201102190 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明係有關於一種在金屬板材製作微孔之方法, 特別是指於一定單位面積的金屬板材上,成型出最多微 孔數量的製造方法,藉以能作為吸音板之用,並提高其 吸音率者。 【先前技術】 [0002] 由於目前生活周遭的環境中,充斥著各種不同的噪 音,而會嚴重影響到生活品質,為此,則有各類的吸音 〇 或隔音設備應運而生,其中以吸音板的吸音效果尤佳, 而該吸音板構造則源起於1 970年中國留美之馬大猷院士 所提出之「微孔板吸音理論」,其主要係利用一板材的 表面設有若干小孔且孔徑需小於板厚,當聲音進入小孔 (隧道)後,其音波動能分子會在管心高速穿透與管壁 黏著,此時便造成分子的磨擦直到分子動能轉變成熱能 ,使聲能衰減,藉以達到了吸音的效果。本申請人則據 Ο 此理論陸續申請有於中華民國95年4月21曰所公告之新型 ; 第M289784號「金屬吸音板」專利案,其主要係在一金屬 板體之底面密佈凹設諸多錐底具有一橢圓形微細孔之三 角錐,又於金屬板體之頂面設具成形為微細波浪型表面 ,且於波浪型表面上對應橢圓形微細孔處上方周圍亦凹 設成形三角錐;據此,使反射的音波相互碰撞干擾而產 生衰減,同時,即使部份音波將穿透三角錐錐底之橢圓 形微細孔,也會造成音波穿透損失,俾達更佳之吸音及 更快之組設效果。 申請人另申請有於98年5月16日所公開之發明第 098123294 表單編號A0101 第3頁/共30頁 0982039647-0 201102190 200920902號「幾何微孔吸音板」專利案,其主要則在 於樓板層之下方裝設有一金屬製成之板體,板體之頂面 與底面分別凹設有相連通之微細多曲面外觀面與微細幾 何孔槽,利用不同角度之錐面產生相互折射,促成相互 干涉現象而消耗空氣動力之動能,且板體與樓板層間的 空氣層將增加音波動能之摩擦損失,以達成良好之吸音 功能。 然,上述該等申請之專利案,其均係利用到「微孔 板吸音理論」;而目前市面上的一些吸音板構造,也是 利用此理論進行製造生產,但由於吸音率係與單位面積 板材上的微孔數量有關,因此如果能夠在板材上製造出 最多的微孔,不僅可提高其吸音率,而且具有節省材料 及製造成本之優點。 目前已知的吸音板,大多利用沖床對板材施以直接 沖壓造孔的加工技術。透過該直接沖壓造孔的加工技術 ,可以在每平方公尺的板材上沖出40000至50000個細孔 ,但每一細孔的最小孔徑僅能達0. 45mm,難以沖出單位 面積上數目更多且孔徑更小的吸音板,因此平均的吸音 率(NRC)僅能達到0. 15-0. 5之間(NRC數值愈高代表吸 音率愈佳)。 【發明内容】 [0003] 098123294 有鑑於習知的吸音板難以在一定單位面積的板材上 製造出最多的微孔,而無法有效提高其吸音率,故本發 明提供一種在金屬板材製作微孔之方法,主要係以剪切 模具對具有適當硬度及延展性的板材施以剪切加工,其 包括下列步驟:A.使金屬板材在一工作平台上朝向工作 表單編號A0101 第4頁/共30頁 0982039647-0 201102190 平台之剪切緣進給’金屬板材的第一表面接觸該工作平 台,並有局部金屬板材凸伸出該工作平台之剪切緣;Β. 使一沖頭位在工作平台剪切緣上方的第一位置,且沖頭 與工作平台間維持一工作間隙,該沖頭在平行於工作平 台剪切緣之方向上具有多個連續排列的單元刃部;c,沖 頭朝向工作平台施予—剪力;D.金屬板材受沖頭之施力 而沿施力方向f曲,且金屬板材之朝向沖頭的第二表面 欠單7CT7部之作用而對應形成多個點形連續排列凹陷; Ο E.金屬板材上之第一表面承受剪力,沿 工作平台之剪切 緣而成形一線型凹陷;F.透過上述剪力使金屬板材變形 第一表面的點形連續排列凹陷與第__表面的線型凹陷 相貝通’其貫通之交會處形成微孔;G.沖頭在第一位置 復位,再沿平行於工作平台剪切緣之方向偏移一工作距 離’移至一第二位置;U.金屬板材朝向工作平台之剪切 緣方向再進給;I.沖頭在第二位置,重複步驟c、D、E、 ο F ’ J.沖頭在第二位置復位,沿平括於工作平台剪切緣之 方向偏移一工作距離,回莖第一位置,完成一次循環加 工。 上述藉由控制步驟B單元刃部之數目與步驟Η之金屬 板材再進給行程,使金屬板材上之微孔數目介於每平方 公尺80000個至450000個之間。 上述藉由控制步驟Β單元刃部之數目與步驟Η之金屬 板材再進給行程,使金屬板材上之微孔數目介於每平方 公尺250000個至400000個之間。 上述金屬板材之硬度HRB介於8至40之間’延展性介 於4至30之間。 098123294 表單編號A0101 第5頁/共30頁 0982039647-0 201102190 上述單元刃部係呈鋸齒狀排列。 上述工作距離係小於二相鄰單元刀部之節距。 上述工作距離係為二相鄰單元刃部之節距的二分之 上述步驟F進一步包括有步驟F1,係控制沖頭之行程 ,使該第二表面的點形連續排列凹陷與第一表面的線型 凹陷相貫通後,所形成之微孔垂向最小孔寬係小於金屬 板材之厚度。 上述步驟F進一步包括有步驟F2,係控制沖頭之行程 ,使該第二表面的點形連續排列凹陷與第一表面的線型 凹陷相貫通後所形成的微孔,其沿線型凹陷方向之孔寬 係大於金屬板材進給方向之孔寬。 上述步驟F進一步包括有步驟F3,係控制沖頭之行程 ,使該第二表面的點形連續排列凹陷與第一表面的線型 凹陷相貫通後,所形成的微孔則位於該線型凹陷的頂部 位置。 上述步驟J完成後,進一步包括有一整平程序,係對 於金屬板材之第一表面與第二表面進行整平。 上述金屬.板材進行整平程序後,則再包括有一披覆 程序,係對已完成整平之金屬板材,於其第一表面及第 二表面上披覆有一膜層。 上述步驟B連續排列的單元刃部係控制為鋸尺形狀。 本發明具有下列之優點: 1.本發明係能夠在一定單位面積的金屬板材上,製 造出數量最多的微孔,而可以大幅節省材料及製造成本 098123294 表單編號A0101 第6頁/共30頁 0982039647-0 201102190 2·本各明於—疋單位面積的金屬板材上能夠製造出 最多的微孔’故可以提高其吸音率,纽降低噪音,藉 以達到最佳的噪音防治功效。 3.依本發明製造方法所製成之金屬板材,係具有質 輕、無毒、防火、抗鹽分、防水氣、吸音率高、壽命長 、顏色多變化^於切财料功效,其主要運用於高 溫 '高濕、料與高速氣流之場所,如建築、營造、空 調、機械、電子、醫療、交通運輸等㈣噪音防治產業 Ο [0004] Ο 098123294 ,係能成為—種防塵、防火、防水、無毒之耐久性吸音 板。 【實施方式】 首先β參閱第_圖所示,本發明之較佳實施例係 包括下列步驟: Α·使金屬板材在―卫作平台上朝向工作平台之剪切 緣進給,金屬板材的第-表面接觸該卫作平台,並有局 部金屬板材凸伸出該1作平台之剪切緣;:係在於一工作 平台⑴之邊緣形成有—剪切餐⑴)〔如第二圖所示〕, 而將一待沖孔之金屬板材⑵置於該工作平台⑴上進行 輸送,使其可以朝向該工作平台⑴之剪切緣⑴)進給移 動’而該金屬板材⑴會有局部待沖孔之部位凸伸出於剪 切緣⑴)之外而呈懸空狀,該金屬板材⑺係具有朝下的 第-表面⑽及朝上的第二表面(22),且該金屬板材之 硬度Hrb介於8至40之間,延展性介於4至3〇之間。 β·使一沖頭位在工作平台剪切緣上方的第一位置, 且/Μ'工作平Q 維持—卫作間隙’該沖頭在平行於 工作平口剪切緣之方向上具有多個連續排列的 表單編號Α0101 1 0982039647-0 201102190 ;係將一沖頭(3)設置在工作平台(1)之剪切緣(11)上方 的第位置(Y1)〔如第三圖所示〕,該第一位置(Y1)係 與剪切緣(11)恆保持垂直,該沖頭(3)之垂向係與工作平 台(1)之剪切緣(11)間維持有一工作間隙〔如第四圖 所示〕,又該沖頭(3)上設有至少一個以上連續排列的單 元刃部(31) ’該等單元刃部(31)係控制為鋸尺形狀。 C. 沖頭朝向工作平台施予一剪力;將該沖頭(3)於第 一位置(Y1)垂直向下施力,利用該沖頭(3)之垂向係與工 剪切緣⑴)之間具有一工作間隙⑻,故當沖頭⑶之單 元刀部(31)與工作平台(1)之剪切緣(11)相交會時〔如 第五圖所示〕,則會形成有一剪力。 D. 金屬板材受沖頭之施力而沿施为方向彎曲,且金 屬板材之朝向沖頭的第二表面受單元刀部之作用而對應 形成多個點形連續排列凹陷;當金屬板材⑺受到該沖頭 (3)向下的施力後,則凸伸出剪切緣(11)而懸空之局部金 屬板材(2)部位則會沿著其施力方向而呈彎曲變形,而沖 頭(3)的單元刀部(31)會在靠近剪切緣(⑴的金屬板材 (2)之第二表面(22)上,對應沖壓形成有多個點形連續排 列凹陷(4 )〔如第六圖所示〕。 E. 金屬板材上之第一表面承受剪力,沿工作平台之 剪切緣而成形-線型凹陷;由於金屬板材⑺受到剪力彎 曲變形後’料㈣受到剪切緣⑴)向上㈣的力量, 而會於該第一表面⑵)上相對成形有一線形凹陷⑸。 F. 透過上述剪力使金屬板材變形,第二表面的點形 連續排列凹陷與第一表面的線型凹陷相貫通,其貫通之 交會處形成微孔;利用上述所產生的剪力,而使金屬板 表單編號A0101 098123294 0982039647-0 第8頁/共30頁 201102190 材(2 )變形後,則會在該第二表面(22 )上的點形連續排列 凹陷(4)與第一表面(21)的線形凹陷(5)之間相交貫通而 形成有一微孔(6)〔如第七圖所示〕。 F1.其係控制沖頭(3)之行程,使該第二表面(22)的 點升么連續排列凹陷(4)與第一表面(21)的線型凹陷(5)相 貫通後,所形成之微孔(6)垂向的最小孔寬(Ml)係小於金 屬板材(2)之厚度(N)。 F2.其係控制沖頭(3)之行程,使該第二表面(22)的 點形連續排列凹陷(4)與第一表面(21)的線型凹陷(5)相 貫通後所形成的微孔(6)。 F3.其係控制沖頭(3)之行程,使該第二表面(22)的 點形連續排列凹陷(4)與第一表面(21)的線型凹陷(5)相 貫通後,所形成的E微孔(6)則位於該線型凹陷(5)的頂部 位置。 G. 沖頭在第一位置復位,再沿平行於工作平台剪切 緣之方向偏移一工作距離,移至一第二位置;然後沖頭 (3)向上昇起回到第一位置(Y1)復位,該沖頭(3)再平行 沿著該工作平台(1)之剪切緣(11)偏移一工作距離(T), 而移至一第二位置(Y2)〔請參考第三圖所示〕,該工作 距離(τ)係小於二相鄰單元刃部(31)之節距(p),且該工 作距離(τ)係為二相鄰單元刀部(31)之節距(p)的二分之 —~ 〇 H. 金屬板材朝向工作平台之剪切緣方向再進給;則 "亥金屬板材(2)再朝向該工作平台(丨)之剪切緣(丨丨)方向 再進給一適當距離。 I. 沖頭在第二位置,重複步驟c、D、E、F ;沖頭 098123294 表單編號A0101 0982039647-0 第9頁/共30頁 201102190 (1)則會再於金屬板材(2)進給適當距離之後,則會再重 復上述步驟C、D、E、F,而於金屬板材(2)的第二表面 (2 2)及第表面(21)上,分別再形成有多個點形連續排 列凹陷(4)及線形凹陷(5),而該點形連續排列凹陷 及線形凹陷(5)之間則會貫通形成有微孔(6)〔如第八圖 所示〕。 J.沖頭在第二位置復位,沿平行於工作平台剪切緣 之方向偏移-工作距離,回至第一位置,完成一次循環 加工;最後該沖頭(3)係會再向上昇起回到第二位置(γ2) 復位,然後沿著該工作平台(!)剪切緣之方向,再偏 移一工作距離(τ)回到第一位置,以完成一次循環沖孔的 加工處理。 1 .. .. : .:. . .. 當上述各步驟完成整個金屬板材(2)多次循環的沖孔 加工處理後,則可再包括有-整平程序,係對於金屬板 材⑵之第一表面(21)與第二表面(22)進行研磨或抛光 之處理,以供後續可方便進行披覆程序之處理。 當上述之金屬板材(2)進行整平程序後,則可再進行 一披覆程序,係對已完成整平之金屬板材,於其第一 表面(21)及第二表面(22)上披覆一膜層,該膜層採用靜 電塗裝,膜厚約20mic,且未堵住微孔(6),藉以可防止 其刮傷、損壞、鏽蝕及增加美觀性,並延長使用壽命。 因此本發明係藉由控制步驟B單元刀部(3丨)之數目與 步驟Η之金屬板材(2)再進給行程’並選擇金屬板材之硬 度Hrb介於8至40之間,延展性介於4至30之間,藉以使製 造的金屬板材(2),其微孔(6)數目介於每平方公尺 80000個至450000個之間,或使金屬板材(2)上 0982039647-0 098123294 表單編號A〇m 第ίο頁/共3Q頁 201102190 (6)數目介於每平方公尺250000個至400000個之間。利 用上述步驟,所製造出之金屬板材(2),其每平方公尺具 有40萬個微孔,該金屬板材(2)之實物放大圖片請參考第 九圖及第十圖所示。經吸音率之測試,測試樣本為微孔 單層之吸音金屬板及微孔雙層之吸音金屬板,其中微孔 單層之吸音金屬板之板厚為1. 0mm、孔徑為0. 08mm的幾 何孔.、測試溫度為25°C、測試濕度為60%,各音程之吸音 率則依據CNS 9056要求,微孔單層之吸音金屬板測試數 據如表一所示,吸音率測試之折線圖如第Ί —圖所示。 [0005] 〇 空MM 50tom lOQoim 20Qtmn 500mm 中心娜 脚 吸音率 (l/3)Cktm 麟聿 (l/3)Octoe 吸音率 (myoc^m 聿 (l/3X3ctoye 125 0.01 a〇9 0.30 m 160 0.09 0.19 o.m 〇.% 200 0.15 0.25 0.45 0.68 250 0.17 a39 0.66 a7〇 315 0.25 asi o.m 0,57 m (X34 0.61 0.75 0.50 500 048 om 0.81 0.58 630 0.56 a78 0.74 0.61 800 0.68 ass 0.61 0.58 lk 0.75 0.81 058 0.67 1.25k 0.75 0.75 0.64 0.67 1.6k 0.¾ OM 0.66 om 2k QJ6 0.55 0.61 0.65 ZSc 0J4 057 0.65 0.66 3.15k 0.66 a63 0.66 0.S7 4k 0.61 0.59 0.61 NEC 0.55 0.65 0.65 [0006] [0007] 表一 其中單層金屬板經測試於空氣層5Omni時,而中心頻 率為2kHz時,吸音率高達0.76 ;在空氣層100_時,而 中心頻率為800Hz時,吸音率高達0.85 ;在空氣層200 mm 時,而中心頻率為500Hz時,吸音率高達0.81 ;在空氣 098123294 表單編號A0101 第11頁/共30頁 0982039647-0 201102190 層500_時,而中心頻率為125Hz時,吸音率高達0.85。 而微孔雙層之吸音金屬板測試數據如表二所示,吸 音率測試之折線圖如第十二圖所示。 [0008] 郷雕 50 mm 5Qmm 100麵 SO mm 100 mm 100腿 中心痛串 酿串 贿串 吸音率 m (UBJOctave (U3X)cSve (l^)0clave 125 033 021 0J5 160 (M9 0.37 036 200 0.48 0J9 0,65 250 0.¾ 0.76 (m 315 0.82 ατδ 0.91 400 m 0,79 α9〇 500 av 0,89 QM 630 av 0.88 m 800 ατ? 0.88 m Ik 0.80 0,89 0.W1 1.25k 0J4 QM o激 1.& α?2 m 0.78 龙 ⑽ aso 0.72 ZSc 0.59 απ 0,75 3,15k as6 ύ.ω 0.71 4k 0.41 QM Q.6! NRC 0,75 0,85 0,85 [0009] [0010] 表二 又微孔雙層之吸音金屬板,測試樣本之板厚為1. 〇_ 、孔徑為0. 08nm的幾何孔、測試溫度為25°C、測試濕度 為60%,各音程之吸音率則依據CNS 9056要求,經測試 在雙層間距為5 0 mm、空氣層5 0 mm時,而中心頻率為 400Hz時,吸音率高達0.83 ;在雙層間距為50mm、空氣 層1 00mm時,而中心頻率為1 kHz時,吸音率高達0.89 ; 在雙層間距為l〇〇mm、空氣層100mm時,而中心頻率為 630Hz時,吸音率高達0. 92。 另以本發明與其他各式細孔式吸音板及一般平板作 098123294 表單編號A0101 第12頁/共30頁 0982039647-0 201102190 測試比較,測試數據如表三所示,吸音率測試之折線圖 如第十三圖所示。 麇品 mm mm 顿 mmum mmm mmjm 賴 JUM2 mm 娜mm 孔徑mm mu 孔敵似下 板摩05 孔獅5 娜 05^6 孔高 蝴0>2 孔尚2·0"*3.5 鄉U) 以下 mm 圾音車 wm 串 (Hz) (!/3)0e&k! {l/3)0cti¥e (TOOctaw O^Odavc W 026 m ai2 QJSl m 125 025 037 &15 0.02 m 166 030 041 &20 0.04 m 200 m m &20 0.12 0.15 250 m 065 030 0.11 041 315 αβα OJi 0.37 m 031 400 0lB3 0.74 0.35 ft21 030 SOQ 092 m m ai4 0.16 6» m 050 &24 0,12 0.13 800 m 036 0.19 an m ik 056 0.41 a2S 0.10 m &6S OiO QSJ 0.1Q m 1.6k 0.66 m 0.11 m 2k 058 035 0.28 ftl3 m 053 a27 m aw m 3.15k 059 02} 0.27 aw -0,01 4k 056 ai? 0.25 0.14 5k 050 aio 0.12 0.13 •005 NRC ατο 030 030 0.15 ais [0011] 〇 表三 [0012] [0013] 其中吸音板A每平方公尺具有40000個細孔,板厚 0. 5mm,細孔的最小孔徑為0. 45_ mm ;吸音板B每平方公 〇 尺具有4 0 0 0 0個細孔,板厚為0. 5 nun至0. 6 mm,細孔 的最小孔徑為0. 5 mm至0. 6 mm ;吸音板C每平方公尺具 有55555個細孔,板厚為0. 5 mm至2 mm,細孔的最小 孔徑為2. 0 mm至3. 5 mm ;平板則無細孔,板厚為 0. 5mm至1. 0mm之間,本發明之孔數每平方公尺高達40萬 孔,在板厚1. 0mm而孔高0. 1匪以下時,於中心頻率 500Hz時,吸音率更可高達0. 92,吸音率表現最佳,且 本發明吸音率(NRC)平均值為0. 7,而其他吸音板(無背 貼吸音材)其吸音率平均值最高僅為0. 5,本發明吸音效 098123294 •表單編號 A0101 第 13 頁/共 30 頁 0982039647-0 201102190 果遠優於現有多孔性吸音板材與一般平板。 【圖式簡單說明】 [0014] 第一圖係為本發明之實施步驟流程圖。 第二圖係為本發明金屬板材於平台上進給移動,而 沖頭位於第一位置之示意圖。 第三圖係為本發明沖頭位於第一位置及移動至第二 位置之距離示意圖。 第四圖係為本發明沖頭預備對金屬板材施予剪力之 示意圖。 。 第五圖係為本發明沖頭對於金屬板材施予剪力之示 意圖。 第六圖係為本發明金屬板材上經由點形連續排列凹 陷及線型凹陷所貫通形成微孔之示意圖。 第七圖係為本發明於本金屬板材上經過多次循環沖 孔而形成連續微孔之剖視圖。 第八圖係為本發明於金屬板材第二表面上形成點形 連續排列凹陷,而第一表面上形成線型凹陷之示意圖。 ^ , 第九圖係為依本發明所製造而成金屬板材實物之第 二表面的點形連續排列凹陷放大示意圖。 第十圖係為依本發明所製造而成金屬板材實物之第 一表面的線型凹陷放大示意圖。 第十一圖係為依本發明所製成之微孔單層吸音金屬 板作吸音率測試之折線圖。 第十二圖係為依本發明所製成之微孔雙層吸音金屬 板作吸音率測試之折線圖。 第十三圖係為依本發明所製成之吸音金屬板與其他 098123294 表單編號A0101 第14頁/共30頁 0982039647-0 201102190201102190 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a method for making micropores in a metal sheet, in particular, to form a maximum number of micropores on a metal sheet of a certain unit area. The manufacturing method is used as a sound absorbing panel and improves the sound absorbing rate. [Prior Art] [0002] Because the environment around the present life is full of various noises, which will seriously affect the quality of life, for this reason, various types of sound-absorbing or sound-proofing equipment have emerged, among which sound-absorbing The sound absorbing effect of the board is particularly good, and the structure of the sound absorbing panel originated from the "microporous sound absorbing theory" proposed by the academician of the United States in the United States in 1970, which mainly uses a small hole and a hole diameter on the surface of a plate. It needs to be smaller than the thickness of the plate. When the sound enters the small hole (tunnel), the sound wave energy molecules will adhere to the pipe wall at high speed in the pipe core. At this time, the molecules will be rubbed until the molecular kinetic energy is converted into heat energy, so that the sound energy is attenuated. In order to achieve the effect of sound absorption. According to this theory, the applicant has successively applied for a new type of announcement in the Republic of China on April 21, 1995; the "Metal Sound Absorption Board" patent case No. M289784, which is mainly based on the bottom of a metal plate. The cone bottom has a triangular pyramid with an elliptical micro-hole, and is formed on the top surface of the metal plate body to be formed into a fine wave-shaped surface, and a triangular pyramid is recessed on the upper surface of the wave-shaped surface corresponding to the elliptical micro-hole; According to this, the reflected sound waves collide with each other to cause attenuation, and at the same time, even if part of the sound waves will penetrate the elliptical micropores at the bottom of the triangular pyramid cone, the sound wave penetration loss will be caused, and the sound absorption and the faster sound will be better. Set the effect. Applicants have also applied for the invention of the invention No. 098123294 Form No. A0101, Page 3 of 30, 0909239647-0 201102190 200920902, which is published on May 16, 1998. The main application is the floor layer of the geometric microporous sound absorbing panel. The bottom of the plate is provided with a plate body made of metal, and the top surface and the bottom surface of the plate body are respectively concavely connected with a fine multi-curved surface and fine geometric holes, and the cones at different angles are mutually refracted to promote mutual interference. The phenomenon consumes the kinetic energy of aerodynamics, and the air layer between the plate and the floor layer increases the frictional loss of the sound fluctuation energy to achieve a good sound absorbing function. However, the above-mentioned patent applications of the above-mentioned applications all utilize the "microplate sound absorbing theory"; and some sound absorbing panel structures currently on the market are also manufactured and produced by this theory, but due to the sound absorbing rate and the unit area plate The number of micropores on the plate is related, so if the most micropores can be produced on the plate, not only the sound absorption rate can be improved, but also the material and manufacturing cost are saved. At present, most known sound absorbing panels are processed by direct punching and punching of a sheet by a punch. Through the processing technology of the direct punching and boring, 40,000 to 50,000 pores can be punched out per square meter of the sheet, but the minimum pore diameter of each pore can only reach 0. 45 mm, and it is difficult to punch out the number of units per unit area. More sound absorption panels with smaller apertures, so the average sound absorption rate (NRC) can only reach between 0. 15-0.5 (the higher the NRC value, the better the sound absorption rate). SUMMARY OF THE INVENTION [0003] 098123294 In view of the fact that the conventional sound absorbing panels are difficult to manufacture the most micropores on a certain unit area of the sheet, and can not effectively improve the sound absorption rate, the present invention provides a microporous in the metal sheet The method mainly applies a shearing process to a plate having appropriate hardness and ductility by using a shearing die, which comprises the following steps: A. causing the metal plate to face the work form on a working platform No. A0101 Page 4 of 30 0982039647-0 201102190 The cutting edge of the platform feeds the first surface of the metal sheet to contact the working platform, and the partial metal sheet protrudes from the shearing edge of the working platform; Β. makes a punch at the working platform a first position above the cutting edge, and a working gap is maintained between the punch and the work platform, the punch having a plurality of continuously arranged unit blades in a direction parallel to the shearing edge of the working platform; c, the punch is oriented Platform application—shear force; D. the metal sheet is flexed by the force of the punch and f is applied along the direction of the force applied, and the second surface of the metal sheet facing the punch is not formed by the action of the 7CT7 portion. a dot-shaped continuous arrangement of depressions; Ο E. the first surface of the metal sheet is subjected to shearing force, forming a linear depression along the shearing edge of the working platform; F. deforming the metal sheet by the above-mentioned shear force to shape the first surface The continuous arrangement of the depressions and the linear depression of the __ surface is formed by the intersection of the through-holes; the G. punch is reset at the first position, and then offset by a working distance parallel to the shearing edge of the working platform 'Move to a second position; U. sheet metal re-feeds toward the shear edge of the work platform; I. Punch in the second position, repeat steps c, D, E, ο F 'J. The two positions are reset, offset by a working distance along the direction of the shearing edge of the working platform, and the first position of the stem is returned to complete a cycle processing. The number of micropores on the metal sheet is between 80,000 and 450,000 per square meter by controlling the number of the step B portion of the step B and the re-feeding stroke of the metal sheet in the step Η. The number of micropores on the metal sheet is between 250,000 and 400,000 per square meter by controlling the number of the blade steps and the re-feeding stroke of the metal sheet in the step 上述. The above metal sheets have a hardness HRB of between 8 and 40 and a ductility of between 4 and 30. 098123294 Form No. A0101 Page 5 of 30 0982039647-0 201102190 The above-mentioned unit blades are arranged in a zigzag pattern. The working distance is less than the pitch of the two adjacent unit blades. The working distance is two-half of the pitch of the two adjacent unit blades. The step F further includes the step F1 of controlling the stroke of the punch to make the dot-shaped continuous arrangement of the second surface and the line shape of the first surface. After the recessed phase penetrates, the formed microhole has a minimum vertical hole width which is smaller than the thickness of the metal plate. The step F further includes a step F2 of controlling the stroke of the punch to make the micro-hole formed by the dot-shaped continuous arrangement depression of the second surface and the linear depression of the first surface, and the hole along the linear depression direction. The width is greater than the width of the hole in the direction in which the sheet metal is fed. The step F further includes a step F3 of controlling the stroke of the punch so that the dot-shaped continuous arrangement depression of the second surface penetrates the linear depression of the first surface, and the formed microhole is located at the top of the linear depression. position. After the completion of the above step J, a step of leveling is further included for leveling the first surface and the second surface of the metal sheet. After the metal sheet is leveled, it further includes a coating process for coating the finished metal sheet with a film on the first surface and the second surface. The unit blade portion continuously arranged in the above step B is controlled to have a saw blade shape. The invention has the following advantages: 1. The invention is capable of manufacturing the largest number of micropores on a metal plate of a certain unit area, and can greatly save material and manufacturing cost 098123294 Form No. A0101 Page 6 / Total 30 pages 0992039647 -0 201102190 2· Benming Ming can produce the most micropores on the metal sheet per unit area, so it can improve its sound absorption rate and reduce noise, so as to achieve the best noise control effect. 3. The metal plate made according to the manufacturing method of the invention has the advantages of light weight, non-toxicity, fireproofing, salt resistance, waterproof gas, high sound absorption rate, long service life and many colors change, and is mainly used for cutting materials. High temperature 'high humidity, material and high-speed airflow places, such as construction, construction, air conditioning, machinery, electronics, medical, transportation, etc. (4) Noise prevention industry Ο [0004] 098 098123294, can become a kind of dustproof, fireproof, waterproof, Non-toxic durable sound absorbing panels. [Embodiment] First, as shown in the figure, the preferred embodiment of the present invention comprises the following steps: Α · feeding the metal sheet on the "serving platform" toward the cutting edge of the working platform, the metal sheet - the surface is in contact with the vehicular platform, and a partial metal sheet protrudes from the shearing edge of the platform; the system is formed at the edge of a working platform (1) with a cut meal (1) (as shown in the second figure) And a metal sheet (2) to be punched is placed on the working platform (1) for transport so that it can be moved toward the shearing edge (1) of the working platform (1) and the metal sheet (1) has a partial to be punched. The metal plate (7) has a downward facing first surface (10) and an upward facing second surface (22), and the hardness of the metal plate is Hrb. Between 8 and 40, the ductility is between 4 and 3 inches. ·· position a punch at a first position above the shearing edge of the working platform, and /Μ' work flat Q maintains - the guard gap' has a plurality of consecutive directions parallel to the working edge shear edge The arranged form number Α0101 1 0982039647-0 201102190 ; is to set a punch (3) at the first position (Y1) above the shearing edge (11) of the working platform (1) [as shown in the third figure], The first position (Y1) is always perpendicular to the shearing edge (11), and a vertical working gap between the vertical direction of the punch (3) and the shearing edge (11) of the working platform (1) is maintained. As shown in the figure, the punch (3) is provided with at least one or more consecutively arranged unit blade portions (31). The unit blade portions (31) are controlled in a saw blade shape. C. The punch applies a shearing force to the working platform; the punch (3) is applied vertically downward at the first position (Y1), and the vertical system and the working shear edge (1) of the punch (3) are utilized. There is a working gap (8) between them, so when the unit knife portion (31) of the punch (3) intersects with the shearing edge (11) of the working platform (1) (as shown in the fifth figure), a Shear force. D. The metal sheet is bent in the application direction by the force applied by the punch, and the second surface of the metal sheet facing the punch is correspondingly formed by the unit knife portion to form a plurality of dot-shaped continuous arrangement depressions; when the metal sheet (7) is subjected to After the downward force of the punch (3), the portion of the metal sheet (2) that protrudes beyond the shear edge (11) and is suspended will be bent and deformed along the direction of the force applied thereto, and the punch ( 3) The unit knife portion (31) is formed on the second surface (22) of the metal sheet (2) near the shear edge ((1), and a plurality of dot-shaped continuous array depressions (4) are formed correspondingly to the stamping [4] The first surface on the metal sheet is subjected to shearing force and is formed along the shearing edge of the working platform - linear depression; since the metal sheet (7) is deformed by shearing force, the material (4) is subjected to the shearing edge (1)) The upward (four) force is formed on the first surface (2) with a linear depression (5). F. deforming the metal sheet by the above shearing force, the dot-shaped continuous arrangement depression of the second surface is continuous with the linear depression of the first surface, and the micropores are formed at the intersection of the through-holes; the metal is generated by the shear force generated above Board Form No. A0101 098123294 0982039647-0 Page 8 of 30 201102190 After the material (2) is deformed, the recess (4) and the first surface (21) are continuously arranged in a dot shape on the second surface (22). The linear recesses (5) intersect to form a microhole (6) (as shown in the seventh figure). F1. It controls the stroke of the punch (3) so that the point of the second surface (22) rises and the continuous arrangement of the recess (4) penetrates with the linear recess (5) of the first surface (21) The minimum hole width (Ml) of the micropores (6) in the vertical direction is smaller than the thickness (N) of the metal plate (2). F2. It controls the stroke of the punch (3) such that the dot-shaped continuous arrangement depression (4) of the second surface (22) penetrates with the linear depression (5) of the first surface (21) Hole (6). F3. The control of the stroke of the punch (3) is such that the dot-shaped continuous arrangement depression (4) of the second surface (22) penetrates with the linear depression (5) of the first surface (21). The E microhole (6) is located at the top of the linear depression (5). G. The punch is reset at the first position, and then offset by a working distance parallel to the shearing edge of the working platform to a second position; then the punch (3) is raised back to the first position (Y1) ) reset, the punch (3) is further offset by a working distance (T) along the shear edge (11) of the working platform (1), and moved to a second position (Y2) [please refer to the third As shown in the figure, the working distance (τ) is smaller than the pitch (p) of the two adjacent unit blades (31), and the working distance (τ) is the pitch of the two adjacent unit blades (31). (p) of the two-- 〇H. The metal sheet is re-feeded toward the shearing edge of the working platform; then the "Hai metal sheet (2) is oriented toward the cutting edge of the working platform (丨) (丨丨) The direction is again fed an appropriate distance. I. The punch is in the second position, repeating steps c, D, E, F; punch 098123294 Form No. A0101 0982039647-0 Page 9 / Total 30 pages 201102190 (1) will be fed again on the metal sheet (2) After the appropriate distance, the above steps C, D, E, and F are repeated, and a plurality of dot-shaped continuous shapes are respectively formed on the second surface (2 2) and the first surface (21) of the metal sheet (2). The recesses (4) and the linear recesses (5) are arranged, and the micro-holes (6) are formed through the continuous arrangement of the dot-shaped recesses and the linear recesses (5) (as shown in FIG. 8). J. The punch is reset in the second position, offset in the direction parallel to the shearing edge of the working platform - working distance, back to the first position, complete a cycle processing; finally the punch (3) will rise again Return to the second position (γ2) to reset, then follow the direction of the shearing edge of the working platform (!), and then offset the working distance (τ) back to the first position to complete the processing of one cycle punching. 1 .. .. : .:. . . . After the above steps complete the punching process of the entire metal sheet (2) multiple cycles, the - leveling procedure may be included, for the metal sheet (2) A surface (21) and a second surface (22) are ground or polished for subsequent handling of the coating process. After the metal sheet (2) is subjected to the leveling process, a coating process may be performed to coat the finished metal sheet on the first surface (21) and the second surface (22). Covering a film layer, the film layer is electrostatically coated, the film thickness is about 20 mic, and the micropores (6) are not blocked, thereby preventing scratching, damage, rusting and aesthetics, and prolonging the service life. Therefore, the present invention selects the number of the blade portions (3丨) of the step B and the re-feeding stroke of the metal sheet (2) of the step ' and selects the hardness Hrb of the metal sheet to be between 8 and 40, and the ductility is introduced. Between 4 and 30, the number of micropores (6) of the fabricated metal sheet (2) is between 80,000 and 450,000 per square meter, or the metal sheet (2) is 0992039647-0 098123294 Form number A〇m page ίο/3Q page 201102190 (6) The number is between 250,000 and 400,000 meters per square meter. Using the above steps, the metal sheet (2) produced has 400,000 micropores per square meter, and the magnified image of the metal sheet (2) is shown in Figs. 9 and 10. The singularity of the singularity of the singularity of the singularity of the singularity of the singularity of the singularity of the singularity of the singularity. Geometric hole, test temperature is 25 ° C, test humidity is 60%, the sound absorption rate of each interval is based on CNS 9056 requirements, the micro-hole single-layer sound-absorbing metal plate test data is shown in Table 1, the sound-absorbing rate test line chart As shown in Figure 图. [0005] Hollow MM 50tom lOQoim 20Qtmn 500mm Center Na foot sound absorption rate (l / 3) Cktm Lin Wei (l / 3) Octoe Sound absorption rate (myoc^m 聿 (l / 3X3ctoye 125 0.01 a〇9 0.30 m 160 0.09 0.19 Om 〇.% 200 0.15 0.25 0.45 0.68 250 0.17 a39 0.66 a7〇315 0.25 asi om 0,57 m (X34 0.61 0.75 0.50 500 048 om 0.81 0.58 630 0.56 a78 0.74 0.61 800 0.68 ass 0.61 0.58 lk 0.75 0.81 058 0.67 1.25k 0.75 0.75 0.64 0.67 1.6k 0.3⁄4 OM 0.66 om 2k QJ6 0.55 0.61 0.65 ZSc 0J4 057 0.65 0.66 3.15k 0.66 a63 0.66 0.S7 4k 0.61 0.59 0.61 NEC 0.55 0.65 0.65 [0006] [0007] Table 1 of the single layer metal When the plate is tested at 5Omni in the air layer, the sound absorption rate is as high as 0.76 at a center frequency of 2 kHz, and the sound absorption rate is as high as 0.85 at a center frequency of 800 Hz and at a center frequency of 800 Hz; At 500Hz, the sound absorption rate is as high as 0.81; in the air 098123294 form number A0101 page 11 / 30 pages 0992039647-0 201102190 layer 500_, and the center frequency is 125Hz, the sound absorption rate is as high as 0.85. Metal plate test data as shown in Table 2 The line graph of the sound absorption test is shown in Fig. 12. [0008] 郷 50 50 mm 5Qmm 100 面 SO mm 100 mm 100 leg center pain string brewing bribe string sound absorption m (UBJOctave (U3X) cSve (l ^)0clave 125 033 021 0J5 160 (M9 0.37 036 200 0.48 0J9 0,65 250 0.3⁄4 0.76 (m 315 0.82 ατδ 0.91 400 m 0,79 α9〇500 av 0,89 QM 630 av 0.88 m 800 ατ? 0.88 m Ik 0.80 0,89 0.W1 1.25k 0J4 QM o1.& α?2 m 0.78 dragon (10) aso 0.72 ZSc 0.59 απ 0,75 3,15k as6 ύ.ω 0.71 4k 0.41 QM Q.6! NRC 0,75 0,85 0,85 [0009] [0010] Table 2 and the microporous double-layer sound-absorbing metal plate, the test sample having a thickness of 1. 〇 _, the aperture of 0. 08nm geometric hole, the test temperature is 25 ° C, test humidity is 60%, the sound absorption rate of each interval is based on CNS 9056 requirements, tested at a double layer spacing of 50 mm, air layer 50 mm, and the center frequency is 400 Hz, the sound absorption rate is as high as 0.83 When the double-layer spacing is 50mm and the air layer is 100mm, and the center frequency is 1 kHz, the sound absorption rate is as high as 0.89; when the double-layer spacing is l〇〇mm, the air layer is 100mm, and the center frequency is 630. 。 When the Hz, the sound absorption rate is as high as 0.92. In addition, the present invention is compared with other various types of fine-hole sound absorbing panels and general flat plates for 098123294 Form No. A0101, page 12/total 30 pages 0992039647-0 201102190, the test data is shown in Table 3, and the line graph of the sound absorption rate test is as follows. Figure 13 shows. Mm品mm mm mmmmmm mmm mmjm 赖JUM2 mm 娜mm aperture mm mu hole enemy like lower plate 05 05 hole lion 5 娜05^6 hole high butterfly 0; 2 hole still 2·0"*3.5 township U) following mm garbage Sound car wm string (Hz) (!/3)0e&k! {l/3)0cti¥e (TOOctaw O^Odavc W 026 m ai2 QJSl m 125 025 037 &15 0.02 m 166 030 041 &20 0.04 m 200 mm & 20 0.12 0.15 250 m 065 030 0.11 041 315 αβα OJi 0.37 m 031 400 0lB3 0.74 0.35 ft21 030 SOQ 092 mm ai4 0.16 6» m 050 &24 0,12 0.13 800 m 036 0.19 an m ik 056 0.41 a2S 0.10 m &6S OiO QSJ 0.1Q m 1.6k 0.66 m 0.11 m 2k 058 035 0.28 ftl3 m 053 a27 m aw m 3.15k 059 02} 0.27 aw -0,01 4k 056 ai? 0.25 0.14 5k 050 aio 0.12 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 5毫米至0. 6毫米;吸吸音, the sound-absorbing plate B has a fine hole of 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Board C per square meter 5毫米至1. 0mm之。 The slabs of the slabs, the thickness of the plate is 0. 5mm to 1. 0mm The sound absorption rate is as high as 0.92, and the sound absorption rate is as high as 0.92, and the sound absorption rate is as high as 0.92, and the sound absorption rate is as high as 0.92. 5, The average sound absorption rate (NRC) of the present invention is 0.77, and the sound absorption rate of the other sound absorbing panels (without the back sound absorbing material) is only 0.5. The sound absorbing effect of the present invention 098123294 • Form No. A0101 Page 13 of 30 0982039647-0 201102190 Fruit is far superior to existing porous sound absorbing panels and general flat panels. BRIEF DESCRIPTION OF THE DRAWINGS [0014] The first figure is a flow chart of the implementation steps of the present invention. The second figure is a schematic view of the metal sheet of the present invention being fed on the platform and the punch is located at the first position. The third figure is a schematic view of the distance at which the punch is in the first position and moved to the second position. The fourth figure is a schematic view of the punching force applied to the metal sheet by the punch of the present invention. . The fifth figure is an illustration of the punching force applied to the metal sheet by the punch of the present invention. Fig. 6 is a schematic view showing the formation of micropores through the continuous arrangement of concave and linear depressions on the metal sheet of the present invention. The seventh figure is a cross-sectional view showing the continuous micropores formed by punching a plurality of times on the metal sheet according to the present invention. The eighth figure is a schematic view of the present invention in which a dot-shaped continuous arrangement depression is formed on the second surface of the metal sheet, and a linear depression is formed on the first surface. ^, the ninth drawing is an enlarged schematic view of a dot-shaped continuous arrangement depression of the second surface of the solid metal sheet manufactured according to the present invention. The tenth figure is an enlarged schematic view of a linear depression of the first surface of the metal sheet produced in accordance with the present invention. The eleventh figure is a line drawing of a microporous single-layer sound absorbing metal plate produced according to the present invention as a sound absorption test. The twelfth figure is a line drawing of the microporous double-layer sound absorbing metal plate produced by the present invention as a sound absorption test. The thirteenth figure is a sound absorbing metal plate and other 098123294 made according to the invention. Form No. A0101 Page 14 of 30 0982039647-0 201102190
各式細孔式吸音板及一般平板作吸音率測試之折線圖。 【主要元件符號說明】 [0015] ( 1 ) 工作平台 (11) 剪切緣 (2 ) 金屬板材 (21) 第一表面 (22) 第二表面 (3 ) 沖頭 (31) 單元刃部 (4 ) 點形連續排列凹陷 (5 ) 線形凹陷 (6 ) 微孔 (Ml) 孔寬 (N ) 厚度 (P ) 節距 (S ) 工作間隙 (T ) 工作距離 (Y 1 ) 第一位置 (Y 2 ) 第二位置Various types of fine-hole sound absorbing panels and general flat panels are used as line graphs for sound absorption test. [Main component symbol description] [0015] (1) Work platform (11) Shear edge (2) Metal plate (21) First surface (22) Second surface (3) Punch (31) Unit blade (4 ) Point-shaped continuous arrangement of depressions (5) Linear depressions (6) Micro-holes (Ml) Hole width (N) Thickness (P) Pitch (S) Working gap (T) Working distance (Y 1 ) First position (Y 2 Second position
098123294 表單編號A0101 第15頁/共30頁 0982039647-0098123294 Form No. A0101 Page 15 of 30 0982039647-0