TW201103361A - Panel of display device and display device applied by the same - Google Patents

Panel of display device and display device applied by the same Download PDF

Info

Publication number
TW201103361A
TW201103361A TW98123990A TW98123990A TW201103361A TW 201103361 A TW201103361 A TW 201103361A TW 98123990 A TW98123990 A TW 98123990A TW 98123990 A TW98123990 A TW 98123990A TW 201103361 A TW201103361 A TW 201103361A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
conductive
conductive layer
display
Prior art date
Application number
TW98123990A
Other languages
Chinese (zh)
Inventor
Po-Sheng Shih
Original Assignee
Innolux Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innolux Display Corp filed Critical Innolux Display Corp
Priority to TW98123990A priority Critical patent/TW201103361A/en
Publication of TW201103361A publication Critical patent/TW201103361A/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

The invention is related to a panel of display device and a display device applied by the same. The panel of display device includes a substrate, a first conductive layer having much nano units over the substrate, a second conductive layer, and an organic material layer between the first conductive layer and the second conductive layer. The panel of display device and the display device applied by the same are flexible and the cost down of making the ITO film for the ITO film is replaced by the first conductive layer.

Description

201103361 六、發明說明: 【發明所屬之技術領域】 本發明係關於-鶴tf φ板裝置及細其之顯示裝置,特別是 -種具有複數個奈米單元的導電層之齡面板裝置及顧其之顯 示裝置。 【先前技術】 有機電激發光顯示器(〇rganie Eleetn> lumineseenee201103361 VI. Description of the Invention: [Technical Field] The present invention relates to a crane tf φ plate device and a display device therefor, in particular, a panel device of a conductive layer having a plurality of nano cells and Gu Qi Display device. [Prior Art] Organic Electroluminescence Display (〇rganie Eleetn> lumineseenee

Display,Display,

Organic EL Display)又稱為有機發光二極體(〇rganic Ught Emkting Diode,OLED)是在卿7年由柯達(Kodak)公司的c w Tang與 S.A. VanSlyk等人’率先使用真空蒸鍍方式製成,分別將電洞傳輸 材料及電子傳輸材料’鍍覆於透明之氧化銦錫(indium tin 〇xide, ITO)玻璃上’其後再蒸鍍一金屬電極形成具有自發光性之〇LED 裝置,由於擁有咼焭度、營幕反應速度快、輕薄短小、全彩、無 視角差、不需液晶顯示器式背光板以及節省燈源及耗電量,因而 成為新一代顯示器。 習知之OLED裝置包含透明基板、透明電極、電洞傳輸層(H〇le Transporting Layer,HTL)、有機發光層(〇rganic Emitting Layer, EL)、電子傳輸層(Electr〇n Transporting Layer,ETL)、電子注入 層(Electron Injection Layer,EIL)及金屬電極。當對0LED裝置施 以一順向偏壓電壓時,此時電洞由透明電極注入,而電子由金屬 電極注入’由於外加電場所造成的電位差,使電子及電洞在有機 發光層中產生覆合(Recombination)而以光子的形式放出,所放出的 光為有機電致發光。 201103361 目前最常使用的透明電極 0- ITO)< ^ (Tin〇xide, Sn〇2) « ZnO)等透明導電膜。其中 乳匕辞(Zlnc 0她, 因此目前的導電板大多是_明其;;有;1透光性與良好的導電性, OLFD W 板形成ΙΤ〇透明導電膜。 义置由於其為自發光的發光裝置,因此杏其 時,OLED裝置可為 基板為可撓曲 導電膜的導電板在基板===,具有™透明 双4四叶’其上的ιτο透明導雷瞄合、◊ 伸而產生變形,#分道μ仲 处乃等罨膜會因又拉 籲且具透明導電的材料成了最0主==膜受損。因此尋求替侧 【發明内容】 種顯示面板裝置及應用其之顯示裝置,用以 其之:^上述的目的’本發明揭露—麵示面板裝置及應用 -導電Ζ、笛。ί發明所揭露之一種顯示面板裝置包含基板、第 板鱼第電層與有機材料層。其中,第―導電層位於基 第二導雷爲層之間’且第一導電層位於基板上。第一導電層與 於第-道:中至二其中之一具有複數個奈米單元。有機材料層位 芦及第-道層與第—導電層之間,且有機材料層適於受第一導電 曰及第一導電層之作用而發光。 發弁$發f所揭路之—種應用顯示面域置之顯示裝置包含有機 知无顯不器與觸控裳置。 板、=控裝置設置於有機發光顯示器上,觸控裝置包含第-基 基板、第-導電透光層與第二導電透光層。其中第二基 201103361 板對應第-基板設置。第一導電透光層位於第一基板與第二基板 之間且位於第-基板上。第二導電透光層位於第一基板與第二基 板之間且錄第二基板上。第二導電透光層與第—導電透光層中 至少其中之一具有複數個奈米單元。 上述之有機發光顯示器之結構同於上述之顯示面板裝置。 於此,根據本發明所揭露之一種顯示面板裝置及應用其之顯 不裝置,藉由具有複數個奈米單元的導電層來取k〇led裝置的 ITO透明導電膜或陰極金屬,一方面使顯示面板裝置及應用其之 •顯示裝置具可撓性,另一方面可降低製作ITO透明導電膜或陰極 金屬的成本。 有關本發明的特徵與實作,茲配合圖示作最佳實施例詳細說 明如下。 【實施方式】 「第1圖」係為本發明之顯示面板裝置一第一具體實施例。 請參照「第1圖」,於第一具體實施例中,本發明之顯示面板 # 裝置包含基板100、第一導電層200、第二導電層300與有機材料 層 400。 其中第一導電層200位於基板100與第二導電層30〇之間, 且弟一導電層200位於基板100上。有機材料層400位於第一導 電層200與第二導電層300之間。 有機材料層400可包含電洞傳輸層410、發光層420及電子傳 輸層430。 其中電洞傳輸層410與電子傳輸層430可位於第一導電層2〇〇 上。詳言之,電洞傳輸層410設置於第一導電層200上,且電洞 201103361 傳輸層4KH立於電子傳輸層物與第一導電層期之間。發光層 物可介於電洞傳輸層樣與電子傳輸層之間。 有機材料層400適於受第一導電層及第二導電芦之 作用而發光。 ,板100可為具可撓性之—触材質練。透爾質絲可 包含南分子透明材質基板。其中高分子透明材質基板可為包含有 聚甲基丙烯酸甲酯(Polymethylmethacrylate,pmma)、聚對苯二 (Polyethylene terephthalate ^ PET) ♦⑽ycarb刪e,p C)之基板。然,在本發明之基板為高分子透 明材質基板之情況下,高分子透明材質並不以上述例為限,亦可 為其他高分子透明材質。 第-導電層200可具有導電性與透光性。第一導電層包 含有複數個奈米單元(圖中未示)。該等奈米單元可大致呈現一特 定方向排列設置’使第-導電層細具電異向性。 上述之奈料元可包含奈米碳管與奈錄子等。所謂的電異 向性又稱導f異向性或稱電阻抗異向性,财財向上具有不同 驗的導電性質或電阻抗性質之謂。於本實施例,第一導電層勘可 用以當作陽極。 第-導電層300為提高電子的注入效率,要求選用功函數盡 可能低的材料做電極,功函數越低,發光亮度越.高,使用壽命越 長。第二導電層300可為金屬電極、合金電極與層狀電極等。金 屬電極可包含有如Ag (銀)、Μ (銘)、Li (鐘)、岣(鎮)、a (鈣)、in㈤等。合金電極係將性質活潑的低功函數金屬和化 學性能較穩定的高功函數金屬一起蒸發形成合金電極。合金電極 可包含有Mg/Ag (鎂/銀合金)、Li/A1 (鋰/鋁合金)等,其中 201103361 =‘=膜。_極 化鋰)、Ll2〇 (氧化鋰)、M 〇 情如鼠 外面一層較厚的以組成,其電⑹等和 到更高的發纽率和更好的触第可得 以當作陰極。 ,、、弟一导電層300可用 ^導電層通亦可具有透光性與導 可具有複_奈轉元(财未 電層· ,使第二導電層具 早70可包含奈米碳管與奈米粒子等。 这不未 個二 =二 党到外部拉力而離開基材時,該太1、❸個奈米早兀 的“=^元會 :;形成-奈米單元束’因此可將基材上_=:== 以—特定程度之排列方向來配置。於此之間係 成具電異向性之導電薄膜,且n不米乎几束形 元所串接而形成。就此具一定排二==個奈米單 阻抗較大了故所开 列方向配置之奈米單元束的方向上的電 斤开V成之具-疋排列配向之導電薄膜具電異向性。 201103361 將上述之具一定排列配向的導電薄膜設置於基板1〇〇上以形 成第一導電層200。將上述之具一定排列配向的導電薄膜設置於有 機材料層400上以形成第二導電層300。 電洞傳輸層410具有高的熱穩定性,且與第一導電層形 成小的勢壘,能真空蒸鍍形成無針孔薄膜。最常用的電洞傳輸層 410均為芳香多胺類化合物,主要是三芳胺衍生物。 電子傳輸層420具有適當的電子輸運能力,並有好的成膜性 和穩疋性。電子傳輸層420 —般採用具有大的共扼平面的芳香族 • 化合物如8_羥基喹啉鋁(A1Q)、PBD、B%和DPVBi等,它們同 時也是好的發光材料。 發光層420具有高量子效率的螢光特性、良好的半導體特性、 好的成膜性與良好的熱穩定性。發光層42〇的材料可為高分子聚 合物與小分子有機化合物。 向分子聚合物係分子量介於1〇〇〇〇〜1〇〇〇〇〇,通常是導電共; 聚合物或铸體共《合物。高分子聚合物可肖缝方法成膜 具有製作簡單,成本低的特性。但其純度不易提高,在耐久性 亮度和顏色方面比小分子有機化合物差。 小分子有機化合物’分子量為5〇〇~2〇〇〇,能用真空蒸鑛方 成膜1小分子有機化合物主要為有機染料,具有化學修飾性強, j擇範圍廣、,易於提純與量子效率高的雜,可產认、綠、該 顏色轉點。但大錄械轉翻態畴在濃度;; 而導致發射峰變寬耻移。所以—般將它們以低濃度戈 錄紐子性f社财,级㈣财與電_ u曰410和電子傳輸層42〇採用相同的材料。 a中紅光材料主要有:羅丹明㈣料,Dd My、dot、 .201103361 DCJTB、DCJTI 和 TPBD 等。 綠光材料主要有:主要有:香豆素染料C〇Umarin6、奎丫啶酮 (quinacridone,QA)、六笨並苯(c〇r〇nene)、苯胺類(naphthalimide)〇 藍光材料主要有:N-芳香基苯並咪唑類;1,2,4-三唑衍生 物(TAZ)(也是電子傳輸層420材料);雙笑類(Distyrylarylene)。 當對顯示面板裝置施以一順向偏壓電壓時,此時電洞由第一 導電層200注入,而電子由第二導電層3〇〇注入,由於外加電場 所造成的電位差,使電子及電洞在電洞傳輸層41〇與電子傳輸層Organic EL Display) is also known as the 〇rganic Ught Emkting Diode (OLED). It was made by Kodak's cw Tang and SA VanSlyk et al. in the first 7 years using vacuum evaporation. The hole transport material and the electron transport material are respectively plated on transparent indium tin bis xide (ITO) glass, and then a metal electrode is vapor-deposited to form a self-luminous 〇 LED device. It is a new generation display with high speed, fast response, light and short, full color, no difference in viewing angle, no need for liquid crystal display backlight, saving light source and power consumption. The conventional OLED device comprises a transparent substrate, a transparent electrode, a hole transport layer (HTL), an organic light emitting layer (EL), an electron transport layer (Electr〇n Transporting Layer, ETL), Electron injection layer (EIL) and metal electrodes. When a forward bias voltage is applied to the OLED device, the hole is injected by the transparent electrode at this time, and the electron is injected from the metal electrode into the potential difference caused by the applied electric field, so that the electron and the hole are covered in the organic light-emitting layer. Recombination is released in the form of photons, and the emitted light is organic electroluminescence. 201103361 The most commonly used transparent electrode 0- ITO) < ^ (Tin〇xide, Sn〇2) « ZnO) and other transparent conductive film. Among them, the 匕 匕 (Zlnc 0 her, so the current conductive plate is mostly _ Ming;; there; 1 light transmission and good electrical conductivity, OLFD W plate to form a transparent conductive film. Yi set because it is self-luminous The illuminating device, therefore, the OLED device can be a conductive plate with a flexible conductive film on the substrate at the substrate ===, with TM transparent double 4 four-leaf' on the ιτο transparent guide, aiming and stretching Deformation, #分道μ中处 is the same as the film which is pulled and the transparent conductive material becomes the most 0 main == film damage. Therefore, seeking the alternative side [invention] display panel device and its application The display device is used for: the above purpose of the present invention - the panel device and the application - the conductive cymbal, the flute. The invention discloses a display panel device comprising a substrate, a slate electric layer and an organic a material layer, wherein the first conductive layer is located between the second conductive layer and the first conductive layer is located on the substrate. The first conductive layer and the first track: one of the two have a plurality of nanometers Unit. Organic material layer reed and the first layer and the first layer And the organic material layer is adapted to be illuminated by the action of the first conductive 曰 and the first conductive layer. The display device of the application display area includes an organic display device and The touch panel includes a first base substrate, a first conductive transparent layer and a second conductive transparent layer, wherein the second base 201103361 corresponds to the first substrate. The first conductive transparent layer is located between the first substrate and the second substrate and located on the first substrate. The second conductive transparent layer is located between the first substrate and the second substrate and recorded on the second substrate. The at least one of the conductive transparent layer and the first conductive transparent layer has a plurality of nano cells. The structure of the above organic light emitting display is the same as that of the above display panel device. Here, a display panel according to the present invention is disclosed. The device and the display device thereof have the ITO transparent conductive film or the cathode metal of the k〇led device by using a conductive layer having a plurality of nano cells, and the display panel device and the display device thereof can be used on the one hand scratch On the other hand, the cost of producing the ITO transparent conductive film or the cathode metal can be reduced. The features and implementations of the present invention will be described in detail below with reference to the preferred embodiments. [Embodiment] "FIG. 1" is A first embodiment of the display panel device of the present invention. Referring to FIG. 1, in a first embodiment, the display panel # device of the present invention comprises a substrate 100, a first conductive layer 200, and a second conductive layer. 300 and an organic material layer 400. The first conductive layer 200 is located between the substrate 100 and the second conductive layer 30A, and the first conductive layer 200 is located on the substrate 100. The organic material layer 400 is located at the first conductive layer 200 and the second The conductive material layer 400 may include a hole transport layer 410, a light emitting layer 420, and an electron transport layer 430. The hole transport layer 410 and the electron transport layer 430 may be located on the first conductive layer 2'. In detail, the hole transport layer 410 is disposed on the first conductive layer 200, and the hole 201103361 transport layer 4KH is located between the electron transport layer and the first conductive layer. The luminescent layer can be interposed between the hole transport layer and the electron transport layer. The organic material layer 400 is adapted to emit light by the action of the first conductive layer and the second conductive reed. The plate 100 can be made of a flexible-touch material. The Turtle filaments may comprise a southern molecular transparent substrate. The polymer transparent substrate may be a substrate comprising polymethylmethacrylate (pmma), polyethylene terephthalate (PET) ♦ (10) ycarb, e, p C). However, in the case where the substrate of the present invention is a polymer transparent material substrate, the polymer transparent material is not limited to the above examples, and may be other polymer transparent materials. The first conductive layer 200 may have electrical conductivity and light transmittance. The first conductive layer contains a plurality of nanocells (not shown). The nano-cells can be arranged in a substantially specific direction to make the first conductive layer finely electrically anisotropic. The above-mentioned nanomaterials may include a carbon nanotube, a naphtha, and the like. The so-called electrical anisotropy, also known as the conduction anisotropy or the electrical anisotropy, has a different conductivity or electrical impedance properties. In this embodiment, the first conductive layer can be used as an anode. The first conductive layer 300 is required to improve the injection efficiency of electrons, and it is required to use a material having a work function as low as possible as an electrode. The lower the work function, the higher the luminance and the longer the service life. The second conductive layer 300 may be a metal electrode, an alloy electrode, a layered electrode, or the like. The metal electrode may include, for example, Ag (silver), strontium (indium), Li (bell), strontium (town), a (calcium), in (five), and the like. The alloy electrode vaporizes an active low-work function metal together with a highly stable high work function metal to form an alloy electrode. The alloy electrode may include Mg/Ag (magnesium/silver alloy), Li/A1 (lithium/aluminum alloy), and the like, wherein 201103361 = '= film. _polarized lithium), Ll2〇 (lithium oxide), M 〇 如 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠 鼠, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , With nano particles, etc. This is not the second = two parties to the external tension and leave the substrate, the too 1, a nano-early early "= ^ yuan will:; form - nano unit bundle" The _=:== on the substrate is arranged in a certain degree of arrangement direction, and an electrically conductive film having electrical anisotropy is formed between the two, and n is formed by a series of bundles of elements. With a certain row of two == a single nano-impedance is larger, so the direction of the nano-cell beam in the direction of the column is set to open the V-formed--the alignment of the conductive film with electrical anisotropy. 201103361 The conductive film having a certain alignment is disposed on the substrate 1 to form the first conductive layer 200. The conductive film having a certain alignment is disposed on the organic material layer 400 to form the second conductive layer 300. The hole transport layer 410 has high thermal stability and forms a small barrier with the first conductive layer, and can be vacuum evaporated. A pinhole-free film. The most commonly used hole transport layer 410 is an aromatic polyamine compound, mainly a triarylamine derivative. The electron transport layer 420 has an appropriate electron transporting ability, and has good film forming properties and stability. The electron transport layer 420 generally employs aromatic compounds having a large conjugate plane such as 8-hydroxyquinoline aluminum (A1Q), PBD, B%, and DPVBi, which are also good luminescent materials. 420 has high quantum efficiency of fluorescence characteristics, good semiconductor characteristics, good film formation and good thermal stability. The material of the light-emitting layer 42 can be a high molecular polymer and a small molecule organic compound. The molecular weight is between 1 〇〇〇〇 and 1 〇〇〇〇〇, which is usually conductive; the polymer or the cast compound. The high molecular polymer can be formed into a film by a slit method, which has the characteristics of simple fabrication and low cost. However, its purity is not easy to improve, and it is inferior to small-molecular organic compounds in durability brightness and color. Small molecular organic compounds have a molecular weight of 5〇〇~2〇〇〇, which can be used to form a small molecule organic compound by vacuum distillation. It is an organic dye with strong chemical modification, wide range of choice, easy to purify and high quantum efficiency, and can produce, green, and turn the color. However, the large-volume turn-over domain is in concentration; The emission peaks are widened and shameless. Therefore, they are generally made of the same material at a low concentration of Goujosin, the same level of materials, electricity, electricity, electricity, and electron transport layer 42. There are: Rhodamine (four) materials, Dd My, dot, .201103361 DCJTB, DCJTI and TPBD, etc. Green light materials mainly include: mainly: coumarin dye C〇Umarin6, quinacridone (QA), six stupid The acene (c〇r〇nene) and aniline (naphthalimide) 〇 blue light materials mainly include: N-arylbenzimidazoles; 1,2,4-triazole derivatives (TAZ) (also electron transport layer 420 materials) ); Distyrylarylene. When a forward bias voltage is applied to the display panel device, the hole is injected from the first conductive layer 200, and the electron is injected from the second conductive layer 3, and the potential difference caused by the applied electric field causes the electron and The hole is in the hole transport layer 41 and the electron transport layer

430移動’進而在發光層420中產生覆合(rec〇mbinati〇n)。部分由 電子電洞結合所釋放的能量,將發光層420的發光分子激發而成 為激發悲,當發光分子由激發態衰變至基態時,其中一定比例的 能量以光子的形式放出,所放出的光為有機電致發光。 於此,根據本發明所揭露之一種顯示面板襞置,藉由具有複 數個奈米單元的第一導電層200當作陽極來取代〇LED裝置的 ITO透明導電膜’-方面使顯示面板|置具可撓性,另一方面可 降低製作ITO透明導電膜的成本。 第2圖」係為本發明之顯示面板裝置一第二具體實施例。 請參照「第2圖」’本實施例與前述實施例大致相同,差別在 於’本實靶例之顯示面板裝置更包含反射層31〇。反射層位於 第一導電層300相對基板1〇〇的另一侧上。 於此,當第二導電層300具透光性與導電性,且第二導電層 300為具有複數個奈米單元的導電層時,藉由反射層31〇可將由發 光層42〇朝向第二導電層3〇〇所發出之光線反射,使經由反射層 31〇反射後之光線大致朝向基板100的方向傳遞。反射層31〇用以 將光線集中於基板綱方向射出,使單—方向可以得到最大的光 201103361 量。 「第3圖」係為本發明之顯示面板I置—第三具體實施例。 凊參照「第3圖」’本實施例與前述實施例大致相同,差別在 於,本實施例之顯不面板裝置的基板100為具可撓性之不透明材 質基板。其中不透明材質基板可為本身具色彩之基板或係在透明 材質基板外塗佈色彩來形成。 此時反射層310位於第一導電層2〇〇與基板1〇〇之間。 於此,當弟一導電層300具有透光性與導電性,且第二導電 •層300為具有複數個奈米單元的導電層時,藉由反射層31〇可將 由發光層420朝向基板100所發出之光線反射,使經由反射層31〇 反射後之光線大致朝向第二導電層300的方向傳遞。反射層31〇 用以將光線集中於第二導電層300方向射出,使單一方向可以得 到最大的光量。 「第4圖」係為本發明之顯示面板裝置一第四具體實施例。 请參照「第4圖」,本實施例與前述實施例大致相同,差別在 於本實施例之基板100、第一導電層2〇〇與有機材料層4〇〇。 • 基板ι〇0可為具可撓性之不透明材質基板。其中不透明材質 基板可為本身具色彩之基板或係在透明材質基板外塗佈色彩來形 成。 第一導電層200可為前述實施例之金屬電極、合金電極與層 狀電極等。第一導電層200於此實施例用以當作陰極。 第二導電層300可具導電性與透光性。第二導電層3〇〇可具 有複數個奈米單元(圖中未示)。第二導電層3〇〇於此實施例用以 當作陽極。 有機材料層400可包含電洞傳輸層41〇、發光層42〇及電子傳 11 201103361 輸層430。 其中電洞傳輸層41〇與電子傳輸層43〇可位於第一導電層細 上。詳言之’電子傳輸層獨設置於第-導電層200 ±,且電子 傳輸層位於電洞傳輸層柳與第一導電層珊之間。發光層 420可介於電洞傳輪層與電子傳輸層㈣之間。 當對顯示面钱置施以—順向偏壓電麟,此時電子由第一 導電層200注入,而電洞由第二導電層猶注入,由於外加電場 所造成的電位差’使電子及電洞在電洞傳輸層物與電子傳輸層 430移動’進而在發光層42〇申產生覆合㈣mbinati〇n)。部分: 電子電洞結合所釋放的能量,將發光層42〇的發光分子激發而成 為激發態’當發光分子由激發態衰變至基態時,其中一定比例的 能量以光子的形式放出,所放出的光為有機電致發光。 於此,根據本發明所揭紅一種顯示面板裝置,將金屬陰極 形成於基板100上,藉由具有複數個奈米單元的第一導電層· 當作陽極來取代QLED裝置的IT0透明導電膜,—方面使顯示面 板裝置具可撓性,另-方面可降低製作肋透明導電膜的成本。 「第5圖」係為本發明之應用顯示面板裝置之顯示裝置一第 一具體實施例。 請合併參照「第5圖」’於一具體實施例中,本發明之應用顯 不面板裝置之顯示裝置包含有機發光顯示器1〇與觸控裝置2〇。其 中’有機發光顯示器10可同於上述之顯示面板裝置,亦可為具有 ΙΤΟ導電基板的OLED裝置。 觸控裝置20設置於有機發光顯示器上。詳言之,觸控事 置20係設置於有機發光顯示器10的出光面上。觸控裝置2〇包^ 第一基板500、第二基板700、第一導電透光層6〇〇與第二導電透 12 201103361 光層800。 其中第二基板700對應第一基板5〇〇設置。第一導電透光層 600位於第一基板500與第二基板700之間且設置於第一基板500 上。第二導電透光層800位於第一基板500與第二基板700之間 且设置於第二基板700上。第二導電透光層8〇〇與第一導電透光 層600中至少其中之一具有複數個奈米單元(圖中未示)。 第一基板500與第二基板7〇〇可同於上述之基板^⑻。其中第 一基版500與第二基板700可係皆具可撓性,亦可僅第一基版5〇〇 或第^一基板700具可挽性。 第一導電透光層000與第二導電透光層800可皆具有複數個 奈米單元(圖中未示),亦可第一導電透光層600與第二導電透光 層800中之一具有複數個奈米單元(圖中未示)。 違等奈米單TL可大致呈現—特定方向制設置,使具有該等 奈米單摘第-導電透光層_或第二導魏光層_具電異向 性。上述之奈米單元可包含奈米碳管與奈米粒子等。 應用顯示面板裝置之顯示裝置更包含複數個絕緣間隔物9〇〇 籲位於第-導電透光層6〇0與第二導電透光層_之間。該等絕緣 間隔物_用以避免第-導電透光廣_與第二導電透光層_ 在未被觸控時電氣導通。 〃上述之觸控板20,當使用者以手指、筆或其他介質直接碰觸 第一基板700上之某-位置時’該位置之第二導電透光層誦將 與第-導電透光層_職魏上之導通,並摘餘置產生電 位差,由外部驅動元件感_之不同電位差,進—步計算出碰觸 位置所在之座標值,並在有餐1Q之賴座標位置上顯 13 201103361 示裝置,'發明所揭露之—種顯示面板裝置及應用其之顯 陽極來油奈料元的第—導電層挪當作 可撓性,3 、IT〇制導電膜,來使齡面板裝置具 與第%電2展错由具有複數個奈米單元的第—導電透光層_ 降低制作ιτο / 8GG來取代觸控板的ΙΤ〇透明導電膜,除了可 3電Γ導電膜的成本,由於第一導電透光層6⑻與第 二具體係為本發明之_顯_板裝置之齡裝置一第 別在第6圖」’本實施例與前述實施例大致相同,差 導電透=例結構中之觸控裝置20的第一基板500、第一 m曰600移除而直接以上述之有機發光顯示器10中之第 :t=r戈第一導電透光層_的作用。藉以達到降低 I作ITO翻導細的成本。 示穿ΐ此」Γ據本發崎揭露之-麵和絲置及剌其之顯 rm、# *具有複數個奈米單元的導電層來取代0LED裝置的 ==電__,,使__及應用其之 金屬的成ί ,另一方面可降低製作ίΤ〇透明導電膜或陰極 太^然本㈣⑽述之較佳實_揭露如上,财並_以限定 任何熟f相像技#者,在不脫離本發明之精神和範圍内, :麵ΐ許ί更動與濁飾,因此本發明之專利保護範圍須視本說 句斤附之申請專利範圍所界定者為準。 14 [s] 201103361 【圖式簡單說明】 第1圖係為本發明之顯示面板裝置一第—θμ ^ ^具體實施例; 苐2圖係為本發明之顯示面板震置—H- θ 币〜具·體實施例; 第3圖係為本發明之顯示面板裝置—第二 第4圖係為本發明之齡面板妓〜、體實施例; 體實施例;及 第6圖係為本發明之應用_ 體實施例。 第5圖係為本發明之應用顯示面板事置之蔡& ι 不 面板裝置<_示裝置一第二具 【主要元件符號說明】 £機發光顯示 觸控裝置 ° 基板 ,一導電層 卓一導電層 反射層 有機材料層 電洞傳輸層 發光層 電子傳輸層 ,一基板 ,一導電透光層 第二基板 第二導電透光層 絕緣間隔物 10 20 100 200 300 310 400 φ 410 420 430 500 600 700 800 900 15430 moves 'and in turn creates a bond in the luminescent layer 420 (rec〇mbinati〇n). Part of the energy released by the electron hole combination excites the luminescent molecules of the luminescent layer 420 to become an excitation sorrow. When the luminescent molecules decay from the excited state to the ground state, a certain proportion of the energy is emitted in the form of photons, and the emitted light It is an organic electroluminescence. Herein, according to the disclosure of the present invention, a display panel device is provided with a first conductive layer 200 having a plurality of nano cells as an anode instead of an ITO transparent conductive film of the LED device. It has flexibility and on the other hand reduces the cost of making ITO transparent conductive film. Fig. 2 is a second embodiment of the display panel device of the present invention. Referring to Fig. 2, the present embodiment is substantially the same as the above-described embodiment, and the difference is that the display panel device of the present embodiment further includes a reflective layer 31. The reflective layer is on the other side of the first conductive layer 300 opposite the substrate 1A. Here, when the second conductive layer 300 is light transmissive and electrically conductive, and the second conductive layer 300 is a conductive layer having a plurality of nano cells, the reflective layer 31 can be turned toward the second by the light emitting layer 42 The light emitted by the conductive layer 3 is reflected, and the light reflected by the reflective layer 31 is substantially transmitted in the direction of the substrate 100. The reflective layer 31 is used to concentrate the light in the direction of the substrate, so that the single-direction can obtain the maximum amount of light 201103361. Fig. 3 is a third embodiment of the display panel I of the present invention. Referring to "Fig. 3", this embodiment is substantially the same as the above-described embodiment, and the difference is that the substrate 100 of the panel device of the present embodiment is a flexible opaque substrate. The opaque substrate may be formed by a substrate having a color or a color applied to the outside of the transparent substrate. At this time, the reflective layer 310 is located between the first conductive layer 2〇〇 and the substrate 1〇〇. Here, when the conductive layer 300 has light transmissivity and conductivity, and the second conductive layer 300 is a conductive layer having a plurality of nano cells, the light-emitting layer 420 may be directed toward the substrate 100 by the reflective layer 31 The emitted light is reflected so that the light reflected by the reflective layer 31 is substantially transmitted toward the second conductive layer 300. The reflective layer 31 is used to concentrate the light in the direction of the second conductive layer 300 so that the maximum amount of light can be obtained in a single direction. Fig. 4 is a fourth embodiment of the display panel device of the present invention. Referring to Fig. 4, this embodiment is substantially the same as the foregoing embodiment, and differs in the substrate 100, the first conductive layer 2, and the organic material layer 4 of the present embodiment. • The substrate ι〇0 can be a flexible opaque substrate. The opaque material substrate can be formed by a substrate having a color or by coating a color outside the transparent material substrate. The first conductive layer 200 may be a metal electrode, an alloy electrode, a layer electrode or the like of the foregoing embodiment. The first conductive layer 200 is used as a cathode in this embodiment. The second conductive layer 300 can be electrically conductive and light transmissive. The second conductive layer 3 can have a plurality of nano cells (not shown). The second conductive layer 3 is used as an anode in this embodiment. The organic material layer 400 may include a hole transport layer 41A, a light emitting layer 42A, and an electron transport layer 11 201103361. The hole transport layer 41A and the electron transport layer 43A may be located on the first conductive layer. In detail, the 'electron transport layer is uniquely disposed on the first conductive layer 200 ±, and the electron transport layer is located between the hole transport layer and the first conductive layer. The light emitting layer 420 may be interposed between the hole transport layer and the electron transport layer (4). When the display surface money is applied with a forward bias voltage, the electrons are injected from the first conductive layer 200, and the holes are injected by the second conductive layer, and the potential difference caused by the external electric field makes the electrons and electricity The hole moves in the hole transport layer and the electron transport layer 430', and then the cladding layer 42 is applied to produce a cladding (four) mbinati〇n). Part: The electron hole combines the released energy to excite the luminescent molecules of the luminescent layer 42 成为 into an excited state. When the luminescent molecules decay from the excited state to the ground state, a certain proportion of the energy is released in the form of photons, and the emitted Light is organic electroluminescence. Herein, according to a red display panel device of the present invention, a metal cathode is formed on the substrate 100, and the first conductive layer having a plurality of nano cells is used as an anode instead of the IT0 transparent conductive film of the QLED device. In terms of the flexibility of the display panel device, the cost of fabricating the rib transparent conductive film can be reduced. Fig. 5 is a first embodiment of a display device for an application display panel device of the present invention. Referring to the "figure 5" in a specific embodiment, the display device of the present invention using the display panel device comprises an organic light emitting display 1 and a touch device 2A. The 'OLED display 10' may be the same as the display panel device described above, or may be an OLED device having a germanium conductive substrate. The touch device 20 is disposed on the organic light emitting display. In detail, the touch object 20 is disposed on the light emitting surface of the organic light emitting display 10. The touch device 2 includes a first substrate 500, a second substrate 700, a first conductive light transmissive layer 6 and a second conductive layer 102 201103361. The second substrate 700 is disposed corresponding to the first substrate 5 . The first conductive transparent layer 600 is disposed between the first substrate 500 and the second substrate 700 and disposed on the first substrate 500. The second conductive transparent layer 800 is disposed between the first substrate 500 and the second substrate 700 and disposed on the second substrate 700. At least one of the second conductive transparent layer 8 and the first conductive transparent layer 600 has a plurality of nano cells (not shown). The first substrate 500 and the second substrate 7 can be the same as the substrate (8) described above. The first base plate 500 and the second substrate 700 may be flexible, or only the first base plate 5 or the first substrate 700 may be taped. The first conductive transparent layer 000 and the second conductive transparent layer 800 may each have a plurality of nano cells (not shown), and may also be one of the first conductive transparent layer 600 and the second conductive transparent layer 800. There are a plurality of nano cells (not shown). The unequal nano- TL can be roughly presented - a specific orientation setting such that the nano-single-conductive conductive layer _ or the second conductive layer _ electrically anisotropic. The above nano unit may include a carbon nanotube, a nano particle, or the like. The display device using the display panel device further includes a plurality of insulating spacers 9 between the first conductive transparent layer 6〇0 and the second conductive transparent layer _. The insulating spacers _ are used to avoid the first conductive wide and the second conductive transparent layer _ electrically connected when not touched. In the above touch panel 20, when the user directly touches a certain position on the first substrate 700 with a finger, a pen or other medium, the second conductive transparent layer 该 at the position and the first conductive transparent layer _ Wei Wei on the conduction, and picking the residual to generate the potential difference, from the external drive component sense _ different potential difference, step by step to calculate the coordinate value of the touch position, and in the position of the meal 1Q on the coordinates 13 201103361 The display device, the display panel device disclosed in the invention and the display of the anode thereof, the first conductive layer of the oil element is used as a flexible, 3, IT conductive film to make the age panel device And the ninth electric 2 error is caused by the first conductive transparent layer _ having a plurality of nano cells _ reducing the fabrication of ΙΤ〇το / 8GG instead of the 触控 transparent conductive film of the touch panel, in addition to the cost of the galvanic conductive film, due to The first conductive transparent layer 6 (8) and the second specific embodiment are the same as the first embodiment of the present invention. The present embodiment is substantially the same as the foregoing embodiment, and the difference is electrically conductive. The first substrate 500 of the touch device 20 and the first m曰600 are removed and straight The function of the first conductive light-transmitting layer _ in the above-mentioned organic light-emitting display 10 is: t=r. In order to achieve the cost of reducing the fineness of I for ITO.示 ΐ ΐ Γ Γ Γ 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本And the application of the metal into ί, on the other hand can reduce the production of transparent conductive film or cathode too ^ (4) (10) described in the better _ disclosure as above, Cai _ to limit any familiar f-image technology #, in Without departing from the spirit and scope of the present invention, the scope of the patent protection of the present invention is subject to the definition of the scope of the patent application. 14 [s] 201103361 [Simplified description of the drawings] Fig. 1 is a first embodiment of the display panel device of the present invention - θμ ^ ^ specific embodiment; 苐 2 is the display panel of the present invention is set - H- θ coin ~ The present invention is a display panel device of the present invention - the second and fourth figures are the panel of the present invention, the body embodiment, and the sixth embodiment of the present invention. Application _ Body embodiment. Figure 5 is a diagram of the application of the display panel of the present invention, Cai & ι 不 面板 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置Conductive layer reflective layer organic material layer hole transport layer light-emitting layer electron transport layer, one substrate, one conductive light-transmitting layer, second substrate, second conductive light-transmitting layer, insulating spacer 10 20 100 200 300 310 400 φ 410 420 430 500 600 700 800 900 15

Claims (1)

.201103361 七、申請專利範圍: 1· 一種顯示面板裝置,包含: 一基板; 一第一導電層,位於該基板上; 3m層’ίΓ第—導電層⑽料二導電層 _奈^1及與該第二導電射至少料之-具有補 -有機材料層,位於該第—導電層 2. 3. 4. 5. =層她卿4;::::= 如申h專利範圍第1項所述之顯示面板裝置,並中,該導 電層與該第二導電層中至少其中之-係具電異向性Γ 、 如申明專利範圍第1項所述之顯示面板裝置,其中,該等奈米 單元係大致具一排列配向。 ^ ^ 如申凊專利細第1項所述之顯示面板裝置,其中,該等奈米 單元包含奈米碳管。 如申請專利範圍第1項所述之顯示面板裝置,其中,該基板係 具可撓性。 6. 如申請專利範圍第1項所述之顯示面板裝置,更包含一反射 層,該反射層位於該第二導電層相對該基板的另—側上。 7. 如申請專利範圍第1項所述之顯示面板裝置,更包含一反射 層,該反射層位於該第一導電層與該基板之間。 8. —種顯示裝置,包含: 一有機發光顯示器;及 一觸控裝置,位於該有機發光顯示器上,該觸控裝置包含: 16 201103361 一第一基板; 一第二基板’對應該第一基板設置; 一第一導電透光層,位於該第一基板與該第二基板之間且位 於5亥弟一基板上;及 一第二導電透光層,位於該第一基板與該第二基板之間且設 置於該第二基板上’其中該第二導電透光層與該第一導電透光 層中至少其中之一具有複數個奈米單元。 9. 如申請專利範圍第8項所述之顯示面板裝置,其中,該第一導 電透光層與該第二導電透光層中至少其中之一係具電異向性。 10. 如申請專利範圍第8項所述之顯示裝置,其中,該等奈米單元 係具一排列配向設置。 11·如申請專利範圍第8項所述之顯示裝置,其中,該等奈米單元 包含奈米碳管。 12. 如申請專利範圍第8項所述之顯示面板裝置,其中,該第一 基板與該第二基板中至少其中之一係具可撓性。 13. 如申明專利範圍第8項所述之顯示裝置,其中,該有機發光顯 示器包含: ’ 一基板; 一第一導電層,位於該基板上; 第一導電層’其中該第一導電層位於該基板與該第二導電層 之間;及 9 -有機材料層’位於該第-導電層與該第二導電層之間,該有 機材料層適於受該第-導電層及該第二導電層之作用而發光。 14. 如申請專利範圍第13項所述之顯示面板裳置,其中,該又第一 導電層與该第二導電層中至少其中之一係具電異向性。 17 201103361 15. 如申請專利範圍第13項所述之顯示裝置,其中,該第一導電 層與該第二導電層中至少其中之一具有複數個奈米單元。 16. 如申請專利範圍第15項所述之顯示裝置,其中,該等奈米單 元係具一排列配向設置。 17. 如申請專利範圍第15項所述之顯示裝置,其中,該等奈米單 元包含奈米碳管。 18. 如申請專利範圍第13項所述之顯示裝置,其中,該有機發光 顯示器更包含一反射層,該反射層位於該第二導電層相對該 φ 基板的另一側。 19. 如申請專利範圍第13項所述之顯示裝置,其中,該有機發光 顯示器更包含一反射層,該反射層位於該第一導電層與該基板 之間。.201103361 VII. Patent application scope: 1. A display panel device comprising: a substrate; a first conductive layer on the substrate; a 3m layer 'Γ Γ - conductive layer (10) material two conductive layers _ 奈 ^ 1 and The second conductive radiation has at least a layer of a complementary-organic material located in the first conductive layer 2. 3. 4. 5. = layer herqing 4;::::= as claimed in claim 1 The display panel device, wherein at least one of the conductive layer and the second conductive layer has an electrical anisotropy, such as the display panel device of claim 1, wherein The meter unit has a substantially aligned alignment. The display panel device of claim 1, wherein the nano cells comprise carbon nanotubes. The display panel device of claim 1, wherein the substrate device is flexible. 6. The display panel device of claim 1, further comprising a reflective layer on the other side of the second conductive layer opposite the substrate. 7. The display panel device of claim 1, further comprising a reflective layer between the first conductive layer and the substrate. 8. A display device comprising: an organic light emitting display; and a touch device disposed on the organic light emitting display, the touch device comprising: 16 201103361 a first substrate; a second substrate 'corresponding to the first substrate a first conductive transparent layer between the first substrate and the second substrate and located on a substrate; and a second conductive transparent layer on the first substrate and the second substrate And disposed on the second substrate, wherein at least one of the second conductive light transmissive layer and the first conductive light transmissive layer has a plurality of nano cells. 9. The display panel device of claim 8, wherein at least one of the first conductive light transmissive layer and the second conductive light transmissive layer is electrically anisotropic. 10. The display device of claim 8, wherein the nano cell units are arranged in an array. The display device of claim 8, wherein the nano cells comprise carbon nanotubes. 12. The display panel device of claim 8, wherein at least one of the first substrate and the second substrate is flexible. 13. The display device of claim 8, wherein the organic light emitting display comprises: 'a substrate; a first conductive layer on the substrate; a first conductive layer 'where the first conductive layer is located Between the substrate and the second conductive layer; and 9 - an organic material layer Between the first conductive layer and the second conductive layer, the organic material layer is adapted to be subjected to the first conductive layer and the second conductive The layer acts to illuminate. 14. The display panel of claim 13 wherein the first conductive layer and at least one of the second conductive layer are electrically anisotropic. The display device of claim 13, wherein at least one of the first conductive layer and the second conductive layer has a plurality of nano cells. 16. The display device of claim 15, wherein the nano-units are arranged in an array. 17. The display device of claim 15, wherein the nano-units comprise carbon nanotubes. 18. The display device of claim 13, wherein the organic light emitting display further comprises a reflective layer, the reflective layer being located on the other side of the second conductive layer opposite the φ substrate. 19. The display device of claim 13, wherein the organic light emitting display further comprises a reflective layer between the first conductive layer and the substrate. 1818
TW98123990A 2009-07-15 2009-07-15 Panel of display device and display device applied by the same TW201103361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98123990A TW201103361A (en) 2009-07-15 2009-07-15 Panel of display device and display device applied by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98123990A TW201103361A (en) 2009-07-15 2009-07-15 Panel of display device and display device applied by the same

Publications (1)

Publication Number Publication Date
TW201103361A true TW201103361A (en) 2011-01-16

Family

ID=44837852

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98123990A TW201103361A (en) 2009-07-15 2009-07-15 Panel of display device and display device applied by the same

Country Status (1)

Country Link
TW (1) TW201103361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457885B (en) * 2012-04-02 2014-10-21 Au Optronics Corp Display apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457885B (en) * 2012-04-02 2014-10-21 Au Optronics Corp Display apparatus

Similar Documents

Publication Publication Date Title
US7301167B2 (en) Organic light emitting devices and electroluminescent display panel applying the same
KR101074804B1 (en) Organic light emitting device, lighting equipment comprising the same, and organic light emitting display apparatus comprising the same
JP2004235140A (en) Organic electroluminescent device
US20120326132A1 (en) Organic light emitting element
WO2011162080A1 (en) Organic electroluminescence element
JP2005129496A (en) Organic electroluminescent element
JP2011522391A (en) Organic electroluminescence device
JP2012227122A (en) Organic el device
JP2010147338A (en) Organic electroluminescence element
JP2005135600A (en) Organic electroluminescent element
US7170224B2 (en) Electrode for organic light emitting device and organic light emitting device comprising the same
US20070236140A1 (en) System for displaying images including electroluminescent device and method for fabricating the same
US20140299863A1 (en) Touch-responsive display assembly
JP4872805B2 (en) Organic electroluminescence device
US20080024059A1 (en) System for displaying images incluidng electroluminescent device and method for fabricating the same
JP2009529779A (en) Organic light emitting device manufacturing method and organic light emitting device manufactured thereby
JP2010034042A (en) Organic electroluminescent element
EP1843411A1 (en) System for displaying images including electroluminescent device and method for fabricating the same
JP5281271B2 (en) Organic electroluminescence device
TW201103361A (en) Panel of display device and display device applied by the same
JP2014086345A (en) Electroluminescence element and luminaire using electroluminescence element
KR101489780B1 (en) Organic light emitting diode and fabrication method the same
JP2005327535A (en) Organic electroluminescent light-emitting device
JP2002352962A (en) Organic light-emitting element and manufacturing method therefor, organic light-emitting display device, and the illumination device
JP5679292B2 (en) Organic EL light emitting device