TW201105705A - Liquid crystal polyester and the manufacturing process thereof - Google Patents

Liquid crystal polyester and the manufacturing process thereof Download PDF

Info

Publication number
TW201105705A
TW201105705A TW98127201A TW98127201A TW201105705A TW 201105705 A TW201105705 A TW 201105705A TW 98127201 A TW98127201 A TW 98127201A TW 98127201 A TW98127201 A TW 98127201A TW 201105705 A TW201105705 A TW 201105705A
Authority
TW
Taiwan
Prior art keywords
liquid crystalline
crystalline polyester
acid
structural unit
mol
Prior art date
Application number
TW98127201A
Other languages
Chinese (zh)
Other versions
TWI445732B (en
Inventor
Keiko Osato
Koji Tachikawa
Hideyuki Umetsu
Original Assignee
Toray Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries filed Critical Toray Industries
Priority to TW98127201A priority Critical patent/TWI445732B/en
Publication of TW201105705A publication Critical patent/TW201105705A/en
Application granted granted Critical
Publication of TWI445732B publication Critical patent/TWI445732B/en

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

This invention provides a liquid crystal polyester having excellent fluidity, low anisotropic property, toughness, low gas property, thermal-resistance, and insulation breakdown-resistance. The liquid crystal polyester comprises a sum of 100 mole% of a structural unit obtained from hydroxycarboxylic acid in a range of 38 to 74 mole%, a structural unit obtained from 4, 4' -dihydroxybiphenyl in a range of 31 to 13 mole%, and a structural unit obtained from 2, 6-naphthalene dicarboxylic acid in a range of 31 to 13 mole%, wherein more than 89 mole% of structural units obtained from hydroxycarboxylic acid are from 2-hydroxy-6-naphonic acid, and the average chain length of the structural units obtained from hydroxycarboxylic acid are from 2-hydroxy-6-naphonic acid is 0.1 to 1.

Description

201105705 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種將由高耐熱液晶性聚酯的芳 羥基羧酸所得到的結構單位的平均鏈長控制在0.1〜1 短範圍之技術及藉由該技術所得到的液晶性聚酯及其 物、及由該等所形成的成形品。 【先前技術】 液晶性聚酯係因爲其耐熱性、流動性、尺寸安定 難燃性等良好而被使用於電氣•電子領域。近年來, 性聚酯的需求擴大,特別是熱變形溫度顯示300°c以 被稱爲I型的高耐熱液晶性聚酯的需求擴大。液晶性 係已知以由對羥基苯甲酸或2-羥基-6-萘甲酸所得到 構單位作爲液晶原(mesogen)單位而成之液晶性聚酯; 由2-羥基苯甲酸或2-羥基-6-萘甲酸所得到的結構單β 聚合芳香族二醇/芳香族二羧酸而成者或共聚合對酞 烷酯而成者等。其中已知以由2-羥基-6-萘甲酸作爲液 單位而成之液晶性聚酯,相較於以對羥基苯甲酸作爲 原單位而成之液晶性聚酯,雖然耐熱性差,但是介電 或尺寸安定性、耐光性優良(例如專利文獻1〜6)。 專利文獻1係記載一種將2-羥基-6-萘甲酸、芳香 醇、芳香族二羧酸共聚合而成之液晶性聚酯。但是將 基-6-萘甲酸、芳香族二醇、芳香族二羧酸共聚合而成 晶性聚酯係熔融低、耐熱性不充分。專利文獻2係記 種在特定的單體中加入添加劑而成之液晶性聚酯。但 香族 的極 組成 性、 液晶 上之 聚酯 的結 及在 i ,共 酸伸 晶原 液晶 特性 族二 2-羥 之液 載一 是由 -4- 201105705 於添加劑的影響致使產生耐熱性或耐絕緣崩潰性降低。專 利文獻3〜6係記載一種將2-羥基-6-萘甲酸、芳香族二醇、 芳香族二羧酸共聚合而成之液晶性聚酯。但是在專利文獻 3〜6,爲了高分子量化而進行固相聚合,聚合物的無規性 低、尺寸安定性或流動性不充分。 先前技術文獻 專利文獻 專利文獻1 :特開昭5 6- 1 05 62號公報 專利文獻2 :特開2002-37869號公報 專利文獻3:特開2004-196930號公報 專利文獻4 :特開20〇4-244452號公報 專利文獻5 :特開200 5 -2 1 3 4 1 8號公報 專利文獻6:特開2007-100078號公報 【發明内容】 發明所欲解決之課題 本發明係提供一種流動性特別優良且異方向性低、韋刃 性、低氣體性、耐熱性優良,而且耐絕緣崩潰性高的液晶 性聚醋及其製造方法,又’提供其組成物及由該等所形成 的成形品。 解決課題之手段 爲了解決上述課題,本發明者等進行專心硏討的結 果’發現藉由控制由2-羥基-6-萘甲酸所得到的結構單位之 鏈長’能夠得到具有經特別改良的特性之液晶性聚酯,而 達成了本發明。 亦即,本發明係提供一種液晶性聚醋,其特徵係具有 201105705 38〜74莫耳%之由羥基羧酸所得到的結構單位、13〜3i莫 耳°/。之由4,4’-二羥基聯苯所得到的結構單位及13〜31莫 耳°/。之由2,6·萘二羧酸所得到的結構單位之合計1〇〇莫耳% 之液晶性聚酯,由羥基羧酸所得到的結構單位的8 9莫耳% 以上係由2-羥基-6-萘甲酸所得到的結構單位,該由2-羥基 •6 -萘甲酸所得到的結構單位之平均鏈長係〇.1〜1。 發明之效果 依照本發明,能夠提供一種流動性特別優良且異方向 性低、韌性、低氣體性、耐熱性優良,而且耐絕緣崩潰性 高的液晶性聚酯及其製造方法,又,提供其組成物及由該 等所形成的成形品。 【實施方式】 以下,詳細地說明本發明。本發明的液晶性聚酯(A) 係具有3 8〜74莫耳%之由羥基羧酸所得到的結構單位、1 3 〜3 1莫耳%之由4,4 二羥基聯苯所得到的結構單位及1 3 〜3 1莫耳%之由2,6 -萘二羧酸所得到的結構單位之合計 1 00莫耳%之液晶性聚酯,由羥基羧酸所得到的結構單位的 89莫耳%以上係由2-羥基-6-萘甲酸所得到的結構單位,該 由2·羥基-6-萘甲酸所得到的結構單位之平均鏈長係〇·1〜 1 ° 在本發明,液晶性聚酯係在熔融時顯示光學性異方向 羥構。 一_一結酯 i的聚 4,到成 、 得形 位所而 單酸鍵 構羧酯 。結二成 醋的1形 聚到,6-係 之得2 β 物所由單 合酸及構 聚羧位結 晶基單的 液羥構等 性由結該 熱,的著 向明到味 爲發得意 稱本所係 被在苯, 之聯位 性基單 201105705 本發明的液晶性聚酯(A)中,由羥基羧酸所得到的結構 單位之羥基羧酸,例如能夠使用2-羥基-6-萘甲酸、2-羥基 -3-萘甲酸、1_羥基-4-萘甲酸、間羥基苯甲酸、4’-羥基-4-聯苯基羧酸、4-羥基-2·苯基苯甲酸、3-第三丁基-4-羥基苯 甲酸、3,5-二-第三丁基-4-羥基苯甲酸、4-羥基桂皮酸、該 等的甲酯衍生物作爲原料。作爲羥基羧酸以2-羥基-6-萘甲 酸爲最佳。 本發明的液晶性聚酯(A)中,作爲由4,4’ -二羥基聯苯 所得到的結構單位係例如能夠使用4,4 二羥基聯苯所作 爲原料。 本發明的液晶性聚酯(A)中,作爲由2,6 -萘二羧酸所得 到的結構單位係例如能夠使用由2,6 -萘二羧酸、或2,6-萘 二羧酸的酯形成衍生物所得到的結構單位作爲原料β 本發明的液晶性聚酯(Α)以具有甲氧羰基作爲末端基 爲佳。特別是使用2,6-萘二羧酸二甲酯作爲原料時,成爲 具有甲氧羰基及/或羥基作爲末端基之液晶性聚酯,能夠得 到可抑制乙酸氣體或碳酸氣體的產生而降低氣體量之效 果。 爲了得到流動性優良且異方向性低、韌性、低氣體優 良’而且改善絕緣崩潰電阻等之特徵,本發明的液晶性聚 酯(A)係相對於總結構單位的合計1〇〇莫耳%,具有”〜” 莫耳%之由羥基羧酸所得到的結構單位、3丨〜1 3莫耳%之由 4,4’·二經基聯苯所得到的結構單位及31〜13莫耳%之由 2,6-萘二羧酸所得到的結構單位。本發明的液晶性聚酯 以具有4〇〜44莫耳%之由羥基羧酸所得到的結構單位、28 201105705 〜30莫耳%之由4,4,_二羥基聯苯所得到的結構單位及28 〜30莫耳%之由2,6_萘二羧酸所得到的結構單位爲佳。 本發明的液晶性聚酯(A)以羥基羧酸爲2_經基_6萘甲 酸,且具有38〜74莫耳%之由羥基竣酸所得到的結構單 k、1 3〜3 1莫耳%之由4,4 ’ -二羥基聯苯所得到的結構單位 及13〜31莫耳%之由2,6_萘二羧酸所得到的結構單位爲 佳。 本發明的液晶性聚酯(A)以羥基羧酸爲2_羥基_6_萘甲 酸’且具有40〜44莫耳%之由經基殘酸所得到的結構單 位、28〜30莫耳%之由4,4,-二羥基聯苯所得到的結構單位 及28〜30莫耳%之由2,6-萘二羧酸所得到的結構單位爲更 佳。 又,以降低異方向性的效果作爲目的時,本發明的液 晶性聚酯(A)以由羥基羧酸所得到的結構單位的89〜99 9 莫耳%係由2-羥基-6-萘甲酸所得到的結構單位,且〇.〗〜u 莫耳%係由3,5-二-第三丁基-4-羥基苯甲酸所得到的結構 單位爲佳。以降低異方向性的效果作爲目的時,本發明的 液晶性聚酯(A)以由羥基羧酸所得到的結構單位的95〜 98.9莫耳%係由2-羥基-6-萘甲酸所得到的結構單位,且1」 〜5莫耳%係由3,5-二-第三丁基-4-羥基苯甲酸所得到的結 構單位爲更佳。 使用由3,5-二-第三丁基-4-羥基苯甲酸所得到的結構 單位時,因爲3,5-二-第三丁基-4-羥基苯甲酸介入其間而緩 和2-羥基-6-萘甲酸與其他單體的聚合速度差異,能夠抑制 在聚合反應過程因系統的2相化所引起的暴沸等,製造條 201105705 件餘裕度亦變爲廣闊’且能夠改善所得到的液晶性聚酯之 異方向性,乃是較佳。 本發明的液晶性聚酯(A)的結構單位之中,由4,4,-二 羥基聯苯所得到的結構單位與由2,6_萘二羧酸所得到的結 構單位之莫耳比以0.8〜1.2爲佳,以〇.9〜1.1爲較佳,以 1.0爲更佳。由4,4’-二羥基聯苯所得到的結構單位與由2,6-萘二羧酸所得到的結構單位之莫耳比爲0.8〜1.2時,能夠 得到充分的聚縮合速度,乃是較佳,0.9〜1.1時,因爲氣 體量變少,乃是較更佳’ 1.0時,因爲能夠得到流動性特別 優良且具有低異方向性、高耐熱性之液晶性聚酯(A),乃是 最佳。 本發明的液晶性聚酯(A)係由2-羥基-6-萘甲酸所得到 的結構單位之平均鏈長爲0.1〜1。由2-羥基-6-萘甲酸所得 到的結構單位之平均鏈長爲〇. 1〜1時,因爲由2-羥基-6-萘甲酸所得到的結構單位的分子鏈間相互作用及結晶部位 的偏在,能夠改善流動性或異方向性、低韌性。由2-羥基 -6-萘甲酸所得到的結構單位之平均鏈長以0.2〜0.8爲佳。 由2-羥基-6-萘甲酸所得到的結構單位之平均鏈長爲 小於0.1時,因爲從分子鏈中之由2-羥基-6-萘甲酸所得到 的結構單位所得到的液晶原單位比率太低,無法顯現作爲 液晶性聚酯之特性。 又,由2-羥基-6-萘甲酸所得到的結構單位之平均鏈長 爲大於1時,無法得到原來應得到的液晶性聚酯特性’特 別是流動性降低且產生異方向性增大° 說明在本發明之由2-羥基-6-萘甲酸所得到的結構單 201105705 位之鏈長。 本發明之由2-羥基-6-萘甲酸所得到的結構單位之鏈 長’係表示由2-羥基-6_萘甲酸所得到的結構單位是否與若 干個由2-經基_6_萘甲酸所得到的結構單位未透過由其他 單體所得到的結構單位形成酯鍵而鍵結之指標。 在第1圖,係說明由2-羥基-6-萘甲酸所得到的結構單 位之鏈長。第1圖係進行說明例如由2_羥基-6_萘甲酸所得 到的結構單位、由4,4’-二羥基聯苯所得到的結構單位及由 2.6- 萘二竣酸所得到的結構單位之3種所構成的情況。2_ 經基-6-萘甲酸係透過酯鍵與4,4,_二羥基聯苯、2,6_萘二羧 酸鍵結時’鏈長爲〇(第1圖、i)。2 -羥基-6-萘甲酸係透過 酯鍵與2-經基-6-萘甲酸連結,且各自的他端係未透過酯鍵 與2-羥基-6-萘甲酸鍵結時,鍵長爲丨(第1圖、π)。同樣地, 3個2-羥基-6-萘甲酸係透過酯鍵鍵結,且其兩端係未透過 酯鍵與2-羥基-6-萘甲酸鍵結時,鍵長爲2(第1圖、iii)。 在本發明,由2-羥基-6-萘甲酸所得到的結構單位之平 均鏈長’係在液晶聚酯中之由2-羥基-6-萘甲酸所得到的結 構單位的鏈長之數量平均値。平均鏈長係由在聚合物中存 在的總2-羥基-6-萘甲酸所得到的結構單位的鏈長之平均 値,能夠使用核磁共振裝置(NMR)光譜測定來測定。例如 使用13C-NMR,將聚合物溶解於五氟苯酚/重氯仿的混合溶 液,基於由2-羥基-6-萘甲酸所得到的結構單位的第2位置 的碳之位移,透過酯鍵而鍵結於由其他2-羥基-6-萘甲酸所 得到的結構單位的第6位置而成之結構(尖峰A)與鍵結於 2.6- 萘二羧酸而成之結構(尖峰B)被分離,從各自的尖峰面 -10- 201105705 積(各自爲尖峰A面積(a)及尖峰B面積(b)),依照由2-羥基 -6-萘甲酸所得到的結構單位之平均鏈長=a/b來計算確定。 在第2圖,係算出由2-羥基-6-萘甲酸所得到的結構單 位的平均鏈長所使用之藉由13C-N MR的圖表之模式圖。a 係表示以第2位置的羥基與來自其他2-羥基-6-萘甲酸的羧 酸的結構單位進行酯鍵結之來自2-羥基-6-萘甲酸的結構 單位的第2位置的碳原子之13 C-NMR尖峰A的尖峰強度。 b係表示以第2位置的羥基與來自2,6-萘二羧酸的結構單 位的羧酸進行酯鍵結之來自2-羥基-6-萘甲酸的結構單位 的第2位置的碳原子之13 C-NMR尖峰B的尖峰強度。 平均鏈長的計算確定方法,可例示末永等人之Polymer Journal(高分子期刊),25(3),3 1 5 ( 1 9 93年)。依照末永等人 的方法之Average sequence length(平均序列長度)時,係將 對羥基苯甲醯基結構單位爲1個且未與對羥基苯甲醯基結 構單位進行酯鍵結之單體作爲 Average sequence len.gth=l,但是因爲單體係未進行鏈鎖動作,表示鏈長時 將單體作爲鏈長爲1時並不佳,所以在本發明係將單體之 平均鏈長作爲〇,並使用將末永等人的算出式減1而成之 算出式。 就機械強度、成形性而言,本發明的液晶性聚酯(A) 係數量平均分子量以 3,000〜25,000爲佳,以5,000〜 20, 〇〇〇爲較佳,以8,000〜18,000的範圍爲更佳。 數量平均分子量係將液晶性聚酯(A)溶解於可溶的溶 劑,例如五氟苯酚溶劑,並依照GPC-LS(凝膠滲透色譜光 散射)法來測定。 -11- 201105705 就流動性而言’本發明的液晶性聚酯(A)之熔融黏度以 1〜200Pa*s爲佳,以 10〜200Pa.s爲更佳,而且以 10〜 100Pa*s爲特佳。熔融黏度係在液晶性聚酯的熔點+20°C的 條件且剪切速度爲1,000/s條件下,藉由高化式流速測試器 (Koka-type flowtester)所測定的値。 在此,熔點(Tm)係指在微差熱量測定,在將聚合完成 後的聚合物從室溫以20t /分鐘的升溫條件測定時觀測能 夠觀測到的吸熱尖峰溫度(Tml)後,在Tml+20°C的溫度保 持5分鐘後,以2 0 °C /分鐘的降溫條件暫時冷卻至室溫後, 再次以20 °C /分鐘的升溫條件測定時能夠觀測到的吸熱尖 峰溫度(Tm2)。 本發明的液晶性聚酯(A)具有高韌性、低異方向性且低 氣體,而且絕緣崩潰電阻優良。 本發明的液晶性聚酯(A)以在所得到液晶性聚酯的(熔 點+2 0)〜(熔點+4 0 °C)的溫度範圍進行熔融聚合來製造爲 佳。藉由在所得到液晶性聚酯樹脂的(熔點+20)〜(熔點+40 t)的溫度範圍進行熔融聚合來製造,能夠賦予充分的熱量 用以使液晶性聚酯的均質化,而且,不會產生因聚合物進 行熱分解所引起的著色或物性降低。 本發明的液晶性聚酯(A)以藉由在所得到液晶性聚酯 的(熔點+25)〜(熔點+35 °C)的溫度範圍進行熔融聚合來製 造爲更佳,能夠得到特別均質之由2-羥基-6-萘甲酸所得到 的結構單位的平均鏈長爲0.1〜1且異方向性低、流動性、 韌性亦優良之本發明的液晶性聚酯(A)。 所得到的液晶性聚酯之熔點係取決於組成之値,能夠 -12- 201105705 藉由至少在生成物完全熔融的溫度至3 90 °C的範圍進行液 晶性聚酯的熔融聚合,並藉由對所得到的聚合物測定微差 熱量來得到。 本發明的液晶性聚酯(A)之製造方法,爲了使2,6-萘二 羧酸的衍生物之反應充分地進行,且使聚合物不會進行熱 分解,以在熔融聚合反應時的最高到達溫度使其滯留於反 應系統1〜3小時爲佳,以1.2〜2.5小時爲更佳。藉由在熔 融聚合反應時的最高到達溫度使其滯留於反應系統1〜3 小時,能夠促進聚合物的無規化,容易得到具有本發明的 平均鏈長之液晶性聚酯(A)。 本發明的液晶性聚酯(A)之製造方法,以在熔融聚合反 應時的最高到達溫度且於常壓、氮氣氣流下使其使反應爲 佳。 本發明的液晶性聚酯(A)之熔融聚合係例如能夠依照 以下所示之方法進行》 (1) 藉由從含2-乙醯氧基-6-萘甲酸的乙醯氧基羧酸及4,4’-二乙醯氧基聯苯、2,6-萘二羧酸之熔融脫乙酸聚縮合反應 來製造液晶性聚酯之方法》 (2) 使乙酸酐對含2-羥基-6·萘甲酸的羥基羧酸及4,4,-二羥 基聯苯、2,6-萘二羧酸進行反應而將酚性羥基醯化。隨後, 藉由熔融脫乙酸聚縮合反應來製造液晶性聚酯之方法》 (3) 從含2-羥基-6-萘甲酸的羥基羧酸的苯酯及4,4’-二羥基 聯苯、2,6-萘二羧酸的二苯酯之溶融藉由脫酚聚縮合反應 來製造液晶性聚酯之方法。 (4) 使規定量的碳酸二苯酯對含2 -羥基-6-萘甲酸的羥基羧 -13- 201105705 酸及2,6-萘二羧酸進行反應而各自製成二苯酯。 隨後,藉由添加4,4’ -二羥基聯苯並進行熔融脫酚聚 縮合反應來製造液晶性聚酯之方法。 (5) 使含2-羥基-6-萘甲酸的羥基羧酸及4,4’-二羥基聯苯與 乙酸酐反應而將酚性羥基的一部分醯化。 隨後,藉由熔融脫乙酸聚縮合反應而餾去乙酸,並添 加2,6-萘二羧酸二甲酯而與殘留的羥基進行熔融脫甲醇聚 縮合反應來製造液晶性聚酯之方法。 (6) 使乙酸酐對含2-羥基-6-萘甲酸的羥基羧酸及4,4,-二羥 基聯苯反應而將酚性羥基醯化。 隨後,藉由邊將所產生的乙酸從系統內除去,邊添加 2,6-萘二羧酸二甲酯,而且進行熔融脫乙酸/乙酸甲酯聚縮 合反應來製造液晶性聚酯之方法。 在本發明所使用的液晶性聚酯之熔融聚合方法,以使 用組合2製程以上之選自如上述(5)、(6)所示之藉由乙醯基 與羧酸的脫乙酸聚縮合之聚合製程,藉由甲氧羰基與乙醯 基的脫乙酸甲酯聚縮合之聚合製程及藉由甲氧羰基與羥基 的脫甲醇聚縮合之聚合製程來製造液晶性聚酯爲佳。 組合2製程以上之選自藉由乙醯基與羧酸的脫乙酸聚 縮合之聚合製程,藉由甲氧羰基與乙醯基的脫乙酸甲酯聚 縮合之聚合製程及藉由甲氧羰基與羥基的脫甲醇聚縮合之 聚合製程來製造液晶性聚酯時,具有羥基及乙醯基、甲氧 羰基及羧基等作爲末端結構時,及具有甲氧羰基及/或羥基 作爲末端結構時,因爲幾乎未具有乙醯基末端,所以乙酸 氣體的產生量顯著地變少,低氣體性優良》 -14- 201105705 其中,特別是依照含有藉由甲氧羰基與羥基的脫甲醇 聚縮合之聚合製程之製造方法所製造的液晶性聚酯,能夠 得到在末端至少具有羥基及甲氧羰基,而且低氣體效果 高、耐熱性優良之液晶性聚酯,乃是更佳。 作爲含有藉由甲氧羰基與羥基的脫甲醇聚縮合之聚合 製程之製造方法,例如將2-羥基-6-萘甲酸或4,4’-二羥基 聯苯直接使用於聚合,並利用乙醯基與羥基的反應性不 同,能夠得到以羥基優先作爲聚合物末端基之液晶性聚酯。 本發明的液晶性聚酯(A)係具有乙醯基、羥基、甲氧羰 基、羧基的任一者作爲末端基,具有哪個作爲末端基,係 能夠將聚合物溶解於可溶的溶劑,例如五氟苯酚/重氯仿 = 5 0/5 0的混合溶劑並用1H-NMR來測定,並從所得到的光 譜來進行判定。 又’將藉由熔融聚合所得到之序列(sequence)被固定的 液晶性聚酯,例如將所得到的顆粒狀物或使用凍結粉碎機 粉碎’並在氮氣氣流下或減壓下且在液晶性聚酯的(熔點-5 °C)〜(熔點-50°C)(例如200〜300°C)的範圍,加熱1〜50 小時’來聚縮合至需要的聚合度,而且亦能夠高黏度化。 上述的製造方法,與先前的固相聚合法不同,因爲在 固相聚合前的階段藉由熔融聚合法所得到的液晶性聚酯之 序列係充分地無規化,在固相聚合後該序列亦被保持之緣 故’對由2-羥基-6·萘甲酸所得到的結構單位之鏈鎖不會產 生不良的影響》 本發明的液晶性聚酯(A)的製造方法,爲了控制由2_ 羥基-6-萘甲酸所得到的結構單位之平均鏈長,亦可在聚合201105705 6. Technical Field of the Invention The present invention relates to a technique for controlling an average chain length of a structural unit obtained from an aromatic hydroxycarboxylic acid of a high heat-resistant liquid crystalline polyester to a short range of 0.1 to 1 A liquid crystalline polyester obtained by the technique and a molded article thereof. [Prior Art] The liquid crystalline polyester is used in the electrical and electronic fields because of its excellent heat resistance, fluidity, dimensional stability, and flame retardancy. In recent years, the demand for polyesters has expanded, and in particular, the heat distortion temperature has been shown to increase the demand for high heat resistant liquid crystalline polyesters called I type at 300 °C. The liquid crystal property is known as a liquid crystalline polyester obtained by using a structural unit derived from p-hydroxybenzoic acid or 2-hydroxy-6-naphthoic acid as a mesogen unit; from 2-hydroxybenzoic acid or 2-hydroxy- The structure obtained by 6-naphthoic acid is a mono-β-polymeric aromatic diol/aromatic dicarboxylic acid or a copolymerized p-mentyl ester. Among them, a liquid crystalline polyester obtained by using 2-hydroxy-6-naphthoic acid as a liquid unit is known, and compared with a liquid crystalline polyester obtained by using p-hydroxybenzoic acid as a raw unit, although heat resistance is poor, dielectric is used. It is excellent in dimensional stability and light resistance (for example, Patent Documents 1 to 6). Patent Document 1 describes a liquid crystalline polyester obtained by copolymerizing 2-hydroxy-6-naphthoic acid, an aromatic alcohol, or an aromatic dicarboxylic acid. However, the copolymerization of a ketone-naphthoic acid, an aromatic diol, or an aromatic dicarboxylic acid to form a crystalline polyester is low in melting and insufficient in heat resistance. Patent Document 2 discloses a liquid crystalline polyester obtained by adding an additive to a specific monomer. However, the polar constitutiveness of the incense, the knot of the polyester on the liquid crystal, and the liquidity of the di- 2-hydroxy group of the liquid crystal characteristic of the eutectic liquid crystal are caused by the influence of the additive on -4- 201105705 to cause heat resistance or Resistance to insulation collapse is reduced. Patent Documents 3 to 6 describe a liquid crystalline polyester obtained by copolymerizing 2-hydroxy-6-naphthoic acid, an aromatic diol, and an aromatic dicarboxylic acid. However, in Patent Documents 3 to 6, solid phase polymerization is carried out for the purpose of high molecular weight, and the polymer has low randomness, dimensional stability, and fluidity. CITATION LIST PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT Japanese Unexamined Patent Publication No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. Publication No A liquid crystal polyester which is particularly excellent in low directionality, excellent in warpage, low in gas and heat resistance, and high in insulation breakdown resistance, and a method for producing the same, and provides a composition thereof and a shape formed by the above Product. MEANS TO SOLVE THE PROBLEM In order to solve the above problems, the inventors of the present invention have found that the chain length of the structural unit obtained from 2-hydroxy-6-naphthoic acid can be found to have particularly improved characteristics. The present invention has been achieved by liquid crystalline polyester. That is, the present invention provides a liquid crystalline polyester characterized by having a structural unit obtained from a hydroxycarboxylic acid of 201105705 38 to 74 mol%, and 13 to 3 μmol. The structural unit derived from 4,4'-dihydroxybiphenyl and 13 to 31 moles /. The liquid crystalline polyester having a total of 1 〇〇 mol% of the structural unit obtained from 2,6-naphthalenedicarboxylic acid, and more than 8.9 mol% of the structural unit obtained from the hydroxycarboxylic acid is 2-hydroxyl The structural unit obtained by -6-naphthoic acid, the average chain length of the structural unit obtained from 2-hydroxy•6-naphthoic acid is 〇.1~1. Advantageous Effects of Invention According to the present invention, it is possible to provide a liquid crystalline polyester which is particularly excellent in fluidity, has low anisotropy, is excellent in toughness, low in gas properties, heat resistance, and high in insulation breakdown resistance, and a method for producing the same. A composition and a molded article formed from the above. [Embodiment] Hereinafter, the present invention will be described in detail. The liquid crystalline polyester (A) of the present invention has 3 to 74 mol% of a structural unit derived from a hydroxycarboxylic acid, and 1 to 3 1 mol% of a 4,4 dihydroxybiphenyl. The structural unit and the structural unit obtained from 2,6-naphthalenedicarboxylic acid of 1 3 to 3 1 mol%, the total of 100% by mole of the liquid crystalline polyester, and the structural unit obtained from the hydroxycarboxylic acid 89 The molar % or more is a structural unit obtained from 2-hydroxy-6-naphthoic acid, and the average chain length of the structural unit obtained from 2·hydroxy-6-naphthoic acid is 〜·1 to 1 °. In the present invention, The liquid crystalline polyester exhibits an optically heterogeneous hydroxyl structure upon melting. The poly(4) of the mono-ester ester i is in the form of a monocarboxylic acid carboxylate. The first form of the vinegar is formed in the form of a vinegar, and the liquid hydroxy structure of the 6-series from the mono-acid and the poly-carboxyl-crystalline group is determined by the heat of the knot. In the liquid crystalline polyester (A) of the present invention, the structural unit of the hydroxycarboxylic acid obtained from the hydroxycarboxylic acid, for example, 2-hydroxy-6 can be used. -naphthoic acid, 2-hydroxy-3-naphthoic acid, 1-hydroxy-4-naphthoic acid, m-hydroxybenzoic acid, 4'-hydroxy-4-biphenylcarboxylic acid, 4-hydroxy-2-phenylbenzoic acid 3-tert-butyl-4-hydroxybenzoic acid, 3,5-di-t-butyl-4-hydroxybenzoic acid, 4-hydroxycinnamic acid, and such methyl ester derivatives are used as starting materials. As the hydroxycarboxylic acid, 2-hydroxy-6-naphthoic acid is preferred. In the liquid crystalline polyester (A) of the present invention, as a structural unit obtained from 4,4'-dihydroxybiphenyl, for example, 4,4 dihydroxybiphenyl can be used as a raw material. In the liquid crystalline polyester (A) of the present invention, as a structural unit obtained from 2,6-naphthalenedicarboxylic acid, for example, 2,6-naphthalenedicarboxylic acid or 2,6-naphthalenedicarboxylic acid can be used. The structural unit obtained by the ester-forming derivative is used as the raw material β. The liquid crystalline polyester (Α) of the present invention preferably has a methoxycarbonyl group as a terminal group. In particular, when dimethyl 2,6-naphthalenedicarboxylate is used as a raw material, it becomes a liquid crystalline polyester having a methoxycarbonyl group and/or a hydroxyl group as a terminal group, and it is possible to suppress generation of acetic acid gas or carbonic acid gas and reduce gas. The effect of the amount. The liquid crystalline polyester (A) of the present invention is a total of 1% by mole relative to the total structural unit in order to obtain excellent fluidity, low specificity, toughness, low gas quality, and improvement of insulation breakdown resistance and the like. , having "~" Mohr% of the structural unit obtained from the hydroxycarboxylic acid, 3丨~1 3 mol% of the structural unit obtained from 4,4'·di-based biphenyl and 31~13 mol % of the structural unit derived from 2,6-naphthalenedicarboxylic acid. The liquid crystalline polyester of the present invention has a structural unit obtained from a hydroxycarboxylic acid having 4 〇 to 44 mol%, and a structural unit derived from 4,4,_dihydroxybiphenyl of 28 201105705 to 30 mol%. And 28 to 30 mol% of the structural unit obtained from 2,6-naphthalenedicarboxylic acid is preferred. The liquid crystalline polyester (A) of the present invention has a structure in which the hydroxycarboxylic acid is 2-hydroxyl-6 naphthoic acid and has 38 to 74 mol% of a structure derived from hydroxydecanoic acid, a single k, 1 3 to 3 1 Mo The structural unit derived from 4,4 '-dihydroxybiphenyl and 13 to 31 mol% of the structural unit derived from 2,6-naphthalenedicarboxylic acid are preferred. The liquid crystalline polyester (A) of the present invention has a hydroxycarboxylic acid of 2-hydroxy-6-naphthoic acid and has a structural unit of 40 to 44 mol% of a residual acid obtained by the base, and 28 to 30 mol%. The structural unit derived from 4,4,-dihydroxybiphenyl and 28 to 30 mol% of the structural unit derived from 2,6-naphthalene dicarboxylic acid are more preferable. Further, in order to reduce the effect of the anisotropy, the liquid crystalline polyester (A) of the present invention is derived from 2-hydroxy-6-naphthalene in a structural unit of 89 to 99 9 mol% obtained from a hydroxycarboxylic acid. The structural unit obtained by formic acid, and 〇. 〜~u mole % is preferably a structural unit obtained from 3,5-di-t-butyl-4-hydroxybenzoic acid. For the purpose of reducing the effect of the anisotropy, the liquid crystalline polyester (A) of the present invention is obtained from 2-hydroxy-6-naphthoic acid in a structural unit of 95 to 98.9 mol% obtained from a hydroxycarboxylic acid. The structural unit, and 1" to 5 mol% is more preferably a structural unit derived from 3,5-di-t-butyl-4-hydroxybenzoic acid. When a structural unit derived from 3,5-di-t-butyl-4-hydroxybenzoic acid is used, since 3,5-di-t-butyl-4-hydroxybenzoic acid is interposed therebetween, the 2-hydroxy group is moderated. The difference in polymerization rate between 6-naphthoic acid and other monomers can suppress the bumping caused by the two-phase system in the polymerization process, and the margin of the manufactured strip 201105705 becomes broad, and the obtained liquid crystal can be improved. The heterogeneity of the polyester is preferred. Among the structural units of the liquid crystalline polyester (A) of the present invention, the structural unit derived from 4,4,-dihydroxybiphenyl and the molar ratio of the structural unit obtained from 2,6-naphthalenedicarboxylic acid It is preferably from 0.8 to 1.2, preferably from 〇.9 to 1.1, and more preferably from 1.0. When the molar ratio of the structural unit derived from 4,4'-dihydroxybiphenyl to the structural unit obtained from 2,6-naphthalenedicarboxylic acid is 0.8 to 1.2, a sufficient polycondensation rate can be obtained. In the case of 0.9 to 1.1, the liquid crystal polyester (A) which is particularly excellent in fluidity and has low heterogeneity and high heat resistance can be obtained because the amount of gas is less than 1.0. optimal. The liquid crystalline polyester (A) of the present invention has an average chain length of 0.1 to 1 in the structural unit obtained from 2-hydroxy-6-naphthoic acid. The average chain length of the structural unit obtained from 2-hydroxy-6-naphthoic acid is 〇. 1 to 1, because of the molecular chain interaction and crystallization sites of the structural unit obtained from 2-hydroxy-6-naphthoic acid. The bias can improve fluidity, heterogeneity, and low toughness. The structural unit obtained from 2-hydroxy-6-naphthoic acid has an average chain length of preferably 0.2 to 0.8. When the average chain length of the structural unit obtained from 2-hydroxy-6-naphthoic acid is less than 0.1, the ratio of the original liquid crystal unit obtained from the structural unit derived from 2-hydroxy-6-naphthoic acid in the molecular chain It is too low to exhibit the characteristics as a liquid crystalline polyester. Further, when the average chain length of the structural unit obtained from 2-hydroxy-6-naphthoic acid is more than 1, the properties of the liquid crystalline polyester which should be obtained originally cannot be obtained, in particular, the fluidity is lowered and the anisotropy is increased. The chain length of the structural unit 201105705 obtained from 2-hydroxy-6-naphthoic acid of the present invention is illustrated. The chain length of the structural unit obtained from 2-hydroxy-6-naphthoic acid of the present invention indicates whether the structural unit obtained from 2-hydroxy-6-naphthoic acid and several 2-amino- 6-naphthalene The structural unit obtained by formic acid does not pass through an index of formation of an ester bond by a structural unit derived from another monomer. In Fig. 1, the chain length of the structural unit obtained from 2-hydroxy-6-naphthoic acid is explained. Fig. 1 is a structural unit obtained by, for example, 2-hydroxy-6-naphthoic acid, a structural unit derived from 4,4'-dihydroxybiphenyl, and a structural unit derived from 2.6-naphthalene dicarboxylic acid. The case of three kinds of configurations. 2_ The trans-ester-6-naphthoic acid-based ester bond is bonded to 4,4,-dihydroxybiphenyl or 2,6-naphthalene dicarboxylic acid, and the chain length is 〇 (Fig. 1, i). 2-hydroxy-6-naphthoic acid is bonded to 2-amino-6-naphthoic acid via an ester bond, and each end is bonded to 2-hydroxy-6-naphthoic acid via an ester bond, and the bond length is丨 (Fig. 1, π). Similarly, when three 2-hydroxy-6-naphthoic acid groups are bonded via an ester bond, and both ends of the two-permeate ester bond are bonded to 2-hydroxy-6-naphthoic acid, the bond length is 2 (Fig. 1) , iii). In the present invention, the average chain length of the structural unit obtained from 2-hydroxy-6-naphthoic acid is the average number of chain lengths of structural units derived from 2-hydroxy-6-naphthoic acid in the liquid crystal polyester. value. The average chain length is the average enthalpy of the chain length of the structural unit obtained from the total 2-hydroxy-6-naphthoic acid present in the polymer, and can be measured by nuclear magnetic resonance (NMR) spectrometry. For example, by using 13C-NMR, the polymer is dissolved in a mixed solution of pentafluorophenol/heavy chloroform, and the bond of the carbon at the second position based on the structural unit obtained from 2-hydroxy-6-naphthoic acid is transmitted through the ester bond. The structure (spike A) formed by the 6th position of the structural unit obtained from other 2-hydroxy-6-naphthoic acid is separated from the structure (spike B) bonded to 2.6-naphthalene dicarboxylic acid, From the respective peak faces-10-201105705 (each of which is the peak A area (a) and the peak B area (b)), the average chain length according to the structural unit obtained from 2-hydroxy-6-naphthoic acid = a/ b to calculate the determination. In Fig. 2, a schematic diagram of a graph by 13C-N MR used for calculating the average chain length of the structural unit obtained from 2-hydroxy-6-naphthoic acid is used. a represents a carbon atom at the second position of the structural unit derived from 2-hydroxy-6-naphthoic acid which is ester-bonded with a hydroxyl group at the second position and a structural unit derived from a carboxylic acid of another 2-hydroxy-6-naphthoic acid. The peak intensity of the 13 C-NMR peak A. b is a carbon atom at the second position of the structural unit derived from 2-hydroxy-6-naphthoic acid which is ester-bonded with a hydroxy group at a second position and a carboxylic acid derived from a structural unit of 2,6-naphthalenedicarboxylic acid. Peak intensity of 13 C-NMR spike B. The method for calculating the average chain length can be exemplified by the Polymer Journal, 25(3), 3 1 5 (1989). According to the method of the final sequence length of the method of Du Yong et al., the monomer having a p-hydroxybenzhydryl structural unit of 1 and not ester-bonded with a p-hydroxybenzhydryl structural unit is used as the Average. The sequence len.gth=l, but since the single system does not perform the chain locking operation, it is not preferable to represent the monomer as the chain length when the chain length is 1, so in the present invention, the average chain length of the monomer is taken as 〇, The calculation formula obtained by subtracting 1 from the calculation formula of the end Yong et al. The liquid crystalline polyester (A) of the present invention preferably has a number average molecular weight of 3,000 to 25,000, preferably 5,000 to 20, preferably yt, and more preferably 8,000 to 18,000, in terms of mechanical strength and formability. good. The number average molecular weight is determined by dissolving the liquid crystalline polyester (A) in a soluble solvent such as a pentafluorophenol solvent in accordance with the GPC-LS (gel permeation chromatography light scattering) method. -11- 201105705 In terms of fluidity, the melt viscosity of the liquid crystalline polyester (A) of the present invention is preferably from 1 to 200 Pa*s, more preferably from 10 to 200 Pa.s, and from 10 to 100 Pa*s. Very good. The melt viscosity was measured by a Koka-type flow tester under the conditions of a melting point of liquid crystal polyester + 20 ° C and a shear rate of 1,000 / s. Here, the melting point (Tm) is measured by differential heat, and after observing the endothermic peak temperature (Tml) which can be observed when the polymer after completion of polymerization is measured from a room temperature of 20 t /min, in Tml After the temperature of +20 ° C was maintained for 5 minutes, the temperature was temporarily cooled to room temperature under a cooling condition of 20 ° C /min, and the endothermic peak temperature (Tm2) which can be observed when measured at a temperature rising condition of 20 ° C /min again. . The liquid crystalline polyester (A) of the present invention has high toughness, low heterogeneity, and low gas, and is excellent in insulation breakdown resistance. The liquid crystalline polyester (A) of the present invention is preferably produced by melt polymerization in a temperature range of (melting point + 2 0) to (melting point + 40 ° C) of the obtained liquid crystalline polyester. By performing melt polymerization in a temperature range of (melting point + 20) to (melting point + 40 t) of the obtained liquid crystalline polyester resin, sufficient heat can be supplied to homogenize the liquid crystalline polyester. There is no deterioration in coloring or physical properties caused by thermal decomposition of the polymer. The liquid crystalline polyester (A) of the present invention is more preferably produced by melt polymerization in a temperature range of (melting point + 25) to (melting point + 35 ° C) of the obtained liquid crystalline polyester, and is particularly homogeneous. The liquid crystalline polyester (A) of the present invention having a structural unit of 2-hydroxy-6-naphthoic acid having an average chain length of 0.1 to 1 and having low heterogeneity and excellent fluidity and toughness. The melting point of the obtained liquid crystalline polyester depends on the composition of the crucible, and it is possible to carry out melt polymerization of the liquid crystalline polyester by at least the temperature at which the product is completely melted to a temperature of 3 90 ° C by -12 to 201105705. The resulting polymer was measured for differential heat. In the method for producing a liquid crystalline polyester (A) of the present invention, the reaction of the derivative of 2,6-naphthalenedicarboxylic acid is sufficiently carried out, and the polymer is not thermally decomposed so as to be in the case of melt polymerization. The maximum temperature reached is preferably 1 to 3 hours in the reaction system, preferably 1.2 to 2.5 hours. By retaining in the reaction system for 1 to 3 hours at the highest temperature at the time of the melt polymerization reaction, the polymer can be promoted to be randomized, and the liquid crystalline polyester (A) having the average chain length of the present invention can be easily obtained. In the method for producing a liquid crystalline polyester (A) of the present invention, the reaction is preferably carried out at a maximum temperature at the time of the melt polymerization reaction under a normal pressure or a nitrogen gas stream. The melt polymerization of the liquid crystalline polyester (A) of the present invention can be carried out, for example, according to the method described below (1) by using an ethoxylated carboxylic acid containing 2-ethoxycarbonyl-6-naphthoic acid and Method for producing liquid crystalline polyester by melt-deacetation polycondensation reaction of 4,4'-diethyleneoxybiphenyl and 2,6-naphthalene dicarboxylic acid (2) Making acetic anhydride pair containing 2-hydroxy-6 The hydroxycarboxylic acid of naphthoic acid and 4,4,-dihydroxybiphenyl and 2,6-naphthalene dicarboxylic acid are reacted to deuterate the phenolic hydroxyl group. Subsequently, a method for producing a liquid crystalline polyester by melt-deacetation polycondensation reaction" (3) a phenyl ester of a hydroxycarboxylic acid containing 2-hydroxy-6-naphthoic acid and 4,4'-dihydroxybiphenyl, Melting of diphenyl ester of 2,6-naphthalenedicarboxylic acid A method of producing a liquid crystalline polyester by a dephenolization polycondensation reaction. (4) A predetermined amount of diphenyl carbonate is reacted with 2-hydroxy-6-naphthoic acid-containing hydroxycarboxyl-13-201105705 acid and 2,6-naphthalene dicarboxylic acid to form diphenyl ester. Subsequently, a method of producing a liquid crystalline polyester by adding a 4,4'-dihydroxybiphenyl and performing a melt dephenolization polymerization reaction is carried out. (5) A part of the phenolic hydroxyl group is deuterated by reacting a hydroxycarboxylic acid containing 2-hydroxy-6-naphthoic acid and 4,4'-dihydroxybiphenyl with acetic anhydride. Subsequently, a method of producing a liquid crystalline polyester by distilling off acetic acid by a melt deacetalization polycondensation reaction and adding dimethyl 2,6-naphthalene dicarboxylate to carry out a melt demethylation condensation reaction with a residual hydroxyl group. (6) The phenolic hydroxyl group is deuterated by reacting acetic anhydride with a hydroxycarboxylic acid containing 2-hydroxy-6-naphthoic acid and 4,4,-dihydroxybiphenyl. Subsequently, a method of producing a liquid crystalline polyester by adding dimethyl 2,6-naphthalene dicarboxylate while performing a melt deacetation/methyl acetate polycondensation reaction while removing acetic acid generated from the system is carried out. In the melt polymerization method of the liquid crystalline polyester used in the present invention, polymerization using a combination of the above two processes and above, selected from the above (5), (6), by deacetalization condensation condensation of an ethyl hydrazine group and a carboxylic acid In the process, a liquid crystal polyester is preferably produced by a polymerization process in which a methoxycarbonyl group is condensed with an ethyl acetate-deacetated methyl acetate, and a polymerization process in which a methoxycarbonyl group and a hydroxyl group are de-methanol-condensed. a polymerization process selected from the group 2 process and above selected from a polycondensation condensation reaction of an ethyl hydrazine group with a carboxylic acid, a polycondensation process of a methoxycarbonyl group and an ethyl acetate deacetated methyl ester, and a methoxycarbonyl group When a liquid crystal polyester is produced by a polymerization process in which a hydroxyl group is subjected to a de-methanol polycondensation, when a hydroxyl group, an etidinyl group, a methoxycarbonyl group, a carboxyl group or the like is used as a terminal structure, and a methoxycarbonyl group and/or a hydroxyl group is used as a terminal structure, Almost no acetyl end group is present, so the amount of acetic acid gas generated is remarkably small, and low gas property is excellent. -14-201105705 wherein, in particular, according to a polymerization process containing deco-methanol condensation condensation of a methoxycarbonyl group and a hydroxyl group The liquid crystalline polyester produced by the production method is more preferably a liquid crystalline polyester having at least a hydroxyl group and a methoxycarbonyl group at the terminal and having a low gas effect and excellent heat resistance. As a production method comprising a polymerization process by deco-methanol polycondensation of a methoxycarbonyl group and a hydroxyl group, for example, 2-hydroxy-6-naphthoic acid or 4,4'-dihydroxybiphenyl is directly used for polymerization, and ethylene is used. The reactivity of the group and the hydroxyl group is different, and a liquid crystalline polyester having a hydroxyl group as a polymer terminal group can be obtained. The liquid crystalline polyester (A) of the present invention has any one of an ethylene group, a hydroxyl group, a methoxycarbonyl group, and a carboxyl group as a terminal group, and which is a terminal group, and is capable of dissolving a polymer in a soluble solvent, for example, A mixed solvent of pentafluorophenol/heavy chloroform = 5 0/5 0 was measured by 1H-NMR and judged from the obtained spectrum. Further, 'liquid crystal polyester which is fixed by a sequence obtained by melt polymerization, for example, the obtained pellets are pulverized using a freeze pulverizer' and under a nitrogen gas stream or under reduced pressure and in liquid crystallinity Polyester (melting point -5 ° C) ~ (melting point -50 ° C) (for example, 200 ~ 300 ° C), heating for 1 to 50 hours 'toggregate to the desired degree of polymerization, but also high viscosity . The above-described production method is different from the conventional solid phase polymerization method in that the sequence of the liquid crystalline polyester obtained by the melt polymerization method at the stage before the solid phase polymerization is sufficiently randomized, and the sequence is after solid phase polymerization. It is also maintained that the chain of the structural unit obtained from 2-hydroxy-6-naphthoic acid does not adversely affect the method for producing the liquid crystalline polyester (A) of the present invention, in order to control the 2-hydroxyl group. The average chain length of the structural unit obtained from -6-naphthoic acid can also be polymerized.

' [SI -15- 201105705 時使用無規化觸媒。 在此,所謂無規化觸媒係指在聚合後半促進由2 -經基 -6 -萘甲酸所得到的結構單位的鏈之醋鍵,與2,6 -萘二殘酸 或4,4’-二羥基聯苯的羥基或羧基或該等所形成的醋基之 交換反應之觸媒。 無規化觸媒係在3 00 °C以上的高溫、酸性條件下等亦 必須有作用,具體上可舉出乙酸鈉、乙酸鉀、乙酸鋁、乙 酸锰、乙酸錫、乙酸鉛、乙酸耗等的乙酸金屬鹽、磷酸鉀、 磷酸鈉、亞磷酸鈉、亞磷酸鉀、次磷酸鈉、次隣酸鈣、偏 磷酸鈉、偏磷酸鉀等的磷系化合物的金屬鹽、氯化給、氯 化銃等的路易斯酸性高的金屬鹵化物等。 其中,因無規化效果高,以使用次磷酸鈉、乙酸鈉、 磷酸鈣爲佳,因爲能夠得到無規化效果及促進聚的效果, 且所得到的液晶性聚酯’之異方向性亦變低,以次磷酸鈉或 乙酸鈉爲特佳。 無規化觸媒的添加量以0.001〜1重量%爲佳,以0.005 〜0.08重量%爲較佳,以0.02〜0.05重量%爲更佳。 無規化觸媒的添加量爲〇 · 〇 〇 1〜1重量%時,耐熱性良 好,0.005〜0.08重量%時,能夠得到耐熱性更充分的無規 化效果,0.02〜0.05重量%時,聚合促進效果及無規化效果 的平衡良好,乃是更佳。 液晶性聚酯(A)的熔融聚合反應係無觸媒亦可進行》 在脫乙酸聚縮合、脫乙酸甲酯聚縮合、脫甲醇聚縮合 的3種聚縮合能夠作爲觸媒之聚合觸媒,以使用氧化二丁 基錫、鈦酸四丁酯、三氧化銻、金屬鎂等的金屬化合物爲 -16- 201105705 佳。因爲3種聚縮合的觸媒效果相等,以使用氧化二丁基 錫、鈦酸四丁酯作爲觸媒爲更佳。因爲對脫甲醇聚縮合及 脫乙酸甲酯聚縮合之觸媒能力高,以氧化二丁基錫爲特 佳。氧化二丁基錫在組合2製程以上之選自藉由乙醯基與 羧酸的脫乙酸聚縮合之聚合製程,藉由甲氧羰基與乙醯基 的脫乙酸甲酯聚縮合之聚合製程及藉由甲氧羰基與羥基的 脫甲醇聚縮合之聚合製程來製造液晶性聚酯(A)時,能夠平 衡性良好地進行聚合且系統不容易產生2相化或部分性析 出,乃是較佳。 聚合觸媒的添加量相對於所得到的液晶性聚酯(A),以 0.01〜1重量%爲佳,以〇.〇1〜0.5重量%爲較佳,以0.02 〜0.0 5重量%爲更佳。 相對於所得到的液晶性聚酯(A),聚合觸媒的添加量爲 0 · 0 1〜1重量%時,能夠得到充分的觸媒效果。相對於所得 到的液晶性聚酯(A),聚合觸媒的添加量爲0.01〜0.5重量 °/〇時,組合2製程以上之選自藉由乙醯基與羧酸的脫乙酸 聚縮合之聚合製程,藉由甲氧羰基與乙醯基的脫乙酸甲酯 聚縮合之聚合製程及藉由甲氧羰基與羥基的脫甲醇聚縮合 之聚合製程來製造液晶性聚酯(A)時能夠得到速度平衡,乃 是較佳。相對於所得到的液晶性聚酯(A),聚合觸媒的添加 量爲0.02〜O.G5重量%時,特別是能夠得到2個聚縮合系 統的速度平衡且能夠得高聚合速度,乃是更佳。 對於本發明的液晶性聚酯(A),較佳是能夠進一步調配 由下述結構單位所構成的液晶性聚酯(B)來製成液晶性聚 酯。藉由調配由下述結構單位所構成的液晶性聚酯,能夠 -17- 201105705' [SI -15- 201105705 uses a random catalyst. Here, the random catalyst means a vinegar bond which promotes a structural unit obtained from 2-hydroxy-3-naphthoic acid in the latter half of the polymerization, and 2,6-naphthalene diresor or 4,4' a catalyst for the exchange reaction of a hydroxyl group or a carboxyl group of a dihydroxybiphenyl or such a acetic acid group formed. The random catalyst system must also function at a high temperature of 300 ° C or higher, under acidic conditions, and the like, and specifically, sodium acetate, potassium acetate, aluminum acetate, manganese acetate, tin acetate, lead acetate, acetic acid consumption, etc. a metal salt of a phosphorus compound such as a metal acetate, potassium phosphate, sodium phosphate, sodium phosphite, potassium phosphite, sodium hypophosphite, calcium hypoorthophosphate, sodium metaphosphate or potassium metaphosphate, chlorination, chlorination A Lewis metal salt or the like having a high acidity. Among them, since the effect of randomization is high, it is preferable to use sodium hypophosphite, sodium acetate, or calcium phosphate because the effect of randomization and the effect of aggregation can be obtained, and the directionality of the obtained liquid crystalline polyester is also It becomes lower, preferably sodium hypophosphite or sodium acetate. The amount of the random catalyst to be added is preferably 0.001 to 1% by weight, more preferably 0.005 to 0.08% by weight, still more preferably 0.02 to 0.05% by weight. When the amount of the random catalyst is 〇·〇〇1 to 1% by weight, the heat resistance is good, and when it is 0.005 to 0.08% by weight, a randomization effect of more sufficient heat resistance can be obtained, and when it is 0.02 to 0.05% by weight, It is better to have a good balance between the polymerization promoting effect and the randomization effect. The melt polymerization reaction of the liquid crystalline polyester (A) can be carried out without a catalyst. The three kinds of polycondensation in the deacetalization polycondensation, the deacetination methylation condensation, and the demethylation polymerization condensation can be used as a polymerization catalyst for the catalyst. The use of a metal compound such as dibutyltin oxide, tetrabutyl titanate, antimony trioxide, or magnesium metal is preferably -16 to 201105705. Since the effects of the three kinds of polycondensation catalysts are equal, it is more preferable to use dibutyltin oxide or tetrabutyl titanate as a catalyst. Dibutyltin oxide is particularly preferred because of its high catalytic ability for polycondensation of demethylation and polycondensation of methyl acetate. a polymerization process of polybutylene oxide above a combination of two processes selected from the group consisting of a condensation condensation reaction of an ethyl hydrazine group with a carboxylic acid, a polycondensation process of a methoxycarbonyl group and an ethyl acetate deacetated methyl ester, and a polymerization process When the liquid crystalline polyester (A) is produced by a polymerization process in which the methoxycarbonyl group and the hydroxy group are de-methanol-condensed and condensed, it is preferred that the polymerization can be carried out in a well-balanced manner and the system is less likely to cause two-phase or partial precipitation. The amount of the polymerization catalyst to be added is preferably 0.01 to 1% by weight based on the obtained liquid crystalline polyester (A), preferably 1 to 0.5% by weight, more preferably 0.02 to 0.05% by weight. good. When the amount of the polymerization catalyst added is 0 · 0 1 to 1% by weight based on the obtained liquid crystalline polyester (A), a sufficient catalyst effect can be obtained. When the amount of the polymerization catalyst added is 0.01 to 0.5 wt./〇 with respect to the obtained liquid crystalline polyester (A), the combination of the above two processes is selected from the group consisting of deacetylation and condensation of an ethyl hydrazine group with a carboxylic acid. The polymerization process can be obtained by a polymerization process in which a methoxycarbonyl group is condensed with an ethyl acetonate-demethylated methyl acetate, and a polymerization process in which a methoxycarbonyl group and a hydroxyl group are de-methanol-condensed and condensed to produce a liquid crystalline polyester (A). Speed balance is better. When the amount of the polymerization catalyst added is 0.02 to 0.5 g by weight based on the obtained liquid crystalline polyester (A), in particular, the speed balance of the two polycondensation systems can be obtained and a high polymerization rate can be obtained. Better. In the liquid crystalline polyester (A) of the present invention, it is preferred to further form a liquid crystalline polyester (B) composed of the following structural unit to prepare a liquid crystalline polyester. By formulating a liquid crystalline polyester composed of the following structural units, it is possible to -17- 201105705

上述的結構單位(I)以由對羥基苯甲酸所生成的結構單 位爲佳,結構單位(II)以由4,4’-二羥基聯苯所生成的結構 單位爲佳,結構單位(III)以由氫醌所生成的結構單位爲 佳,結構單位(IV)以由對酞酸所生成的結構單位爲佳,結 構單位(V)以由異酞酸所生成的結構單位爲佳。 相對於結構單位(I)、(II)及(III)的合計,結構單位 爲65〜80莫耳%時,因爲藉由與液晶性聚酯(A)摻合能夠顯 著地得到降低異方向性之效果,乃是較佳。又,相對於結 構單位(Π)及(ΙΠ)的合計,結構單位(II)爲65〜73莫耳% 時,因爲能夠顯著地得到提升流動性的效果,乃是較佳。 相對於結構單位(iv)及(v)的合計,結構單位(iv)爲6〇〜92 莫耳%時,因爲能夠顯著地得到提升流動性的效果,乃是 -18- 201105705 較佳。 在本發明所使用的液晶性聚酯(B)之製造方法能夠依 照眾所周知的聚酯之聚縮合法來製造。 就相溶性而言,液晶性聚酯(B)的數量平均分子量以 3,000 〜25,000,以 5,000 〜20,000 爲較佳,以 8,000 〜18,000 的範圍爲更佳。 數量平均分子量係使液晶性聚酯(B)溶解於可溶的溶 劑,例如五氟苯酚溶劑,並依照GPC-LS(凝膠滲透色譜光 散射)法來測定。 就液晶性聚酯(B)與液晶性聚酯(A)之相溶性而言,液 晶性聚酯(B)的熔融黏度以1〜200Pa,s爲佳,以10〜 200Pa*s爲較佳,而且以1〇〜i00Pa.s爲特佳。熔融黏度係 在液晶性聚酯的熔點+10°C的條件且剪切速度爲l,000/s的 條件下,藉由高化式流速測試器所測定的値。 液晶性聚酯(A)與液晶性聚酯(B)的調配比率係(A)與 (B)的合計作爲1 〇〇重量%時,以液晶性聚酯(A)爲〇.丨〜99 9 重量%及液晶性聚酯(B)爲99.9〜0.1重量%爲佳,以液晶性 聚酯(A)爲50〜99重量%及液晶性聚酯(B)爲1〜50重量% 爲較佳’以液晶性聚酯(A)爲80〜95重量%及液晶性聚酯(B) 爲5〜20重量%爲更佳。 由液晶性聚酯(A)與液晶性聚酯(B)所構成的組成物之 製造方法能夠使用溶液調配法、熔融混煉等,以熔融混煉 爲佳。 熔融混煉能夠使用眾所周知的方法,例如能夠使用班 伯里混煉機(Banbury Mixer)'橡膠輥、揑合機 '單軸或雙 軸擠壓機等’在液晶性聚酯(A)的熔點-2(TC〜熔點+5(rc以 -19- 201105705 下的溫度範圍進行熔融混煉而製成樹脂組成物。藉由使用 雙軸擠壓機並在-10 °c〜熔點+10 °c的溫度範圍進行熔融混 煉,特別是能夠得到流動性高的組成物,乃是較佳。 在本發明的液晶性聚酯,能夠使用塡料。藉由使用塡 料能夠增加強度、韌性或提升耐熱性,並且得到低氣體化、 降低異方向性之效果,乃是較佳。 在本發明的液晶性聚酯組成物,能夠使用塡料。藉由 使用塡料能夠增加強度、韌性或提升耐熱性,並且得到低 氣體化、降低異方向性之效果,乃是較佳。 塡料能夠使用例如纖維狀、板狀、粉末狀、粒狀等的 塡料。具體上可舉出玻璃纖維、PAN系或瀝青系的碳纖維、 不鏽鋼纖維、鋁纖維或黃銅纖維等的金屬纖維、芳香族聚 醯胺纖維或液晶性聚酯纖維等的有機纖維、石膏纖維、陶 瓷纖維、石棉纖維、氧化锆纖維、氧化鋁纖維、二氧化矽 纖維、氧化鈦纖維、碳化砂纖維、岩絨(rock wool)、鈦酸 鉀晶鬚、鈦酸鋇晶鬚、硼酸鋁晶鬚、氮化矽晶鬚等的纖維 狀、晶鬚狀塡料、雲母、滑石、高嶺土、二氧化矽、玻璃 珠、玻璃薄片、黏土、二硫化鉬、矽灰石(wallastonite)、 氧化鈦、氧化鋅、聚磷酸鈣及石墨等的粉狀、粒狀或板狀 的塡料。在本發明所使用的塡料,例如能夠使用矽烷系偶 合劑、鈦酸酯系偶合劑等眾所周知的偶合劑、其他的表面 處理劑處理其表面而使用。 該等塡料之中,就取得性、機械強度的平衡而言,以 使用玻璃纖維爲特佳。玻璃纖維係例如能夠選自長纖維型 或短纖維型的切股(chopped strand)及磨碎纖維等而使用。 -20- 201105705 又,該等之中亦可並用2種以上而使用。作爲在本發明所 使用的的玻璃纖維,就機械強度優良而言,以使用弱鹼性 者爲佳。特別是以使用氧化矽含量爲50〜80重量%的玻璃 纖維爲佳,以65〜77重量%的玻璃纖維爲更佳。又,玻璃 纖維以環氧系 '胺基甲酸酯系、丙烯酸系等的被覆或使用 聚束劑處理爲佳,以環氧系爲特佳。又,以使用矽烷系、 鈦酸酯系等的偶合劑、其他表面處理劑處理爲佳,以使用 環氧矽烷、胺基矽烷系的偶合劑爲特佳。 玻璃纖維亦可使用乙烯/乙酸乙烯酯共聚物等的熱塑 性樹脂或環氧樹脂等的熱硬化性樹脂來被覆或集束。 相對於液晶性聚酯100重量份,塡料的調配量通常爲 0.1〜200重量份時,因爲藉由塡料能夠得到負荷彎曲溫度 的提升效果,乃是較佳,其範圍爲1〜150重量份時,因爲 降低異方向性能夠得到優良的效果,乃是特佳。 相對於液晶性聚酯組成物1 〇〇重量份,塡料的調配量 通常爲0.1〜200重量份時,因爲藉由塡料能夠得到負荷彎 曲溫度的提升效果,乃是較佳,其範圍爲1〜150重量份 時,因爲降低異方向性能夠得到優良的效果,乃是特佳。 在本發明的液晶性聚酯或是液晶性聚酯組成物,能夠 調配抗氧化劑及熱安定劑、紫外線吸收劑、亞磷酸鹽、次 磷酸鹽等的防止著色劑、滑劑及脫模劑、含染料或顔料的 著色劑、作爲導電劑或著色劑之碳黑、結晶核劑、可塑劑、 難燃劑、難燃助劑及防靜電劑等通常的添加劑、熱塑性樹 脂以外的聚合物,來賦予規定的特性。 本發明的液晶性聚酯或液晶性聚酯組成物時’作爲熱The above structural unit (I) is preferably a structural unit derived from p-hydroxybenzoic acid, and the structural unit (II) is preferably a structural unit derived from 4,4'-dihydroxybiphenyl, and the structural unit (III) The structural unit formed by hydroquinone is preferred, the structural unit (IV) is preferably a structural unit derived from citric acid, and the structural unit (V) is preferably a structural unit derived from isononanoic acid. When the structural unit is 65 to 80 mol% with respect to the total of the structural units (I), (II), and (III), the heterogeneity can be remarkably reduced by blending with the liquid crystalline polyester (A). The effect is better. Further, when the structural unit (II) is 65 to 73 mol% based on the total of the structural units (Π) and (ΙΠ), it is preferable because the effect of improving the fluidity can be remarkably obtained. With respect to the total of the structural units (iv) and (v), when the structural unit (iv) is 6 〇 to 92 mol%, it is preferable to use -18-201105705 because the fluidity improving effect can be remarkably obtained. The method for producing the liquid crystalline polyester (B) used in the present invention can be produced by a known polycondensation method of polyester. In terms of compatibility, the liquid crystalline polyester (B) has a number average molecular weight of 3,000 to 25,000, preferably 5,000 to 20,000, more preferably 8,000 to 18,000. The number average molecular weight is such that the liquid crystalline polyester (B) is dissolved in a soluble solvent such as a pentafluorophenol solvent and measured in accordance with the GPC-LS (gel permeation chromatography light scattering) method. In terms of compatibility between the liquid crystalline polyester (B) and the liquid crystalline polyester (A), the liquid crystalline polyester (B) preferably has a melt viscosity of 1 to 200 Pa, s, preferably 10 to 200 Pa*s. And it is especially good with 1〇~i00Pa.s. The melt viscosity is enthalpy measured by a high-flow type flow rate tester under the conditions of a melting point of liquid crystalline polyester + 10 ° C and a shear rate of 1,000 / s. When the compounding ratio of the liquid crystalline polyester (A) and the liquid crystalline polyester (B) is 1% by weight in total of (A) and (B), the liquid crystalline polyester (A) is 〇.丨~99 9% by weight and the liquid crystalline polyester (B) is preferably 99.9 to 0.1% by weight, and the liquid crystalline polyester (A) is 50 to 99% by weight and the liquid crystalline polyester (B) is 1 to 50% by weight. It is more preferable that the liquid crystalline polyester (A) is 80 to 95% by weight and the liquid crystalline polyester (B) is 5 to 20% by weight. The method for producing a composition comprising the liquid crystalline polyester (A) and the liquid crystalline polyester (B) can be melt-kneaded by a solution blending method, melt-kneading or the like. The melt-kneading can be carried out by a well-known method, for example, a Banbury Mixer 'rubber roll, a kneader' uniaxial or biaxial extruder, etc., can be used at the melting point of the liquid crystalline polyester (A). 2 (TC~melting point +5 (rc is melt-kneaded in the temperature range of -19-201105705 to prepare a resin composition. By using a biaxial extruder and at -10 °c~melting point +10 °c It is preferred to carry out melt kneading in a temperature range, and it is preferable to obtain a composition having high fluidity. In the liquid crystalline polyester of the present invention, a crucible can be used, and strength, toughness, or heat resistance can be increased by using a dip material. It is preferable to obtain a low gasification and to reduce the effect of the anisotropy. In the liquid crystalline polyester composition of the present invention, a crucible can be used, and the strength, toughness or heat resistance can be increased by using the dip material. Further, it is preferable to obtain an effect of lowering gasification and reducing the omnidirectionality. For the mash, for example, a fiber, a plate, a powder, a granule, or the like can be used. Specific examples thereof include glass fiber and PAN system. Or asphalt-based carbon fiber, stainless Metal fiber such as fiber, aluminum fiber or brass fiber, organic fiber such as aromatic polyamide fiber or liquid crystalline polyester fiber, gypsum fiber, ceramic fiber, asbestos fiber, zirconia fiber, alumina fiber, cerium oxide Fibrous, whisker-like materials such as fibers, titanium oxide fibers, carbonized sand fibers, rock wool, potassium titanate whiskers, barium titanate whiskers, aluminum borate whiskers, tantalum nitride whiskers, etc. Powder, granule or plate of mica, talc, kaolin, cerium oxide, glass beads, glass flakes, clay, molybdenum disulfide, wallastonite, titanium oxide, zinc oxide, calcium polyphosphate and graphite The dip material used in the present invention can be used, for example, by treating a surface thereof with a well-known coupling agent such as a decane coupling agent or a titanate coupling agent or another surface treatment agent. In terms of the balance between the acquisition property and the mechanical strength, it is particularly preferable to use glass fibers. The glass fibers can be selected, for example, from chopped strands of long fiber type or short fiber type, and ground fibers. -20- 201105705 Further, it is also possible to use two or more of them in combination with the above. As the glass fiber used in the present invention, it is preferable to use a weakly alkaline one in terms of excellent mechanical strength. It is preferable to use glass fibers having a cerium oxide content of 50 to 80% by weight, more preferably 65 to 77% by weight of glass fibers, and the glass fibers are coated with an epoxy-based urethane-based or acrylic-based coating. Or it is preferable to use a bunching agent, and it is especially preferable with an epoxy type. Moreover, it is preferable to use a coupling agent of a decane type, a titanate type, etc., and other surface treatment agent, and it is preferable to use an epoxy decane and an amino decane. The coupling agent is particularly preferred. The glass fiber may be coated or bundled with a thermoplastic resin such as an ethylene/vinyl acetate copolymer or a thermosetting resin such as an epoxy resin. When the blending amount of the pigment is usually 0.1 to 200 parts by weight based on 100 parts by weight of the liquid crystalline polyester, since the effect of improving the load bending temperature can be obtained by the coating, it is preferably in the range of 1 to 150 parts by weight. When it is used, it is excellent because it can obtain excellent effects by reducing the directionality. When the amount of the raw material is usually 0.1 to 200 parts by weight based on 1 part by weight of the liquid crystalline polyester composition, since the effect of improving the load bending temperature can be obtained by the coating, the range is When it is 1 to 150 parts by weight, it is particularly preferable because an excellent effect can be obtained by reducing the anisotropy. In the liquid crystalline polyester or the liquid crystalline polyester composition of the present invention, an anti-oxidant, a thermal stabilizer, a UV-blocking agent, a phosphite, a hypophosphite, or the like, a coloring agent, a lubricant, and a release agent can be formulated. a dye- or pigment-containing coloring agent, a carbon black, a crystal nucleating agent, a plasticizer, a flame retardant, a flame retardant, an antistatic agent, or the like as a conductive agent or a colorant, and a polymer other than a thermoplastic resin. Give the specified characteristics. When the liquid crystalline polyester or liquid crystalline polyester composition of the present invention is used as heat

ί SI -21- 201105705 安定劑可例示受阻酚、氫醌、亞磷酸酯類及該等的取代物》 作爲紫外線吸收劑可例示間苯二酚、柳酸酯。作爲脫模劑 可例示二十八酸及其金屬鹽、其酯、其半酯、硬脂醇、硬 脂醯胺及聚乙烯蠟》作爲難燃劑可例示溴系難燃劑、磷系 難燃劑、紅磷、矽系難燃劑。 在本發明的液晶性聚酯,作爲調配塡料、添加劑的方 法,能夠使用乾式摻合或溶液調配法、在液晶性聚酯的聚 合時添加、熔融混煉等,以熔融混煉爲佳。 熔融混煉能夠使用眾所周知的方法。例如能夠使用班 伯里混煉機、橡膠輥、揑合機、單軸或雙軸擠壓機等,在 液晶性聚酯的熔點以上、熔點+5(TC以下的溫度範圍進行熔 融混煉而製成樹脂組成物,其中,以雙軸擠壓機爲佳。 作爲混煉方法,例如能夠進行下述的混煉方法。 1) 液晶性聚酯(A)、塡料及其他添加劑之成批混煉法。 2) 首先製造在液晶性聚酯(A) ’高濃度地含有添加劑之液晶 性聚酯組成物(母顆粒),隨後,以成爲規定濃度的方式添 加液晶性聚酯(A )、塡料及添加劑之方法(母顆粒法)^ 3 )將液晶性聚酯(A )與添加劑的一部分混煉—次,隨後,添 加剩餘的塡料、添加劑之分割添加法。 4) 製造由液晶性聚酯(A)及液晶性聚酯(B)所構成的液晶性 聚酯組成物後’將液晶性聚酯顆粒、塡料及添加劑成批混 煉之方法。 5) 製造由液晶性聚酯(A)及液晶性聚酯(B)所構成的液晶性 聚酯組成物後,製造在液晶性聚酯組成物高濃度地含有添 加劑之液晶性聚酯組成物(母顆粒),隨後,以成爲規定濃 -22- 201105705 度的方式添加由液晶性聚酯(A)及液晶性聚酯(B)所構成的 液晶性聚酯組成物、塡料及添加劑之方法(母顆粒法)^ 6) 製造由液晶性聚酯(A)及液晶性聚酯(B)所構成的液晶性 聚酯組成物後,將由液晶性聚酯(A)及液晶性聚酯(B)所構 成的液晶性聚_組成物與添加劑的一部分混煉一次,隨 後,添加剩餘的塡料、添加劑之分割添加法。 7) 將液晶性聚酯(A)、將液晶性聚酯(B)、塡料及添加劑成 批混煉之方法。 本發明的液晶性聚酯組成物具有高韌性、低異方向性 且低氣體,而且絕緣崩潰電阻優良。 本發明的液晶性聚酯依照通常的射出成形、擠壓成 形、加壓成形等成形方法,能夠加工成爲具有優良的表面 外觀(色調)及機械性質' 耐熱性、難燃性之成形品。 而且,本發明的液晶性聚酯組成物依照通常的射出成 形、擠壓成形' 加壓成形等成形方法,能夠加工成爲具有 優良的表面外觀(色調)及機械性質、耐熱性、難燃性之成 形品》 作爲成形品可舉出射出成形品、擠壓成形品、加壓成 形品、薄片、管件、薄膜、纖維等,特別是作爲射出成形 品時,因爲能夠顯著地得到流動性等本發明的效果,乃是 較佳。 本發明的液晶性聚酯或液晶性聚酯組成物所構成的成 形品係例如作爲各種齒輪、各種盒體、感應器、led燈、 連接器、插座、電阻器、繼電器盒體、開關、繞線管、電 容器、可變電容器盒體、光讀寫頭、振動器、各種終端板、 [S1 -23- 201105705 變壓器、插頭、印刷配線板、調整器、揚聲器、麥克風、 耳機、小型馬達、磁頭基座、動力模組、殼體、半導體、 液晶顯示器零件、FDD架、FDD底盤、HDD零件、馬達刷 保持架、拋物線形天線、電腦相關組件等爲代表之電氣· 電子零件:VTR零件、電視零件、熨斗、頭髮乾燥器、電 鍋零件、電爐零件、音響零件、聲音•雷射光碟·小型光 碟等的聲音機器零件、照明零件、冰箱零件、空調零件、 打字機零件、文字處理機零件等爲代表之家庭 '事務電氣 製品零件、辦公室電腦相關零件、電話機相關零件、傳真 機相關零件、影印機相關零件、洗滌用夾具、無油軸承、 船尾軸承、水中軸承等各種軸承,馬達零件' 打火機、打 字機等爲代表之機械相關零件、顯微鏡、雙筒望遠鏡、照 相機、時鐘等爲代表之光學機器、精密機械相關零件:交 流發電機終端設備、交流發電機連接器、IC調整器、照相 用電位計基座、排氣氣體閥等各種閥、燃料相關·排氣系 統•吸氣系統等的各種管件、空氣入口噴嘴通氣管、入口 歧管、燃料泵、引擎冷卻水接頭、化油器主體、化油器間 隔物、排氣氣體傳感器、冷卻水傳感器、油溫傳感器、節 流閥位置傳感器、曲柄軸位置傳感器、空氣流量計、制動 襯墊摩耗傳感器、空調用恆溫器基座、空調用馬達絕緣體、 暖房溫風流量控制閥、散熱器馬達用刷子保持器、水泵葉 輪、渦輪葉片、雨刷馬達相關零件、分配器、起動器開關、 起動器繼電器、變速用束線、車窗洗滌器噴嘴、空調面板 開關基板、燃料相關電磁閥用繞線管、保險絲用連接器、 喇叭終端設備、電裝零件絕緣板、步進馬達轉子、燈屏、 -24- 201105705 燈插座、燈反射器、燈殼、制動器活塞、螺線繞線管、引 擎油過濾器' 點火裝置盒體等汽車•車輛相關零件等。作 爲薄膜時在磁記錄媒體用薄膜、照相用軟片、電容器用薄 膜、電絕緣用薄膜、包裝用薄膜、製圖用薄膜、緞帶用薄 膜、作爲薄片用途在汽車內部天花板、門飾板、儀表面板 的襯墊材 '保險桿或側支架的緩衝材、引擎蓋背面等的吸 音襯墊、座椅用材、枕頭、燃料罐、制動軟管、車窗洗滌 液用噴嘴、空調冷媒用管及該等的周邊組件係有用的。 實施例 以下,藉由實施例來進一步詳述本發明。 液晶性聚酯(A) 實施例1 在具備有攪拌器、餾出管之5升的反應容器,添加 724.5克(3.85莫耳)2-羥基-6-萘甲酸、47 8.6克(2.57莫 耳)4,4’-二羥基聯苯、5 5 5.6克(2_57莫耳)2,6-萘二羧酸、 0.32克(0.02重量%)乙酸鈉及1010.7克(相對於系統的總酚 性羥基爲1.10當量)乙酸酐,並在氮氣環境下邊攪拌邊在 1 4 5 °c使其反應2小時後,以4小時升溫至3 6 5 °c (該溫度係 指熔融聚合時的最高到達溫度。以下 A-2〜A-24、B-1、 C-1、2、C7〜10亦同樣)。隨後,在365 °C保持1.5小時, 並以1.0小時減壓至133Pa,而且繼續反應60分鐘,當轉 矩到達22kg · cm時,使聚縮合完成。隨後將反應容器加壓 至O.IMPa,並經由具有1個直徑爲10毫米的圓形吐出口 之噴嘴將聚合物吐出爲股線狀物,且使用切割器製粒。 該液晶性聚酯(A-1)的Tm(液晶性聚酯的熔點)爲345 -25- 201105705 〇C。 使用高化式流速測試器(噴嘴爲0.5 Φ xlO毫米),在溫 度爲365 °C、剪切速度爲l〇〇〇/s所測定的熔融黏度爲 20Pa · s。使用GPC-LS(五氟苯酚/氯仿=5 0/5 0混合溶劑、 8〇°C)測定的數量平均分子量爲1 25 00。 實施例2 除了將熔融聚合溫度設爲370 °C ,並當轉矩到達 20kg· cm時,結束聚縮合以外,進行與上述A-1同樣的操 作。 該液晶性聚酯(A-2)的Tm(液晶性聚酯的熔點)爲345 °C。 使用高化式流速測試器(噴嘴爲〇.5 Φ xlO毫米),在溫 度爲365 °C '剪切速度爲所測定的熔融黏度爲 2 0 P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=5 0/5 0混合溶劑、80°C) 測定的數量平均分子量爲1 2600。 實施例3 除了將熔融聚合溫度設爲375°C,當轉矩到達i 8kg · cm時,結束聚縮合以外,進行與上述A-1同樣的操作。 該液晶性聚酯(A - 3 )的T m (液晶性聚酯的熔點)爲3 4 5 。(:。 使用高化式流速測試器(噴嘴爲〇.5Φχ1〇毫米),在溫 度爲3 6 5 °C、剪切速度爲l〇〇〇/s所測定的熔融黏度爲 20P a · s 0 使用GPC-LS(五氟苯酚/氯仿=5 0/5 0混合溶劑、8(rc) -26- 201105705 測定的數量平均分子量爲1 2600 ° 實施例4 除了將熔融聚合溫度設爲380°C ’當轉矩到達16kg. cm時,結束聚縮合以外’進行與上述A-1同樣的操作。 該液晶性聚酯(A-4)的Tm(液晶性聚酯的熔點)爲345 °C。 使用高化式流速測試器(噴嘴爲0.5ΦΧ10毫米),在溫 度爲365°C、剪切速度爲l〇〇〇/s所測定的熔融黏度爲 2 0 P a · s。 使用GPC-LS(五氟苯酚/氯仿=5 0/50混合溶劑、80°c) 測定的數量平均分子量爲12400。 實施例5 除了將熔融聚合溫度設爲3 8 5 °C,當轉矩到達14kg . cm時,結束聚縮合以外,進行與上述A-1同樣的操作。 該液晶性聚酯(A-5)的Tm(液晶性聚酯的熔點)爲345 〇C。 使用高化式流速測試器(噴嘴爲〇·5φχ1〇毫米),在溫 度爲3 65 °C、剪切速度爲l〇〇〇/s所測定的熔融黏度爲 2 0 P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=5 0/50混合溶劑、80〇C) 測定的數量平均分子量爲1 2400。 實施例6 在具備有攪拌器、餾出管之5升的反應容器,除了添 加677.4克(3_60莫耳)2-羥基·6-萘甲酸、502.8克(2,70莫 耳)4,4’-二羥基聯苯、5 83,7克(2.70莫耳)2,6-萘二羧酸、 -27- 201105705 0.32克(0_02重量%)乙酸鈉及1010.7克(相對於男 性羥基爲1·10當量)乙酸酐,並將熔融聚合溫g °C以外,進行與上述A- 1同樣的操作β 該液晶性聚酯(Α-6)的Tm(液晶性聚酯的熔 t 〇 使用高化式流速測試器(噴嘴爲〇.5Φχ10毫 度爲 3 68 °C、剪切速度爲1 000/s所測定的熔 2 Ο P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=50/50混合溶 測定的數量平均分子量爲1 2400。 實施例7 在具備有攪拌器、餾出管之5升的反應容器 加745.2克(3.92莫耳)2-羥基-6-萘甲酸、469.2 再)4,4’-二羥基聯苯、544.8克(2.52莫耳)2,6-蒡 0.32克(0.02重量%)乙酸鈉及1010.7克(相對於弃 性羥基爲1.10當量)乙酸酐,並將熔融聚合溫§ °C以外,進行與上述A-1同樣的操作。 該液晶性聚酯(A-7)的Tm(液晶性聚酯的熔 〇C » 使用高化式流速測試器(噴嘴爲〇·5Φχΐ〇毫 度爲363 °c、剪切速度爲iOOO/s所測定的熔 2 0 P a · s ° 使用GPC-LS(五氟苯酚/氯仿=50/50混合溶 測定的數量平均分子量爲1 2500。 實施例8 i統的總酚 [設爲375 點)爲 3 4 8 米),在溫 融黏度爲 劑、80°C ) 6,除了添 克(2.52莫 〖二羧酸、 〖統的總酚 〔設爲370 點)爲343 米),在溫 融黏度爲 齊!I、8 0°C ) -28- 201105705 在具備有攪拌器、餾出管之5升的反應容器,除了添 加643.6克(3.42莫耳)2-羥基-6-萘甲酸' 519.5克(2.79莫 耳)4,4’-二羥基聯苯、603.2克(2.79莫耳)2,6-萘二羧酸、 0.32克(0_02重量%)乙酸鈉及1010.7克(相對於系統的總酚 性羥基爲1.10當量)乙酸酐,並將熔融聚合溫度設爲375 °C以外,進行與上述A-1同樣的操作。 該液晶性聚酯(A-8)的Tm(液晶性聚酯的熔點)爲350 〇C。 使用高化式流速測試器(噴嘴爲〇·5Φχ10毫米),在溫 度爲370 °C、剪切速度爲l〇〇〇/s所測定的熔融黏度爲 2 0 P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=5 0/50混合溶劑、80°C) 測定的數量平均分子量爲12 8 00。 實施例9 在具備有攪拌器、餾出管之5升的反應容器,除了添 加816.7克(4.34莫耳)2-羥基-6-萘甲酸、433.9克(2.33莫 耳)4,4’-二羥基聯苯、503.7克(2·33莫耳)2,6-萘二羧酸、 0.32克(0.02重量%)乙酸鈉及1010.7克(相對於系統的總酚 性羥基爲1.10當量)乙酸酐’並將熔融聚合溫度設爲365 t且當轉矩到達18kg· cm時結束聚縮合以外,進行與上述 A-1同樣的操作》 該液晶性聚酯(A-9)的Tm(液晶性聚酯的熔點)爲337 °C。 使用高化式流速測試器(噴嘴爲0:5Φ><10毫米),在溫 度爲357 °C、剪切速度爲1000/s所測定的熔融黏度爲 -29- 201105705 2 Ο P a · s ο 使用GPC-LS(五氟苯酚/氯仿=50/50混合溶劑、8(TC) 測定的數量平均分子量爲1 2800。 實施例1 〇 在具備有攪拌器、餾出管之5升的反應容器,除了添 加816.7克(4.34莫耳)2·羥基-6-萘甲酸、433.9克(2.33莫 耳)4,4’-二羥基聯苯、5 03.7克(2.33莫耳)2,6-萘二羧酸及 1〇1〇·7克(相對於系統的總酚性羥基爲1.10當量)乙酸酐, 並將熔融聚合溫度設爲370 °C且當轉矩到達16Kg,cm時結 束聚縮合以外,進行與上述Α·1同樣的操作。 該液晶性聚酯(Α-10)的Tm(液晶性聚酯的熔點)爲337 。。。 使用高化式流速測試器(噴嘴爲〇·5Φχ10毫米),在溫 度爲 357 °C、剪切速度爲1000/s所測定的熔融黏度爲 2 Ο P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=50/50混合溶劑、80°C) 測定的數量平均分子量爲1 2800。 實施例1 1 在具備有攪拌器、餾出管之5升的反應容器,除了添 加846.8克(4.50莫耳)2-羥基-6-萘甲酸、419.0克(2.25莫 耳)4,4’-二羥基聯苯、4 86.4克(2.25莫耳)2,6-萘二羧酸、 0·32克(0.02重量%)乙酸鈉及1010.7克(相對於系統的總酚 性羥基爲1.10當量)乙酸酐,並將熔融聚合溫度設爲360 °C以外,進行與上述Α-1同樣的操作。 該液晶性聚酯(A-U)的Tm(液晶性聚酯的熔點)爲334 -30- 201105705 °c。 使用高化式流速測試器(噴嘴爲〇.5Φχ10毫米),在溫 度爲3 54 °C、剪切速度爲l〇〇〇/s所測定的熔融黏度爲 2 0 P a · s ° 使用GPC-LS(五氟苯酚/氯仿= 50/50混合溶劑、got) 測定的數量平均分子量爲1 2400。 實施例1 2 在具備有攪拌器、餾出管之5升的反應容器,除了添 加93 1.5克(4.95莫耳)2-羥基-6-萘甲酸' 3 78.0克(2.03莫 耳)4,4’-二羥基聯苯、43 8.9克(2.03莫耳)2,6-萘二竣酸、 0.32克(0.02重量°/〇乙酸鈉及1010.7克(相對於系統的總酚 性羥基爲1.10當量)乙酸酐,並將熔融聚合溫度設爲355 °C且當轉矩到達18kg · cm時結束聚縮合以外,進行與上述 A-1同樣的操作。 該液晶性聚酯(A-12)的Tm(液晶性聚酯的熔點)爲326 〇C。 使用高化式流速測試器(噴嘴爲〇.5φχΐ〇毫米),在溫 度爲346°C、剪切速度爲i〇00/s所測定的熔融黏度爲 2 0 P a · s。 使用GPC-LS(五氟苯酚/氯仿=5〇/5〇混合溶劑、8〇〇c) 測定的數量平均分子量爲1 2400。 實施例1 3 在具備有攪拌器、餾出管之5升的反應容器,除了添 加1016.2克(5.40莫耳)2-羥基·6_萘甲酸、3352克(1.8〇莫 耳)4,4’-—經基聯苯、3891克(18〇莫耳)2,6萘二羧酸、 -31- 201105705 0.32克(0.02重量%)乙酸鈉及101 〇_7克(相對於系 性羥基爲1.10當量)乙酸酐,並將熔融聚合溫度 °C以外,進行與上述A- 1同樣的操作。 該液晶性聚酯(A-13)的Tm(液晶性聚酯的熔 〇C。 使用高化式流速測試器(噴嘴爲0·5Φχ10毫 度爲3 3 9 °C、剪切速度爲1 000/s所測定的熔 2 0 P a · s « 使用GPC-LS(五氟苯酚/氯仿=5 0/5 0混合溶 測定的數量平均分子量爲1 2400。 實施例1 4 在具備有攪拌器、餾出管之5升的反應容器 加1100.9克(5.85莫耳)2-羥基-6·萘甲酸、294.2 耳)4,4’-二羥基聯苯、341.6克(1.58莫耳)2,6-萘 0.3 1克(0.02重量%)乙酸鈉及1010.7克(相對於系 性羥基爲1.10當量)乙酸酐,並將熔融聚合溫度 °C以外,進行與上述A-1同樣的操作。 該液晶性聚酯(A-14)的Tm(液晶性聚酯的熔 。 使用高化式流速測試器(噴嘴爲0.5ΦΧ10毫 度爲338 °C、剪切速度爲1 000/s所測定的熔 2 Ο P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=5 0/5 0混合溶 測定的數量平均分子量爲12400。 實施例1 5 統的總酚 設爲3 4 5 點)爲3 1 9 米),在溫 融黏度爲 劑、80〇C ) 丨,除了添 克(1 .58莫 ;二羧酸、 ϊ統的總酚 :設爲345 點)爲3 1 8 米),在溫 融黏度爲 劑 ' 80°C ) -32- 201105705 除了到達熔融聚合溫度後,立刻開始減壓以外,進行 與上述A-2同樣的操作。 該液晶性聚酯(A-15)的Tm(液晶性聚酯的熔點)爲345 °C。使用熱重量測定裝置,並在3 5 5 °C氮氣環境下保持120 分鐘時,重量減少率爲0.40重量%。 使用高化式流速測試器(噴嘴爲0.5 Φ xlO毫米),在溫 度爲 3 6 5 °C 、剪切速度爲l〇〇〇/s所測定的熔融黏度爲 2 0 P a · s。 使用GPC-LS(五氟苯酚/氯仿=5 0/50混合溶劑、80°C) 測定的數量平均分子量爲1 2600。 實施例1 6 除了到達熔融聚合溫度後,在同溫保持〇 · 8小時後開 始減壓以外,進行與上述A-2同樣的操作。 該液晶性聚酯(A-16)的Tm(液晶性聚酯的熔點)爲345 °C。 使用高化式流速測試器(噴嘴爲〇.5Φχ1〇毫米),在溫 度爲 3 6 5 °C 、剪切速度爲l〇〇〇/s所測定的熔融黏度爲 2 0 P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=5 0/50混合溶劑、80°C) 測定的數量平均分子量爲1 2600 · 實施例1 7 除了到達熔融聚合溫度後,在同溫保持i·0小時後開 始減壓以外,進行與上述A-2同樣的操作。 該液晶性聚酯(A-17)的Tm(液晶性聚酯的熔點)爲345 。(:。 -33- 201105705 使用高化式流速測試器(噴嘴爲0.5φχ10毫米),在溫 度爲3 6 5 °C、剪切速度爲1 000/s所測定的熔融黏度爲 2 OPa · s 〇 使用GPC-LS(五氟苯酚/氯仿=50/50混合溶劑、8〇°C) 測定的數量平均分子量爲12600 ^ 實施例1 8 除了到達熔融聚合溫度後,在同溫保持2.8小時後開 始減壓以外,進行與上述A-2同樣的操作。 該液晶性聚酯(A-1 8)的Tm(液晶性聚酯的熔點)爲345 。(:。 使用高化式流速測試器(噴嘴爲0·5Φχ10毫米),在溫 度爲3 6 5 °C '剪切速度爲1 000/s所測定的熔融黏度爲 2 0 P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=50/50混合溶劑、80°C) 測定的數量平均分子量爲1260 0。 實施例1 9 除了到達熔融聚合溫度後,在同溫保持3.2小時後開 始減壓以外,進行與上述A-2同樣的操作。 該液晶性聚酯(A-19)的Tm(液晶性聚酯的熔點)爲345 〇C。 使用高化式流速測試器(噴嘴爲0.5ΦΧ10毫米),在溫 度爲3 65 °C、剪切速度爲l〇〇〇/s所測定的熔融黏度爲 2 0 P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=50/50混合溶劑、80°C) 測定的數量平均分子量爲1 2600。 -34- 201105705 實施例2 0 在具備有攪拌器、餾出管之5升的反應容器,添加 724.5克(3.85莫耳)2-羥基-6-萘甲酸、47 8.6克(2.57莫 耳)4,4’-二羥基聯苯、627.4克(2·57莫耳)2,6-萘二羧酸二甲 酯及937.2克(相對於系統的總酚性羥基爲1.02當量)乙酸 酐,並在氮氣環境下邊攪拌邊在145 °C使其反應2小時後, 以6小時升溫至3 70°C。 當乙酸餾出量大於理論値的90%後,添加0.27克(0.02 重量%)氧化二丁基錫,並在同溫度保持1 . 5小時且以1小 時減壓至l.〇mmHg(133Pa),進而繼續反應30分鐘,當轉 矩到達20kg · cm時,使聚縮合完成。隨後將反應容器加壓 至1.0kg/cm2(0.1MPa),並經由具有1個直徑爲10毫米的 圓形吐出口之噴嘴將聚合物吐出爲股線狀物,且使用切割 器製粒。 該液晶性聚酯(Α·20)的Tm(液晶性聚酯的熔點)爲345 V。 使用高化式流速測試器(噴嘴爲〇.5Φχ1〇毫米),在溫 度爲 3 65 °C 、剪切速度爲 1〇〇〇/s所測定的熔融黏度爲 2 0 P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=50/50混合溶劑、80°C) 測定的數量平均分子量爲1 2600。 實施例2 1 在具備有攪拌器、餾出管之5升的反應容器’添加 724.5克(3.85莫耳)2-羥基-6-萘甲酸、478.6克(2.57莫 耳)4,4’·二羥基聯苯、627.4克(2.57莫耳)2,6-萘二羧酸二甲 [.S 1 -35- 201105705 酯及0.27克(0.02重量%)氧化二丁基錫,並在氮氣環境下 邊攪拌邊在145 °C使其反應2小時後,以6小時升溫至370 t。隨後,在3 7 (TC保持1 · 5小時並以1.0小時減壓至 1.0mmHg(13 3Pa),進而繼續反應30分鐘,當轉矩到達20 kg«cm時,使聚縮合完成。 隨後將反應容器加壓至1.0kg/cm2(0.1MPa),並經由具 有1個直徑爲10毫米的圓形吐出口之噴嘴將聚合物吐出爲 股線狀物,且使用切割器製粒。 該液晶性聚酯(A-21)的Tm(液晶性聚酯的熔點)爲345 〇C。 使用高化式流速測試器(噴嘴爲0.5ΦΧ10毫米),在溫 度爲 3 65 °C、剪切速度爲1 000/s所測定的熔融黏度爲 2 0 P a · s。 使用GPC-LS(五氟苯酚/氯仿=5 0/50混合溶劑、80°C ) 測定的數量平均分子量爲1 2600。 實施例22 在具備有攪拌器、餾出管之5升的反應容器,除了添 加717.0克(3.81莫耳)2-羥基-6-萘甲酸、478_6克(2.57莫 耳)4,4’·二羥基聯苯、5 5 5.6克(2.57莫耳)2,6-萘二羧酸、 I2.4克(0.05莫耳)3.5-二第三丁基-4-羥基苯甲酸及0.32克 (0.02重量%)乙酸鈉、1010.7克(相對於系統的總酚性羥基 爲1.10當量)乙酸酐以外,進行與上述A-2同樣的操作。 該液晶性聚酯(A-22)的Tm(液晶性聚酯的熔點)爲344°C。 使用高化式流速測試器(噴嘴爲0.5ΦΧ10毫米),在溫 度爲364 °C、剪切速度爲1 000/s所測定的熔融黏度爲 -36- 201105705 2 0 P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=50/50混合溶劑、8〇t:) 測定的數量平均分子量爲1 2600。 實施例2 3 在具備有攪拌器、餾出管之5升的反應容器,除了添 加696.3克(3.70莫耳)2 -羥基-6-萘甲酸、478.6克(2.57莫 耳)4,4’-二羥基聯苯、5 5 5.6克(2.57莫耳)2,6-萘二羧酸、 37.2克(0_15莫耳)3.5-二第三丁基-4-羥基苯甲酸及0.32克 (0.02重量%)乙酸鈉、1010.7克(相對於系統的總酚性羥基 爲1_10當量)乙酸酐以外,進行與上述A-2同樣的操作。 該液晶性聚酯(A-23)的Tm(液晶性聚酯的熔點)爲344t。 使用高化式流速測試器(噴嘴爲0.5ΦΧ10毫米),在溫 度爲3 64 °C 、剪切速度爲1 000/s所測定的熔融黏度爲 2 0 P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=5 0/50混合溶劑、80°C) 測定的數量平均分子量爲12600。 實施例24 在具備有攪拌器、餾出管之5升的反應容器,除了添 加673.7克(3.58莫耳)2-羥基-6-萘甲酸、478.6克(2.57莫 耳)4,4’-二羥基聯苯、5 5 5.6克(2.57莫耳)2,6-萘二羧酸、 67.0克(0.27莫耳)3·5-二第三丁基-4-羥基苯甲酸及0.32克 (0.02重量%)乙酸鈉、1010.7克(相對於系統的總酚性羥基 爲1.1〇當量)乙酸酐以外,進行與上述Α-2同樣的操作。 該液晶性聚酯(Α-24)的Tm(液晶性聚酯的熔點)爲339ί SI -21- 201105705 The stabilizer can be exemplified by hindered phenol, hydroquinone, phosphite, and the like. Resorcinol and salicylate can be exemplified as the ultraviolet absorber. As the release agent, octadecanoic acid and a metal salt thereof, an ester thereof, a half ester thereof, a stearyl alcohol, a stearylamine, and a polyethylene wax can be exemplified as a flame retardant, and a bromine-based flame retardant or a phosphorus-based catalyst can be exemplified. Burning agent, red phosphorus, antimony-based flame retardant. The liquid crystalline polyester of the present invention can be blended by a dry blending or a solution blending method, a liquid crystal polyester during the polymerization, a melt-kneading or the like, and preferably melt-kneaded. Melt kneading can use well-known methods. For example, a Banbury mixer, a rubber roller, a kneader, a uniaxial or biaxial extruder, or the like can be produced by melt-kneading at a melting point of a liquid crystalline polyester or a melting point of +5 (TC or lower). The resin composition is preferably a biaxial extruder. As the kneading method, for example, the following kneading method can be carried out: 1) Batch kneading of liquid crystalline polyester (A), dip and other additives law. 2) First, the liquid crystalline polyester (A) is added to the liquid crystalline polyester (A), which contains the additive at a high concentration, and then the liquid crystalline polyester (A), the coating and the additive are added so as to have a predetermined concentration. Method (master particle method) ^ 3) The liquid crystalline polyester (A) is kneaded with a part of the additive once, and then, the remaining dip material and the additive addition method are added. 4) A method of batch-mixing liquid crystalline polyester granules, mash and additives after producing a liquid crystalline polyester composition composed of a liquid crystalline polyester (A) and a liquid crystalline polyester (B). 5) After producing a liquid crystalline polyester composition composed of a liquid crystalline polyester (A) and a liquid crystalline polyester (B), a liquid crystalline polyester composition containing an additive in a liquid crystal polyester composition at a high concentration is produced. (Mother granules), a method of adding a liquid crystalline polyester composition, a mash and an additive composed of a liquid crystalline polyester (A) and a liquid crystalline polyester (B) to a predetermined concentration of -22 to 201105705 degrees (Master particle method) ^ 6) After producing a liquid crystalline polyester composition composed of a liquid crystalline polyester (A) and a liquid crystalline polyester (B), a liquid crystalline polyester (A) and a liquid crystalline polyester ( B) The liquid crystalline poly-composition composed of a part of the additive is kneaded once, and then the remaining dip material and the additive addition method are added. 7) A method in which a liquid crystalline polyester (A), a liquid crystalline polyester (B), a dip material, and an additive are kneaded in batches. The liquid crystalline polyester composition of the present invention has high toughness, low heterogeneity, low gas, and excellent insulation breakdown resistance. The liquid crystalline polyester of the present invention can be processed into a molded article having excellent surface appearance (hue) and mechanical properties, heat resistance and flame retardancy, in accordance with a usual molding method such as injection molding, extrusion molding, or press molding. Further, the liquid crystalline polyester composition of the present invention can be processed to have excellent surface appearance (hue), mechanical properties, heat resistance, and flame retardancy in accordance with a usual molding method such as injection molding or extrusion molding. In the molded article, the injection molded article, the extrusion molded article, the press-molded article, the sheet, the tube member, the film, the fiber, and the like are used, and in particular, as the injection-molded article, the present invention can be remarkably obtained in terms of fluidity. The effect is better. The molded article composed of the liquid crystalline polyester or the liquid crystalline polyester composition of the present invention is, for example, various gears, various cases, inductors, led lamps, connectors, sockets, resistors, relay boxes, switches, and windings. Line tube, capacitor, variable capacitor case, optical pickup, vibrator, various terminal boards, [S1 -23- 201105705 transformer, plug, printed wiring board, adjuster, speaker, microphone, earphone, small motor, magnetic head Base, power module, housing, semiconductor, LCD parts, FDD frame, FDD chassis, HDD parts, motor brush holder, parabolic antenna, computer related components, etc. Electrical and electronic parts: VTR parts, TV Parts, irons, hair dryers, electric cooker parts, electric furnace parts, audio parts, sounds, laser discs, compact discs, sound machine parts, lighting parts, refrigerator parts, air conditioning parts, typewriter parts, word processor parts, etc. Representative family 'business electrical parts, office computer related parts, telephone related parts, fax related zero , photocopier related parts, washing jigs, oil-free bearings, stern bearings, underwater bearings and other bearings, motor parts, such as lighter, typewriter, etc., mechanical parts, microscopes, binoculars, cameras, clocks, etc. Optical equipment, precision machinery related parts: alternator terminal equipment, alternator connector, IC regulator, photographic potentiometer base, exhaust gas valve and other valves, fuel-related, exhaust system, suction system, etc. Various pipe fittings, air inlet nozzle vent pipe, inlet manifold, fuel pump, engine cooling water fitting, carburetor body, carburetor spacer, exhaust gas sensor, cooling water sensor, oil temperature sensor, throttle position Sensor, crankshaft position sensor, air flow meter, brake pad wear sensor, air conditioner thermostat base, air conditioner motor insulator, greenhouse warm air flow control valve, radiator motor brush holder, water pump impeller, turbine blade, Wiper motor related parts, distributor, starter switch, starter relay, Speed beam line, window washer nozzle, air conditioner panel switch board, fuel-related solenoid valve bobbin, fuse connector, horn terminal equipment, electric component parts insulation board, stepping motor rotor, lamp screen, -24 - 201105705 Lamp sockets, lamp reflectors, lamp housings, brake pistons, solenoid bobbins, engine oil filters, ignition boxes, and other vehicle-related parts. In the case of a film, a film for a magnetic recording medium, a film for photographic film, a film for a capacitor, a film for electrical insulation, a film for packaging, a film for patterning, a film for a ribbon, and a sheet for use in a car interior ceiling, a door trim, and an instrument panel a cushioning material of a bumper or a side bracket, a sound absorbing pad such as a back cover of a hood, a seat material, a pillow, a fuel tank, a brake hose, a nozzle for a window washing liquid, a tube for an air conditioner refrigerant, and the like Peripheral components are useful. EXAMPLES Hereinafter, the present invention will be described in further detail by way of examples. Liquid crystalline polyester (A) Example 1 In a reaction vessel equipped with a stirrer and a distillation tube of 5 liters, 724.5 g (3.85 mol) of 2-hydroxy-6-naphthoic acid and 47 8.6 g (2.57 mol) were added. 4,4'-dihydroxybiphenyl, 5 5 5.6 g (2_57 mol) 2,6-naphthalenedicarboxylic acid, 0.32 g (0.02% by weight) sodium acetate and 1010.7 g (relative to the total phenolic hydroxyl group of the system) It was 1.10 equivalents of acetic anhydride, and was reacted at 1,45 ° C for 2 hours while stirring under a nitrogen atmosphere, and then heated to 3 6 5 ° C for 4 hours (this temperature means the highest reaching temperature at the time of melt polymerization). The following A-2 to A-24, B-1, C-1, 2, and C7 to 10 are also the same). Subsequently, it was kept at 365 ° C for 1.5 hours, and the pressure was reduced to 133 Pa for 1.0 hour, and the reaction was continued for 60 minutes. When the torque reached 22 kg · cm, the polycondensation was completed. The reaction vessel was then pressurized to 0.1 MPa and the polymer was spun into strands via a nozzle having a circular discharge port having a diameter of 10 mm and granulated using a cutter. The Tm (melting point of the liquid crystalline polyester) of the liquid crystalline polyester (A-1) is 345 - 25 - 201105705 〇C. Using a high-speed flow tester (nozzle 0.5 Φ x 10 mm), the melt viscosity measured at a temperature of 365 ° C and a shear rate of 10 〇〇〇 / s was 20 Pa · s. The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 5 0/5 0 mixed solvent, 8 ° C) was 1 2 50,000. Example 2 The same operation as in the above A-1 was carried out, except that the melt polymerization temperature was 370 ° C and the torque reached 20 kg·cm, and the polycondensation was terminated. The Tm (melting point of the liquid crystalline polyester) of the liquid crystalline polyester (A-2) was 345 °C. Using a high-flow flow tester (nozzle 〇.5 Φ xlO mm) at a temperature of 365 °C 'shear rate is determined to have a melt viscosity of 20 P a · s 〇 using GPC-LS (pentafluorophenol) / chloroform = 5 0/5 0 mixed solvent, 80 ° C) The number average molecular weight determined was 1,2600. Example 3 The same operation as in the above A-1 was carried out, except that the melt polymerization temperature was 375 ° C and the torque reached i 8 kg · cm, and the polycondensation was terminated. The T m of the liquid crystalline polyester (A - 3 ) (the melting point of the liquid crystalline polyester) was 3 4 5 . (: Using a high-speed flow tester (nozzle is 5.5Φχ1〇mm), the melt viscosity measured at a temperature of 3 6 5 °C and a shear rate of l〇〇〇/s is 20P a · s 0 The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 5 0/5 0 mixed solvent, 8 (rc) -26 - 201105705 was 1 2600 ° Example 4 except that the melt polymerization temperature was set to 380 ° C ' When the torque reached 16 kg.cm, the same operation as the above A-1 was carried out except that the polycondensation was completed. The Tm of the liquid crystalline polyester (A-4) (melting point of the liquid crystalline polyester) was 345 °C. The high-flow flow rate tester (nozzle is 0.5ΦΧ10mm) has a melt viscosity of 20 P a · s at a temperature of 365 ° C and a shear rate of 10 〇〇〇 / s. Use GPC-LS (five The number average molecular weight measured by fluorophenol/chloroform = 50/50 mixed solvent, 80 ° c) was 12,400. Example 5 except that the melt polymerization temperature was set to 3 8 5 ° C, when the torque reached 14 kg.cm, the end was completed. The same operation as in the above A-1 was carried out, except for the polycondensation. The Tm (melting point of the liquid crystalline polyester) of the liquid crystalline polyester (A-5) was 345 〇C. The speed tester (nozzle is χ·5φχ1〇mm), the melt viscosity measured at a temperature of 3 65 °C and a shear rate of l〇〇〇/s is 20 P a · s 〇 Use GPC-LS (five The number average molecular weight measured by fluorophenol/chloroform = 50/50 mixed solvent, 80 〇C) was 1,240. Example 6 In a reaction vessel equipped with a stirrer and a distillation tube of 5 liters, except for the addition of 677.4 g (3_60) Mohr) 2-hydroxy-6-naphthoic acid, 502.8 g (2,70 mol) 4,4'-dihydroxybiphenyl, 5 83,7 g (2.70 mol) 2,6-naphthalenedicarboxylic acid, -27- 201105705 0.32 g (0_02 wt%) of sodium acetate and 1010.7 g (1·10 equivalent of male hydroxyl group) acetic anhydride, and the same operation as above A-1 was carried out except for the melt polymerization temperature of g °C. The liquid crystal polyester (Α-6) Tm (liquid crystal polyester melt 〇 uses a high-speed flow rate tester (nozzle is 5.5Φχ10 millidegrees is 3 68 °C, shear rate is 1 000 / s The measured melt 2 Ο P a · s 〇 using GPC-LS (pentafluorophenol / chloroform = 50 / 50 mixed solution measured number average molecular weight is 12400. Example 7 in the presence of a stirrer, distillation tube 5 Lit The container should be filled with 745.2 g (3.92 mol) 2-hydroxy-6-naphthoic acid, 469.2 re) 4,4'-dihydroxybiphenyl, 544.8 g (2.52 mol) 2,6-蒡0.32 g (0.02% by weight) The same operation as the above A-1 was carried out except for sodium acetate and 1010.7 g (1.10 equivalents to the aforesaid hydroxyl group) of acetic anhydride, and the melt polymerization temperature was § °C. Tm of the liquid crystalline polyester (A-7) (melting C of liquid crystalline polyester) using a high-speed flow rate tester (nozzle is 363·5Φχΐ〇 millimeter 363 °c, shear rate is iOOO/s The measured melt 2 0 P a · s ° using GPC-LS (pentafluorophenol / chloroform = 50 / 50 mixed solution measured number average molecular weight is 1 2500. Example 8 total system of phenol [set to 375 points] For 3 4 8 m), in the temperature-melting viscosity agent, 80 ° C) 6, except for the gram (2.52 Mo 〗 〖dicarboxylic acid, the total phenol (set to 370 points) is 343 m), in Wenrong Viscosity is Qi! I, 8 0 ° C) -28- 201105705 In a 5 liter reaction vessel equipped with a stirrer and a distillation tube, except for adding 643.6 g (3.42 mol) of 2-hydroxy-6-naphthoic acid '519.5 g (2.79 Mo) Ear) 4,4'-dihydroxybiphenyl, 603.2 g (2.79 mol) 2,6-naphthalenedicarboxylic acid, 0.32 g (0-02 wt%) sodium acetate and 1010.7 g (relative to the total phenolic hydroxyl group of the system) 1.10 equivalents of acetic anhydride, and the melt polymerization temperature was set to 375 ° C, and the same operation as in the above A-1 was carried out. The Tm (melting point of the liquid crystalline polyester) of the liquid crystalline polyester (A-8) was 350 〇C. Using a high-speed flow tester (nozzle 〇·5Φχ10 mm), the melt viscosity measured at a temperature of 370 °C and a shear rate of l〇〇〇/s is 20 P a · s 〇 using GPC-LS (Pentafluorophenol/chloroform = 50/50 mixed solvent, 80 ° C) The number average molecular weight determined was 12 8 00. Example 9 In a reaction vessel equipped with a stirrer and a distillation tube of 5 liters, except for the addition of 816.7 g (4.34 mol) of 2-hydroxy-6-naphthoic acid, 433.9 g (2.33 mol) of 4,4'-di Hydroxybiphenyl, 503.7 g (2·33 mol) 2,6-naphthalenedicarboxylic acid, 0.32 g (0.02% by weight) sodium acetate and 1010.7 g (1.10 equivalents relative to the total phenolic hydroxyl group of the system) acetic anhydride' The melt polymerization temperature was set to 365 t, and when the torque reached 18 kg·cm, the polycondensation was terminated, and the same operation as the above A-1 was carried out. Tm of the liquid crystalline polyester (A-9) (liquid crystalline polyester) The melting point) is 337 °C. Using a high-flow flow tester (nozzle 0:5 Φ>< 10 mm), the melt viscosity measured at a temperature of 357 ° C and a shear rate of 1000 / s is -29-201105705 2 Ο P a · s ο The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 50/50 mixed solvent, 8 (TC)) was 1,2800. Example 1 5 liters of reaction vessel equipped with a stirrer and a distillation tube In addition to adding 816.7 g (4.34 mol) 2 hydroxy-6-naphthoic acid, 433.9 g (2.33 mol) 4,4'-dihydroxybiphenyl, 5 03.7 g (2.33 mol) 2,6-naphthalene a carboxylic acid and 1 〇1 〇·7 g (1.10 equivalents to the total phenolic hydroxyl group of the system) of acetic anhydride, and the melt polymerization temperature was set to 370 ° C, and when the torque reached 16 kg, the polycondensation was terminated at cm. The same operation as in the above-mentioned Α·1 was carried out. The Tm of the liquid crystalline polyester (Α-10) (melting point of the liquid crystalline polyester) was 337. Using a high-speed flow rate tester (nozzle was 〇·5Φχ10 mm) The melt viscosity measured at a temperature of 357 ° C and a shear rate of 1000 / s is 2 Ο P a · s 〇 GPC-LS (pentafluorophenol / chloroform = 50 / 50 mixed solvent) 80 ° C) The number average molecular weight determined was 1 2800. Example 1 1 In a reaction vessel equipped with a stirrer and a distillation tube of 5 liters, except for the addition of 846.8 g (4.50 mol) of 2-hydroxy-6-naphthoic acid 419.0 g (2.25 mol) 4,4'-dihydroxybiphenyl, 4 86.4 g (2.25 mol) 2,6-naphthalenedicarboxylic acid, 0.32 g (0.02% by weight) sodium acetate and 1010.7 g ( The same operation as the above-mentioned Α-1 was carried out except that the total phenolic hydroxyl group of the system was 1.10 equivalents of acetic anhydride, and the melt polymerization temperature was changed to 360 ° C. The liquid crystalline polyester (AU) Tm (liquid crystallinity) The melting point of the polyester is 334 -30- 201105705 °c. Using a high-speed flow tester (nozzle 〇.5Φχ10 mm), measured at a temperature of 3 54 °C and a shear rate of l〇〇〇/s The melt viscosity is 20 P a · s ° The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 50/50 mixed solvent, got) is 12400. Example 1 2 With a stirrer, distillation 5 liters of reaction vessel withdrawn, except for the addition of 93 1.5 g (4.95 mol) 2-hydroxy-6-naphthoic acid ' 3 78.0 g (2.03 mol) 4,4'-dihydroxybiphenyl , 43 8.9 g (2.03 mol) of 2,6-naphthalene dicarboxylic acid, 0.32 g (0.02 wt / 〇 sodium acetate and 1010.7 g (relative to the total phenolic hydroxyl group of the system is 1.10 equivalent) acetic anhydride, and will melt The polymerization was carried out at a temperature of 355 ° C and the polycondensation was terminated when the torque reached 18 kg · cm, and the same operation as in the above A-1 was carried out. The Tm (melting point of the liquid crystalline polyester) of the liquid crystalline polyester (A-12) was 326 〇C. Using a high-flow flow rate tester (nozzle of 55φχΐ〇mm), the melt viscosity measured at a temperature of 346 ° C and a shear rate of i 〇 00 / s was 20 Pa·s. The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 5 〇 / 5 〇 mixed solvent, 8 〇〇 c) was 1,240. Example 1 3 In a reaction vessel equipped with a stirrer and a distillation tube of 5 liters, except for the addition of 1016.2 g (5.40 mol) of 2-hydroxy-6-naphthoic acid, 3352 g (1.8 mol) 4,4' -- via phenyl, 3891 g (18 Torr) 2,6 naphthalene dicarboxylic acid, -31- 201105705 0.32 g (0.02% by weight) sodium acetate and 101 〇_7 g (relative to the hydroxyl group of 1.10) The same operation as in the above A-1 was carried out except that the acetic anhydride was equivalent to the above-mentioned A-1. Tm of the liquid crystalline polyester (A-13) (melting C of liquid crystalline polyester. Using a high-speed flow rate tester (nozzle is 0·5 Φ χ 10 millimeters is 3 3 9 ° C, shear rate is 1 000) Melt 2 0 P a · s measured by /s « The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 5 0/5 0 mixed solution is 12400. Example 1 4 with a stirrer, A 5 liter reaction vessel of the distillate tube was charged with 1100.9 g (5.85 mol) of 2-hydroxy-6.naphthoic acid, 294.2 ears) 4,4'-dihydroxybiphenyl, 341.6 g (1.58 mol) 2,6- Naphthalene 0.3 1 g (0.02% by weight) of sodium acetate and 1010.7 g (1.10 equivalents based on the hydroxyl group) of acetic anhydride, and the same operation as in the above A-1 was carried out except for the melt polymerization temperature of ° C. Tm of ester (A-14) (melting of liquid crystalline polyester. Using a high-speed flow tester (nozzle is 0.5 Φ Χ 10 millimeters is 338 ° C, shear rate is 1 000 / s measured melting 2 Ο P a · s 〇 using GPC-LS (pentafluorophenol / chloroform = 5 0/5 0 mixed solution determination of the number average molecular weight of 12400. Example 1 5 total phenol is set to 3 4 5 points) is 3 1 9 meters ), in the warm melt For the agent, 80 〇C) 丨, except for gram (1.55 moles; dicarboxylic acid, phenolic total phenol: set to 345 points) is 3 18 m), in the temperature and melt viscosity agent '80 ° C -32- 201105705 The same operation as in the above A-2 was carried out, except that the pressure was started immediately after the melt polymerization temperature was reached. The Tm (melting point of the liquid crystalline polyester) of the liquid crystalline polyester (A-15) was 345 °C. The weight reduction rate was 0.40% by weight using a thermogravimetric measuring device and maintaining it under a nitrogen atmosphere at 35 ° C for 120 minutes. Using a high-speed flow tester (nozzle 0.5 Φ x 10 mm), the melt viscosity measured at a temperature of 3 6 5 ° C and a shear rate of 10 〇〇〇 / s was 20 P a · s. The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 50/50 mixed solvent, 80 ° C) was 1,2,600. Example 1 6 The same operation as in the above A-2 was carried out, except that the pressure at the same temperature was maintained after maintaining the temperature at the same temperature for 8 hours. The Tm (melting point of the liquid crystalline polyester) of the liquid crystalline polyester (A-16) was 345 °C. Using a high-speed flow tester (nozzle is 55Φχ1〇mm), the melt viscosity measured at a temperature of 3 6 5 °C and a shear rate of l〇〇〇/s is 20 P a · s 〇 The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 50/50 mixed solvent, 80 ° C) was 1,2600. · Example 1 7 After maintaining the melt polymerization temperature, it was kept at the same temperature for 1 hour. The same operation as in the above A-2 was carried out, except that the pressure reduction was started. The Tm (melting point of the liquid crystalline polyester) of the liquid crystalline polyester (A-17) was 345. (: -33- 201105705 Using a high-speed flow tester (nozzle 0.5φχ10 mm), the melt viscosity measured at a temperature of 3 6 5 °C and a shear rate of 1 000 / s is 2 OPa · s 〇 The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 50/50 mixed solvent, 8 ° C) was 12,600 ^. Example 1 8 After the temperature reached the melt polymerization temperature, the reduction was started after the same temperature was maintained for 2.8 hours. The same operation as in the above-mentioned A-2 was carried out. The Tm (melting point of the liquid crystalline polyester) of the liquid crystalline polyester (A-1 8) was 345. (: Using a high-speed flow rate tester (nozzle is 0·5Φχ10 mm), the melt viscosity measured at a temperature of 3 6 5 °C 'shear rate of 1 000 / s is 20 P a · s 〇 using GPC-LS (pentafluorophenol / chloroform = 50 / 50 The number average molecular weight measured by the mixed solvent at 80 ° C) was 1,260. Example 1 9 The same operation as in the above A-2 was carried out, except that the temperature was maintained at the same temperature for 3.2 hours after the temperature reached the melt polymerization temperature. The Tm of the liquid crystalline polyester (A-19) (melting point of the liquid crystalline polyester) was 345 〇 C. Using a high-speed flow rate tester (nozzle) 0.5ΦΧ10mm), the melt viscosity measured at a temperature of 3 65 °C and a shear rate of l〇〇〇/s is 20 P a · s 〇 GPC-LS (pentafluorophenol/chloroform = 50/50) The number average molecular weight measured by the mixed solvent at 80 ° C was 1,2600. -34 - 201105705 Example 2 0 In a reaction vessel equipped with a stirrer and a distillation tube of 5 liters, 724.5 g (3.85 mol) was added. Hydroxy-6-naphthoic acid, 47 8.6 g (2.57 mol) 4,4'-dihydroxybiphenyl, 627.4 g (2·57 mol) dimethyl 2,6-naphthalenedicarboxylate and 937.2 g (relative The total phenolic hydroxyl group in the system was 1.02 equivalents of acetic anhydride, and the reaction was carried out at 145 ° C for 2 hours while stirring under a nitrogen atmosphere, and then heated to 3 70 ° C for 6 hours. When the amount of acetic acid distilled was larger than the theoretical amount After 90%, 0.27 g (0.02% by weight) of dibutyltin oxide was added, and kept at the same temperature for 1.5 hours and depressurized to 1. 〇mmHg (133 Pa) for 1 hour, and then the reaction was continued for 30 minutes. When the temperature reached 20 kg · cm, the polycondensation was completed. The reaction vessel was then pressurized to 1.0 kg/cm 2 (0.1 MPa) and passed through a circular discharge port having a diameter of 10 mm. The nozzle spouted the polymer into a strand and granulated using a cutter. The liquid crystal polyester (Α20) had a Tm (melting point of liquid crystalline polyester) of 345 V. Using a high-speed flow rate tester ( The nozzle is 〇.5Φχ1〇mm), the melt viscosity measured at a temperature of 3 65 °C and a shear rate of 1〇〇〇/s is 20 P a · s 〇 GPC-LS (pentafluorophenol/chloroform) = 50/50 mixed solvent, 80 ° C) The number average molecular weight determined was 1,2600. Example 2 1 In a 5 liter reaction vessel equipped with a stirrer and a distillation tube, '724.5 g (3.85 mol) 2-hydroxy-6-naphthoic acid, 478.6 g (2.57 mol) 4,4'·2 were added. Hydroxybiphenyl, 627.4 g (2.57 mol) of 2,6-naphthalene dicarboxylic acid dimethyl [.S 1 -35- 201105705 ester and 0.27 g (0.02% by weight) of dibutyltin oxide, and stirred under nitrogen atmosphere After reacting at 145 ° C for 2 hours, the temperature was raised to 370 t over 6 hours. Subsequently, at 37 (TC held for 1.5 hours and reduced to 1.0 mmHg (13 3 Pa) at 1.0 hour, the reaction was continued for another 30 minutes, and when the torque reached 20 kg «cm, the polycondensation was completed. The container was pressurized to 1.0 kg/cm 2 (0.1 MPa), and the polymer was discharged into a strand through a nozzle having a circular discharge port having a diameter of 10 mm, and granulated using a cutter. The Tm of the ester (A-21) (melting point of the liquid crystalline polyester) was 345 〇 C. Using a high-speed flow rate tester (nozzle 0.5 Χ 10 mm) at a temperature of 3 65 ° C and a shear rate of 1 000 The melt viscosity measured by /s was 20 Pa·s. The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 50/50 mixed solvent, 80 ° C) was 1,2600. A 5 liter reaction vessel equipped with a stirrer and a distillation tube, except for the addition of 717.0 g (3.81 mol) of 2-hydroxy-6-naphthoic acid, 478-6 g (2.57 mol) of 4,4'-dihydroxybiphenyl, 5 5 5.6 g (2.57 mol) 2,6-naphthalenedicarboxylic acid, I2.4 g (0.05 mol) 3.5-di-t-butyl-4-hydroxybenzoic acid and 0.32 g (0.02% by weight) sodium acetate , 10 The same operation as in the above A-2 was carried out except that 10.7 g (1.10 equivalent of the total phenolic hydroxyl group of the system) was used. The Tm of the liquid crystalline polyester (A-22) (the melting point of the liquid crystalline polyester) was 344 ° C. Using a high-flow flow tester (nozzle 0.5 Χ 10 mm), the melt viscosity measured at a temperature of 364 ° C and a shear rate of 1 000 / s is -36 - 201105705 2 0 P a · s数量 The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 50/50 mixed solvent, 8 〇t:) was 1,2600. Example 2 3 Reaction with 5 liters equipped with a stirrer and a distillation tube Container, except for the addition of 696.3 g (3.70 mol) of 2-hydroxy-6-naphthoic acid, 478.6 g (2.57 mol) of 4,4'-dihydroxybiphenyl, 5 5 5.6 g (2.57 mol) 2,6- Naphthalene dicarboxylic acid, 37.2 g (0-15 mol) of 3.5-di-t-butyl-4-hydroxybenzoic acid and 0.32 g (0.02 wt%) of sodium acetate, 1010.7 g (1 to 10 equivalents relative to the total phenolic hydroxyl group of the system) The same operation as in the above A-2 was carried out except for acetic anhydride. The Tm (melting point of liquid crystalline polyester) of the liquid crystalline polyester (A-23) was 344 t. The melt viscosity of the nozzle (0.5 Φ Χ 10 mm) at a temperature of 3 64 ° C and a shear rate of 1 000 / s is 20 P a · s 〇 using GPC-LS (pentafluorophenol / chloroform = 5 The number average molecular weight measured by a 0/50 mixed solvent at 80 ° C was 12,600. Example 24 In a reaction vessel equipped with a stirrer and a distillation tube of 5 liters, except for the addition of 673.7 g (3.58 mol) of 2-hydroxy-6-naphthoic acid, 478.6 g (2.57 mol) of 4,4'-di Hydroxybiphenyl, 5 5 5.6 g (2.57 mol) 2,6-naphthalenedicarboxylic acid, 67.0 g (0.27 mol) 3·5-di-t-butyl-4-hydroxybenzoic acid and 0.32 g (0.02 wt. %) The same operation as in the above-mentioned oxime-2 was carried out except for sodium acetate and 1010.7 g (1.1 eq. equivalent to the total phenolic hydroxyl group of the system) of acetic anhydride. The liquid crystalline polyester (Α-24) has a Tm (melting point of liquid crystalline polyester) of 339.

-37- X 。 201105705 使用高化式流速測試器(噴嘴爲0.5ΦΧ10毫米),在溫 度爲3 5 9 °C、剪切速度爲1 000/S所測定的熔融黏度爲 2 OP a · s 〇 使用GPC-LS(五氟苯酚/氯仿=50/50混合溶劑、80。(:) 測定的數量平均分子量爲1260 0。 液晶性聚酯(C) 比較例1 除了將熔融聚合溫度設爲360°C,當轉矩到達22kg. cm時,結束聚縮合以外,進行與上述A-1同樣的操作。 該液晶性聚酯(C-1 )的Tm (液晶性聚酯的熔點)爲345 t。使用高化式流速測試器(噴嘴爲〇.5 Φ xio毫米)’在溫 度爲3 65 °C、剪切速度爲1000/s所測定的熔融黏度爲 2 4 P a · s 〇 使用GPC-LS(五氟苯酚/氯仿= 50/50混合溶劑、80°C) 測定的數量平均分子量爲1 2600。 比較例2 除了將熔融聚合溫度設爲390°C,當轉矩到達l4kg· cm時,結束聚縮合以外,進行與上述A- 1同樣的操作。 該液晶性聚酯(C-2)的Tm(液晶性聚酯的熔點)爲345 。(:。使用高化式流速測試器(噴嘴爲〇.5Φχΐ〇毫米)’在溫 度爲 365 °C、剪切速度爲l〇〇〇/s所測定的熔融黏度爲 2 4 P a · s。 使用GPC-LS(五氟苯酚/氯仿= 50/50混合溶劑、80°C) 測定的數量平均分子量爲1 2600。 比較例3 -38- 201105705 在具備有攪拌器、餾出管之5升的反應容器,添加 846.8克(4.50莫耳)2·羥基-6-萘甲酸、419·0克(2.25莫 耳)4,4’-二羥基聯苯、486.4克(2.25莫耳)2,6-萘二羧酸、 0.32克(0.02重量%)乙酸鈉及1010.7克(相對於系統的總酚 性羥基爲1.10當量)乙酸酐,並在氮氣環境下邊攪拌邊在 1 4 5 °C使其反應1小時後,以3小時升溫至3 1 0 °C (該溫度係 指熔融聚合時的最高到達溫度)並保持2.5小時,且將所得 到的聚合物抽出。使用粉碎機將抽出的聚合物粉碎,並將 粒徑爲0.1〜1毫米的粉末放入塔板式固相聚合裝置,且在 氮氣氣流下(氮氣流量12升/分鐘)以1小時從25t升溫至 2 5 0 °C後,進而以8小時從該溫度升溫至3 2 0 °C並保持5小 時來進行固相聚合。 該液晶性聚酯(C-3)的Tm(液晶性聚酯的熔點)爲334 〇C。 使用高化式流速測試器(噴嘴爲0·5Φχ10毫米),在溫 度爲 3 54 °C 、剪切速度爲1 000/s所測定的熔融黏度爲 2 1 P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=50/50混合溶劑、80°C) 測定的數量平均分子量爲1 2600。 比較例4 在具備有攪拌器、餾出管之5升的反應容器,添加 8 90.1克(4.73莫耳)2-羥基-6·萘甲酸、3 96.6克(2.13莫 耳)4,4’-二羥基聯苯、460.5克(2.13莫耳)2,6-萘二羧酸、 0.32克(0.02重量%)乙酸鈉及1010.7克(相對於系統的總酚 性羥基爲1.10當量)乙酸酐,並在氮氣環境下邊攪拌邊在 -39- 201105705 145°C使其反應1小時後,以3.5小時升溫至310°C (該溫度 係指熔融聚合時的最高到達溫度)並保持2小時,且將所得 到的聚合物抽出。使用粉碎機將抽出的聚合物粉碎,並將 粒徑爲0.1〜1毫米的粉末放入塔板式固相聚合裝置,且在 氮氣氣流下(氮氣流量12升/分鐘)以1小時從25 °C升溫至 2 5 0 °C後,進而以1 0小時從該溫度升溫至3 2 5 °C並保持1 2 小時來進行固相聚合。 該液晶性聚酯(C-4)的Tm(液晶性聚酯的熔點)爲330 〇C。 使用高化式流速測試器(噴嘴爲0·5Φχ10毫米),在溫 度爲3 5 0 °C、剪切速度爲1 000/s所測定的熔融黏度爲 2 1 P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=50/50混合溶劑、80°C) 測定的數量平均分子量爲12600。 比較例5 在具備有攪拌器、餾出管之5升的反應容器,添加 931.5克(4.95莫耳)2-羥基-6-萘甲酸、3 7 8.0克(2.03莫 耳)4,4’-二羥基聯苯、43 8_9克(2.03莫耳)2,6-萘二羧酸、 0.32克(0.02重量%)乙酸鈉及1010.7克(相對於系統的總酚 性羥基爲1.10當量)乙酸酐,並在氮氣環境下邊攪拌邊在 145°C使其反應1小時後,以3.5小時升溫至310。(:(該溫度 係指熔融聚合時的最高到達溫度)並保持2小時,且將所得 到的聚合物抽出。使用粉碎機將抽出的聚合物粉碎,並將 粒徑爲0.1〜1毫米的粉末放入塔板式固相聚合裝置,且在 氮氣氣流下(氮氣流量12升/分鐘)以1小時從25。(:升溫至 -40- 201105705 250 °C後,進而以10小時從該溫度升溫至325 °C並保持12 小時來進行固相聚合。 該液晶性聚酯(C-5)的Tm(液晶性聚酯的熔點)爲326 ◦C。 .使用高化式流速測試器(噴嘴爲〇·5φχ1〇毫米),在溫 度爲 346 °C、剪切速度爲1 000/s所測定的熔融黏度爲 2 1 P a · s。 使用GPC-LS(五氟苯酚/氯仿= 50/50混合溶劑、80°C) 測定的數量平均分子量爲12600。 比較例6 在具備有攪拌器、餾出管之5升的反應容器,添加 724.5克(3.85莫耳)2-羥基-6-萘甲酸、478.6克(2.57莫 耳)4,4’-二羥基聯苯、5 5 5.6克(2.57莫耳)2,6-萘二羧酸、 0.32克(0.02重量%)乙酸鈉及1010.7克(相對於系統的總酚 性羥基爲1.1〇當量)乙酸酐,並在氮氣環境下邊攪拌邊在 145°C使其反應2小時後,以2小時升溫至280°C並保持1 小時後,進而以〇·5小時小時升溫至3 1 0°C (該溫度係指熔 融聚合時的最高到達溫度)並保持2.5小時,且將所得到的 聚合物抽出。使用粉碎機將抽出的聚合物粉碎’並將粒徑 爲0.1〜1毫米的粉末放入塔板式固相聚合裝置,且在氮氣 氣流下(氮氣流量12升/分鐘)以1小時從25°C升溫至250 。(:後,進而以8小時從該溫度升溫至320°C並保持5小時 來進行固相聚合。 該液晶性聚酯(C-6)的Tm(液晶性聚酯的熔點)爲345 〇C 。 -41 - 201105705 使用高化式流速測試器(噴嘴爲〇·5Φχ10毫米),在溫 度爲365°C、剪切速度爲1 000/s所測定的熔融黏度爲 2 1 P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=5 0/50混合溶劑、80°C) 測定的數量平均分子量爲1 2600。 比較例7 在具備有攪拌器、餾出管之5升的反應容器,除了添 加566.4克(3.01莫耳)2-羥基-6-萘甲酸、5 5 8克(3.00莫 耳)4,4’-二羥基聯苯、648.6克(3.00莫耳)2,6-萘二羧酸、 0.32克(0.02重量%)乙酸鈉及1010.7克(相對於系統的總酚 性羥基爲1.1〇當量)乙酸酐,並將熔融聚合溫度設爲380 °C以外,進行與上述A- 1同樣的操作。 該液晶性聚酯(C-7)的Tm(液晶性聚酯的熔點)爲355 X。 使用高化式流速測試器(噴嘴爲0.5ΦΧ10毫米),在溫 度爲3 75 °C、剪切速度爲l〇〇〇/s所測定的熔融黏度爲 2 1 P a · s。 使用GPC-LS(五氟苯酚/氯仿=50/50混合溶劑、80°C ) 測定的數量平均分子量爲1 2600。 比較例8 除了將熔融聚合溫度設爲370°C,當轉矩到達24kg. cm時,結束聚縮合以外’進行與上述C-7同樣的操作。 該液晶性聚酯(C-8)的Tm(液晶性聚酯的熔點)爲355 〇C » 使用高化式流速測試器(噴嘴爲〇.5Φχ1〇毫米),在溫 -42- 201105705 度爲 3 75 °C、剪切速度爲l〇 00/s所測定的熔融黏度爲 2 1 P a · s 〇 使用GPC-LS(五氟苯酚/氯仿=50/50混合溶劑、8〇°C) 測定的數量平均分子量爲1 2600。 . 比較例9 在具備有攪拌器、餾出管之5升的反應容器,除了添 加1385.0克(7.36莫耳)2-羥基-6-萘甲酸、152.7克(0.82莫 耳)4,4’-二羥基聯苯、177.3克(0.82莫耳)2,6-萘二羧酸、 0.31克(0.02重量%)乙酸鈉及1010.7克(相對於系統的總酚 性羥基爲1.10當量)乙酸酐,並將熔融聚合溫度設爲330 °C以外,進行與上述A-1同樣的操作。 該液晶性聚酯(C-9)的Tm(液晶性聚酯的熔點)爲300 。。。 使用高化式流速測試器(噴嘴爲〇· 5 Φ xlO毫米),在溫 度爲 320 °C、剪切速度爲l〇〇〇/s所測定的熔融黏度爲 2 1 P a · s。 使用GPC-LS(五氟苯酚/氯仿=5 0/50混合溶劑、8(TC) 測定的數量平均分子量爲1 2600。 比較例1 〇 在具備有攪拌器、餾出管之5升的反應容器,除了添 加1385_0克(7.36莫耳)2-羥基-6-萘甲酸、152.7克(0.82莫 耳)4,4’-二羥基聯苯、177.3克(0.82莫耳)2,6-萘二羧酸' 0.31克(0.02重量%)乙酸鈉及1010.7克(相對於系統的總酚 性經基爲1_1〇當量)乙酐’並將熔融聚合溫度設爲310 °c且 當轉矩到達26kg· cm時’結束聚縮合以外,進行與上述 -43- 201105705 C-9同樣的操作。該液晶性聚酯(C-10)的Tm(液晶性聚酯的 熔點)爲3 00 °C。使用高化式流速測試器(噴嘴爲〇·5Φχ10 毫米),在溫度爲320°C、剪切速度爲1 000/s所測定的熔融 黏度爲21Pa· s。使用GPC-LS(五氟苯酚/氯仿= 50/50混合 溶劑、80°C )測定的數量平均分子量爲12600。 又,作爲比較例,上述所示之液晶性聚酯(C)係組成範 圍及/或由2-羥基-6-萘甲酸所得到的結構單位之平均鏈長 範圍爲未滿足本發明的範圍之液晶性聚酯。 依照以下的(1)〜(10)之方法來評價。 (1) 將由2-羥基-6-萘甲酸所得到的結構單位之平均鏈長液 晶性聚酯溶解於五氟苯酚/重氯仿=5 0/50混合溶液而成爲 10mg/mL,並藉由 JEOL 製 5 00MHZ-NMR 來測定 13C-NMR。 從所得到光譜,基於由2-羥基-6-萘甲酸所得到的結構 單位的第2位置的碳之位移,透過酯鍵而鍵結於由其他2-羥基-6·萘甲酸所得到的結構單位的第6位置而成之結構 (尖峰A: 151.Oppm),與鍵結於2,6-萘二羧酸而成之結構(尖 峰B: 151.7ppm)被分離,從各自的尖峰面積(積分値)(尖峰 A面積(a)及尖峰B面積(b)),依照由2-羥基-6-萘甲酸所得 到的結構單位之平均鏈長依照下述算出。會有將尖峰面積 (積分値)稱爲尖峰強度之情形。 (由2-羥基-6-萘甲酸所得到的結構單位之平均鏈長)= a/b。 (2) 有無甲氧羰基、羥基末端 將液晶性聚酯溶解於五氟苯酚/重氯仿=50/50混合溶 液而成爲l〇mg/mL,並藉由JEOL製5 00MHZ-NMR來測定 4 核-NMR。 -44- 201105705 所得到的光譜中,在4_〇ppm附近能夠觀察到由甲氧羰 基所得到的尖峰時’判定爲有甲氧羰基,未觀察到時.判定 爲無。同樣地,關於羥基’係基於來自對於在6· 8ppm附近 之由4,4’-二羥基聯苯所得到的結構單位的酚性羥基末端 爲冷位置碳的質子之尖峰’及來自對於在7.25pprn附近之 由2-羥基-6-萘甲酸所得到的結構單位的酚性羥基末端爲 第2位置碳的質子之尖峰,來進行判定有、無。 (3) 熔點(Tm) 使用PERKIN ELMER製差示掃描熱量計DSC7,在將 聚合完成後的聚合物從室溫以20 t/分鐘的升溫條件測定 時觀測能夠觀測到的吸熱尖峰溫度(Tm 1 )後,在Tm 1 +2 0 °C 的溫度保持5分鐘後,以2 0 °C /分鐘的降溫條件暫時冷卻至 室溫後’將再次以2 0 °C /分鐘的升溫條件測定時能夠觀測到 的吸熱尖峰溫度(Tm2)作爲熔點。但是,吸熱尖峰溫度(Τιη2) 係複數次觀測時,使用高溫側的尖峰作爲熔點。 (4) 異方向性 使用FANUC公司製R〇BOSHOTa30C電動射出成形 機,並將圓筒溫度設定爲液晶性聚醋的溶點Τιώ + 2〇Χ^,將 模具溫度設定爲80 °C ’來成形寬度70毫米X長度70毫米X 厚度2毫米的方形板,測定在方形板的流動方向(MD)及與 流動方向直角的方向(TD)之成形收縮率,來求取成形收縮 率的比=丨流動方向(MD)的成形收縮率丨/丨直角方向(TD) 的成形收縮率丨,並評價異方向性。從上述所得到的値越 小,表示異方向性越小。 (5) 絕緣崩潰電阻-37- X. 201105705 Using a high-speed flow tester (nozzle 0.5ΦΧ10mm), the melt viscosity measured at a temperature of 3 5 9 °C and a shear rate of 1 000 / S is 2 OP a · s 〇 use GPC-LS ( Pentafluorophenol/chloroform = 50/50 mixed solvent, 80. (:) The number average molecular weight measured was 1,260. Liquid crystal polyester (C) Comparative Example 1 except that the melt polymerization temperature was set to 360 ° C, when torque When the temperature reached 22 kg.cm, the same operation as in the above A-1 was carried out, except that the polycondensation was completed. The Tm of the liquid crystalline polyester (C-1) (melting point of the liquid crystalline polyester) was 345 t. The tester (nozzle is 〇.5 Φ xio mm) 'The melt viscosity measured at a temperature of 3 65 ° C and a shear rate of 1000 / s is 2 4 P a · s 〇 GPC-LS (pentafluorophenol / Chloroform = 50/50 mixed solvent, 80 ° C) The number average molecular weight measured was 1,2600. Comparative Example 2 In addition to the melt polymerization temperature was set to 390 ° C, when the torque reached 14 kg·cm, the polycondensation was terminated. The same operation as in the above A-1. The Tm of the liquid crystalline polyester (C-2) (melting point of the liquid crystalline polyester) was 345. The flow rate tester (nozzle is 5.5Φχΐ〇mm)' The melt viscosity measured at a temperature of 365 °C and a shear rate of l〇〇〇/s is 2 4 P a · s. Use GPC-LS (five The number average molecular weight measured by fluorophenol/chloroform = 50/50 mixed solvent, 80 ° C) was 1,2600. Comparative Example 3 -38 - 201105705 In a reaction vessel equipped with a stirrer and a distillation tube of 5 liters, 846.8 g was added. (4.50 mol) 2·hydroxy-6-naphthoic acid, 419·0 g (2.25 mol) 4,4′-dihydroxybiphenyl, 486.4 g (2.25 mol) 2,6-naphthalenedicarboxylic acid, 0.32克 (0.02% by weight) sodium acetate and 1010.7 g (1.10 equivalents relative to the total phenolic hydroxyl group of the system) acetic anhydride, and reacted at 1 45 ° C for 1 hour under stirring in a nitrogen atmosphere for 3 hours. The temperature was raised to 3 10 ° C (this temperature means the highest temperature reached during melt polymerization) and held for 2.5 hours, and the obtained polymer was taken out. The extracted polymer was pulverized using a pulverizer, and the particle diameter was 0.1. ~1 mm powder was placed in a tray-type solid phase polymerization unit and under a nitrogen flow (nitrogen flow rate of 12 liters / min) in 1 hour from 25t After the temperature was raised to 250 ° C, the temperature was raised from the temperature to 3 2 0 ° C for 8 hours, and the solid phase polymerization was carried out for 5 hours. The liquid crystalline polyester (C-3) Tm (liquid crystalline polyester) The melting point is 334 〇 C. Using a high-flow flow tester (nozzle 0·5 Φ χ 10 mm), the melt viscosity measured at a temperature of 3 54 ° C and a shear rate of 1 000 / s is 2 1 P a · s 〇 The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 50/50 mixed solvent, 80 ° C) was 1,2600. Comparative Example 4 In a reaction vessel equipped with a stirrer and a distillation tube of 5 liters, 8 90.1 g (4.73 mol) of 2-hydroxy-6.naphthoic acid and 3 96.6 g (2.13 mol) of 4,4'- were added. Dihydroxybiphenyl, 460.5 g (2.13 mol) 2,6-naphthalenedicarboxylic acid, 0.32 g (0.02% by weight) sodium acetate and 1010.7 g (1.10 equivalents relative to the total phenolic hydroxyl group of the system) of acetic anhydride, and After reacting for 1 hour at -39-201105705 145 ° C with stirring in a nitrogen atmosphere, the temperature was raised to 310 ° C for 3.5 hours (this temperature means the highest temperature reached during melt polymerization) and held for 2 hours, and The resulting polymer was withdrawn. The extracted polymer was pulverized using a pulverizer, and a powder having a particle diameter of 0.1 to 1 mm was placed in a tray type solid phase polymerization apparatus under a nitrogen gas flow (nitrogen flow rate of 12 liters/min) at 25 ° C for 1 hour. After the temperature was raised to 250 ° C, the temperature was raised from the temperature to 3 2 5 ° C for 10 hours and maintained for 12 hours to carry out solid phase polymerization. The Tm (melting point of the liquid crystalline polyester) of the liquid crystalline polyester (C-4) was 330 〇C. Using a high-flow flow tester (nozzle 0. 5 Φ χ 10 mm), the melt viscosity measured at a temperature of 350 ° C and a shear rate of 1 000 / s is 2 1 P a · s 〇 using GPC-LS (Pentafluorophenol/chloroform = 50/50 mixed solvent, 80 ° C) The number average molecular weight measured was 12,600. Comparative Example 5 In a reaction vessel equipped with a stirrer and a distillation tube of 5 liters, 931.5 g (4.95 mol) of 2-hydroxy-6-naphthoic acid and 3 7 8.0 g (2.03 mol) of 4,4'- were added. Dihydroxybiphenyl, 43 8-9 g (2.03 mol) 2,6-naphthalenedicarboxylic acid, 0.32 g (0.02% by weight) sodium acetate and 1010.7 g (1.10 equivalents relative to the total phenolic hydroxyl group of the system), acetic anhydride, The mixture was reacted at 145 ° C for 1 hour while stirring under a nitrogen atmosphere, and then heated to 310 at 3.5 hours. (: (this temperature means the highest temperature reached during melt polymerization) and held for 2 hours, and the obtained polymer was taken out. The extracted polymer was pulverized using a pulverizer, and a powder having a particle diameter of 0.1 to 1 mm was prepared. Put in a tray type solid phase polymerization apparatus, and under a nitrogen gas flow (nitrogen flow rate of 12 liters / minute) from 25 hours (after heating up to -40 - 201105705 250 ° C, and then from 10 hours to 50 ° from this temperature to Solid phase polymerization was carried out at 325 ° C for 12 hours. The liquid crystalline polyester (C-5) had a Tm (melting point of liquid crystalline polyester) of 326 ◦ C. Using a high-speed flow rate tester (nozzle is 〇 · 5φχ1〇mm), the melt viscosity measured at a temperature of 346 °C and a shear rate of 1 000 / s is 2 1 P a · s. Use GPC-LS (pentafluorophenol / chloroform = 50 / 50 mixed solvent) The number average molecular weight measured by 80 ° C) was 12,600. Comparative Example 6 In a reaction vessel equipped with a stirrer and a distillation tube of 5 liters, 724.5 g (3.85 mol) of 2-hydroxy-6-naphthoic acid, 478.6 was added. Gram (2.57 mol) 4,4'-dihydroxybiphenyl, 5 5 5.6 g (2.57 mol) 2,6-naphthalenedicarboxylic acid, 0.32 g 0.02% by weight of sodium acetate and 1010.7 g (1.1 eq. equivalent to the total phenolic hydroxyl group of the system) acetic anhydride, and reacted at 145 ° C for 2 hours while stirring under a nitrogen atmosphere, and then heated to 280 in 2 hours. After maintaining at ° C for 1 hour, the temperature was further raised to 3 10 ° C (this temperature means the highest temperature reached during melt polymerization) for 2.5 hours, and the obtained polymer was taken out. The pulverizer pulverizes the extracted polymer and puts a powder having a particle diameter of 0.1 to 1 mm into a tray type solid phase polymerization apparatus, and is heated from 25 ° C in 1 hour under a nitrogen gas flow (nitrogen flow rate of 12 liter / minute). After the reaction, the solid phase polymerization was carried out by heating the temperature from the temperature to 320 ° C for 8 hours, and the Tm (the melting point of the liquid crystalline polyester) of the liquid crystalline polyester (C-6) was 345 〇C. -41 - 201105705 Using a high-speed flow tester (nozzle 〇·5Φχ10 mm), the melt viscosity measured at a temperature of 365 ° C and a shear rate of 1 000 / s is 2 1 P a · s 〇 Quantity measured using GPC-LS (pentafluorophenol/chloroform = 50/50 mixed solvent, 80 ° C) The average molecular weight was 12600. Comparative Example 7 In a reaction vessel equipped with a stirrer and a distillation tube of 5 liters, except for the addition of 566.4 g (3.01 mol) of 2-hydroxy-6-naphthoic acid, 5 58 g (3.00 mol) Ear) 4,4'-dihydroxybiphenyl, 648.6 g (3.00 mol) 2,6-naphthalenedicarboxylic acid, 0.32 g (0.02% by weight) sodium acetate and 1010.7 g (relative to the total phenolic hydroxyl group of the system) 1.1 equivalent of acetic anhydride, and the melt polymerization temperature was set to 380 ° C, and the same operation as in the above A-1 was carried out. The Tm of the liquid crystalline polyester (C-7) (melting point of the liquid crystalline polyester) was 355 X. Using a high-flow flow rate tester (nozzle 0.5 Χ 10 mm), the melt viscosity measured at a temperature of 3 75 ° C and a shear rate of 10 〇〇〇 / s was 2 1 P a · s. The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 50/50 mixed solvent, 80 ° C) was 1,2600. Comparative Example 8 The same operation as in the above C-7 was carried out except that the melt polymerization temperature was 370 ° C, and when the torque reached 24 kg.cm, the polycondensation was terminated. The liquid crystalline polyester (C-8) has a Tm (melting point of liquid crystalline polyester) of 355 〇C » using a high-speed flow rate tester (nozzle is 5.5Φχ1〇mm) at a temperature of -42 to 201105705 degrees The melt viscosity measured at 3 75 ° C and a shear rate of 10 〇 00 / s is 2 1 P a · s 〇 using GPC-LS (pentafluorophenol / chloroform = 50 / 50 mixed solvent, 8 ° ° C) The number average molecular weight is 1 2600. Comparative Example 9 In a reaction vessel equipped with a stirrer and a distillation tube of 5 liters, except for the addition of 1385.0 g (7.36 mol) of 2-hydroxy-6-naphthoic acid, 152.7 g (0.82 mol) of 4,4'- Dihydroxybiphenyl, 177.3 g (0.82 mol) 2,6-naphthalenedicarboxylic acid, 0.31 g (0.02% by weight) sodium acetate and 1010.7 g (1.10 equivalents relative to the total phenolic hydroxyl group of the system) of acetic anhydride, and The same operation as in the above A-1 was carried out except that the melt polymerization temperature was changed to 330 °C. The liquid crystalline polyester (C-9) had a Tm (melting point of liquid crystalline polyester) of 300. . . Using a high-flow flow rate tester (nozzle of 〇· 5 Φ xlO mm), the melt viscosity measured at a temperature of 320 ° C and a shear rate of 10 〇〇〇 / s was 2 1 P a · s. The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 50/50 mixed solvent, 8 (TC) was 1,2600. Comparative Example 1 5 liters of reaction vessel equipped with a stirrer and a distillation tube In addition to adding 1385_0 g (7.36 mol) 2-hydroxy-6-naphthoic acid, 152.7 g (0.82 mol) 4,4'-dihydroxybiphenyl, 177.3 g (0.82 mol) 2,6-naphthalenedicarboxylate Acid '0.31 g (0.02% by weight) sodium acetate and 1010.7 g (relative to the total phenolic base of the system 1 1 〇 equivalent) of acetic anhydride' and the melt polymerization temperature was set to 310 °c and when the torque reached 26 kg·cm In the same manner as in the above-mentioned -43-201105705 C-9, the Tm (melting point of the liquid crystalline polyester) of the liquid crystalline polyester (C-10) was 300 ° C. The flow rate tester (nozzle is χ·5Φχ10 mm), the melt viscosity measured at a temperature of 320 ° C and a shear rate of 1 000 / s is 21 Pa·s. GPC-LS (pentafluorophenol / chloroform = 50) The number average molecular weight measured by the /50 mixed solvent at 80 ° C was 12,600. Further, as a comparative example, the liquid crystalline polyester (C) shown above has a composition range and/or 2- The average chain length of the structural unit obtained from the ketone-6-naphthoic acid is a liquid crystalline polyester which does not satisfy the range of the present invention. It is evaluated according to the following methods (1) to (10). The average chain length liquid crystalline polyester of the structural unit obtained from hydroxy-6-naphthoic acid is dissolved in a mixed solution of pentafluorophenol/heavy chloroform=50/50 to become 10 mg/mL, and is made by JEOL to 500 MHZ-NMR. The 13C-NMR was measured. From the obtained spectrum, the carbon shift at the second position based on the structural unit obtained from 2-hydroxy-6-naphthoic acid was bonded to the other 2-hydroxy-6-naphthalene through the ester bond. The structure of the sixth position of the structural unit obtained by formic acid (spike A: 151.0 ppm) is separated from the structure (spike B: 151.7 ppm) bonded to 2,6-naphthalenedicarboxylic acid. The respective peak areas (integral enthalpy) (spike A area (a) and peak B area (b)) are calculated according to the following, based on the average chain length of the structural unit obtained from 2-hydroxy-6-naphthoic acid. The peak area (integral 値) is called the peak intensity. (The average chain length of the structural unit obtained from 2-hydroxy-6-naphthoic acid) = a/b (2) The presence or absence of a methoxycarbonyl group and a hydroxyl group-end liquid crystal polyester was dissolved in a pentafluorophenol/heavy chloroform=50/50 mixed solution to become l〇mg/mL, and 4 nucleus was determined by JEOL 500 MHZ-NMR. - NMR - 44-201105705 In the obtained spectrum, when a peak derived from a methoxycarbonyl group was observed in the vicinity of 4 〇 ppm, it was judged to have a methoxycarbonyl group, and when it was not observed, it was judged to be absent. Similarly, the hydroxy group is based on the peak from the proton of the cold position carbon from the phenolic hydroxyl end of the structural unit derived from 4,4'-dihydroxybiphenyl at around 6.8 ppm and from at 7.25. The phenolic hydroxyl group of the structural unit obtained from 2-hydroxy-6-naphthoic acid near pprn is the peak of the proton of the carbon at the second position, and the presence or absence of the determination is made. (3) Melting point (Tm) Using a differential scanning calorimeter DSC7 manufactured by PERKIN ELMER, an observable endothermic peak temperature (Tm 1) was observed when the polymer after completion of polymerization was measured from room temperature at a temperature rising condition of 20 t/min. After that, after holding at a temperature of Tm 1 +2 0 °C for 5 minutes, and temporarily cooling to room temperature under a temperature drop condition of 20 °C /min, it is possible to measure again at a temperature rise condition of 20 °C /min. The observed endothermic peak temperature (Tm2) was taken as the melting point. However, when the endothermic peak temperature (Τιη2) is observed several times, the peak on the high temperature side is used as the melting point. (4) The R〇BOSHOTa30C electric injection molding machine manufactured by FANUC Co., Ltd. was used for the directionality, and the cylinder temperature was set to the melting point of the liquid crystalline polyester Τιώ + 2〇Χ^, and the mold temperature was set to 80 °C. A square plate having a width of 70 mm, a length of 70 mm, and a thickness of 2 mm, and a ratio of a molding shrinkage ratio in the flow direction (MD) of the square plate and a direction perpendicular to the flow direction (TD) is measured to obtain a ratio of the molding shrinkage ratio = 丨The forming shrinkage in the flow direction (MD) 丨/丨 is the forming shrinkage 丨 in the direction of the right angle (TD), and the anisotropy is evaluated. The smaller the enthalpy obtained from the above, the smaller the directionality. (5) Insulation breakdown resistance

[.S I -45- 201105705 使用上述方形板並依照JIS C 2100(1 994年)測定絕緣 崩潰電阻。在下部電極使用厚度爲100微米、10公分四方 的鋁箔電極,在上部電極使用黃銅製8毫米φ的電極,並 在其間夾住方形板,使用春日電氣(股)公司製直流高壓安 定化電源,且邊以一定速度升壓邊施加電壓至絕緣崩潰爲 止。將絕緣崩潰時的電壓作爲絕緣崩潰電壓,係顯示測定 10次的平,均値。絕緣崩潰電壓越大係表示耐絕緣崩潰性越 優良。 (6) 流動性 使用上述成形機,並將圓筒溫度設定爲液晶性聚酯的 熔點 Tm + 20°C ,將模具溫度設定爲80°C、射出速度爲 300m/s、射出壓力爲50、70、90MPa之3種,且藉由寬度 12.7毫米X厚度0.3毫米的棒流動長度模具來形成試片,來 測定所得到成形品的長度(流動長度)。從所得到的3種成 形品的射出壓力與流動長度之關係,算出射出壓力爲 lOOMPa時之流動長度,並作爲流動性的指標。流動長度越 長者可以說流動性越優良。 (7) 韌性 使用上述成形機,並成形厚度3.2毫米X寬度12.7毫米 X長度127毫米的試片,且依照ASTM D790測定彎曲量來 求取彎曲量。 (8) 耐熱性 使用上述成形機,並成形寬度12.7毫米X長度50毫米 x厚度0.5毫米的試片,且使用該試片依照AS TMD648,以 1.82MPa的負荷測定。將在一定負荷下成爲一定變形之溫 -46- 201105705 度作爲負荷彎曲溫度而測定。將負荷彎 耐熱性的指標。差異越小係表示耐熱性 (9)氣體量 使用PERKIN ELMER製熱重量測灵 在熔點+10 °C氮氣環境下保持120分鐘策 量減少率越小表示越低氣體^ (1 0 )聚合反應系統的小暴沸 使用玻璃製試管聚合液晶性聚酯, 價系統的小暴沸。將在聚合反應途中產 且往餾出管之系統洩漏時評價爲X,觀察 時爲△,未觀察到產生液面發泡或液面 曲溫度的差異作爲 越闻β [裝置TGA7,評價 f之重量減少率。重 藉由觀察反應來評 生暴沸引起的發泡 到系統的液面上升 上升時爲〇。 -47- 201105705[.S I -45- 201105705 Use the above square plate and measure the insulation breakdown resistance in accordance with JIS C 2100 (1994). An aluminum foil electrode having a thickness of 100 μm and a thickness of 10 cm was used for the lower electrode, and an 8 mm φ electrode made of brass was used for the upper electrode, and a square plate was sandwiched therebetween, and a DC high-voltage stabilized power source manufactured by Kasuga Electric Co., Ltd. was used. And the voltage is applied while boosting at a certain speed until the insulation collapses. The voltage at which the insulation collapses is used as the insulation breakdown voltage, and it is shown that the measurement is 10 times flat and uniform. The greater the insulation breakdown voltage, the better the insulation breakdown resistance. (6) Mobility The above molding machine was used, and the cylinder temperature was set to the melting point Tm + 20 ° C of the liquid crystalline polyester, the mold temperature was set to 80 ° C, the injection speed was 300 m / s, and the injection pressure was 50. Three kinds of 70 and 90 MPa were used, and a test piece was formed by a bar flow length die having a width of 12.7 mm and a thickness of 0.3 mm to measure the length (flow length) of the obtained molded article. From the relationship between the injection pressure and the flow length of the obtained three kinds of molded articles, the flow length at an injection pressure of 100 MPa was calculated and used as an index of fluidity. The longer the flow length, the better the fluidity. (7) Toughness Using the above molding machine, a test piece having a thickness of 3.2 mm, a width of 12.7 mm, and a length of 127 mm was formed, and the amount of bending was measured in accordance with ASTM D790. (8) Heat resistance A test piece having a width of 12.7 mm, a length of 50 mm, and a thickness of 0.5 mm was formed using the above molding machine, and the test piece was measured in accordance with AS TMD648 at a load of 1.82 MPa. The temperature at which a certain deformation is caused under a certain load is -46-201105705 degrees as a load bending temperature. The index of the bending heat resistance. The smaller the difference, the higher the heat resistance. (9) The amount of gas is PERKIN ELMER. The thermogravimetric measurement is maintained at a melting point of +10 °C for 120 minutes in a nitrogen atmosphere. The smaller the reduction rate is, the lower the gas is. (1 0) polymerization system The small bumps use a glass tube to polymerize liquid crystalline polyester, a small bump in the price system. When it was produced in the middle of the polymerization reaction and leaked to the system of the distilling tube, it was evaluated as X, and when observed, it was Δ, and no difference in liquid level foaming or liquid surface temperature was observed as the more the β [device TGA7, evaluation f Weight reduction rate. By observing the reaction to evaluate the foaming caused by bumping until the liquid level of the system rises, it is 〇. -47- 201105705

【I嗽】 氍« fr髏 'ό ^-糊§ 翻f ^ m 寸 〇 寸· f 4 vq 卜 c5 〇〇 〇 VO o oq OO a\ O) 寸· HNA/ t-BuHBA 漠耳%) 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 98.8/1.2 96/4 CO ON t-BuHBA (莫耳%) 1 1 1 1 1 1 1 1 1 1 1 1 1 t cn NDA (莫耳%) 28.6 28.6 1 28.6 1 28.6 28.6 〇〇 οί 12i9_I ON lO (SJ 03 22.5 | > i 28.6 VO oo cs 28.6 DHB (莫耳%) 28.6 28.6 28.6 28.6 28.6 〇〇 cs 1 1 CO 25.9 a\ cs CS 22.5 1 < 28.6 28.6 OO Cs) HNA (莫耳%) 42.8 42.8 42.8 42.8 42.8 〇 oo cn 1 48.2 | 48.2 I wn VO 42.3 41.1 OO cK cn 液晶性聚酯 ㈧ » < < CN < m <c < < Ό < < oo as < A-10 A-ll A-12 A-13 A-14 A-22 A-23 A-24 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 實施例8 實施例9 實施例10 實施例11 實施例12 實施例13 實施例14 實施例22 實施例23 實施例24 趦撒:Γ 濉-9οα=ναΝ 饀E-濉-9-S 勧-ZMVNH •8寸· 氍E-浒«!}-寸-sHlll^M-scoHVPQHng-l 201105705 【CNS fr m 濉迓 翻1 tM σ\ 寸 c5 Ύ—^ vq 〇〇 vq v〇 ΟΟ οο crs Ο) VO b (註3) 0.52 0.71 0.66 0.71 〇\ 1 0.62 ! 1 0.59 1 \ 0-55 1 1 0.62 | I 0.62 | Π0.55 1 0.55 0.52 0.52 0.66 0.66 1—^ 卜 a (註2) TO c5 0.29 0.34 0.29 1 < 1 0.38 丨 0.41 丨 0.45 | 1 0.38 1 0.38 0.45 0.45 0.48 0.48 0.34 0.34 0.29 有無 暴沸 < < <] <] < <] <3 < < < < < < <α 〇 〇 〇 _酲 Ilf m m ^ to 1-H 1 i 1〇 1 < 1 i VO » < r._疇 r—< IT)· 與熔點的差 (°C) ②-Φ CN ΓΟ Ο ν〇 CS ΟΟ cs CO ΓΟ v〇 cs 〇\ cs cs VO CS 最高到達 溫度(。〇 (註1) © v〇 VO CO 370 P; 〇 〇〇 CO οο CO CO Ο Ρ; vo CO o 〇 vo CO ν〇 cn vo wn Ο 〇 〇 CO 熔點rc) _1 Θ v〇 CO CO CO ΙΟ οο CO 〇 CO Γ όη CO p; CO 寸 m m VO CM CO CO ΟΟ r-H CO cn ON cn cn 製造方法 1 熔融聚合 熔融聚合 熔融聚合 熔融聚合 熔融聚合 1熔融聚合 1熔融聚合 1熔融聚合 丨熔融聚合 熔融聚合 1熔融聚合 1熔融聚合 熔融聚合 熔融聚合 熔融聚合 熔融聚合 熔融聚合 液晶性 聚酯(A) f- Η < A-2 m < 寸 < < Ό < < 〇〇 1 < On < A-10 A-ll I A-12 A-13 1 A-14 Α-22 A-23 A-24 實施例1 實施例2 實施例3 實施例4 ! 丨實施例5 I 丨實施例6 1 實施例7 實施例8 實施例9 實施例10 實施例11 實施例12 實施例13 實施例u 實施例22 實施例23 實施例24 另鲥锻會^§in^-5-«s HsN0e,(e 拋) _LJ=JM瑕#^sIQI2-fr«sp£;lAINp_(cslii)[I嗽] 氍« fr髅'ό ^-糊§ 翻 f ^ m inch inch · f 4 vq 卜 c5 〇〇〇 VO o oq OO a\ O) inch · HNA / t-BuHBA % %) 100 /0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 98.8/1.2 96/4 CO ON t -BuHBA 1 1 1 1 1 1 1 1 1 1 1 1 1 t cn NDA (Molar%) 28.6 28.6 1 28.6 1 28.6 28.6 〇〇οί 12i9_I ON lO (SJ 03 22.5 | > i 28.6 VO oo cs 28.6 DHB (Molex%) 28.6 28.6 28.6 28.6 28.6 〇〇cs 1 1 CO 25.9 a\ cs CS 22.5 1 < 28.6 28.6 OO Cs) HNA (Molar%) 42.8 42.8 42.8 42.8 42.8 〇oo cn 1 48.2 | 48.2 I wn VO 42.3 41.1 OO cK cn Liquid crystalline polyester (8) » <<<< m <c << Ό << oo as < A-10 A-ll A-12 A-13 A-14 A-22 A-23 A-24 Embodiment 1 Embodiment 2 Embodiment 3 Embodiment 4 Embodiment 5 Embodiment 6 Embodiment 7 Embodiment 8 Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 Example 22 Example 23 Example 24 Caesar: Γ 濉-9οα=ναΝ 饀E-濉-9-S 勧-ZMVNH • 8 inches · 氍E-浒«!}-inch-sHlll^M-scoHVPQHng-l 201105705 [CNS fr m 濉迓1 tM σ\ inch c5 Ύ—^ vq 〇〇vq v〇ΟΟ οο crs Ο) VO b (Note 3) 0.52 0.71 0.66 0.71 〇\ 1 0.62 ! 1 0.59 1 \ 0-55 1 1 0.62 | I 0.62 | Π0.55 1 0.55 0.52 0.52 0.66 0.66 1—^ A (Note 2) TO c5 0.29 0.34 0.29 1 < 1 0.38 丨0.41 丨0.45 | 1 0.38 1 0.38 0.45 0.45 0.48 0.48 0.34 0.34 0.29 With or without bumps <<<<><<><3<<<<<<<< α 〇〇〇 _ 酲 Ilf mm ^ to 1-H 1 i 1 〇 1 < 1 i VO » < r._domain r - < IT)· Difference with melting point (°C) 2-Φ CN ΓΟ Ο ν〇CS ΟΟ cs CO ΓΟ v〇cs 〇\ cs cs VO CS Maximum arrival temperature (. 〇(Note 1) © v〇VO CO 370 P; 〇〇〇CO οο CO CO Ο Ρ; vo CO o 〇vo CO ν〇cn vo wn Ο 〇〇CO melting point rc) _1 Θ v〇CO CO CO ΙΟ οο CO 〇CO Γ ό CO CO p; CO 寸 mm VO CM CO CO ΟΟ rH CO cn ON cn cn Manufacturing method 1 Melt polymerization Melt polymerization Melt polymerization Melt polymerization Melt polymerization 1 Melt polymerization 1 Melt polymerization 1 Melt polymerization 丨 Melt polymerization Melt polymerization 1 Melt polymerization 1 melt polymerization melt polymerization melt polymerization melt polymerization melt polymerization melt polymerization liquid crystalline polyester (A) f- Η < A-2 m < inch <<<<< 〇〇 1 < On &lt A-10 A-ll I A-12 A-13 1 A-14 Α-22 A-23 A-24 Embodiment 1 Embodiment 2 Embodiment 3 Embodiment 4 ! 丨 Example 5 I 丨 Example 6 1 Example 7 Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 Example u Example 22 Example 23 Example 24 Another upset will be ^§in^-5-«s HsN0e, (e Throw) _LJ=JM瑕#^sIQI2-fr«sp£;lAINp_(cslii)

Msl棚·岖«忉雒<0嵌趫駿靶筚α ϋ) 6寸— J s 201105705Msl shed·岖«忉雒<0 趫 趫 筚 target 筚α ϋ) 6 inch — J s 201105705

U嗽】 氍啤( fr騮 脓驭 蝴S 1* a煺 CN ψ- -η cs 寸 CN Η 寸 CN τ-Η 々· Ό cvi CO cn wn HNA/t-BuHBA (莫耳%) 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 t-BuHBA (莫耳%) 1 1 1 1 1 1 I 1 1 1 NDCM (莫耳%) 1 1 1 1 1 1 1 1 1 1 NDA (莫耳%) | 28.6 | 28.6 m cs 23.7 22.5 28.6 〇-) cn CO 33.3 1 i DHB (莫耳%) | 28.6 28.6 m <N 23.7 22.5 28.6 cn on m 33.3 〇\ HNA (莫耳%) 42.8 42.8 _1 52.6 Ό 42.8 | 33.4 | 33.4 81.8 I 81.8 液晶性聚酯(C) 1 i ύ Οί ΰ cn 0 寸 ό y-n ό VO ό ό 〇〇 0 a\ ό C-10 比較例1 比較例2 比較例3 比較例4 丨比較例5 | 丨比較例6 1 比較例7 比較例8 |比較例9 1 比較例10 饀撤:T 搬-9of=vaN 齡罃S 翻 M- ylaHa 氍Β-搬-9-__.z=VNH •ο1?U嗽】 氍 beer (fr骝骝骝S 1* a煺CN ψ- -η cs inch CN Η inch CN τ-Η 々· Ό cvi CO cn wn HNA/t-BuHBA (mole%) 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 t-BuHBA (Mor%) 1 1 1 1 1 1 I 1 1 1 NDCM (Mor%) ) 1 1 1 1 1 1 1 1 1 1 NDA (Mor%) | 28.6 | 28.6 m cs 23.7 22.5 28.6 〇-) cn CO 33.3 1 i DHB (mole%) | 28.6 28.6 m <N 23.7 22.5 28.6 Cn on m 33.3 〇\ HNA (% by mole) 42.8 42.8 _1 52.6 Ό 42.8 | 33.4 | 33.4 81.8 I 81.8 Liquid crystalline polyester (C) 1 i ύ Οί ΰ cn 0 inch ό yn ό VO ό ό 〇〇0 a ό C-10 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 丨Comparative Example 5 | 丨Comparative Example 6 1 Comparative Example 7 Comparative Example 8 |Comparative Example 9 1 Comparative Example 10 饀 withdrawal: T -9-9of=vaN Age 罃 S Turn M- ylaHa 氍Β-Move-9-__.z=VNH •ο1?

氍fr擀_翻-寸-補 JLllI搬ιιιΛΓήΗνρρΗΠ^ι amiffi-M 氍辙:!撕-9t"IADaN 201105705 【寸漱】 fr騮 糊S 13« οί CN οΐ η 寸 cs 寸· ν〇 cn ΓΟ b (註3) ..i CO 0.32 1 0.29 | 1 0.29 1 0.29 | 0.32 0.71 0.28 0.19 0.16 a (註2) <J\ v〇 o 0.68 蛘 0.71 w ·4 r-^ I 0.68 | I 0.29 | 0.72 0.81 | 0.84 有無 暴沸 X X X X X X Ο X < X 11! 岖靼3 酿越 ΧΤι rH ν〇 οΐ CS CS ν〇 與熔點 的差 (°C) ②-Φ VTi »-**( »η 1 1 νο CO 1 l/Ί CN iQ 〇 最高到達 溫度rc) (註1) s CO 390 ο m ο m 〇 ΓΟ 〇 ΓΟ S cn Ο CO ΓΟ 〇 CO 1 1 熔點(。〇 Θ ΓΟ 345 其 CO CO VO CN ΓΟ m v〇 cn CO 〇 ΓΟ 8 m 有無甲氧羰基/ 羥基末端 4rrr. ι4πτ. 膨無 無/無 fnf- f^TTT- 無/無 «fm* l^rrf. 挑/無 jfar/-Art IIII/1M Γ j\\\f 77\\ 4nr i^rrr. 無職 ATTf. ΙΛπΤ. 挑/挑 無憮 ifnC idtXi 挑/撕 聚縮合法 1脫乙酸 脫乙酸 I脫乙酸1 1脫乙酸1 1脫乙酸1 1脫乙w 1脫乙d 脫乙酸 脫乙酸 脫乙酸 製造方法 1熔融聚合1 熔融聚合 固相聚合 固相聚合 固相聚合 固相聚合 熔融聚合 熔融聚合I 熔融聚合 熔融聚合 1 1 液晶性 聚酯(C) ,_4 ύ C-2 cn ύ 寸 ώ ύ Vip ό ό 〇〇 ό ON ύ C-10 比較例1 比較例2 比較例3 比較例4 比較例5 1比較例6| 丨比較例7| 1比較例8丨 丨比較例9丨 比較例10 乸si删届岖¥Ν#04Π嵌鍰^|康>(1 ϋ) 汩鹋锻翁^sldlsi-fr漱 B ΗΜΝό^ϊι) 201105705 【5«】 HNA=2-羥基各萘甲酸 DHB=4,4,-二羥基聯苯 NDA=2,6-萘二羧酸 NDA (莫耳%) 28.6 28.6 28.6 28.6 28.6 28.6 DHB (莫耳%) 28.6 28.6 28.6 28.6 28.6 28.6 HNA (莫耳%) 42.8 〇〇 03 42.8 42.8 42.8 42.8 液晶性 聚酯(A) CS < A-15 ___________ A-16 A-17 A-18 A-19 實施例2 |實施例15 I 實施例16 實施例17 實施例18 實施例19 趦瞰 η- ϋ 脓取 1^-械1 S If A煺 CJN 〇〇 νΊ Ο b (註3) 0.71 0.52 0.55 v〇 \〇 o 1 < Ο; 〇\ a (註2) 0.29 0.48 0.45 0.34 On Οί Ο Ή 有無 暴沸 <1 0 <] <1 < < 輯酲 ^ Μ 〇 〇〇 1 < oo CN 與熔點的差 CC) ②-① 03 CM CS un CN CN Γ<ϊ 最高到達 溫度(。〇 (註1) © 〇 CO 〇 CO 〇 CO 〇 m Ο m ο CO 熔點(°c) Θ ΓΟ CO CO cn CO 製造方法 熔融聚合 熔融聚合 熔融聚合 熔融聚合 熔融聚合 熔融聚合 液晶性 聚酯(A) CN) < A-15 A-16 A-17 A-18 Α-19 實施例2 實施例15 實施例16 實施例17 實施例18 實施例19 -κ- OJ1M激瀵邻 s I3SI-B-嗽画c£ilAINp_(csls 201105705 【9嗽〕 ΗΝΑ=2-羥基-6-萘甲酸 DHB=4,4’ -二羥基聯苯 NDA=2,6-萘二羧酸 NDCM=2,6-萘二羧酸二甲酯 NDCM (莫耳%) 1 vo 〇〇 04 Ό 〇d 04 NDA (莫耳%) 28.6 1 1 DHB (莫耳%) 28.6 28.6 28.6 ΗΝΑ (莫耳%) 42.8 42.8 42.8 液晶性 聚酯(Α) < A-20 A-21 實施例2 實施例20 實施例21 氍嗽 fr雛 撕;E1 糊S 1« a煺 寸· b (註3) 1· i Γ-; v〇 VO o ν〇 ν〇 Ο 1 a (註2) 〇\ 〇 芝 o 茗 ο 壊栽 < 〇 〇 11! 崦驗3 m μ W-J f— 與熔點 的差 (°C) ②-① ν〇 CN v〇 CN ν〇 CN 最高到達 溫度(。〇 (註1) 〇 m o CO Ο | 熔敵。。) Θ JO C〇 有無甲氧羰基/ 羥基末端 fm*. /4〇c WM 有憮 有洧 聚縮合法 脫乙酸 1脫乙酸+ i脫乙酸甲酯 脫乙酸+ 脫甲醇 製造方法 1熔融聚合1 熔融聚合 熔融聚合 液晶性 聚酯(C) CO < A-20 1- Α-21 1實施例2 實施例20 實施例21 丑鹋锻t-^sinil-fr撇画 HSNp,(cn^) ?JM缌瀵邻轺 &351旮谳画 HsNue,(c<lii) 201105705 【卜揪】 氣體量 (wt%) CS 〇 cn Ο 0.13 0.13 (N 〇 0.17 0.16 | CN CS CS o ο 0.23 0.23 0.25 〇 CN 1 < 0.29 熔點-負荷 彎曲溫度(°C) 〇〇 cn ΙΟ cn VO CO vn CO OO CO Ο 〇 〇 i I Ϊ—t ο 1 < CO JO oo CO oo cn 彎曲 (毫米) vq οο οό oo od 卜 寸 od ro od v〇 ίΤϊ r- <Ν ON »〇 vd 卜 cn VO oo v〇 od < 流動長度 (毫米) SS v〇 oo v〇 OO cn oo CO oo g ν〇 cn s H oo v〇 oo 〇 絕緣崩潰電壓 (kV) c^i CS s CNj VO CNj 54.5 49.9 49.9 α\ 48.4 47.3 47.4 48.9 MD σ\ s VO 二 異方向性 (| MD/ | TD | ) <Ν cn cn oo CO cn m °ί CO CO cn f—< 瀣_ E·騮 撇现 Kl· 城1 S 51 ΟΝ c5 寸· l〇 o Ό c5 卜 oq vq v〇 c5 οο ο ΟΟ c5 Os c5 os c5 as oq 寸· *—< 液晶性 聚酯㈧ < < CO < 对 < ΙΛΪ < v〇 < 卜 <C oo < ON <c A-10 Α-11 Α-12 A-13 A-14 A-15 A-16 A-17 A-18 A-19 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 實施例8 實施例9 實施例10 實施例11 實施例12 實施例13 實施例14 實施例15 實施例16 實施例17 實施例18 實施例19 201105705 【8撇】 氣體量 (wt%) Ο) οο ο c5 ΟΟ c5 ΟΟ Ο \τ\ Ό Ο σ\ ν〇 ο c5 CO c5 熔點-負荷 彎曲溫度(°C) i〇 cn ν〇 s ν〇 ν〇 ν〇 ν〇 ν〇 νο ό ν〇 VO v〇 m w NW· τ—Η CS f 4 MD ΟΝ ΓΛ 寸 νο CO … ΟΝ 流動長度 (毫米) Ο TO 等 (Ν Ό 芝 Ον CO CO Ό CO CO 絕緣崩潰電壓 (kV) Ο ν〇 r—Η uS m 卜 Pi ON CO 卜 〇\ CS r<i cn νο 弍 C— Η CO <N 異方向性 (1 MD/1 TD | ) 5 ν〇 CO » Η τ—Η Ο Cvl οο οο σ\ Ο) > ·Η ι < 1 < αν 1-H CN 1—H fr m 撕切 勸i 03 CS 1 ^ CN Η η Η Η 气 ΓΛ cn 液晶性 聚酯(A) ♦-Μ ό 03 ΰ cn ό 寸 ό un ΰ ν〇 ύ r- ΰ οο ύ ΟΝ ό o l-~H ΰ 比較例1 1比較例21 比較例3 比較例4 比較例5 比較例6 比較例7 比較例8 比較例9 比較例10 s 201105705 【6嗽】 氣體量 (wt%) ΓΟ Η 〇 0.07 0.03 C^t t—H 0.13. 0.13 熔點-負荷 1 彎曲溫度(°c) m PO m CO 〇 彎曲 (毫米) oo cx5 oo oo vq vq irj 流動長度; (毫米)! _1 ss oo oo oo oo g 产·_< 〇〇' g 絕緣崩潰電壓 (kV) CN oo oo vn 58.5 58.3 58.3 58.1 異方向性 (| MD/1 TD | ) CTn CN CS οί 有無甲氧羰基/ 羥基末端 itnCfint WM 有憮 有洧 無/無 daL/doi 無/挑 4ττΤ ιΛτχΤ 無纖 ffi·観 兮好· 勘I CS Μ 寸 Ο 液晶性 聚酯(Α) CN < A-21 A-22 A-23 A-24 Α-25 實施例2 實施例20 實施例21 實施例22 實施例23 實施例24 201105705 從表1、2中的實施例1〜5及表3'4的比較例1'2 之比較’得知在製造本發明的液晶性聚酯時,將熔融聚合 的最高到達溫度設爲所得到的液晶性聚酯的(熔點+2 0 t ) 〜(熔點+4 0 °C )的溫度範圍時,能夠將由2-羥基-6-萘甲酸 所得到的結構單位控制在〇 · 1〜1的範圍內。 從表1、2中的實施例1〜5及表3、4中的比較例3〜 6之比較’清楚明白爲了將由2-羥基-6-萘甲酸所得到的結 構單位之平均鏈長控制在0.1〜1,不是進行固相聚合,而 是在上述溫度範圍內進行熔融聚合爲佳。 而且,從表1、2中的實施例22〜24,得知含有3.5-二第三丁基-4-羥基苯甲酸作爲液晶性聚酯的結構單位 時,能夠得到抑制在製造時反應系統產生暴沸之效果。 從表5中的實施例2、15〜19之比較,得知在聚合時 之最高到達溫度的滯留時間爲1〜3小時的情況,能夠容易 地控制由2-羥基-6-萘甲酸所得到的結構單位之平均鏈 長,能夠良好地控制在0.2〜0.8的範圍內。 從表6的實施例2、20、21,得知選擇脫乙酸聚縮合 及脫乙酸甲酯聚縮合、脫乙酸聚縮合及脫甲醇聚縮合作爲 聚合方法時’係成爲在末端基具有甲氧羰基及/或羥基之液 晶性聚酯。 從表7中的實施例1〜5及表8中的比較例1、2之比 較’得知將由2 -羥基-6 -萘甲酸所得到的結構單位控制在 0.1〜1的範圍時’本發明的效果亦即異方向性、耐絕緣崩 潰性、流動性、韌性、耐熱性、低氣體性優良。 而且,從表7中的實施例15〜19,得知將由2 -經基- 6- -57- 201105705 萘甲酸所得到的結構單位控制在〇 · 2〜0.8的範圍時,特另IJ 地能夠顯現上述效果。 而且’從表7中的實施例2、6〜14及表8中的比較例 7〜10之比較’在本發明的組成範圍,本發明特別具有效 果。得知能夠顯著地顯現低異方向性、耐絕緣崩潰性、流 動性、韌性、耐熱性、低氣體性等之特徵。 從表9中的實施例2、21、22之比較,得知在末端基 具有甲氧羰基之液晶性聚酯係低氣體性優良,在末端基具 有甲氧羰基及/或羥基時,低氣體性更優良。. 而且,從表9中的實施例22〜34,得知以3.5 -二第三 丁基-4 ·羥基苯甲酸作爲液晶性聚酯的結構單位時,能夠得 到降低異方向性之效果。 而且,製造參考例1的液晶性聚酯,並進行組成物的 評價。 液晶性聚酯(B-1) 在具備有攪拌器、餾出管之5升的反應容器,添加 669.9克(4.85莫耳)對羥基苯甲酸、270.0克(1.45莫耳)4,4’-二羥基聯苯、68.3克(0.62莫耳)氫醌、224.3克(1.35莫耳) 對酞酸、121.3克(0.73莫耳)異酞酸及983_1克(相對於系統 的總酚性羥基爲1.07當量)乙酸酐,並在氮氣環境下邊攪 拌邊在145 °C使其反應2小時後,以4小時升溫至3 3 0 °C。 隨後,將聚合溫度保持在3 3 0 °C 1小時,並以1 · 〇小時減壓 至133Pa,而且進而繼續反應60分鐘,當轉矩到達20kg· cm時,使聚縮合完成。隨後將反應容器加壓至O.IMPa, 並經由具有1個直徑爲10毫米的圓形吐出口之噴嘴將聚合 -58- 201105705 物吐出爲股線狀物,且使用切割器製粒。 該液晶性聚酯(B-1)的Tm(液晶性聚酯的熔點)爲314 〇C。 使用高化式流速測試器(噴嘴爲〇·5 Φ X10毫米),在溫 度爲3 3 4 °C、剪切速度爲l〇〇〇/s所測定的熔融黏度爲 2 0 P a · s ° 使用GPC-LS(五氟苯酚/氯仿= 50/50混合溶劑、80°C) 測定的數量平均分子量爲12600 » 參考例2 :塡料 . GF :日本電氣硝子製 E GLASS CHOPPED STRAND (ECS-03T747H) 實施例2 5〜4 1、比較例1 1〜1 5 在東芝機械製TEM35B型雙軸擠壓機(咬合型同方 向),於圓筒C 1 (原添加供料器側加熱器)〜C 6 (模頭側加熱 器)之C3部設置有側供料器,並在C5部設置有真空排氣孔。 使用在C2部、C4部組入有揑合區域之螺桿布置,並 以表1 0〜1 2所示的調配量從料斗投入液晶性聚酯(A_ 1、2、 5、7、8、14、21、22、23)及/或液晶性聚酯(B-1)及液晶性 聚酯(C-1、3、4、6、8) ’並按照情況以相對於液晶性聚酯的 合計1〇〇重量份爲表1〇〜I2的調配量從側部投入GF(日本電 氣硝子製 E GLASS CHOPPED STRAND(ECS-03T747H))作 爲塡料’並將圓同溫度設定爲液晶性聚醋A-1、2、5、7、 8、14、21、22、23)及(C-1、3、4、6、8)的熔點 +1〇。〇, 且熔融混煉而製成爲顆粒。 將所得到的組成物顆粒熱風乾燥後,提供至 -59- 201105705 FANUCa3 0C射出成形機(FANUC製)來得到成形品,且與實 施例1〜24、比較例1〜10同樣地,進行評價上述(4)的異 方向性、(5)絕緣崩潰電阻、(6)流動性、(7)韌性、(8)耐熱 性、(9)氣體量。 -60- 201105705 01«】 氣體量 (wt%) 0.09 0.11 0.13 cn 1—< 0.13 0.12 0.06 0.12 1 < 0.11 0.15 熔點-負荷 彎曲溫度(°C) 〇 TO v〇 CO 〇〇 oo r—< 彎曲 (毫米) 10.2 r-* a\ 寸 as S <〇 cn <N wn 寸 vn oi 流動長度 (毫米) s i 1 g v〇 CN Ο ί〇 Os VO 芬 絕緣崩潰電壓I σ\ 〇\ v〇 CN VO σ\ VO CO VO oo m v〇 \D 異方向性 (1 MD 1 /1 TD 1 ^ \〇 03 CN 03 wn 〇〇 1—^ vn r H oq r—H wo r < 1—^ Ά 塡料 重量% 1 1 1 1 1 o o o o o o 種類 1 1 1 1 1 δ 〇 δ δ δ δ 液晶性聚酯 1 重量% 〇 ,麵Η έ p l〇 JO on cs o δ δ s s 種類 » i ώ <N <; I 4 PQ CO < PQ CN 1 < CO CN 1—^ cb , CN < < οα < < r- < oo 1 < A-14 實施例25 實施例26 實施例27 實施例28 實施例29 實施例30 實施例31 實施例32 實施例33 實施例34 實施例35 -19- tf j s 201105705 【II撇】 氣體量 (wt%) 0.04 Ο 0.08 0.05 0.08 0.08 熔點-負荷 彎曲溫度(°C) m cn v〇 〇 in i i os 1—H 彎曲 (毫米) 寸· co <N On 流動長度 (毫米) Γ<ϊ Ό Οί νο S VO Eo TO 絕緣崩潰電壓 0^ οο νο οο VO VO \〇 s 異方向性 (1 MD | /1 TD | ) ΙΟ (N Oi 塡料 重量% ο o 〇 o o 〇 種類 δ S δ s δ 液晶性聚酯 _ <trm1 ιρπη S s v〇 k • Ό 種類 Α-21 A-22 A-23 C<J < 1 PQ <N < A-2、B-l 實施例36 實施例37 實施例38 實施例39 實施例40 實施例41 -s- 201105705氍fr擀_翻-寸-补 JLllI 移动ιιιΛΓήΗνρρΗΠ^ι amiffi-M 氍辙:! Tear -9t"IADaN 201105705 [inch] fr骝 paste S 13« οί CN οΐ η inch cs inch · ν〇cn ΓΟ b (Note 3) ..i CO 0.32 1 0.29 | 1 0.29 1 0.29 | 0.32 0.71 0.28 0.19 0.16 a (Note 2) <J\ v〇o 0.68 蛘0.71 w ·4 r-^ I 0.68 | I 0.29 | 0.72 0.81 | 0.84 With or without XXXXXX Ο X < X 11! 岖靼3 Brewing ΧΤι rH 〇〇οΐ The difference between CS CS ν〇 and melting point (°C) 2-Φ VTi »-**( »η 1 1 νο CO 1 l/Ί CN iQ 〇Maximum reached temperature rc) (Note 1) s CO 390 ο m ο m 〇ΓΟ 〇ΓΟ S cn Ο CO ΓΟ 〇CO 1 1 Melting point (.〇Θ ΓΟ 345 CO CO VO CN ΓΟ mv〇cn CO 〇ΓΟ 8 m with or without methoxycarbonyl / hydroxyl end 4rrr. ι4πτ. No / no fnf- f^TTT- no / no «fm* l^rrf. pick / no jfar/-Art IIII/1M Γ j\\\f 77\\ 4nr i^rrr. No job ATTf. ΙΛπΤ. Pick / Picking flawless ifnC idtXi pick/tear polycondensation method 1 deacetic acid deacetation 1 deacetation 1 1 deacetation 1 1 deacetation 1 1 deacetylation w 1 deacetylation d deacetic acid deacetic acid deacetic acid production method 1 melt polymerization 1 melt polymerization Solid phase polymerization solid phase polymerization solid phase Polymerized solid phase polymerization melt polymerization melt polymerization I melt polymerization melt polymerization 1 1 liquid crystalline polyester (C) , _4 ύ C-2 cn ώ inch ώ ip Vip ό 〇〇ό 〇〇ό ON ύ C-10 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 1 Comparative Example 6| 丨Comparative Example 7| 1 Comparative Example 8 丨丨Comparative Example 9 丨Comparative Example 10 乸Si deleted 岖¥Ν#04Π embedded 锾^|康>(1 ϋ) 汩鹋锻翁^sldlsi-fr漱B ΗΜΝό^ϊι) 201105705 [5«] HNA=2-hydroxy-naphthoic acid DHB=4,4,-dihydroxybiphenyl NDA=2,6-naphthalenedicarboxylic acid NDA (% by mole) 28.6 28.6 28.6 28.6 28.6 28.6 DHB (% by mole) 28.6 28.6 28.6 28.6 28.6 28.6 HNA (% by mole) 42.8 〇〇03 42.8 42.8 42.8 42.8 Liquid crystalline polyester (A) CS < A- 15 ___________ A-16 A-17 A-18 A-19 Example 2 | Example 15 I Example 16 Example 17 Example 18 Example 19 η η ϋ 脓 pus 1 ^ - - 1 S If A煺CJN 〇〇νΊ Ο b (Note 3) 0.71 0.52 0.55 v〇\〇o 1 <Ο; 〇\ a (Note 2) 0.29 0.48 0.45 0.34 On Οί Ο Ή With or without bumps <1 0 <] < 1 << 酲 酲 ^ Μ 〇〇〇 1 &l t; oo CN and melting point difference CC) 2-1 03 CM CS un CN CN Γ<ϊ maximum arrival temperature (. 〇(Note 1) © 〇CO 〇CO 〇CO 〇m Ο m ο CO Melting point (°c) Θ ΓΟ CO CO cn CO Manufacturing method Melt polymerization Melt polymerization Melt polymerization Melt polymerization Melt polymerization Melt polymerization Liquid crystalline polyester (A) CN) < A-15 A-16 A-17 A-18 Α-19 Example 2 Example 15 Example 16 Example 17 Example 18 Example 19 -κ- OJ1M 瀵 s s I3SI-B-嗽Painting c£ilAINp_(csls 201105705 [9嗽] ΗΝΑ=2-hydroxy-6-naphthoic acid DHB=4,4'-dihydroxybiphenyl NDA=2,6-naphthalenedicarboxylic acid NDCM=2,6-naphthalene Dimethyl carboxylic acid NDCM (mole%) 1 vo 〇〇04 Ό 〇d 04 NDA (mole%) 28.6 1 1 DHB (mole%) 28.6 28.6 28.6 ΗΝΑ (mole%) 42.8 42.8 42.8 Liquid crystal poly Ester (A) < A-20 A-21 Example 2 Example 20 Example 21 氍嗽fr tearing; E1 paste S 1 « a煺 inch · b (Note 3) 1· i Γ-; v〇VO o ν〇ν〇Ο 1 a (Note 2) 〇\ 〇芝o 茗ο 壊 &< 〇〇11! Test 3 m μ WJ f—difference from melting point (°C) 2-1 ν〇CN v 〇CN ν〇CN Maximum reaching temperature (.〇(Note 1) 〇mo CO Ο | Θ JO C〇 with or without methoxycarbonyl / hydroxyl end fm*. /4〇c WM 怃 洧 polycondensation deacetation 1 deacetic acid + i deacetate methyl ester deacetation + de methanol removal method 1 melt polymerization 1 melting Polymer melt-polymerized liquid crystalline polyester (C) CO < A-20 1- Α-21 1 Example 2 Example 20 Example 21 Ugly forged t-^sinil-fr撇 painting HSNp, (cn^) ?JM缌瀵 轺 & 351 painting HsNue, (c<lii) 201105705 [Di 揪] Gas volume (wt%) CS 〇cn Ο 0.13 0.13 (N 〇0.17 0.16 | CN CS CS o ο 0.23 0.23 0.25 〇CN 1 < 0.29 Melting point-load bending temperature (°C) 〇〇cn ΙΟ cn VO CO vn CO OO CO Ο 〇〇i I Ϊ—t ο 1 < CO JO oo CO oo cn Bending (mm) vq οο οό oo Od od ro od v〇ίΤϊ r- <Ν ON »〇vd 卜 VO oo v〇od < Flow length (mm) SS v〇oo v〇OO cn oo CO oo g ν〇cn s H oo V〇oo 〇Insulation breakdown voltage (kV) c^i CS s CNj VO CNj 54.5 49.9 49.9 α\ 48.4 47.3 47.4 48.9 MD σ\ s VO Dimorphism (| MD/ | TD | ) <Ν cn cn oo CO cn m ° CO CO CO cn f—< 瀣_ E·骝撇Kl·城1 S 51 ΟΝ c5 inch · l〇o Ό c5 卜oq vq v〇c5 οο ο ΟΟ c5 Os c5 os c5 as oq inch · *— < Liquid crystalline polyester (8) << CO < Pair < ΙΛΪ <v〇<卜<C oo < ON <c A-10 Α-11 Α-12 A-13 A-14 A-15 A-16 A-17 A-18 A-19 Embodiment 1 Embodiment 2 Embodiment 3 Embodiment 4 Embodiment 5 Embodiment 6 Embodiment 7 Embodiment 8 Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 Example 15 Example 16 Example 17 Example 18 Example 19 201105705 [8撇] Gas amount (wt%) Ο) οο ο c5 ΟΟ c5 ΟΟ Ο \τ\ Ό Ο σ\ ν 〇ο c5 CO c5 Melting point-load bending temperature (°C) i〇cn ν〇s ν〇ν〇ν〇ν〇ν〇νο ό ν〇VO v〇mw NW· τ—Η CS f 4 MD ΟΝ ΓΛ inch Νο CO ... ΟΝ Flow length (mm) Ο TO, etc. (Ν Ο Ο Ο CO CO Ό CO CO insulation breakdown voltage (kV) Ο ν〇r—Η uS m 卜 Pi ON CO 〇 CS \ CS r<i cn νο 弍C— Η CO <N isotropic (1 MD/1 TD | ) 5 〇〇CO » Η τ—Η Ο Cvl οο οο σ\ Ο) > ·Η ι < 1 < αν 1-H CN 1—H fr m tearing persuasion i 03 CS 1 ^ CN Η η Η Η ΓΛ cn Liquid crystalline polyester (A) ♦-Μ ό 03 ΰ cn ό ό ό un ΰ ν〇ύ r- ΰ οο ύ ΟΝ ό o l-~H ΰ Comparative Example 1 1 Comparative Example 21 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 Comparative Example 8 Comparative Example 9 Comparative Example 10 s 201105705 [6嗽] Gas amount (wt%) ΓΟ Η 〇 0.07 0.03 C^tt-H 0.13. 0.13 Melting point-load 1 Bending temperature ( °c) m PO m CO 〇 bending (mm) oo cx5 oo oo vq vq irj flow length; (mm)! _1 ss oo oo oo oo g production·_< 〇〇' g insulation breakdown voltage (kV) CN oo oo Vn 58.5 58.3 58.3 58.1 Heterogeneity (| MD/1 TD | ) CTn CN CS οί There is no methoxycarbonyl / hydroxyl end itnCfint WM There are no 无 no / no daL / doi no / pick 4ττΤ ιΛτχΤ no fiber ffi·観兮Good I. CS Ο inch liquid crystal polyester (Α) CN < A-21 A-22 A-23 A-24 Α-25 Example 2 Example 20 Example 21 Example 22 Example 23 Example 24 201105705 From the comparison of Comparative Examples 1 to 2 in Tables 1 and 2 and Comparative Example 1 '2 in Table 3'4, it was found that the highest temperature at which the melt polymerization was obtained was obtained in the production of the liquid crystalline polyester of the present invention. When the temperature of the liquid crystalline polyester (melting point + 2 0 t ) ~ (melting point + 40 ° C), the structural unit obtained from 2-hydroxy-6-naphthoic acid can be controlled at 〇·1~1 Within the scope. From the comparison of Examples 1 to 5 in Tables 1 and 2 and Comparative Examples 3 to 6 in Tables 3 and 4, it is clear that in order to control the average chain length of the structural unit obtained from 2-hydroxy-6-naphthoic acid 0.1 to 1, it is preferable to carry out melt polymerization in the above temperature range instead of performing solid phase polymerization. Further, from Examples 22 to 24 in Tables 1 and 2, it is found that when 3.5-di-tert-butyl-4-hydroxybenzoic acid is contained as a structural unit of a liquid crystalline polyester, it is possible to suppress generation of a reaction system at the time of production. The effect of bumping. From the comparison of Examples 2 and 15 to 19 in Table 5, it was found that the residence time of the highest reaching temperature at the time of polymerization was 1 to 3 hours, and it was possible to easily control the obtained from 2-hydroxy-6-naphthoic acid. The average chain length of the structural unit can be well controlled in the range of 0.2 to 0.8. From Examples 2, 20, and 21 of Table 6, it was found that the selective deacetalization polycondensation and the deacetinated methyl ester polycondensation, the deacetic acid polycondensation, and the demethylation polymerization condensation were used as a polymerization method to form a methoxycarbonyl group at the terminal group. And/or a liquid crystalline polyester of a hydroxyl group. From the comparisons of Examples 1 to 5 in Table 7 and Comparative Examples 1 and 2 in Table 8, it was found that the structural unit obtained from 2-hydroxy-6-naphthoic acid was controlled in the range of 0.1 to 1 'the present invention' The effect is that the directionality, the insulation collapse resistance, the fluidity, the toughness, the heat resistance, and the low gas property are excellent. Further, from Examples 15 to 19 in Table 7, it was found that when the structural unit obtained from 2-amino- 6-57-201105705 naphthoic acid was controlled in the range of 〇·2 to 0.8, it was possible to The above effects are manifested. Further, 'from the comparison of Examples 2, 6 to 14 in Table 7, and Comparative Examples 7 to 10 in Table 8', the present invention has an effect particularly in the composition range of the present invention. It has been found that characteristics such as low heterogeneity, insulation collapse resistance, fluidity, toughness, heat resistance, and low gas properties can be remarkably exhibited. From the comparison of Examples 2, 21, and 22 in Table 9, it is found that the liquid crystalline polyester having a methoxycarbonyl group at the terminal group is excellent in low gas property, and has a methoxycarbonyl group and/or a hydroxyl group at the terminal group, and a low gas. Better sex. Further, from Examples 22 to 34 in Table 9, it was found that when 3.5 - di-tert-butyl-4 -hydroxybenzoic acid was used as the structural unit of the liquid crystalline polyester, the effect of reducing the anisotropy can be obtained. Further, the liquid crystalline polyester of Reference Example 1 was produced, and the composition was evaluated. Liquid crystalline polyester (B-1) In a reaction vessel equipped with a stirrer and a distillation tube of 5 liters, 669.9 g (4.85 mol) of p-hydroxybenzoic acid and 270.0 g (1.45 mol) of 4,4'- were added. Dihydroxybiphenyl, 68.3 g (0.62 mol) hydroquinone, 224.3 g (1.35 mol) for citric acid, 121.3 g (0.73 mol) isodecanoic acid and 983_1 g (1.07 relative to the total phenolic hydroxyl group of the system) The equivalent amount of acetic anhydride was allowed to react at 145 ° C for 2 hours while stirring under a nitrogen atmosphere, and then the temperature was raised to 3 30 ° C over 4 hours. Subsequently, the polymerization temperature was maintained at 3 30 ° C for 1 hour, and the pressure was reduced to 133 Pa at 1 · Torr, and the reaction was further continued for 60 minutes. When the torque reached 20 kg·cm, the polycondensation was completed. The reaction vessel was then pressurized to O.IMPa, and the polymer-58-201105705 was spit out into strands via a nozzle having a circular discharge port having a diameter of 10 mm, and granulated using a cutter. The Tm (melting point of the liquid crystalline polyester) of the liquid crystalline polyester (B-1) was 314 〇C. Using a high-speed flow tester (nozzle 〇·5 Φ X10 mm), the melt viscosity measured at a temperature of 3 3 4 °C and a shear rate of l〇〇〇/s is 20 P a · s ° The number average molecular weight measured by GPC-LS (pentafluorophenol/chloroform = 50/50 mixed solvent, 80 ° C) was 12600 » Reference Example 2: Dip. GF: Nippon Electric Glass E GLASS CHOPPED STRAND (ECS-03T747H) Example 2 5 to 4 1. Comparative Example 1 1 to 1 5 TEM35B type twin-screw extruder manufactured by Toshiba Machine Co., Ltd. (in the same direction as the nip type), in the cylinder C 1 (originally added feeder side heater)~ A C3 portion of the C 6 (die side heater) is provided with a side feeder, and a vacuum vent hole is provided at the C5 portion. The screw arrangement in which the kneading area is incorporated in the C2 part and the C4 part is used, and the liquid crystalline polyester (A-1, 2, 5, 7, 8, 14 is introduced from the hopper according to the mixing amount shown in Table 10~1. 21, 22, 23) and/or liquid crystalline polyester (B-1) and liquid crystalline polyester (C-1, 3, 4, 6, 8) 'and, as the case may be, a total of 1 with respect to liquid crystalline polyester调 The weight of the 为 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I The melting points of 1, 2, 5, 7, 8, 14, 21, 22, 23) and (C-1, 3, 4, 6, 8) are +1 〇. 〇, and melt-kneaded to form pellets. The obtained composition pellets were dried by hot air, and then supplied to a -59-201105705 FANUCa3 0C injection molding machine (manufactured by FANUC) to obtain a molded article, and the evaluations were carried out in the same manner as in Examples 1 to 24 and Comparative Examples 1 to 10. (4) anisotropy, (5) insulation breakdown resistance, (6) fluidity, (7) toughness, (8) heat resistance, and (9) gas amount. -60- 201105705 01«] Gas amount (wt%) 0.09 0.11 0.13 cn 1—< 0.13 0.12 0.06 0.12 1 < 0.11 0.15 Melting point-load bending temperature (°C) 〇TO v〇CO 〇〇oo r—&lt Bending (mm) 10.2 r-* a\ inch as S <〇cn <N wn inch vn oi flow length (mm) si 1 gv〇CN Ο ί〇Os VO fen insulation breakdown voltage I σ\ 〇\ v 〇CN VO σ\ VO CO VO oo mv〇\D isotropic (1 MD 1 /1 TD 1 ^ \〇03 CN 03 wn 〇〇1—^ vn r H oq r—H wo r < 1—^塡 重量%% 1 1 1 1 1 oooooo Type 1 1 1 1 1 δ 〇δ δ δ δ Liquid crystalline polyester 1% by weight 〇,面Η έ pl〇JO on cs o δ δ ss Type» i ώ < N <; I 4 PQ CO < PQ CN 1 < CO CN 1 - ^ cb , CN << οα << r - < oo 1 < A-14 Embodiment 25 Example 26 Implementation Example 27 Example 28 Example 29 Example 30 Example 31 Example 32 Example 33 Example 34 Example 35 -19- tf js 201105705 [II撇] Gas amount (wt%) 0.04 Ο 0.08 0.05 0.08 0.08 Melting point - Load bending temperature °C) m cn v〇〇in ii os 1—H Bending (mm) inch · co <N On Flow length (mm) Γ<ϊ Ό Οί νο S VO Eo TO Insulation breakdown voltage 0^ οο νο οο VO VO \〇s Heterogeneity (1 MD | /1 TD | ) ΙΟ (N Oi 重量% by weight ο o 〇oo 〇 kind δ S δ s δ Liquid crystalline polyester _ <trm1 ιρπη S sv〇k • 种类 Type Α-21 A-22 A-23 C<J < 1 PQ <N < A-2, Bl Example 36 Example 37 Example 38 Example 39 Example 40 Example 41 -s- 201105705

【fslmJ 氣體量 (wt%) 0.36 0.43 0.41 1 < r < 熔點-負荷 彎曲溫度(°c) οο cn cn 彎曲 (毫米) C<I 1 < σ\ ο 1 t On τ 1 |流動長度| (毫米) σ> CS1 Ο 絕緣崩潰電壓 茺 異方向性 (I MD | /1 TD | ^ 〇〇 cn iri wo cs to 塡料 _ itmll 糊 〇 Ο 〇 Ο o 種類 δ δ δ S 液晶性聚酯(C) 重量% S s S S s 種類 ό CO ό 寸 ϋ ΰ oo ό 比較例11 比較例12 比較例13 比較例14 比較例15 201105705 從表10中的實施例25〜29,得知調配本發明的液晶 性聚酯(A)及(B)而構成之組成物係具有降低異方向性之效 果,又,在較佳調配例,具有提升韌性、流動性之效果。 從表10中的實施例30〜35,表11中的36〜41及表9中 的比較例11〜15之比較,得知在本發明的液晶性聚酯及調 配本發明的液晶性聚酯(A)及(B)而構成之組成物添加塡料 而成者,提升負荷彎曲溫度的效果且提升韌性的效果高》 產業上之利用可能性 作爲被要求小型、薄厚度且高耐熱性、高尺寸安定性 之SMT連接器或光讀寫頭組件係有用的。 【圖式簡單說明】 第1圖係說明由2-羥基-6-萘甲酸所得到的結構單位之 鏈長。 第2圖係算出由2-羥基-6-萘甲酸所得到的結構單的 平均鏈長所使用之藉由13C-NMR的圖表之模式圖。 【主要元件符號說明】 無。 -64 -[fslmJ gas amount (wt%) 0.36 0.43 0.41 1 < r < melting point - load bending temperature (°c) οο cn cn bending (mm) C<I 1 < σ\ ο 1 t On τ 1 | | (mm) σ> CS1 绝缘 Insulation breakdown voltage divergence directionality (I MD | /1 TD | ^ 〇〇cn iri wo cs to _ _ itmll 〇Ο o Type δ δ δ S Liquid crystalline polyester (C) Weight % S s SS s Type ό CO ό ϋ ΰ oo ό Comparative Example 11 Comparative Example 12 Comparative Example 13 Comparative Example 14 Comparative Example 15 201105705 From Examples 25 to 29 in Table 10, it was found that the present invention was formulated. The composition of the liquid crystal polyesters (A) and (B) has an effect of reducing the anisotropy, and has an effect of improving toughness and fluidity in a preferred formulation example. 30 to 35, 36 to 41 in Table 11 and Comparative Examples 11 to 15 in Table 9, the liquid crystalline polyester of the present invention and the liquid crystalline polyesters (A) and (B) of the present invention were prepared. The composition of the composition is added to the material, the effect of increasing the bending temperature of the load and the effect of improving the toughness is high. The use possibility is useful as an SMT connector or an optical head module that is required to be small, thin, and high in heat resistance and high in dimensional stability. [Simplified Schematic] Fig. 1 illustrates 2-hydroxy-6 - The chain length of the structural unit obtained by naphthoic acid. Fig. 2 is a schematic diagram of a graph by 13C-NMR used to calculate the average chain length of the structural unit obtained from 2-hydroxy-6-naphthoic acid. Description of component symbols] None. -64 -

Claims (1)

201105705 七、申請專利範圍: 1· 一種液晶性聚酯(A)’其特徵係具有38〜74莫耳%之由經 基羧酸所得到的結構單位、13〜31莫耳%之由44,_二 羥基聯苯所得到的結構單位及13〜31莫耳%之由2,6_蔡 二羧酸所得到的結構單位之合計丨〇〇莫耳%之液晶性聚 酯’由羥基羧酸所得到的結構單位的8 9莫耳%以上係由 2 -羥基-6 -萘甲酸所得到的結構單位,該由2_羥基_6_萘甲 酸所得到的結構單位之平均鏈長係〇.丨〜1。 2. 如申請專利範圍第1項之液晶性聚酯(A),其中經基殘酸 係2-羥基-6-萘甲酸。 3. 如申請專利範圍第1項之液晶性聚酯(A),其中經基竣酸 係2-羥基-6-萘甲酸,且40〜44莫耳%之由羥基羧酸所得 到的結構單位、28〜30莫耳%之由4,4’ -二羥基聯苯所 得到的結構單位及2 8〜3 0莫耳%之由2,6 ·萘二羧酸所得 到的結構單位。 4 ·如申請專利範圍第1項之液晶性聚酯(A),其中由羥基羧 酸所得到的結構單位的89〜99.9莫耳%係由2 -羥基- 6-萘甲酸所得到的結構單位,〇 . 1〜1 1莫耳%係由3.5 -二_ 第三丁基-4·羥基苯甲酸所得到的結構單位。 5.如申請專利範圍第1至4項中任一項之液晶性聚酯(A), 其中具有甲氧羰基作爲末端基。 6·—種液晶性聚酯(A)的製造方法,係如申請專利範圍第1 至5項中任一項之液晶性聚酯(A)的製造方法,其係在所 得到的液晶性聚酯的(熔點+20。(:)〜(熔點+40 °C )的溫度 範圍進行溶融聚合。 7.如申請專利範圍第6項之液晶性聚酯(A)的製造方法,其 -65- 201105705 中在聚合時最高到達溫度使反應系統滯留1〜3小時,來 進行熔融聚合。 8. —種如申請專利範圍第6或7項之液晶性聚酯(A)的製造 方法,其係組合2製程以上之選自藉由乙醯基與羧酸的 脫乙酸聚縮合之聚合製程,藉由甲氧羰基與乙醯基的脫 乙酸甲酯聚縮合之聚合製程及藉由甲氧羰基與羥基的脫 甲醇聚縮合之聚合製程之製程。 9. 一種液晶性聚酯組成物,其係對如申請專利範圍第1至 5項中任一項之液晶性聚酯(A),進一步調配由下述結構 單位所構成的液晶性聚酯(B),201105705 VII. Patent application scope: 1. A liquid crystalline polyester (A)' is characterized by having 38 to 74 mol% of the structural unit obtained from the transbasic carboxylic acid, and 13 to 31 mol% of 44. _ Dihydroxybiphenyl obtained structural unit and 13 to 31 mol% of the total number of structural units derived from 2,6-cai dicarboxylic acid 丨〇〇 mol % of liquid crystalline polyester 'from hydroxycarboxylic acid More than 89% of the obtained structural unit is a structural unit obtained from 2-hydroxy-6-naphthoic acid, and the average chain length of the structural unit obtained from 2-hydroxy-6-naphthoic acid is 〇.丨~1. 2. The liquid crystalline polyester (A) according to claim 1, wherein the residual acid is 2-hydroxy-6-naphthoic acid. 3. The liquid crystalline polyester (A) according to claim 1, wherein the structural unit obtained from the hydroxycarboxylic acid by the base acid 2-hydroxy-6-naphthoic acid and 40 to 44 mol% 28 to 30 mol% of the structural unit derived from 4,4'-dihydroxybiphenyl and 2 8 to 30 mol% of the structural unit derived from 2,6-naphthalenedicarboxylic acid. 4. The liquid crystalline polyester (A) according to claim 1, wherein 89 to 99.9 mol% of the structural unit derived from the hydroxycarboxylic acid is a structural unit derived from 2-hydroxy-6-naphthoic acid , 〇. 1~1 1 mol% is a structural unit obtained from 3.5-di-t-butyl-4-hydroxybenzoic acid. 5. The liquid crystalline polyester (A) according to any one of claims 1 to 4, which has a methoxycarbonyl group as a terminal group. A method for producing a liquid crystalline polyester (A) according to any one of claims 1 to 5, wherein the obtained liquid crystalline polyester is obtained by the method of producing a liquid crystalline polyester (A) The melt polymerization is carried out in the temperature range of the ester (melting point +20. (:) to (melting point + 40 ° C). 7. The method for producing the liquid crystalline polyester (A) according to claim 6 of the patent application, -65- In 201105705, the maximum temperature reached during the polymerization is allowed to remain in the reaction system for 1 to 3 hours to carry out melt polymerization. 8. A method for producing a liquid crystalline polyester (A) according to claim 6 or 7 of the patent application, which is a combination a polymerization process selected from the group consisting of a polycondensation condensation reaction of an ethoxy group with a carboxylic acid by a polycondensation of an acetoxy group and a carboxylic acid, a polymerization process by polycondensation of a methoxycarbonyl group with an ethyl acetate deacetate, and a methoxycarbonyl group and a hydroxyl group. The process for the polymerization process of the de-methanol polycondensation process. 9. A liquid crystalline polyester composition which is further prepared by the liquid crystalline polyester (A) according to any one of claims 1 to 5. a liquid crystalline polyester (B) composed of structural units, (I) (Π) (Itt) (IV) (V) 〇 1 〇.—種液晶性聚酯組成物,其係相對於如申請專利範圍第 1、2、3、4、5、9項中任一項之液晶性聚酯(A) 100重 量份,調配0.1〜200重量份之塡料而構成。 1 1. 一種成形品,其係將如申請專利範圍第1、2、3、4、5、 9項中任一項之液晶性聚酯成形而得到。 -66-(I) (Π) (Itt) (IV) (V) 〇1 〇. A liquid crystalline polyester composition which is relative to items 1, 2, 3, 4, 5 and 9 of the scope of the patent application. 100 parts by weight of the liquid crystalline polyester (A), and 0.1 to 200 parts by weight of a dip. 1 1. A molded article obtained by molding a liquid crystalline polyester according to any one of claims 1, 2, 3, 4, 5, and 9. -66-
TW98127201A 2009-08-13 2009-08-13 Liquid crystal polyester and the manufacturing process thereof TWI445732B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98127201A TWI445732B (en) 2009-08-13 2009-08-13 Liquid crystal polyester and the manufacturing process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98127201A TWI445732B (en) 2009-08-13 2009-08-13 Liquid crystal polyester and the manufacturing process thereof

Publications (2)

Publication Number Publication Date
TW201105705A true TW201105705A (en) 2011-02-16
TWI445732B TWI445732B (en) 2014-07-21

Family

ID=44814085

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98127201A TWI445732B (en) 2009-08-13 2009-08-13 Liquid crystal polyester and the manufacturing process thereof

Country Status (1)

Country Link
TW (1) TWI445732B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110753737A (en) * 2017-06-07 2020-02-04 Sk化学株式会社 Composition for synthesizing liquid crystal polymer, liquid crystal polymer for electric and electronic products using the same, polymer resin composition using the same, and molded product using the same
CN116903838A (en) * 2023-09-13 2023-10-20 宁波聚嘉新材料科技有限公司 Liquid crystal polymer, fiber and preparation method thereof, fiber cloth and copper-clad plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110753737A (en) * 2017-06-07 2020-02-04 Sk化学株式会社 Composition for synthesizing liquid crystal polymer, liquid crystal polymer for electric and electronic products using the same, polymer resin composition using the same, and molded product using the same
CN110753737B (en) * 2017-06-07 2024-03-01 Sk化学株式会社 Composition for synthesizing liquid crystal polymer, liquid crystal polymer obtained using the same, and product comprising liquid crystal polymer
US11939424B2 (en) 2017-06-07 2024-03-26 Sk Chemicals Co., Ltd. Composition for liquid crystal polymer synthesis, liquid crystal polymer for electrical/electronic products, polymer resin composition, and molded product using the same
CN116903838A (en) * 2023-09-13 2023-10-20 宁波聚嘉新材料科技有限公司 Liquid crystal polymer, fiber and preparation method thereof, fiber cloth and copper-clad plate
CN116903838B (en) * 2023-09-13 2024-01-30 宁波聚嘉新材料科技有限公司 Liquid crystal polymer, fiber and preparation method thereof, fiber cloth and copper-clad plate

Also Published As

Publication number Publication date
TWI445732B (en) 2014-07-21

Similar Documents

Publication Publication Date Title
JP5560714B2 (en) Liquid crystalline polyester and method for producing the same
JP5062381B2 (en) Totally aromatic liquid crystal polyester and method for producing the same
US9850343B2 (en) Method for producing liquid crystalline polyester, and liquid crystalline polyester
CN101089042A (en) Liquid crystalline polymer composition and use thereof
JP5126453B2 (en) Liquid crystalline polyester and method for producing the same
JP2015063641A (en) Liquid crystalline polyester resin composition and molded article comprising the same
JP6652223B1 (en) Liquid crystal polyester resin, method for producing the same, and molded article comprising the same
TW201105705A (en) Liquid crystal polyester and the manufacturing process thereof
JP6206174B2 (en) Liquid crystalline polyester resin composition and molded product thereof
JP2019183040A (en) Liquid crystal polyester resin, production method of the same, molded article made of the resin
JP5504978B2 (en) Liquid crystalline polyester and liquid crystalline polyester composition
JP5182240B2 (en) Liquid crystalline polyester and production method, composition and molded product
JP2018104527A (en) Liquid crystal polyester resin composition and molded article made of the same
JP2021059670A (en) Liquid crystal polyester resin composition, molded article and production method of liquid crystal polyester resin composition
JP6131638B2 (en) Liquid crystal polyester and method for producing the same
JP2019183041A (en) Liquid crystal polyester resin, production method of the same and molded article made of the resin
JP2017066353A (en) Liquid crystal polyester resin composition and molded article made of the same
JP2015048408A (en) Liquid crystalline polyester resin compositions and molded article thereof
JP2015178598A (en) Production method of liquid crystalline polyester, and the liquid crystalline polyester
JP2011132282A (en) Liquid crystalline polyester composition

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees