TW201105073A - Method of generating preamble sequence for wireless local area network device - Google Patents

Method of generating preamble sequence for wireless local area network device Download PDF

Info

Publication number
TW201105073A
TW201105073A TW98141062A TW98141062A TW201105073A TW 201105073 A TW201105073 A TW 201105073A TW 98141062 A TW98141062 A TW 98141062A TW 98141062 A TW98141062 A TW 98141062A TW 201105073 A TW201105073 A TW 201105073A
Authority
TW
Taiwan
Prior art keywords
angle
channel
sub
sequence
subchannel
Prior art date
Application number
TW98141062A
Other languages
Chinese (zh)
Other versions
TWI441491B (en
Inventor
Yen-Chin Liao
Cheng-Hsuan Wu
Yung-Szu Tu
Original Assignee
Ralink Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ralink Technology Corp filed Critical Ralink Technology Corp
Priority to US12/835,731 priority Critical patent/US8488539B2/en
Publication of TW201105073A publication Critical patent/TW201105073A/en
Application granted granted Critical
Publication of TWI441491B publication Critical patent/TWI441491B/en

Links

Abstract

A method of generating preamble sequence for a wireless local area network (WLAN) device is disclosed. A channel used by the WLAN device may be divided into four sub-channels, and the method includes forming a preamble sequence of a first sub-channel, making three replicas of the preamble sequence of the first sub-channel, each replica with a phase rotation of a first angle, a second angle, and a third angle respectively, for forming each preamble sequence of a second sub-channel, a third sub-channel, and a fourth sub-channel, and arranging the preamble sequences of the first, the second, the third, and the fourth sub-channels to form a preamble sequence of the channel.

Description

201105073 六、發明說明: 【發明所屬之技術領域】 本發明係指一種用於一無線區域網路裝置之前置資料 (Preamble)序列產生方法’尤指一種用於符合ffiEE8〇211ac標準 之無線區域網路裝置中的前置資料序列產生方法。 【先前技術】 無線區域網路(Wireless Local Area Network,WLAN )技術是 熱門的無線通訊技術之一,最早用於軍事用途,近年來廣泛應用於 各種消費性電子產品,如桌上型電腦、筆記型電腦或個人數位助理, 提供大眾更便利及快速的網際網路通訊功能。無線區域網路通訊協 定標準IEEE802.il系列是由國際電機電子工程師學會(比诏加始以201105073 VI. Description of the Invention: [Technical Field] The present invention relates to a method for generating a Preamble sequence for a wireless local area network device, especially a wireless area for complying with the ffiEE8〇211ac standard. A method of generating a preamble sequence in a network device. [Prior Art] Wireless Local Area Network (WLAN) technology is one of the popular wireless communication technologies. It was first used in military applications and has been widely used in various consumer electronic products in recent years, such as desktop computers and notes. A computer or personal digital assistant that provides the convenience and speed of Internet communication for the general public. The IEEE802.il series of wireless LAN communication protocols is developed by the International Institute of Electrical and Electronics Engineers.

Electrical and Electronics Engineers,IEEE)所制定,由早期的正EE 802.11a、IEEE 802.11b、IEEE 802.llg 等,演進至目前主流的正EE 802.11η。 IEEE 802.11 a/g/n標準採用正交分頻多工(〇rth〇g〇nal Frequency-Division Multiplexing,0FDM)調變技術,其優點為頻譜 利用率高,以及能夠抵抗多路徑傳輸(;MultipathPr〇pagati〇n)所造 成的訊號衰減效應等,然而,對無線區域網路系統中的訊號傳送機 而言’其調變说號之峰均值功率比(peak-t〇-Average Power Ratio) 容易過高,調變訊號在訊號傳送機之射頻電路進行處理時也容易產 201105073Developed by Electrical and Electronics Engineers (IEEE), it evolved from the early EE 802.11a, IEEE 802.11b, IEEE 802.11g, etc. to the current mainstream EE 802.11 η. The IEEE 802.11 a/g/n standard adopts 正交rth〇g〇nal Frequency-Division Multiplexing (OFDM) modulation, which has the advantages of high spectrum utilization and resistance to multipath transmission (MultipathPr).讯pagati〇n) caused by the signal attenuation effect, etc. However, for the signal transmitter in the wireless local area network system, it is easy to change the peak-to-average power ratio (peak-t〇-Average Power Ratio) Too high, the modulation signal is also easy to produce when the RF circuit of the signal transmitter is processed. 201105073

生失真,導致訊號接收機正確偵測封包的機率降低。與正EE 802.11a/g標準不同的是,ΐΕΕΕ802·11η標準使用多輸入多輸出 (MultipleInputMultipleOutput,ΜΙΜΟ)技術及其它新功能,大幅 改善了資料速率及傳輸吞吐量(Throughput),同時,通道頻寬由 20MHz 增加為 40MHz。 請參考第1圖,第1圖為習知IEEE 802.11η標準之封包格式示 意圖。無線區域網路系統所傳輸之封包為一前置資料(Preamble) _與待傳輸之資料的組合’前置資料位於每—封包的最前端,接續為 待傳輸之資料。第丨圖所示之前置資料為混合格式,可向下相容於 IEEE8G2.lla/g鮮之無縣域網路裝置,其巾包含_位依序為 傳統短訓練襴位L-STF (Legacy Short Training Field)、傳統長訓練 爛位 L-LTF ( Legacy Long Training Field )、傳統訊號欄位 l_sig (Legacy SignalField)、高吞吐量訊號攔位 HT_SI〇(High_Thr〇ughput Signal Field)、高吞吐量短訓練攔位 HT_STF (High ThiOughput 处⑽ • Training Field)以及N個高吞吐量長訓練欄位ht ltf (High-Throughput Long Training Field)。傳統短訓練欄位 l stf 用 於封包起始偵測(Start-of-packetDetection)、自動增益控制 (Automatic Gain Contrd,AGC) ' 初始頻率偏移估測(Frequency Offset Estimation) (Time Synchronization) ; 訓練欄位L-LTF用於精密之頻率偏移估測及時間同步;傳統訊號搁 位L-SIG攜帶資料速率及封包長度之資訊。高吞吐量訊號爛位 HT獨攜帶㈣速率之資tfL,並且祕自動_封包屬於混合格式 201105073 或傳統袼式;高吞吐量短訓練攔位HT_STF用於自動增益控制;高 吞吐量長訓練攔位HT-LTF用於多輸入多輸出之通道估測。 根據目前的IEEE 802.11η標準,在40MHz通道之前置資料中, 下半部20MHz通道之前置資料與IEEE 802.11 a/g標準之前置資料相 同,上半部20MHz通道之前置資料係複製自下半部2〇MHz通道之 前置資料且相位旋轉90。,如此可以降低傳送前置資料時的峰均值 功率比’提高訊號接收機成功偵測封包之機率。 為了實現更高品質的無線區域網路傳輸,相關單位正在制定新 一代的 IEEE 802.11ac 標準,係超高呑吐量(Very ffigh Thr〇ughput, VHT)之無線區域網路標準,通道頻寬由4〇MHz提高至。 若IEEE 802.11ac標準欲向下相容於正EE 8〇2旧的標準之無線區 域網路裝置’ IEEE802.11ac標準必須設計能夠選擇使用2〇MHz通 道或40MHz通道。因此,前置資料的設計除了必須考慮到通道頻寬 之向下相容性’同時必.意峰均值功率比可能過高的問題。 【發明内容】 因此,本發明之主要目的即在於提供一種用於一無線區域網路 裝置之前置資料序列產生方法,使得IEEE8〇211ac標準能夠向下相 谷於IEEE802.Ua/g/n標準之無線區域網路裝置,並且降低峰均值 功率比。 201105073 本發月揭路帛用於一無線區域網路裂置之前置資料序列產生 方法:該無線區域網路裝置所使用之—通道可分為一第一子通道、 第一子通道、—第三子通.道及—細子通道,該前置資料序列產 生方法包3有形成該第一子通道之一前置資料序列;複製該第一子 通道之該前置資料序列以產生一第一複製序列,並且由該無線區域 網路裝置之-記憶體取得一第一角度,將該第一複製序列之相位旋 轉該第肖度,形成該第二子通道之一前置資料序列;複製該第一 隹子通道之該前置資料序列以產生一第二複製序列,並且由該記憶體 取得-第二角度’將該第二複製序列之相位旋轉該第二角度,形成 該第三子通道之-前置資料序列;複製該第—子通道之該前置資料 序列以產生一第二複製序列,並且由該記憶體取得一第三角度,將 該第二複製序列之相位旋轉該第三角度,形成該第四子通道之一前 置資料序列;以及根據該第一子通道、該第二子通道、該第三子通 道及該第四子通道所分別對應之頻帶之高低順序,排列該第一子通 道之該前置資料序列、該第二子通道之該前置資料序列、該第三子 Φ通道之該前置資料序列及該第四子通道之該前置資料序列,以形成 該通道之一前置資料序列。 【實施方式】 請參考第2圖’第2圖為本發明實施例符合压EE 802 1 lac標準 之封包中一 80MHz通道之前置資料(Preamble)序列於頻域 (Frequency Domain )上的示意圖,80MHz通道可分為四個2〇MHz 子通道(Sub-channel)’根據頻帶由低至高分別標示為A、B、^、d。 201105073 子通道A之一前置資料序列S〇與習知IEEE 802.11 a標準之20MHz 通道之前置資料序列相同;子通道B、C、D中每一子通道之前置資 料序列,分別為子通道A之前置資料序列心之複製序列旋轉不同的 角度而得’子通道B之前置資料序列為&χεχρ()2πθι),子通道C 之前置資料序列為^〇χ6χΡ(/2πθ2),子通道d之前置資料序列為 5οχεχρ(_/2πθ3)。 請參考第3圖’第3圖為本發明實施例一流程3〇之示意圖,流 程30用於符合正EE 802.11ac標準之無線區域網路裝置,用來產生 80MHz通道之前置資料序列,例如第2圖之前置資料序列。無線區 域網路裝置可為無線區域網路卡、無線區域網路接取點(AccessDistortion, resulting in a lower probability of the signal receiver correctly detecting the packet. Different from the EE 802.11a/g standard, the ΐΕΕΕ802·11η standard uses Multiple Input Multiple Output (ΜΙΜΟ) technology and other new functions to greatly improve data rate and throughput (Throughput), and channel bandwidth. Increased from 20MHz to 40MHz. Please refer to FIG. 1, which is a schematic diagram of a packet format of the conventional IEEE 802.11n standard. The packet transmitted by the WLAN system is a combination of Preamble _ and the data to be transmitted. The pre-data is located at the forefront of each packet and continues to be the data to be transmitted. The pre-data shown in the figure is a mixed format, which is compatible with IEEE8G2.lla/g. There is no county network device. The towel contains _ bits in the traditional short training position L-STF (Legacy). Short Training Field), Legacy Long Training Field, Legacy Signal Field, High Signaling HT_SI〇 (High_Thr〇ughput Signal Field), High Throughput Short Training block HT_STF (High ThiOughput (10) • Training Field) and N high-throughput long training fields ht ltf (High-Throughput Long Training Field). Traditional short training field l stf for Start-of-packetDetection, Automatic Gain Contrd (AGC) 'Frequency Offset Estimation (Time Synchronization); Training The field L-LTF is used for precise frequency offset estimation and time synchronization; the traditional signal shelf L-SIG carries information on data rate and packet length. High-throughput signal rotten HT alone carries (four) rate tfL, and secret automatic _ packet belongs to mixed format 201105073 or traditional 袼; high throughput short training block HT_STF for automatic gain control; high throughput long training block The HT-LTF is used for channel estimation of multiple inputs and multiple outputs. According to the current IEEE 802.11n standard, in the 40MHz channel pre-data, the second half of the 20MHz channel pre-data is the same as the IEEE 802.11 a/g standard pre-data, and the upper half of the 20MHz channel pre-data is copied. The data is placed before the second half of the 2 〇 MHz channel and the phase is rotated by 90. This can reduce the peak-to-average power ratio when transmitting the pre-data to improve the probability of the signal receiver successfully detecting the packet. In order to achieve higher quality wireless LAN transmission, the relevant units are developing a new generation of IEEE 802.11ac standard, which is a wireless WLAN standard for Very ffigh Thr〇ughput (VHT). The channel bandwidth is 4 〇MHz is increased to. If the IEEE 802.11ac standard is intended to be backward compatible with the old standard EE 8〇2 wireless local area network device, the IEEE 802.11ac standard must be designed to use either a 2 〇 MHz channel or a 40 MHz channel. Therefore, the design of the pre-data must not only take into account the downward compatibility of the channel bandwidth, but also the problem that the peak-to-peak average power ratio may be too high. SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a method for generating a preamble sequence for a wireless local area network device such that the IEEE 〇 211 ac standard can be phased down to the IEEE 802.Ua/g/n standard. Wireless local area network devices and reduce the peak-to-average power ratio. 201105073 This is a method for generating a pre-sequence data sequence for a wireless local area network. The channel used by the wireless local area network device can be divided into a first sub-channel, a first sub-channel, a third sub-channel and a sub-channel, the pre-data sequence generation method package 3 has a pre-data sequence forming one of the first sub-channels; and replicating the pre-data sequence of the first sub-channel to generate a a first copy sequence, and a first angle is obtained by the memory of the wireless local area network device, and the phase of the first copy sequence is rotated by the first degree to form a preamble sequence of the second subchannel; Copying the preamble sequence of the first dice channel to generate a second replica sequence, and taking the second angle of the memory to rotate the phase of the second replica sequence to the second angle to form the third a preamble sequence of the subchannel; copying the preamble sequence of the first subchannel to generate a second replica sequence, and obtaining a third angle from the memory, rotating the phase of the second replica sequence third And forming a preamble sequence of the fourth subchannel; and arranging according to the order of the frequency bands corresponding to the first subchannel, the second subchannel, the third subchannel, and the fourth subchannel The preamble data sequence of the first subchannel, the preamble data sequence of the second subchannel, the preamble data sequence of the third subΦ channel, and the preamble data sequence of the fourth subchannel are A preamble sequence of one of the channels is formed. [Embodiment] Please refer to FIG. 2, FIG. 2 is a schematic diagram of an 80 MHz channel preamble (Preamble) sequence in a frequency domain (Frequency Domain) in a packet conforming to the EE 802 1 lac standard according to an embodiment of the present invention. The 80MHz channel can be divided into four 2〇MHz sub-channels (sub-channel) according to the frequency band from low to high, respectively labeled A, B, ^, d. 201105073 One of the pre-data sequences of sub-channel A is the same as the pre-data sequence of the 20MHz channel of the conventional IEEE 802.11 a standard; each sub-channel of sub-channels B, C, and D is preceded by a data sequence, respectively The copy sequence of the heart of the data sequence before the channel A is rotated by different angles, and the sub-channel B pre-data sequence is & χεχρ() 2πθι), and the sub-channel C pre-data sequence is ^〇χ6χΡ (/2πθ2). ), the sub-channel d pre-set data sequence is 5οχεχρ(_/2πθ3). Please refer to FIG. 3, FIG. 3 is a schematic diagram of a process 3 of the embodiment of the present invention, and the process 30 is used for a wireless local area network device conforming to the EE 802.11ac standard for generating an 80 MHz channel preamble sequence, for example, Figure 2 shows the sequence of data before. The wireless local area network device can be a wireless local area network card and a wireless local area network access point (Access)

Point)、電腦及行動通訊裝置如手機或個人數位助理等。流程30包 含有以下步驟: 步驟300 :開始。 步驟302 :從四個20MHz子通道中選擇一子通道X,以ieee 802.1 la標準之20MHz通道之前置資料序列做為子 通道X之一前置資料序列。 步驟304 :複製子通道X之前置資料序列以產生一第一複製序 列,並且將該第一複製序列的相位旋轉一第一角 度’以形成該四個20MHz子通道中,除了子通道X 以外之一子通道Y之一前置資料序列。 步驟306 :複製子通道X之前置資料序列以產生一第二複製序 列,並且將該第二複製序列的相位旋轉一第二角 201105073 度,以形成該四個20MHz子通道中,除了子通道χ 以外之一子通道Ζ之一前置資料序列。 步驟308 :複製子通道X之前置資料序列以產生一第三複製序 列,並且將該第三複製序列的相位旋轉一第三角 度,以形成該四個20MHz子通道中,除了子通道χ 以外之一子通道W之一前置資料序列。 步驟310 :根據子通道χ、γ、z、w所分別對應之頻帶的高低 鲁順序,排列子通道X之前置資料序列、子通道γ之 前置資料序列、子通道X之前置資料序列及子通道 W之如置負料序列’以形成80MHz通道之一前置資 料序列^ 步驟312 :結束。 根據步驟302,首先從80MHz通道所劃分出的四個2〇MHz子 通道中’選擇一子通道X,以IEEE802.11a標準之20MHz通道之 # 前置資料序列做為子通道X之一前置資料序列S〇。IEEE 802.1 la標 準之20MHz通道之前置資料序列預先儲存於無線區域網路裝置之 一記憶體。請注意,流程30沒有限制子通道X必須對應於何者頻 帶,實作上可自由設計。根據步驟302形成子通道X之前置資料序 列S0之後,接下來的步驟304、步驟306及步驟308係同時進行, 無特定之順序;子通道Y、Z、W為四個20MHz子通道中,除了子 通道X以外的其它三個子通道’子通道Y、Z及W所屬頻帶的高低 亦沒有限制。 201105073 步驟304至步驟308用來產生三個前置資料序列s〇之複製序 列’並且分別對這三個複製序列進行相位旋轉,以形成除了子通道 X以外的其它三個子通道之前置資料序列。詳細來說,步驟3〇4係 複製前置資料序列S〇,並且將複製產生之前置資料序列的相位旋轉 一第一角度’以徑度表示為2冗0丨,以形成子通道γ之一前置資料序 列Si ’ & =心xexpW^)。步驟306同樣是複製前置資料序列S〇, 接著將複製產生之前置資料序列旋轉一第二角度,以徑度表示為 2πθζ ’以形成子通道z之一前置資料序列s2, A = &χεχρ()2πθ2)。步騾308同樣是複製前置資料序列S〇,並且 將複製產生之前置資料序列旋轉一第三角度,以徑度表示為2πθ3, 以形成子通道W之一前置資料序列s3,& = 4 xexp(y.2ne3)。上述 第一角度、第二角度及第三角度之值預先儲存於無線區域網路裝置 之記憶體。最後,根據步騾310,將上述前置資料序列S〇、Si、S2 及S3根據其對應之子通道之頻帶的高低順序,進行排列,形成 80MHz通道之一前置資料序列S。 由上可知,流程3〇選擇四個20MHz子通道其中一子通道,設 計該子通道之前置資料序列使之符合IEEE 802.11a標準之20MHz 通道之前置資料序列,並且固定此前置資料序列的相位(可視為旋 轉0。)’其它三個子通道之前置資料序列之相位旋轉角度是相對於 此前置資料序列之相位。以第2圖所示之80MHz通道之前置資料序 列為例’其中位於最低頻帶之子通道A之前置資料序列是根據流程 201105073 30之步驟302而形成;其它子通道B、c、D是根據步驟304至步 驟308而形成。請注意,流程30可形成多個不同的8〇MHz通道之 前置資料序列、第2圖所示僅為其中之一例;流程3〇之步驟3〇2 亦可用來形成次低頻帶之子通道B、次高頻帶之子通道c或是最高 頻帶之子通道D之前置資料序列。 為了降低實作複雜度,本發明之一實施例定義θι、02或03為 0. 25的倍數’即〇、0.25、0.5或0.75,使得流程3〇中的第一角度、 第一角度或第二角度為90。的倍數,即〇。、9〇。、18〇。或270。。如此 一來,在進行步驟304至步驟308時,前置資料序列s〇只須乘上+ 1、 一1、+j或-j,能夠有效提升系統運算速度。流程30中的子通 道Y、Z及W之前置資料序列表示如下: A 4。X αρ(/2πθ,·) ’ Θ, e {〇,〇.25,〇 5,〇 75}" = U 3。 基於流程30巾僅三個子通道之前置資料序狀相位進行旋轉 籲以及Θ!、㊀2及㊀3為〇·25之倍數的定義,本發明只須* 4〗=64組 (θι,θ2,θ3)之排列組合中,搜尋出能夠使8〇mHz通道之前置資料序 歹】具有最小峰均值功率比之(m)之組合,亦即搜尋出第一角 度第一角度及第二角度之最佳組合,而不須由44=256組作”匕為) 中進行搜尋,系統運算負荷因此大幅降低。 進步地’本案申請人根據第2圖所示之80MHz通道之前置資 料序列之格式搜尋64組(01,02,~),找出8组能夠使 11 201105073 通道之前置資料序列具有最小峰均值功率比之(θ"θ2,θ3)。請參考第 4圖’第4圖為前述8 _為為)及其對應之旋轉角度之列表,這 8 組(0^02,03)分別為(0, 〇, 0.5)、(〇, 〇 5, 〇)、(〇 25, 〇, 〇 75)、(〇 25, 〇 5 0.25)、(0.5, 0, 0) ' (0.5, 0.5,0.5)、(〇.75, 〇, 0.25)、(0.75, 0.5, 0.75);其 對應之第-角度、第—角度及第三角度之組合依序分別為(〇。,〇。, 180。)、(0〇, 180〇, 0〇)、(90〇, 〇。,270。)、(90〇, 18〇〇, 90。)、(180〇, 〇' 〇〇)、 (180。,180°,180°)、(270。、〇〇、90。)、(270〇, 180°,270。)。上述 8 組 (θΐ,θ2,θ3)之值儲存於無線區域網路裳置的纪憒體中。 除此之外,本案申請人根據上述8組旋轉角度組合進行模擬, 以驗證無線區域網路系統之訊號接收機是否能正確地偵測到使用這 8組旋轉角度之前置資料,模擬通道環境為IEEE 802.11η標準之通 道模型B (Channel ModelΒ) ’訊號傳送機傳送1000個僅包含如第 2圖之80MHz通道之前置資料序列且根據第4圖所示之最佳角度組 合進行相位旋轉之封包,其分別由4〇MHz通道之訊號接收機以及 80MHz通道之訊號接收機所接收,並且計算正確彳貞測封包的機率。鲁 80MHz通道可被分割為4個非重疊之20MHz子通道A、B、C、D, 如第2圖;80MHz通道又可分為3個部分重疊之40MHz子通道{A, B)、{B,C}及{C,D}。 請參考第5圖,第5圖表列40MHz通道之一訊號接收機之一自 相關性偵測器(Autocorrelation Detector )於各個40MHz子通道{A, B}、{B,C}、{C,D}及各個傳輸鏈(Transmit Chain)之下,基於不 12 201105073 同的訊雜比(Signal-to-NoiseRatio,SNR)所量測之封包成功偵測 機率(Packet Detection Probability)之最小值。請參考第6圖,第6 圖表列40MHz通道之一訊號接收機之一交互相關性偵測器 (Cross-correlation Detector)於各個 40MHz 子通道{a,、{B C}、 {C,D}及各個傳輸鏈之下,基於不同的訊雜比所量測之封包成功偵 測機率之敢小值。由第5圖及第6圖可知,40MHz通道之訊號接收 機量測到的封包成功侧機率之最小值在可接受的朗内,這°表示 即使無線區域網路之訊號接收機不支援IEEE 8〇2 Uac標準,訊號接Point), computer and mobile communication devices such as mobile phones or personal digital assistants. The process 30 package contains the following steps: Step 300: Start. Step 302: Select a sub-channel X from the four 20 MHz sub-channels, and use the 20 MHz channel pre-data sequence of the ieee 802.1 la standard as one of the pre-data sequences of the sub-channel X. Step 304: Replicating the sub-channel X to pre-set the data sequence to generate a first copy sequence, and rotating the phase of the first copy sequence by a first angle ' to form the four 20-MHz sub-channels, except for the sub-channel X One of the sub-channels Y is a pre-data sequence. Step 306: Replicating the sub-channel X to pre-set the data sequence to generate a second copy sequence, and rotating the phase of the second copy sequence by a second angle of 201105073 degrees to form the four 20-MHz sub-channels, except for the sub-channel Ζ One of the sub-channels 前 one of the pre-data sequences. Step 308: Replicating the sub-channel X to pre-set the data sequence to generate a third copy sequence, and rotating the phase of the third copy sequence by a third angle to form the four 20-MHz sub-channels, except for the sub-channel χ One of the sub-channels W is a pre-data sequence. Step 310: Arranging the sub-channel X pre-data sequence, the sub-channel γ pre-data sequence, and the sub-channel X pre-data sequence according to the high and low lure sequences of the sub-channels γ, γ, z, and w respectively. And the sub-channel W is set as a negative data sequence to form a pre-data sequence of one of the 80 MHz channels. Step 312: End. According to step 302, a sub-channel X is selected from the four 2 〇 MHz sub-channels divided by the 80 MHz channel, and the pre-data sequence of the 20 MHz channel of the IEEE 802.11a standard is used as one of the sub-channels X. The data sequence S〇. The IEEE 802.1 la standard 20 MHz channel preamble sequence is pre-stored in a memory of the wireless local area network device. Please note that the process 30 does not limit which band the sub-channel X must correspond to, and the implementation is freely configurable. After the sub-channel X pre-sequence data sequence S0 is formed according to step 302, the following steps 304, 306, and 308 are performed simultaneously, without a specific order; the sub-channels Y, Z, and W are in the four 20-MHz sub-channels. There is no limitation on the level of the sub-channels Y, Z, and W to which the three sub-channels other than the sub-channel X are located. 201105073 Steps 304 to 308 are used to generate three pre-data sequences s 复制 replication sequence ' and phase-rotate the three replication sequences separately to form three sub-channel pre-data sequences except sub-channel X . In detail, step 3〇4 copies the preamble sequence S〇, and rotates the phase of the preamble sequence to generate a first angle′, which is expressed as 2 redundancy 0 to form a subchannel γ. A pre-data sequence Si ' & = heart xexpW^). Step 306 is also to copy the preamble sequence S〇, and then to rotate the preamble sequence to rotate a second angle, represented by 2πθζ as a diameter to form a preamble sequence s2 of the subchannel z, A = &;χεχρ()2πθ2). Step 308 also copies the preamble sequence S〇, and rotates the preamble sequence to a third angle, expressed as 2πθ3 in diameter, to form a preamble sequence s3 of the subchannel W, & = 4 xexp(y.2ne3). The values of the first angle, the second angle, and the third angle are stored in advance in the memory of the wireless local area network device. Finally, according to step 310, the preamble data sequences S〇, Si, S2 and S3 are arranged according to the order of the frequency bands of the corresponding subchannels to form a preamble sequence S of one of the 80 MHz channels. As can be seen from the above, the process 3 〇 selects one of the four 20 MHz sub-channels, and designs the sub-channel pre-data sequence to conform to the IEEE 802.11a standard 20 MHz channel pre-data sequence, and fixes the pre-data sequence. Phase (can be seen as a rotation of 0.) 'The phase rotation angle of the other three subchannels before the data sequence is relative to the phase of the previous data sequence. Taking the 80 MHz channel preamble data sequence shown in FIG. 2 as an example, the sub-channel A pre-data sequence located in the lowest frequency band is formed according to step 302 of the process 201105073 30; the other sub-channels B, c, and D are based on Step 304 to step 308 are formed. Please note that the process 30 can form a plurality of different 8 〇 MHz channel pre-data sequences, and FIG. 2 is only one of them; the process 3 〇 step 3 〇 2 can also be used to form the sub-low frequency sub-channel B The sub-channel c of the sub-high frequency band or the sub-channel D of the highest frequency band is preceded by a data sequence. In order to reduce the complexity of implementation, an embodiment of the present invention defines θι, 02 or 03 as a multiple of 0.25, ie 〇, 0.25, 0.5 or 0.75, such that the first angle, the first angle or the The two angles are 90. Multiples, that is, 〇. 9, 〇. 18〇. Or 270. . In this way, when performing step 304 to step 308, the pre-data sequence s〇 only needs to be multiplied by + 1, one, one, or -j, which can effectively improve the system operation speed. The sub-channel Y, Z, and W pre-data sequences in Flow 30 are represented as follows: A 4. X αρ(/2πθ,·) ’ Θ, e {〇, 〇.25, 〇 5, 〇 75}" = U 3. Based on the flow 30, only three sub-channels are placed before the data sequence rotation and Θ!, one 2 and one 3 are the definitions of multiples of 〇·25, and the present invention only needs *4〗=64 groups (θι, θ2, θ3 In the permutation combination, the combination of (m) having the smallest peak-to-average power ratio can be searched for the 8 〇mHz channel, that is, the first angle and the second angle are searched for. The combination of the best, without having to search for 44=256 groups, the system computing load is greatly reduced. Progressively, the applicant of this case searched according to the format of the 80MHz channel pre-data sequence shown in Figure 2. 64 groups (01, 02, ~), find 8 groups to make the 11 201105073 channel pre-data sequence have the minimum peak-to-average power ratio (θ"θ2, θ3). Please refer to Figure 4, Figure 4 for the aforementioned 8 _ is a list of the corresponding rotation angles, and the 8 groups (0^02, 03) are (0, 〇, 0.5), (〇, 〇5, 〇), (〇25, 〇, 〇, respectively) 75), (〇25, 〇5 0.25), (0.5, 0, 0) ' (0.5, 0.5, 0.5), (〇.75, 〇, 0.25), (0.75, 0.5, 0.75); -angle The combination of the first angle and the third angle is (〇., 〇., 180.), (0〇, 180〇, 0〇), (90〇, 〇., 270.), (90〇, respectively). 18〇〇, 90.), (180〇, 〇' 〇〇), (180., 180°, 180°), (270., 〇〇, 90.), (270〇, 180°, 270.) The values of the above eight groups (θΐ, θ2, θ3) are stored in the disco body of the wireless local area network. In addition, the applicant in the case simulates according to the above-mentioned eight sets of rotation angle combinations to verify the wireless area network. Whether the signal receiver of the road system can correctly detect the use of these 8 sets of rotation angle pre-data, the analog channel environment is the IEEE 802.11n standard channel model B (Channel ModelΒ) 'signal transmitter transmits 1000 only contains The 80MHz channel pre-data sequence of Figure 2 and the phase rotation packet according to the optimal angle combination shown in Figure 4 are received by the signal receiver of the 4 〇 MHz channel and the signal receiver of the 80 MHz channel, respectively. And calculate the probability of correct packet detection. Lu 80MHz channel can be divided into 4 non-overlapping 20MHz sub-channels A, B C, D, as shown in Figure 2; the 80MHz channel can be further divided into three partially overlapping 40MHz sub-channels {A, B), {B, C} and {C, D}. Please refer to Figure 5, Figure 5 One of the 40MHz channels, one of the signal receivers, has an Autocorrelation Detector on each 40MHz subchannel {A, B}, {B, C}, {C, D} and each Transmit Chain. The minimum value of the Packet Detection Probability measured based on the Signal-to-Noise Ratio (SNR) of 12 201105073. Please refer to Figure 6, the sixth chart shows one of the 40MHz channels, one of the signal receivers, the Cross-correlation Detector in each 40MHz sub-channel {a,, {BC}, {C, D} and Under each transmission chain, the packets measured based on different signal-to-noise ratios successfully detect the probability of a small value. It can be seen from Fig. 5 and Fig. 6 that the minimum value of the successful side rate of the packet measured by the signal receiver of the 40 MHz channel is within an acceptable range, which means that even if the signal receiver of the wireless local area network does not support IEEE 8 〇 2 Uac standard, signal connection

收機也能夠成功偵測出根據流程30所產生之8〇MHz通道之前置資 料序列。 請參考第7圖’第7圖表列8〇MHz通道之一訊號接收機之一自 相關性偵測器於各個傳輸鏈之下,基於不同的訊雜比所量測之封包 成功偵測機率之最小值。請參考第8圖,第8圖表列8QMHz通道之 一訊號接收機之一交互相關性偵測器於各個傳輸鏈之下,基於不同 籲的訊雜比所量測之封包成功偵測機率之最小值。由第7圖及第8圖 可知,80MHZ通道之訊號接收機量測到的封包成功侧機率之最小 值多數都高達1〇〇%,這表示根據流程3〇所產生之8〇MHz通道之 前置資料序列’能夠成功地被8〇MHz通道之訊號接收機所偵測出。 綜上所述,本發明提出之前置資料序列的產生流程,能夠形成 =合IEEE8〇2.llac標準之前置資料序列,並且形成之前置資料序列 旎夠向下相容於!EEE8〇2 lla/g/n標準之無線區域網路裝置。較佳 13 201105073 地本發明進一步搜尋出最佳的各個子通道之前置資料序列之相位 之輯角度,使前置資料相之峰均值功率比最佳化。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍 雌之均轉化飾,冑闕本發歡涵蓋範圍。 【圖式簡單說明】 第1圖為習知IEEE802.11η標準之封包格式示意圖。 第2圖為本發明實施例符合IEEE 802.11ac標準之封包中一 80MHz 通道之前置資料序列於頻域上的示意圖。 第3圖為本發明實施例一流程之示意圖。 第4圖為根據第2圖中80MHz通道之前置資料序列之格式所搜尋到 的最佳旋轉角度之列表。 第5圖為40MHz通道之一訊號接收機之一自相關性偵測器於各個 40MHz子通道及各個傳輸鏈之下,基於不同的訊雜比所量測之 封包成功偵測機率之最小值之列表。 第6圖為40MHz通道之一訊號接收機之一交互相關性偵測器於各個 40MHz子通道及各個傳輸鏈之下,基於不同的訊雜比所量測之 封包成功偵測機率之最小值之列表。 第7圖為80MHz通道之一訊號接收機之一自相關性偵測器於各個傳 輸鏈之下’基於不同的訊雜比所量測之封包成功偵測機率之最 小值之列表。 第8圖為80MHz通道之一訊號接收機之一交互相關性偵測器於各個 201105073 傳輸鏈之下’基料關__量•封包成功侧機率之 最小值之列表。 傳統短訓練攔位 傳統長訓練襴位 傳統訊號欄位 向吞吐量訊號欄位 向吞吐量短訓練欄位 向吞吐量長訓練襴位 子通道The receiver can also successfully detect the 8 〇 MHz channel preamble sequence generated according to the process 30. Please refer to Figure 7 for the successful detection of packets based on the different signal-to-noise ratios. Minimum value. Please refer to Figure 8. The 8th chart shows one of the 8QMHz channels, one of the signal receivers, the cross-correlation detector is below each transmission chain, and the packet detection probability is the smallest based on the signal-to-noise ratio of different calls. value. It can be seen from Fig. 7 and Fig. 8 that the minimum value of the successful side rate of the packet measured by the signal receiver of the 80 MHz channel is as high as 1%, which means that before the 8 〇 MHz channel generated according to the process 3〇 The data sequence ' can be successfully detected by the signal receiver of the 8 〇 MHz channel. In summary, the present invention proposes a process for generating a pre-data sequence, which can form a pre-data sequence of the IEEE8〇2.llac standard, and form a pre-data sequence that is backward compatible! EEE8〇2 lla/g/n standard wireless local area network device. Preferably, the present invention further searches for the optimal phase angle of the pre-data sequence of each sub-channel to optimize the peak-to-average power ratio of the pre-data phase. The above description is only a preferred embodiment of the present invention, and the scope of the invention is in accordance with the scope of the invention. [Simple Description of the Drawing] Fig. 1 is a schematic diagram of a packet format of the conventional IEEE802.11n standard. FIG. 2 is a schematic diagram of an 80 MHz channel preamble sequence in a frequency domain in a packet conforming to the IEEE 802.11ac standard according to an embodiment of the present invention. FIG. 3 is a schematic diagram of a process of an embodiment of the present invention. Figure 4 is a list of the best rotation angles found based on the format of the 80 MHz channel preamble sequence in Figure 2. Figure 5 is the minimum of the probability of successful detection of packets based on the different signal-to-noise ratios of one of the 40MHz channels, one of the autocorrelation detectors in each 40MHz sub-channel and each transmission chain. List. Figure 6 is the minimum correlation of the probability of successful detection of packets based on different signal-to-noise ratios under one of the 40MHz sub-channels and each transmission chain. List. Figure 7 is a list of the minimum value of the probability of successful packet detection based on the different signal-to-noise ratios of one of the 80 MHz channels of the auto-correlation detector under each transmission chain. Figure 8 is a list of the minimum value of the success rate of one of the 80MHz channels, one of the signal-receiving detectors in each of the 201105073 transmission chains. Traditional short training position Traditional long training position Traditional signal field To the throughput signal field To the short throughput training field To the throughput long training position Subchannel

【主要元件符號說明】 L-STF L-LTF L-SIG HT-SIG 鲁 HT-STF HT-LTF A、B、C、D 30 300、302、304、306、308、310、312 步驟 .S〇 ' ^oXexpO^ej) ' S0xQxp(j2nQ2) ' *^〇 x 6χρ(7*2πθ3)前置次 料序列 胃[Main component symbol description] L-STF L-LTF L-SIG HT-SIG Lu HT-STF HT-LTF A, B, C, D 30 300, 302, 304, 306, 308, 310, 312 Steps. ' ^oXexpO^ej) ' S0xQxp(j2nQ2) ' *^〇x 6χρ(7*2πθ3) pre-sequence sequence stomach

1515

Claims (1)

201105073 七、申請專利範圍: 1. -種躲-無、__特置之前置資料(Preambie)序列產 生方法’該無線區域網路裳置所使用之一通道可分為一第一子 通道、一第二子通道、一笫二;捅洁;^ 一结 罘一子通道及第四子通道,該前置 資料序列產生方法包含有: 形成該第一子通道之一前置資料序列; 複製該第-子通道之該前置資料序列以產生一第一複製序列, 並且由S亥無線區域網路裝置之一記憶體取得一第一角 度,將該第一複製序列之相位旋轉該第一角度,形成該第 二子通道之一前置資料序列; 複製該第一子通道之該前置資料序列以產生一第二複製序列, 並且由δ亥S己憶體取得一第二角度,將該第二複製序列之相 位旋轉該第二角度,形成該第三子通道之一前置資料序 列; 複製該第一子通道之該前置資料序列以產生一第三複製序列, 並且由該記憶體取得一第三角度’將該第三複製序列之相 位旋轉該第三角度,形成該第四子通道之一前置資料序 列;以及 根據該第一子通道、該第二子通道、該第三子通道及該第四子 通道所分別對應之頻帶之高低順序’排列該第一子通道之 該前置資料序列、該第二子通道之該前置資料序列、該第 三子通道之該前置資料序列及該第四子通道之該前置資 201105073 料序列,以形成該通道之一前置資料序列。 2. 如請求項1所述之前置資料序列產生方法,其中該第一子通道 之頻帶係該第一至該第四子通道之頻帶中最低者。 3. 如請求項2所述之前置資料序列產生方法,其中該第一角度、 該第二角度及該第三角度分別為0°、0°、180°。 • 4.如請求項2所述之前置資料序列產生方法,其中該第一角度、 該第二角度及該第三角度分別為0°、180°、0°。 5. 如請求項2所述之前置資料序列產生方法,其中該第一角度、 該第二角度及該第三角度分別為90°、0°、270°。 6. 如請求項2所述之前置資料序列產生方法,其中該第一角度、 I 該第二角度及該第三角度分別為90°、180°、90°。 7. 如請求項2所述之前置資料序列產生方法,其中該第一角度、 該第二角度及該第三角度分別為180°、0°、0°。 8. 如請求項2所述之前置資料序列產生方法,其中該第一角度、 該第二角度及該第三角度分別為180。、180°、180。。 9. 如請求項2所述之前置資料序列產生方法,其中該第一角度、 17 201105073 該第二角度及該第三角度分別為270。、0〇、90。。 10. 如請求項2所述之前置資料序列產生方法,其中該第一角度、 該第二角度及該第三角度分別為270。、180。、270。。 11. 如請求項1所述之前置資料序列產生方法,其中該無線區域網 路裝置之該通道的頻寬為80MHz,以及該第一至該第四子通道 之每一子通道的頻寬為20MHz。 12. 如請求項1所述之前置資料序列產生方法,其中該無、線區、 路裝置係符合IEEE 802.11ac標準之一無線區域網路事置°°域網 八、圖式:201105073 VII. Patent application scope: 1. - Kind of hiding - No, __ Pre-set data (Preambie) sequence generation method 'One channel used by the wireless area network can be divided into a first sub-channel a second sub-channel, a second sub-parameter; a clean-up; a concatenated sub-channel and a fourth sub-channel, the pre-data sequence generating method comprises: forming a pre-data sequence of one of the first sub-channels; Copying the preamble sequence of the first sub-channel to generate a first copy sequence, and obtaining a first angle from a memory of the S-H wireless network device, rotating the phase of the first copy sequence Forming a preamble sequence of the second subchannel at an angle; copying the preamble sequence of the first subchannel to generate a second replica sequence, and obtaining a second angle from the δ海S memory Rotating the phase of the second replica sequence to the second angle to form a preamble sequence of the third subchannel; copying the preamble sequence of the first subchannel to generate a third replica sequence, and Memory acquisition Deriving a third angle 'rotating the phase of the third copy sequence to the third angle to form a preamble sequence of the fourth subchannel; and according to the first subchannel, the second subchannel, the third The order of the frequency bands corresponding to the sub-channels and the fourth sub-channels respectively 'arrange the pre-data sequence of the first sub-channel, the pre-data sequence of the second sub-channel, and the front of the third sub-channel The data sequence and the pre-funded 201105073 sequence of the fourth sub-channel are set to form a pre-data sequence of the channel. 2. The preamble sequence generation method according to claim 1, wherein the frequency band of the first subchannel is the lowest one of the frequency bands of the first to the fourth subchannels. 3. The method according to claim 2, wherein the first angle, the second angle, and the third angle are 0°, 0°, and 180°, respectively. 4. The method according to claim 2, wherein the first angle, the second angle, and the third angle are 0°, 180°, and 0°, respectively. 5. The method according to claim 2, wherein the first angle, the second angle, and the third angle are 90°, 0°, and 270°, respectively. 6. The method according to claim 2, wherein the first angle, the second angle, and the third angle are 90°, 180°, and 90°, respectively. 7. The method according to claim 2, wherein the first angle, the second angle, and the third angle are 180°, 0°, and 0°, respectively. 8. The method according to claim 2, wherein the first angle, the second angle, and the third angle are 180 respectively. , 180°, 180. . 9. The method according to claim 2, wherein the first angle, 17 201105073, the second angle and the third angle are respectively 270. , 0〇, 90. . 10. The method according to claim 2, wherein the first angle, the second angle, and the third angle are 270, respectively. 180. 270. . 11. The method according to claim 1, wherein the bandwidth of the channel of the wireless local area network device is 80 MHz, and the bandwidth of each of the first to the fourth subchannels. It is 20MHz. 12. The method according to claim 1, wherein the no-line area and the line device are in accordance with one of the IEEE 802.11ac standards, and the wireless area network is located in the area network. 1818
TW98141062A 2009-07-16 2009-12-01 Method of generating preamble sequence for wireless local area network device TWI441491B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/835,731 US8488539B2 (en) 2009-07-16 2010-07-13 Method of generating preamble sequence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22593109P 2009-07-16 2009-07-16

Publications (2)

Publication Number Publication Date
TW201105073A true TW201105073A (en) 2011-02-01
TWI441491B TWI441491B (en) 2014-06-11

Family

ID=43485871

Family Applications (5)

Application Number Title Priority Date Filing Date
TW98140123A TW201105057A (en) 2009-07-16 2009-11-25 Method and apparatus for generating training sequences in wireless communication system
TW98141061A TWI405441B (en) 2009-07-16 2009-12-01 Setting method and apparatus for a wireless communication system
TW98141064A TW201105074A (en) 2009-07-16 2009-12-01 Method of generating preamble sequence for wireless local area network device
TW98141062A TWI441491B (en) 2009-07-16 2009-12-01 Method of generating preamble sequence for wireless local area network device
TW98142476A TW201105071A (en) 2009-07-16 2009-12-11 Method and apparatus of generating preamble sequence for wireless communication system

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW98140123A TW201105057A (en) 2009-07-16 2009-11-25 Method and apparatus for generating training sequences in wireless communication system
TW98141061A TWI405441B (en) 2009-07-16 2009-12-01 Setting method and apparatus for a wireless communication system
TW98141064A TW201105074A (en) 2009-07-16 2009-12-01 Method of generating preamble sequence for wireless local area network device

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW98142476A TW201105071A (en) 2009-07-16 2009-12-11 Method and apparatus of generating preamble sequence for wireless communication system

Country Status (2)

Country Link
CN (2) CN103457898B (en)
TW (5) TW201105057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693356B2 (en) 2009-07-16 2014-04-08 Ralink Technology Corp. Method for wireless communication system and device using the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201891B (en) * 2011-05-03 2015-07-22 中兴通讯股份有限公司 Wireless frame transmission method and device
TWI470958B (en) * 2012-01-03 2015-01-21 Mstar Semiconductor Inc Method and associated apparatus applied to receiver of wireless network for determining a quantity of antennas of transmitter
US20150365257A1 (en) * 2014-06-12 2015-12-17 Huawei Technologies Co., Ltd. System and Method for OFDMA Resource Allocation
US9712217B2 (en) 2014-09-08 2017-07-18 Intel Corporation Parallel channel training in multi-user multiple-input and multiple-output system
US9998951B2 (en) * 2015-08-05 2018-06-12 Qualcomm Incorporated Training sequence generation for wireless communication networks
CN113612591A (en) 2015-08-26 2021-11-05 华为技术有限公司 Method and device for transmitting HE-LTF sequence
CN111327548A (en) * 2015-11-23 2020-06-23 华为技术有限公司 Wireless local area network data transmission method and device
WO2017088761A1 (en) * 2015-11-23 2017-06-01 华为技术有限公司 Wireless local area network data transmission method and device
CN108683482B (en) * 2017-04-01 2021-03-09 电信科学技术研究院 Method and device for estimating timing position
TWI773256B (en) 2021-04-20 2022-08-01 國立陽明交通大學 Method and architecture of synchronization of wireless communication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8619907B2 (en) * 2004-06-10 2013-12-31 Agere Systems, LLC Method and apparatus for preamble training in a multiple antenna communication system
US8737189B2 (en) * 2005-02-16 2014-05-27 Broadcom Corporation Method and system for compromise greenfield preambles for 802.11n
WO2007011347A1 (en) * 2005-07-15 2007-01-25 Mitsubishi Electric Research Laboratories Antenna selection for multi-input multi-output system
US7742390B2 (en) * 2005-08-23 2010-06-22 Agere Systems Inc. Method and apparatus for improved long preamble formats in a multiple antenna communication system
JP4367422B2 (en) * 2006-02-14 2009-11-18 ソニー株式会社 Wireless communication apparatus and wireless communication method
US20070189412A1 (en) * 2006-02-15 2007-08-16 Samsung Electronics Co., Ltd. Method and system for sounding packet exchange in wireless communication systems
US7804800B2 (en) * 2006-03-31 2010-09-28 Intel Corporation Efficient training schemes for MIMO based wireless networks
JP4924106B2 (en) * 2006-04-27 2012-04-25 ソニー株式会社 Wireless communication system, wireless communication apparatus, and wireless communication method
US8526351B2 (en) * 2009-06-05 2013-09-03 Broadcom Corporation Channel characterization and training within multiple user, multiple access, and/or MIMO wireless communications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693356B2 (en) 2009-07-16 2014-04-08 Ralink Technology Corp. Method for wireless communication system and device using the same

Also Published As

Publication number Publication date
CN101958739B (en) 2013-09-11
TWI405441B (en) 2013-08-11
TW201105057A (en) 2011-02-01
CN103457898B (en) 2017-04-26
TW201105070A (en) 2011-02-01
CN101958739A (en) 2011-01-26
CN103457898A (en) 2013-12-18
TW201105074A (en) 2011-02-01
TWI441491B (en) 2014-06-11
TW201105071A (en) 2011-02-01

Similar Documents

Publication Publication Date Title
TW201105073A (en) Method of generating preamble sequence for wireless local area network device
US10355755B2 (en) Method and device for transmitting data unit
US9780919B2 (en) High efficiency WLAN preamble structure
KR101417691B1 (en) Method and apparatus for transmitting control information in wireless local area network using multi-channel
AU2014272164B2 (en) Apparatus and method using backwards-compatible preamble formats for multiple access wlan communication system
KR101632894B1 (en) A wireless communication method and a wireless communication terminal using the same
US9197473B2 (en) Preamble with modified signal field (SIG) for use in wireless communications
TWI403113B (en) A wireless transmit/receive unit and method of performing cell search in an orthogonal frequency division multiple access based system / a wireless communication system
CN102113284B (en) OFDM frame synchronisation method and system
US20110013575A1 (en) Method of generating preamble sequence for wireless local area network system and device thereof
CN107005523A (en) Training field tone for mixing rate cordless communication network is planned
RU2012146971A (en) METHOD AND DEVICE FOR CREATING SEQUENCES OF LONG LEARNING TRAINING FIELD OF THE PROTOCOL VERY HIGH CAPACITY
TWI789490B (en) Wakeup radio transmit diversity
WO2013066739A1 (en) Method and apparatus for automatically detecting a physical layer (phy) mode of a data unit in a wireless local area network (wlan)
KR20130059686A (en) Method for transmitting and receiving wireless signal in wireless communication and apparatus for the same
CN106664266A (en) Methods and apparatus for low power operation utilizing multiple adcs with different precisions
CN107508780A (en) A kind of time synchronization method of the ofdm system based on IEEE 802.11ac
WO2017059719A1 (en) Data transmission method and device
TW201132074A (en) Preamble sequence generating method and wireless local area network device
RU2460227C2 (en) Detection of sync data in wireless communication system
CN108156108A (en) A kind of start position of OFDM symbol determines method and apparatus
WO2022089549A1 (en) Preamble puncture transmission method and related apparatus