201104406 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種省電控制裝置’特別是關於一種可對 電源供應器提供省電之省電控制裝置。 【先前技術】 如第一圖所示’電源供應器8中常見在交流電源輸入 知力上個電磁干擾(Electromagnetic Interference,EMI) f ^器80,之後再透過整流電路82將交流電源轉換成供 來消^吏择用之直流電源’並由其中的電磁干擾濾波器80 正常工作Γ以及訊號的電磁干擾’以使電源供應器8可以 亦逐保意識逐漸被重視,對於電源節能之要求 器而言H舌中的各項電子產品。以上述之電源供應 其在交流電诉ϋ磁干擾遽波器80並不具有節能效果,因 耗功率其内部元件爾 痛電效果,而 的力羊她亦不會因此達到 不符合現今環保的要求4 8產生無謂的電源浪費,實 【發明内容】 本^明之目的,在 應器及其省電方法,Ϊ使控㈣置、電源供 有省電效果。 電源ί、應态之電磁干擾濾波器具 201104406 為了達成上述目的,根據本發明的一種方案,提供— 種省電控制裝置’適用於節省一電源供應器的一電磁干擾 渡波器之功率消耗,包括:一第一整流電路及一開關電路。 其中第一整流電路可以對一交流電源進行整流且輸出一直 流電源。開關電路可以控制電磁干擾濾波器所接收到的訊 號為交流電源或直流電源。 為了解決上述技術問題,根據本發明的另一種方案, 提供一種電源供應器,包括:一電磁干擾濾波器、一省電 控制裝置及一第二整流電路。其中電磁干擾濾波器耦接於 省電控制裝置與第二整流電路之間。省電控制裝置具有— j —第一整流電路及一開關電路。第一整流電路可以對— j流電源進行整流以輸出一直流電源;開關電路可以控制 乂机電源及直流電源的其中之一輸入於電磁干擾濾波器。 為了解決上述技術問題,根據本發明的再一種方案, =-種電源供應器之省電方法,適用於節省電源供應器 隹二電磁干擾濾、波器之功率消耗,#電源供應器所供應之 之態時,使—交流電源輸入於電源供應器 作為Ϊ雷’以及源供應11所供應之負載工 ,,、、電狀〜、時,使—直流電源輸人於電磁干擾濾波器。 當電磁干: 之電容之#^ ,IL電源時,電磁干擾濾波器内 其功二Γ電容之容抗近似無限大,而使得 果。羊接近零’因此使得電源供應器可以達到省電效 皆是為了能 進-===:==及_ 乂貝疋目的所採取之方式、手段及 201104406 ::式他目的及優點,將在後續的說明 【實施方式】 本發明主要是提供—種且古α 可以在不影響電源供應器之供電f、、電之電源供應器, 的-電磁干擾滤波器之功率消=降低電源供應器中 常設置於f源供絲之M t ㈣干擾遽波器通 器以往功率耗損主要由==及二電斜嶋 在電源供應n有省f = ’故纽本發明主要是 無線大,以大幅降低電容之功制電容之容抗趨近於 了擾^之功率消耗,而讓電源供應器具有省電之效果 之雷^^閱第―圖’其所緣示係、為本發明第一實施例 省電二::為之方塊圖。第二圖的電源供應器1是包括有- 14,^由二置1〇、一電磁干擾渡波器12及一第二整流電路 省包控制裝置10耦接於電磁干擾濾波器12鱼交、、* Γ〇:Γ端之間’電磁干擾遽波器猶:省電控制二 直接流電路14之間’第二整流電路14之輸出端則是 ,且可負載9供電。在此電源供應器1對-負載9進行供電時 e πΙΓ視負載9的工作狀態為何,而來控制電源供應器1 =中Ϊ作在正常供電模式或是省電供賴式。在此實施 相偏。田負載9的工作狀態為正常模式時’則電源供應器1 呆作於正常供電模式,以及當負載9的工作狀態為省電 201104406 換式時,則電源供應器1相對操作於省電供電模式。 ^供應Hi中的電磁干擾濾波器12及第二整流電路 習知,,在分別此不對其作詳細說明。 :、1。則是用來控制電源供應器α操作在 電供電模式,如第二圖所示,省電控制;置: V L括第—整流電路101及一開關電路103,其中 :整流電路1G1用來對輸人於電源供應器1之-交流電源進 ^整流並輸出—直流電源’開關電路1G3則是用控制電磁干 山;慮波$ 12接收交流電源或是接㈣第__整流電路如輸 的直ΛΗ_電源’且開關電路1〇3在此是以並聯於第—整流電 路1 〇 1的方式作舉例朗,但並不以此為限亦可以是其他的 連接關係,如串聯方式等。 ” 更進一步說明省電控制裝置10的動作原理,省電控制 裝置10中的開目電路10 3在此係以-切換開關作舉例說明 ’此切換開關的作用可以用來控制輸人於電磁干擾滤波器 2之傳輸路徑所傳輸之訊號為交流電源或是直流電源。例 如田此切換開關導通(turn 〇η)時,則交流電源將直接透 過切換開關傳輸給電磁干擾濾波器12 ;反之當此切換開關 截止(turn off)時’則第一整流電路1〇1輸出之直流電源 將輸出給電磁干擾濾波器12。而至於切換開關的導通或截 士則可以根據負載9的工作狀態來決定,例如當負載9在正 吊模式時,切換開關切至導通位置,以及當負載9在省電模 式時,切換開關切至戴止位置。 故當電磁干擾濾波器12接收到交流電源輸入時,其内 4之功率消耗係由χ/γ電容之容抗及其電容之等效串聯電 阻(ESR)、線圈、線損等產生。然而當電磁干擾濾波器12 201104406 接收到^:流電源輸入時,由於此時電磁干擾濾波器】2内之 χ/γ電谷之谷彳几將趨近於無限大,故電容之功率消耗將趨 近於零,換言之此時電磁干擾濾波器12之功率消耗約只省 下$圈及線損之功率消耗。因此電磁干擾濾波器12接收到 直流電源時所產生之功率消耗將比接收到將交流電源時所 產生之功率消耗相對更小。 口也就是說,電源供應器丨在省電控制裝置1〇的控制下, 將可在電磁干擾濾波器12接收到直流電源時達到省電效果 籲 此時之電源供應器1仍可以繼續供電給負載9使用,而 若包源供應器1要恢復原本正常供電,則可以再透過省電控 制裝置10的開關電路103切至導通位置即可。 s凊再苓閱第三圖,其所繪示係為本發明第二實施例之 電源供應器之方塊圖。第三圖的電源供應器la是包括有一 省電控制裝置l〇a、一電磁干擾濾波器12及一第二整流電路 14,而除了省電控制裝置1〇a中的第一整流電路ι〇ι&與開關 電路1〇3a之間的連接方式不同之外,其餘此電源供應器la φ 之技術特點是與第二圖相同。以此實施例之省電控制裝置 l〇a而言,開關電路103a是一切換開關,且此切換開關4以 切換至A點或B點位置,以決定電磁干擾濾波器12是要自A 點的傳輸路徑接收交流訊號或是自B點位置接收直流訊號 。例如當負載9為正常模式時,此切換開關切換至a點位置 寺則父流電源將直接輸入至電磁干擾濾波器1 2,以及當 • 負載9為省電模式時,切換開關切換至B點位置時,則第一 整流電路l〇la輸出之直流電源將輸出至電磁干擾濾波器Η ,在此之第一整流電路l〇la係以半波整流電路舉^說明°。 201104406 、、睛再參閱第四圖’其騎示係為本發明第三實施例之 電源供應器之方塊圖。第四圖的電源供應器lb是包括有一 省電控制裝置1Gb、-電磁干㈣波器12及—第二整流電: 除了第一整流電路101b是以全波整流電路(或橋式整 机,路)做舉例說明之外,其餘此電源供應器lb之技術特 點是與第三圖相同,在此之開關電路1〇孙亦是決定電礤干 擾濾、波器12是要自A點的傳輸路徑接收交流訊號或是自b 點位置接收直流訊號。 至於前述開關電路的實際作業方式,可以是透過自動 切換方式進行。例如開關電路可以根據收到的一控制訊號 來控制切換開關的切換狀態,此切換狀態可以是第二圖所 述之切換_本㈣導通或截止,亦或是第三及第四圖所 述=換至A點或B點位置’控制訊號則可以是負載進入到省 電模式所輸出之訊號。因此對於開關電路而言,可以根據 有無收到㈣訊齡得知貞餘態,在此係料收到控制 訊號來得知貞載已進人省賴式作舉舰明,以使開關電 路收到控制訊號時,提供一輸出直流電源的傳輸路徑連接 ,電磁干輸人端,或是在㈤_冑路未收到控制訊 號時’提供-輸出交流電源的傳輸路徑連接於電磁干擾滤 波器輸入端。 .請再參閱第五圖,其所繪示係為本發明第四實施例之 ,源供應器之方塊II。第五圖的電源供應抑是包括有一 省電控制裝置l〇c' -電磁干擾遽波器12及一第二整流電路 14其中省電控職置丨_接於電軒擾遽㈣12與交流 電源輸入端之間,電磁干擾濾波器12耦接於省電控制裝置 i〇c與第二整流電路14之間,第二整流電路14之輸出端則是 201104406 直接對負載供電。省電控制裝置10c包括有一第一整流電路 101及開關電路103c,第—整流電路101包括有二極體 D1〜D2、電阻Rl、TVS二極體ZD1、電容C2等元件,開關 電路103c包括有電阻R2〜R4、電晶體Q1〜Q2、切換開關SW 等元件。201104406 VI. Description of the Invention: [Technical Field] The present invention relates to a power saving control device, particularly to a power saving control device that can provide power saving to a power supply. [Prior Art] As shown in the first figure, 'Electromagnetic Interference (EMI) 80 is commonly used in the power supply 8 of the power supply, and then the AC power is converted into the supply through the rectifier circuit 82. The DC power supply is selected and the electromagnetic interference filter 80 is normally operated and the electromagnetic interference of the signal is used to enable the power supply 8 to be gradually taken care of, for the power saving device. H electronic products in the tongue. With the above-mentioned power supply, it does not have the energy-saving effect in the AC ϋ ϋ 遽 遽 , , , , , , , , , , , 80 80 并不 并不 并不 并不 并不 并不 并不 并不 并不 并不 并不 并不 并不 并不 并不 并不 并不 并不 并不 并不 并不 并不 并不8 Produce unnecessary power waste, the actual content of the invention. In the purpose of this method, in the device and its power-saving method, the control (four) and the power supply have power-saving effects. In order to achieve the above object, according to one aspect of the present invention, a power saving control device is provided for saving power consumption of an electromagnetic interference waver of a power supply, including: A first rectifier circuit and a switch circuit. The first rectifier circuit can rectify an AC power source and output a DC power source. The switching circuit can control the signal received by the electromagnetic interference filter to be an AC power source or a DC power source. In order to solve the above technical problem, according to another aspect of the present invention, a power supply device includes: an electromagnetic interference filter, a power saving control device, and a second rectifier circuit. The electromagnetic interference filter is coupled between the power saving control device and the second rectifier circuit. The power saving control device has a first rectifier circuit and a switching circuit. The first rectifying circuit can rectify the -j current source to output a DC power source; the switching circuit can control one of the down power source and the DC power source to be input to the electromagnetic interference filter. In order to solve the above technical problem, according to still another aspect of the present invention, the power saving method of the power supply is suitable for saving the power supply, the electromagnetic interference filter, and the power consumption of the wave device, which is supplied by the power supply. In the state, the AC power is input to the power supply as the loader supplied by the source and the source supply 11, and the DC power is input to the electromagnetic interference filter. When the electromagnetic dry: the capacitance of the #^, IL power supply, the capacitive reactance of the work capacitance of the electromagnetic interference filter is approximately infinite, and the result is. The sheep is close to zero' so that the power supply can achieve power saving in order to be able to enter -===:== and _ 乂 疋 疋 所 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 Describing the following [Embodiment] The present invention mainly provides a kind of power supply, and the power supply of the EMI filter is not affected by the power supply of the power supply, and the power supply of the EMI filter is reduced. M t (four) interference chopper passer set in the f source supply. The previous power loss is mainly caused by == and the second electric slant in the power supply n. The f = 'The new NB invention is mainly wireless, to greatly reduce the capacitance. The capacitive reactance of the capacitor is close to the power consumption of the disturbance, and the power supply has the effect of saving power, and the image of the system is the first embodiment of the present invention. Electricity 2:: is the block diagram. The power supply 1 of the second figure includes - 14, ^ by two sets, an electromagnetic interference waver 12 and a second rectifier circuit of the packet control device 10 coupled to the electromagnetic interference filter 12, * Γ〇: between the ends of the 'electromagnetic interference chopper: between the power-saving control two direct current circuit 14' the output of the second rectifier circuit 14 is, and can be loaded with 9 power. When the power supply 1 supplies power to the load 9, e π ignites the working state of the load 9, and controls the power supply 1 = in the normal power supply mode or the power saving mode. In this implementation, the bias is implemented. When the working state of the field load 9 is the normal mode, then the power supply 1 is in the normal power supply mode, and when the working state of the load 9 is the power saving 201104406, the power supply 1 is relatively operated in the power saving mode. . ^ The electromagnetic interference filter 12 and the second rectification circuit in Hi are conventionally known, and will not be described in detail herein. :,1. Then, it is used to control the power supply α to operate in the electric power supply mode, as shown in the second figure, the power saving control; set: VL includes a first-rectifying circuit 101 and a switching circuit 103, wherein: the rectifier circuit 1G1 is used for the transmission In the power supply 1 - AC power supply into the rectification and output - DC power supply 'switching circuit 1G3 is to control the electromagnetic dry mountain; consider the wave $ 12 to receive the AC power or connect (four) the __ rectifier circuit such as the straight ΛΗ_Power' and the switching circuit 1〇3 is exemplified in parallel with the first rectifier circuit 1 〇1, but it is not limited thereto, and may be other connection relationships, such as a series connection. The operation principle of the power-saving control device 10 is further explained. The eye-opening circuit 103 in the power-saving control device 10 is exemplified by a -switching switch. The function of the switch can be used to control the input of electromagnetic interference. The signal transmitted by the transmission path of the filter 2 is an AC power source or a DC power source. For example, when the switch is turned on (turn 〇η), the AC power source is directly transmitted to the EMI filter 12 through the switch; When the switch is turned off, the DC power output from the first rectifier circuit 1〇1 is output to the electromagnetic interference filter 12. The conduction or the interception of the switch can be determined according to the working state of the load 9. For example, when the load 9 is in the positive suspension mode, the switch is switched to the on position, and when the load 9 is in the power saving mode, the switch is switched to the wearing position. Therefore, when the electromagnetic interference filter 12 receives the AC power input, The power consumption of the inner 4 is generated by the capacitive reactance of the χ/γ capacitor and its equivalent series resistance (ESR), coil, line loss, etc. However, when the electromagnetic interference filter 12 201104406 When receiving the ^: stream power input, since the 电磁/γ 电 谷 谷 谷 电磁 γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容The power consumption of the electromagnetic interference filter 12 saves only about $ lap and the power consumption of the line loss. Therefore, the power consumption generated by the electromagnetic interference filter 12 when receiving the DC power supply will be higher than the power generated when the AC power supply is received. The consumption is relatively small. That is to say, the power supply device 达到 under the control of the power-saving control device 1〇, the power supply can be achieved when the electromagnetic interference filter 12 receives the DC power supply. The power supply can still be continued to be used by the load 9. If the packet source supply 1 is to be restored to the normal power supply, the switch circuit 103 of the power-saving control device 10 can be used to cut the conduction position. s凊 See the third figure. The figure is a block diagram of a power supply device according to a second embodiment of the present invention. The power supply unit 1a of the third figure includes a power-saving control device 10a, an electromagnetic interference filter 12, and a second Rectification The circuit 14 and the technical characteristics of the power supply la φ are the same as the first one except that the connection between the first rectifier circuit ι〇ι& and the switch circuit 1〇3a in the power-saving control device 1A is different. The second figure is the same. In the power-saving control device 10a of this embodiment, the switch circuit 103a is a switch, and the switch 4 is switched to the position of point A or point B to determine that the electromagnetic interference filter 12 is To receive an AC signal from the transmission path of point A or receive a DC signal from position B. For example, when load 9 is in normal mode, the switch is switched to a point position and the parent current power supply is directly input to the electromagnetic interference filter. 1 2, and when the load 9 is in the power saving mode, when the switch is switched to the B point position, the DC power output of the first rectifier circuit l〇la is output to the electromagnetic interference filter Η, where the first rectification The circuit l〇la is described by a half-wave rectification circuit. 201104406, and then refer to the fourth figure', which is a block diagram of the power supply of the third embodiment of the present invention. The power supply device 1b of the fourth figure includes a power saving control device 1Gb, an electromagnetic dry (four) wave device 12, and a second rectifying electric power: except the first rectifying circuit 101b is a full wave rectifying circuit (or a bridge type whole machine, In addition to the example, the technical characteristics of the other power supply lb are the same as those in the third figure. Here, the switch circuit 1 also determines the power interference filter, and the wave filter 12 is to be transmitted from point A. The path receives the AC signal or receives a DC signal from the b point. As for the actual operation mode of the aforementioned switching circuit, it can be performed by an automatic switching method. For example, the switching circuit can control the switching state of the switching switch according to a received control signal, and the switching state can be the switching according to the second figure, the fourth (four) is turned on or off, or the third and fourth figures are as follows. Switch to position A or point B. The control signal can be the signal that the load enters into the power saving mode. Therefore, for the switch circuit, it is possible to know the remaining state according to the presence or absence of the (four) age, and the system receives the control signal to know that the load has been entered into the ship to make the switch clear, so that the switch circuit receives When controlling the signal, it provides a transmission path connection of the output DC power supply, the electromagnetic dry input terminal, or the transmission path of the supply-output AC power supply is connected to the input end of the electromagnetic interference filter when the (5)_胄路 does not receive the control signal. . Please refer to the fifth figure, which is a block diagram of the source supplier according to the fourth embodiment of the present invention. The power supply of the fifth figure includes a power-saving control device l〇c' - an electromagnetic interference chopper 12 and a second rectification circuit 14 in which the power-saving control device is placed in the _ _ _ _ _ _ _ _ _ _ _ _ _ _ Between the input terminals, the electromagnetic interference filter 12 is coupled between the power-saving control device i〇c and the second rectifier circuit 14, and the output of the second rectifier circuit 14 is 201104406 to directly supply power to the load. The power-saving control device 10c includes a first rectifier circuit 101 and a switch circuit 103c. The first rectifier circuit 101 includes diodes D1 DD2, a resistor R1, a TVS diode ZD1, a capacitor C2, and the like. The switch circuit 103c includes Components such as resistors R2 to R4, transistors Q1 to Q2, and switch SW.
上述開關電路103c中的電阻R3〜R4及電晶體Q2組成一 驅動電路’並用來控制切換開關sw的導通或截止,在此之 切換開關SW是以光耦合器作舉例說明。因此當驅動電路接 收到代表負載為省電模式時的控制訊號81時,電晶體q2及 光耦合器均導通,故第一整流電路丨〇丨輸出之直流電源可以 透過光耦合器及電晶體Q2輸出至電磁干擾濾波器12 ;反之 當驅動電路並未接收到控制訊號時’電晶體〇2及光耦合器 均戴止,故第-整流電賴丨輸丨之錢電源無法透過光輕 合器及電晶體Q2輸出至電磁干擾濾、波器12,而是由交流電 源直接透過電晶體Q2輸出至電磁干濾波器12。 故透過上述實施例說明,本發明是藉由控制輸入到電 器Ϊ訊號可以為交流電源或是直流電源,並在 電磁干ϋΐ:之輸人訊號為直流電源時,可以減少此時 果且太^波器之功率消耗,而使電源供應器達到省電效 流電源的傳開關電路以切換開關分別控制傳輸交 -盘電磁或疋傳輸直流電源的傳輸路徑的其中之 十擾濾波器連接。 換方ΐϊ &例之切換開關的切換方式亦可以透過手動切 關。Τ且切換開關可以為電子式開關或是機械式開 201104406 »、再者’前述之省電控制裝置主要是在負載工作於省電 換式時’才會讓電源供應器進入到低功率輸出的省電供電 模式卷且可以達到節省電磁干擾濾波器之功率消耗之效果 、而田負載工作於正常模式時,此時之省電控制裝置可以 2為無:作用’亦即魏供應H仍維持在大功率輸出的正常 =電抵式’且電磁干擾濾、波器仍可提供正常的ΕΜΙ消除功 难述所揭露之圖式、說明,僅為本發明之實 :凡精于此項技藝者當可依據上述之說明作其他種種 二^些改變仍屬於本發明之發明精以下 疋之專利範圍中。 |介 【圖式簡單說明】 第一圖係為習知電源供應器之方塊圖; ί二圖係為本發明第—實施例之電源供應器之方塊圖; =二圖係為本發明第二實施例之電祕應器之方塊圖; 第=圖係為本發㈣三實_之電祕絲之方塊圖; 及 第五圖係為本發明第 圖 。 四實施例之電源供應器之電路 【主要元件符號說明】 1、la、lb、lc、8 :電源供應器 10、10a、l〇b、l〇c :省電控制裝置 101、l〇la、l〇lb :第一整流電路 201104406 103、103a、103b、103c :開關電路 12、80 :電磁干擾濾波器 14 :第二整流電路 82 :整流電路 9 :負載The resistors R3 to R4 and the transistor Q2 in the above-mentioned switching circuit 103c constitute a driving circuit 'and are used to control the on or off of the switching switch sw. Here, the switching switch SW is exemplified by an optical coupler. Therefore, when the driving circuit receives the control signal 81 when the load is in the power saving mode, the transistor q2 and the optical coupler are both turned on, so that the DC power output of the first rectifier circuit 可以 can pass through the optical coupler and the transistor Q2. Output to the EMI filter 12; conversely, when the drive circuit does not receive the control signal, the transistor 〇2 and the optical coupler are both worn, so the first-rectifier power supply cannot pass through the light-light combiner. The transistor Q2 is output to the electromagnetic interference filter and the wave filter 12, and is directly output from the AC power source through the transistor Q2 to the electromagnetic dry filter 12. Therefore, according to the above embodiment, the present invention can be an AC power source or a DC power source by controlling the input signal to the appliance, and when the electromagnetic interference: the input signal is a DC power source, the time can be reduced and too The power consumption of the wave device, and the power supply device reaches the power-saving and power-saving power transmission switch circuit, and the switch switch respectively controls the ten-wave filter connection of the transmission path of the transmission-disc electromagnetic or 疋 transmission DC power supply. The switch mode of the switcher and the switch can also be switched manually.切换 and the switch can be an electronic switch or a mechanical open 201104406 », and the 'the aforementioned power-saving control device is mainly when the load is working on the power-saving switch' to allow the power supply to enter the low-power output. The power-saving power supply mode volume can achieve the effect of saving the power consumption of the electromagnetic interference filter, and when the field load works in the normal mode, the power-saving control device at this time can be 2: no effect, that is, the Wei supply H is still maintained. The normal output of the high power output = the electric impedance type and the electromagnetic interference filter and the wave filter can still provide the normal ΕΜΙ ΕΜΙ 功 功 所 所 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Other variations that may be made in accordance with the above description are still within the scope of the invention of the invention. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a block diagram of a conventional power supply; the second figure is a block diagram of the power supply of the first embodiment of the present invention; The block diagram of the electric secret device of the embodiment; the figure = is the block diagram of the electric secret wire of the present invention (4) and the third figure; and the fifth figure is the figure of the present invention. Circuit of power supply of four embodiments [Description of main components] 1. la, lb, lc, 8: power supply 10, 10a, l〇b, l〇c: power-saving control device 101, l〇la, L〇lb: first rectifier circuit 201104406 103, 103a, 103b, 103c: switch circuit 12, 80: electromagnetic interference filter 14: second rectifier circuit 82: rectifier circuit 9: load
1111