TW201104299A - Computational photography digital camera - Google Patents

Computational photography digital camera Download PDF

Info

Publication number
TW201104299A
TW201104299A TW98125292A TW98125292A TW201104299A TW 201104299 A TW201104299 A TW 201104299A TW 98125292 A TW98125292 A TW 98125292A TW 98125292 A TW98125292 A TW 98125292A TW 201104299 A TW201104299 A TW 201104299A
Authority
TW
Taiwan
Prior art keywords
lens
image
function
digital camera
liquid crystal
Prior art date
Application number
TW98125292A
Other languages
Chinese (zh)
Other versions
TWI447469B (en
Inventor
Chi-Wei Chiu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW098125292A priority Critical patent/TWI447469B/en
Publication of TW201104299A publication Critical patent/TW201104299A/en
Application granted granted Critical
Publication of TWI447469B publication Critical patent/TWI447469B/en

Links

Landscapes

  • Liquid Crystal (AREA)
  • Studio Devices (AREA)

Abstract

The present disclosure relates to a computational photography digital camera. The computational photography digital cameral includes a liquid crystal element placed on the optical path thereof and a digital refocusing processor for post-processing the image obtained thereby. The liquid crystal element includes a periodically patterned electrode formed thereon. The digital refocusing processor is configured for performing Fourier transform to the spatial function of the periodically patterned electrode and the image spatial function (in spatial domain) obtained by the digital camera. The digital refocusing processor is also for performing deconvolution of the spatial function of the periodically patterned electrode from the image spatial function in frequency domain, to obtain an eigen image frequency function. The digital refocusing processor is further configured for performing inverse Fourier transform to the eigen image frequency function, to obtain an eigen image spatial function. Moreover, the digital refocusing processor is capable of determine a focal length of each pixel of the image based upon the eigen image spatial function, thereby refocusing the image. The digital camera uses the liquid crystal element to realize all-focused. The liquid crystal element is easy to manufacture and thereby of low cost.

Description

201104299 六、發明說明: 【發明所屬之技術領域】 [晒1]本發明涉及一種數位相機,特別設什一種计异攝像型 (computational photography)數位相機。 【先前技術】 [0002]目前,數位相機多採用馬達驅動鏡頭變焦及/或對焦以獲 得高清晰的圖像。然而,一方面’馬達大多結構複雜(如 常見的音圈馬達包括有音圈、永磁元件及包履殼等元件) ’不利於組裝,且體積較大,不利於數位相機的小型化 。另一方面,近景拍攝時,鏡頭的景深較小’往往僅能 實現單點對焦,圖像整體清晰度不理想。 [〇〇〇3] 為此,業界提出一種計算攝像型數位相機,其在成像光 路加入特殊的光學元件,如編碼孔控(coded aper-ture)、光罩(mask),波前片(wavefront optical element),以捕獲像側的四維光場(4-dimension light field)訊息’並對捕獲到的四維光場資訊進行後 端數位對焦處理(digital refocusing)。如此,可獲 得全對焦(all in focus)的圖像。 [0004]然而’特殊光學元件的製作工藝要求非常高,製作成本 向。另外,在光路中加入編碼孔徑或光罩會引起光丢失 Uight loss),導致圖像亮度不足。而在數位相機的光 路中加入波前片,後端的數位對焦處理計算量非常大。 【發明内容】 _]有#於此,有必要提供—種可實現全對焦且製作成本低 的計算攝像型數位相機。 098125292 第4頁/共22頁 表單編號A0101 [0006] Ο q [0007] [0008] [0009] 1計算聽縣料機,其~ 器、-液晶元件及—數位對食G括-鏡頭、—影像感測 於該影像感測器前,其上形’、、、處理器。該液晶元件設置 週期性圖案電極具有一週期性*週期性圖案電極。該 測器用於獲取經該鏡頭及兮液圖案電極函數。該影像感 —圖像函數》該數位對焦處、:疋件的光場資訊以獲得 -去卷積器、-反傅立葉:為包括-傅立葉變換器、 葉變換器用於對該週期性圖^及―重對焦器。該傅立 行傅立葉變換以分別得到一 極函數及該圖像函數進 一圖像頻域函數。該麵積週㈣11㈣極頻域函數及 行去除該週期性圖㈣極像頻域函數進 到一本«像頻域函數。 I積運算,以得 征圖傻㈣μ 立葉變換器用於對該本 征圖像頻域函數進行 函數。辑焦器用於依據= 本征圖像 ㈣ 圖像祕較該影像 =各點實現對焦的焦距,以實現該影像感測器的 金對焦。 ... :J !:; 該計算攝像型數位相機制該液晶元件作為特殊光學元 件並利用該數位對焦處理器進行數位重對焦,可實現全 對焦。由於液晶元件技術及行#成熟,該液晶聽易於 製作,製作成本低。 【實施方式】 請參閱圖1 ’本發明第一實施方式的計算攝像型數位相機 100包括一鏡頭10、一影像感測器20、一液晶元件30及 一數位對焦處理器4〇。 鏡頭10可以為簡單的定焦鏡頭,可僅包括鏡筒12及收容 098125292 表單編號A0101 第5頁/共22頁 0982043276-0 201104299 於鏡筒12内的鏡片14。優選地,鏡片14為非球面玻璃鏡 片,以更好的傳遞物側的光場資訊至像侧。本實施方式 中,鏡頭10為變焦鏡頭,可實現近距拍攝及遠距拍攝。 [0010] 一般地,遠景拍攝時,物距較大,對應地,景深非常大 。一般認為此時拍攝物(圖未示)經鏡頭10可在影像感測 器20上形成清晰的圖像,無須啟動液晶元件30及數位對 焦處理器40。而近景拍攝時,物距較小,對應地,景深 較小,一般無法實現拍攝物的全對焦(all in focus)。 此時,有必要啟動液晶元件30及數位對焦處理器40,以 進行數位重對焦(digital refocusing,詳參下文)。 [0011] 影像感測器20可以為電荷搞合器(charge-coupled device,CCD)或互補金屬氧化物半導體 (complementary metal-oxide semiconductor , CMOS)感測器。影像感測器20設置於鏡頭10的像側。優 選地,影像感測器20設皇於鏡頭10的像平面處。 [0012] 請同時參閱圖2,液晶元件30為一液晶面板,其上形成有 一週期性圖案電極32。液晶元件30靠近影像感測器20設 置於鏡頭10與影像感測器20之間。另外,鏡頭10的光軸 Ο 穿過週期性圖案電極32的中心與影像感測器20的中心。 若以週期性圖案電極32的中心為原點,影像感測器20的 寬度方向 λ 軸,影像感測器20的高度方向為 098125292 表單編號Α0101 第6頁/共22頁 0982043276-0 201104299 軸,建立空間坐標系 ;週期性圖案電極32在 Λ 轴的空間頻率為 週期性圖案電極32在 y Ο 軸的空間頻率為 ,則週期性圖像電極32的空間函數 可表示為(1) κ, - cos 2 + Syy) ο Q [0013] 可以理解,在近景拍攝時,若對週斯性圖案電極32施加 一電壓,週期性圖案電極32處的光學特性將發生變化。 如,週期性圖案電極32處的折射率 η 將變化為 η - ?^+ Δη ,其中, 098125292 % 為液晶元件30的本征折射率, 表單編號Α0101 第7頁/共22頁 0982043276-0 201104299 Δη 為施加電壓後週期性圖案電極32處的折射率變化量。如 此,穿過週期性圖案電極32處的光線的光程發生變化。 對應地,影響感測器20獲得的不再是平面 (2_diinension)的光場貢訊,而可以獲得四維光場貢訊 。如此,便可通過對四維光場資訊的處理,獲得全對焦 圖像(詳參下文關於數位對焦處理器40得描述)。一般地 ,在空間坐標系 上,液晶元件30的折射率可表示為(2) ο [0014] 本實施方式的週期性圖案電極32為一連串同心圓環322, 圓環322之間的間隔相同,内外徑差相等。當然,週期性 圖案電極32並不限於本實施方式,可採用其他的週期性 圖案電極,如圖3所示的矩形螺旋線324、圖4所示的圓斑 陣列326及圖5所示的斜方斑陣列328。 [0015] 數位對焦處理器40包括一傅立葉變換(Four i er trans-form)器 42、一去卷積(deconvolution)器 44、一反傅 立葉變換(inverse Fourier transform)器 46 及一重 對焦器(refocusing uni1:)48。 [0016] 傅立葉變換器4 2用於在近景拍攝時對影像感測器2 0輸出 的空間域上的圖像函數 R㈣ 098125292 表單編號Α0101 第8頁/共22頁 0982043276-0 201104299 (振幅函數)進行傅立葉變換得到圖像函數 的頻域函數 ,其中, Λ Λ201104299 VI. Description of the Invention: [Technical Field] The present invention relates to a digital camera, and in particular to a computing digital camera. [Prior Art] [0002] Currently, digital cameras use motor-driven lens zooming and/or focusing to obtain high-definition images. However, on the one hand, the motor is often complicated in structure (such as a common voice coil motor including components such as a voice coil, a permanent magnet element, and a package), which is disadvantageous for assembly and large in size, which is disadvantageous for miniaturization of a digital camera. On the other hand, when shooting close-up, the depth of field of the lens is small' often only achieves single-point focusing, and the overall image clarity is not ideal. [〇〇〇3] To this end, the industry proposes a computing camera type digital camera that incorporates special optical components such as coded aper-ture, mask, wavefront in the imaging optical path. Optical element) to capture the 4-dimension light field message on the image side and perform digital refocusing on the captured 4D light field information. In this way, an all in focus image can be obtained. [0004] However, the manufacturing process of special optical components is very demanding and the manufacturing cost is high. In addition, the addition of a coded aperture or reticle to the optical path can cause a loss of light (Uight loss), resulting in insufficient image brightness. In the optical path of the digital camera, the wavefront is added, and the digital focus processing at the back end is very large. SUMMARY OF THE INVENTION _] There is a need to provide a computing camera type digital camera that can achieve full focus and low production cost. 098125292 Page 4 of 22 Form No. A0101 [0006] Ο q [0007] [0008] [0009] 1 Calculate the county machine, its ~, liquid crystal components and - digital food G-lens, lens, The image is sensed in front of the image sensor, and is shaped by a processor. The liquid crystal cell is provided with a periodic pattern electrode having a periodic* periodic pattern electrode. The detector is used to obtain an electrode function through the lens and the sputum pattern. The image sense-image function: the digital focus, the light field information of the element is obtained - deconvolution, - anti-Fourier: for the Fourier transformer, the leaf transformer is used for the periodic map ―Refocuser. The Fourier transform is performed to obtain a polar function and the image function into an image frequency domain function, respectively. The area of the (four) 11 (four) polar frequency domain function and the line removes the periodic map (4) polar image frequency domain function into a «image frequency domain function. The I product is computed to obtain a function of the frequency domain function of the eigenimage. The focus is used to base = intrinsic image (4) Image is compared to the image = the focal length of each point is achieved to achieve the gold focus of the image sensor. ... :J !:; This calculates the digital phase mechanism of the camera. This liquid crystal element is used as a special optical element and digitally refocusing with the digital focus processor for full focus. Due to the maturity of the liquid crystal element technology and the line #, the liquid crystal display is easy to manufacture and the production cost is low. [Embodiment] Please refer to FIG. 1 'The computing camera type digital camera 100 of the first embodiment of the present invention includes a lens 10, an image sensor 20, a liquid crystal element 30, and a digital focus processor. The lens 10 can be a simple fixed-focus lens, and can include only the lens barrel 12 and the housing 098125292 Form No. A0101 Page 5 / Total 22 pages 0982043276-0 201104299 The lens 14 in the lens barrel 12. Preferably, the lens 14 is an aspherical glass lens for better transmission of light field information on the object side to the image side. In the present embodiment, the lens 10 is a zoom lens, which enables close-up photography and telephoto shooting. [0010] Generally, when shooting in a distant scene, the object distance is large, and correspondingly, the depth of field is very large. It is generally considered that a subject (not shown) can form a clear image on the image sensor 20 via the lens 10 without starting the liquid crystal element 30 and the digital focus processor 40. In close-up shooting, the object distance is small, and correspondingly, the depth of field is small, and it is generally impossible to achieve all in focus of the subject. At this time, it is necessary to activate the liquid crystal element 30 and the digital focus processor 40 for digital refocusing (see below). [0011] The image sensor 20 may be a charge-coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) sensor. The image sensor 20 is disposed on the image side of the lens 10. Preferably, the image sensor 20 is placed at the image plane of the lens 10. Referring to FIG. 2 at the same time, the liquid crystal element 30 is a liquid crystal panel on which a periodic pattern electrode 32 is formed. The liquid crystal element 30 is disposed between the lens 10 and the image sensor 20 near the image sensor 20. In addition, the optical axis 镜头 of the lens 10 passes through the center of the periodic pattern electrode 32 and the center of the image sensor 20. If the center of the periodic pattern electrode 32 is the origin, the width direction of the image sensor 20 is λ axis, and the height direction of the image sensor 20 is 098125292. Form number Α 0101 Page 6 / Total 22 pages 0984243276-0 201104299 Axis, A spatial coordinate system is established; the spatial frequency of the periodic pattern electrode 32 at the Λ axis is the spatial frequency of the periodic pattern electrode 32 at the y Ο axis, and the spatial function of the periodic image electrode 32 can be expressed as (1) κ, - Cos 2 + Syy) ο Q [0013] It can be understood that, when a close-up shot is applied, if a voltage is applied to the peripheral pattern electrode 32, the optical characteristics at the periodic pattern electrode 32 will change. For example, the refractive index η at the periodic pattern electrode 32 will change to η - ?^ + Δη , where 098125292 % is the intrinsic refractive index of the liquid crystal element 30, Form No. 1010101 Page 7 / Total 22 Page 0982034276-0 201104299 Δη is the amount of change in refractive index at the periodic pattern electrode 32 after the voltage is applied. Thus, the optical path of the light passing through the periodic pattern electrode 32 changes. Correspondingly, the light field tribute obtained by the sensor 20 is no longer a plane (2_diinension), and the four-dimensional light field tribute can be obtained. In this way, a full-focus image can be obtained by processing the four-dimensional light field information (see the description of the digital focus processor 40 below). Generally, in the space coordinate system, the refractive index of the liquid crystal element 30 can be expressed as (2). [0014] The periodic pattern electrode 32 of the present embodiment is a series of concentric rings 322, and the intervals between the rings 322 are the same. The difference between the inside and outside is equal. Of course, the periodic pattern electrode 32 is not limited to the embodiment, and other periodic pattern electrodes may be employed, such as the rectangular spiral 324 shown in FIG. 3, the circular array 326 shown in FIG. 4, and the oblique line shown in FIG. Square spot array 328. [0015] The digital focus processor 40 includes a Fourier transform-type unit 42, a deconvolution unit 44, an inverse Fourier transform unit 46, and a refocusing unit (refocusing). Uni1:)48. [0016] Fourier Transformer 42 is used for image function R on the spatial domain output to image sensor 20 during close-up shooting. (4) 098125292 Form No. 1010101 Page 8/Total 22 pages 0984243276-0 201104299 (Amplitude function) Performing a Fourier transform to obtain a frequency domain function of the image function, where Λ Λ

分別為頻域上 軸及 Ά y 軸上的變數。具體地,依據傅立葉光學(?0111'丨61'0口-t i c s )可得到: [0017] (3)These are the variables on the upper and lower y axes of the frequency domain. Specifically, according to Fourier Optics (?0111'丨61'0 port-t i c s ), [0017] (3)

l/rjl ^l/rjl ^

Ρ (Λ — · i jk …WΡ (Λ — · i jk ...W

[0018] 其中 為虛數單位, Ά 為工作波長, 0982043276-0 098125292 表單編號A0101 第9頁/共22頁 201104299 f 為近景拍攝時對應影像感測器2 0上各點 實現對焦的對應的焦距(即可記為 [0019] 另外,傅立葉變換器42還用於對週期性圖像電極32的空 間函數[0018] where is the imaginary unit, Ά is the working wavelength, 0982043276-0 098125292 Form No. A0101 Page 9 / Total 22 pages 201104299 f For the close-up shooting corresponding to the corresponding focal length of the focus on the image sensor 20 ( It can be noted as [0019] In addition, the Fourier transformer 42 is also used for the spatial function of the periodic image electrode 32.

進行傅立葉變換得到週期性圖像電極32的頻域函數 。一般地, 為已知函數,因此,可得到確定的關於 ΛA Fourier transform is performed to obtain a frequency domain function of the periodic image electrode 32. Generally, it is a known function, so that a certainty can be obtained.

Λ 的 [0020] 去卷積器44用於對 進行去卷積運算。根據圖像處理原理可知 098125292 表單編號A0101 第10頁/共22頁 0982043276-0 201104299 應為空間域上的本征圖像函數 與週期性圖像電極32的空間函數 的卷積,即(4) ❹ 。因此,根據數學理論可得:(5) 其中 表示對 進行傅立葉變換。如此,可推得對 ❹ 進行去除 ^ί/ν,Λ) 的去卷積運算為:(6) ❾砀 Ημ-J) 依據圖像處理理論,對 進行去除 0982043276-0 098125292 表單編號Α0101 第11頁/共22頁 201104299 的去卷積運算相當於在頻域上將影像感測器20獲得的信 號中關於週期性圖案電極32的信號濾除掉。 [0021] [0022] 反傅立葉變換器46用於對 進行反傅立葉變化以得到[0020] The deconvolfer 44 is used to perform a deconvolution operation. According to the principle of image processing, 098125292 Form No. A0101 Page 10 / Total 22 Page 0982043276-0 201104299 It should be the convolution of the eigenimage function on the spatial domain with the spatial function of the periodic image electrode 32, ie (4) Oh. Therefore, according to mathematical theory, (5) where the pair is represented by Fourier transform. Thus, the deconvolution operation for removing ί / ν Λ 可 为 ( ( 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 098 The deconvolution operation of page 22111299 is equivalent to filtering out the signal of the periodic pattern electrode 32 in the signal obtained by the image sensor 20 in the frequency domain. [0022] The inverse Fourier transformer 46 is used to perform an inverse Fourier transform to obtain

由上各式,特別是(1),(3),(6)可得 為帶有變數 Λ fFrom the above formulas, especially (1), (3), (6) can be obtained with variables Λ f

的函數 重對焦器48用於確定影像感測器20上各點 以使對應點 實現對焦。具體地,將各點 098125292 表單編號A0101 第12頁/共22頁 0982043276-0 201104299 的座標值代入 便可得到 / 。如此,通過計算各點 的The function refocusing device 48 is used to determine points on the image sensor 20 to focus on the corresponding points. Specifically, you can get / by substituting the coordinates of each point 098125292 Form No. A0101 Page 12/22 Page 0982043276-0 201104299. So by calculating the points

f 便可得到全對焦的圖像。另外,通過計算點 ㈣ 的 f 的最大差異,還可得到全對焦情況下,圖像的景深f You can get a full-focus image. In addition, by calculating the maximum difference of f of point (4), you can also get the depth of field of the image in full focus.

LLLL

[0023] 計算攝像型數位相機100採用液晶元件30作為特殊光學元 件並利用數位對焦處理器40進行數位重對焦,可實現全 對焦。由於液晶元件技術及行業成熟,液晶元件30易於 製作,製作成本低。另外,液晶元件30對光場的調製 (code)是通過改變特定光線(穿過週期性圖案電極32的 光線)的光程實現的,而非像編碼孔徑或光罩通過對特定 光線的攔截實現,可避免光丟失,也不存在波前面調製 (wavefront coding)引起的計算量過大的問題。 098125292 表單編號A0101 第13頁/共22頁 0982043276-0 201104299 [0024] [0025] [0026] [0027] [0028] [0029] [0030] [0031] 可以理解,液晶元件30的設置並不限於本實施方式,其 可以設置於影像感測器20前的任意位置,如嵌設於鏡頭 10内或設置於鏡頭10前。 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本 案技藝之人士援依本發明之精神所作之等效修飾或變化 ,例如該散射部可包括由複數第一條形凹槽圍成且分佈 規律的格子圖案及沿該鏡片光軸向外呈放射螺旋狀的複 數第二條形凹槽組成的螺旋圖案等,皆應涵蓋於以下申 請專利範圍内。 【圖式簡單說明】 圖1為本發明第一實施方式的計算攝像型數位相機的示意 圖。 圖2為圖1的計算攝像型數位相機的液晶元件的示意圖。 圖3為本發明第二實施方式的液晶元件的示意圖。 圖4為本發明第三實施方式的液晶元件的示意圖。 圖5為本發明第四實施方式的液晶元件的示意圖。 【主要元件符號說明】 計算攝像型數 100 矩形螺旋線 324 位相機 鏡頭 10 圓斑陣列 326 鏡筒 12 斜方斑陣列 328 鏡片 14 數位對焦處理 40 表單編號A0101 第14頁/共22頁 0982043276-0 098125292 器 影像感測器 20 傅立葉變換器 42 液晶元件 30 去卷積器 44 週期性圖案電 32 反傅立葉變換 46 極 器 同心圓環 322 重對焦器 48 201104299 Ο 098125292 表單編號Α0101 第15頁/共22頁 0982043276-0[0023] The computing-type digital camera 100 uses the liquid crystal element 30 as a special optical element and performs digital refocusing using the digital focus processor 40 to achieve full focus. Due to the maturity of the liquid crystal element technology and the industry, the liquid crystal element 30 is easy to manufacture and has a low manufacturing cost. In addition, the modulation of the light field by the liquid crystal element 30 is achieved by changing the optical path of a specific light (light passing through the periodic pattern electrode 32), rather than by intercepting a specific light like a coded aperture or a mask. It can avoid light loss, and there is no problem of excessive calculation caused by wavefront coding. 098125292 Form No. A0101 Page 13 of 22 0982043276-0 201104299 [0024] [0030] [0030] [0031] It can be understood that the arrangement of the liquid crystal element 30 is not limited to In this embodiment, it can be disposed at any position before the image sensor 20 , such as embedded in the lens 10 or disposed in front of the lens 10 . In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the present invention, for example, the scattering portion may include a lattice pattern surrounded by a plurality of first strip-shaped grooves and distributed along the optical axis of the lens. A spiral pattern composed of a plurality of second strip-shaped grooves in a radial spiral shape, etc., should be included in the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a computing-type digital camera according to a first embodiment of the present invention. FIG. 2 is a schematic diagram of a liquid crystal element of the computing image type digital camera of FIG. 1. FIG. 3 is a schematic view of a liquid crystal element according to a second embodiment of the present invention. 4 is a schematic view of a liquid crystal element according to a third embodiment of the present invention. Fig. 5 is a schematic view of a liquid crystal element according to a fourth embodiment of the present invention. [Main component symbol description] Calculated camera number 100 Rectangular spiral 324 camera lens 10 Circular spot array 326 Lens barrel 12 Squared array 328 Lens 14 Digital focus processing 40 Form No. A0101 Page 14 of 22 0984043276-0 098125292 Image sensor 20 Fourier transformer 42 Liquid crystal element 30 Deconvolution 44 Periodic pattern electric 32 Anti-Fourier transform 46 Transistor concentric ring 322 Refocuser 48 201104299 Ο 098125292 Form No. Α0101 Page 15 of 22 Page 0980243276-0

Claims (1)

201104299 七、申請專利範圍: 1 . 一種計算攝像型數位相機,其包括一鏡頭及一影像感測器 ;其中,該計算攝像型數位相機還包括一液晶元件及一數 位對焦處理器;該液晶元件設置於該影像感測器前,其上 形成有一週期性圖案電極;該週期性圖案電極具有一週期 性圖案電極函數;該影像感測器用於獲取經該鏡頭及該液 晶元件的光場資訊以獲得一圖像函數;該數位對焦處理器 用於包括一傅立葉變換器、一去卷積器、一反傅立葉變換 器及一重對焦器;該傅立葉變換器用於對該週期性圖案電 極函數及該圖像函數進行傅立葉變換以分別得到一週期性 圖案電極頻域函數及一圖像頻域函數;該去卷積器用於對 該圖像頻域函數進行去除該週期性圖案電極頻域函數的去 卷積運算,以得到一本征圖像頻域函數;該反傅立葉變換 器用於對該本征圖像頻域函數進行反傅立葉變換,以得到 一本征圖像函數;該重對焦器用於依據該本征圖像函數確 定該影像感測器上各點實現對焦對應的焦距,以實現該影 像感測器的全對焦。 2 .如申請專利範圍第1項所述的計算攝像型數位相機,其中 ,該鏡頭為定焦鏡頭或變焦鏡頭。 3 .如申請專利範圍第1項所述的計算攝像型數位相機,其中 ,該鏡頭包括一鏡筒及設置於該鏡筒内至少一鏡片。 4 .如申請專利範圍第3項所述的計算攝像型數位相機,其中 ,該至少一鏡片包括至少一非球面玻璃鏡片。 5 .如申請專利範圍第1項所述的計算攝像型數位相機,其中 ,該影像感測器為電荷耦合器或互補金屬氧化物半導體感 098125292 表單編號A0101 第16頁/共22頁 0982043276-0 201104299 測器。 6 .如申請專利範圍第1項所述的計算攝像型數位相機,其中 ,該影像感測器設置於該鏡頭的像平面處。 7 .如申請專利範圍第1項所述的計算攝像型數位相機,其中 ,該液晶元件為一液晶面板。 8 .如申請專利範圍第1項所述的計算攝像型數位相機,其中 ,該液晶元件設置於該鏡頭與該影像感測器之間、該鏡頭 内或該鏡頭前。 9 .如申請專利範圍第1項所述的計算攝像型數位相機,其中 ,該週期性圖案電極為多個同心圓環、矩形螺旋線、圓斑 陣列或斜方斑陣列。 10 .如申請專利範圍第1項所述的計算攝像型數位相機,其中 ,該鏡頭的光軸穿過該週期性圖案電極的中心及該影像感 測器的中心。 ❹ 0982043276-0 098125292 表單編號A0101 第17頁/共22頁201104299 VII. Patent application scope: 1. A computing camera type digital camera, comprising a lens and an image sensor; wherein the computing camera type digital camera further comprises a liquid crystal component and a digital focus processor; the liquid crystal component a periodic pattern electrode is formed on the image sensor; the periodic pattern electrode has a periodic pattern electrode function; and the image sensor is configured to obtain light field information through the lens and the liquid crystal element Obtaining an image function; the digital focus processor is configured to include a Fourier transformer, a deconvolution device, an inverse Fourier transformer, and a refocusing device; the Fourier transformer is used for the periodic pattern electrode function and the image The function performs Fourier transform to obtain a periodic pattern electrode frequency domain function and an image frequency domain function respectively; the deconvolfer is used to remove the frequency domain function from the frequency domain function to deconvolute the frequency domain function of the periodic pattern electrode Computing to obtain an eigenimage frequency domain function; the inverse Fourier transformer is used to perform the eigenimage frequency domain function Inverting the Fourier transform to obtain an eigenimage function; the refocusing device is configured to determine a focal length corresponding to the focus of each image sensor on the image sensor according to the eigenimage function, to achieve full focus of the image sensor . 2. The computing camera type digital camera according to claim 1, wherein the lens is a fixed focus lens or a zoom lens. 3. The computing camera type digital camera of claim 1, wherein the lens comprises a lens barrel and at least one lens disposed in the lens barrel. 4. The computing camera type digital camera of claim 3, wherein the at least one lens comprises at least one aspherical glass lens. 5. The computing camera type digital camera according to claim 1, wherein the image sensor is a charge coupler or a complementary metal oxide semiconductor sensation 098125292. Form No. A0101 Page 16 of 22 page 2084023276-0 201104299 Tester. 6. The computing camera type digital camera of claim 1, wherein the image sensor is disposed at an image plane of the lens. 7. The computing camera type digital camera according to claim 1, wherein the liquid crystal element is a liquid crystal panel. 8. The computing camera type digital camera according to claim 1, wherein the liquid crystal element is disposed between the lens and the image sensor, within the lens or in front of the lens. 9. The computing camera type digital camera of claim 1, wherein the periodic pattern electrode is a plurality of concentric rings, a rectangular spiral, a circular spot array or an oblique square array. 10. The computing camera type digital camera of claim 1, wherein the optical axis of the lens passes through a center of the periodic pattern electrode and a center of the image sensor. ❹ 0982043276-0 098125292 Form No. A0101 Page 17 of 22
TW098125292A 2009-07-28 2009-07-28 Computational photography digital camera TWI447469B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098125292A TWI447469B (en) 2009-07-28 2009-07-28 Computational photography digital camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098125292A TWI447469B (en) 2009-07-28 2009-07-28 Computational photography digital camera

Publications (2)

Publication Number Publication Date
TW201104299A true TW201104299A (en) 2011-02-01
TWI447469B TWI447469B (en) 2014-08-01

Family

ID=44813571

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098125292A TWI447469B (en) 2009-07-28 2009-07-28 Computational photography digital camera

Country Status (1)

Country Link
TW (1) TWI447469B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510086B (en) * 2014-12-03 2015-11-21 Nat Univ Tsing Hua Digital refocusing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056055A2 (en) * 2000-09-29 2002-07-18 Massachusetts Inst Technology Systems and methods for coded aperture imaging of radiation- emitting sources
US7767949B2 (en) * 2005-01-18 2010-08-03 Rearden, Llc Apparatus and method for capturing still images and video using coded aperture techniques
JP4936048B2 (en) * 2006-07-11 2012-05-23 日東電工株式会社 Polyfunctional compound, optical recording material, optical recording medium, optical recording / reproducing apparatus, optical waveguide material, and optical alignment film material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510086B (en) * 2014-12-03 2015-11-21 Nat Univ Tsing Hua Digital refocusing method

Also Published As

Publication number Publication date
TWI447469B (en) 2014-08-01

Similar Documents

Publication Publication Date Title
KR101021607B1 (en) Imaging system with improved image quality and associated methods
CN101964866B (en) Computation and image pickup type digital camera
JP4981124B2 (en) Improved plenoptic camera
CN104980644B (en) A kind of image pickup method and device
US10594919B2 (en) Camera device and method for capturing images by using the same
CN105187722B (en) Depth of field adjusting method, device and terminal
US20160173757A1 (en) Camera module
CN104580877B (en) The device and method that image obtains
JP6802372B2 (en) Shooting method and terminal for terminal
GB2488905A (en) Image pickup apparatus, such as plenoptic camera, utilizing lens array
US9473700B2 (en) Camera systems and methods for gigapixel computational imaging
US11831979B2 (en) Image pickup apparatus, an image processing method and a non-transitory computer-readable medium for displaying a plurality of images different in in-focus position
JP2018529256A (en) Method and apparatus having a two-surface microlens array for a low F-number plenoptic camera
JP6017347B2 (en) Code reader
JP2014174185A (en) Control device, control method, and imaging apparatus
Kagawa et al. A three‐dimensional multifunctional compound‐eye endoscopic system with extended depth of field
US10051190B2 (en) Interchangeable lens, camera system, imaging apparatus, control method of camera system, and control method of imaging apparatus in which the size of an image circle varies inversely to the focal distance
TW201104299A (en) Computational photography digital camera
KR102326837B1 (en) Imaging apparatus and method for operating the same
JP2021043230A (en) Wide-conversion lens and imaging apparatus
KR101382921B1 (en) Camera, image sensor thereof, and driving method thereof
JP5581177B2 (en) Imaging position adjusting apparatus and imaging apparatus
JP2013175928A (en) Image processing apparatus, image processing method, program, and storage medium
CN104008358B (en) Code reading device
WO2015079432A1 (en) Method to improve performance of camera lenses

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees