TW201102776A - Method and device for compensation of servo lag - Google Patents

Method and device for compensation of servo lag Download PDF

Info

Publication number
TW201102776A
TW201102776A TW98122498A TW98122498A TW201102776A TW 201102776 A TW201102776 A TW 201102776A TW 98122498 A TW98122498 A TW 98122498A TW 98122498 A TW98122498 A TW 98122498A TW 201102776 A TW201102776 A TW 201102776A
Authority
TW
Taiwan
Prior art keywords
numerical control
condition
servo
backward
control method
Prior art date
Application number
TW98122498A
Other languages
Chinese (zh)
Other versions
TWI406116B (en
Inventor
Hsin-Yu Lu
Yun-Wei Lin
Wei-Sheng Huang
Original Assignee
Syntec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syntec Inc filed Critical Syntec Inc
Priority to TW98122498A priority Critical patent/TWI406116B/en
Publication of TW201102776A publication Critical patent/TW201102776A/en
Application granted granted Critical
Publication of TWI406116B publication Critical patent/TWI406116B/en

Links

Landscapes

  • Numerical Control (AREA)

Abstract

A servo lag compensation method is designed for machines to decrease the servo lag phenomenon in fast forward and backward motion. The method is to simulate the actual motion and then, based on the simulation result, to modify the displacement of the motion plan such that the actual motor motion will move to the designed position even under the influence of servo lag. Moreover, this method does not affect the velocity smoothness of the original motion plan.

Description

201102776 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種伺服落後補償方法’特別係關於快速來 回運動之加工設備的伺服落後補償,例如:CNC車床加工的 伺服落後補償、CNC銑床加工的伺服落後補償、攻牙加工的 伺服落後補償、鑽孔加工的伺服落後補償以及磨床加工的伺服 落後補償等。201102776 VI. Description of the invention: [Technical field of invention] The present invention relates to a servo backward compensation method, in particular to servo backward compensation for processing equipment for fast back and forth movement, for example: servo backward compensation for CNC lathe machining, CNC milling machine processing Servo backward compensation, servo backward compensation for tapping machining, servo backward compensation for drilling machining, and servo backward compensation for grinding machine processing.

【先前技術】 對於需快速來回加工之機械裝置’如車床、磨床、j欠牙 此現象 機及鑽孔機等,其數值控制一大問題來自於伺服落後, 會造成加工路徑精度的嚴重不足。習知之一種伺服落後補彳賞# 式,係利用前迴饋控制方式(Feedforward control),係提供―你 益值至伺服馬達,使伺服馬達能補償所落後的誤差。然%= 樣的補償方式有兩項缺點:1)會造成機台震動而影響機 使用壽命;2)由於機台有多餘的震動,造成加工品有不必 的紋路產生。如第1圖所示,係在鑽孔動作中,使用前迴饋. 償的速度-時間圖示意圖;如圖可知,利用前迴饋容易造成加 工路徑的不平順’會使加工品有不必要的紋路產生。 而除了上述前迴饋補償之外,在磨床動作中,也有提出 一種補償方式’其步驟包括:1)檢查上一單節加工精声曰另 超出預設,如果超出則進入以下步驟,若未超出,則社束疋否 本動單節增加速度’若速度超出預設值,則進入下一 2) 、 夕驟;3) 不增加速度’改增加行走的距離,回到步驟1)。但县 ^ —\,沒個補 償方式也是有缺點,其必須經過多個移動單節才能使 用精唐 收歛到預期的目標’會造成加工時間延長或加工精度不足 201102776 【發明内容】 為解決習知之補償方式容易造成機台震動、加工時間延 長及加工精度不足的問題,本發明之主要目的在提供一種伺服 落後補償方式,係以數值方法得到預估的行程長度,並以此預 估行程取代原來設定之行程條件做動程規畫;因此,最後送出 的命令會抵消伺服落後的影響,使機台能準確到達原本預期的 位置。 本發明之另一主要目的在提供一種伺服落後補償方式, 此補償方式係從源頭更改行程長度,並以此修改後的行程長度 條件做動程規晝,所以不會像前迴饋補償一樣造成機台抖動; 且,由於每次的動作都係有效且能達到精度的要求,所以不會 造成加工時間延長及加工精度不足。 依據上述之目的,本發明首先提供一種伺服落後補償方 式,包括步驟如下: a) 提供一動程規劃,係依據一原始行程條件來產生動程規 劃; b) 提供一預測行程,係將動程規劃結果輸入至一伺服落後 模擬器,以產生預測行程; c) 判斷原始行程條件與預測行程相減的差值是否小於一預 設之精度誤差,當差值小於預設之精度誤差時,流程結 束,否則流程跳至步驟d; d) 提供一新的行程條件,係將步驟a之原始行程條件加上 步驟c之差值作為新的行程條件; e) 執行另一動程規劃,係依據新的行程條件執行動程規 劃,並進入步驟b及步驟c,直到產生一符合預期的行 程條件。 此外,本發明也提供一種具有上述補償方式之數值控制 201102776 裝置’包括:—解料’係用以接收—數值控肺式並輸出一 原始打程條件;—舰落後補償單元係接收原騎程條件且 二原始㈣條件腳卜舰落後量,並輸出—新行程條件,其 中’新订程條件係、原始行程條件與伺服㈣量之合;一插值 加減速_單元,係接收新行程條件並輸出— 機械設借。 列 【實施方式】[Prior Art] For mechanical devices that need to be processed back and forth quickly, such as lathes, grinders, j-nozzles, machine tools, and drills, a major problem with numerical control comes from the lack of servos, which can cause serious shortage of machining path accuracy. A kind of servo-based backward compensation method uses the “feedforward control” to provide “your value” to the servo motor, so that the servo motor can compensate for the backward error. However, the %= compensation method has two shortcomings: 1) it will cause the vibration of the machine and affect the service life of the machine; 2) Because the machine has excessive vibration, the processed product has unnecessary lines. As shown in Fig. 1, in the drilling operation, the pre-feedback is used. The speed-time diagram of the repayment is shown. As can be seen from the figure, it is easy to cause the irregularity of the machining path by using the pre-feedback, which will cause unnecessary texture of the processed product. produce. In addition to the above-mentioned pre-feedback compensation, in the grinder operation, a compensation method is also proposed, the steps of which include: 1) checking the previous single-segment processing sound 曰 and exceeding the preset, if it exceeds, the following steps are performed, if not exceeded If the speed exceeds the preset value, then go to the next 2), and then the moment; 3) increase the distance without increasing the speed, and return to step 1). However, there is a disadvantage in the county ^ — \ , there is no compensation method, it must go through multiple moving single sections to use the Jing Tang to converge to the expected target 'will cause the processing time to be extended or the processing precision is less than 201102776. [Invention content] To solve the conventional problem The compensation method is easy to cause the vibration of the machine, the processing time is prolonged and the processing precision is insufficient. The main purpose of the invention is to provide a servo backward compensation method, which is to obtain the estimated stroke length by numerical method, and replace the original stroke with the estimated stroke. The set stroke conditions are used to plan the motion; therefore, the last command sent out will offset the effect of the servo lag, so that the machine can accurately reach the originally expected position. Another main object of the present invention is to provide a servo backward compensation method, which is to change the stroke length from the source, and to perform the motion schedule with the modified stroke length condition, so that the machine does not cause the same as the previous feedback compensation. The table shakes; Moreover, since each action is effective and can meet the accuracy requirements, it does not cause prolonged machining time and insufficient machining accuracy. According to the above purpose, the present invention firstly provides a servo backward compensation method, which comprises the following steps: a) providing a motion planning, generating a motion planning according to an original travel condition; b) providing a predicted travel, and selecting a motion schedule The result is input to a servo backward simulator to generate a predicted stroke; c) determining whether the difference between the original stroke condition and the predicted stroke is less than a preset precision error, and when the difference is less than the preset precision error, the process ends Otherwise, the process jumps to step d; d) provides a new travel condition, taking the original travel condition of step a plus the difference of step c as the new travel condition; e) performing another motion planning, based on the new The travel condition performs the motion planning and proceeds to steps b and c until a desired travel condition is generated. In addition, the present invention also provides a numerical control having the above-mentioned compensation mode 201102776. The device 'comprising: - dissolving' is for receiving - numerically controlling the lung type and outputting an original driving condition; - the ship backward compensation unit is receiving the original riding range Condition and two original (four) conditions of the ship's backwardness, and output - new travel conditions, where 'new schedule conditions, the original travel conditions and the servo (four) amount; an interpolation acceleration / deceleration unit, is to receive new travel conditions and Output - mechanical loan. Column [embodiment]

首先’清參考第2圖,係本發明之一種數值控制裝置 之方塊圖。數值控制裝i 1G,係用以控制—機械設備之飼服 馬達30 ’機械設備可以係車床、磨床、攻牙機及鑽孔機等。 數值控制裝置1〇包括_解譯器1〇2、一伺服落後補償單元刚 及-插值·加減速規劃單元1G6e解譯器1()2,係接收_數值控 制程式101,並將數值控制程式1G1解譯以輸出—原始行程條 件1〇3伺服洛後補償單元1〇4,係接收上述原始行程條件103 j預尉*]服馬達3〇於原始行程條件1〇3下的祠服落後量,且 =步輸出—新行程條件⑽。此新行程條件⑻係原始行程 ^ 與制的伺服落後量的總合。接著,插值·加減速規 4早X 106接收此新行程條件1〇5並輸出一動程規劃指令阳 至馬達控制器2G。馬達控制器2()則輸出—控制訊號刚至饲 3G ’使飼服馬達3()其實際行程能精準的達到既定的精 接者,凊參考第3圖,係上述伺服落後補償單元104運 作的詳細流程圖。首杰 c , λ , 先S1)伺服落後補償單元104係接收從 解譯器1G2輸出的1始行程條件103,且顧此原始行程條 件103作-動程規劃;S2)經動程規劃後的結果進一步輸 一伺服落後模擬Hu預測伺服馬達3G的可能行程。词服落後 201102776 模擬器係模擬祠服馬達30在加工路徑的轉彎處或折返點發生 的落後情形;伺服馬達30在加工路徑的轉彎處往往無法來得 及將每一個輸入命令立刻反應;係類似一低通濾波器。因此, 模擬器便設計如第4圖所示,上述比率增益(κρ)與伺服馬達3〇 本身的的特定有關,因此,使用者在操作機械設備時,必須先 輸入伺服馬達的比率增益(ΚΡ),使模擬器能模擬或預期伺服馬 達可能落後的情形。接著,便進入步驟三,即S3)當模擬器模 擬出輸出位置(P〇s. out)之後’便可得到一伺服落後量,伺服落 後量係原始行程條件1〇3減去模擬器模擬出的輸出位置。若此 伺服落後量係在可接受的精度誤差内,伺服落後補償單元1〇4 則會結束補償流程且將原始行程條件1〇3直接輸出至插值-加 減速規劃單元106。相反地,若預測的伺服落後量係大於可接 受的精度誤差,伺服落後補償單元丨〇4會進入步驟四;即S4) 將原始行程條件103加上預測的伺服落後量而形成一個新行 程條件。接著,S5)用此新行程條件作一動程規劃,此動程規 劃結果顯然跟S1中利用原始行程條件103所形成的動程規劃 結果不同。接著,便重複步驟幻及幻,直到產生一符合預期 的行程條件。而當產生符合預期的行程條件後,伺服落後補償 單元104則會結束補償流程,且將此符合預期的行程條件當作 一新行程條件1〇5而輸出至插值_加減速規劃單元1〇6。 請參考第5圖,係一鑽孔機利用上述補償方式之速度_時 間不意圖。數值控制裝置10係控制伺服馬達3〇於同一路徑之 起始點與折返點間作往復運動,而起始點與折返點之距離為往 復運動路徑之長度。很明顯地,第5圖並沒有像第1圖一樣發 生機台震動或不平順的現象。上述伺服馬達3〇運動的過程 中,在經過折返點之速度與衝量可規劃為零而其加速度可規劃 201102776 不為零。 接著,請參考第6圖所示’係本發明之另一伺服落後補 償流程圖。首先’如步驟一,即S11)伺服落後補償單元1〇4 接收一加工條件並判斷在這樣的加工條件下,是否已有相關補 償資料;此加工條件包括行程條件、精準度的要求等,也就是 從資料庫中去尋找是否曾接受過同樣的加工條件且曾經跑過 補償流程。若已有相關補償資料,進入S12)提供一已補償或 修正過的行程條件並結束補償流程’否則流程跳S13)將此次First, reference is made to Fig. 2, which is a block diagram of a numerical control device of the present invention. The numerical control is equipped with i 1G, which is used to control the feeding of mechanical equipment. Motor 30 'The mechanical equipment can be lathe, grinder, tapping machine and drilling machine. The numerical control device 1 includes an _interpreter 1 〇 2, a servo backward compensation unit, and an interpolation/acceleration planning unit 1G6e interpreter 1 () 2, which receives the _ numerical control program 101 and sets the numerical control program 1G1 interpretation to output - original travel condition 1〇3 servo post-compensation unit 1〇4, receiving the above-mentioned original travel condition 103 j pre-** service motor 3〇 under the original travel condition 1〇3 And = step output - new travel condition (10). This new travel condition (8) is the sum of the original travel ^ and the servo backwards. Next, the interpolation/acceleration/deceleration gauge 4 early X 106 receives the new stroke condition 1〇5 and outputs a motion planning command to the motor controller 2G. Motor controller 2 () outputs - control signal just to feed 3G 'to make the feeding motor 3 () its actual stroke can accurately reach the established splicer, 凊 refer to Figure 3, the above servo lag compensation unit 104 operates Detailed flow chart. The first jc, λ, first S1) servo backward compensation unit 104 receives the first start condition 103 output from the interpreter 1G2, and takes the original travel condition 103 as the motion planning; S2) after the motion planning As a result, a servo-lag simulated Hu predicts the possible stroke of the servo motor 3G. The word service backwards 201102776 simulator simulates the backward situation of the motor 30 at the turning or turning point of the machining path; the servo motor 30 often cannot respond to each input command immediately at the turning of the machining path; Pass filter. Therefore, the simulator is designed as shown in Fig. 4. The above ratio gain (κρ) is related to the specificity of the servo motor 3〇 itself. Therefore, the user must first input the ratio gain of the servo motor when operating the machine (ΚΡ ), enabling the simulator to simulate or anticipate situations where the servo motor may be behind. Then, go to step 3, that is, S3) After the simulator simulates the output position (P〇s. out), you can get a servo backward amount. The servo backward amount is the original stroke condition 1〇3 minus the simulator simulation. The output location. If the servo lag is within an acceptable accuracy error, the servo lag compensation unit 〇4 ends the compensation process and outputs the original stroke condition 1 〇 3 directly to the interpolation-acceleration planning unit 106. Conversely, if the predicted servo backwardness is greater than the acceptable accuracy error, the servo backward compensation unit 丨〇4 proceeds to step four; that is, S4) adds the predicted servo delay to the original stroke condition 103 to form a new stroke condition. . Next, S5) uses this new stroke condition as a motion planning, and the result of this motion planning is obviously different from the motion planning result formed by the original stroke condition 103 in S1. Then, repeat the steps and illusions until a desired travel condition is produced. When the expected travel condition is generated, the servo backward compensation unit 104 ends the compensation process, and outputs the expected travel condition as a new travel condition 1〇5 to the interpolation_acceleration/deceleration planning unit 1〇6. . Please refer to Figure 5 for the speed/time of a drilling machine using the above compensation method. The numerical control device 10 controls the servo motor 3 to reciprocate between the starting point and the turning point of the same path, and the distance between the starting point and the turning point is the length of the reciprocating motion path. Obviously, Figure 5 does not have the vibration or unevenness of the machine as in Figure 1. During the above movement of the servo motor 3〇, the speed and impulse at the turn-around point can be planned to be zero and the acceleration can be planned to be non-zero. Next, please refer to FIG. 6 for another servo backward compensation flow chart of the present invention. First, as in step 1, ie, S11, the servo backward compensation unit 1〇4 receives a processing condition and determines whether there is relevant compensation data under such processing conditions; the processing conditions include the stroke condition, the accuracy requirement, etc. It is to find out from the database whether you have accepted the same processing conditions and have ran through the compensation process. If there is relevant compensation data, go to S12) to provide a compensated or corrected travel condition and end the compensation process 'other process jump S13' will be this time

加工條件中的行程條件取出’此行程條件即所謂的原始行程條 件。接著S14)以上述原始行程條件去做動程規劃。si5)將 動程規劃結果輸到一伺服落後模擬器,伺服落後模擬器如前文 所述,係一低通濾波器,並輸出一預測行程。S16)將原始行 程減去模擬器預測出的行程,以得到一預測的伺服落後量。sl7) 判斷此預測的伺服落後量是否在可接受的精度誤差内;若可以 接受,則將原始行程,即將加工條件中的行程條件直接輸出並 結束補償。若伺服落後大於可接受的誤差值,則代表需要補 償’需修正行程條件。進人S18)將伺服落後量即原行程條件 與預測行㈣差值加到原始行程條件以得到—新的或修正的 行程條件。S19)以新的行程條件去做動程規劃,並重複^15)、 S16)及S17)直到產生-符合預期的行程條件。而當產生符合 預期的行程條件後,伺服落後補償單& 1Q4則料束補償流 程’且將此符合預期的行程條件當作一新行程條件ι〇5而輸出 至插值-加減速規劃單元1〇6。 很明顯地 ,., 乃此*兄版伺服洛後對於控制的影響,使得 實際行程能精準的達到既定的精度要求;且 程條件下做修正,*會有傳統前迴饋補償造成的機^抖動問 201102776 題,且也不需要多次時機執行,才能使精度收歛到預設範圍 内,造成加工時間的延長。 以上針對本發明較佳實施例之說明係為闡明之目的,而 無意限定本發明之精確應用形式,由以上之教導或由本發明的 實施例學習而作某種程度修改是可能的。因此,本發明的技術 思想將由以下的申請專利範圍及其均等來決定之。 【圖式簡單說明】 第1圖 係於鑽孔動作中,使用習知之補償方式之速度-時間 不意圖, 第2圖 係本發明之一種數值控制裝置之方塊圖; 第3圖 係本發明之一種伺服落後補償之流程圖; 第4圖係利用之補償方式其使用的伺服落後模擬器之等效 模型; 第5圖係於鑽孔動作中,使用本發明之補償方式之速度-時 間示意圖;及 第6圖 係本發明之另一種伺服落後補償之流程圖。 【主要元件符號說明】 10 數值控制裝置 101 數值控制程式 102 解譯器 103 原始行程條件 104 伺服落後補償單 105 新行程條 106 插值-加減速規劃單 107 動程規劃指令 201102776 108 控制訊號 20 馬達控制器 30 伺服馬達The stroke condition in the processing conditions is taken out. This stroke condition is the so-called original stroke condition. Then, S14) performs the motion planning with the above original travel conditions. Si5) The motion planning result is output to a servo-behind simulator, which is a low-pass filter and outputs a predicted stroke as described above. S16) Subtracting the original travel from the predicted stroke of the simulator to obtain a predicted servo backward amount. Sl7) Determine if the predicted servo backwardness is within the acceptable accuracy error; if acceptable, the original stroke, that is, the stroke condition in the machining condition, is directly output and the compensation is ended. If the servo lag is greater than the acceptable error value, it means that the compensation needs to be corrected. Step S18) Add the servo backward amount, that is, the original travel condition and the predicted line (4) difference to the original travel condition to obtain a new or corrected travel condition. S19) Perform the motion planning with the new travel conditions and repeat ^15), S16) and S17) until the generated - meets the expected travel conditions. When the expected stroke condition is generated, the servo backward compensation sheet & 1Q4 is the bundle compensation process' and the expected stroke condition is regarded as a new stroke condition ι〇5 and output to the interpolation-acceleration/deceleration planning unit 1 〇 6. Obviously, the effect of this * brother version of the servo on the control, so that the actual stroke can accurately achieve the specified accuracy requirements; and the correction under the condition, * there will be the traditional front feedback compensation caused by the machine ^ jitter Question 201102776, and does not need to be executed multiple times, in order to converge the accuracy to the preset range, resulting in prolonged processing time. The above description of the preferred embodiments of the present invention is intended to be illustrative, and is not intended to limit the precise application of the invention. It is possible to make some modifications of the teachings of the invention. Therefore, the technical idea of the present invention will be determined by the following claims and their equals. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a numerical control device of the present invention in the drilling operation, using a conventional compensation method, and FIG. 3 is a block diagram of the present invention. A flow chart of servo backward compensation; Fig. 4 is an equivalent model of the servo backward simulator used by the compensation method; Fig. 5 is a speed-time diagram of the compensation method of the present invention used in the drilling operation; And Fig. 6 is a flow chart of another servo backward compensation of the present invention. [Main component symbol description] 10 Numerical control device 101 Numerical control program 102 Interpreter 103 Original travel condition 104 Servo backward compensation list 105 New travel bar 106 Interpolation-acceleration planning sheet 107 Motion planning command 201102776 108 Control signal 20 Motor control 30 servo motor

Claims (1)

201102776 七、申請專利範圍: 1. 一種數值控制裝置,用以控制一機械設備,該數值控制裝 置包括: 一解譯器,係用以接收一數值控制程式並輸出一原始行程條 件; 一伺服落後補償單元,係接收該原始行程條件且以該原始行 程條件預測一伺服落後量,並輸出一新行程條件,其中,該 新行程條件係該原始行程條件與該伺服落後量之合; 一插值-加減速規劃單元,係接收該新行程條件並輸出一指 令,以控制該機械設備。 2. 如專利申請範圍第1項所述之數值控制裝置,該伺服落後 補償單元包括一伺服落後模擬器,以模擬該伺服馬達之落 後情形。 3. 如專利申請範圍第2項所述之數值控制裝置,該伺服落後 模擬器係一低通渡波器。 4. 如專利申請範圍第2項所述之數值控制裝置,該伺服落後 補償單元接收該原始行程條件後,以該原始行程條件產生 一速度與時間之動程規晝,且將該動程規晝結果輸入至該 伺服落後模擬器,以輸出一預測行程。 5. 如專利申請範圍第4項所述之數值控制裝置,其中該伺服 落後量係該原始行程條件與該預測行程之差值。 6. 如專利申請範圍第1項所述之數值控制裝置,其中該機械 設備係一伺服馬達。 7. 如專利申請範圍第1項所述之數值控制裝置,該數值控制 裝置係控制該機械設備於同一路徑之一起始點與一折返 點間作往復運動。 8. 如專利申請範圍第7項所述之數值控制裝置,其中該起始 201102776 點與該折返點之距離為該往復運動路徑之長度。 9. 如專利申請範圍第7項所述之數值控制裝置,其中該機械 設備在經過該折返點時,該機械設備之速度與衝量為零, 但加速度不為零。 10. 如專利申請範圍第1項所述之數值控制裝置,其中該機 械設備係自下列組合中選出:車床、磨床、攻牙機及鑽孔 機。 11. 一種數值控制方法,用以補償一機械設備之落後情形, Φ 該數值控制方法包括步驟如下: A. 提供一動程規劃,係依據一原始行程條件來產生該動程 規劃; B. 提供一預測行程,係將該動程規劃結果輸入至一伺服落 後模擬器,以產生該預測行程; C. 判斷該原始行程條件與該預測行程相減的差值是否小 於一預設之精度誤差,當該差值小於該預設之精度誤差 時,流程結束,否則流程跳至步驟D ; D. 提供一新的行程條件,係將步驟A之該原始行程條件 ® 加上步驟C之該差值作為該新的行程條件; E. 執行另一動程規劃,係依據該新的行程條件執行該動程 規劃,並進入步驟B及步驟C,直到產生一符合預期的 行程條件。 12. 如專利申請範圍第11項所述之數值控制方法,該伺服 落後模擬器係一低通濾波器。 13. 如專利申請範圍第11項所述之數值控制方法,其中該 機械設備係一伺服馬達。 14. 如專利申請範圍第11項所述之數值控制方法,該數值 11 201102776 控制方法係控制該機械設備於同一路徑之起始點與折返 點間作往復運動。 15. 如專利申請範圍第14項所述之數值控制方法,其中該 起始點與該折返點之距離為該往復運動路徑之長度。 16. 如專利申請範圍第14項所述之數值控制方法,其中該 機械設備在經過該折返點時,該機械設備之速度與衝量為 零,但加速度不為零。 17. 如專利申請範圍第11項所述之數值控制方法,其中該 機械設備係自下列組合中選出:CNC車床、攻牙機、鑽孔 φ 機及磨床。 18. 一種數值控制方法,用以補償一機械設備之落後情形, 該數值控制方法包括步驟如下: A. 提供一加工條件,該加工條件包括一行程條件及一動程 條件; B. 判斷在該加工條件下是否已有相關補償資料,若已有相 關補償資料,則提供一已補償的行程條件並結束補償流 程,否則流程跳至步驟B ; C. 提供一動程規劃,係依據該行程條件來產生該動程規 · 劃; D. 提供一預測行程,係將該動程規劃結果輸入至一伺服落 後模擬器,以產生該預測行程; E. 提供一落後差值,該落後差值係該原始行程條件減去該 預測行程; F. 判斷該落後差值是否小於一預設之精度誤差,當該差值 小於該預設之精度誤差時,流程結束,否則流程跳至步 驟G ; 12 201102776 G. 提供一新的行程條件,係將該落後差值加到原始行程條 件以作為該新的行程條件; H. 執行另一動程規劃,係依據該新的行程條件執行該動程 規劃,並進入步驟D、步驟E及步驟F,直到產生一符合預 期的行程條件。 19. 如專利申請範圍第18項所述之方法,該伺服落後模擬 器係一低通遽波器。 20. 如專利申請範圍第18項所述之數值控制方法,其中該 機械設備係一伺服馬達。 21. 如專利申請範圍第18項所述之方法,該數值控制方法係 控制該機械設備於同一路徑之起始點與折返點間作往復運 動。 22. 如專利申請範圍第21項所述之方法,其中該起始點與該 折返點之距離為該往復運動路徑之長度。 23. 如專利申請範圍第21項所述之數值控制方法,其中該機 械設備在經過該折返點時,該機械設備之速度與衝量為零, 但加速度不為零。 24. 如專利申請範圍第18項所述之數值控制方法,其中該機 械設備係自下列組合中選出:車床、磨床、攻牙機及鑽孔機。 13201102776 VII. Patent application scope: 1. A numerical control device for controlling a mechanical device, the numerical control device comprising: an interpreter for receiving a numerical control program and outputting an original travel condition; The compensation unit receives the original travel condition and predicts a servo backward amount based on the original travel condition, and outputs a new travel condition, wherein the new travel condition is a combination of the original travel condition and the servo backward amount; The acceleration/deceleration planning unit receives the new stroke condition and outputs an instruction to control the mechanical device. 2. The numerical control device of claim 1, wherein the servo backward compensation unit comprises a servo backward simulator to simulate a situation of the servo motor. 3. The numerical control device of claim 2, wherein the servo-lag simulator is a low-pass waver. 4. The numerical control device according to item 2 of the patent application scope, after receiving the original travel condition, the servo backward compensation unit generates a speed and time schedule of the original stroke condition, and the motion gauge The result is input to the servo-lag simulator to output a predicted stroke. 5. The numerical control device of claim 4, wherein the servo backward amount is a difference between the original stroke condition and the predicted stroke. 6. The numerical control device of claim 1, wherein the mechanical device is a servo motor. 7. The numerical control device of claim 1, wherein the numerical control device controls the mechanical device to reciprocate between a starting point of the same path and a return point. 8. The numerical control device of claim 7, wherein the distance between the starting point 201102776 and the turning point is the length of the reciprocating path. 9. The numerical control device of claim 7, wherein the mechanical device has a speed and impulse of zero when the mechanical device passes the return point, but the acceleration is not zero. 10. The numerical control device of claim 1, wherein the mechanical device is selected from the group consisting of a lathe, a grinder, a tapping machine, and a drill. 11. A numerical control method for compensating for the backward condition of a mechanical device, Φ The numerical control method comprises the following steps: A. providing a motion planning, the motion planning is generated according to an original travel condition; B. providing a Predicting the travel, inputting the motion planning result to a servo backward simulator to generate the predicted travel; C. determining whether the difference between the original travel condition and the predicted travel is less than a preset accuracy error, when When the difference is less than the preset accuracy error, the process ends, otherwise the flow jumps to step D; D. provides a new stroke condition, which is the original stroke condition of step A plus the difference of step C The new travel condition; E. Perform another motion plan, perform the motion plan according to the new travel condition, and proceed to step B and step C until a desired travel condition is generated. 12. The numerical control method of claim 11, wherein the servo-behind simulator is a low-pass filter. 13. The numerical control method of claim 11, wherein the mechanical device is a servo motor. 14. The numerical control method as described in claim 11 of the patent application, wherein the control method controls the mechanical device to reciprocate between a starting point and a turning point of the same path. 15. The numerical control method of claim 14, wherein the distance between the starting point and the turning point is the length of the reciprocating path. 16. The numerical control method of claim 14, wherein the mechanical device has a velocity and an impulse of zero when the turning point passes, but the acceleration is not zero. 17. The numerical control method of claim 11, wherein the mechanical equipment is selected from the group consisting of: a CNC lathe, a tapping machine, a drilling machine, and a grinding machine. 18. A numerical control method for compensating for a backward condition of a mechanical device, the numerical control method comprising the steps of: A. providing a processing condition, the processing condition comprising a stroke condition and a range condition; B. determining the processing Whether there is relevant compensation data under the condition, if there is relevant compensation data, provide a compensated travel condition and end the compensation process, otherwise the process jumps to step B; C. Provide a dynamic plan, which is generated according to the travel condition The motion schedule is provided; D. providing a predicted trip, the motion planning result is input to a servo backward simulator to generate the predicted travel; E. providing a backward difference, the backward difference is the original The stroke condition is subtracted from the predicted stroke; F. determining whether the backward difference is less than a preset accuracy error, and when the difference is less than the preset accuracy error, the process ends, otherwise the flow jumps to step G; 12 201102776 G Providing a new travel condition by adding the lagging difference to the original travel condition as the new travel condition; H. performing another travel schedule The process is performed according to the new travel condition, and proceeds to step D, step E, and step F until a desired travel condition is generated. 19. The method of claim 18, wherein the servo lag simulator is a low pass chopper. 20. The numerical control method of claim 18, wherein the mechanical device is a servo motor. 21. The method of claim 18, wherein the numerical control method controls the mechanical device to reciprocate between a starting point and a turning point of the same path. 22. The method of claim 21, wherein the distance from the starting point to the turning point is the length of the reciprocating path. 23. The numerical control method of claim 21, wherein the mechanical device has a speed and impulse of zero when the mechanical device passes the return point, but the acceleration is not zero. 24. The numerical control method of claim 18, wherein the mechanical equipment is selected from the group consisting of a lathe, a grinder, a tapping machine, and a drilling machine. 13
TW98122498A 2009-07-03 2009-07-03 Method and device for numerical control TWI406116B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98122498A TWI406116B (en) 2009-07-03 2009-07-03 Method and device for numerical control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98122498A TWI406116B (en) 2009-07-03 2009-07-03 Method and device for numerical control

Publications (2)

Publication Number Publication Date
TW201102776A true TW201102776A (en) 2011-01-16
TWI406116B TWI406116B (en) 2013-08-21

Family

ID=44837583

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98122498A TWI406116B (en) 2009-07-03 2009-07-03 Method and device for numerical control

Country Status (1)

Country Link
TW (1) TWI406116B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454335B (en) * 2011-07-27 2014-10-01 Nat Univ Chung Cheng Learning control system for simultaneously reduction in process time and machining errors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510874B (en) * 2013-12-31 2015-12-01 Syntec Inc Numerical controller with tooling path repairing fuction and tooling path repairing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454335B (en) * 2011-07-27 2014-10-01 Nat Univ Chung Cheng Learning control system for simultaneously reduction in process time and machining errors

Also Published As

Publication number Publication date
TWI406116B (en) 2013-08-21

Similar Documents

Publication Publication Date Title
US7167772B2 (en) Machining time calculating apparatus
CN103180791B (en) Control device, control system and control method
US7902785B2 (en) Method and device for guiding the movement of a moveable machine element of a machine
CN108693834B (en) Adjust device and method of adjustment
JP6450732B2 (en) Numerical controller
US20090164038A1 (en) Method for optimizing the machining process in a machine
JP2007094936A (en) Numerical value controller
JP6346206B2 (en) Numerical control device having block time display means
CN107092235A (en) Process time prediction meanss
US20030125828A1 (en) SmartPath: an intelligent tool path optimizer that automatically adusts feedrates, accel rates and decel rates based on a set of rules and spindle torque defined by the user
CN105511407A (en) Numerical controller
JP2009201169A (en) Servo controller
CN102221827A (en) Automatic programming method and device for creating multi-path program
JP2016164697A (en) Position control system
JP2021056835A (en) Simulation device
TW201102776A (en) Method and device for compensation of servo lag
CN116300698A (en) Thread cutting machining method based on dynamic programming
RU2008109406A (en) METHOD AND DEVICE OF CONTROL OF ACCURACY OF PARTS PROCESSING
CN101249579A (en) Punch machine program generating device, recording medium storing a program for generating a punch machine program, and wire-cut electric discharge machine
CN107615195A (en) A kind of method of tapping female bore, Digit Control Machine Tool and numerical control processing apparatus
KR20190015148A (en) Machining of workpieces with model-supported error compensation
JP2000235411A (en) Numerical controller using machining information
TWM467530U (en) CNC system and apparatus of automatically turning machining speed
US20180284711A1 (en) Simulation apparatus, program generating device, controller, and display method for computer
KR101108211B1 (en) Device for generating the part programs of multi-functional turning machines and method for generating the syncronizing program between multiful processes