TW201104276A - Three-dimensional microscopic magnetic resonance angiography - Google Patents

Three-dimensional microscopic magnetic resonance angiography Download PDF

Info

Publication number
TW201104276A
TW201104276A TW98125499A TW98125499A TW201104276A TW 201104276 A TW201104276 A TW 201104276A TW 98125499 A TW98125499 A TW 98125499A TW 98125499 A TW98125499 A TW 98125499A TW 201104276 A TW201104276 A TW 201104276A
Authority
TW
Taiwan
Prior art keywords
data
module
dimensional image
dimensional
subject
Prior art date
Application number
TW98125499A
Other languages
Chinese (zh)
Other versions
TWI396861B (en
Inventor
Chen Chang
Chien-Yuan Lin
Jyh-Horng Chen
Original Assignee
Academia Sinica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academia Sinica filed Critical Academia Sinica
Priority to TW98125499A priority Critical patent/TWI396861B/en
Publication of TW201104276A publication Critical patent/TW201104276A/en
Application granted granted Critical
Publication of TWI396861B publication Critical patent/TWI396861B/en

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

a method comprises performing a first T2-weighted imaging (T2wi) on a subject; injecting the subject with a contrast agent after performing the first T2wi; and waiting a predetermined period of time before performing a second T2wi on the subject. the first T2wi and second T2wi are then co-registered. the coregistered first T2wi and co-registered second T2wi are then trimmed. A Δ R2map is then determined based on each pixel of the trimmed first T2wi and corresponding pixels of the trimmed second Twi. A three-dimensional map is constructed based on the Δ R2map.

Description

201104276 六、發明說明: 【發明所屬之技術領域】 本發明係有關於磁振造影技術,尤其是有關於三維顯 微磁振血管造影術。 【先前技術】 本前案技術之說明可概略說明本揭露書之一般概要。 發明人於本案送件時的研究成果,在前案技術說明中約略 提及,並不可解讀為習知技術,也不隱含或承認其為習知 技術。201104276 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to magnetic resonance imaging techniques, and more particularly to three-dimensional magnetic resonance angiography. [Prior Art] The description of the prior art can outline the general outline of the present disclosure. The research results of the inventor's submission in this case are mentioned in the technical description of the previous case and cannot be interpreted as conventional technology, nor is it implied or recognized as a prior art.

微血管的功能和結構,對於組織細胞的生存是很重要 的,因其可透過血管壁帶來養份。腦部結構和功能異常是 腦部病變造成的牽連。舉例來說,PERLMUTTER, L. S.和 CHUI, H. C.於 1990 的著作:『MICROANGIOPATHY,THE VASCULAR BASEMENT MEMBRANE ANDThe function and structure of microvessels is important for the survival of tissue cells because they can bring nutrients through the walls of blood vessels. Abnormal brain structure and function are implicated in brain lesions. For example, PERLMUTTER, L. S. and CHUI, H. C., 1990: "MICROANGIOPATHY, THE VASCULAR BASEMENT MEMBRANE AND

ALZHEIMER'S DISEASE: A REVIEW, BRAIN RES BULL. 24, 677-686』,BUEE, L., HOF, P. R.和 DELACOURTE, A 於 1997 的著作:『BRAIN MICROVASCULAR CHANGES IN ALZHEIMER'S DISEASE AND OTHER DEMENTIAS, ANN N Y ACAD SCI. 826, 7-24』,以及 SERNE,E. H.,DE JONGH, R. T·,ERINGA,E. C·, RG,I. J.和 STEHOUWER, C. D.於 2007 的著作:『MICROVASCULAR DYSFUNCTION: A POTENTIAL PATHOPHYSIOLOGICAL ROLE IN THE METABOLIC SYNDROME, HYPERTENSION. 50, 204-211』,’揭露了相關的資訊。. 201104276ALZHEIMER'S DISEASE: A REVIEW, BRAIN RES BULL. 24, 677-686", BUEE, L., HOF, PR and DELACOURTE, A in 1997: "BRAIN MICROVASCULAR CHANGES IN ALZHEIMER'S DISEASE AND OTHER DEMENTIAS, ANN NY ACAD SCI. 826, 7-24』, and SERNE, EH, DE JONGH, R. T., ERINGA, E. C., RG, IJ and STEHOUWER, CD in 2007: "MICROVASCULAR DYSFUNCTION: A POTENTIAL PATHOPHYSIOLOGICAL ROLE IN THE METABOLIC SYNDROME, HYPERTENSION. 50, 204-211』, 'Exposure related information. . 201104276

針對腦部微血管的造影術,在臨床和神經解剖學的廣 泛領域中具有相當的重要性。磁振血管造影術(MRA )中 ' 最廣為使用的技術,是飛行時間MRA (TOF-MRA)和對比 劑增強MRA ( CE-MRA )。TOF-MRA係根據流動血液中 的水質子移動而造影,因此對動脈之内流自旋體很敏感。 CE-MRA採用對比劑以偵測靜脈的低速流動率。舉例來 說,REESE, T·,BOCHELEN,D.,SAUTER,A·,BECKMANN, N.與 RUDIN,Μ·於 1999 年的著作『MAGNETIC ® RESONANCE ANGIOGRAPHY OF THE RAT CEREBROVASCULAR SYSTEM WITHOUT THE USE OF CONTRAST AGENTS,NMRBIOMED. 12, 189_ 196』,以及 MIRAUX, S.,SERRES,S.,THIAUDIERE,E., CANIONI,P., MERLE, M.和 FRANCONI,J. M.於 2004 年發表的 『GADOLINIUM-ENHANCED SMALL-ANIMAL TOF MAGNETIC RESONANCE ANGIOGRAPHY, MAGMA. 17, 348-352』可查到相關的技術文獻。 ® 這些方法具有檢視較大動脈或靜脈的效果,也常被用Contrast imaging for brain microvessels is of considerable importance in a wide range of clinical and neuroanatomical fields. The most widely used technique in magnetic resonance angiography (MRA) is time-of-flight MRA (TOF-MRA) and contrast-enhanced MRA (CE-MRA). The TOF-MRA is based on the movement of water protons in the flowing blood and is therefore sensitive to the internal flow of the arteries. CE-MRA uses contrast agents to detect low flow rates of veins. For example, REESE, T·, BOCHELEN, D., SAUTER, A·, BECKMANN, N. and RUDIN, Μ· 1999, "MAGNETIC ® RESONANCE ANGIOGRAPHY OF THE RAT CEREBROVASCULAR SYSTEM WITHOUT THE USE OF CONTRAST AGENTS, NMRBIOMED. 12, 189_ 196』, and MIRAUX, S., SERRES, S., THIAUDIERE, E., CANIONI, P., MERLE, M. and FRANCONI, JM published in 2004 "GADOLINIUM-ENHANCED SMALL-ANIMAL TOF" MAGNETIC RESONANCE ANGIOGRAPHY, MAGMA. 17, 348-352 can be found in the relevant technical literature. ® These methods have the effect of examining larger arteries or veins and are often used

來研究腫瘤的血管結構,暫時性局部缺血,以及血管結構 中的基因突變。舉例來說,『VAN VLIET, M.,VAN DIJKE, C. F., WIELOPOLSKI, P. A., TEN HAGEN, T. L., VEENLAND, J. F” PREDA, A., LOEVE, A. J., EGGERMONT,A. M.和 KRESTIN,G. P.於 2005 年發表的 『MR ANGIOGRAPHY OF TUMOR-RELATED VASCULATURE: FROM THECLINIC. TO THE MICRO-ENVIRONMENT, RADIOGRAPHICS, 25 SUPPL. 1, 201104276 S85-97, DISCUSSION S97-88』,BECKMANN, N.於 2000 年發表的『HIGH RESOLUTION MAGNETIC RESONANCE ANGIOGRAPHY NON-INVASIVELY REVEALS MOUSE STRAIN DIFFERENCES IN THE CEREBROVASCULAR ANATOMY IN VIVO, MAGN RESON MED. 44, 252-258』,To study the vascular structure of tumors, transient ischemia, and genetic mutations in vascular structures. For example, "VAN VLIET, M., VAN DIJKE, CF, WIELOPOLSKI, PA, TEN HAGEN, TL, VEENLAND, J. F" PREDA, A., LOEVE, AJ, EGGERMONT, AM and KRESTIN, GP in 2005 Published "MR ANGIOGRAPHY OF TUMOR-RELATED VASCULATURE: FROM THECLINIC. TO THE MICRO-ENVIRONMENT, RADIOGRAPHICS, 25 SUPPL. 1, 201104276 S85-97, DISCUSSION S97-88", BECKMANN, N. 2000 "HIGH RESOLUTION" MAGNETIC RESONANCE ANGIOGRAPHY NON-INVASIVELY REVEALS MOUSE STRAIN DIFFERENCES IN THE CEREBROVASCULAR ANATOMY IN VIVO, MAGN RESON MED. 44, 252-258』,

BESSELMANN, M·,LIU, M., DIEDENHOFEN, M., FRANKE, C.及 HOEHN,M.於 2001 發表的『MR ANGIOGRAPHIC INVESTIGATION OF TRANSIENT FOCAL CEREBRAL ISCHEMIA IN RAT, NMR BIOMED. 14, 289-296』,以及 BRUBAKER, L. M.,BULLITT,E., YIN, C.,VAN DYKE,T.與 LIN,W.於 2005 年發表的 『 MAGNETIC RESONANCE ANGIOGRAPHY VISUALIZATION OF ABNORMAL TUMOR VASCULATURE IN GENETICALLY ENGINEERED MICE, CANCER RES. 6.5, 8AR2映射模組218-8223』等。這些文 獻中具有對應的詳細内容。 然而,TOF-MRA訊號本身僅適合高流速的血管,因此 在南解析度下掃描小血管的能力有限,也容易受到假性流 動現象影響。舉例來說,PIPE,J. G.於2001年發表的 『LIMITS OF TIME-OF-FLIGHT TIME-OF-FLIGHT MAGNETIC RESONANCE ANGIOGRAPHY, TOP MAGN RESON IMAGING 12, 163-174』文獻中包含相關的敘述。 在實施CE-MRA時注射的GD-DTPA,其在血管内(IV) 半生期相當短,且很快就會擴散至血管外空間,所以無法 應用在需要長時間才能獲取晝面的高解析度MRA。 201104276 【發明内容】 本發明實施例之一,係一種造影方法。首先對一受測 體進行一三維T2加權造影程序。之後,將氧化鐵對比劑注 射至該受測體中。接著等待一特定時間之後,使得對比劑 均勻分佈於血管内,然後對該受測體進行第二次的三維T2 加權造影程序。最後將注射對比劑前後之兩組三維T2加權 影像,以晝素對應的方式來計算對比劑注射前後造成血管 訊號改變的影像差異並轉換成一三維AR2映射圖。 此造影方法進一步包含:在對一血管中之流動不敏感 的情形下,根據該三維映射圖產生該受測體的血管的三維 影像;其中該受測體的血管包含靜脈,靜脈竇,小動脈, 小靜脈和微血管。 此造影方法進一步包含:根據該三維映射圖,為該受 測體的血管建立活體微血管結構和微血管液體容積資料。 進一步地,本方法根據三維影像和血液動力學參數判斷腫 瘤内微血管網路的功能性和結構性改變。 在另一實施例中,一系統包含一三維造影模組和一血 液動力資料模組。該三維造影模組在對一血管中之流動不 敏感的情形下,根據該三維映射圖產生該受測體的血管的 三維影像。該三維影像描繪體内血管的微血管結構。血管 包含靜脈,靜脈竇,小動脈,小靜脈和微血管。 該血液動力貧料模組根據該二維影像產生血液動力貢 料,包含該血管的微血管液體容積資料。該三維影像模組 根據穩態三維△ R2式的顯微磁振血管造影術(3D △ 201104276 R2-MMRA)產生該三維影像。該血液動力資料模組根據該 3D/\R2-MMRA產生該血液動力資料。 進一步地,該系統包含一 T2加權造影模組,一暫存模 組,一裁切模組,一△R]映射模組,一三維映射模組。該 T2加權造影模組對一受測體進行第一次T2加權造影程 序,並在對該受測體注射一氧化鐵對比劑之後進行第二次 T2加權造影程序。該暫存模組暫存該第一次和第二次T2 加權造影程序之結果以產生一第一暫存資料和一第二暫存 資料。該裁切模組裁切該第一暫存資料和該第二暫存資 料,以產生一第一裁切資料和一第二裁切資料。該AR2映 射模組根據該第一裁切資料中的晝素和該第二裁切資料中 的對應晝素,產生一ΔΙ映射圖。該三維映射模組根據該 △ R2映射圖建立一三維映射圖。該血液動力資料模組根據 該三維影像產生血液動力資料。 在進一步的實施例中,上述系統和方法係以一或多處 理器執行一電腦程式而實作。該電腦程式可位於一電腦可 讀取媒體,例如但是不限定為一記憶體,非揮發性資料儲 存器,以及/或其他適當的實體儲存媒體。 本發明實施例適用的領域,在下述實施例中可明白揭 示。習知人士當知下列實施例僅供說明,並非用以限定本 發明之範圍。 【實施方式】 下列說明僅用於陳述範例而非用以限定本發明的使用 或應用。在此處之用詞「至少A、B、C其中之一」應解讀 201104276 為「A或B或C」,「或」為邏輯上的「非互斥或」。這 些方法中所述的步驟可能以不同的順序執行,而不影響本 發明的基本原理。 在此處所用的字詞「模組」,可以是應用特定積體電 路(ASIC),電子電路,用來執行一或多軟體或韌體程式 的處理器(分工、專屬或群組)以及/或記憶體(分工、專 屬’或群組),組合邏輯電路,以及/或其他具備此功能的 適當元件的本體或其中之一部分。 本發明揭露書提出一種新式造影技術,稱為三維穩態 △ R2式的非流量顯微磁振血管造影術(3DAR2-MMRA), 用於描繪小血管例如靜脈,小動脈以及小靜脈。在注射氧 化鐵對比劑之前後,以快速自旋體回音造影技術計算而得 的自旋體回音式ΛΙ,被用來映射腦部血容積,其對比與 微血官結構有關。 本發明所述的3DAR2-MMRA採用重建技術,可同時 提供腦部微血管結構以及血液動力學反應方面的高解析度 三維資訊,藉以評估腦部疾病在時間上的微血管病理變 化。在此於一老鼠身上採用一種特定的三脈嚙合模組以評 估本發明在量測微血管結構改變時的能力。 微血管型態可藉由血管和週圍組織受氧化鐵對比劑磁 化的比率之差異而描繪出來。例如 DENNIE, J.,MANDEVILLE, J. B., BOXERMAN, J. L., PACKARD, S. D., ROSEN, B. R.與 WEISSKOFF, R. Μ.於 1998 年發表之 『NMR IMAGING OF CHANGES IN VASCULAR MORPHOLOGY DUE TO TUMOR ANGIOGENESIS, 201104276 MAGNRESONMED. 40, 793-799』,其中有相關參考文獻。 磁化效應的計算之所以複雜,是因為與組織血管結構,磁 場強度,以及脈衝順序的類型及其參數有關。舉例來說, WEISSKOFF,R. M., ZUO, C. S·, BOXERMAN, J. L. AND ROSEN, B. R.於 1994 發表的『MICROSCOPIC SUSCEPTIBILITY VARIATION AND TRANSVERSE RELAXATION: THEORY AND EXPERIMENT, MAGN RESON MED. 31, 601_610』以及 BOXERMAN, J. L., HAMBERG, L. M.,ROSEN, B. R.和 WEISSKOFF,R. M.於 1995 發表的『MR CONTRAST DUE TO INTRAVASCULAR MAGNETIC SUSCEPTIBILITY PERTURBATIONS, MAGN RESONMED.34,555-566』,皆有詳細的參考資料。 自旋體回音式與微血管結構有關,而梯度回音式 △ R2則對任何大小的血管敏感,兩者皆為與血液流量無關 的參數。本發明所提出的3DZ\R:2-MMRA技術可在不受假 性流動現象影響的情形下使小血管顯影。 本發明結合了高解析度三維影像以及體積緣製 (VOLUME RENDERING ; VR )或最大強度投射 (MAXIMUM INTENSITY PROJECTION ; MIP )技術以直 接顯現腦部微血管結構。根據快速自旋體回音造影術所獲 取的自旋體回音橫肌緩和率的量測結果,映射圖可用 來映射腦部血液容積(CEREBRAL BLOOD VOLUME ; CBV)。其與血液容積比例呈現相對線性關係,和相 反。 進一步地,自旋體回音式的程序對於空氣-組織界面上 201104276 磁場不均造成的幾何失真較不敏感,可使顯影結果具有較 兩品質。 本3DAR2_MMRA與流量影響無關,可用於顯現神經 系統微血管結構,並提供微血管CBV的生理狀態資訊。為 了 #平估3D/\R^-MMRA的成效,可對一鼠體進行控制和特 定三脈嚙合模組之研究。 自旋體回音(△&)中的橫肌緩和率變化以及區域CBV 可以下式判定。ARs的值由下式而得:BESSELMANN, M., LIU, M., DIEDENHOFEN, M., FRANKE, C. and HOEHN, M. 2001, MR ANGIOGRAPHIC INVESTIGATION OF TRANSIENT FOCAL CEREBRAL ISCHEMIA IN RAT, NMR BIOMED. 14, 289-296, And BRUBAKER, LM, BULLITT, E., YIN, C., VAN DYKE, T. and LIN, W. published in 2005 "MAGNETIC RESONANCE ANGIOGRAPHY VISUALIZATION OF ABNORMAL TUMOR VASCULATURE IN GENETICALLY ENGINEERED MICE, CANCER RES. 6.5, 8AR2 Mapping module 218-8223" and so on. These documents have corresponding details. However, the TOF-MRA signal itself is only suitable for vessels with high flow rates, so the ability to scan small blood vessels at south resolution is limited and susceptible to pseudo-flow phenomena. For example, PIPE, J. G., published in 2001, "LIMITS OF TIME-OF-FLIGHT TIME-OF-FLIGHT MAGNETIC RESONANCE ANGIOGRAPHY, TOP MAGN RESON IMAGING 12, 163-174" contains relevant descriptions. GD-DTPA injected at the time of CE-MRA is relatively short in the intravascular (IV) half-life and will soon spread to the extravascular space, so it cannot be applied to high resolutions that take a long time to obtain facial surface. MRA. 201104276 SUMMARY OF THE INVENTION One embodiment of the present invention is a contrast method. First, a three-dimensional T2-weighted contrast procedure is performed on a subject. Thereafter, an iron oxide contrast agent is injected into the subject. Then, after waiting for a certain period of time, the contrast agent is evenly distributed in the blood vessel, and then the subject is subjected to a second three-dimensional T2-weighted contrast procedure. Finally, two sets of three-dimensional T2-weighted images before and after the contrast agent were injected, and the image difference caused by the change of the vascular signal before and after the injection of the contrast agent was calculated and converted into a three-dimensional AR2 map. The contrast method further includes: generating a three-dimensional image of the blood vessel of the subject according to the three-dimensional map in a case where the flow in a blood vessel is insensitive; wherein the blood vessel of the subject includes a vein, a sinus, a small artery , venules and microvessels. The contrast method further comprises: establishing a living microvascular structure and a microvascular fluid volume data for the blood vessel of the subject according to the three-dimensional map. Further, the method determines functional and structural changes in the microvascular network within the tumor based on three-dimensional images and hemodynamic parameters. In another embodiment, a system includes a three-dimensional imaging module and a blood-powered data module. The three-dimensional contrast module generates a three-dimensional image of the blood vessel of the subject according to the three-dimensional map in a case where it is not sensitive to the flow in a blood vessel. This three-dimensional image depicts the microvascular structure of the blood vessels in the body. Blood vessels include veins, venous sinuses, small arteries, venules and microvessels. The hemodynamic lean module generates a hemodynamic tract according to the two-dimensional image, and includes microvascular fluid volume data of the blood vessel. The three-dimensional image module generates the three-dimensional image according to a steady-state three-dimensional ΔR2 type microscopic magnetic angiography (3D △ 201104276 R2-MMRA). The hemodynamic data module generates the hemodynamic data according to the 3D/\R2-MMRA. Further, the system comprises a T2 weighted imaging module, a temporary storage module, a cutting module, a ΔR] mapping module, and a three-dimensional mapping module. The T2-weighted contrast imaging module performs a first T2-weighted contrast procedure on a subject, and performs a second T2-weighted contrast procedure after injecting a ferric oxide contrast agent into the subject. The temporary storage module temporarily stores the results of the first and second T2 weighted contrast programs to generate a first temporary storage data and a second temporary storage data. The cutting module cuts the first temporary storage data and the second temporary storage data to generate a first cutting data and a second cutting data. The AR2 mapping module generates a ΔΙ map according to the pixels in the first cropping data and the corresponding pixels in the second cropping data. The three-dimensional mapping module creates a three-dimensional map according to the Δ R2 map. The hemodynamic data module generates hemodynamic data based on the three-dimensional image. In a further embodiment, the above system and method are implemented by executing a computer program with one or more processors. The computer program can be located on a computer readable medium such as, but not limited to, a memory, a non-volatile data storage, and/or other suitable physical storage medium. The field to which the embodiments of the present invention are applied can be clearly disclosed in the following embodiments. It is to be understood that the following examples are for illustrative purposes only and are not intended to limit the scope of the invention. [Embodiment] The following description is for illustrative purposes only and is not intended to limit the use or application of the invention. The term "at least one of A, B, and C" as used herein shall read 201104276 as "A or B or C" and "or" as a logical "non-mutually exclusive". The steps described in these methods may be performed in a different order without affecting the basic principles of the invention. The term "module" as used herein may be an application specific integrated circuit (ASIC), an electronic circuit, a processor (division, exclusive or group) for executing one or more software or firmware programs, and/or Or memory (division, exclusive 'or group), combinational logic, and/or other body or part of other suitable components with this function. The present invention proposes a novel contrast technique called non-flow microscopic magnetic angiography (3DAR2-MMRA) of the three-dimensional steady state ΔR2 type for depicting small blood vessels such as veins, arterioles and venules. After the injection of the iron oxide contrast agent, the spin echo ΛΙ calculated by the fast spin echo angiography technique was used to map the blood volume of the brain, and the contrast was related to the microvascular structure. The 3DAR2-MMRA of the present invention employs a reconstruction technique that simultaneously provides high-resolution three-dimensional information on brain microvascular structures and hemodynamic responses to evaluate temporal microvascular pathological changes in brain diseases. A specific three-pulse meshing module was used in a mouse to evaluate the ability of the present invention to measure changes in microvascular structure. The microvascular pattern can be characterized by the difference in the ratio of the blood vessel and surrounding tissue to the magnetization of the iron oxide contrast agent. For example, DENNIE, J., MANDEVILLE, JB, BOXERMAN, JL, PACKARD, SD, ROSEN, BR and WEISSKOFF, R. Μ. published in 1998 "NMR IMAGING OF CHANGES IN VASCULAR MORPHOLOGY DUE TO TUMOR ANGIOGENESIS, 201104276 MAGNRESONMED. 40 , 793-799", which has related references. The calculation of the magnetization effect is complicated by the relationship between tissue vascular structure, magnetic field strength, and the type of pulse sequence and its parameters. For example, WEISSKOFF, RM, ZUO, C. S., BOXERMAN, JL AND ROSEN, BR published in 1994 "MICROSCOPIC SUSCEPTIBILITY VARIATION AND TRANSVERSE RELAXATION: THEORY AND EXPERIMENT, MAGN RESON MED. 31, 601_610" and BOXERMAN, JL , HAMBERG, LM, ROSEN, BR and WEISSKOFF, RM published in 1995 "MR CONTRAST DUE TO INTRAVASCULAR MAGNETIC SUSCEPTIBILITY PERTURBATIONS, MAGN RESONMED. 34, 555-566", have detailed reference materials. The spin echo is related to the microvascular structure, while the gradient echo Δ R2 is sensitive to blood vessels of any size, both of which are independent of blood flow. The 3DZ\R:2-MMRA technique proposed by the present invention can develop small blood vessels without being affected by a pseudo flow phenomenon. The present invention combines high-resolution three-dimensional images with VOLUME RENDERING (VR) or MAXIMUM INTENSITY PROJECTION (MIP) techniques to directly visualize brain microvascular structures. Based on the measurement of the spine echo transverse mitigation rate obtained by rapid spin echography, a map can be used to map the brain blood volume (CEREBRAL BLOOD VOLUME; CBV). It has a relatively linear relationship with the blood volume ratio, and the opposite. Further, the spin-reverberant procedure is less sensitive to geometric distortion caused by the uneven magnetic field on the air-tissue interface, and the development result can be of two qualities. This 3DAR2_MMRA has nothing to do with flow effects and can be used to visualize the microvascular structure of the nervous system and provide information on the physiological status of microvascular CBV. In order to evaluate the effectiveness of 3D/\R^-MMRA, a mouse body can be controlled and a special three-pulse meshing module can be studied. The change in the transverse muscle mitigation rate in the spin echo (Δ&) and the region CBV can be determined by the following formula. The value of ARs is obtained by:

I ( C ^ $I ( C ^ $

W (1) AR:2 5= — In P〇st j 其中TE係為回音時間’而SPRE和SP0ST係為氧化鐵對 比劑施打前後的訊號強度。△ R2大致上隨著C B V係數線性 變化,即:W (1) AR: 2 5 = — In P〇st j where TE is the echo time' and SPRE and SP0ST are the signal intensities before and after the iron oxide contrast agent is applied. Δ R2 varies linearly with the C B V coefficient, namely:

AR2*K [CA] CBV 其中K係為隨組織類型,脈衝順序,磁場強度以及氧 化鐵對比劑而異的常數,而[CA]係為血液中氧化鐵對比劑 • 的濃度。AR2*K [CA] CBV where K is a constant that varies with tissue type, pulse order, magnetic field strength, and iron oxide contrast agent, while [CA] is the concentration of iron oxide contrast agent in blood.

該AR2訊號包含内管(IV)和外管(EV)分量。舉例 來說,DUONG, Τ· Q.,YACOUB,Ε., ADRIANY,G.,HU,X., UGURBIL,K.和 KIM,S. G.於 2003 年發表的 『MICRO VASCULAR BOLD CONTRIBUTION AT 4 AND 7 T IN THE HUMAN BRAIN: GRADIENT-ECHO ANDThe AR2 signal includes an inner tube (IV) and an outer tube (EV) component. For example, DUONG, Τ·Q., YACOUB, Ε., ADRIANY, G., HU, X., UGURBIL, K. and KIM, SG published in 2003 "MICRO VASCULAR BOLD CONTRIBUTION AT 4 AND 7 T IN THE HUMAN BRAIN: GRADIENT-ECHO AND

SPIN-ECHO FMRI WITH SUPPRESSION OF BLOOD EFFECTS, MAGN RESON MED. 49, 1019-1027』具有詳細 » 的參考資訊。的丨V訊號之所以存在於所有大小的血管 11 201104276 中,是因為氧化鐵對比劑致使血液中的T2值改變。而自旋 體回音式的EV效應與小血管相關,因為180°的射頻 -脈衝使大血管周圍磁場不均引發的靜態移相重新聚焦。舉 例來說,OGAWA,S.,MENON,R. S.,TANK, D. W.,KIM, S. G.,MERKLE,H.,ELLERMANN,J· Μ.和 UGURBIL,K.於 1993 年發表的『FUNCTIONAL BRAIN MAPPING BY BLOOD OXYGENATION LEVEL-DEPENDENT CONTRAST MAGNETIC RESONANCE IMAGING, A COMPARISON OF SIGNAL CHARACTERISTICS WITH A · BIOPHYSICAL MODEL, BIOPHYSJ. 64, 803-812』内有詳 細的文獻參考。 鼠體腦部病灶局部缺血再灌注模型,在LIN,T. N., SUN, S. W., CHEUNG,W. M., LI,F.和 CHANG, C.於 2002 年發表之『DYNAMIC CHANGES IN CEREBRAL BLOOD FLOW AND ANGIOGENESIS AFTER TRANSIENT FOCAL CEREBRAL ISCHEMIA IN RATS, EVALUATION WITH SERIAL MAGNETIC RESONANCE IMAGING, STROKE. · 33,2985_2991』有詳細的文獻參考。簡而言之,雄性長壽 鼠右側中間腦動脈(MCA)被反向捆綁在立體顯微鏡之下。 兩邊頸動脈接著以非外傷用動脈瘤夾鉗壓制。在六十分鐘 的局部缺血後解除動脈壓制。此被麻醉的鼠的直腸溫度使SPIN-ECHO FMRI WITH SUPPRESSION OF BLOOD EFFECTS, MAGN RESON MED. 49, 1019-1027』 has detailed reference information. The 丨V signal is present in all sizes of blood vessels 11 201104276 because the iron oxide contrast agent causes a change in the T2 value in the blood. The EV effect of the spin echo is related to small blood vessels, because the 180° RF-pulse refocuses the static phase shift caused by the magnetic field imbalance around the large blood vessels. For example, OGAWA, S., MENON, RS, TANK, DW, KIM, SG, MERKLE, H., ELLERMANN, J. Μ. and UGURBIL, K. published in 1993 "FUNCTIONAL BRAIN MAPPING BY BLOOD OXYGENATION LEVEL" -DEPENDENT CONTRAST MAGNETIC RESONANCE IMAGING, A COMPARISON OF SIGNAL CHARACTERISTICS WITH A · BIOPHYSICAL MODEL, BIOPHYSJ. 64, 803-812" has detailed literature references. Mouse model of ischemia and reperfusion of brain lesions in LIN, TN, SUN, SW, CHEUNG, WM, LI, F. and CHANG, C. DYNAMIC CHANGES IN CEREBRAL BLOOD FLOW AND ANGIOGENESIS AFTER TRANSIENT FOCAL CEREBRAL ISCHEMIA IN RATS, EVALUATION WITH SERIAL MAGNETIC RESONANCE IMAGING, STROKE. · 33,2985_2991" has a detailed literature reference. In short, the right middle cerebral artery (MCA) of male longevity rats was reversely bundled under a stereomicroscope. The bilateral carotid arteries were then compressed with a non-traumatic aneurysm clamp. Arterial compression was relieved after 60 minutes of ischemia. The rectal temperature of this anesthetized rat

用恒溫毯(HARVARD, HOLLISTON, MA)維持在 37±0.5oC 之間。Maintain a temperature of 37 ± 0.5oC with a constant temperature blanket (HARVARD, HOLLISTON, MA).

接著以掃描器,例如配備有主動遮蔽梯度(2〇 g/C.M IN 80 MS)的 4.7-T MR 掃描器(德國 BIOSPEC 47/40)進行 12 201104276 造影,實驗用的鼠體為重量300到500克之間的雄性 LONG-EVAN鼠。開始時每一鼠隻以5%的異氟烷 (ISOFLURANE)在每分鐘1升(il/MIN)的供氧率之下 進行麻醉。 當完全進入麻醉之後,該鼠隻接著以俯伏姿態固定在 磁圈内的特製頭架上。在實驗過程中,異氟烷以1〜1.2%的 濃度在每分鐘1升的供氧量下持續輸出,使腦部血液動力 學的改變程度達到最小。舉例來說,LEI, H.,GRINBERG,0., NWAIGWE, C. I., HOU, H. G., WILLIAMS, H., SWARTZ, Η. M.和 DUNN, J. F.於 2001 年發表的『THE EFFECTS OF KETAMINEXYLAZINE ANESTHESIA ON CEREBRAL BLOOD FLOW AND OXYGENATION OBSERVED USING NUCLEAR MAGNETIC RESONANCE PERFUSION IMAGING AND ELECTRON PARAMAGNETIC RESONANCE OXIMETRY,BRAIN RES. 913, 174-179』, 文獻中具有相關參考資料。 影像可透過一 72MM的鳥籠發射器線圈以及做為訊號 偵測之用的四分隔離表面線圈而獲取。為了偵測△R],在 注射氧化鐵對比劑之前後,各進行一次T2加權造影程序。 氧化鐵對比劑可包含超順磁性的鐵氧微粒子,例如來自德 國柏林的SCHERING AG,劑量為30MG/KG的 RESOVIST。 獲取注射顯影劑後影像的步驟可能延後一至二分鐘再 進行,以確保氧化鐵對比劑在金管網路中的分布情形達到 一穩定狀態。T2加權造影程序的進行,可採用重複時間 13 201104276 (REPETITION TIME ; TR)為 1500MS,有效回音時間 (TEEFF )為82MS,回音串長度(ETL )為32,平均數為 四’視野寬度(FOV)為2.8X2.8X1.4CM,而獲取陣列為 256X256X96 (可零插補至512X512X192)的三維FSE程 序。内平面解析度和切細厚度各為54.68和72.91MM。 TOF-MRA可採用FLASH (快速低角度攝影)進行,其中The 12, 201104276 angiography is then performed with a scanner such as a 4.7-T MR scanner (German BIOSPEC 47/40) equipped with an active shadow gradient (2〇g/CM IN 80 MS). The experimental mouse body weighs 300 to 500. Male LONG-EVAN rats between grams. Initially, each rat was anesthetized with 5% isoflurane (ISOFLURANE) at an oxygen supply rate of 1 liter per minute (il/MIN). When fully entered the anesthesia, the mouse is then only fixed in a prone position on a special headstock within the magnetic ring. During the course of the experiment, isoflurane was continuously output at a concentration of 1 to 1.2% at an oxygen supply rate of 1 liter per minute, minimizing changes in brain hemodynamics. For example, LEI, H., GRINBERG, 0., NWAIGWE, CI, HOU, HG, WILLIAMS, H., SWARTZ, Η. M. and DUNN, JF published in 2001 "THE EFFECTS OF KETAMINEXYLAZINE ANESTHESIA ON CEREBRAL BLOOD FLOW AND OXYGENATION OBSERVED USING NUCLEAR MAGNETIC RESONANCE PERFUSION IMAGING AND ELECTRON PARAMAGNETIC RESONANCE OXIMETRY, BRAIN RES. 913, 174-179", has relevant references in the literature. The image is captured by a 72mm birdcage transmitter coil and a four-part isolation surface coil for signal detection. In order to detect ΔR], a T2-weighted contrast procedure was performed each time before the injection of the iron oxide contrast agent. The iron oxide contrast agent may comprise superparamagnetic ferrite particles, such as SCHERING AG from Berlin, Germany, and RESOVIST at a dose of 30 MG/KG. The step of obtaining an image after injection of the developer may be postponed for one to two minutes to ensure that the distribution of the iron oxide contrast agent in the metal tube network is stabilized. The T2-weighted contrast procedure can be performed with a repetition time of 13 201104276 (REPETITION TIME; TR) of 1500MS, an effective echo time (TEEFF) of 82MS, an echo train length (ETL) of 32, and an average of four' field of view width (FOV). For 2.8X2.8X1.4CM, get a 3D FSE program with an array of 256X256X96 (zero interpolated to 512X512X192). The inner plane resolution and the cut thickness are 54.68 and 72.91 MM, respectively. TOF-MRA can be performed with FLASH (fast low angle photography), where

TR為30MS ’ TE為10MS ’翻轉角度30度,以及與3DATR is 30MS ’ TE is 10MS ’ flip angle 30 degrees, and with 3DA

RrMMRA法相同的FOV和陣列大小。 二維全腦注射顯影劑前影像和注射顯影劑後影像可使 用一暫存(CO-REGISTER)演算法配在一起。舉例來說, 此演算法可採用AMIRA軟體(TGS,SANDIEGO,CA)中 具有嚴您轉換的正規化共同資訊函式。這些注射顯影劑前 和/主射顯影劑後鼠腦影像可手動地進行裁切以排除腦以外 的部分。根據第(1)式估算的一映射圖係以特定軟體寫 成的程式語言如 MATLAB ( MATHWORKS,NATICK,ΜΑ ) 逐個晝素計算而得。該3DAR2_MMRA技術尚可包含使用 VR或MIP工具(AMIRA,TGS)建構高解析度三維 映射圖。 參照附件1,顯示了根據第(1)式,從注射顯影劑前(FIG. 1A)和注射顯影劑後(附件ι(Β)) T2加權影像估算而得的 整個三維資料組中不同位置所獲取的,具有内平面解析度 54.68ΜΜ的虺狀位影像,以及全平面解析度μ % mm (附件1(c))。冠狀位視圖係來自全三維資料組(54χ54χ72 mm)中鼠腦之高解析度Τ2加權影像,其中咖⑽灯濃 度係為30MG/KG。 201104276 該AR2映射圖中血管裏的高亮度部位可能是由氧化鐵 對比劑相關的磁化效應造成的。3DAR2_MMrA係藉由使 用VR技術重建如附件2(A)和2(B)的冠狀位視圖和附件 2(D)的側視圖所示的高解析度三維ΛΚ2影像而實作。靜脈 血管網,如同主靜脈之靜脈竇以及其分枝,在腦表面上清 析可見。 這些血管進一步根據下列冠狀位和側視圖的腦部血管 圖解集而確認為:上嗅覺靜脈竇,上腦靜脈,上矢狀靜脈 竇,以及腦内尾鼻腔靜脈;上腦靜脈,次腦靜脈,腦内脊 椎靜脈,以及位於大腦和小腦之間的橫肌靜脈竇。舉例來 說 ’ SCREMIN,0. U.於 1995 年發表的『CEREBRAL VASCULAR SYSTEM, IN: PAXIONS, G (ED), THE RAT NERVOUS SYSTEM, ACADEMIC PRESS, SAN DIEGO, PP. 3-35』以及 DORR,A.,SLED,J. G.和 KABANI,N.於 2007 年發表的『THREE-DIMENSIONAL CEREBRAL VASCULATURE OF THE CBA MOUSE BRAIN: A MAGNETIC RESONANCE IMAGING AND MICRO COMPUTED TOMOGRAPHY STUDY, NEUROIMAGE 35, 1409-1423』具有相關說明。 這些腦部表面血管與附件2(C)、2(E)針對相同受測鼠 之血管攝影背視圖相當吻合。主動脈例如MCA可能沒那麼 清楚地呈現於3DAR2-MMRA,是因為動脈訊號被具有長 TE的注射顯影劑前T2加權造影程序與高流動率所移相 (DEPHASE),致使注射顯影劑前和注射顯影劑後之動脈 影像中沒有或只有微小差異。 15 201104276 小血管的結構,包含腦内的 / 將ΛΙ-ΜΜΚΑ隨著三視圖(附 二小靜脈,可藉由 豐富且複雜的腦内小血管結樽,勹人=、會而侍,其描寫了 皮層微血管結構。附件3(Α)_^ =表内皮層和深處底 視圖(S-1)。附件3(B)顯示-細向=㈣面’由上至下 圖(Α-Ρ)。附件3(C)顯示一矢邾俊囱之視 η νΛ - ^ 狀切面,從左側至右側之 果顯不了本發明提出之方法顯現小血 官的此力。 附件4係為本發明之方法 古(附件4(B))以及習知 TOF-MRA法(附件4(A))所鞀钼々做' 、 一 .”、員現之微金營結構之比較。 這兩種方法的影像係獲取自相间 ^的身枓組,具有相同的軸 向視圖’厚片位置,以及影像解析度。圖中顯示在观 RrMMRA中許多社管顯示得更清楚,而在t〇f_mra中 只能看到主動脈。 三脈喃合搏動模型可用來驗證3DAR2_mmra評估微 血管結構的能力。附件5(A)係為受測鼠被MCA閉合達6〇 刀鐘之後再灌注,七日後從三維資料組内獲取之不同位置 之軸向T2加權影像,其平面解析度54 68MM,而切片厚 度為500MM。該缺血部位的右MCA腦皮層於再灌注七曰 後的T2加權影像樣式與先樣我們的研究一致,亦充滿了微 血管的重組證據。 附件5(B)係為與附件5(A)相同之切片位置所對應之 3DZ\R2_MMRA的VR。在局部缺血右MCA腦使層中明白 顯示類似微血管的偏亮訊號從薄腦膜延伸至腦皮層,此現 象與先前增加CBV和腦血流(CBF)的研究一致。附件5(A) 16 201104276 係為由全三維資料組的不同區塊獲取而得之高解析度丁2 加權影像的一軸向視圖,以鼠的三脈嚙合局部缺血模型顯 示了右腦使層梗塞區域,具有厚度〇·5ΜΜ。附件5(B)係為 與附件5(A)相同位置之3DZ\R2_MMRA視圖,顯示了梗塞 區域内部因為局部缺血導向的金管造影法所產生的血管形 態變化。 許多研究使用MR灌注來量測CBV,CBF和參透性等 血液動力學參數,例如動態顯影劑強化造影,或MRA技術 例如TOF和CE-MRA等以顯現該血管結構’藉此診斷在腦 血管疾病中巨血管和微血管結構以及功能。舉例來說, KASTRUP, A.,ENGELHORN,T.,BEAULIEU,C.,DE CRESPIGNY,A.和 MOSELEY, Μ. E.於 1999 年發表的 『DYNAMICS OF CEREBRAL INJURY,PERFUSION, AND BLOOD-BRAIN BARRIER CHANGES AFTER TEMPORARY AND PERMANENT MIDDLE CEREBRAL ARTERY OCCLUSION IN THE RAT, J. NEUROLSCI. 166, 91 -99』已有相關參考資料。 本發明揭露書包含一種新式的CBV式顯微MRA(3DA R2-MMRA),可同時顯現微血管結構的型態,說明微血管 CBV的生理狀態。這種結構可有效增強腦血管疾病例如中 風和腦瘤的知識發展和治療。 3DZ\R2-MMRA技術可用來同時顯現大血管(例如靜 脈,靜脈竇,但不是動脈)和小血管(例如小動脈和小靜 脈)(附件,2和3)。這可能是因為自旋體回音式的AR2 訊號主要包含IV和EV分量。以梯度回音和自旋體回音式 17 201104276 的程序中各種管路大小的IE和EV的具體靈敏度效果,已 在先前提出說明。 簡而言之’自旋體回音式引發的IV效應會發生在 各種大小的血管中。在大動脈中因為流動率高的關係,其 效應較輕微。△ R_2的EV效應通常和直徑小於1 〇 mm的微 血管有關。本發明之方法,藉由三維FSE序列配合32個 ETL,在總時間為76分鐘内所能達到的内平面解析度是 54MM。 這然這些解析度仍然大於微血管的直徑,但是可藉由 增加影像靈敏度,搭配其他快速獲取技術例如平行造影或 更精密的線圈設計以提升陣列大小並縮減FOV,來增進解 析度。平行造影的例子,可參考MAX)〇RE,B. ANDPELC, N. J.於 2001 年發表之『SMASH AND SENSE: EXPERIMENTAL AND NUMERICAL COMPARISONS, MAGNRESON MED. 45, 1103-1111)』,其文獻中揭露相關 資料。精密線圈設計的例子,可參考『LOGOTHETIS,N., MERKLE, H·,AUGATH, M..,TRINATH,T.和 UGURBIL,K. 於 2002 年發表之『ULTRA HIGH-RESOLUTION FMRI IN MONKEYS WITH IMPLANTED RF COILS, NEURON. 35, 227-242』以及 LEE,H. L” LIN,I. T.,CHEN,J. H·,HORNG, Η. E.和 YANG, H. C.於 2005 年發表之『HIGH-T-C SUPERCONDUCTING RECEIVING COILS FOR NUCLEAR 磁振造影,IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY. 15, 1326-1329』。 傳統TOF-MRA的對比劑對於動脈中的高速流動自旋 201104276 體是很敏感的。這表示TOF-MRA可能無法辨認慢速移動 的小腦膜管路障礙或内皮層小動脈和小靜脈,但這都是3D △ R2-MMRA (附件4)做得到的。 除此之外,當造影體中存在大範圍流動速度例如紊流 時,可能發生TOF-MRA訊號相消。3DAR2-MMRA係基 於磁化率效應所進行之計算,與血流無關,因此對於假性 流動現象並不敏感。參考KOUWENHOVEN,M.於1997年 發表的『CONTRAST-ENHANCED MR ANGIOGRAPHY, ® METHODS, LIMITATIONS AND POSSIBILITIES, ACTA RADIOL. SUPPL. 412, 57-67』其中有詳盡的說明。 TOF-MRA可以有效地量測MCA小血管的閉合和再灌 注。舉例來說,可參考 BECKMANN, N.,STIRNIMANN,R. AND BOCHELEN, D.於 1999 年發表的 『HIGH-RESOLUTION MAGNETIC RESONANCE ANGIOGRAPHY OF THE MOUSE BRAIN: APPLICATION TO MURINE FOCAL CEREBRAL ISCHEMIA MODELS. J ® MAGN RESON. 140, 442-450』。TOF-MRA 由於沒辦法顯 現小血管,可能無法適用於再灌注後之後局部性缺血血管 造影程序在後局部性缺血血管造影法中,背側俯視觀點的 血管攝影常被用來評估腦表面的形態改變。然而,血管攝 影並不容易顯現病灶處内部的内皮層微血管模型。此外, 壞死區域的腦組織液化現象使得局部性缺血區域在免疫組 織學上不容易檢測,尤其是再灌注已超過三天的話。The same FOV and array size for the RrMMRA method. The two-dimensional whole brain injection of the pre-developer image and the post-injection image can be matched together using a CO-REGISTER algorithm. For example, this algorithm can use the normalized common information function of AMIRA software (TGS, SANDIEGO, CA) with strict conversion. The mouse brain images before and/or after the injection of the developer can be manually cut to exclude portions other than the brain. A map estimated according to the formula (1) is calculated by a program language written in a specific software such as MATLAB (MATHWORKS, NATICK, ΜΑ). The 3DAR2_MMRA technology can also include the construction of high-resolution 3D maps using VR or MIP tools (AMIRA, TGS). Referring to Annex 1, there are shown the different positions in the entire three-dimensional data set estimated from the T2 weighted image before the injection of the developer (FIG. 1A) and after the injection of the developer (the attachment ι (Β)) according to the formula (1). Obtained a 虺-like image with an internal plane resolution of 54.68 , and a full-plane resolution μ % mm (Annex 1 (c)). The coronal view was obtained from a high-resolution Τ2-weighted image of the rat brain in a full three-dimensional data set (54χ54χ72 mm), with a coffee (10) lamp concentration of 30 MG/KG. 201104276 The high-brightness of the blood vessels in the AR2 map may be caused by the magnetization effect associated with iron oxide contrast agents. 3DAR2_MMrA is implemented by reconstructing the coronal view of Annexes 2 (A) and 2 (B) and the high-resolution 3D ΛΚ 2 image shown in the side view of Annex 2 (D) using VR techniques. The venous vascular network, like the venous sinus of the main vein and its branches, is visible on the surface of the brain. These vessels were further identified as the upper olfactory sinus, upper cerebral vein, superior sagittal sinus, and intracranial tail nasal vein; upper cerebral vein, secondary cerebral vein, brain according to the following coronal and side view brain angiogram sets. The internal venous vein, as well as the transverse venous sinus between the brain and the cerebellum. For example, 'CEREBRAL VASCULAR SYSTEM, IN: PAXIONS, G (ED), THE RAT NERVOUS SYSTEM, ACADEMIC PRESS, SAN DIEGO, PP. 3-35, and DORR, A, published by CREMIN, 0. U. ., SLED, JG and KABANI, N. published in 2007 "THREE-DIMENSIONAL CEREBRAL VASCULATURE OF THE CBA MOUSE BRAIN: A MAGNETIC RESONANCE IMAGING AND MICRO COMPUTED TOMOGRAPHY STUDY, NEUROIMAGE 35, 1409-1423" has a description. These surface blood vessels of the brain are quite consistent with Annexes 2(C) and 2(E) for the angiographic back view of the same test mouse. The aorta, such as MCA, may not be so clearly presented in 3DAR2-MMRA because the arterial signal is phase-shifted with a high flow rate (DEPHASE) by a pre-T2 weighted contrast procedure with a long TE injection, resulting in pre-injection and injection. There were no or only minor differences in the arterial image after the developer. 15 201104276 The structure of small blood vessels, including the brain / will be ΛΙ-ΜΜΚΑ with three views (with two small veins, can be rich and complicated by small blood vessels in the brain, swearing =, will wait, its description Cortical microvascular structure. Annex 3 (Α)_^ = surface endothelium and deep bottom view (S-1). Annex 3 (B) shows - fine direction = (four) face 'from top to bottom (Α-Ρ) Annex 3(C) shows the η νΛ - ^ shape of the 邾 邾 囱 囱 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , (Annex 4 (B)) and the conventional TOF-MRA method (Annex 4 (A)) 鼗 鼗 々 ' 、 一 一 一 一 比较 比较 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The body group of the self-phased ^ has the same axial view 'slice position, and image resolution. The figure shows that many of the social organizations in the view of RrMMRA show more clearly, but only the main in t〇f_mra Arterial. The three-pulse pulsation model can be used to verify the ability of 3DAR2_mmra to assess microvascular structures. Annex 5 (A) is the test mouse closed by MCA up to 6〇 After recanalization after the clock, the axial T2-weighted images of different positions obtained from the three-dimensional data set after seven days have a plane resolution of 54 68 mm and a slice thickness of 500 mm. The right MCA cortex of the ischemic site is reperfused. The post-T2-weighted image pattern is consistent with our previous study and is also full of recombination evidence for microvessels. Annex 5(B) is the VR of 3DZ\R2_MMRA corresponding to the same slice position as Annex 5(A). The ischemic right MCA brain layer clearly shows that the microvascular-like brightening signal extends from the thin meninges to the cortex, a phenomenon consistent with previous studies that increased CBV and cerebral blood flow (CBF). Annex 5(A) 16 201104276 is An axial view of a high-resolution D2-weighted image obtained from different blocks of the full three-dimensional data set, showing the infarct region of the right brain with a thickness of 〇·5ΜΜ in a three-pulse meshing ischemic model of the mouse Annex 5(B) is a 3DZ\R2_MMRA view of the same position as Annex 5(A), showing changes in vascular morphology due to ischemic-guided angiography within the infarcted area. Many studies have used MR perfusion. Hemodynamic parameters such as CBV, CBF and permeability, such as dynamic contrast-enhanced contrast imaging, or MRA techniques such as TOF and CE-MRA to visualize the vascular structure' thereby diagnosing macrovascular and microvascular structures and functions in cerebrovascular diseases For example, KASTRUP, A., ENGELHORN, T., BEAULIEU, C., DE CRESPIGNY, A. and MOSELEY, Μ. E. published in 1999 by DYNAMICS OF CEREBRAL INJURY, PERFUSION, AND BLOOD-BRAIN BARRIER CHANGES AFTER TEMPORARY AND PERMANENT MIDDLE CEREBRAL ARTERY OCCLUSION IN THE RAT, J. NEUROLSCI. 166, 91 -99 has related references. The present invention discloses a novel CBV microscopic MRA (3DA R2-MMRA) which simultaneously visualizes the morphology of the microvascular structure and illustrates the physiological state of the microvascular CBV. This structure is effective in enhancing the development and treatment of cerebrovascular diseases such as stroke and brain tumors. The 3DZ\R2-MMRA technique can be used to simultaneously visualize large blood vessels (eg, veins, venous sinuses, but not arteries) and small blood vessels (eg, arterioles and small veins) (Annex, 2 and 3). This may be because the AR2 signal of the spin echo is mainly composed of the IV and EV components. The specific sensitivity effects of IE and EV for various pipe sizes in the program of Gradient Echo and Spin Echo Recall 17 201104276 have been previously described. In short, the IV effect induced by the spin echo can occur in blood vessels of various sizes. In the aorta, the effect is mild due to the high flow rate. The EV effect of Δ R_2 is usually associated with microvessels with a diameter of less than 1 〇 mm. In the method of the present invention, the internal plane resolution which can be achieved in a total time of 76 minutes by the three-dimensional FSE sequence with 32 ETLs is 54 mm. These resolutions are still greater than the diameter of the microvessels, but can be enhanced by increasing image sensitivity, along with other fast acquisition techniques such as parallel imaging or more sophisticated coil designs to increase array size and reduce FOV. For an example of parallel angiography, reference is made to MAX) 〇RE, B. ANDPELC, N. J., "SMASH AND SENSE: EXPERIMENTAL AND NUMERICAL COMPARISONS, MAGNRESON MED. 45, 1103-1111", 2001, the disclosure of which is incorporated herein by reference. For examples of precision coil design, please refer to "LOGOTHETIS, N., MERKLE, H., AUGATH, M.., TRINANH, T. and UGURBIL, K." ULTRA HIGH-RESOLUTION FMRI IN MONKEYS WITH IMPLANTED RF COILS, NEURON. 35, 227-242" and LEE, H. L" LIN, IT, CHEN, J. H., HORNG, Η. E. and YANG, HC published in 2005 "HIGH-TC SUPERCONDUCTING RECEIVING COILS" FOR NUCLEAR Magnetic Fluorescence Imaging, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY. 15, 1326-1329. The traditional TOF-MRA contrast agent is very sensitive to the high-speed flow spin 201104276 in the arteries. This means that the TOF-MRA may not be recognizable. Rapidly moving cerebrovascular obstruction or endothelial arterioles and venules, but this is done by 3D △ R2-MMRA (Attachment 4). In addition, when there is a large range of flow velocity in the contrast body, such as turbulence When flowing, TOF-MRA signal cancellation may occur. 3DAR2-MMRA is based on the calculation of magnetic susceptibility effect, and is independent of blood flow, so it is not sensitive to pseudo-flow phenomenon. Refer to KOUWENHOVEN, M. published in 1997. 『CONTRAS T-ENHANCED MR ANGIOGRAPHY, ® METHODS, LIMITATIONS AND POSSIBILITIES, ACTA RADIOL. SUPPL. 412, 57-67, which contains detailed instructions. TOF-MRA can effectively measure the closure and reperfusion of MCA small blood vessels. Refer to BECKMANN, N., STIRNIMANN, R. AND BOCHELEN, D. "HIGH-RESOLUTION MAGNETIC RESONANCE ANGIOGRAPHY OF THE MOUSE BRAIN: APPLICATION TO MURINE FOCAL CEREBRAL ISCHEMIA MODELS. J ® MAGN RESON. 140, 442 -450』. TOF-MRA may not be suitable for local ischemic angiography after reperfusion because of the inability to visualize small blood vessels. In the posterior ischemic angiography, the angiography of the dorsal view is often used. To assess morphological changes in the brain surface. However, angiography is not easy to visualize the endothelial microvascular model inside the lesion. In addition, brain tissue liquefaction in the necrotic area makes the ischemic area less susceptible to immunohistochemistry, especially if reperfusion has been more than three days old.

在局部缺血的慢性期中,對病灶處内部進行的灌注MR 造影所量測到的CBV和CBF變化已早有文獻。雖然CBV 19 201104276 和CBF皆可描述微血管灌注的資訊,卻沒辦法辨別單獨的 血官.。本發明所揭露的3DAR2_MMRA可以高對比-度顯-現 小血管’並提供相關的CBV對映,可著隨時間重建微血管 模型’以同時觀察型態變化和血液動力學變化。 3DAR2_MMRA可以顯現暫時性局部缺血(附件5)之 後的同側皮質中的南受度’相較於先前所述之CBV是有增 進的。3DZ\R2_MMRA產生由小腦膜延伸至局部性缺血的 皮質中的微血管之高解析度影像,新長成的微血管極有可 能來自小腦膜。這是首次有MRA技術能在局部缺血模型中 的體内顯微血管造影程序中以各種實作方式顯影。本方法 可追蹤不同疾病階段的血管造影,甚至是機能障礙區中存 在嚴重組織壞死的階段。 在此提出另一個基於梯度回音影像的微血管造影方 法,使用注射顯影劑前和注射顯影劑後T2加權影像相減 (而非計算△仏)。舉例來說,參考BOLAN,P. J.,YACOUB, E.,GARWOOD,M.,UGURBIL,K.和 HAREL,N.於 2006 年 發表的『IN VIVO MICRO-MRI OF INTRACORTICAL NEUROVASCULATURE,NEUROIMAGE. 32, 62-69』,其 中有詳細說明。然而,其對比係由未補償的磁化率致使血 管内部和外部訊號發生移相所造成,是使假性流動現象和 脈管内徑大小被高估的主因。 此外,當磁場嚴重不均時,例如在接近空氣-組織界面 的扁桃腺中時,無法描繪腦中血管結構。3DAR2-MMRA 技.術計算自旋體回音式AR2,因為使用具有對非共振效應 例如主磁場不均和磁化率不均產生之假象有高容忍度的再 201104276 聚焦脈衝的自旋體回音影像,所以不受這些問題影響,尤 其是對於不連續性的組織。 - • 相關的CBV係正比於之值。舉例來說,WU,E. X., WONG,Κ· K., ANDRASSY, M.和 TANG, H.於 2003 年發表 的『HIGHRESOLUTION IN VIVO CBV MAPPING WITH MRI IN WILD-TYPE MICE, MAGN RESON MED. 49, 765-770』以及 DUNN, J. F., ROCHE,M. A.,SPRINGETT,R” ABAJIAN,M.,MERLIS, J.,DAGHLIAN,C. P.,LU,S. Y.和 籲 MAKKI, M.於 2004 年發表的『MONITORING ANGIOGENESIS IN BRAIN USING STEADY-STATE QUANTIFICATION OF DELTAR2 WITH MION INFUSION, MAGN RESON MED. 51, 55-61』具有詳細參考說明。然而, 相關CBV只有在對比劑在IV空間中處於穩定狀態時才能 準確量測。 第1圖與附件6係為注射RESOVIST之前和之後的上 矢狀靜脈竇的腦脈管中的訊號強度。其他種類的顯影劑也 鲁可能適用於這些量測程序。第1圖顯示上矢狀靜脈竇管路 的T2加權影像訊號時序變化。T2加權影像係以 TR=4000MS和TE=70MS的一 FSE序列由所獲取。 在注射RESOVIST之後影像強度快速下降(從ι〇〇〇/0 到20%) ’接著轉為相對穩定’在前三小時内小幅地線性 增加從35%到55%)。3DZ^R2-MMRA的獲取時間約為76 分鐘’屆時RESOVIST已穩定分佈並循環於金管中。具有 高緩和率和長半生期的特製對比劑,以低濃度應用於3DA RrMMRA時’在血管中有助於增加微血管結構的可視率。 21 201104276 根據本發明的原理,將穩態八反2為基礎的非關流動顯 微MRA方法結合用來將小血管結構的體内視覺化的三維 影像重建技術是可行的。本方法可藉由鼠腦實驗加以應、 證。本發明可同時提供高解析度的腦部剖面三維資訊,體 内微血管結構,以及CBV對映圖,進而用來量測微血管隨 時間的病理變化。此技術可當成一種常態工具,檢驗小動 物模型中的微血管結構以及健康的或腦血管病變的門診病 患。In the chronic phase of ischemia, changes in CBV and CBF measured by perfusion MR angiography inside the lesion have long been documented. Although both CBV 19 201104276 and CBF can describe microvascular perfusion information, there is no way to identify individual blood donors. The 3DAR2_MMRA disclosed herein can provide high contrast-degree display-small blood vessels' and provide associated CBV mapping, which can reconstruct the microvascular model' over time to simultaneously observe pattern changes and hemodynamic changes. 3DAR2_MMRA can show that the degree of south in the ipsilateral cortex after transient ischemia (Annex 5) is increased compared to the CBV previously described. 3DZ\R2_MMRA produces high-resolution images of microvessels in the cortex that extends from the cerebellum to local ischemia, and it is highly probable that newly grown microvessels will come from the cerebellum. This is the first time that MRA technology can be developed in a variety of ways in an in vivo microangiography procedure in an ischemic model. This method can track angiography at different stages of the disease, even in the stage of severe tissue necrosis in the dysfunctional area. Another microvascular imaging method based on gradient echo images is proposed here, using a T2-weighted image subtraction (instead of calculating Δ仏) before and after injection of the developer. For example, refer to BOLAN, PJ, YACOUB, E., GARWOOD, M., UGURBIL, K. and HAREL, N. published in 2006 "IN VIVO MICRO-MRI OF INTRACORTICAL NEUROVASCULATURE, NEUROIMAGE. 32, 62-69 』, which has a detailed description. However, the contrast is caused by the uncompensated magnetic susceptibility causing phase shifting of the internal and external signals of the blood vessel, which is the main cause of the false flow phenomenon and the inner diameter of the vessel being overestimated. In addition, when the magnetic field is severely uneven, such as in the tonsils close to the air-tissue interface, the vascular structure in the brain cannot be depicted. 3DAR2-MMRA technique. Calculate the spin-return type AR2 because of the use of a spin-echo echo image of the re-201104276 focus pulse with high tolerance to non-resonant effects such as the main magnetic field inhomogeneity and the susceptibility of the magnetic susceptibility. So it is not affected by these problems, especially for organizations that are not continuous. - • The relevant CBV system is proportional to the value. For example, WU, EX, WONG, Κ·K., ANDRASSY, M. and TANG, H. published in 2003 "HIGHRESOLUTION IN VIVO CBV MAPPING WITH MRI IN WILD-TYPE MICE, MAGN RESON MED. 49, 765 -770" and DUNN, JF, ROCHE, MA, SPRINGETT, R" ABAJIAN, M., MERLIS, J., DAGHLIAN, CP, LU, SY and MAKKI, M. "MONITORING ANGIOGENESIS IN BRAIN USING" published in 2004 STEADY-STATE QUANTIFICATION OF DELTAR2 WITH MION INFUSION, MAGN RESON MED. 51, 55-61』 has a detailed reference. However, the relevant CBV can only be accurately measured when the contrast agent is in a stable state in the IV space. Annex 6 is the signal intensity in the cerebral vasculature of the superior sagittal sinus before and after RESOVIST injection. Other types of developer may be suitable for these measurement procedures. Figure 1 shows the superior sagittal venous sinus line. The T2-weighted video signal timing changes. The T2-weighted image is obtained by a FSE sequence of TR=4000MS and TE=70MS. The image intensity drops rapidly after injection of RESOVIST (from ι〇〇〇/0 to 20%) Change to phase Stable 'slightly increased linearly from 35% to 55% in the first three hours.) The acquisition time of 3DZ^R2-MMRA is about 76 minutes. At that time, RESOVIST has been stably distributed and circulated in the gold tube. It has a high mitigation rate and a long life. A special contrast agent, when applied to 3DA RrMMRA at low concentrations, helps to increase the visibility of microvascular structures in the blood vessels. 21 201104276 In accordance with the principles of the present invention, a steady-state eight-two-based non-closed flow microscopy MRA The method is feasible in combination with a three-dimensional image reconstruction technique for visualizing the small vessel structure in vivo. The method can be verified by a rat brain experiment. The invention can simultaneously provide high-resolution three-dimensional information of the brain section. In vivo microvascular structures, as well as CBV mapping, are used to measure pathological changes in microvessels over time. This technique can be used as a normal tool to examine microvascular structures in small animal models as well as outpatients with healthy or cerebrovascular disease.

此外,腫瘤的微血管變化對於腫瘤成長及對治療的反儀 應提供了重要的新線索。3DZ\R2-M1V[RA可應用於將活體 腦腫瘤A管視覺化的血管造影法。舉例來說,當 Rz-MMRA應用於乙稀亞硝基(ENU)誘發的鼠腦腫瘤模型 時,在腫瘤中不同階段的微血管型態和功能變化可同時被 量測到。關於ENU誘發的鼠腦腫瘤模型,可參考JANGET AL於2008年發表之文獻『j NEUROSURGERY, 108:782-790』。 5 腫瘤血管造影法已被公認為腫瘤生長和轉移之生理病 φ 理學之關鍵要素。微血管型態的異常與否可用來辨別腦腫 瘤是良性或惡性。參考BULLITT ET AL於2005發表的著 作『ACAD RADIOL. 12(10): 1232-1240』,其中有詳細說明。 然而,血流和血容積資訊,對於了解腫瘤病理以選擇和評 估療法是很重要的。因此’同時監控腫瘤微血管結構的功 能和結構變化’對於判斷腫瘤活躍度以及治療效果可提供 有效的線索。 許多研究據稱可使用MRA技術以顯現血管結構,量測 22 201104276 腦腫瘤之血管結構和功能,或以MR灌注方法量測腦血液 容積(CBV),血流量,以及滲透率之血液動力學參數。 舉例來說’ BULLITT ET AL.於2007年發表的 『NEURmMAGE. 37:S116-i! 9』當中有詳細參考資$訊。然 而,這些現有的方法中沒有一個能夠同時將血管結構視覺 化並量測血液動力學參數。此外,現有的MRA方法例如 Τ ΟF和顯影劑強化(C E ) MRa只能量測較大動脈和靜脈, 但無法處理腫瘤的微血管結構。In addition, microvascular changes in tumors should provide important new clues for tumor growth and counter-treatment of treatment. 3DZ\R2-M1V [RA can be applied to angiography for visualizing live brain tumor A tubes. For example, when Rz-MMRA is applied to an ethylene subnitroso (ENU)-induced murine brain tumor model, microvascular patterns and functional changes at different stages of the tumor can be simultaneously measured. For the ENU-induced mouse brain tumor model, refer to the document "j NEUROSURGERY, 108: 782-790" published by JANGET AL in 2008. 5 Tumor angiography has been recognized as a key element in the physiological pathology of tumor growth and metastasis. Abnormalities in microvascular patterns can be used to distinguish whether a brain tumor is benign or malignant. Refer to the work published by BULLITT ET AL in 2005, "ACAD RADIOL. 12(10): 1232-1240", which is described in detail. However, blood flow and blood volume information is important for understanding tumor pathology to select and evaluate therapy. Therefore, 'simultaneous monitoring of the function and structural changes of tumor microvascular structures' can provide effective clues for judging tumor activity and therapeutic effects. Many studies have reportedly used MRA techniques to visualize vascular structures, measure the vascular structure and function of brain tumors in 2011 04276, or measure hemodynamic parameters of brain blood volume (CBV), blood flow, and permeability by MR perfusion. . For example, 'BULLITT ET AL.' published in 2007, "NEURmMAGE. 37: S116-i! 9" has a detailed reference. However, none of these existing methods are capable of simultaneously visualizing vascular structures and measuring hemodynamic parameters. In addition, existing MRA methods such as ΤF and Developer Enhanced (CE) MRa can only measure larger arteries and veins, but cannot treat the microvascular structure of the tumor.

如下段詳述’本發明的3D/\R2-MMRA可用來同時量 測正常和局部缺血之鼠體微血管的功能和結構。舉例來As described in detail below, the 3D/\R2-MMRA of the present invention can be used to simultaneously measure the function and structure of normal and ischemic mouse microvessels. For example

說 ’ LIN ET AL 於 2008 年發表的『PROCEEDING OF ISMRM 812』其中有詳盡的參考說明。此外,針對ENU誘發之鼠 腦腫瘤模型所進行的實驗顯示,高解析度3DAR2_mMRA 可用來同時估算腫瘤成長在血管型態上和CBV上的特徵 變化關聯性。 在本實驗中,鼠腫瘤模塑係以化學誘發產生。懷孕的 SPRAGUE-DAWLEY(SD)鼠最初被放置在一監牢中,在 孕期18至19日使用26號針注射具有50MG/KG的ENU (SIGMA,ST LOUIS,MO, USA)的 I.P。在斷奶後,每籠 安置兩隻同性幼子,並每週觀察病理狀態。 受到ENU注射的懷孕SD鼠所產下的一幼子,在出生 後72,145以及199天進行造影。開始時,該鼠以5%異氟 烷在1L/MIN氣流下進入麻醉。在完全麻醉後,該鼠以俯 姿放置,頭部固定在磁圈内的特製架上。異氟接著在後續 實驗中維持1L/MIN氣流下1%到1.2%之濃度。接著以 23 201104276 72MM鳥籠發射器線圈和一分離式四分表面線圈偵測訊號 而獲取影像。 - - 為了量測△&,在注射劑量為30MG/KG的氧化鐵 (RESOVIST,SCHERING AG, BERLIN,GERMANY)前後, 各做一次T2加權造影程序。施打氧化鐵對比劑後延遲一至 二分鐘才進行影像捕捉’以確保氧化鐵對比劑在血管網路 中的分布達到一穩定狀態。 T2加權造影程序係使用TR為1500MS,TEEFF為 82MS ’ ETL 為 32,平均數為 4,FOV 為 2.8 CM X 2.8 CM X 1.4 CM’ 獲取陣列為 256x256x96(零插補至 512x512x192) 的三維RARE程序。内平面解析度和切片厚度各為54 68 和 72.91 MM。 接著使用 MATLAB(MATHWORKS,NATICK, MA, USA)所寫的軟體逐個晝素計算出映射圖。根據三維/ R2映射圖,可使用容積描繪工具(丁GS,AMIRA,SAN DIEGO, CA)建立微企管結構的三雉視圖。 附件7係為使用4.7·Τ BI〇SPEC 47/4〇祖掃描器以主 動遮蔽梯度所獲取的影像。附件7(A)_7(C)係為鼠腦腫瘤某 一區域隨時間變化之T2加權影像’ ,以及3daThe "PROCEEDING OF ISMRM 812" published by LIN ET AL in 2008 has a detailed reference. In addition, experiments with ENU-induced brain tumor models have shown that high-resolution 3DAR2_mMRA can be used to simultaneously estimate the correlation of tumor growth on vascular patterns and CBV. In this experiment, murine tumor molding systems were produced by chemical induction. Pregnancy SPRAGUE-DAWLEY (SD) mice were initially placed in a jail, and I.P with 50 MG/KG ENU (SIGMA, ST LOUIS, MO, USA) was injected using a 26 gauge needle during pregnancy from 18 to 19 days. After weaning, two homosexual young children were placed in each cage and the pathological state was observed weekly. A young child born from a pregnant SD rat injected with ENU was photographed at 72, 145, and 199 days after birth. Initially, the rats entered anesthesia with 5% isoflurane under a flow of 1 L/MIN. After complete anesthesia, the rat is placed in a prone position with the head fixed to a special frame within the magnetic ring. The isofluoride was then maintained at a concentration of 1% to 1.2% under a 1 L/MIN gas flow in subsequent experiments. The image is then acquired with a 23 201104276 72MM birdcage transmitter coil and a separate quadrant surface coil detection signal. - - For the measurement of △ &, a T2 weighted contrast procedure was performed before and after the injection of 30MG/KG iron oxide (RESOVIST, SCHERING AG, BERLIN, GERMANY). Image capture is performed after one to two minutes delay after applying the iron oxide contrast agent to ensure that the distribution of the iron oxide contrast agent in the vascular network reaches a steady state. The T2-weighted contrast program uses a TR of 1500 MS, a TEEFF of 82 MS' ETL of 32, an average of 4, and a FOV of 2.8 CM X 2.8 CM X 1.4 CM' to obtain a three-dimensional RARE program with an array of 256x256x96 (zero interpolation to 512x512x192). The inner plane resolution and slice thickness are 54 68 and 72.91 MM each. The map is then calculated using the software written by MATLAB (MATHWORKS, NATICK, MA, USA). Based on the 3D/R2 map, a volumetric rendering tool (Ding GS, AMIRA, SAN DIEGO, CA) can be used to create a three-dimensional view of the micro-enterprise structure. Annex 7 is an image acquired using the 4.7·Τ BI〇SPEC 47/4 〇 扫描 scanner with active occlusion gradient. Annex 7(A)_7(C) is a T2-weighted image of a region of a mouse brain tumor that changes over time, and 3da

Rs-MMRA正常視圖以及放大視圖。 第2圖和第3圖係為腫瘤體積和整個腫瘤之从值的 量化分析。 更確切的說,附件7(A)_7(C)係為3DAR2_mmra之 T2加權影像,AR2,.正常視圖以及放大視圖之時序變化。 T2加權影像中的高亮度區域表賴瘤區域。_位置,生 24 201104276 長和異質性可透過T2加權造影程序觀察而得。T2加權影 像中最後階段(Ρ199)所示腫瘤中高亮度區域可-能是腫癟 出血。 第2圖係為腫瘤體積在Ρ145之後逐漸增加。血管在八 R2映射圖中顯現亮度,因為注射氧化鐵對比劑前後,血管 周圍產生訊號差異。這也反應出微血管CBV的生理學狀 態。 第3圖係為量化分析,顯示P145之後觀察到的腫瘤内 • 部的增加情形。很明顯地,訊號增強的情況主要發生 在P199 (附件7(B))中腫瘤核心區域。為了觀察腫瘤内部 微血管結構的變化,整個腫瘤的體積繪製,係從整個三維 T2加權影像中觀察腫瘤區域外觀輪廓,再搭配3DA R2-MMRA混合描繪而成。從P72到P199可觀察脈管大小 和密度的逐漸增加,呈現出高度脈管基因活動。 因此,根據本發明的原理,腫瘤血管造影法於不同階 段可提供腫瘤生長和轉移的新觀點,使相關的3D △ ® R2-MMRA可同時監控微血管結構和功能的變化。 第4圖係為描繪活體微血管結構和使用3D △ R2-MMRA產生血管之血液動力資料的三維造影方法100 的流程圖。控制開始於步驟102。在步驟104中,對一受 測體進行一第一次T2加權造影程序,以在注射氧化鐵對比 劑至該受測體之前,產生第一次T2加權影像。在步驟106 中,當該受測體被施打氧化鐵對比劑後,等待一段時間並 進行一第二次T2加權造影程序,以產生第二次T2加權影 像。在步驟108中,暫存該第一和第二次T2加權影像以產 25 201104276 生 切,第2貝料和一第二暫存資料。在步驟no _,裁 貧料和-第二裁切資料。 生弟裁 -裁切次=12中’根據該苐—裁切資料中的晝素和該第 i 應晝素,產生—从映射圖。在步驟⑴ #用R2映射圖建立一三維映射圖。在步驟116中, 牛驟118 7或VR,根據該三維映射圖產生三維影像。在 體微血㈣構製活 勒力貝料。在步驟12〇中,繪製έ士罢 ==學參數可用來判定微血管結構中的功能性:結 =(例如在腫瘤中)。步驟122結束本控制流程。 管仕_ 錢的實簡,用崎製活體微血 s、,,.構的二維衫像,並使用3DAR2姻 液動力資料。該系铋9nn a人 々皿s座生血 、针这系統200包含一 MRA裝置2〇2, =處理模組删,以及_顯4元細。該他 = :透=2°8。一使用者(未圖示)操控該·Α巢置 劑注射至該受測體208中。應資钭户:〗&化鐵對比 A裝置202獲取的資:二:,模組204處裡由 n W貝枓,並於顯不早元206上顯千- 力學參數的其他資料。使用者解讀C 早兀206上的-貝訊以診斷該受測體2〇8的 貝‘ MRA資料處理模級 / T2WI模组212,士 匕3 枓戴取模組210、 R2映射模組218…三維映射模組220Rs-MMRA normal view and enlarged view. Figures 2 and 3 are quantitative analyses of tumor volume and the value of the entire tumor. More specifically, Annex 7(A)_7(C) is the T2 weighted image of 3DAR2_mmra, the AR2, the normal view, and the timing change of the magnified view. The high-brightness area in the T2-weighted image represents the tumor area. _ position, health 24 201104276 Long and heterogeneity can be observed through the T2-weighted contrast program. In the final stage of the T2-weighted image (Ρ199), the high-brightness area in the tumor can be swollen. Figure 2 shows that the tumor volume gradually increases after Ρ145. The blood vessels showed brightness in the eight R2 map because of signal differences around the blood vessels before and after the injection of the iron oxide contrast agent. This also reflects the physiological state of microvascular CBV. Figure 3 is a quantitative analysis showing the increase in the internal tumors observed after P145. Clearly, signal enhancement occurs primarily in the core area of the tumor in P199 (Annex 7(B)). In order to observe the changes of microvascular structure inside the tumor, the volume of the whole tumor was drawn, and the outline of the tumor area was observed from the whole three-dimensional T2-weighted image, and then mixed with 3DA R2-MMRA. From P72 to P199, a gradual increase in vessel size and density was observed, showing a high degree of vascular gene activity. Thus, in accordance with the principles of the present invention, tumor angiography provides a new perspective on tumor growth and metastasis at different stages, allowing the associated 3D Δ ® R2-MMRA to simultaneously monitor changes in microvascular structure and function. Figure 4 is a flow diagram depicting a three-dimensional imaging method 100 for living microvascular structures and hemodynamic data for the production of blood vessels using 3D Δ R2-MMRA. Control begins in step 102. In step 104, a first T2-weighted contrast procedure is performed on a subject to generate a first T2-weighted image prior to injecting the iron oxide contrast agent to the subject. In step 106, after the subject is administered the iron oxide contrast agent, it waits for a period of time and performs a second T2-weighted contrast procedure to produce a second T2-weighted image. In step 108, the first and second T2-weighted images are temporarily stored to produce 25 201104276 raw, second bedding and a second temporary data. In step no _, cut the poor material and - the second cutting data. The birth of a younger brother - the number of cuts = 12 in the 'by the 苐 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁In step (1) # create a three-dimensional map with the R2 map. In step 116, the cow 1117 or VR generates a three-dimensional image based on the three-dimensional map. In the body micro blood (four) to construct live Leli bait. In step 12, drawing a gentleman's == learning parameter can be used to determine the functionality in the microvascular structure: knot = (eg in a tumor). Step 122 ends the control flow. Guan Shi _ The simplicity of the money, using the two-dimensional shirt image of the s,,,. The system 铋 9nn a person 々 s s seat blood, needle system 200 contains an MRA device 2 〇 2, = processing module deleted, and _ display 4 yuan fine. The he = : through = 2 ° 8. A user (not shown) manipulates the injection of the nest into the subject 208. Responsible for the household: 〗 〖 & iron comparison A device 202 obtained the capital: two:, module 204 at the n W shellfish, and display the thousands of other parameters of the mechanics parameters. The user interprets the -Bex on the early morning 206 to diagnose the subject's MRA data processing module/T2WI module 212, the gentry 3 枓 wear module 210, and the R2 mapping module 218. ...three-dimensional mapping module 220

A 暫存模組·214,—戴切模組216, 維造影槔挺 26 201104276 222’ 一血液動力資料模組224,一控制模組226,以及一 緣圖控祕組細。該控制模組226可包含—使用者界面 (未圖示、),供使用者輸入指令以控制裝置。 該資料戴取模組210從MRA裝置2〇2中獲取受 的資料。T2WI模組212,暫存模組214,截切模組216, △ R2映射模組218’三維映射獅細’三料影模組從, 血液動力資料模組224和繪圖控制模組228進行 R2 MMRA。控制模組226控制MRA裝置搬和 r2-mmra。顯示單元206顯示3DAR2_mmra產生的輸出 結果。該輸出結果包含3DAR2_MMRA同時產生的微血管 結構的二維影像,以及受測體2〇8的血管的血液動力資料。 义T2WI模組212在受測體2〇8被注射氧化鐵對比劑之 則針對由裝置202接收到的資料進行一第一 並產生一第一次T2加權影像資料。該受測 體208被注射氧化鐵對比劑之後的一段特定時 τ讀模組212進行第二次Τ2加權造影程序並產生: 二人Τ2加權影像資料。暫存模組214對該一一 =影像資料進行暫存,產生—第—暫存資料和―一第人一丁2 存:貝料。截切模組216將該第一暫存資料和第n 裁切,以產生一第一裁切資料和一第二裁切資^貝料 ^R2映射模組218根據該第一裁切資料令的 第一裁切#料中的對應晝素,產生—△〜映了—、“ =叫艮據該映射圖產生一三維映射圖。 衫拉組议根據該三維映射圖產生該受測體 像該血官包含靜脈,靜脈竇,小動脈,小靜脈, 27 201104276 以及微血管至少其+之—。該三維造 R2-mmra ^ ^ . ^f, ^ 不靈敏’所以可描繪血管的活體微企管結:體(例如血液) 224 9Π"δ 微血管液體容積資料。顯干單- 2〇6顯示三維影像中的微血管 “ :控制模組228使用最大亮度投射和體積::=;、: 控制該三維影像中微血管結構和血液A temporary storage module · 214, - wearing module 216, dimensional contrast 26 26 201104276 222' a hemodynamic data module 224, a control module 226, and a margin map control group fine. The control module 226 can include a user interface (not shown) for the user to enter commands to control the device. The data capture module 210 acquires the received data from the MRA device 2〇2. The T2WI module 212, the temporary storage module 214, the cutting module 216, the ΔR2 mapping module 218' three-dimensional mapping lion thin 'three-shadow module from the hemodynamic data module 224 and the drawing control module 228 for R2 MMRA. Control module 226 controls the MRA device to move and r2-mmra. Display unit 206 displays the output produced by 3DAR2_mmra. The output contains a two-dimensional image of the microvascular structure produced simultaneously by 3DAR2_MMRA, and hemodynamic data of the blood vessels of the subject 2〇8. The T2WI module 212 performs a first shot on the data received by the device 202 and generates a first T2-weighted image data when the object 2〇8 is injected with the iron oxide contrast agent. The subject 208 is subjected to a second Τ2-weighted contrast procedure after a specific period of time after the injection of the iron oxide contrast agent τ reading module 212 and produces: two-person Τ 2 weighted image data. The temporary storage module 214 temporarily stores the one-to-one image data, and generates a -first temporary storage data and a "first person" storage: bedding. The cutting module 216 cuts the first temporary data and the nth to generate a first cutting data and a second cutting resource ^R2 mapping module 218 according to the first cutting data order The first cut # corresponding 昼 in the material, produces - △ ~ reflected -, " = 艮 产生 according to the map to generate a three-dimensional map. The shirt pull group based on the three-dimensional map to generate the measured body image The blood official consists of veins, venous sinuses, arterioles, venules, 27 201104276 and microvessels at least +. The three-dimensional R2-mmra ^ ^ . ^f, ^ insensitive 'so can describe the in vivo microvascular junction of blood vessels : Body (eg blood) 224 9Π"δ Microvascular fluid volume data. Descriptive dry - 2〇6 shows microvessels in 3D images": Control module 228 uses maximum brightness projection and volume::=;,: Control the 3D image Microvascular structure and blood

控制模組226利用控制該MRA裝置202的 面’來控制該三維影像的解析度.。舉例來說,該控制模$ 解 置2G2的造影靈敏度來控制該三維影像t 解析度。該控制換組226控制該MRA震置如的謂 ,制該三維影像的解析度。難麵組226㈣該^ 裝置202的再聚焦脈衝來控制該三維影像的解析度” 外,控制模組226也可藉由控制資料截取模紐21〇使用白 一獲取陣列之大小,來控制該三維影像的解析度。 3DAR2_MMRA有諸多益處。舉例來說,三維造影模 組222可繪製至三維影像中血管的内皮層和底皮層微血管 結構至少其中之一。三維造影模組222可描繪受測體2〇8The control module 226 controls the resolution of the three-dimensional image by controlling the face of the MRA device 202. For example, the control mode $ resolves the contrast sensitivity of 2G2 to control the stereoscopic image t resolution. The control change group 226 controls the MRA to be set to determine the resolution of the three-dimensional image. The difficult-to-face group 226(4) the refocusing pulse of the device 202 controls the resolution of the three-dimensional image. In addition, the control module 226 can also control the three-dimensional image by controlling the data intercepting module 21 to obtain the size of the array. The resolution of the image. 3DAR2_MMRA has many advantages. For example, the three-dimensional contrast module 222 can draw at least one of the endothelial layer and the subcortical microvascular structure of the blood vessel in the three-dimensional image. The three-dimensional contrast module 222 can depict the subject 2 〇8

中具有慢速移動自旋體的内皮層小動脈和内皮層小靜脈至 少其中之/。二維造影模組222可根據對假性流動現象包 含血管中的紊流和悸動不靈敏的磁化率效應產生三維影 像。三維造影模組222在對受測體2〇8的空氣·組織界面^ 由磁場不均造成的幾何變形不敏感的前提下產生三維3 28 201104276 像。三維造影模組222在對由受測體2〇8組織不速續造成 的磁化率變化不敏感的前提下產生三維影像。三維造影模 組222產生的三維影像,可顯現受測體2⑽_扃部缺血的 活體顯微血管造影程序。三維造影模組222產生的三維影 像可在焚測體2〇8中的機能障礙區中有組織壞死前提下進 行損壞區域中的血管造影。 除此之外,三維造影模組222可描繪受測體208中一 ^腫瘤的微1"管結構的三維影像、血液動力資料模組224可 使用3DAR2_Mmra同時量測與腫瘤相關的血液動力學參 數此外’微血管結構在功能性和結構性上的改變也可根 據該三維影像和3DAR2_MMRA產生的血液動力學參數 场判定。 雖…:本發明以較佳實施例說明如上,但可以理解的是 ,發明的範圍未必如此限定。相對的,任何基於相同精= 或對^發明所屬技術領域中具有通常知識者為顯而易見的 •改良皆在本發明涵蓋範圍内。因此專利要求範圍必須以吾 廣義的方式解讀。 29 201104276 【圖式簡單說明】 附件1(A)係為鼠腦的高對比高解析度T2加權造与” 狀位視圖; 附件1(B)係為鼠腦的注射顯影劑後高解析度τ2加 造影冠狀位視圖; 附件1(C)係為鼠腦冠狀位視圖的映射圖之實施 例; ^ 附件2(A)係為一鼠腦冠狀位視圖的三維穩態式的 艨積繪製實施例,以及非關流量的顯微磁振血管造影術; 附件2(B)係為附件2(A)之小角度偏移所突顯出Τ的小腦 Ιί域; 附件2(C)係為與附件2(A)對應的血管照片; 附件2(D)係為使用3DAR2-MMRA的侧視圖; 附件2(E)係為與附件2(D)對應的血管照片; 附件3(A)至3(C)係為腦中小血管,小動脈及小靜脈的 ;面結構圖; 附件4(A)係為本發明實施例所產生的微血管結構圖; 附件4(B)係為TOF-MRA所產生的微血管結構圖; 附件5(A)係為一鼠吸收60分鐘的MCA的七天後所產 生的三維資料組中,以56.68MM之内解析度和5〇〇mm之 切片厚度在不同位置所產生的軸向T2加權影像; 附件5(B)係為在附件5(A)相同切片位置的3D△ h-MMRA體積繪製之實施例; • 附件,6係為上矢狀靜脈竇之腦血管視圖; 201104276 附件7(A)-7(C)係為乙基亞硝酸尿素(ENU)引發的鼠 腦腫瘤之3DAR2-MMRA -之· Τ2加權影像,ar2,正常視 圖以及放大視圖的時間變化圖; 第1圖係為本發明實施例之一,注射RESOVIST之後 的上矢狀靜脈竇之腦血管訊號強度; 第2圖係為鼠腦腫瘤之體積量化分析; 第3圖係為鼠腦腫瘤之^R2數值量化分析; 第4圖係為使用三維r^-MMRA產生活體微血管結構 • 的三維影像以及血管動力學資料的方法之流程圖;以及 第5圖係為使用3DAR2_M]V[RA產生活體微金管結構 之二維影像以及血管動力學資料的系統功能區塊圖。 【主要元件符號說明】 202 MRA裝置 206顯示單元 210資料截取模組 214暫存模組 218 映射模組 222三維造影模組 226控制模組 200系統 204 MRA資料處理模組 馨 208受測體 212T2WI 模組 216截切模組 220三維映射模組 224血液動力資料模組 228繪圖控制模組 31Endothelial small arteries and endothelial venules with slow moving spins are at least /. The two-dimensional contrast module 222 can produce a three-dimensional image based on a magnetic susceptibility effect that is impeding turbulence and turbulence in the blood vessel. The three-dimensional contrast module 222 generates a three-dimensional image on the premise that the air/tissue interface of the subject 2〇8 is insensitive to the geometric deformation caused by the magnetic field unevenness. The three-dimensional contrast module 222 generates a three-dimensional image on the premise that it is insensitive to changes in the magnetic susceptibility caused by the unsteady tissue of the subject 2〇8. The three-dimensional image generated by the three-dimensional imaging module 222 can visualize the living body microscopic angiography procedure of the subject 2 (10) _ ankle ischemia. The three-dimensional image produced by the three-dimensional contrast module 222 can perform angiography in the damaged area under the condition of tissue necrosis in the dysfunctional area in the incineration body 2〇8. In addition, the three-dimensional contrast module 222 can depict a three-dimensional image of a microscopic 1"tube structure in the subject 208, and the hemodynamic data module 224 can simultaneously measure tumor-related hemodynamic parameters using 3DAR2_Mmra. In addition, the functional and structural changes of the microvascular structure can also be determined from the three-dimensional image and the hemodynamic parameter field generated by 3DAR2_MMRA. Although the present invention has been described above by way of preferred embodiments, it is to be understood that the scope of the invention is not necessarily limited. In contrast, any modifications that are apparent to those of ordinary skill in the art to which the invention pertains may be made within the scope of the invention. Therefore, the scope of patent claims must be interpreted in a broad sense. 29 201104276 [Simple description of the schema] Annex 1 (A) is a high-contrast and high-resolution T2 weighted rat with a "situ view"; Annex 1 (B) is a high-resolution τ2 after injection of a rat brain Adding a contrasting coronal view; Annex 1 (C) is an example of a map of the coronal view of the rat brain; ^ Annex 2 (A) is a three-dimensional steady-state convolutional mapping example of a rat coronal view And microscopic magnetic angiography of non-compressed flow; Annex 2 (B) is the cerebellar Ι 域 field highlighted by the small angular offset of Annex 2 (A); Annex 2 (C) is attached to Annex 2 (A) Corresponding blood vessel photograph; Annex 2 (D) is a side view using 3DAR2-MMRA; Annex 2 (E) is a blood vessel photograph corresponding to Annex 2 (D); Annex 3 (A) to 3 (C) ) is a small blood vessel, small artery and venule in the brain; surface structure diagram; Annex 4 (A) is the microvascular structure diagram produced by the embodiment of the present invention; Annex 4 (B) is the microvascular generated by TOF-MRA Structure Figure; Annex 5 (A) is a three-dimensional data set generated after seven days of absorption of a 60-minute MCA in a mouse, with a resolution of 56.68 mm and a slice thickness of 5 mm. An axial T2-weighted image produced at the same position; Annex 5 (B) is an example of a 3D Δ h-MMRA volume plot at the same slice position in Annex 5 (A); • Attachment, 6 series is the superior sagittal sinus Cerebrovascular view; 201104276 Annex 7(A)-7(C) is a 3DAR2-MMRA-之2 weighted image of rat brain tumor induced by ethyl nitrite (ENU), ar2, normal view and enlarged view Time change graph; Fig. 1 is a diagram showing the intensity of cerebrovascular signal of the superior sagittal sinus after injection of RESOVIST; FIG. 2 is a quantitative analysis of the volume of the mouse brain tumor; [R2 numerical analysis of brain tumors; Figure 4 is a flow chart of a method for generating three-dimensional images of living microvascular structures using three-dimensional r^-MMRA and vascular kinetic data; and Figure 5 is the use of 3DAR2_M]V [ RA generates a two-dimensional image of the living micro-gold tube structure and a system function block diagram of the vascular dynamics data. [Main component symbol description] 202 MRA device 206 display unit 210 data interception module 214 temporary storage module 218 mapping module 222 three-dimensional Contrast module 226 control 204 MRA system module 200 data processing module 208 Xin test body 212T2WI cutter module 216 module 220 module 224 hemodynamic 3D mapping data mapping module 228 control module 31

Claims (1)

201104276 七、申請專利範圍: L一種造影方法,包含: - 、_ * 一 .,〜办 對雙測體進行一第一次T2加權造影程序; 在進行該第一次T2加權造影程序後,將一氧化鐵對比 劑注射至該受測體中; 等待一特定時間之後,對該受測體進行一第二次τ2 加權造影程序; 暫存該第一和第二次T2加權造影程序之結果以產生鲁 一第一暫存資料和一第二暫存資料; 裁切該第一暫存資料和該第二暫存資料,以產生一第 一裁切資料和一第二裁切資料; 根據該第—裁切資料中的晝素和該第二裁切資料中的 對應晝素,產生一ar2映射圖;以及 根據該映射圖建立一三維映射圖。 2.如申請專利範圍第1項所述之造影方法,進一步包· 含:在對-血管中之流動不敏感的情形下,根據該三維映 射圖產生該受測體的血管的三維影像;其中該受測體的血 管包含靜脈,靜脈竇,小動脈,小靜脈和微血管。 3·如申請專利範圍第1項所述之造影方法,進一步包 含: ”根據該三維映射圖’為該受測體的血管建立活體微血 官結構和微血管液體容積資料;其中該受測體的血管包含, 32 201104276 靜脈,靜脈竇’小動脈,小靜脈和微血管其中之〆。 -4.一種造影方法,包含: 在對血管中流動不敏感的前提下,產生金管的/多維 影像,包含一受測體的微血管;以及 根據該三維影像為該金管建立活體微血管結構f科从 及微血管液體容積資料。201104276 VII, the scope of application for patents: L A method of angiography, including: -, _ * a., ~ do a first T2 weighted contrast program on the dual test body; after the first T2 weighted contrast program, will The iron oxide contrast agent is injected into the subject; after a certain time, a second τ2 weighted contrast procedure is performed on the subject; the results of the first and second T2-weighted contrast procedures are temporarily stored. Generating a first temporary storage data and a second temporary storage data; and cutting the first temporary storage data and the second temporary storage data to generate a first cutting data and a second cutting data; First, the pixels in the cropped data and the corresponding pixels in the second cropped data generate an ar2 map; and a three-dimensional map is created according to the map. 2. The method of contrast according to claim 1, further comprising: generating a three-dimensional image of the blood vessel of the subject according to the three-dimensional map in a case where the flow in the blood vessel is not sensitive; The blood vessels of the subject include veins, venous sinuses, arterioles, venules and microvessels. 3. The method of contrast according to claim 1, further comprising: “establishing a living micro-blood structure and microvascular volume data for the blood vessel of the subject according to the three-dimensional map; wherein the subject is Vascular containment, 32 201104276 Intravenous, venous sinus 'small arteries, venules and microvessels among them. -4. An imaging method, including: producing a multi-dimensional image of a golden tube, containing one, without being sensitive to flow in the blood vessel, including The microvessels of the subject; and the living microvascular structure f and the microvascular fluid volume data are established for the gold tube according to the three-dimensional image. 5.如申請專利範圍第4項所述之造影方法,進〆少包 含:根據穩態三維式的顯微磁振血管造影術 (3DAR2_mMRA)產生該三維影像,包含: 對該受測體進行一第一次T2加權造影程序; 在進行該第-次T2加權造影程序之後對該受測醴注 射一氧化鐵對比劑; 在對該受測體進行—第二次T2加權造影程序之前等 待一段時間; —暫存該第-和第二次T2加權造影程序的結果以產生 一第一暫存資料和一第二暫存資料; 裁切該第-暫存資料和該第二暫存資料以產生一第 一裁切資料和一第二裁切資料; 根據該第-裁切資料中的晝素和該第二裁切資料中的 對應晝素,產生一ar2映射圖; •根據該AR2映射圖建立一三維映射圖;以及 根據該三維映射圖產生該三維影像。 33 201104276 人.6.如申請專利範圍第4項所述之造影方法,進一步包 生至少包含靜脈,靜脈f,小動脈,小靜脈以及微 官,、中之一的該三維影像。 含: 7·如申請專利範圍第4項所述之造影方法,進一步包 顯微血管結 繪製該三維影像中之企管内皮層和底皮層 構至少其中之一。^ .1 8.如申請專利範圍第4項所述之造影方法,進一步包 使用最大強度投射術或體積繪製術至少其中之一繪製 該三維影像中之微*管結構並產生該微A管液體容㈣ 含: 9.如申睛專利範圍第4項所述之造影方法,一 進一步包 從該三維影像中辨認該受測體中具有慢速移動自旋體 之内皮層小動脈和内皮層小靜脈至少其中之一。 人10·如申請專利範圍帛4項所述之造影方法進—步包 含·根據對假性流動現象不敏感的一磁化率產生該三維影 像,其中該假性流動現象包含該血管中的蒼流和脈動之至 少其中之一。 11.如申請專利轉圍第4項所述之造影方法,進一步包 含:在對該4測體中由空氣餘織界㈣磁料均造^ 34 201104276 一幾何失真不敏感的前提下產生該三維影像。 12. 如申請專利範圍第4項所述之造影方法,進一步包 含:在對該受測體組織特性的不連續性造成的磁場不均之 變化不敏感的前提下產生該三維影像。 13. 如申請專利範圍第4項所述之造影方法,進一步包 含:根據該三維影像在該受測體的局部缺血處進行活體顯 微血管造影程序。 14. 如申請專利範圍第4項所述之造影方法,進一步包 含:在該受測體的一機能障礙區有組織壞死情形時根據該 三維影像追蹤血管的造影。 15. —種量測方法,包含: 使用穩態三維AR2式顯微磁振血管造影術 (3DZ\R2-mMRA)繪製一受測體中之一腫瘤之微血管結構的 一三維影像;以及 使用該3DZ\R2-mMRA量測血液動力學參數,包含該 腫瘤的血容積,血流量,以及血管滲透性至少其中之一。 16. 如申請專利範圍第15項所述之量測方法,進一步 包含: 根據該三維影像和該血液動力學參數判斷該微血管結 構的功能和結構改變。 17. 如申請專利範圍第15項所述之量測方法,其中該 3DAR2-mMRA 包含: 35 201104276 對該受測體進行一第一次T2加權造影程序; ..... 在進行該第一次Τ2加權造影程序後,將一氧化鐵對比 劑注射至該受測體中; 在對該受測體進行一第二次Τ2加權造影程序之前等 待一特定時間; 暫存該第一和第二次Τ2加權造影程序之結果以產生 一第一暫存資料和一第二暫存資料; 裁切該第一暫存資料和該第二暫存資料,以產生一第 · 一裁切資料和一第二裁切資料; 根據該第一裁切資料中的晝素和該第二裁切資料中的 對應晝素,產生一 AR2映射圖; 根據該映射圖建立一三維映射圖;以及 根據該三維映射圖產生該三維影像。 18. 如申請專利範圍第15項所述之量測方法,進一步 包含:根據該三維映射圖產生該三維影像並量測該血液動 籲 力學參數。 19. 一種造影系統,包含: 一 Τ2加權造影模組,用以對一受測體進行一第一次 Τ2加權造影程序,並在對該受測體注射一氧化鐵對比劑之 後進行一第二次Τ2加權造影程序; 一暫存模組,用以暫存該第一和第二次Τ2加權造影程 序之結果以產生一第一暫存資料和一第二暫存資料; 36 201104276 一裁切模組,用以裁切該第一暫存資料和該第二暫存 貢料,以產生-第—裁切資料和—第二裁切資料; 一映射模組,用以根據該第一裁切資料中的晝素 和該第二裁切資料中的對應晝素,產生映射圖;以 及 一三維映射模組,用以根據該映射圖建立一三維 映射圖。 20·如申請專利範圍第19項所述之造影系統,進一步 ^ 3 一維4衫模組,用以在對一血管中之流動不敏感的 情形下,根據該三維映射圖產生該受測體的企管的三維影 像,其中該文測體的血管包含靜脈,靜脈竇,小動脈,小 靜脈和微血管。 21. 如申請專利範圍第19項所述之造影系統,進一步 包含一血液動力資料模組,用以根據該三維映射圖產生血 液動力貧料,包含該受測體的血管的微血管液體容積資 料;其中該血管包含靜脈,靜脈竇,小動脈,小靜脈和微 血管其中之一。 22. —種量測系統,包含: 一三維影像模組’用以在對血管中流動不敏感的前提 下,產生血管的—三維影像,包含一受測體的微血管;其 中該三雀影像繪製該血管的活體微血管結構資料,該血管 包含靜脈,靜脈竇,小動脈,小靜脈和微血管其中之一· 37 r 201104276 以及 一—.一血液動力資料模組,用以·根據該三維影像產生血液 動力資料,包含該血管的微血管液體容積資料。 23. 如申請專利範圍第22項所述之量測系統,其中該 三維影像模組根據穩態三維△ R 2式的顯微磁振血管造影術 (3DZ\R2-mMRA)產生該三維影像,以及該血液動力資料模 組根據該3D/\R2-mMRA產生該血液動力貢料。 24. 如申請專利範圍第22項所述之量測系統,進一步 _ 包含: 一 T2加權造影模組,用以對一受測體進行一第一次 T2加權造影程序,並在對該受測體注射一氧化鐵對比劑之 後進行一第二次T.2加權造影程序; 一暫存模組,用以暫存該第一和第二次T2加權造影程 序之結果以產生一第一暫存資料和一第二暫存資料; 一裁切模組,用以裁切該第一暫存資料和該第二暫存 籲 資料,以產生一第一裁切資料和一第二裁切資料; 一 AR2映射模組,用以根據該第一裁切資料中的晝素 和該第二裁切資料中的對應晝素,產生一 AR2映射圖;以 及 一三維映射模組,用以根據該AR2映射圖建立一三維 映射圖。 25. 如申請專利範圍第23項所述之量測系統,其中: 38 201104276 該三維影像模組根據該三維映射圖產生該三維影像; 以及 …+ 該血液動力資料模組根據該三維映射圖產生該血液動 力資料。 26. 如申請專利範圍第22項所述之量測系統,進一步 包含: 一繪製控制模組,用以使用最大強度投射術或體積繪 • 製術至少其中之一繪製該三維影像中之微血管結構並產生 該微血管液體容積資料。 27. 如申請專利範圍第22項所述之量測系統,進一步 包含: 一資料獲取模組,用以使用一獲取陣列從一磁振裝置 獲取該受測體上的資料;以及 一控制模組,用以藉由控制該獲取模組的大小,該磁 • 振裝置的影像敏感度,控制該三維影像的解析度,該磁振 裝置的視野大小,以及該磁振裝置的再聚焦脈衝至少其中 之一 ° 28. 如申請專利範圍第22項所述之量測系統,其中該 三維影像模組繪製該三維影像中之血管内皮層和底皮層顯 微血管結構至少其中之一。 29. 如申請專利範圍第22項所述之量測系統,其中該 三維影像模組產生該受測體中具有慢速移動自旋體之内皮 39 201104276 曰小動脈和内皮層小靜脈至少其中之一的解析圖。 -唯旦,Γ申射利範圍第22項所述之量測系統,其中.該-· ==像模組根據對假性流動現象不敏感的一磁化率產生 像’其中該假性流動現象包含該灰管中的紊流和 脈動之至少其中之一。 二請專利範圍第22項所述之量測系統,其中該 、、、且在對該χ測體中由空氣與組織界面的磁場不 成的—幾何失真不敏感的前提下產生該三維影像。 3旦2.如申請專·圍第22項所述之量料統,其中該 了’衫像模組在對該受測體組織特性的不連續性造成的磁 场不均之變化不敏感的前提下產生該三維影像。 33.如申請專利範圍第22項所述之系統,其中該三維 影像模組根據該三維影像在該受測體的局部缺血處進行活 體顯微血管造影程序。 34. 如申請專利範圍第22項所述之量測系統,其中該· 三維影像模組在該受測體的一機能障礙區有組織壞死情形 時產生該三維影像以顯示該機能障礙 35. -種量測系統,包含: 一三維影像模組’使用穩態三維他式顯微磁振血管 造影術即觸-視^)繪製一受測體中之一腫瘤之微血管 ,结構的一寻維影像;以及 一血液動力資料模組,使用該3DAR2_mMRA量測血 201104276 液動力學參數,包含該腫瘤的血容積,血流量,以及血管 滲透性至少其中之一。 36. 如申請專利範圍第35項所述之量測系統,進一步 包含: 一 T2加權造影模組,用以對一受測體進行一第一次 T2加權造影程序,並在對該受測體注射一氧化鐵對比劑之 後進行一第二次T2加權造影程序; • 一暫存模組,用以暫存該第一和第二次T2加權造影程 序以產生一第一暫存資料和一第二暫存資料; 一裁切模組,用以裁切該第一暫存資料和該第二暫存 資料,以產生一第一裁切資料和一第二裁切資料; 一 AR2映射模組,用以根據該第一裁切資料中的晝素 和該第二裁切資料中的對應晝素,產生一AR2映射圖;以 及 鲁 一三維映射模組,用以根據該AR2映射圖建立一三維 映射圖。 37. 如申請專利範圍第36項所述之量測系統,其中該 三維影像模組根據該三維映射圖產生該三維影像,而該血 液動力學模組根據該三維映射圖產生該血液動力資料。 r Γ 415. The angiography method according to claim 4, wherein the angiography comprises: generating the three-dimensional image according to a steady-state three-dimensional microscopic magnetic angiography (3DAR2_mMRA), comprising: performing one on the subject a first T2-weighted contrast procedure; injecting a ferric oxide contrast agent into the test sputum after performing the first-time T2-weighted contrast procedure; waiting for a period of time before performing a second T2-weighted contrast procedure on the subject - temporarily storing the results of the first and second T2-weighted contrast procedures to generate a first temporary storage data and a second temporary storage data; cutting the first temporary storage data and the second temporary storage data to generate a first cropping data and a second cropping data; generating an ar2 map according to the pixels in the first cropping data and the corresponding pixels in the second cropping data; • according to the AR2 map Establishing a three-dimensional map; and generating the three-dimensional image according to the three-dimensional map. 33 201104276. The angiography method of claim 4, further comprising the three-dimensional image comprising at least one of a vein, a vein f, a small artery, a small vein, and a micro-command. Including: 7. The method of contrast according to item 4 of the patent application, further comprising a microvascular knot to draw at least one of the endothelial layer and the endothelium layer in the three-dimensional image. ^ .1 8. The contrast method of claim 4, further comprising drawing the micro-tube structure in the three-dimensional image using at least one of maximum intensity projection or volume rendering and generating the micro A tube liquid容(四) Contains: 9. The angiography method according to item 4 of the scope of the patent application, further identifying from the three-dimensional image that the small layer of the endothelial layer and the endothelium having a slow moving spin in the subject are small At least one of the veins. The method of imaging according to claim 4, wherein the method comprises: generating the three-dimensional image according to a magnetic susceptibility that is insensitive to a pseudo-flow phenomenon, wherein the pseudo-flow phenomenon comprises a convection in the blood vessel And at least one of the pulsations. 11. The method of angiography according to item 4 of the patent application, further comprising: generating the three-dimensional image under the premise that the air-texture boundary (4) magnetic material is insensitive to a geometric distortion in the four objects. image. 12. The contrast method of claim 4, further comprising: generating the three-dimensional image on the premise that the variation of the magnetic field unevenness caused by the discontinuity of the tissue property of the test object is insensitive. 13. The method of contrast according to claim 4, further comprising: performing a live angiography procedure at the ischemic portion of the subject according to the three-dimensional image. 14. The method of contrast according to claim 4, further comprising: tracking the angiography of the blood vessel based on the three-dimensional image when there is a tissue necrosis in a dysfunctional region of the subject. 15. A method for measuring, comprising: drawing a three-dimensional image of a microvascular structure of a tumor in a subject using a steady-state three-dimensional AR2 microscopic magnetic angiography (3DZ\R2-mMRA); and using the 3DZ\R2-mMRA measures hemodynamic parameters, including at least one of blood volume, blood flow, and vascular permeability of the tumor. 16. The method of measuring according to claim 15, further comprising: determining a functional and structural change of the microvascular structure based on the three-dimensional image and the hemodynamic parameter. 17. The method according to claim 15, wherein the 3DAR2-mMRA comprises: 35 201104276 performing a first T2-weighted contrast procedure on the subject; ..... performing the first After the second Τ2 weighted angiography procedure, the iron oxide contrast agent is injected into the subject; waiting for a specific time before performing a second Τ2-weighted contrast procedure on the subject; temporarily storing the first and second a result of the second Τ2 weighted angiography procedure to generate a first temporary storage data and a second temporary storage data; cutting the first temporary storage data and the second temporary storage data to generate a first cropping data and a a second cropping data; generating an AR2 map according to the pixels in the first cropping data and the corresponding pixels in the second cropping data; establishing a three-dimensional map according to the map; and according to the three-dimensional map The map produces the 3D image. 18. The method of measuring according to claim 15, further comprising: generating the three-dimensional image according to the three-dimensional map and measuring the blood dynamics parameter. 19. An imaging system comprising: a 加权2-weighted contrast module for performing a first Τ2-weighted contrast procedure on a subject and performing a second after injecting a ferric oxide contrast agent into the subject a secondary 加权2 weighted angiography program; a temporary storage module for temporarily storing the results of the first and second Τ2 weighted angiography procedures to generate a first temporary storage data and a second temporary storage data; 36 201104276 a cutting a module for cutting the first temporary storage data and the second temporary storage material to generate a -first cutting data and a second cutting data; a mapping module for using the first cutting Cutting the pixels in the data and the corresponding pixels in the second cutting data to generate a map; and a three-dimensional mapping module for establishing a three-dimensional map according to the map. 20. The imaging system according to claim 19, further comprising: a one-dimensional four-shirt module for generating the subject according to the three-dimensional map in a case where the flow in a blood vessel is not sensitive A three-dimensional image of the business, in which the blood vessels of the body contain veins, venous sinuses, small arteries, venules and microvessels. 21. The angiography system of claim 19, further comprising a hemodynamic data module for generating a hemodynamic lean material according to the three-dimensional map, comprising microvascular fluid volume data of the blood vessel of the subject; The blood vessel includes one of a vein, a sinus, a small artery, a small vein, and a microvessel. 22. A measurement system comprising: a three-dimensional image module for generating a three-dimensional image of a blood vessel under the premise of being insensitive to flow in a blood vessel, comprising a microvessel of a subject; wherein the image of the three birds is drawn The in vivo microvascular structure of the blood vessel, the blood vessel comprising one of a vein, a venous sinus, a small artery, a small vein and a microvessel. 37 r 201104276 and a blood dynamic data module for generating blood according to the three-dimensional image Power data, including microvascular fluid volume data for the blood vessel. 23. The measurement system of claim 22, wherein the three-dimensional image module generates the three-dimensional image according to a steady-state three-dimensional ΔR 2 type microscopic magnetic angiography (3DZ\R2-mMRA), And the hemodynamic data module generates the hemodynamic tribute according to the 3D/\R2-mMRA. 24. The measurement system of claim 22, further comprising: a T2-weighted contrast module for performing a first T2-weighted contrast procedure on a subject and testing the subject a second T.2 weighted contrast procedure after injecting the ferric oxide contrast agent; a temporary storage module for temporarily storing the results of the first and second T2-weighted contrast procedures to generate a first temporary storage Data and a second temporary storage data; a cutting module for cutting the first temporary storage data and the second temporary storage data to generate a first cutting data and a second cutting data; An AR2 mapping module is configured to generate an AR2 map according to the pixels in the first cutting data and the corresponding pixels in the second cutting data; and a three-dimensional mapping module, according to the AR2 The map creates a three-dimensional map. 25. The measurement system of claim 23, wherein: 38 201104276 the 3D image module generates the 3D image according to the 3D map; and... + the hemodynamic data module generates according to the 3D map The hemodynamic data. 26. The measurement system of claim 22, further comprising: a rendering control module for rendering the microvascular structure in the three-dimensional image using at least one of maximum intensity projection or volume rendering And generating the microvascular fluid volume data. 27. The measurement system of claim 22, further comprising: a data acquisition module for acquiring data on the object from a magnetic vibration device using an acquisition array; and a control module Controlling the resolution of the three-dimensional image by controlling the size of the acquisition module, the image sensitivity of the magnetic vibration device, the field of view of the magnetic vibration device, and the refocusing pulse of the magnetic vibration device. The measuring system of claim 22, wherein the three-dimensional image module draws at least one of a vascular endothelium layer and a subcortical microvascular structure in the three-dimensional image. 29. The measurement system of claim 22, wherein the three-dimensional image module generates an endothelium 39 201104276 small artery and an endothelial venule of the subject having a slow moving spin. An analytical diagram of one. - The only measurement system described in item 22 of the scope of the application, wherein the -· == module is based on a magnetic susceptibility that is insensitive to false flow phenomena, such as the pseudo flow phenomenon At least one of turbulence and pulsation in the gray tube is included. The measurement system of claim 22, wherein the three-dimensional image is generated on the premise that the geometrical distortion of the object is not sensitive to geometric distortion caused by the magnetic field of the air interface. 3 Dan 2. If you apply for the quantity system described in Item 22, the premise that the 'shirt image module is not sensitive to the variation of the magnetic field unevenness caused by the discontinuity of the measured structure of the measured body The three-dimensional image is generated below. The system of claim 22, wherein the three-dimensional image module performs a living microscopic angiography procedure at an ischemic location of the subject according to the three-dimensional image. 34. The measuring system according to claim 22, wherein the three-dimensional image module generates the three-dimensional image to display the dysfunction when a dysfunction zone of the subject is organized to cause the dysfunction 35. The measurement system comprises: a three-dimensional image module 'using steady-state three-dimensional microscopic magnetic angiography or touch-eye ^) to draw a microvascular of a tumor in a subject, a search image of the structure And a hemodynamic data module using the 3DAR2_mMRA measurement blood 201104276 kinetic parameter, including at least one of blood volume, blood flow, and vascular permeability of the tumor. 36. The measurement system of claim 35, further comprising: a T2-weighted contrast module for performing a first T2-weighted contrast procedure on a subject and in the subject Performing a second T2-weighted contrast procedure after injecting the ferric oxide contrast agent; • a temporary storage module for temporarily storing the first and second T2-weighted contrast procedures to generate a first temporary data and a first a temporary storage data; a cutting module for cutting the first temporary storage data and the second temporary storage data to generate a first cutting data and a second cutting data; an AR2 mapping module And generating an AR2 map according to the pixels in the first cropping data and the corresponding pixels in the second cropping data; and the Luyi 3D mapping module, configured to establish a map according to the AR2 map 3D map. 37. The measurement system of claim 36, wherein the three-dimensional image module generates the three-dimensional image according to the three-dimensional map, and the hemodynamic module generates the hemodynamic data according to the three-dimensional map. r Γ 41
TW98125499A 2009-07-29 2009-07-29 Three-dimensional microscopic magnetic resonance angiography TWI396861B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98125499A TWI396861B (en) 2009-07-29 2009-07-29 Three-dimensional microscopic magnetic resonance angiography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98125499A TWI396861B (en) 2009-07-29 2009-07-29 Three-dimensional microscopic magnetic resonance angiography

Publications (2)

Publication Number Publication Date
TW201104276A true TW201104276A (en) 2011-02-01
TWI396861B TWI396861B (en) 2013-05-21

Family

ID=44813556

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98125499A TWI396861B (en) 2009-07-29 2009-07-29 Three-dimensional microscopic magnetic resonance angiography

Country Status (1)

Country Link
TW (1) TWI396861B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR358701A0 (en) * 2001-03-07 2001-04-05 University Of Queensland, The Method of predicting stroke evolution
US20040218794A1 (en) * 2003-05-01 2004-11-04 Yi-Hsuan Kao Method for processing perfusion images
EP1638447A2 (en) * 2003-06-02 2006-03-29 The General Hospital Corporation Delay-compensated calculation of tissue blood flow
US8233965B2 (en) * 2007-03-08 2012-07-31 Oslo Universitetssykehus Hf Tumor grading from blood volume maps

Also Published As

Publication number Publication date
TWI396861B (en) 2013-05-21

Similar Documents

Publication Publication Date Title
Ma et al. Three-dimensional arterial spin labeling imaging and dynamic susceptibility contrast perfusion-weighted imaging value in diagnosing glioma grade prior to surgery
Chow et al. Liver fibrosis: an intravoxel incoherent motion (IVIM) study
Agid et al. Imaging of the intracranial venous system
Chow et al. Measurement of liver T1 and T2 relaxation times in an experimental mouse model of liver fibrosis
JP6679467B2 (en) Magnetic resonance imaging apparatus and method for calculating oxygen uptake rate
Liss et al. Imaging of intrarenal haemodynamics and oxygen metabolism
US20160058304A1 (en) System and method for vessel architectural imaging
Ludwig et al. Perfusion of the placenta assessed using arterial spin labeling and ferumoxytol dynamic contrast enhanced magnetic resonance imaging in the rhesus macaque
Boehm‐Sturm et al. Vascular changes after stroke in the rat: a longitudinal study using optimized magnetic resonance imaging
Hu et al. Assessing intrarenal nonperfusion and vascular leakage in acute kidney injury with multinuclear 1H/19F MRI and perfluorocarbon nanoparticles
US8233685B2 (en) Three-dimensional microscopic magnetic resonance angiography
Chapon et al. High field magnetic resonance imaging evaluation of superparamagnetic iron oxide nanoparticles in a permanent rat myocardial infarction
Bolan et al. In vivo micro-MRI of intracortical neurovasculature
Kauczor Contrast-enhanced magnetic resonance angiography of the pulmonary vasculature
Huang et al. High-resolution structural and functional assessments of cerebral microvasculature using 3D Gas ΔR2*-mMRA
Lin et al. In vivo cerebromicrovasculatural visualization using 3D ΔR2-based microscopy of magnetic resonance angiography (3DΔR2-mMRA)
Zheng et al. Combined MR proton lung perfusion/angiography and helium ventilation: potential for detecting pulmonary emboli and ventilation defects
Smith et al. MR angiography of in situ and transplanted renal arteries: early experience using a three-dimensional time-of-flight technique
Haimerl et al. Chronic liver disease: Quantitative MRI vs CEUS-based microperfusion
Jacoby et al. Dynamic changes in murine vessel geometry assessed by high‐resolution magnetic resonance angiography: A 9.4 T study
Bosomtwi et al. Mean microvessel segment length and radius after embolic stroke: Comparison of magnetic resonance imaging (MRI) and laser scanning confocal microscopy (LSCM)
Wu et al. Rat model of reperfused partial liver infarction: characterization with multiparametric magnetic resonance imaging, microangiography, and histomorphology
Jacobs et al. Cluster analysis of DCE‐MRI data identifies regional tracer‐kinetic changes after tumor treatment with high intensity focused ultrasound
Shahrouki et al. MR vascular imaging: Update on new techniques and protocols
Jiang et al. Effect of b value on monitoring therapeutic response by diffusion-weighted imaging

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees