. 201106408 Force. In this example, the lengths of the input electrodes 3211 and 3211, the discharge electrodes 3212 and 3212', the output electrode 3213, and the counter electrode 3213 were all 65 nm. For example, 3222, 3222', 3224, and 3224, the dielectric insulators of the 65 nm° nanotube channel elements 3215 have a corresponding suspension length Lsusp of 325 nm. The first non-volatile nanotube switch having an atomic level layer on the insulated input and output electrodes is turned into operation, and the output electrode 3213 and the counter electrode 3213 are in gas contact (not shown). The opposing electrostatic forces generated on the suspended nanotube channel element 3215 are not at the poles 32U and 32U in the transition from the state to (10), at voltage V, and the signal electrode 3214 is grounded (zero volts), It can make the nanotube channel components special. Zero volts' while discharge electrodes 3212 and 3212 are also at zero volt electrodes 3211 and 3211, with nanotube channel elements 3215 phantom 218^ 2〇η*"" (gap oxide), insulator oxide 3218 ^ wide ',,, Cong' is essentially parallel SWNT 3242 and 3242丨 is 1 nm _, then the elastic force W=(UX 10, Newton. = 2 2B of the second non-volatile switch 3200, the 325 nm suspension m connection In the case of the suspension structure 3215 of the Nylon tube, it is calculated by the formula of the elastic force in (4) Table 1. The formula for the Felec in the second table of the method is at the input electrode 3211, too much of the meter/channel element The interval between 3215 is about 20 dirty, the inlet & channel several pieces 3215 have individual SWNT diameter dCNT=l ιοί 201106408 Π::1, the input electrode 3211 and the length of each coffee is 65 nm' #电力FELEC,χ 10·12 V2. Please note that 'the essentially parallel diced layer is porous and does not significantly modify the electric field and the corresponding power Felec. By using FELEC=l〇FELAS=l.〇x 1〇-1 〇, V=1 85 Because the separation distance is too large, the atomic level Lennard_j〇n F. is not the cause of the transition to 0N. Atomic layer = Lennard-Jones force applied to the spacer 1 nm level. ... means having a non-volatile state of the second hierarchical layer of atoms of the non-volatile nanotube switch on the wheel human insulated electrode and an output electrode
為/了第二非揮發性開關32〇〇,以在非揮發性模式下 作-其係在電壓v被移除且felec=〇時,維持於圖32c戶斤 顯示之ON狀態,接著延長的奈米管通道元件3215,上之 原子層級力之總和必須大於回復彈性力FELAS。可能針 對包含於奈米管元件3215,中之個別SWNT 較。原子層級凡得瓦爾交互作用力Fu< Lennard J〇nes ^式係由在延長的奈米管元件3215,與對原子層級Fu有 I獻之輸入電極3211和3211,與輸出電極3213之那個部 分之間的原子層級力所決定。一般而言,原子層級力Fu 產生在延長的奈米管元件3215,之一部分(以LEFF_U表示) 與本質上平行之SWNT 3242、3242,與3242"之間,於此間 隔係小於1 nm。為說明的目的,已將圖32c所顯示之延 長的奈米管元件3215'之Lennard-Jones原子層級力區域變 暗。於此例中,LEFF-LJ=65/2+65+65/2=130 nm。對於本 102 201106408The second non-volatile switch 32A is operated in the non-volatile mode - when the voltage v is removed and feelc = ,, it is maintained in the ON state of the figure shown in Figure 32c, and then extended. The sum of the atomic level forces on the nanotube channel element 3215 must be greater than the recovery elastic force FELAS. It may be compared to the individual SWNTs included in the nanotube element 3215. The atomic-level van der Waals interaction force Fu< Lennard J〇nes ^ is derived from the portion of the elongated nanotube element 3215, the input electrodes 3211 and 3211 that have a contribution to the atomic level Fu, and the output electrode 3213. The atomic level of force is determined. In general, the atomic level force Fu is produced in the extended nanotube element 3215, one portion (represented by LEFF_U) and substantially parallel to the SWNTs 3242, 3242, and 3242", with a spacing of less than 1 nm. For purposes of illustration, the Lennard-Jones atomic level force region of the elongated nanotube element 3215' shown in Figure 32c has been darkened. In this case, LEFF-LJ = 65 / 2 + 65 + 65 / 2 = 130 nm. For this 102 201106408
質上平行之SWNT層3242、3242,與3242,,之5 nm之節距 而言,對FLj有貢獻之碳原子對之數目可能被估計如下。 對LEFF-LJ=130 nm且5 nm之本質上平行之SWNT節距 而吕,有26個具有6個碳原子之位置,其極接近圖32CFor the parallel SWNT layers 3242, 3242, and 3242, the 5 nm pitch, the number of carbon atom pairs contributing to FLj may be estimated as follows. For the SWNT pitch of LEFF-LJ=130 nm and 5 nm, which is essentially parallel, there are 26 positions with 6 carbon atoms, which are very close to Figure 32C.
之苐一非揮發性開關3200’所顯示之每一個§WNT,或者 Natoms=156碳原子對。藉由使用表3中之公式,Fu=12x ΙΟ·10牛頓。利用Felec=〇,在圖32c所顯示之(^位置中, 個別 SWNT 上之淨力係為 Fu_Fflas=1 2 X 1〇·ΙΟ _ 〇1 X ι〇-10=ι.ι X 1〇-10牛頓。因為Fu>Fflas,所以第二非揮發 性開關32001係為非揮發性開關。 在輸入與輸出私極上具有原子層級層之第二非揮發 性奈米管開關之ON至OFF轉變 於操作中’有關第二非揮發性開關32〇〇,之⑽至腦^ 彈性回復力ELAS結合之靜電力Fe^必須克服原 子層級Lennard_Jones力Fu。藉由使用上述所更進一步使 =之相同的力量倍增係數來估計〇ff至 ^錢,對於⑽至0FF轉變而言係需要“ 二一。於此,中’ μ述所更進一步顯示白"『 ELAS .1 X 1〇牛頓,因此需要 ·1 從ON狀態切換至0FF狀態。LEC 牛頓以 血二\可月b藉由施加電壓V至放電電極3212 盘亦變二 特至信號電極3214與幻U,,豆 與料成零伏特之奈米管元件3215,接觸;以及施加如圖 103 201106408 32D所顯斧之接地電壓至輪入電極32i j 除了為説明的目的已將延長的奈米f_、训’而產生。 區域變暗以外,圖32D係與圖32C相向以15’之靜電力 之奈米管元件3215,接觸之輪出電極與在零伏特下 特。因為輸出電極3213與對向電極13 ’亦處於零伏 示),所以對向電極則,亦處於零伏4寺3’係電連接(未顯 能完成於兩個部分中’ 1部分是_=2計算可 3211與3211,之奈米管元件3215,區域(以T仃於輸入電極 另一部分是關於奈米管元件3215,非平〜Felec-】表示),而 表示),則吏 Felec^Felec^+i^c』。、"^區域(以 Felec-2 為了計算Felecm ’對應於厚度丁 之間隔…與空氣間隙·至介 之合併介電材料 相對介電常數,Λ1,可能藉由假設兩個同^ 219之間隔3V之 器而被計算如下: 』寻面積之串聯電容 -71 ^.^liNs/^+yi /1 對而言,絕緣體3219之枒钮c_^曰> 與 TlNsNS j- 料 Sl02 具有 s 15細,而對y=35nm而言,η、〜 = ΐ47。 3219^了计异FeLEC·2,對應於厚度Tins之合併介電材剩 一相f ^隔乃與空氣間隙-至介電材料3219之間隔%之 六。。目對介電常數〜可能藉由假設兩個同等面積之串聯售 今裔而被計算如下: y2/e«,TiNS/fws+y2'/l 對 ' ¥27.5 nm而言,絕緣體3219之材料Si〇2具肩 一、rINS=l5 nm,而對 y2=27.5 nm 而言,y2,=12 5、 104 201106408 £Λ2=】.69。 藉由使用處於0Ν狀離之 相對介電常數與尺寸 5弟—非揮發性間關320〇|之 M計算Felec分量F 心表2關於Felec之公式用 而 FELEC-2=n.2 X …2V2 田》EC-2,F咖】,心 因為如上述所[隹J此可得到FELEdi〇-12v2。 之^摘更進—步說明的需要F⑽=U χ 1frl。牛頓 之靜電力以從⑽轉㈣npp"ELECUxlC)牛頓 1〇Ύΐ1 X ίο-]。⑼態,所以 ’ F—=28 X “ 1X10牛頓’且V=6_3伏特。 子岸=使::選擇的結構、尺寸、材料來控制機電與原 出^稭由附加原子層級層於絕緣的輪人電極與輸 姑虽上’以設定開關操作電壓之第二揮發性 關 之裳置設計方法 ^圖33A顯示第二揮發性開關33〇〇結構,其具有分別 养近絕緣體3318與3318,之本質上平行之SWNT層3342 與3342'以及靠近輸出電極33〗3之層3342"。本質上平行 之SWNT層3342、3342,、與3342"係藉由使用類似於圖 32所使用的那些方法,用以控制如以下所更進一步說明的 處於ON狀態之原子層級Lennard-Jones力。於此例中, 輪入電極3311與3311,、輸出電極3313以及對向電極3313’ 之長度全部為50 nm。例如3322與3322,之中介氧化物全 為5 0 nm。奈米管通道元件3 215之相對應的懸浮長度 Lsusp 係為 250 nm。 圖33A顯示不具有例如圖32中之3212與3212’之放 電電極之第二揮發性開關3300,其乃因為第二揮發性奈米 105 201106408 管開關3300在電壓V被移除時會從〇N轉變至〇FF狀 態,且並不需要放電電極。 達成第二揮發性開關之操作之一替代方式係使用圖 32,並用以經由信號電極3214與3214,(未顯示)將放電電 極3212與3212’電連接至奈米管元件3215。這確保了在奈 米管通道元件3215與放電電極3212和3212,之間的零電 壓差’並在與和揮發性操作相符之尺寸與材料結合時’允 許第二揮發性奈米管開關之操作。 在絕緣的輸入電極與輸出電極上具有原子層級層之 第二揮發性奈米管開關之〇FF至轉變 尸於操作中,輸出電極3313與對向電極3313,係處於電 氣接觸(未顯示)’藉以產生懸浮奈米管通道元件3315上之 對向靜電力,且在從〇FF至〇N狀態之轉變中並不是一項 因子。輸入電極3311與3311,係處於電壓V,信號電極3314 人3314係處於接地(零伏特),俾能使奈米管通道元件 ^處於零伏特。假設在輸入電極3311和3311,與奈米管通 I元件3315之間的間隔為5〇 nm (間隙加氧化物),絕緣體 =化物3218與3218'為3 nm,本質上平行之SWNT 3342 、=2為1 nm直徑,位移Z,w15細,則彈性力felas=〇_7 :肖二其藉由使用表1中之彈性力公式而為銷接_ 銷接結構3300所計算。 藉由使用表2中關於之公式,在輸 和331Γ盥太氺鸿、s电 /、不、未^通道几件3315之間的間隔大概為5〇 106 201106408 nm,奈米管通道元件3315之直徑dcNT=1 nm,〜=1,輸 入電極3311與3311’每一個之長度為5〇 nm ,靜電力 卩£1^<:一7.2父10\?>。藉由使用1^1^(:=10?£1^=7\1〇-10, V=9.85伏特。因為間隔距離太大,所以原子層級 Lennard-Jones力Fu並不是在〇FF至ON轉變中之一項因 子。原子層級Lennard-Jones力施加於1 nm等級之間隔。 在輸入與輸出電極上具有原子層級層之第二揮發性 奈米管開關之揮發性裝置狀態 為了使第二揮發性奈米管開關3300在揮發性模式下 操作’其在電壓被移除且FELEC=〇時並未維持於於圖33B 所顯示之ON狀態,但取而代之回到圖33A所顯示之〇ff 狀態,則施加至延長的奈米管通道元件3155,之原子層級 力FLj之總和必須小於回復彈性力Felas。可能針對包j於 奈米管通道元件3155,中之個別SWNT作出力量比較。原 子層級凡得瓦爾交互作用力FL>I之Lermard-Jones格式,係 由在延長的奈米管元件3315,與會對原子層級Fu有貢獻 之絕緣的輸入電極3311和331Γ與輸出電極3313之部分 之間的原子層級力所決定。-般而f,原子層、級Fu力: 生在延長的奈米管元件3315,之一部分(以LEFF-LJ表示) 與本質上平行之SWNT 3342、3342,與3342,,之間,於此間 隔係小於1 nm。為說明的目的,已將圖33B所顯示之延 長的奈米官几件3315'之Lennard-Jones原子層級力區域變 暗。於此例中,LEFF-LJ=50/2+50+50/2=l〇〇 nm。對於: 107 201106408 質上平行之SWNT層3342、3342'與3342,'之10 nm之節 距而言,對FLj有貢獻之碳原子對之數目係為Nat〇ms=60。 藉由使用表3中之公式’ X ι〇_10牛頓。利用 FElec=〇,在圖33B所顯示之on位置中,個別SWNT上 之淨力係為F ELAS -Flj=〇.7 X 1〇-10 . 0.5 X 1〇-10=〇.2 x 10'10 牛頓。因為FELAS>FLj,所以第二揮發性奈米管開關33〇〇 係為揮發性開關。 在輸入與輸出電極上具有原子層級層之第二非揮發 性奈米管開關之ON至OFF轉變 ON至OFF狀態轉變發生在v被減少至零且Felec=〇 時,其乃因為如上述所更進一步說明的Felas>Fu。 控制SWNT上之Lennard-Jones原子層級凡得瓦爾力 藉以形成奈米管(通道)元件之額外方法 除了原子層3444已被加至絕緣的輸入電極3411 ,原 子層3444,已被加至絕的輸入電極3411,以及原子層3444,, 已被加至輸出3413以外,圖34A(結構34〇〇)係類曰似於圖 32Β。這些原子層係被附加,以確保在延長的奈米管通道 元件3415,與本質上平行之SWNT 3442、3442,與3442"之 間的原子層級Lennard-J〇neS(FLJ)力,不會超過在本質上平 行之SWNT3442、3442,與3442,,以及支擇絕緣導 料之間的Fu。 各種不同材料之本質上平行之奈米線(奈米棒)可能被 ]〇8 201106408 使用’以取代圖29所顯示之本質上平行之SWNT 2942與 圖 32B Ss - 所顯示之本質上平行之SWNT 3242、3242,與 、, 用以改變原子層級Lennard-Jones力Fu。奈米線(奈 米棒料之例子係為氧化H編 、石西化物、氮化鎵、 、:、磷化鎵、鍺、矽、磷化銦、氧化鎂、氧化錳、鎳、鈀、 之 石反化矽、鈦、氧化鋅以及例如矽鍺或其他被塗佈之種類 額外混合奈米線。 1者’本質上平行之奈米線可能被使用作為光罩。舉 例而,沈積在矽上之氟化鈣奈米線可能被使用作為光 罩玉藉以蝕刻在具有毫微米節距與毫微米深度之矽電極中 之渠溝’用以調變原子層級Lennard_J〇nes力。 或者,金屬犧牲層可能被平版印刷形成以建立奈米渠 溝。舉例而言,金屬犧牲層可能沈積在後來待被移除之犧 牲層之頂端上,而此犧牲層建立一切換間隙。層3414係 接著沈積在金屬犧牲層之頂端上。然後,金屬犧牲層係藉 由蝕刻製程而移除,用以調變於3415,_3413介面下之原 子級 Lennard-Jones 力。 如顯示於圖35A(結構3500)中:係顯示在不需要使用 本質上平行之個別SWNT層的情況下,在奈米管(通道) 元件3515與輸出電極3513之間的原子層級匕】(於此情況 下為鎢)。奈米管可被共價地或非共價地被誘導體化 (derivitized)以產生變化表面(R)3530。鎢表面亦可是具有 誘導體化(derivitization)分子或原子層(r*)353i之共價地 或非共價地變化之表面,用以變更與奈米管之凡得瓦爾交 109 201106408 互作用。層3520、3522與3522·係為絕緣層。舉例而言, 在奈米管元件3515之偏轉期間,微弱Lennard-Jones電位 係形成於3530與3531之間。在間隔之時,微弱 Lennard-Jones電位係在3530與3531之間被損壞。關於另 一例’功能分子或原子層3530與3531形成化學接合至輸 出電極3513中之鎢原子,並化學接合至3515中之碳原 子。關於這種情況’間隔與Lennard-Jones力係由分子之 長度或原子層3530-3531之厚度所決定。 除了鎢輸出電極3513已被利用介電材料3519而絕緣 =輸入電極3513,所置換以外,圖35B顯示與35A相同的 父互作用。於此情況下,表面官能化係藉由使用熟習本項 技藝者所熟知之標準化學表面修改技術而完成。於此例 中,在3515與輸入電極3513,之間的間隔系 與灿’之組合分子或原子層(R*)^_定。#由3530 除了附加另一原子層(R**)3531,,以增加在奈半总r、g =)凡件3515與鶴輸出電極3513之間的間隔& 顯不與35A相同的交互作用。 國 @ 了附加另 项于層»**)3535",以增加在奈米 二=如5與絕緣的輸入電極3513,之間的間隔以外, • 顯示相同的交互作用35B。 之 佈局非揮發性與揮發性奈米管開關最佳化 圖36顯示在奈米管通道元件3215之上且平行於口、 110 201106408 緣體3 219而絕緣之第二非揮發性奈米管開關3 200之放電 電極3212和3212,與對向電極3213’(如圖32Β所顯示)所 作之橫剖面之平面視圖3600。平面視圖36〇〇顯示一種藉 由限制與信號電極3614與3614,(分別對應至信號電極 3214與3214')接觸之奈米管通道元件3215中的個別 SWNT之數目’來降低隨機配向之個別SWNT長度變化 之方法。絕緣體369係對應至圖32D中之絕緣體3219。 對向電極3613,係對應至圖32Β十以橫剖面顯示之對向電 極3213丨。 製造平面視圖3600之較佳方法係類似於上述關於圖 25所更進一步說明的製造結構2545之較佳方法。較佳方 法露出所選擇的隨機配向之個別SWNT之末端以供與信 號電極3614與3614’接觸,藉以降低長度變化,其可導致 上述所更進一步說明且分別在表丨、2與3中之彈性力 Felas、靜電力FELEC與原子層級力fu之對應變化。降低 由尺寸變化所導致的力量變化,會導致例如操作電壓v之 開關操作特徵之較佳控制。 圖36所顯示之平面視圖3600顯示個別SWNT 3655-2、2655-4、3655-5與3655-6之露出端,其與信號電 極3614與3614’呈電氣與物理接觸,並對圖323所顯示之 第二非揮發性奈米管開關3200之切換特徵有貢獻。例如Each §WNT, or Natoms=156 carbon atom pair, is displayed by a non-volatile switch 3200'. By using the formula in Table 3, Fu = 12x ΙΟ · 10 Newtons. Using Felec=〇, in the position shown in Figure 32c, the net force on the individual SWNTs is Fu_Fflas=1 2 X 1〇·ΙΟ _ 〇1 X ι〇-10=ι.ι X 1〇-10 Newton. Because Fu>Fflas, the second non-volatile switch 32001 is a non-volatile switch. The ON to OFF of the second non-volatile nanotube switch with an atomic level on the input and output private poles is converted into operation. 'About the second non-volatile switch 32〇〇, the electrostatic force Fe^ of the (10) to the brain's elastic restoring force ELAS must overcome the atomic level of the Lennard_Jones force Fu. By using the above, the same force multiplication factor of = To estimate 〇ff to ^钱, for the (10) to 0FF transition, it is necessary to "two. This, in the middle of the description, further shows white" "ELAS.1 X 1 〇 Newton, so need · 1 from ON The state is switched to the 0FF state. The LEC Newton uses the voltage V to the moon b to apply the voltage V to the discharge electrode 3212. The disk also changes to the signal electrode 3214 and the magic U, and the bean and the material are zero volts of the nanotube element 3215. , contact; and apply the grounding voltage of the axe shown in Figure 103 201106408 32D to the wheel The electrode 32ij is produced in addition to the extended nanometer f_, training' for the purpose of illustration. In addition to the darkening of the region, Fig. 32D is a nanotube element 3215 with an electrostatic force of 15' facing the plane of Fig. 32C. The electrode is at zero volts. Because the output electrode 3213 and the counter electrode 13' are also at zero volts, the opposite electrode is also in the zero-volt 4 temple 3' electrical connection (not shown in two In the part, the '1 part is _=2, and the 3211 and 3211, the nanotube element 3215, the area (the other part of the input electrode is about the nanotube element 3215, the non-flat ~ Felec-)) Representation), then 吏Felec^Felec^+i^c』., "^ area (for Felec-2 in order to calculate Felecm 'corresponds to the thickness of the interval... and the air gap to the dielectric material of the dielectric The constant, Λ1, may be calculated by assuming two devices with a spacing of 3V from the same 219: 』Series capacitance of the search area -71 ^.^liNs/^+yi /1 For the pair, the button of the insulator 3219 C_^曰> with TlNsNS j-Sl02 has s 15 fine, and for y=35 nm, η, ~ = ΐ47. 3 219^Different FeLEC·2, corresponding to the thickness of the Tins, the remaining phase of the dielectric material f ^ is the interval between the air gap and the dielectric material 3219. The dielectric constant ~ may be caused by Suppose two series of equal areas are sold as follows: y2/e«, TiNS/fws+y2'/l For '27.5 nm, the material of insulator 3219 is Si〇2 with shoulder one, rINS=l5 Nm, and for y2=27.5 nm, y2, =12 5, 104 201106408 £Λ2=].69. Calculate the Felec component F by using the M corresponding to the relative dielectric constant at 0 尺寸 and the non-volatile 〇 320〇|, and FELEC-2=n.2 X ... 2V2 Tian "EC-2, F coffee", because the heart is as above [隹J this can get FELEdi〇-12v2. The selection of the step-by-step description requires F(10)=U χ 1frl. Newton's electrostatic force is from (10) to (four) npp" ELECUxlC) Newton 1〇Ύΐ1 X ίο-]. (9) state, so 'F-=28 X "1X10 Newton' and V=6_3 volts. Sub-bank = make:: Select the structure, size, material to control the electromechanical and the original ^ straw by the additional atomic layer in the insulated wheel Although the human electrode and the insufficiency are on the second volatility setting method of setting the switching operating voltage, FIG. 33A shows the second volatile switch 33〇〇 structure, which has the properties of respectively accommodating the insulators 3318 and 3318, respectively. The upper parallel SWNT layers 3342 and 3342' and the layer 3342" near the output electrode 33' are substantially parallel to the SWNT layers 3342, 3342, and 3342" by using methods similar to those used in Figure 32. To control the atomic level Lennard-Jones force in the ON state as further explained below. In this example, the lengths of the wheeled electrodes 3311 and 3311, the output electrode 3313, and the counter electrode 3313' are all 50 nm. 3322 and 3322, the intermediate oxide is all 50 nm. The corresponding suspension length Lsusp of the nanotube channel element 3 215 is 250 nm. Figure 33A shows a discharge electrode without 3212 and 3212', for example, in Figure 32. Second volatile opening Off 3300, because the second volatile nanometer 105 201106408 tube switch 3300 will change from 〇N to 〇FF when the voltage V is removed, and does not require a discharge electrode. An alternative is to use Figure 32 and to electrically connect the discharge electrodes 3212 and 3212' to the nanotube element 3215 via signal electrodes 3214 and 3214 (not shown). This ensures that the nanotube channel elements 3215 and the discharge electrodes are in place. The zero voltage difference between 3212 and 3212, and allows the operation of the second volatile nanotube switch when combined with the size and material in accordance with the volatility operation. Atomic level on the insulated input and output electrodes第二FF of the second volatile nanotube switch of the layer to the corpse in operation, the output electrode 3313 and the counter electrode 3313 are in electrical contact (not shown) to generate a pair of suspended nanotube channel elements 3315 It is not a factor in the electrostatic force and in the transition from 〇FF to 〇N. The input electrodes 3311 and 3311 are at voltage V, and the signal electrode 3314 is 3314 at ground (zero volts). The nanotube channel element ^ is at zero volts. It is assumed that the spacing between the input electrodes 3311 and 3311 and the nanotube pass I element 3315 is 5 〇 nm (gap plus oxide), and the insulator = compound 3218 and 3218' is 3. Nm, essentially parallel SWNT 3342, =2 is 1 nm diameter, displacement Z, w15 is thin, then elastic force felas=〇_7: Xiao 2 which is pinned by using the elastic force formula in Table 1 Connected to structure 3300 for calculation. By using the formula in Table 2, the interval between the transmission and the 331 Γ盥 氺 、, s electric /, no, no channel 3315 is about 5 〇 106 201106408 nm, the nanotube channel element 3315 Diameter dcNT = 1 nm, ~ = 1, the length of each of the input electrodes 3311 and 3311' is 5 〇 nm, and the electrostatic force is 11^ <: a 7.2 parent 10\?>. By using 1^1^(:=10?£1^=7\1〇-10, V=9.85 volts. Because the separation distance is too large, the atomic level Lennard-Jones force Fu is not in the 〇FF to ON transition. One of the factors. The atomic-level Lennard-Jones force is applied at intervals of 1 nm. The volatile device state of the second volatile nanotube switch with an atomic layer on the input and output electrodes is used to make the second volatility The nanotube switch 3300 operates in a volatile mode 'when the voltage is removed and FELEC=〇 is not maintained in the ON state shown in FIG. 33B, but instead returns to the 〇 ff state shown in FIG. 33A, then The sum of the atomic level forces FLj applied to the elongated nanotube channel element 3155 must be less than the recovery elastic force Felas. It is possible to make a force comparison for the individual SWNTs in the nanotube channel element 3155, the atomic level. The Lermard-Jones format of the interaction force FL>I is derived from the atomic level force between the elongated nanotube element 3315 and the portions of the input electrodes 3311 and 331 and the output electrode 3313 which contribute to the atomic level Fu. Decided.- f, atomic layer, level Fu force: born in the extended nanotube element 3315, one part (represented by LEFF-LJ) and the substantially parallel SWNT 3342, 3342, and 3342, between, the interval is less than 1 nm. For the purposes of this description, the extended nano-levels of the Lennard-Jones atomic force region of the 3315' shown in Figure 33B have been darkened. In this example, LEFF-LJ=50/2+50+ 50/2=l〇〇nm. For: 107 201106408 The parallel parallel SWNT layers 3342, 3342' and 3342, '10 nm pitch, the number of carbon atoms contributing to FLj is Nat〇 Ms=60. By using the formula 'X ι〇_10 Newtons in Table 3. Using FElec=〇, in the on position shown in Figure 33B, the net force on the individual SWNTs is F ELAS -Flj=〇. 7 X 1〇-10 . 0.5 X 1〇-10=〇.2 x 10'10 Newton. Because of FELAS>FLj, the second volatile nanotube switch 33 is a volatile switch. The ON to OFF transition of the second non-volatile nanotube switch having an atomic layer on the electrode to the ON state transition occurs when v is reduced to zero and Felec=〇, because it is further improved as described above Steps to describe Felas>Fu. The additional method of controlling the Lennard-Jones atomic level on the SWNT to form a nanotube (channel) element, except that the atomic layer 3444 has been applied to the insulated input electrode 3411, atomic layer 3444, The input electrode 3411, which has been applied to the anode, and the atomic layer 3444, have been added to the output 3413, and the type of Fig. 34A (structure 34) is similar to that of Fig. 32A. These atomic layers are added to ensure that the atomic-level Lennard-J〇neS (FLJ) force between the elongated nanotube channel elements 3415 and the substantially parallel SWNTs 3442, 3442, and 3442" Intrinsically parallel between SWNT 3442, 3442, and 3442, and between the insulating insulation guides. Intrinsically parallel nanowires (nano rods) of various materials may be used by 〇8 201106408 to replace the essentially parallel SWNT 2942 shown in Figure 29 with the essentially parallel SWNT shown in Figure 32B Ss 3242, 3242, and , to change the atomic level of the Lennard-Jones force Fu. Nanowires (examples of nanobars are oxidized H-coded, lithosparin, gallium nitride, :, gallium phosphide, antimony, bismuth, indium phosphide, magnesium oxide, manganese oxide, nickel, palladium, Stone reversal of bismuth, titanium, zinc oxide and other types of coated nanowires such as strontium or other coated species. One of the 'essentially parallel nanowires may be used as a reticle. For example, deposited on the raft The calcium fluoride nanowire may be used as a mask jade to etch a trench in a germanium electrode having a nanometer pitch and a nanometer depth to modulate the atomic level of the Lennard_J〇nes force. It may be formed by lithography to create a nanochannel. For example, a sacrificial layer of metal may be deposited on top of the sacrificial layer to be removed later, and the sacrificial layer establishes a switching gap. Layer 3414 is then deposited on the metal. The top of the sacrificial layer is then removed. The metal sacrificial layer is then removed by an etching process to modulate the atomic Lennard-Jones force under the 3415, _3413 interface. As shown in Figure 35A (Structure 3500): Displayed without the need to use the essence In the case of parallel individual SWNT layers, the atomic level between the nanotube (channel) element 3515 and the output electrode 3513 (in this case tungsten). The nanotubes can be covalently or non-covalently The ground is derivitized to produce a varying surface (R) 3530. The tungsten surface may also be a covalently or non-covalently altered surface having a degivitization molecule or atomic layer (r*) 353i. Used to alter the interaction with the van der Waals 109 201106408 of the nanotubes. The layers 3520, 3522 and 3522 are insulating layers. For example, during the deflection of the nanotube element 3515, the weak Lennard-Jones potential system is formed. Between 3530 and 3531. At the time of the interval, the weak Lennard-Jones potential is damaged between 3530 and 3531. Regarding another example, the functional molecule or atomic layer 3530 and 3531 form a tungsten atom chemically bonded to the output electrode 3513. And chemically bonded to the carbon atom in 3515. In this case, the 'interval and Lennard-Jones force is determined by the length of the molecule or the thickness of the atomic layer 3530-3531. In addition to the tungsten output electrode 3513 has been utilized dielectric material 3519 Insulation = Input electrode 3513, in addition to the replacement, Figure 35B shows the same parent interaction as 35 A. In this case, surface functionalization is accomplished using standard chemical surface modification techniques well known to those skilled in the art. In the example, the interval between 3515 and the input electrode 3513 is determined by the combination of the molecule or the atomic layer (R*) of the can'. #3530, in addition to the other atomic layer (R**) 3531, Increasing the interval between the half of the total r, g =) the piece 3515 and the crane output electrode 3513 shows the same interaction as the 35A. Country @ has added another layer to layer »**)3535" to increase the interval between nanometer==5 and insulated input electrode 3513, • Show the same interaction 35B. Layout non-volatile and volatile nanotube switch optimization Figure 36 shows a second non-volatile nanotube switch insulated above the nanotube channel element 3215 and parallel to the port, 110 201106408 edge 3 219 A plan view 3600 of a cross section of the discharge electrodes 3212 and 3212 of the 3 200 and the counter electrode 3213' (shown in FIG. 32A). Plan view 36 〇〇 shows an individual SWNT that reduces random alignment by limiting the number of individual SWNTs in the nanotube channel elements 3215 that are in contact with signal electrodes 3614 and 3614 (corresponding to signal electrodes 3214 and 3214', respectively). The method of length change. Insulator 369 corresponds to insulator 3219 in Figure 32D. The counter electrode 3613 corresponds to the counter electrode 3213 shown in cross section in Fig. 32A. The preferred method of fabricating the plan view 3600 is similar to the preferred method of fabricating the structure 2545 described further above with respect to FIG. A preferred method exposes the ends of the selected randomly aligned individual SWNTs for contact with signal electrodes 3614 and 3614', thereby reducing length variations, which may result in the flexibility described above and in Tables 2, 3, and 3, respectively. The corresponding change of the force Felas, the electrostatic force FELEC and the atomic level force fu. Reducing the change in force caused by dimensional changes can result in better control of, for example, the switching operating characteristics of the operating voltage v. The plan view 3600 shown in FIG. 36 shows the exposed ends of the individual SWNTs 3655-2, 2655-4, 3655-5, and 3655-6, which are in electrical and physical contact with the signal electrodes 3614 and 3614', and are shown in FIG. The switching characteristics of the second non-volatile nanotube switch 3200 contribute. E.g
3655-1、3655-3、3655-7 與 3655-8 之額外的個別 SWNT 具有兩端或至少一端,其與銷接絕緣體3627與3627,接 觸,且並未對例如第二非揮發性奈米管開關32〇〇|之操作 111 201106408 電壓v之切換特徵有貢獻。 处=似所顯示之揮發性奈米管開關3300之電氣性 月匕,亦可猎由使用上述關於圖 ” 油枯*所更進—步說明的類似The additional individual SWNTs of 3655-1, 3655-3, 3655-7, and 3655-8 have two ends or at least one end that are in contact with pinned insulators 3627 and 3627 and are not, for example, second non-volatile nano Operation of the tube switch 32〇〇| 201106408 The switching characteristic of the voltage v contributes. = the electrical conductivity of the volatile nanotube switch 3300 as shown, can also be hunted by the use of the above-mentioned diagram "oil dry*"
之數目、戈隊之不米官通道元件3315中之個別SWNTThe number of individual SWNTs in the 3330
Sit 配向之個別SWNT長度變化。相對 ^广圖36所說明的較佳方法可能用以在 Γ=Γ生奈米管開關3300時,提高例如操作電壓 之切換舰。這魏佳枝可能被躺至具有省 顯示)之放電電極3612與3612,之結構3_。 圖37顯示在奈米管通道元件加之上且平行於因絕 ,,彖體3219而絕緣之第二非揮發性奈米管開關3細之放電 電極3212和3212,與對向電極3213,(如圖32β所顯示)所 作之橫剖面之平面視圖删。平面視圖3顯示一種使 用本質上平行之個別SWNT以消除與信號電極3714與 3714’(分別對應至信號電極3214與3214,)接觸之奈米管通 道元件3215中的個別SWNT之長度變化的方法。信號電 極3714與3714,係電連接以形成一個信號電極374〇。絕緣 體3719係對應至圖32D中之絕緣體3219’且亦類似於圖 36中之絕緣體3619。對向電極3713,係對應至圖32B中以 橫剖面顯示之對向電極3213,,且亦類似於圖36中之對向 電極3613'。 製造平面視圖3700之較佳方法,係類似於上述關於 圖27所更進一步說明的製造結構2735之較佳方法。較佳 112 201106408 方法露出所選擇的本質上平行之個別SWNT之末端以供 與信號電極3714與3714’接觸,藉以控制對上述所更進一 步說明且分別在表卜2與3中之彈性力、靜電力 FELEC與原子層級力FLi提供貢獻之個別SWNTi數目。 降低力量變化會導致例如操作電壓V之開關操作特. 較佳控制。 之 圖37所顯示之平面視圖37〇〇顯示個別 3755-2、3755_3與3755-4之露出端,其與信號電極二 與呈電氣與物理接觸,並對圖32B所顯示之 揮發性奈米管開關3200,之切換特徵有貢獻。 乐—非 圖33A所顯示之揮發性奈米管開關33〇〇之+> 能,亦可藉由使用選擇與信號電極3314盥 二軋性Individual SWNT length changes for Sit alignment. The preferred method illustrated with respect to Figure 36 may be used to increase the switching vessel, e.g., operating voltage, when Γ = twin nanotube switch 3300. This Wei Jiazhi may be lying down to the discharge electrodes 3612 and 3612 with the provincial display), the structure 3_. Figure 37 shows the discharge electrodes 3212 and 3212 of the second non-volatile nanotube switch 3 insulated from the nanotube channel element and parallel to the insulator 2019, and the counter electrode 3213, Figure 32 is a plan view of the cross section taken. Plan view 3 shows a method of using individual SWNTs that are substantially parallel to eliminate variations in the length of individual SWNTs in the nanotube interface elements 3215 that are in contact with signal electrodes 3714 and 3714' (corresponding to signal electrodes 3214 and 3214, respectively). Signal electrodes 3714 and 3714 are electrically coupled to form a signal electrode 374A. Insulator 3719 corresponds to insulator 3219' in Figure 32D and is also similar to insulator 3619 in Figure 36. The counter electrode 3713 corresponds to the counter electrode 3213 shown in cross section in Fig. 32B, and is also similar to the counter electrode 3613' in Fig. 36. The preferred method of fabricating the plan view 3700 is similar to the preferred method of fabricating the structure 2735 as further described above with respect to FIG. Preferably, the method of 201106408 exposes the ends of the selected substantially parallel individual SWNTs for contact with the signal electrodes 3714 and 3714', thereby controlling the elastic forces, static electricity, which are further described above and in Tables 2 and 3, respectively. The force FELEC and the atomic level force FLi provide the number of individual SWNTi contributions. Reducing the change in force can result in, for example, switching operation of the operating voltage V. Better control. The plan view 37 shown in Figure 37 shows the exposed ends of the individual 3755-2, 3755_3 and 3755-4, which are in electrical and physical contact with the signal electrode two, and the volatile nanotubes shown in Figure 32B. Switch 3200 has a switching feature that contributes.乐—Neither the volatile nanotube switch 33〇〇 shown in Figure 33A can be used, or by using the selection and signal electrode 3314
f^e^,iSWNT 法,可能用以在施加至具有省略(未顯示)之放 高,藉以控制對揮發性奈米管開關33〇〇之電氣特=提 貢獻之個別SWNT之數目。相對於圖36所說明的$提供 法,可能用以在施加5豆古少X &隹方 電電核The f^e^, iSWNT method may be used to apply to an elevation with an omission (not shown) to control the number of individual SWNTs contributing to the electrical characteristics of the volatile nanotube switch 33. Compared with the $provide method illustrated in Figure 36, it may be used to apply 5 Beans to the X &
壓V 3712、3712,與3740之結構3700時,提高例如操 之切換特徵。 % 經由-層之非導電奈米粒子創造在非揮發性次、, 開關内之狹小切換間隙之裝置設計方法 τ'米督 圖38A與38B顯示對應於圖22A所顯示之 奈米管開關2200之非揮發性開關38〇〇之簡化产立|聲性 並顯示提供在奈米管元件3855之下的狹㈣圖, '、之結 113 201106408 構。 ,38A說明處於’,0FF”狀態之非揮發性開關3_,其 一有處於非延長狀態之奈米管元件3855。包含直徑d 、 =別SWNT之奈米管讀3855可被塗佈有數個非導電 i不米好3842,錢被放置於橫㈣包含控制電極384〇 之基板το件388G。或者’舉例而言,可將非導電奈米粒子 分散於基板上。吾人應理_可使用任何半導體或絕緣層 來代替基板。圖38A-B之開關或任何於此所說明的開關之 半導體或絕緣層,甚至可實質上垂直地位於譬如3D結構 中。在基板或任何絕緣係實質上垂直的狀況下,開關之結 構可因此而實現。信號電極3860與3860'以及絕緣體3870 與3870'係用以將奈米管元件3855固定在基板388〇與控 制電極3840上方之一定位置。由支持部3890所包圍之具 有絕緣體3850之放電電極3845,係實質上顯示成與控制 電極3840相向。 非導電性奈米粒子3 842可提供在奈米管元件3 8 5 5與 控制電極3840之間的隔離止擋,並可更進一步提供橫越 過控制電極3840之狹小切換間隙3842a,而奈米管元件 3855之一部分係懸浮在控制電極3840上面。切換間隙 3842a係在具有深度"z"之非導電性奈米粒子3842之間被 實現,而深度"z”實質上等於非導電性奈米粒子3842之直 徑’且大幅地少於利用以前已知的方法被實現之對應的切 換間隙深度。這種縮小的切換間隙大幅地減少延長奈米管 元件3855進入對抗控制電極3840之位置所需要的切換電 114 201106408 壓。 圖38B說明處於”⑽”狀態之非揮發性開關38〇〇,其 ^有處於延長狀態之奈来管元件3855,。此縮小的切換間 =大幅地減少存在於奈米管元件3855,中之彈性應變力 =)’同時與存在於具有與以前已知的方法相關的縣浮 ,度之結構中之彈性力比較而言,其係被保持於一種ς長 癌内。對放電電極3840與電極删和386〇,適當的^ ,,可使開關3800回復到OFF狀態並使奈米管元件 回復到非延長狀態。 石非導電性奈米粒子3842可從包含但並未受限於二氧 、氧化IS、氧錄、氮切與氮化蚊數種材料被實 非導紐奈練子遍可經由數個方法㈣黏接至 不未管元件3855,這些方法包含但並未受限於: ()在不米管浴液之形成期間(如上所述,譬如在Sen 人之美國專利公職us厕Q224126巾,其係於此被 作,參考)或在於此所提出之裝置之製造期間,產生 心耗=至奈米官元件之表面之預先官能化之奈米粒子。 Ab (2)示米g元件表面之聚合物纏繞,用以產生一預先官 供、^的表面’其接著連接至具有互補官能基之奈米粒子。 耳這種方去用之典型聚合物包含但並未受限於雙團塊共 摘,例如離子聚合物、多肽與DNA。 ,P)奈米管元件表面之氟化作用,用以在此表面上建構 既化帶,其接著作為化學光罩以供奈綠子連結在此表面 201106408 上。11種化學光罩可以依據奈米粒子上之官能基而作為正 光罩或負光罩。 (4)在製造期間使奈米粒子沈積在電極上,其允許奈米 管在後來製程期間之官能化。 μ 圖39顯示例示製程,其中預先官能化的非導電性奈 米粒子可被產生並耦接至SWNT。與非導電性奈米粒子耦 接之這些SWNT可接著被組合成奈料元件,例如描繪 於圖38Α與38Β中。 在圖39所描綠之例示製程内,縮水甘油丽係在添 加物製程中與3_氨基丙基三甲基矽氧烷 (3-aminopropyltriethoxysilane) 3902(在工業中通常稱為 APTS)結合,用以產生分子結構39〇3。分子結構39〇3遭 遇種I性减結製程以產生胺基封端的(amine terminated) 二氧化矽奈米粒子3904’其在水溶液内變成被充以正電, 並輕易允許黏著至被充以負電的導電奈米管39〇5。奈米管 3905上之區域可以藉由選擇性地塗佈奈米管而界定,於此 奈米粒子3904並未黏著在奈米管3905上。類似於圖38A 所顯示之3842a之間隙因此可被實現。關於奈米管之額外 官能化機構係於Segal等人之美國專利申請公開號 2005/0053525以及Segal等人之美國專利申請公開號 2008/0164541中提出,兩者係於此併入作參考。奈米粒子 3904或者可由於凡得瓦爾力而被吸引至奈米管元件39〇5。 用以將奈米粒子結構黏著至奈米管之這些與其他方 法之細節係熟習本項技藝者所熟知的。又,用以將奈来粒 116 201106408 子黏著至奈米管之表面之特 相關。如此,太黎日日丁成 < 友五木與本發明有明確 ^月不應艾限於將數個奈米粒子黏荖 未官結構所選擇之特 TJL于黏者至奈 然前述說明用以官处 ^ 、王σ人亦應注意到,雖 之非導電性奈米粒子至導電夺米管 之上的方法,但本揭靈内玄 予电不木& , 内之方法並未文限在這一點。戋 者’舉例而言,奈米粒 、·”占$ 圖40顯干田、 刀月文在基板上或勘接至基板。 回4〇顯不用以將一均勻層之 4〇〇2施加在基板元 〇4 千土佈奈未官 侧。如本揭露内容之弈/列不的旋轉塗佈製程 4004可勺之先刖段洛所詳細說明的,基板元件 管元二’其可能被侧掉’以形成譬如奈米 B兀仵3855,如圖38A所示。 等布奈米管侧首先分散於高品質半導體 :、.及尺細夜侧’如說日錄Sen #人之美國專利申請公開 號2008/022·中。此種溶液接著被旋轉塗佈—種孰習 本項技藝者所熟知之程序,其t—種物質(於此情況下為 奈米粒子㈣奈米管養)係沈積於基板上面之—薄且均 勻的層一至基板元件4004之上,以實現一均勻單層網之奈 米粒子塗佈之奈米管。 $ 於非揮發性奈米管開關上使用導電奈米粒子之 Lennard-Jones原子層級力之控制 圖41A、41B與41C顯示對應於圖22A所顯示之非揮 發性奈米管開關2200之非揮發性開關41〇〇之簡化橫剖面 圖,並顯示提供奈米管元件4155與控制電極4140之間的 117 201106408 有效縮小的物理接觸面積之結構。 圖41A說明處於"OFF”狀態之非揮發性開關41〇〇,其 具有處於非延長狀態之奈米管元件4155。於圖41A中, 由例如但並未受限於銅、鋁、鈷與鎳之元件所製成之數個 導電奈米粒子4142 ,係稀疏地分散並黏接至基板418〇。 包含直徑dCNT之個別SWNT之奈米管元件4155,係被置 =於横越過塗佈基板元件4180,其包含控制電極414〇。 信,電極4160與4160,與絕緣體4170與4170,係用以將奈 米官元件4155固定在控制電極4140上面之一定位置。或 者,導電奈米粒子可被黏接至奈米管元件4155。具有由材 料4190所包圍之絕緣體415〇之放電電極4145係實質上 顯示成與控制電極4140相對。 ' 圖41B說明處於,,0N”狀態之非揮發性開關41〇〇,其 具有處於延長狀態之奈米管元件4155,。在”〇N,,狀態期 間,奈米管元件4155,只與導電奈米粒子4142之表面作物 理接觸,而沒有與控制電極414〇作直接物理接觸。導電 不米粒子4142 乂供在奈米管元件4155'與控制電極4140 之間的足夠的電氣導電性,同時大幅使物理介面區域 最小化。這種縮小的物理介面區域4175可被使用,以大 幅減少存在於延長的奈米管元件4丨5 5,與控制電極4丨4 〇之 間的Lennard-Jones原子層級力(fu)。對放電電極414〇之 適當刺激,可使開關4100回到〇FF狀態並使奈米管元件 4155回到非延長狀態。 將導電奈米粒子4142黏著至接觸電極4140之表面之 】18 201106408 一項優點,係為用以將奈米管元 之電場,將因為接觸電極414〇 4155切換成延長狀態 增加。利用「刻有紋理」之電 、「刻有紋理」之形態而 技藝者所熟知的,尤其在電可抹k加电場係為熟習本項 (EEPR〇M)之發展之内。車除可裎式化唯讀記憶體 米管元件4155切換成延長狀態實將奈 度之需求。 之起溥的切換間隙深 吾人應注意到,雖然圖41a 說明成黏著至餘4180與控制將導電奈米粒子 受限於這-點。的確,本發日^^侧,但本發明並未 散並將數個導電奈米粒子4142===分 被實現。 苷玍不木g兀件而同樣 圖=齡非揮發性咖侧,其具有奈米管 %極彻與侧,、第—控制電極遍與第= 制電極4146,於此導電奈米粒子係黏接在基板侧^ :控制電極4140上,而且位在第二控制電極4145與支持 邛4190之下。至少施加在第一或第二控制電極之其中丄 個上之適當刺激,可延長奈米管元件4155,朝向第一控制 電極或第一控制電極,如圖41C所示。圖41C之開關係 為三態開關元件’其具有對應於奈米管元件4155,之不同 的延長狀態之單一”0FF,,狀態與兩個”〇N,,狀態。 用以經由非導電奈米管來創造在非揮發性奈米管開 關内之狹小切換間隙之裴置設計方法 119 201106408 圖42A與42B顯示對應於圖22A所顯示之非 奈米管開關2200之非揮發性開關42〇〇之簡化橫剖:性 並顯示提供在奈米管元# 4255之下的狹小切換 圖会’ 構。 ’ 乂結 固 机*終;5^、 4200,其具有處於非延長狀態之Ϊ米管元闕 42Α # ’非導f性奈米管4242之—單層網係被置放於, 越過基板7G件4280,其包含控制電極424G。在非導電= 奈米管4242之單層網内之孔洞或空間4242a提供在控制 電極424G之上的切換間隙,而奈米f元件奶5之一部分 係懸浮在控制電極伽上面。信號電極侧與4肩與 =體4270與彻,,係用以將奈米管元件4255固定在 ^極4240之上的—定位置。在本揭露内容之此種樣 ί二Γΐ間隙深度”z,,實質上等於單層網4242内的非 ’並大幅小於利用以前已知的方法而 貫現之對應的切換間隙深度。 呈有月處於,ΌΝ”狀態之非揮發性開關4200,其 4242a 大巾田減少延長奈米管元件425 4240之位置中所需要的切換電壓,並更進一= 在於奈米管元件4255,中 y ^ 已知的方糾目__長4=,^_)^與以前 係被保持於延_'^纽元件㈣, 種熟習本項技蟄者所熟知的程序(其中物質係沈積 120 201106408 於基板上面之薄且均勻的層)之旋轉塗佈 合建立非導電性奈米管4242之單層網。 4242之單層網舰描繪成對準的奈米f。熟 定層4242可以是具有隨機空間或間隙之任何隨:非 導電織物。因此,-個以上的間隙可能存在於控極 4土240與放電電極4245之間,且奈米管元件可能延長至緊 罪控制電極之多重位置中。 系 ,42C係為更進—步顯示第—非揮發性開關4細之 分解簡化透視圖。如上所述’非導電性奈米管4冰之抑 層網係沈積於基板元件侧上。在料電性奈米管42= 之單層網内之孔洞或空間4242a提供在控制電極424〇之 上的切換間隙,而奈米管元件他係位於控制電極伽 上面。為了圖例清楚之目的,放電電極4245與絕緣體425〇 未顯示於圖42C中。 、圖42D與42E係為第一非揮發性開關42〇〇之簡化透 視圖式,其分別說明處於OFF狀態之開關(其中奈米管元 I牛:产於非延長狀態)與0N狀態(其中奈米管元件 、係^於延長狀態)。如於圖42C中,為圖例清楚之目 的,放電電極4245與絕緣體4250並未顯示於圖42D與 咏數個绝緣奈米管結構可被使用以建構非導電性奈米 Ϊ:多2層二其包含但並未受限於氮化爛奈米「 ”’、<示米官、氟化的單壁碳奈米管以及其他氧化層 ”氮化層奈米管。又’導電奈米管之網可藉由數個方法而 121 201106408 ίί絕緣’這些方法包含但縣受限於受控制曝光至反應 性=子飯刻化學、氣體曝光以及濕式化學變形例。吾人應 f思到’用以使得導電奈米管絕緣之這些麵之絕緣奈米 官結構與方法為熟f本項技藝者所熟知的,且本揭露内容 不應受限制於此。的確’在本揭露内容之此種樣態内所使 用之特定型式之絕緣奈米管結構並非本揭露内容特有 的。如此,本揭露内容不應受限於特定非導電性奈米管結 構之選擇。 用以經由非導電奈米粒子來創造在非揮發性奈米管 開關内之狹小切換間隙之裝置設計方法,以及使用導電奈 米粒子之Lennard-Jones原子層級力之控制 圖43A與43B顯示對應於圖22A所顯示之非揮發性 奈米管開關2200之非揮發性開關43〇〇之簡化横剖面^, 並顯示提供在奈米管元件4355之下的狹小切換間隙且有 效縮小在奈米管元件43 5 5與控制電極43 40之間的物理接 觸面積之結構。 圖43A說明處於”0FF ”狀態之非揮發性開關43〇〇,其 具有處於非延長狀態之奈米管元件4355。包含直徑dcNT 之個別SWNT之奈米管元件4355,係塗佈有數個非導 性奈米粒子4342並位於橫越過基板元件438〇,其包含控 制電極4340。信號電極4360與436〇,以及絕緣體437〇與 437〇'’係用以將奈米管元件4355固定在基板4380與控制 電極4340上面之一定位置。導電奈米粒子4343係被分散 122 201106408 橫越過基板與控制電極,並可具有小於非導電奈米粒子之 直徑。具有絕緣體4350之放電電極4345係實質上顯示成 與控制電極4340相對。 非導電性奈米粒子4342提供在奈米管元件4355與控 制電極4340之__止擋,並可提供橫越過控制電^ 4340之狹小切換間隙(譬如間隙4342a),而奈米管元件 4355係位於控制電極4340上面。切換間隙4342a係在非When the voltages of V 3712, 3712 and 3740 are 3700, the switching characteristics of the operation are improved. % The device design method for creating a narrow switching gap in the non-volatile sub-switch via the non-conductive nanoparticle of the layer τ'MiTer diagrams 38A and 38B are shown corresponding to the nanotube switch 2200 shown in Fig. 22A. Simplified production of non-volatile switch 38 | | Acoustic and shown to provide a narrow (four) diagram under the nanotube element 3855, ', knot 113 201106408 structure. , 38A indicates the non-volatile switch 3_ in the ', 0FF' state, one of which has a non-extended state of the nanotube element 3855. The tube tube 3855 containing the diameter d, = other SWNT can be coated with several non- The conductivity i is not as good as 3842, and the money is placed in the horizontal (four) substrate τ 388G containing the control electrode 384 。. Or 'for example, the non-conductive nano particles can be dispersed on the substrate. We should use any semiconductor Or an insulating layer in place of the substrate. The semiconductor or insulating layer of the switch of Figures 38A-B or any of the switches described herein may even be substantially vertically positioned in a 3D structure. The substrate or any insulating system is substantially vertical. The structure of the switch can be realized. The signal electrodes 3860 and 3860' and the insulators 3870 and 3870' are used to fix the nanotube element 3855 at a certain position above the substrate 388 〇 and the control electrode 3840. The discharge electrode 3845 surrounded by the insulator 3850 is substantially shown to face the control electrode 3840. The non-conductive nanoparticle 3 842 can be provided on the nanotube element 3 8 5 5 and the control electrode 3840. An isolated stop, and may further provide a narrow switching gap 3842a across the control electrode 3840, and a portion of the nanotube element 3855 is suspended above the control electrode 3840. The switching gap 3842a is at a depth "z" The non-conductive nanoparticles 3842 are implemented, and the depth "z" is substantially equal to the diameter of the non-conductive nanoparticles 3842' and is substantially less than the corresponding switching gap depth achieved by previously known methods. . This reduced switching gap substantially reduces the switching power required to extend the position of the nanotube element 3855 into the position against the control electrode 3840. Fig. 38B illustrates the non-volatile switch 38A in the "(10)" state, which has the inner tube element 3855 in an extended state. This reduced switching interval = substantially reduces the elastic strain force present in the nanotube element 3855, which is compared to the elastic force present in a structure having a county float associated with a previously known method. In other words, the system is kept in a long-lasting cancer. For the discharge electrode 3840 and the electrode 386, the appropriate switch can return the switch 3800 to the OFF state and return the nanotube element to the non-extended state. Stone non-conductive nanoparticle 3842 can be obtained from several materials including but not limited to dioxane, oxidized IS, oxygen recording, nitrogen cutting and nitriding mosquito. Bonding to the unsupported component 3855, these methods include, but are not limited to: () during the formation of the non-tubular bath (as described above, such as the US patent for the Sen, the toilet Q224126, the system) Here, reference is made, or during the manufacture of the device proposed herein, a pre-functionalized nanoparticle having a heart consumption = surface to the nano-component is produced. Ab (2) shows the polymer entanglement on the surface of the meter element to produce a pre-existing surface which is then attached to the nanoparticles having complementary functional groups. Typical polymers used in the ear include, but are not limited to, double agglomerates, such as ionic polymers, polypeptides, and DNA. , P) The fluorination of the surface of the nanotube element to construct a sinter zone on the surface, which is attached to a chemical reticle for the cytoplasm to be attached to the surface 201106408. Eleven chemical masks can be used as positive or negative masks depending on the functional groups on the nanoparticles. (4) Nanoparticles are deposited on the electrode during manufacture, which allows the nanotube to be functionalized during subsequent processing. μ Figure 39 shows an exemplary process in which pre-functionalized non-conductive nanoparticles can be produced and coupled to the SWNT. These SWNTs coupled to the non-conductive nanoparticles can then be combined into a web element, such as depicted in Figures 38A and 38B. In the exemplary green process depicted in Figure 39, glycidol is combined with 3-aminopropyltriethoxysilane 3902 (commonly known in the industry as APTS) in the additive process. To produce a molecular structure 39〇3. The molecular structure 39〇3 undergoes a species-reduction process to produce amine terminated cerium oxide nanoparticles 3904' which becomes positively charged in the aqueous solution and easily allows adhesion to be negatively charged. Conductive nanotubes 39〇5. The area on the nanotube 3905 can be defined by selective application of a nanotube, where the nanoparticle 3904 is not adhered to the nanotube 3905. A gap similar to the 3842a shown in Figure 38A can thus be implemented. An additional functionalization mechanism for the nanotubes is set forth in U.S. Patent Application Publication No. 2005/00535, the entire disclosure of which is incorporated herein by reference. The nanoparticle 3904 may be attracted to the nanotube element 39〇5 due to the van der Waals force. These and other methods for adhering the nanoparticle structure to the nanotubes are well known to those skilled in the art. In addition, it is used to adhere the Neil granule 116 201106408 to the surface of the nanotube. So, Dali Day Ding Cheng < You Wumu and the invention have a clear ^ month should not be limited to the number of nano particles bonded to the unofficial structure selected by the special TJL in the sticky to the narrative At the end of the ^, Wang Xing people should also note that although the method of non-conductive nano particles to the conductive rice tube, but the method of Xuan Ling is not wood and /, the method is not limited to at this point. The latter 'for example, nanoparticle, · 占 占 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Yuanxiao 4 thousand soil Bu Nai is not official side. As the disclosure of the content of the game / column of the spin coating process 4004 can be scooped by the first section of the Luo Luo, the substrate component tube element 'which may be side off' Forming, for example, nano B兀仵3855, as shown in Fig. 38A. The side of the Bunet tube is first dispersed in the high-quality semiconductor: , and the fine-night side of the ruler, as described in the US Patent Application Publication No. 2008 /022·. This solution is then spin-coated—a procedure well known to those skilled in the art, in which t-substance (in this case, nanoparticle (tetra) nanotubes) is deposited on a substrate. Above - a thin and uniform layer over the substrate element 4004 to achieve a uniform single layer mesh of nanoparticle coated nanotubes. Lennard using conductive nanoparticles on non-volatile nanotube switches -Jones Atomic Level Force Control Figures 41A, 41B and 41C show non-volatile values corresponding to those shown in Figure 22A A simplified cross-sectional view of the non-volatile switch 41 of the nanotube switch 2200, and showing the structure of the effective reduced physical contact area between 117 201106408 between the nanotube element 4155 and the control electrode 4140. Figure 41A illustrates the " The non-volatile switch 41A of the OFF state has a nanotube element 4155 in a non-extended state. In Fig. 41A, a plurality of conductive nanoparticles 4142 made of, for example, but not limited to, elements of copper, aluminum, cobalt and nickel are sparsely dispersed and bonded to the substrate 418. A nanotube element 4155 comprising individual SWNTs of diameter dCNT is placed across the coated substrate element 4180, which contains the control electrode 414A. The electrodes 4160 and 4160, and the insulators 4170 and 4170, are used to secure the semiconductor element 4155 to a position above the control electrode 4140. Alternatively, the conductive nanoparticles can be bonded to the nanotube element 4155. The discharge electrode 4145 having the insulator 415A surrounded by the material 4190 is substantially opposite to the control electrode 4140. Figure 41B illustrates a non-volatile switch 41A in the 0N state with a nanotube element 4155 in an extended state. During the "〇N," state, the nanotube element 4155 is only electrically conductive. The surface of the nanoparticle 4142 is in physical contact without direct physical contact with the control electrode 414. Conductive non-rice particles 4142 provide sufficient electrical conductivity between the nanotube element 4155' and the control electrode 4140 while substantially minimizing the physical interface area. This reduced physical interface area 4175 can be used to substantially reduce the Lennard-Jones atomic level force (fu) present between the elongated nanotube element 4丨5 5 and the control electrode 4丨4 。. Proper stimulation of the discharge electrode 414 can cause the switch 4100 to return to the 〇FF state and return the nanotube element 4155 to the non-extended state. Adhesive nanoparticle 4142 is adhered to the surface of contact electrode 4140. 18 201106408 An advantage is that the electric field used to switch the nanotubes will increase due to switching contact electrodes 414 〇 4155 to an extended state. The use of "textured" electric and "textured" forms is well known to those skilled in the art, especially in the development of the EEPR(M). In addition to the car can be read-only memory, the meter tube element 4155 is switched to an extended state. The sigma of the switching gap is deep. We should note that although Figure 41a illustrates the adhesion to the remaining 4180 and the control will limit the conductive nanoparticle to this point. Indeed, the present day is on the side, but the present invention does not scatter and several conductive nanoparticles 4142 === minutes are achieved. Glycosides are not woody and the same figure = age non-volatile coffee side, which has a very narrow and side of the nanotube, the first - control electrode and the fourth electrode 4146, where the conductive nanoparticle is sticky It is connected to the substrate side ^: control electrode 4140, and is located below the second control electrode 4145 and the support 邛 4190. At least a suitable stimulus applied to one of the first or second control electrodes extends the nanotube element 4155 toward the first control electrode or the first control electrode, as shown in Figure 41C. The open relationship of Fig. 41C is a three-state switching element 'having a single "OFF" corresponding to the different extended state of the nanotube element 4155, the state and two "〇N," states. Layout design method for creating a narrow switching gap in a non-volatile nanotube switch via a non-conductive nanotube. 119 201106408 FIGS. 42A and 42B show a non-nanotube switch 2200 corresponding to that shown in FIG. 22A. A simplified cross-section of the volatile switch 42〇〇: Sexuality and display provides a narrow switching diagram below the nanotubes #4255. ' 乂 乂 * * ; ; ; ; ; ; ; ; ; ; 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 ' Piece 4280, which includes control electrode 424G. A hole or space 4242a in the single layer mesh of the non-conducting = nanotube 4242 provides a switching gap above the control electrode 424G, while a portion of the nanof component milk 5 is suspended above the control electrode. The signal electrode side and the 4 shoulders and the = body 4270 are used to fix the nanotube element 4255 at a fixed position above the ^4240. The gap depth "z" in the present disclosure is substantially equal to the non-' in the single layer network 4242 and is substantially smaller than the corresponding switching gap depth that is achieved using previously known methods. The non-volatile switch 4200 in the "ΌΝ" state, the 4242a large towel field reduces the switching voltage required to extend the position of the nanotube element 425 4240, and further increases in one = in the nanotube element 4255, where y ^ is known The party correction __长4=, ^_)^ and the previous system are kept in the extension _'^ button element (4), a familiar procedure familiar to the person skilled in the art (where the material deposition 120 201106408 on the substrate The spin coating of the thin and uniform layer) establishes a single layer web of non-conductive nanotubes 4242. The single-layer network ship of 4242 is depicted as an aligned nanometer f. The maturing layer 4242 can be any non-conductive fabric with random spaces or gaps. Therefore, more than one gap may exist between the gate 4 soil 240 and the discharge electrode 4245, and the nanotube element may be extended to multiple positions of the tight control electrode. System, 42C is a simplified perspective view of the decomposition of the non-volatile switch 4. The non-conductive nanotube 4 ice suppression layer is deposited on the substrate element side as described above. A hole or space 4242a in the single layer mesh of the electrical tube 42 = provides a switching gap above the control electrode 424, while the nanotube element is located above the control electrode. For the purposes of clarity of illustration, discharge electrode 4245 and insulator 425 are not shown in Figure 42C. 42D and 42E are simplified perspective views of the first non-volatile switch 42A, respectively illustrating the switch in the OFF state (where the nanotubes are in a non-extended state) and the 0N state (wherein The nanotube element is in an extended state). As shown in Fig. 42C, for the purpose of illustration, discharge electrode 4245 and insulator 4250 are not shown in Fig. 42D and a plurality of insulated nanotube structures can be used to construct non-conductive nano-bismuth: two layers two It includes, but is not limited to, nitrided rotten "", ', metre, fluorinated single-walled carbon nanotubes and other oxide layers" nitrided nanotubes. The network can be insulated by several methods. These methods include but the county is limited by controlled exposure to reactivity = sub-meat chemistry, gas exposure, and wet chemical deformation. We should think of 'use The structure and method of insulating the nano-structures of the faces in which the conductive nanotubes are insulated are well known to those skilled in the art, and the disclosure should not be limited thereto. Indeed, the contents of the disclosure are The specific type of insulated nanotube structure used in the state is not specific to the disclosure. Thus, the disclosure should not be limited to the selection of a particular non-conductive nanotube structure. Created in a non-volatile nanotube switch Device design method for narrow switching gaps, and control of Lennard-Jones atomic level force using conductive nano particles. Figures 43A and 43B show non-volatile switches 43 corresponding to the non-volatile nanotube switch 2200 shown in Fig. 22A. The simplified cross-section of the crucible is shown and shows a structure that provides a narrow switching gap under the nanotube element 4355 and effectively reduces the physical contact area between the nanotube element 43 5 5 and the control electrode 43 40. Figure 43A A non-volatile switch 43A in a "0FF" state is illustrated, which has a nanotube element 4355 in a non-extended state. A nanotube element 4355 comprising individual SWNTs of diameter dcNT is coated with a plurality of non-conductive nai The rice particles 4342 are located across the substrate member 438, which includes the control electrode 4340. The signal electrodes 4360 and 436A, and the insulators 437A and 437A' are used to secure the nanotube element 4355 to the substrate 4380 and the control electrode. A certain position above the 4340. Conductive nanoparticle 4343 is dispersed 122 201106408 across the substrate and the control electrode, and may have a smaller diameter than the non-conductive nanoparticle. The discharge electrode 4345 of the edge 4350 is substantially opposite to the control electrode 4340. The non-conductive nanoparticle 4342 provides a _stop at the nanotube element 4355 and the control electrode 4340, and can provide a traverse control A narrow switching gap of 4340 (such as gap 4342a), and a nanotube element 4355 is located above the control electrode 4340. The switching gap 4342a is non-
4342具有實質上等於非導電性奈米粒子伽之直徑減去 導電奈米粒子4343之直徑,且大幅小於彻以前已知的 方法而實狀對應的切換_深度之深度"z"。這種縮小 的切換間隙大幅減少延長奈米f元件你至緊靠控制電 極4340之位置中所需要的切換電壓。 圖43B „兒曰月處於"〇N”狀態之非揮發性開關*綱4342 has a diameter substantially equal to the diameter of the non-conductive nanoparticle gamma minus the diameter of the conductive nanoparticle 4343, and is substantially smaller than the depth of the switching _depth corresponding to the previously known method. This reduced switching gap substantially reduces the switching voltage required to extend the nanof component to the position immediately adjacent to the control electrode 4340. Figure 43B „Non-volatile switch* in the state of 曰N曰
4300回到0FF狀態並使奈米管元件 在對應至控制電極上面之不同_之控制電極上面之^ 重位置中,具有處於延長狀態之奈米管元件仙。縮小的 切換間隙更進-步大幅減少存在於奈米管元件4355|中之 5早性應變力,而與料已知的方法相_鐘長度比較而 .付於延長狀態之内。對放電 4360'之適當刺激,可使開關 $管元件4355回到非延長狀 非導電性奈米粒子4342 化矽、氧化鋁、氧化鈦、氣# 可由包含但並未受限於二氧 氮化妙與氮化層鋁之複數個材料 123 201106408 而實現。 用以經由非導電奈米管來創造在非揮發性奈米管開 關内之狹小切換間隙之裝置設計方法,以及使用導電奈米 粒子Lennard-Jones原子層級力之控制 圖44A與44B顯示對應於圖22A所顯示之非揮發性 奈米管開關2200之非揮發性開關44〇〇之簡化橫剖面圖, 並顯示提供在奈米官元件4455之下的狹小切換間隙之結 構。 圖44A說明處於”0FF"狀態之第—非揮發性開關 4400,其具有處於非延長狀態之奈米管元件4455。於圖 44A中’非導電性奈米管4442之單層網係被置放橫越過 基板元件4480 ’其包含控制電極444〇。在非導電性夺来 管4442之單層網内之孔洞或空間44仏,可提供在控制電 =4440之上的切換間隙,而奈料元件4455係位於控制 電極4440上面。在由非導電奈米管之網所界定之間隙中, ,電奈米粒子4443係被分散在基板上面電極· 與4460以及絕緣體4470與447〇,係用以將太 一 4455固定在控制電極444〇之上的一定位置。二^ e =件 谷之此種樣態之内,切換間隙深度"z”實 ,路内 444^的非導電性奈米管之直徑減去導電奈米:子單= 之直住’並大幅小於·以前已知的方法而 切換間隙深度。 之對應的 圖桃說明處於"0N”狀態之非揮發性開關侧,其 124 201106408 具有處於延長狀態之奈米管元件4455'。縮小的切換間隙 4442a大幅減少延長奈米管元件4455至緊靠控制電極 4440之位置中所需要的切換電壓,並更進一步大幅減少存 在於奈米管元件4455’中之彈性應變力(FELAS),而與以前 已知的方法相關的類似長度比較而言,奈米管元件4455’ 係被保持於延長狀態之内。 一種熟習本項技藝者所熟知的程序(其中物質係沈積 於基板上面之薄且均勻的層)之旋轉塗佈製程,係相當適 合建立非導電性奈米管4442之單層網。非導電性奈米管 4442之單層網係被描繪成對準的奈米管。熟習本項技藝者 應認定層4442可以是具有隨機空間或間隙之任何隨機非 導電織物。因此,一個以上的間隙可能存在於控制電極 4440與放電電極4445之間,且奈米管元件可能延長至緊 靠控制電極之多重位置中。 下述的申請案係讓渡給本發明之受讓人,且於此列入 作參考: 美國專利申請案號09/915,093,「使用奈米管帶狀物 之機電記憶體陣列及其方法」,申請日為2001年7月25 曰,目前是美國專利號6,919,592; 美國專利申請案號10/850,100,「使用奈米管帶狀物 之機電記憶體陣列及其方法」,申請日為2004年5月20 曰; 美國專利申請案號10/852,880,「使用奈米管帶狀物 之機電記憶體陣列及其方法」,申請日為2004年5月25 125 201106408 曰; 美國專利申請案號09/915,173,「利用奈米管技術所 建構之具有單元選擇電路之機電記憶體」,申請日為2〇〇1 年7月25曰,目前是美國專利號6,643,165 ; 美國專利申請案號1〇/693,241,「由奈米管技術所建 構之裝置選擇電路」,申請為2003年10月24日; 美國專利申請案號09/915,095 ’「具有奈米管機電記 憶體之混合式電路」,申請日為2〇〇1年.7月25曰,s4300 returns to the 0FF state and causes the nanotube element to have an elongated tubular element in the extended position corresponding to the control electrode above the control electrode. The reduced switching gap further progressively reduces the 5 early strain forces present in the nanotube element 4355|, compared to the known method phase length, which is paid out of the extended state. Appropriate stimulation of discharge 4360' can cause switch $tube element 4355 to return to non-extended non-conductive nanoparticle 4342. 矽, alumina, titania, gas# can be included but not limited by diazotization It is realized by a plurality of materials of aluminum nitride layer 123 201106408. Device design method for creating a narrow switching gap in a non-volatile nanotube switch via a non-conductive nanotube, and control using a conductive nanoparticle Lennard-Jones atomic level force. Figures 44A and 44B are shown corresponding to the figure. A simplified cross-sectional view of the non-volatile switch 44A of the non-volatile nanotube switch 2200 shown at 22A, and showing the structure of the narrow switching gap provided below the nano-member 4455. Figure 44A illustrates a non-volatile switch 4400 in the "0FF" state having a nanotube element 4455 in a non-extended state. In Figure 44A, a single layer network of 'non-conductive nanotubes 4442 is placed. Crossing the substrate member 4480' includes the control electrode 444. The hole or space 44 in the single layer network of the non-conductive tube 4442 can provide a switching gap above the control voltage = 4440. 4455 is located above the control electrode 4440. In the gap defined by the mesh of the non-conductive nanotube, the electric nanoparticle 4443 is dispersed on the upper electrode of the substrate, and the 4460 and the insulators 4470 and 447 are used to Taiyi 4455 is fixed at a certain position above the control electrode 444. Within the state of the ^^e = valley, the gap depth is switched "z", the diameter of the non-conductive nanotube of the road 444^ Subtracting the conductive nanometer: sub-single = straight to live 'and significantly smaller than the previously known method to switch the gap depth. The corresponding figure shows the non-volatile switch side in the "0N" state, and its 124 201106408 has the nanotube element 4455' in the extended state. The reduced switching gap 4442a greatly reduces the lengthening of the nanotube element 4455 to the close Controlling the switching voltage required in the position of the electrode 4440, and further greatly reducing the elastic strain force (FELAS) present in the nanotube element 4455', compared to similar lengths associated with previously known methods, The rice tube element 4455' is held in an extended state. A spin coating process familiar to those skilled in the art, in which the material is deposited on a thin, uniform layer of the substrate, is quite suitable for establishing A single layer network of electrically conductive nanotubes 4442. The single layer network of non-conductive nanotubes 4442 is depicted as aligned nanotubes. Those skilled in the art will recognize that layer 4442 may have random spaces or gaps. Any random non-conductive fabric. Therefore, more than one gap may exist between the control electrode 4440 and the discharge electrode 4445, and the nanotube element may be extended to close control In the multiple positions of the electrodes, the following application is assigned to the assignee of the present application and is hereby incorporated by reference: U.S. Patent Application Serial No. 09/915,093, entitled "Electro-Mechanical Memory Using a Tube of Nanotubes "Arrays and methods", filed July 25, 2001, is currently US Patent No. 6,919,592; US Patent Application No. 10/850,100, "Electro-Mechanical Memory Arrays Using Nanotube Ribbons and Methods" The application date is May 20, 2004; US Patent Application No. 10/852,880, "Electromechanical Memory Arrays and Methods Using Nanotube Ribbons", application date is May 25, 2004, 125 125 201106408 曰; U.S. Patent Application Serial No. 09/915,173, "Electro-Mechanical Memory with Unit Selection Circuit Constructed Using Nanotube Technology", filed on July 25, 2002, is currently US Patent No. 6,643,165; U.S. Patent Application Serial No. 1/693,241, "Device Selection Circuit Constructed by Nanotube Technology," filed on October 24, 2003; U.S. Patent Application Serial No. 09/915,095, "U.S. Hybrid circuit", Please 1 day 2 billion billion years. July 25, saying, s
M s 月》J 疋美國專利號6,574,130 ; 美國專利申請案號10/379,973,「具有奈米管機電纪 憶體之混合式電路」,申請日為2003年3月5日,目前是 美國專利號6,836,424 ; 疋 美國專利申請案號10/964,150,「具有奈米管機電纪 憶體之混合式電路」,申請日為2004年10月13日. 美國專利申請案號10/128,118,「奈米管薄膜與譽 品」’申請曰為2002年4月23曰,目前是美國專 6,706,402 ; ~ 美國專利申請案號10/774,682,「奈米管薄膜與製 品」’申請曰為2004年2月9曰; ' 美國專利申請案號10/776,573,「奈米管薄膜與穿】 品」’申請曰為2004年2月11曰,目前是美國專/利^ 6,942,921 ; ~ 美國專利申請案號10/128,117,「奈米管薄膜與製品 之方法」’申請日為2002年4月23日,目前是美國專$ 126 201106408 號 6,835,591 ; 美國專利申請案號10/864,186,「非揮發性的機電場 效裝置、使用其之電路及其形成方法」,申請日為2004年 6月9曰; 美國專利申請案號1〇/341,005,「碳奈米管薄膜、層、 織物、帶狀物、元件及製品之製造方法」,申請曰為2003 年1月13曰; 美國專利申請案號10/341,055,「使用薄金屬層以製 造碳奈米管薄膜、層、織物、帶狀物、元件及製品之方法」, 申請曰為2003年1月13曰; 美國專利申請案號10/34 1,054,「使用預先形成之奈 米管薄膜、層、織物、帶狀物、元件及製品之方法」,申 請曰為2003年1月13曰; 美國專利申請案號10/341,130,「碳奈米管薄膜、層、 織物、帶狀物、元件及製品」,申請曰為2003年1月13 曰; 美國專利申請案號10/917,794,「奈米管式開關元 件」,申請曰為2004年8月13曰; 美國專利申請案號10/91 8,085,「具多重控制之奈米 管式開關元件」,申請曰為2004年8月13曰; 美國專利申請案號1〇/918,181,「奈米管裝置結構與 製造方法」,申請曰為2004年8月13曰; 美國專利申請案號60/581,075,「非揮發性的碳奈米 管邏輯(NLOGJC)接收器電路」,申請曰為2004年6月18 127 201106408 曰; 美國專利申請案號11/033,216,「非揮發性的碳奈米 管邏輯(NLOGIC)晶片外驅動器」,申請曰為2004年6月 18日; 美國專利申請案號11/032,983,「非揮發性的碳奈米 管邏輯(NLOGIC)主從閂鎖」,申請曰為2005年1月10曰; 以及 美國專利申請案號11/032,823,「非揮發性的碳奈米 管邏輯(NLOGJC)三態電路」’申請曰為2005年1月10曰。 吾人將明白到本發明之範疇並未受限於上述實施 例,而是由以下的申請專利範圍所界定;而這些申請專利 範圍將包含已被說明之增進之變形例。 128 201106408 【圖式簡單說明】 於附圖中, 圖1顯示一種習知技術之習知保護裝置之示意圖; 圖2A與2B顯示可能用以置換習知之串聯電阻之碳奈米 管電阻之橫剖面與平面視圖; 圖2C顯示具有串聯碳奈米管電阻之習知之保護裝置之示 意圖, 圖3顯示習知技術之積體保護裝置機構之示意圖,其包含 可能被斷路一次之熔絲,用以使保護裝置與半導體晶片中 之晶片電路隔離; 圖4A與4B顯示非揮發性奈米管保護裝置結構之橫剖面 與平面視圖; 圖4C顯示圖4A與4B中之非揮發性奈米管保護裝置之示 意圖; 圖5A顯示圖4A與4B所示之非揮發性奈米管保護裝置處 於啟動(ON)狀態之橫剖面; 圖5B顯示圖5A所示之被啟動(ON)之非揮發性奈米管保 護裝置之示意圖; 圖6A顯示圖4A與4B所示之非揮發性奈米管保護裝置處 於非啟動(OFF)狀態之橫剖面; 圖6B顯示圖6A所示之非啟動(OFF)之非揮發性奈米管保 護裝置之示意圖; 圖7A顯示圖4A與4B所示之整合之電子組件,藉以接觸 焊墊與共通電極之非揮發性奈米管保護裝置之平面視圖; 129 201106408 圖7B顯示圖7A之示意圖; 圖7C顯示處於啟動(0N)狀態之圖7B之示意圖; 圖7D顯示處於非啟動(〇FF)狀態之圖7B之示意圖;US Patent No. 6,574,130; US Patent Application No. 10/379,973, "Hybrid Circuit with Nanotube Electromechanical Memory", filed on March 5, 2003, currently US Patent No. 6,836,424; 疋 US Patent Application No. 10/964,150, "Hybrid Circuit with Nanotube Electromechanical Memory," filed on October 13, 2004. U.S. Patent Application Serial No. 10/128,118, "Nano Tube Film and Fame" was applied for April 23, 2002, and is currently US 6,706,402; ~ US Patent Application No. 10/774,682, "Nanotube Film and Products"' application for 2004 February 9曰; 'US Patent Application No. 10/776,573, "Nanotube Film and Wear" Product" applied for February 11, 2004, is currently US / Lee ^ 6,942,921; ~ US patent application No. 10/128,117, "Methods of Nanotube Films and Products"' application date is April 23, 2002, and is currently US $126 201106408 No. 6,835,591; US Patent Application No. 10/864,186, "Non-volatile Electric field effect device, circuit using the same and method of forming the same The application date is June 9th, 2004; US Patent Application No. 1〇/341,005, “Manufacturing Methods for Carbon Nanotube Films, Layers, Fabrics, Ribbons, Components and Products”, filed in 2003 January 13 曰; U.S. Patent Application Serial No. 10/341,055, "Method of Using Thin Metal Layers to Make Carbon Nanotube Films, Layers, Fabrics, Ribbons, Components and Articles", filed on January 13, 2003 U.S. Patent Application Serial No. 10/34,054, "Methods of Using Preformed Nanotube Films, Layers, Fabrics, Ribbons, Components, and Articles," filed January 13, 2003; Patent Application No. 10/341,130, "Carbon nanotube film, layer, fabric, ribbon, component and article", filed on January 13, 2003; US Patent Application No. 10/917,794, "Nemi Tubular Switching Components", filed on August 13, 2004; US Patent Application No. 10/91 8,085, "Nano-tube Switching Components with Multiple Controls", filed on August 13, 2004; Patent Application No. 1〇/918,181, "Nanotube Installation Structure and Manufacturing Method" The application was filed on August 13, 2004; US Patent Application No. 60/581,075, "Non-volatile Carbon Nanotube Logic (NLOGJC) Receiver Circuit", filed on June 18, 2004, 201106408 曰; Patent Application No. 11/033,216, "Non-volatile Carbon Nanotube Logic (NLOGIC) Off-Chip Driver", filed on June 18, 2004; U.S. Patent Application Serial No. 11/032,983, "Non-Volatile Carbon Nanotube Logic (NLOGIC) Master-Slave Latch," filed January 10, 2005; and US Patent Application No. 11/032,823, "Non-volatile Carbon Nanotube Logic (NLOGJC) Three-State Circuitry "The application was issued on January 10, 2005." It is to be understood that the scope of the invention is not limited to the embodiments described above, but is defined by the scope of the following claims; 128 201106408 [Simplified illustration of the drawings] In the accompanying drawings, Figure 1 shows a schematic diagram of a conventional protection device of the prior art; Figures 2A and 2B show a cross section of a carbon nanotube resistance that may be used to replace a conventional series resistor. Figure 2C shows a schematic view of a conventional protective device having a series of carbon nanotube resistances, and Figure 3 shows a schematic view of a conventional integrated body protection device comprising a fuse that may be broken once to enable The protection device is isolated from the wafer circuit in the semiconductor wafer; Figures 4A and 4B show a cross-sectional and plan view of the structure of the non-volatile nanotube protection device; Figure 4C shows the non-volatile nanotube protection device of Figures 4A and 4B. Figure 5A shows a cross section of the non-volatile nanotube protection device shown in Figures 4A and 4B in an ON state; Figure 5B shows the activated ON non-volatile nanotube shown in Figure 5A. Figure 6A shows a cross section of the non-volatile nanotube protection device shown in Figures 4A and 4B in a non-activated (OFF) state; Figure 6B shows the non-starting (OFF) shown in Figure 6A. FIG. 7A is a plan view showing the integrated electronic component shown in FIGS. 4A and 4B, thereby contacting the non-volatile nanotube protection device of the bonding pad and the common electrode; 129 201106408 FIG. 7B shows Figure 7A is a schematic view; Figure 7C is a schematic view of Figure 7B in a startup (ON) state; Figure 7D is a schematic view of Figure 7B in a non-activated (〇FF) state;
圖7E顯示用以在電路操作期間估計非揮發性^米管 裝置電容貞載之具有*範尺寸之非㈣(QFF)之非揮 奈米管保護裝置6A之橫剖面圖; X 圖8A顯示整合晶片或封裝之非揮發性奈米管保護裝置與 電源供應部及模式焊墊保護方法之概要圖; 、 圖顯示圖8A中之非揮發性奈米管保護裝置處於 (ON)狀態之概要圖; 圖服顯示目8B之具有變化電源供應部與模式焊塾 之概要圖; 圖8C顯示圖8A具有處於非啟動(〇FF)狀態之非揮發性卉 米管保護裝置之概要圖; 圖9Α與9Β顯示習知技術nASa ESD模型與相關的esd 感應電流流量關於時間之函數之概要圖; 圖10A顯示連接於啟動之非揮發性奈米管保護裝置之兩 個焊塾(端子)之_ ESD源之粒電雜要圖,這兩個焊 墊之間一般是輸入、輸出,或輸入/輸出信號焊墊(端子) 圖10B顯示連接於啟動之非揮發性奈米管保護裝置之焊 墊(譬如信號焊墊)與接地焊墊之間的ESD源之等效 概要圖, 圖10C顯示連接於啟動之非揮發性奈米管保護裝置之模 130 201106408 式焊墊與接地焊墊之_娜源之等效電路概要圖. 圖顯科接於啟動之非揮發性奈米f保護’ 源供應部焊塾與接地焊整之間的咖源之等效電路概: ,顯科接於啟動之非揮發性奈米管保護 與焊塾(譬如信號焊塾)之間的哪源之等效電路 ^^^於電縣應料㈣《(譬如啟動之非 電保權之信號焊塾)之一源之等效 示連接於啟動之_發性奈米管賴裝置之電 圖卩焊塾與模式焊塾之_ ESD源之等效電路概要 知賴裝置之f知技術之半導體晶片 顯示附加非揮發性奈米管保魏置mA之損 使㈣揮發性奈綺健裝置之具有肌 饰。隻之圖11B之橫剖面圖; 輸⑽㈣版唯細 ㈣非料絲米管贿裝置u載體戈 Θ F顯不具有於晶片紐層級與非揮發性奈米管裝! 131 201106408 保護並聯之習知之保護裝置保護之半導體晶片之簡化橫 剖面圖; ' 圖11G顯示於晶片載體層級不具有習知之晶片級保護裝 置保護,而只具有非揮發性奈米管裝置保護之半導體晶片\ 之簡化橫剖面圖; 圖11H顯示於晶片級不具有非揮發性奈米管保護裝置保 濩,而於晶片戴體層級只具有非揮發性奈米管裝置保護^ 唯-奈米管晶片之簡化橫剖面圖; 圖111與11Γ顯不具有附加至這些卡端子之非揮發性奈 管保護裝置之卡基板之簡化橫剖面圖; 丁^ 圖顯示具有附加至板晶片黏著端子與連接器端子 揮發性奈米管㈣裝置讀基板之簡化橫剖面圖; 與^如晶片或封裝之電子組件相關的啟動中與 動中之非揮發性奈米管保護裝置之較佳方法;、 將具有啟動之非揮發性奈米管保護裝置之晶片 :啟:放於系統中,以及使非揮發性奈米管保護裝置 未啟動以允K纟祕叙難紐; 置 ㈣(tuming,#料性奈米管 =面 15;A顯示具有典型尺寸之揮發性奈米管保護襄置之橫 顯示類似於圖15A但不具有放 未管保魏置之橫剖面; 之揮U生奈 圖16A顯示圖15A所示之揮發性奈綺保護裝置之平面 132 201106408 視圖’其整合於電子組件中,藉以接觸焊塾與共通電極. 圖顯示圖16A之示意圖; , 圖16C顯不圖16B處於啟動(〇叫狀態之示意圖; ^7顯示整合晶片或縣之揮發性奈米管保錄置之概 之間一’、等效電路概要圖,這兩個焊墊 圄㈣輸入、輸Λ ’或輸入/輸出信號焊墊(端子)之間. =以奈米管保護裝置之‘ 要圖; )”接地卜墊之間的ESD源之等效電路概 供應料^縣置之電源 圖助顯示連# 源之纽電路概要圖; 發性奈米供應料㈣焊墊(•啟動之揮 路概要圖; 信號焊塾)之_ ESD源之等效電Figure 7E shows a cross-sectional view of a non-single tube protection device 6A having a non-fourth (QFF) of a non-volatile tube device capacitance during operation of the circuit; X Figure 8A shows integration A schematic diagram of a non-volatile nanotube protection device and a power supply unit and a mode pad protection method for a wafer or package; and a schematic view showing the non-volatile nanotube protection device of FIG. 8A in an (ON) state; Figure 8C shows a schematic diagram of the non-volatile plant protection device in Figure 8A with a non-starting (〇FF) state; Figure 9Α and 9Β A schematic diagram showing a conventional technique nASa ESD model and associated esd induced current flow as a function of time; FIG. 10A shows an ESD source connected to two solder bumps (terminals) of a activated non-volatile nanotube protection device Granular electrical hybrid diagram, between the two pads is generally input, output, or input / output signal pads (terminals) Figure 10B shows the pads connected to the activated non-volatile nanotube protection device (such as signals) Solder pad) Equivalent schematic diagram of the ESD source between the ground pads, Figure 10C shows the schematic diagram of the equivalent circuit of the model 01 201106408 solder pad and ground pad connected to the activated non-volatile nanotube protection device显显科 is connected to the non-volatile nano-f protection of the starting source. The equivalent circuit of the source between the welding and the grounding of the source supply part: The equivalent circuit between the source and the soldering iron (such as the signal soldering wire) ^^^ is equivalent to the source of the electricity source (4) "(such as the starting of the non-electrical security signal welding wire)电 性 奈 奈 塾 模式 模式 模式 模式 模式 模式 模式 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E The loss of mA makes (4) the volatile nuclei device have a muscle decoration. Only the cross-sectional view of Figure 11B; the (10) (four) version of the only fine (four) non-material silk rice bribery device u carrier Ge Θ F display does not have the wafer level and non-volatile nano tube installed! 131 201106408 A simplified cross-sectional view of a semiconductor wafer protected by a conventional protection device in parallel; ' Figure 11G shows a wafer-level protection device that does not have conventional wafer level protection at the wafer carrier level, and only a semiconductor protected by a non-volatile nanotube device Simplified cross-sectional view of the wafer\; Figure 11H shows that there is no non-volatile nanotube protection device at the wafer level, and only a non-volatile nanotube device at the wafer body level protects the wafer. FIG. 111 and FIG. 11 are simplified cross-sectional views of the card substrate of the non-volatile tube protection device attached to the card terminals; the figure shows the adhesion terminal and the connector terminal attached to the board wafer A simplified cross-sectional view of a volatile substrate (4) device read substrate; a preferred method for starting a neutral and moving non-volatile nanotube protection device associated with an electronic component such as a wafer or package; The wafer of the non-volatile nanotube protection device: Kai: placed in the system, and the non-volatile nanotube protection device is not activated to allow K 纟 叙 叙 ;; (4) (tuming, #material nanotubes = face 15; A shows that the horizontal display of the volatile nanotube protective device with typical dimensions is similar to Figure 15A but does not have a cross section of the unprotected tube; Figure 5A shows the plane 132 of the volatile na[iota] protection device shown in Fig. 15A. The view is integrated into the electronic component to contact the solder tab and the common electrode. The figure shows the schematic diagram of Fig. 16A; Figure 16B is in the startup (schematic diagram of the squeaking state; ^7 shows the integration of the wafer or the county's volatile nanotube management record between the ', the equivalent circuit schematic diagram, the two pads 四 (four) input, input Λ 'or input/output signal pad (terminal). = 'Negative tube protection device' is required; ) "Equivalent circuit of ESD source between ground pad" Supply material ^ County power supply diagram助示连# Source of the circuit schematic diagram; hairy nano-supply material (four) solder pad (• start-up schematic diagram; signal soldering) _ ESD source equivalent
圖19顯示整合曰M 護裝置之概要圖^ 5、裝中之簡化的非揮發性奈米管保 圖20顯示整合曰片 裝置之概要圖;3 、扁中之簡化的揮發性奈米管保護 圖21A-F顯示在on你a 非揮發性奈米f開關之、=態之間切換之習知技術之 圖22A.B顯示具有二’化㈣面描繪; 發性裝置之習知技_^奈未讀*長度之三端子非揮 133 201106408 圖23A-B顯示具有變化的奈米管懸浮長度之三端子揮發 性裝置; 圖24顯示導電相框裝置結構之習知技術平面視圖; 圖25A-C顯示減少奈米管元件中所選擇之隨機配向的個 別單壁奈米管(S WN T)之懸浮長度變化之修正的習知技術 相框裝置結構; 圖26A-D顯示減少奈米管元件中所選擇之本質上平行之 個別SWNT之懸浮長度變化之修正的習知技術相框裝置 結構; 圖27A-B顯示減少奈米管元件中所選擇之本質上平行之 個別SWNT之懸浮長度變化之裝置結構; 圖28A-D顯示具有相關的彈性力、電力與原子層級蘭納_ 瓊斯(Lennard-Jones)力之處於OFF與ON狀態之第—非揮 發性奈米管開關結構; 圖29顯示修正的習知技術(圖22),三端子非揮發性裝置 、、’=構八有附加至控制電極之本質上平行之個別以 =原子層級Lemiard-Jones力係獨立於控制電極材料而決 定; 、 圖30A_B顯示處於OTF與⑽狀態之第—非揮發 3關(圖28)結構,其將本質上並聯的SWNT附加在控^ ,以使原子層級Lennard_J〇nes力係獨立於控制電 極材料而決定; 顯示處於〇FF與〇N狀態之第—揮發性奈米管 鼻’其將本質上並聯的SWNT附加在控制電極上, 134 201106408 =原子層級Lennankr〇nes力_錄控制冑極材料而 圖32?顯示具有〇FF與⑽狀態之第 其將本質上並聯的卿附 = ^電極與輸出電極上,以使原子層級— 獨立於絕緣的輸人電極與輸出電極材料而決定; 圖33Α·Β _具有卿與⑽ 開關結構,其將本皙卜祐脾从B 電極與輸出電極上:=WNT附加在絕緣的輸入 立於絕緣的輸人電極與輸出電極材料而決定;係獨 圖^係f似於圖32,除了已附加原子層用以提高本質上 並聯的SWNT黏荖风门+貝上 :考至、、邑緣的輸入電極與輸出電極以外; 二.丫 種結構’於此原子層已被誘導體化 H =械表示為R*)與奈米管已被官能化保表示為 S 36、二Γ ί顯示之改變的凡得瓦爾之交互作用; 別SWNT之懸洋長度變化之結構; 圖37顯錢少奈料通道元件巾所之本質上平行之 個別SWNT之料長度變化之結構; 、 處Γ0FF與0N狀態之非揮發性奈米管開 ΓνΤΓ ί導電奈米粒子以提供淺的切換間隙; :不'’& ’其中數個預先官能化的非導電奈米粒子 係被產生並黏接至s WKT ; 圖40顯示使用以形成包含實質上均勻層之奈米粒子塗佈 135 201106408 奈米管之奈米管元件之旋轉塗佈製程; 圖41A-B顯示處於0FF與〇N狀態之非 關,其具錢辦f奈綠扣提録奈米管 控制電極之間的縮小的物理接觸面積、 Lennard-Jones 力; 、夕 圖41C顯示具有數個導電奈来粒子之非 =:奈米Μ件與第二控制電極之間的二: 積’以便減少Lennard-Jones力; 圖42A_E顯示處於0FF與⑽狀態之第一非揮發性太 電奈米管,在單層二 圖43A-B县g _上 米管開關0FF與0N狀態之一例示非揮發性奈 你沾+71故^具有數個非導電與數個導電奈米粒子以提供 縮小的物間隙以及在奈米管元件與第一控制電極之間的 、” 硬接觸面積,以便減少Lennard-Jones力;以及 圖44A-B翱—名 人久 管開關,其:右盤梅請狀態之例示非揮發性奈米 具'有數個非導電與數個導電奈米粒子以提供淺 的ί!从間隱以及在奈米管元件與第一控制電極之間的縮 小理每觸面積,以便減少Lennard-Jones力。 136 201106408 【主要元件符號說明】 D1-D3 :絕緣體 G1-G4 :間隙 NT1、NT2 :奈米管 SI 、 S2 、 S3 、 S4 、 S5 : 段Figure 19 shows an overview of the integrated 曰M protective device. 5. Simplified non-volatile nanotube protection in the installation. Figure 20 shows a schematic view of the integrated sputum device. 3. Simplified volatile nanotube protection in the flat 21A-F show a conventional technique for switching between the = state of the non-volatile nano-f switch, and the 22A.B display has a two-four (four) surface depiction; the conventional technique of the hair device _^ The three-terminal non-volatile 133 201106408 Figure 23A-B shows a three-terminal volatility device with varying nanotube suspension lengths; Figure 24 shows a conventional technical plan view of the conductive photo frame device structure; Figures 25A-C show A conventional art frame device structure for reducing the variation of the suspension length of a randomly selected individual single-walled nanotube (S WN T) selected in a nanotube element; Figures 26A-D show the selection of the reduced nanotube element Figure 7A-B shows the structure of a device for reducing the change in the levitation length of individual SWNTs selected in a substantially uniform arrangement of nanotube elements; 28A-D display has correlation Elastic force, power and atomic level Lannard-Jones force in the OFF and ON state - non-volatile nanotube switch structure; Figure 29 shows the modified conventional technique (Figure 22), three terminals The non-volatile device, '= constitutively attached to the control electrode, is essentially parallel to the = atomic level Lemiard-Jones force is determined independently of the control electrode material; Figure 30A_B shows the state in the OTF and (10) states - A non-volatile 3-off (Fig. 28) structure that attaches essentially parallel SWNTs to control so that the atomic-level Lennard_J〇nes force is determined independently of the control electrode material; the display is in the 〇FF and 〇N states— Volatile Nanotube Nose' which attaches essentially parallel SWNTs to the control electrode, 134 201106408 = Atomic level Lennankr〇nes force_record control of the bungee material and Figure 32? shows the state with 〇FF and (10) Essentially connected in parallel with the ^ electrode and the output electrode, so that the atomic level - independent of the insulating input electrode and the output electrode material; Figure 33 Α · Β _ has a clear and (10) switch structure, which will be Bless From the B electrode and the output electrode: = WNT is added to the insulated input and is determined by the insulated input and output electrode materials; the system is similar to Figure 32, except that an atomic layer has been added to improve the nature. Parallel SWNT viscous damper + shell: test input, and the input and output electrodes of the rim; 2. 丫 structure 'this atomic layer has been induced to form H = mechanical representation of R *) and nano The tube has been functionalized as the interaction of the van der Waals showing the change of S 36 and ; ί; the structure of the length of the suspension of the SWNT; Figure 37 is essentially parallel to the material of the channel element The structure of the individual SWNTs varies in length; the non-volatile nanotubes in the 0FF and 0N states open ΓνΤΓ ί conductive nanoparticles to provide shallow switching gaps; : not ''& 'Several pre-functionalized The non-conductive nanoparticle system is produced and bonded to s WKT; Figure 40 shows a spin coating process using a nanotube element coated with a nanoparticle coated 135 201106408 nanotube containing a substantially uniform layer; 41A-B shows the non-state of 0FF and 〇N Off, the money has a green button to record the reduced physical contact area between the nanotubes and the Lennard-Jones force; and the eve 41C shows the non-conducting particles with several conductive nano-particles: The second: product between the piece and the second control electrode is used to reduce the Lennard-Jones force; Figure 42A_E shows the first non-volatile telecommunication nanotube in the 0FF and (10) state, in the single layer two Figure 43A-B county g _Upper tube switch 0FF and 0N state exemplifies non-volatile Nai you +71 so ^ has several non-conducting and several conductive nano particles to provide reduced material gap and in the nanotube element and the first control "hard contact area between the electrodes to reduce the Lennard-Jones force; and Figure 44A-B翱 - celebrity long-term switch, which: the right disk is in the state of the example of non-volatile nano-features with several non-conductive A plurality of conductive nanoparticles are provided to provide a shallow 从! and a reduced contact area between the nanotube element and the first control electrode to reduce the Lennard-Jones force. 136 201106408 [Description of main component symbols] D1-D3: Insulator G1-G4: Clearance NT1, NT2: Nanotube SI, S2, S3, S4, S5: Segment
Tins :厚度 Dcnt :直徑 10 :保護裝置 12 :焊墊 14 :受保護電路 16 :電阻 17 :節點 18 :半導體式二極體 20 :保護裝置結構 21 :焊墊 22 :導體 24 :碳奈米管電阻 25 :導體 30 :概要圖 35B :交互作用 36 :奈米管電阻 39 :習知技術結構 40 :熔絲 369 :絕緣體 400、400':非揮發性奈 米管保護裝置 411、 41Γ :輸入電極 412、 412':放電電極 413、 415、413'、415丨: 輸出電極 414、 416 :對向電極 417 :絕緣層 418、418':接點 422、422':信號電極 422、424、424':端子 426、426,、428、428,: 奈米管通道元件 430、430':奈米管通道 元件位置 722 :奈米管保護裝置 723 :接點 724 :導體 725、725':控制電極 726 :焊墊(端子) 728 :奈米管通道元件 729、729’ :信號電極 137 201106408 730、734、738 :共通導 體 732、736 :導體 740 :放電電極 742 :輸入電極 745、745':接點 750、750'、750":非揮 發性奈米管保護裝置 754 :連接部 755 :輸出電極 755':對向電極 756 :焊墊 757 :受保護電路 760 :信號電極 762 :連接部/導體(配線) 764 :奈米管通道元件 766 :放電電極 768 :連接器 770 :輸入電極 772 :連接器 775:共通電極/共通導體 /共通連接部 780、785 :共通連接器 790、790':虛線 795 :非揮發性奈米管保 護裝置 800 :晶片 810、810'、810"、820、 820’、820":非揮發性奈 米管保護裝置 830、840 :焊墊 850:共通電極/共通導體 855 :接地焊墊 860 :共通連接器 865 :電源供應部焊墊 870:共通連接器/共通導 體 875:模式控制焊墊/模式 焊墊 900 : ESD等效電路源/ 人體模型(HBM)/等效 電路 910、920 :輸出端子 922 :電容器 925 :電阻 930 :電流 1000 、 1010 、 1020 、 1030、1050、1060 :等 138 201106408 效電路 1100 :半導體晶片 1101 :半導體基板 1102 :保護裝置 1103 :導電鑲入層 1104 :絕緣體 1105 :導體 1106 :焊墊 1107 :擴散部/擴散節點 1108 :鑲入層接點 1109 :導電隆起部 1110 :半導體(或混合式 半導體/奈米管)晶片 1112、1122、1133、1142、 1168、1184、1195、 1195、非揮發性奈米管 保護裝置 1Π4 :裝置 1115 :導體 1117 :焊墊 1118 :導電隆起部 1120 :半導體/奈米管晶 片 1124 :導體 1126 :焊墊 1128 :導電隆起部 1130 :唯-奈米管晶片 1131 :絕緣基板 1135 :導體 1136 :焊墊 1140 :晶片載體 1141 :基板 1142 :奈米管保護裝置 1143 :導體 1144 :焊墊 1145 :通道孔 1146 :端子焊墊 1147 :導電隆起部 1150、1160 :電子組件 1161 :半導體晶片 1162 :導電隆起部 1163、1166 :焊塾 1165 :導體 1167 .鑲入層接點 1168 :奈米管保護裴置 1170 .電子纟且件 1171 :唯-奈米管晶片 1172 :導電隆起部 139 201106408 1180 :電子組件 1181 :卡基板 1182 :端子 1183 :導體 1190 :板層級電子組件 1191 :板基板 1192 :連接器 1193 :接觸焊墊 1194、1199 :導體 1196 :晶片 1197 :導電隆起部 1198 :接觸焊墊 1200、1300、1400 :方 法 1210-1290 :步驟 1310-1350 :步驟 1410-1430 :步驟 1511-1516 :電極 1522、1524 :信號電極 1526 :奈米管通道元件 1590、1590'、1590":連 接部 1595、1595X、1622 :揮 發性奈米管保護裝置 1623 :接點 1624 :導體 1625、1625':輸出電極 1626 :焊墊(端子) 1628 :奈米管通道元件 1629、1629':信號電極 1630 :共通導體 1632、1636 :導體 1638 :接點 1640 :放電電極 1642 :輸入電極 1645、1645':接點 1650、1650’ :揮發性奈 米管保護裝置 1654 :連接器/導體(配 線) 1655、1655^ 電極 1656 :焊墊 1657 :受保護電路 1660 :信號電極/共通節 點 1662 :連接部/導體(配 線) 1664 :奈米管通道元件 140 201106408 1668 :導體元件 1670 :元件/輸入電極 1675 :共通連接器/共通 電極/共通導體 1686 :電極 1700 :晶片 1710、1720、1760 :揮 發性奈米管保護裝置 1730、1740 :焊塾 1750 :共通連接器/共通 導體 1755 :接地焊墊 1765 :電源供應部焊墊 1800 、 1810 、 1820 、 1840 ··等效電路 1900 :晶片 1910、1920 :非揮發性 保護裝置結構 1915 :控制電極 1917 :奈米管元件 1918 :放電電極 1920 :非揮發性奈米管 保護裝置 1930、1940 :焊墊 1950 .共通接地連接器/ 共通連接器 1955 :接地焊墊 I960 :共通連接器/共通 模式連接器 1965 :電源供應部焊墊 1975 :模式控制焊墊/模 式焊墊 ' 2000 .晶片 2010、2020、2060 :揮 發性奈米管保護裝置 2015 .控制電極 2017 :奈米管元件 2030、2040 :焊整 2050 ·共通接地連接器 2055 :接地焊墊 2065 :電源供應部焊塾 2100-2 :局部切換位置 2100 :奈米管開關 2140 :控制電極 2145 :放電電極 2150 :絕緣體 2155 : SWNT織物/奈米 管元件 141 201106408 2160、2160':信號電極/ 2400 : 平面視圖 奈米管信號接點 2455-2 、2455-4 、 2170、2170':介電材料 2455-5 ' 2455-6 : SWNT 2200 :非揮發性奈米管 2440 :控制電極 開關 2455-1 、2455-2 、 2240、2245、2245':電 2455-3 :奈米管元件 極 2460 : 導電相框信號電 2250、2250':絕緣體 極 2255 :奈米管元件 2500 : 平面視圖 2260 ' 2260' > 2260" > 2510 : 絕緣體/絕緣體相 2260"':信號電極 框 2270、2270':絕緣體 2520、 2520':開口部 2275、2275':絕緣體 2535、 2545 、 2600 、 2300、2300':第一揮發 2635 : 平面視圖 性奈米管開關 2560 : 導電相框信號電 2340 :控制電極 極 2355 :奈米管元件 2610 : 絕緣體/絕緣體相 2360 :導體 框 2360、2360':信號電極/ 2620、 2620,、2620π :開 信號端子 口部 2360"、2360"':信號電 2655-1 、2655-2 、 極間距 2655-3 、2655-4 、 2370、2375 :絕緣體 2370":絕緣體區域 2655-5 : SWNT 2645、2650 :平面視圖 142 201106408 2655-2 、 2655-3 、 2655-4 :奈米管 2660 :相框信號電極 2700 :平面視圖 2710 :控制電極 2725 、 2725' 、 2725"、 2725"':銷接結構 2735 :平面視圖 2750、275(^ :信號電極 2800 :第一非揮發性奈 米管開關 2800':開關力概要 2840 :控制電極 2845 :放電電極 2850 :絕緣體 2855 :奈米管元件 2860、2860':信號電極/ 信號端子 2870、2870’ :絕緣體 2880 :支持部 2900 :奈米管開關 2940 :控制電極 2942 : SWNT 2945 :放電電極 2950 :絕緣體 2955 :奈米管元件 2960、296(Τ :信號電極/ 信號端子 2970 :絕緣體 2970':絕緣體端子 3000 :奈米管開關 3000':開關 3040 :控制元件/控制電 極 3042 : SWNT /奈米管元 件 3045 :放電電極 3050 :絕緣體 3055、3055':奈米管元 件 3060、3060':信號電極/ 信號端子 3070、3070’ :絕緣體 3100 :開關 3140 :控制元件/控制電 極 3155 :奈米管元件 3160、3160':信號電極/ 143 201106408 信號端子 3170、3170':絕緣體 3200、3200':開關 3211、 321Γ :輸入電極 3212、 3212’ :放電電極 3213、 3213’ :電極 3214、 3214':信號電極 3215 :奈米管通道元件 3215’ :奈米管元件 3217 、 3218 、 3218·、 3219 :介電材料/絕緣體 3220、3222、3224 :絕 緣體 3242 ' 3242' ' 3242": SWNT 層 3300 :開關 3311、331Γ :輸入電極 3313 :輸出電極 3314、 3314':信號電極 3315、 3315':奈米管通 道元件 3318、3318':絕緣體 3400 :結構 3411、341Γ :輸入電極 3413 :輸出 3414 :層Tins: thickness Dcnt: diameter 10: protection device 12: pad 14: protected circuit 16: resistor 17: node 18: semiconductor diode 20: protection device structure 21: pad 22: conductor 24: carbon nanotube Resistor 25: Conductor 30: Overview FIG. 35B: Interaction 36: Nanotube resistance 39: Conventional structure 40: Fuse 369: Insulator 400, 400': Non-volatile nanotube protection device 411, 41Γ: Input electrode 412, 412': discharge electrodes 413, 415, 413', 415 丨: output electrodes 414, 416: opposite electrodes 417: insulating layers 418, 418': contacts 422, 422': signal electrodes 422, 424, 424' : terminals 426, 426, 428, 428,: nanotube channel elements 430, 430': nanotube channel element position 722: nanotube protection device 723: contact 724: conductors 725, 725': control electrode 726 : pads (terminals) 728 : nanotube channel elements 729 , 729 ′ : signal electrodes 137 201106408 730, 734, 738 : common conductors 732 , 736 : conductor 740 : discharge electrodes 742 : input electrodes 745 , 745 ' : contacts 750, 750', 750 ": non-volatile nanotube protection device 754: connection portion 755: output electrode 75 5': counter electrode 756: pad 757: protected circuit 760: signal electrode 762: connection portion/conductor (wiring) 764: nanotube channel element 766: discharge electrode 768: connector 770: input electrode 772: connection 775: common electrode/common conductor/common connection 780, 785: common connector 790, 790': dashed line 795: non-volatile nanotube protection device 800: wafer 810, 810', 810 ", 820, 820' , 820 ": non-volatile nanotube protection device 830, 840: pad 850: common electrode / common conductor 855: ground pad 860: common connector 865: power supply pad 870: common connector / common conductor 875: Mode Control Pad/Mode Pad 900: ESD equivalent circuit source / Human Body Model (HBM) / Equivalent Circuit 910, 920: Output Terminal 922: Capacitor 925: Resistor 930: Current 1000, 1010, 1020, 1030, 1050, 1060: Etc. 138 201106408 Effective circuit 1100: Semiconductor wafer 1101: Semiconductor substrate 1102: Protective device 1103: Conductive mounting layer 1104: Insulator 1105: Conductor 1106: Solder pad 1107: Diffusion/diffusion node 1108: Insert splicing Point 1109: Conductive Long Portion 1110: semiconductor (or hybrid semiconductor/nanotube) wafers 1112, 1122, 1133, 1142, 1168, 1184, 1195, 1195, non-volatile nanotube protection device 1Π4: device 1115: conductor 1117: pad 1118 : Conductive ridges 1120 : Semiconductor / nanotube wafer 1124 : Conductor 1126 : Pad 1128 : Conductive ridge 1130 : Only - nanotube wafer 1131 : Insulating substrate 1135 : Conductor 1136 : Pad 1140 : Wafer carrier 1141 : Substrate 1142: Nanotube protection device 1143: Conductor 1144: Pad 1145: Channel hole 1146: Terminal pad 1147: Conductive bump 1150, 1160: Electronic component 1161: Semiconductor wafer 1162: Conductive bump 1163, 1166: Solder 1165 : Conductor 1167. Inserted layer contact 1168: Nano tube protection device 1170. Electronic device and member 1171: Only-nano tube wafer 1172: Conductive ridge portion 139 201106408 1180: Electronic component 1181: Card substrate 1182: Terminal 1183 : Conductor 1190 : Board level electronic component 1191 : Board substrate 1192 : Connector 1193 : Contact pad 1194 , 1199 : Conductor 1196 : Wafer 1197 : Conductive ridge 1198 : Contact pad 1200 , 1300 , 1400 : Method 1210-12 90: Steps 1310-1350: Steps 1410-1430: Steps 1511-1516: Electrodes 1522, 1524: Signal electrode 1526: Nanotube channel elements 1590, 1590', 1590": Connections 1595, 1595X, 1622: Volt Meter protection device 1623: contact 1624: conductor 1625, 1625': output electrode 1626: pad (terminal) 1628: nanotube channel element 1629, 1629': signal electrode 1630: common conductor 1632, 1636: conductor 1638: Contact 1640: discharge electrode 1642: input electrode 1645, 1645': contact 1650, 1650': volatile nanotube protection device 1654: connector / conductor (wiring) 1655, 1655 ^ electrode 1656: pad 1657: subject Protection circuit 1660: signal electrode/common node 1662: connection portion/conductor (wiring) 1664: nanotube channel element 140 201106408 1668: conductor element 1670: element/input electrode 1675: common connector/common electrode/common conductor 1686: Electrode 1700: Wafers 1710, 1720, 1760: Volatile Nanotube Protection Devices 1730, 1740: Weld 1750: Common Connector / Common Conductor 1755: Ground Pad 1765: Power Supply Pads 1800, 1810, 1820 1840 · Equivalent circuit 1900: Wafer 1910, 1920: Non-volatile protection device structure 1915: Control electrode 1917: Nano tube element 1918: Discharge electrode 1920: Non-volatile nanotube protection device 1930, 1940: Pad 1950 Common Grounding Connector / Common Connector 1955 : Grounding Pad I960 : Common Connector / Common Mode Connector 1965 : Power Supply Pad 1975 : Mode Control Pad / Mode Pad ' 2000 . Wafer 2010, 2020, 2060 : Volatile tube protection device 2015. Control electrode 2017: Nano tube element 2030, 2040: Soldering 2050 · Common grounding connector 2055: Grounding pad 2065: Power supply part soldering station 2100-2: Local switching position 2100 : nanotube switch 2140 : control electrode 2145 : discharge electrode 2150 : insulator 2155 : SWNT fabric / nanotube element 141 201106408 2160, 2160 ': signal electrode / 2400 : plane view nanotube signal contact 2455-2, 2455 -4, 2170, 2170': Dielectric material 2455-5 ' 2455-6 : SWNT 2200 : Non-volatile nanotube 2440: Control electrode switch 2455-1, 2455-2, 2240, 2245, 2245': Electricity 2455 -3 : Nano tube Piece 2460: Conductive photo frame signal 2250, 2250': insulator pole 2255: nanotube element 2500: plane view 2260 ' 2260' >2260"> 2510 : insulator / insulator phase 2260" ': signal electrode frame 2270, 2270': insulators 2520, 2520': openings 2275, 2275': insulators 2535, 2545, 2600, 2300, 2300': first volatilization 2635: plan view nanotube switch 2560: conductive photo frame signal 2340: control electrode Pole 2355: Nanotube element 2610: Insulator/Insulator phase 2360: Conductor frame 2360, 2360': Signal electrode / 2620, 2620,, 2620π: Open signal terminal port 2360", 2360"': Signal power 2655-1, 2655-2, Pole spacing 2655-3, 2655-4, 2370, 2375: Insulator 2370": Insulator area 2655-5: SWNT 2645, 2650: Plan view 142 201106408 2655-2, 2655-3, 2655-4: Nai Meter tube 2660: frame signal electrode 2700: plan view 2710: control electrode 2725, 2725', 2725", 2725"': pinned structure 2735: plan view 2750, 275 (^: signal electrode 2800: first A non-volatile nanotube switch 2800': Switching force summary 2840: Control electrode 2845: Discharge electrode 2850: Insulator 2855: Nano tube element 2860, 2860': Signal electrode / Signal terminal 2870, 2870': Insulator 2880: Support Part 2900: Nanotube switch 2940: Control electrode 2942: SWNT 2945: Discharge electrode 2950: Insulator 2955: Nanotube element 2960, 296 (Τ: Signal electrode / Signal terminal 2970: Insulator 2970': Insulator terminal 3000: Nano Tube switch 3000': switch 3040: control element / control electrode 3042: SWNT / nanotube element 3045: discharge electrode 3050: insulator 3055, 3055': nanotube element 3060, 3060': signal electrode / signal terminal 3070, 3070 ' : Insulator 3100 : Switch 3140 : Control element / Control electrode 3155 : Nano tube element 3160 , 3160 ' : Signal electrode / 143 201106408 Signal terminal 3170 , 3170 ' : Insulator 3200 , 3200 ' : Switch 3211 , 321 Γ : Input electrode 3212 3212': discharge electrodes 3213, 3213': electrodes 3214, 3214': signal electrode 3215: nanotube channel element 3215': nanotube elements 3217, 3218, 3218·, 32 19: Dielectric material/insulator 3220, 3222, 3224: Insulator 3242 ' 3242' ' 3242 ": SWNT layer 3300 : Switch 3311, 331 Γ : Input electrode 3313 : Output electrode 3314, 3314 ': Signal electrode 3315, 3315': Nai Meter tube channel elements 3318, 3318': insulator 3400: structure 3411, 341: input electrode 3413: output 3414: layer
3415’ :奈米管通道元件 3442、3442'、3442" ·· SWNT 3444、3444’、3444":原 子層 3500 :結構· 3513 :鎢輸出電極 3513':輸入電極 3515 :奈米管元件 3520、3522、3522':層 3530 :原子層 3531 :原子層(R*) 353Γ :原子層(R**) 3535"·:原子層(R**) 3600 :平面視圖 3612、3612':放電電極 3613’ :對向電極 3614、36141 :信號電極 3619 :絕緣體 3627、3627’ :銷接絕緣 體 3655-2 、 2655-4 、 144 2011064083415': nanotube channel element 3442, 3442', 3442" SWNT 3444, 3444', 3444": atomic layer 3500: structure · 3513: tungsten output electrode 3513': input electrode 3515: nanotube element 3520, 3522, 3522': layer 3530: atomic layer 3531: atomic layer (R*) 353Γ: atomic layer (R**) 3535"·: atomic layer (R**) 3600: plan view 3612, 3612': discharge electrode 3613 ' : counter electrode 3614, 36141 : signal electrode 3619 : insulator 3627 , 3627 ' : pin insulators 3655-2 , 2655-4 , 144 201106408
3655-5 > 3655-6 : SWNT 3700 :平面視圖 3712、3712'、3740 :放 電電極 3713’ :對向電極 3714、3714':信號電極 3719 :絕緣體 3740 :信號電極 3800 :開關 3840 :電極 3842 :非導電性奈米粒 子 3842a :切換間隙 3845 :放電電極 3850 :絕緣體 3855 :奈米管元件 3855’ :奈米管元件 3860、3860':電極 3870、3870':絕緣體 3880 :基板 3890 :支持部 3901 :縮水甘油 3903 :分子結構 3904 :奈米粒子 3905 :奈米管 4001 :半導體等級水解 液 4002 :奈米粒子塗佈奈 米管 4003 :旋轉塗佈製程 4004 :基板元件 4100 :開關 4140、4145、4146 :電 極 4142 :導電奈米粒子 4150 :絕緣體 4155、4155':奈米管元 件 4160、4160':電極 4170、4170':絕緣體 4175 :物理介面區域 4180 :基板 4190 :支持部 4200 :非揮發性開關 4240 :控制電極 4242 :非導電性奈米管/ 單層網 4242a:切換間隙/孔洞或 145 201106408 空間 4245 :放電電極 4250 :絕緣體 4255、4255':奈米管元 件 4260、4260':信號電極 4270、4270':絕緣體 4280 :基板元件 4300 :開關 4340 :電極 4342 :非導電性奈米粒 子 4342a :間隙 4343 :導電奈米粒子 4345 :放電電極 4350 :絕緣體 4355 :奈米管元件 4360、4360':電極 4370、4370':絕緣體 4380 :基板 4400 :非揮發性開關 4440 :控制電極 4442 :非導電性奈米管/ 單層網 4442a :間隙 4443 :導電奈米粒子 4445 :放電電極 4455、4455':奈米管元 件 4460、446(V :信號電極 4470、4470':絕緣體 4480 :基板元件 1463655-5 > 3655-6 : SWNT 3700 : Plan view 3722, 3712', 3740 : Discharge electrode 3713 ' : Counter electrode 3714, 3714': Signal electrode 3719: Insulator 3740: Signal electrode 3800: Switch 3840: Electrode 3842 : Non-conductive nanoparticle 3842a: switching gap 3845 : discharge electrode 3850 : insulator 3855 : nanotube element 3855 ' : nanotube element 3860, 3860 ': electrode 3870, 3870': insulator 3880: substrate 3890: support portion 3901: glycidol 3903: molecular structure 3904: nanoparticle 3905: nanotube 4001: semiconductor grade hydrolyzate 4002: nanoparticle coated nanotube 4003: spin coating process 4004: substrate component 4100: switch 4140, 4145 4146: Electrode 4142: Conductive nanoparticle 4150: Insulator 4155, 4155': Nanotube element 4160, 4160': Electrode 4170, 4170': Insulator 4175: Physical interface region 4180: Substrate 4190: Support 4200: Non-volatile Switch 4240: Control electrode 4242: Non-conductive nanotube/single-layer mesh 4242a: switching gap/hole or 145 201106408 Space 4245: Discharge electrode 4250: Insulator 4255, 4255': Nanotube element 4260, 4 260': signal electrode 4270, 4270': insulator 4280: substrate element 4300: switch 4340: electrode 4342: non-conductive nanoparticle 4342a: gap 4343: conductive nanoparticle 4345: discharge electrode 4350: insulator 4355: nanotube Element 4360, 4360': electrode 4370, 4370': insulator 4380: substrate 4400: non-volatile switch 4440: control electrode 4442: non-conductive nanotube / single layer net 4442a: gap 4443: conductive nanoparticle 4445: discharge Electrodes 4545, 4455': nanotube elements 4460, 446 (V: signal electrodes 4470, 4470': insulator 4480: substrate element 146
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/537,651 US20100147657A1 (en) | 2004-11-02 | 2009-08-07 | Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201106408A true TW201106408A (en) | 2011-02-16 |
TWI488206B TWI488206B (en) | 2015-06-11 |
Family
ID=44814332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098126838A TWI488206B (en) | 2009-08-07 | 2009-08-10 | Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI488206B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI798925B (en) * | 2021-07-30 | 2023-04-11 | 南亞科技股份有限公司 | Semiconductor chip, electronic device and electrostatic discharge protection method for electronic device thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6323445B1 (en) * | 2000-04-28 | 2001-11-27 | Microsoft Corporation | Membrane switch structure providing electrostatic discharge protection |
JP5165828B2 (en) * | 2002-02-09 | 2013-03-21 | 三星電子株式会社 | Memory device using carbon nanotube and method for manufacturing the same |
US7359888B2 (en) * | 2003-01-31 | 2008-04-15 | Hewlett-Packard Development Company, L.P. | Molecular-junction-nanowire-crossbar-based neural network |
-
2009
- 2009-08-10 TW TW098126838A patent/TWI488206B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI798925B (en) * | 2021-07-30 | 2023-04-11 | 南亞科技股份有限公司 | Semiconductor chip, electronic device and electrostatic discharge protection method for electronic device thereof |
US11699900B2 (en) | 2021-07-30 | 2023-07-11 | Nanya Technology Corporation | Semiconductor chip, electronic device and electrostatic discharge protection method for electronic device thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI488206B (en) | 2015-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7567414B2 (en) | Nanotube ESD protective devices and corresponding nonvolatile and volatile nanotube switches | |
TWI329348B (en) | Two-terminal nanotube devices and systems and methods of making same | |
Close et al. | A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors | |
JP6114487B2 (en) | Memory device and its array using crosspoint switch and non-volatile nanotube block | |
US20100147657A1 (en) | Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches | |
US9007732B2 (en) | Electrostatic discharge protection circuits using carbon nanotube field effect transistor (CNTFET) devices and methods of making same | |
US7872334B2 (en) | Carbon nanotube diodes and electrostatic discharge circuits and methods | |
US20070015303A1 (en) | Nanotube device structure and methods of fabrication | |
TW200308057A (en) | Methods of making electromechanical three-trace junction devices | |
US8716688B2 (en) | Electronic device incorporating memristor made from metallic nanowire | |
Huang et al. | Superior current carrying capacity of boron nitride encapsulated carbon nanotubes with zero-dimensional contacts | |
TW201003910A (en) | Method of making nonvolatile memory cell containing carbon resistivity switching as a storage element by low temperature processing | |
Gayasen et al. | Exploring technology alternatives for nano-scale FPGA interconnects | |
US20090124049A1 (en) | Deletable nanotube circuit | |
Rai et al. | Carbon nanotube as a VLSI interconnect | |
JP4940150B2 (en) | Method for constructing molecular structure on conductor path and molecular memory matrix | |
JP2009004641A (en) | Memory element array | |
Seminario et al. | Clustering effects on discontinuous gold film nanocells | |
TW201106408A (en) | Nanotube ESD protective devices and corresponding nonvolatile and volatile nanotube switches | |
Kumar Rai et al. | Control of tube parameters on SWCNT bundle interconnect delay and power dissipation | |
Gholipour et al. | Graphene nanoribbon crossbar architecture for low power and dense circuit implementations | |
US20100038794A1 (en) | Three dimensional nanoscale circuit interconnect and method of assembly by dielectrophoresis | |
US20140080255A1 (en) | Ultra-low power swnt interconnects for sub-threshold circuits | |
Lee et al. | Molecular wires and gold nanoparticles as molewares for the molecular scale electronics | |
WO2011016815A1 (en) | Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches |