TW201101720A - Joint circular array antenna and MFS-MC-DSSS technologies to estimate the DOA of a very low signal-to-noise ratio air target for bistatic radar - Google Patents

Joint circular array antenna and MFS-MC-DSSS technologies to estimate the DOA of a very low signal-to-noise ratio air target for bistatic radar Download PDF

Info

Publication number
TW201101720A
TW201101720A TW98122090A TW98122090A TW201101720A TW 201101720 A TW201101720 A TW 201101720A TW 98122090 A TW98122090 A TW 98122090A TW 98122090 A TW98122090 A TW 98122090A TW 201101720 A TW201101720 A TW 201101720A
Authority
TW
Taiwan
Prior art keywords
spread spectrum
signal
frequency
target
array antenna
Prior art date
Application number
TW98122090A
Other languages
Chinese (zh)
Other versions
TWI388138B (en
Inventor
Jeich Mar
Yu-Jung Lin
Original Assignee
Jeich Mar
Yu-Jung Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeich Mar, Yu-Jung Lin filed Critical Jeich Mar
Priority to TW98122090A priority Critical patent/TWI388138B/en
Publication of TW201101720A publication Critical patent/TW201101720A/en
Application granted granted Critical
Publication of TWI388138B publication Critical patent/TWI388138B/en

Links

Abstract

Traditional phased-array radars, which employ direct sequence spreading (DSSS) technology to estimate the range, speed and direction of arrival (DOA) of an air target, can satisfy the requirements of long distance and high range resolution. This invention uses multi mode digital beamformer of a circular array antenna and the multiple carrier-DSSS (MC-DSSS) combined with multiple frequency spreader (MFS) modulation waveform to design the structure, algorithm and device of the very low signal-to-noise ratio (S/N) DOA estimation receiver for the bistatic phased-array radar. Specifically, the multi mode digital beamformer of the circular array antenna can receive both the line-of-sight (LOS) signal in direct path and the reflect signal generated from the air target, simultaneously. The MFS can provide the spreading gain for the cross correlation processing of the weak signals. In addition, the cross correlation processing for direct LOS signal and the very low S/N reflect signal is used to estimate the DOA of the air target. Finally, the formula of the correlation processing output is derived to simulate and verify the structure and device performance of the DOA estimation receiver for the bistatic phased-array radar operated under very low S/N condition.

Description

201101720 六、發明說明: 【發明所屬之技術領域】 本發明是一種關於雙態相列雷達之目標來向估測接 收機架構與裝置’且特別是一種結合環形陣列天線與多載 波直接展頻序列倍頻率展頻技術之低訊雜比目標來向估 測接收機架構方法與裝置。 【先前技術】 雙態雷達糸統疋指雷達發射端與雷達接收端不在同一 地理位置’所以雷達接收端無法直接得知發射端傳送的波 形。在雷達接收端會同時接收直接來自發射端的直接路徑 (1 ine-of-sight,L0S)參考信號與飛行目標之反射回波 信號,其巾直接雜參考信賴功率會遠大於目標回波信 號的功率,傳統上會使用兩組高方向性(directivity)天 線分別接收不同到達方向UireetiQn Qf町_,_ 路㈣考信號與目標回波信號,將目標回波信號與 ,考#號分開。而本發關是採用—組環料列天線,可 m寬波束以衫細。之水平域,藉由多模式數位 ^<理=目標回波信號與參考信號分開,並消除特 定方向,干擾彳„號。因此相較於傳統的兩組高方向性天線 做法裒形陣列天線的多模式數位波束成型處理可以同時 接收15^個方向的反射回波錢並提高雙態 雷達系統的抗 干擾性能。 傳統雙雷達系統的同調定位(coherent 1 〇cat ion) 201101720 做法是利用一組目標回波信號與參考信號所到達時間差 (time difference of arrival, TD0A)估測目標位置。但 是低訊雜比的目標回波信號TD0A的誤差量會遠大於高訊 雜比直接路徑參考信號TD0A的誤差量,因此在實施上大 , 多是利用多個不同地理位置所接收的目標回波信號 TD0A,或是利用接收來自多個不同地理位置發射端直接路 徑參考信號TD0A減少估測目標位置的誤差量。傳統的 TD0A做法並沒有利用高訊雜比直接路徑參考信號來改善 〇 低訊雜比的目標回波信號TD0A的誤差量,因此本發明揭 示藉由高訊雜比的直接路徑參考信號與低訊雜比的目標 回波信號的交相關處理估測目標來向。本發明並揭示應用 倍頻率展頻(multiple frequency spreader, MFS)於多 載波直接展頻序列(MC-DSSS)調變波形,進一步提高交 相關處理的脈波壓縮增益’降低目標偵測誤判率。 【發明内容】 〇 臨 錾於以上所述先前技術之缺點,本發明之主要目的便 是在於提供一種雙態相列雷達低訊雜比目標來向估測架 冓方去及裝置,其利用高訊雜比的直接路徑參考信號與低 °孔雜比的目標回波信號的交相關處理估測目標反射回波 信號來向。 本發明之另一目的在於提供—種雙態相列雷達低訊 t比目標來向估測接收機之架構方法及裝置,其採用一組 %,陣列天線,利用等寬波束以涵蓋360。之水平域,藉 由夕模式數位波束成型處理將目標回波信號與參考信號 5 201101720 刀開’亚消除特定方向的干擾信號,提高雙態雷達系統的 抗干擾性能與訊雜比。 本發明之另—目的在於提供—種㈣相列雷達低訊 Ϊ比目標來向估測架構方法及裝置,應用倍頻率展頻於多 ,,直接展頻序列(MFS_MC_DSSS)調變波形,進一步提 咼交相關處理的脈波壓縮增益,降低目標偵測誤判率。 本卷月之另一目的在於提供一種雙態相列雷達低訊 雜比目標來向估測架構方法及裝置,至少包含:⑴.發射 出-多載波直接展頻序列倍頻率展頻調變波形,提高交相 ,處理的脈波壓縮增益,降低目標偵測誤判率;⑵一組 環形陣列天線;(3).利用環形陣列天線的多模式數位波束 成型處理將目標回波信號與參考信號分開,並消除特定方 向的干擾錢,提高雙態雷達系統的抗干擾性能;⑷利 用直接路徑參考信號與目標回波信號的交㈣處理估測 反射回波信號目標來向。 乃藉由以下圖 貴審查委員於 為進一步對本發明有更深入的說明 示、圖號說明及發明詳細說明,冀能對 審查工作有所助益。 【實施方式】 兹配合下列之圖式說明本發明之詳細結構,及 關係,以利於貴審委做一瞭解。 一 、、° 以下即配合所附之圖式,詳細揭露說明本發明之釺八 環形陣列天線與多載波直接展頻相倍頻率展頻技= 低訊雜比目標來向估測接收機架構方法與裝置之實施 201101720 例。本發明並推導雙態相列雷達低訊雜比目向估測接 收機直接路徑接收信號與反射回波信號之交相關輸出公 式,以模擬方式驗證本發明之估測架構與裝置性能。實施 方式分為五大項分述之: 環形陣列天線低訊雜比目標來向(Directi〇n 〇f arrival, doa)估測架構 環形陣列天線低訊雜比目標來向估測接收機架構如201101720 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a target-oriented receiver architecture and apparatus for a two-state phased radar, and in particular to a circular array antenna and a multi-carrier direct spread spectrum sequence. The low-to-noise ratio target of the frequency spread spectrum technology is used to estimate the receiver architecture method and device. [Prior Art] The two-state radar system means that the radar transmitting end is not in the same geographical position as the radar receiving end. Therefore, the radar receiving end cannot directly know the waveform transmitted by the transmitting end. At the receiving end of the radar, the direct path from the transmitting end (1 ine-of-sight, L0S) and the reflected echo signal of the flying target are simultaneously received, and the direct reference power of the towel is far greater than the power of the target echo signal. Traditionally, two sets of high-directionality antennas are used to receive the different arrival directions of the UireetiQn Qf town _, _ road (four) test signal and the target echo signal, and separate the target echo signal from the test #. The hair switch is a set of ring-column antennas that can be used to make a wide beam. In the horizontal domain, the multi-mode digital ^ < rational = target echo signal is separated from the reference signal, and the specific direction is eliminated, and the interference is 。 „ 。. Therefore, compared with the conventional two sets of high directional antennas, the 阵列-shaped array antenna The multi-mode digital beamforming process can simultaneously receive reflection echoes in 15^ directions and improve the anti-jamming performance of the two-state radar system. Coherent 1 〇cat ion 201101720 The practice is to use a group The target echo signal and the reference signal arrival time difference (TD0A) estimate the target position. However, the error of the target echo signal TD0A of the low signal ratio is much larger than that of the high signal ratio direct path reference signal TD0A. The error amount is therefore large in implementation, mostly by using the target echo signal TD0A received by multiple different geographical locations, or by using the direct path reference signal TD0A from multiple different geographical locations to reduce the error of the estimated target position. The traditional TD0A approach does not use the high signal ratio direct path reference signal to improve the target echo of the low signal to noise ratio. The error amount of the TD0A, therefore, the present invention discloses the estimation of the target by the intersection processing of the direct path reference signal of the high signal-to-noise ratio and the target echo signal of the low signal-to-noise ratio. The present invention also discloses the application of the frequency spread spectrum ( Multiple frequency spreader (MFS) is used to adjust the waveform of the multi-carrier direct spread spectrum (MC-DSSS) to further improve the pulse compression gain of the cross-correlation processing. In view of the shortcomings of the prior art, the main object of the present invention is to provide a low-signal-to-phase ratio radar target for the two-state phased radar to the estimation frame, and the device uses a high-channel ratio direct path reference signal and low The cross-correlation processing of the target echo signals of the aperture-to-noise ratio estimates the direction of the target reflected echo signals. Another object of the present invention is to provide a method for constructing a two-state phased radar low-frequency t-target-to-estimated receiver and The device uses a set of %, array antennas, using a uniform beam to cover the horizontal domain of 360. The target echo signal and the reference are processed by the evening mode digital beamforming process. Signal 5 201101720 Knife open 'Asia to eliminate interference signals in specific directions, improve the anti-interference performance and signal-to-noise ratio of the two-state radar system. Another object of the present invention is to provide (4) phase-arrival radar low-signal ratio target estimation The architecture method and device, the application frequency multiplication, and the direct spread spectrum sequence (MFS_MC_DSSS) modulated waveform, further improve the pulse compression gain of the correlation processing, and reduce the false detection rate of the target detection. The purpose of the invention is to provide a method and a device for estimating the low-to-noise ratio target of the two-state phase-matching radar, and at least comprising: (1) transmitting-multi-carrier direct spread spectrum multiple frequency spread spectrum modulation waveform, improving cross-phase, processing Pulse compression gain, reducing target detection false positive rate; (2) a set of circular array antennas; (3) multi-mode digital beamforming processing using circular array antennas to separate target echo signals from reference signals and eliminate interference in specific directions Money, improve the anti-interference performance of the two-state radar system; (4) use the direct path reference signal and the target echo signal intersection (four) processing to estimate the reflected echo No. goals to. It is through the following diagram that the review committee has further clarified the description of the invention, the description of the figure and the detailed description of the invention, which can be helpful for the review work. [Embodiment] The detailed structure and relationship of the present invention will be described in conjunction with the following drawings to facilitate an understanding of the audit committee. First, the following is a detailed description of the eight-ring array antenna of the present invention and the multi-carrier direct spread frequency multiplying frequency spread spectrum technique = low signal-to-noise ratio target to estimate the receiver architecture method and The implementation of the device 201101720 example. The invention also deduces the correlation expression of the direct path receiver signal and the reflected echo signal of the low-signal phase ratio radar of the two-state phased radar, and verifies the estimation architecture and device performance of the invention in an analog manner. The implementation method is divided into five major items: Ring array antenna low signal-to-noise ratio target direction (Directi〇n 〇f arrival, doa) estimation architecture Ring array antenna low signal-to-noise ratio target to estimate receiver architecture

圖卜10及圖14所示’本發明之結合環形陣列天線與多載 波直接展頻序列倍頻率展頻技術之低訊雜比目標來向估 測接收裝置,其係包括有: —多載波直接展頻序列發射機卜該多載波直接展頻序 列發射機更係包括有: —多f皮直接展财縣解展舰形產生HU,脈波 出第續經過直接序列展頻器輪出直接 =頻信號,該多载波直接展頻序列倍頻率展頻 ,產生更係包括有一脈波產生器lu羊2 馮、一四相相移鍵控信號調變器 113、-倍頻率展頻器114、一641 葉轉換)115及一數位/類比轉換謂;以Γ —升=12’用以放大該多載波直接展頻序列倍頻率展 至載波頻率,轉變為射頻::;並將基頻"號升頻 .環形天線接收機2,該環形天線接收機更係包括有. 一環形陣取㈣,具有複數個天線元,該複數個天 201101720 線元可以至少二個以上為—組子陣列天線,若干個 子陣列天線可用以接收3 6 0度方向的信號; 一線性補償前置處理器22 ’接受瑣拟陆二 骑,按又J衣形陣列天線21信 疏,並使天線凡接收作號μ、症a 文叹1〇诡、士過延遲線進行線性補償 剷置處理,使其等效為一非笙Μ . 哥欢马非專間距之線性陣列天 線; 一降頻轉換1 23 ’接收該雜補償前置處理n 22信號 轉換為一基頻信號,該降頻轉換器23更係包括有一 柴比雪夫窗戶處理器23卜一降頻器232及類比/數 位轉換器233 ; -零化處理器24 ’去除較方向的干擾㈣,並產生 基頻反射回波信號與基頻參考信號,該零化處理器 24係由一多模式數位波束成型器241所構成,該多 模式數位波束成型器更係包括:一多波束成型模組 241卜一振幅比較目標來向估測模組2412及一零化 指向波束成型模組2413 ; 一移動目標指示處理器25,用以去除零化處理器μ 所產生之低訊雜比的基頻反射回波信號,該基頻反 射回波信號係指散射體所產生的反射雜波; 一倍頻率解展頻電路26,用以獲利若干倍數之頻率展 頻增ϋ ’該倍頻率解展頻電路更係包括有一倍頻率 展頻盗262、一64-FFT 261及一四相相移鍵控信號調 解器263 ; 一父相關處理器27 ’估測低訊雜比飛行目標反射回波 信號之目標來向’該交相關處理器27更係包括有一 201101720 64-FFT271、一 振 ;t日 派巾田相關處理器272、一64點猶環位 移器273、一倍頻率鮭虽〜 解展器274、一四相相移鍵控作FIG. 10 and FIG. 14 show the low-to-noise ratio target-to-estimation receiving device of the combined ring array antenna and multi-carrier direct spread spectrum sequence frequency spreading technology of the present invention, which includes: - multi-carrier direct exhibition The frequency sequence transmitter, the multi-carrier direct spread spectrum sequence transmitter, further includes: - a multi-f skin directly exhibiting the county to develop the ship shape to generate the HU, the pulse wave is continued through the direct sequence spreader wheel directly = frequency a signal, the multi-carrier direct spread spectrum sequence frequency spreading, the generation further includes a pulse generator Lu Yang 2 von, a four-phase phase shift keying signal modulator 113, a frequency sweeper 114, a 641 leaf conversion) 115 and a digit/analog conversion; Γ-liter = 12' is used to amplify the multi-carrier direct spread spectrum frequency to the carrier frequency, and convert to radio frequency::; and the base frequency " Up-going. Loop antenna receiver 2, the loop antenna receiver further includes: a ring array (4) having a plurality of antenna elements, and the plurality of days 201101720 line elements can be at least two groups of sub-array antennas. Several sub-array antennas are available to receive 3 6 A signal in the direction of 0 degrees; a linear compensation pre-processor 22' accepts the trivial land-based rider, and the J-shaped array antenna 21 is not evenly distributed, and the antenna is received by the number μ, the symptom a sighs 1〇诡, The linear delay compensation is performed on the delay line to make it equivalent to a non-笙Μ. The non-specific spacing linear array antenna; a down-conversion 1 23 'receives the mis-compensation pre-processing n 22 signal conversion For a fundamental frequency signal, the down converter 23 further includes a Chebyshev window processor 23, a downconverter 232 and an analog/digital converter 233; - the zeroing processor 24' removes the direction of interference (4) And generating a fundamental frequency reflected echo signal and a fundamental frequency reference signal. The zeroing processor 24 is formed by a multi-mode digital beamformer 241, and the multi-mode digital beamformer further comprises: a multi-beam forming module The group 241 is an amplitude comparison target to the estimation module 2412 and the zero-pointing beamforming module 2413; a moving target indication processor 25 is configured to remove the fundamental frequency of the low signal-to-noise ratio generated by the zeroing processor μ Reflecting the echo signal, the fundamental frequency is reflected back The signal refers to the reflected clutter generated by the scatterer; the frequency doubling frequency sweeping circuit 26 is used to gain a few times the frequency spread spectrum increase ϋ 'The frequency doubling frequency spread circuit includes a frequency spread thief 262, a 64-FFT 261 and a four-phase phase shift keying signal adjuster 263; a parent correlation processor 27' estimates the target of the low signal to noise target reflected echo signal to the 'intersection related processor 27 The system includes a 201101720 64-FFT 271, a vibration; a Japanese-style towel field related processor 272, a 64-point Identical ring shifter 273, a multiple frequency 鲑 although the de-embellizer 274, a four-phase phase shift keying

號調解器275、一首桩皮η切R 直接序列解展頻器276及一數位頻 率合成器277; 1 目U貞心28’用以判斷該環形天線接收機2若干 個子,列天線何者為輸出最大功率,以初步判定飛 仃目標的方向’該目標伯測器28係由-目標偵測之 最大值判斷器281所構成;以及 、No. 275, a pile η 切 R direct sequence despreader 276 and a digital frequency synthesizer 277; 1 U 贞 28' is used to determine a number of the loop antenna receiver 2, which is the output of the column antenna The maximum power, in the direction of the preliminary determination of the target of the flying target, the target detector 28 is constituted by the maximum value determiner 281 of the target detection;

目私來向估測器29,根據一多模式數位波束成型處理 裝置之目標來向估測模式細部判定飛行目標的方 向0 藉由上述結構,環形陣列天線多模式數位波束成型處 理,產生第/波束(Beam y.)接收直接路徑(iine—of_sight;, L〇S)的接收信號’做為雙態雷達的參考信號,產生 第女波束(Beam々)接收飛行目標之反射回波信號^^與 參考信號5V(i)進行交相 關(cross correlation)處理,估 測低訊雜比飛行載具反射回波信號之目標來向。環形陣列 天線的實際天線元排列並不在同一空間的直線上,天線元 接收信號必須先經過延遲線進行線性補償前置處理,使其 等效為一非等間距之線性陣列天線。Beam々與Beam 輸 出的反射目標回波信號&U)與直接路徑參考信號&(〇 經過降頻轉換為基頻信號分別進行零化處理,去除特定方 向的干擾信號,產生基頻目標反射回波信號仏(〇與基頻 直接路彳空參考信號仏(ί)。其中低訊雜比的£/,( ί)可以藉由 9 201101720 移動目標指示(moving target indicati〇n,MTI)處理去 除靜止散射體(scatter)所產生的反射雜波(clutter), 輸出"’r(t)。最後與山(t)進行交相關處理與目標 來向估測。 2.環形陣列天線線性補償前置處理 低訊雜比目標來向估測接收機採用環形等波束寬陣列 天線的架構如圖2所示,以16個天線元涵蓋360。水平方 位。為了滿足等波束寬的需求,選定4個天線元的陣列為 一子陣列天線,如圖3所示。實際天線元排列並不在同一 空間的直線上’中間的兩天線元間距為^,則兩旁的天線元 間距縮短為心_/8),較線元與天線_軸線的距離為 JSin(;r/8)。為了天線場型分析上的需求,進行子陣列天線之 相位補償 ^ _/2;r^sin(^/8) Jsin〇/8) [0 e 〜e 7 〇] ⑴ 使其等效為一非等間距之線性陣列天線,如圖4所示。補 償後的等效子天線陣列之天線元間距將變為 [0.71-〇〇8(—)·^, 0.71·^, 0.71 ·〇〇8(—).^ ]⑵ 8 天線元權值4分別為[0.48, 1,1,〇.48]。16個天線元丘 產生16個波束寬23。之等寬波束以涵蓋36〇。之水平域,並 且再假設每個天線元之天線增益等於丨,則相對應的每一 等寬波束之場型如圖5所示,本文將以此線性陣列模型近 似原非線性陣列,以進行後續之訊號處理。實現架構如圖 6所示,4〜為等寬多波束陣列天線中相鄰的四天線元 201101720 所接收訊號。 3.多模式數位波束成型處理 本發明利用16個波束加上振福比較法尋向法則,進行 目標方向估測,先以兩波束的狀況來說明振幅比較的尋向 原理,因為不同的兩相鄰波束,只是負責不同的方位範圍 估測’都是採用一樣的尋向原理’因此以兩波束來說明已 經可以代表其一般性。等寬多波束陣列天線中的相鄰兩波 束之天線場型可以分別表示為The illuminator 29 determines the direction of the flight target from the target of the multi-mode digital beamforming processing device to the estimated mode detail. With the above structure, the circular array antenna multi-mode digital beamforming process generates the /beam ( Beam y.) Receives the received signal of the direct path (iine-of_sight;, L〇S) as the reference signal of the two-state radar, and generates the reflected echo signal of the first female beam (Beam々) to receive the flying target ^^ and reference The signal 5V(i) performs a cross correlation process to estimate the target direction of the low-to-noise ratio flight vehicle reflected echo signal. The actual antenna element arrangement of the ring array antenna is not in the straight line of the same space. The antenna element receiving signal must first undergo linear compensation pre-processing through the delay line to make it equivalent to a non-equidistant linear array antenna. Beam々 and Beam output reflected echo signals & U) and direct path reference signals & (〇after down-converting to baseband signals are respectively zeroed to remove interfering signals in a specific direction, resulting in fundamental frequency target reflection The echo signal 仏 (〇 and the fundamental frequency direct path reference signal 仏 (ί). The low signal-to-noise ratio of £/, ( ί) can be processed by 9 201101720 moving target indicati (MTI) The reflected clutter generated by the scatter is removed, and the output is "'r(t). Finally, the correlation process with the mountain (t) is performed and the target is estimated. 2. Before the linear array antenna is linearly compensated The architecture for processing the low signal-to-noise ratio target to the estimated receiver using a ring-shaped beamwidth array antenna is shown in Figure 2. The 16 antenna elements cover 360. The horizontal orientation. To meet the requirements of equal beamwidth, 4 antennas are selected. The array of elements is a sub-array antenna, as shown in Figure 3. The actual antenna element arrangement is not on the straight line of the same space. The distance between the two antenna elements in the middle is ^, and the distance between the antenna elements on both sides is shortened to the heart _/8). Alignment The distance from the antenna_axis is JSin(;r/8). For the antenna field type analysis, the phase compensation of the sub-array antenna is performed ^ _/2; r^sin(^/8) Jsin〇/8) [ 0 e ~ e 7 〇] (1) Make it equivalent to a non-equidistant linear array antenna, as shown in Figure 4. The antenna element spacing of the compensated equivalent sub-antenna array will become [0.71-〇〇8(-)·^, 0.71·^, 0.71 ·〇〇8(-).^](2) 8 antenna element weights 4 respectively Is [0.48, 1,1, 〇.48]. The 16 antenna elements produce 16 beam widths of 23. The equal width beam covers 36 inches. The horizontal domain, and then assume that the antenna gain of each antenna element is equal to 丨, then the corresponding field pattern of each equal-width beam is shown in Figure 5. This paper will approximate the original nonlinear array with this linear array model. Subsequent signal processing. The implementation architecture is shown in Figure 6. 4~ is the received signal of the adjacent four antenna elements 201101720 in the equal-width multi-beam array antenna. 3. Multi-mode digital beamforming processing The present invention utilizes 16 beams plus the vibration-forcing comparison method to find the direction of the target, and firstly uses the condition of the two beams to explain the homing principle of the amplitude comparison because different two phases The adjacent beam, which is responsible for different azimuth range estimates, is based on the same homing principle. Therefore, the two beams can be used to represent the generality. The antenna pattern of adjacent two beams in a monospaced multi-beam array antenna can be expressed as

办1 = Σ V肌) (3) m=\ ⑷ AP2 = hJ'9^ m~2 因為不做波束指向調整,所以上面兩式並不使用波束指向 因子%。由上述的場型方程式,所得到特定兩波束的天線 陣列場型如’圖7所示。將咖與柄這兩個波束的d b值 〇相減(却1與柄相除)的輸出值與圖8兩波束場型之差場 型對方向的關係相比較’就可以得到目標訊號的來向。 差暴里循向原理疋選擇兩個不同指向的波束成型對接 收的目標來向信號輸出功率之比值,因為在仙轴上為兩個 波束成型的場型之差值’因此稱之為差場型。因為差場型 的輸出功率與接收信號功率的大小無關,所以通道衰減造 成接收信號功率的變化不會影響對差場型循向。而對應兩 =峰值之間的方位範圍,即可視為負貴的尋向範圍,也 就疋所謂的瞬時視野⑴eld 〇f ,在波束較寬時,瞬 11 201101720 時視野較廣。瞬時視野對尋向準確度的設計有相當的影 響,一般而言,瞬時視野愈寬,尋向的準確度愈差。兩波 束振幅比較的尋向系統方塊如圖9所示。 〆Do 1 = Σ V muscle) (3) m=\ (4) AP2 = hJ'9^ m~2 Since the beam pointing adjustment is not performed, the above two methods do not use the beam pointing factor %. From the above-mentioned field equation, the antenna array pattern of the specific two beams obtained is as shown in Fig. 7. The output value of the db value of the two beams of the coffee and the handle is subtracted (but the division between 1 and the shank) is compared with the relationship between the difference field pattern of the two beam patterns of Fig. 8 to obtain the direction of the target signal. . The principle of tracking in the difference 疋 selects the ratio of the beam-forming of two different directions to the output power of the received target to the signal, because the difference between the two beam-formed field types on the fairy axis is therefore called the difference field type. . Since the output power of the difference field type is independent of the magnitude of the received signal power, the channel attenuation causes the change in the received signal power to not affect the differential field type. The range of azimuth between the two = peaks can be regarded as a negatively expensive range of homing, and the so-called instantaneous field of view (1) eld 〇f. When the beam is wide, the field of view is wider at 201101720. Instantaneous field of view has a considerable impact on the design of homing accuracy. In general, the wider the instantaneous field of view, the worse the accuracy of homing. The homing system block of the two-beam beam amplitude comparison is shown in Fig. 9. 〆

多模式數位波束成型處理器硬體架構如圖10所示, 功能區分為三個模組’多波束成型模組2411、差場型依 來向估測模組2412與零化指向波束成型模組2413。^榡 束天線之零化指向波束成型之目的在於要消除特〜夕波 高能量干擾訊號,其作法是利用多波束天線之其$方向之 作為輔助天線組,並將輔助天線組的主波束指向干天線2且 源方向,再將辅助天線組所收到之訊號乘上—權擾訊號 天線組所收到的訊號相加,如圖9所示。為了共和主要 電路模組’多模式數位波束成型器的特定方向零=同的 能,直接使用多波束成型產生的16個波束之中的私向功 指向波束(分別以你>與你^表示)的線性組合產=個,鄰 向零化之指向波束的線性組合 特疋方 BFnuu = BFM +w(On)BFs (5) 產生特定零化方向a的指向波束場型,其中 w{0n) = -^M^n) 碼(¾) 零化權值The hardware architecture of the multi-mode digital beamforming processor is shown in FIG. 10, and the functions are divided into three modules: a multi-beam forming module 2411, a differential field-based estimation module 2412, and a zero-direction pointing beam forming module 2413. . The purpose of the nulling of the beam antenna is to eliminate the special energy signal of the multi-beam antenna. The method is to use the multi-beam antenna as the auxiliary antenna group and direct the main beam of the auxiliary antenna group. Antenna 2 and the source direction, then multiply the signals received by the auxiliary antenna group by the signals received by the weighted antenna group, as shown in FIG. In order to reconcile the main circuit module 'multi-mode digital beamformer's specific direction zero = the same energy, directly use the private beam pointing beam among the 16 beams generated by multi-beamforming (respectively with you > with you ^ Linear combination yield = one, the linear combination of the directed beam of the ortho-zero beam BFnuu = BFM + w(On) BFs (5) produces a directed beam pattern of the specific nulling direction a, where w{0n) = -^M^n) code (3⁄4) zeroing weight

(6) 由(6)可知使用相鄰指向場型之線性組合產生— 零化場型’最主要的優點是只需要一個複數乘法向之 複數加法即可產生零化場型進行對特定的—個方—個 擾信號進行零化,而且零化權值的計算只需用強干 法。用實施方式第2項所設定之等寬陣列個除 承統模型與 12 201101720 系統參數,可以得到/;(θ)、/2(θ)之場型如圖11、圖丨2所 示。圖13為一簡例,說明當咖15°時,可以計算出 w二-0.5997 -Ο.Ι8ΟΙ7·,並合成出圖13之場型,其零化壓抑 ▲ 值為—80dBc。 • 4.環形陣列天線低訊雜比目標來向估測交相關處理 環形陣列天線多載波直接序列倍頻率展頻(Mul tiple frequency speading-multi carrier direct sequence spread spectrum,MFS-MC-DSSS)雙態相列雷達系統方塊 〇 圖,如圖14所示。多載波直接展頻序列倍頻率展頻雷達發 射機的脈波產生器輸出第思脈波經過直接序列展頻器輸出 直接序列展頻信號(^={4 Cl K c127}。直接序列展頻信 號G經過四相相移鍵控(q p s κ)調變產生多載波直接展頻序 列倍頻率展頻波形的64個子載波複數信號 = 匀Κ心},輸入64點反快速傅立葉轉換 (Inverse Fast Fourier Transform, IFFT) , 64-IFFT 產 生MFS MC DSSSj§號仏經過數位轉類比器(d/a) ◎輸好載波直接展頻序列倍頻率展頻基頻機信號^⑺ .再㈣財器升頻Λ’财載波直減頻序縣頻率展頻 雷達發射微波信號可表示為 = ,〇<t<Tsym (7) 其中^為載波頻率,I為基頻信號的時間宽度。 广雙悲相列雷達系統之多路徑環境如圖1所示,若直接路 k入射Beam j的角度為弘,Beam /的指向角度為氏,則接 收的參考信號可以表示為 13 201101720 ^ (〇 = (0j )[a(^ )^~pts(t -rt) + I(t)] + nt (〇, Tt =^- (8) c 其中八為參考信號功率’ π為直接路徑距離,c為光速 /(ί)為干擾信號,/?,(()為接收機雜訊。假設發射信號〆Θ 為全向(isotropic)且非分散(non-dispersive)之窄頻 (narrow band)信號。在遠場(far field)條件下入射降列 元(array element) ’此時信號波前為平面波。環狀天線之(6) It is known from (6) that the linear combination of adjacent pointing field types is used—the most important advantage of the zero-field type is that only a complex multiplication is required to add the zero-field to the specific- The square-scoring signal is zeroed, and the calculation of the zeroing weight only needs to use the strong dry method. With the equal-width array division model and the 12 201101720 system parameters set in the second item of the embodiment, the field patterns of (θ) and /2 (θ) can be obtained as shown in Fig. 11 and Fig. 2 . Fig. 13 is a simplified example showing that when the coffee is 15°, w di-0.5997 - Ο. Ι 8 ΟΙ 7· can be calculated, and the field pattern of Fig. 13 is synthesized, and the zero-suppression ▲ value is -80 dBc. • Mul tip array speading-multi carrier direct sequence spread spectrum (MFS-MC-DSSS) bimorphal phase The radar system block diagram is shown in Figure 14. Multi-carrier direct spread spectrum sequence frequency spread spectrum radar transmitter pulse generator output first thought pulse wave direct sequence spread spectrum signal output through direct sequence spreader (^={4 Cl K c127}. direct sequence spread spectrum signal G is subjected to four-phase phase shift keying (qps κ) modulation to generate 64 subcarrier complex signals of multi-carrier direct spread spectrum multiple frequency spread spectrum waveform = uniform } heart}, input 64-point inverse fast Fourier transform (Inverse Fast Fourier Transform) , IFFT) , 64-IFFT generates MFS MC DSSSj § number 仏 through digital to analog converter (d / a) ◎ transmission good carrier direct spread spectrum sequence frequency spread frequency baseband signal ^ (7). Then (four) financial device up Λ 'Current carrier direct frequency reduction frequency county frequency spread spectrum radar transmitting microwave signal can be expressed as =, 〇 < t < Tsym (7) where ^ is the carrier frequency, I is the time width of the fundamental frequency signal. The multipath environment of the system is shown in Figure 1. If the direct path k is incident on Beam j and the Beam / pointing angle is , the received reference signal can be expressed as 13 201101720 ^ (〇= (0j )[a (^ )^~pts(t -rt) + I(t)] + nt (〇, Tt =^- (8) c where eight The reference signal power 'π is the direct path distance, c is the speed of light / (ί) is the interference signal, /?, (() is the receiver noise. It is assumed that the transmitted signal 〆Θ is isotropic and non-dispersive (non- Dispersive narrow-band signal. In the far field condition, the incident element is 'array'. The signal wavefront is a plane wave.

子陣列天線陣列是由四個天線元組成,其陣列manif〇ld向 量a(6〇可以表示為 S_) f (9) 其中波長;L = c/Λ。而靜止散射體產生的非直接路徑 (Non-1 ine-of_sight,,NL〇s)接收回波信號可以表示為 7(〇 = ~ τΐ\τ( = Ml (10)The subarray antenna array is composed of four antenna elements whose array manif〇ld vector a (6〇 can be expressed as S_) f (9) where wavelength; L = c/Λ. The indirect path (Non-1 ine-of_sight, NL〇s) generated by the stationary scatterer can be expressed as 7 (〇 = ~ τΐ\τ( = Ml (10)

,=1 C 其中於為路徑衰減。假設只有單—目標,若以發射信號時 ]為參考點(1 e· ί = 0),目標與發射端之距離為必,目標❹ 收端的環狀陣列天線之距離為汜、相對速度為Κ。若 目匕標反射信號入射波束(Beam)々的角度為仏,波束々的 才曰向角度為汍,則目標反射回波信號 = WH {0n)[^9r)ifrs(t - m) + I(t) + lDpit)] + nr{t) (11) ^中7⑺=a(A )為直接路裎同調(coherent)干擾, y中乃(0為一時變的時間延遲。令接收端相對目標距離 相對目払速度r,當目標相對於發射端的距離必遠大於 14 (12) 201101720 fT;",7“為雷達脈波重覆週期,則 D(t) = C + ν 而/见⑴為從傳送端以汰入射波束女的直接路徑同調 (coherent)干擾,八為接收回波信號功率。因為直接路徑 同調(coherent)干擾功率會遠大於非直接路徑接收回波信 號(尸X<A) ’即使同軒擾的人射肖糾落在 二 Ο, = 1 C where is the path attenuation. Assume that there is only a single-target, if the signal is transmitted as a reference point (1 e· ί = 0), the distance between the target and the transmitting end is mandatory, and the distance between the target and the ring-shaped array antenna at the receiving end is 汜, and the relative speed is Κ . If the angle of the incident beam (Beam) 仏 of the target reflection signal is 仏, and the angle of the beam 曰 is 汍, the target reflected echo signal = WH {0n)[^9r)ifrs(t - m) + I (t) + lDpit)] + nr{t) (11) ^7(7)=a(A) is the direct coherent interference, y is (0 is the time delay of the time-varying. The relative target speed r, when the target is farther than the transmitting end, is far greater than 14 (12) 201101720 fT; ", 7" is the radar pulse repetition period, then D(t) = C + ν and / see (1) In order to transmit coherent interference from the transmitting end to the direct path of the incident beam, the eighth is to receive the echo signal power. Because the direct path coherent interference power is much larger than the indirect path receiving echo signal (the corpse X<A ) 'Even if the same person with the horror shoots Xiao Xiao in the second

指向波束,的-麗旁波瓣,如圖5所示,仍不 除 同調干擾。r⑷為多模式數位波束成型的零化指向波權 值’可以產生超過-議的零點壓抑,零化“射的強同 調干擾信號並維持指向汍。MTI濾波器則可以消除靜止散射 體產生的干擾信號/(〇。當认=民,仏=队,則 月 st(f)= ·\ί^αι^(β -Tt、+ nt(t) (t) = ^P^ars{t ~ D(t)) + nr {t) 〇3) 其中&為天線增益,若以接收的直接路徑s參考信號公(〇 的接收時間為參考點,並忽略雜訊,則目標反射的回波俨 说Sr( 〇可以表不為 ^(0Pointing to the beam, the Libian lobes, as shown in Figure 5, still do not remove the coherent interference. r(4) is a multi-mode digital beamforming zero-transformed-directed wave weight' that can generate over-represented zero-point repression, zeroing the "strong coherent interfering signal of the shot and maintaining the pointing 汍. The MTI filter can eliminate the interference generated by the stationary scatterer Signal / (〇. When 认=民,仏=队, then month st(f)= ·\ί^αι^(β -Tt, + nt(t) (t) = ^P^ars{t ~ D( t)) + nr {t) 〇3) where & is the antenna gain, if the received signal is referenced by the direct path s (the receiving time of the 为 is the reference point and the noise is ignored, the echo of the target reflection is said Sr ( 〇 can not be ^ (0

(14) 其中相對於5V(〇的相位延遲為 τ =(14) where relative to 5V (the phase delay of 〇 is τ =

Rr R〇 C + ν 角頻率函數為 15 (15) 201101720 Φ(ν)=Rr R〇 C + ν angular frequency function is 15 (15) 201101720 Φ(ν)=

C +V (16) 由(14)可知雙態雷達來老#缺 1哭s )與回波信號&⑺經過 「降到基頻,再經過類比/數位轉換器輸出基頻咖C +V (16) From (14), it can be seen that the two-state radar is old and the echo signal & (7) is "down to the fundamental frequency, and then the analog/digital converter outputs the base frequency coffee.

π ΐ ^ 〇 # MFS-MC-DSSS MFS-MC-DSSS基頻參考㈣二4 :…頻率相對於 、玄/4^丨& 〒1〇唬仏(/?)的位移量計算出都卜勒頻 都卜:補二二以都卜勒頻率广"補償回波信號"心)獲得 广為64個子載波複數信: Βτη(τ^)~ψ0(τ,ν) bx(T,v) K L^Tv)] ° # ffl ^ 4- / ^ (Maxi咖n Likelih00d Mn6t )}使用取大似然法則 。讀二:’KML Π獲得展頻信號 A , . ^ ^ 1 ’)Κ〜-1(Γ,ν)}。將解回的展頻作轳π ΐ ^ 〇# MFS-MC-DSSS MFS-MC-DSSS Fundamental Reference (4) 2: 4: The frequency is calculated relative to the displacement of 玄/4^丨& 〒1〇唬仏(/?) Le frequency Du Bu: Bu Er 2 to the Doppler frequency "compensated echo signal "heart) to obtain a wide 64 subcarrier complex number: Βτη(τ^)~ψ0(τ,ν) bx(T,v ) KL^Tv)] ° # ffl ^ 4- / ^ (Maxi coffee n Likelih00d Mn6t )} Use the big likelihood rule. Read two: 'KML Π obtains the spread spectrum signal A , . ^ ^ 1 ') Κ ~-1 (Γ, ν)}. Will solve the spread frequency as

:疋,琥與回波信號的雜訊M: 疋, amber and echo signal noise M

^c;ΓΛ;(^ "U)f^ ML 關“A W(7’V) —Cw為不相關’解展頻的自相^c;ΓΛ;(^ "U)f^ ML Off "A W(7'V) - Cw is irrelevant" Despreading self-phase

關處理輸出可以消除雜訊义與尤。換言之, L 當完成正確都卜勒頻率估測與補償,解展頻传號叙 ==縮處理仍會產生最大輸出功率,並經由多模式; 束成型處理估測目標方向。 Μ八波 ΓΟ如圖所示’’將展頻嫩進行四相相移鍵控作, (Quadrature Phase Shift Keying,οΡδΚ ) ^ 碼),令星雲編碼器的輸出為§ QPSK)_(星雲編 bk=—ppingic2k CM]yk,,K63 (⑺ 201101720 式中函數代表星雲編碼器的映射函數,當函 QPSK調變時,是將長度1〇g24 : 2的二位元;列映: 到一個複數,而直接存列信號之碼長度户=6乜。 MFS-MC-DSSS離散基頻訊號為 umc{n)-~Yjbke 64 一 jlnn± (18) 由(7)與(13)可知參考信號與回波信號分別經過混波器降 Q 頻到基頻可以表示為 .U(〇 = sr{t)e~^ = -Dit)Y^ = ^ΡΜ- rr)e-n^r^ ^ 其中目標徑向速度!/遠小於光速c,所以c/(c + 〇三i 且+ F) Ξ Ξ a為都卜勒頻率。若 類比轉數位器以取樣率A對參考信號…(广)與回波信號 仏U)進行取樣,則 〇儿 〜M = 4^t arUmdn - \jtfs J] exp(- j^7tfcTt) ^ urM = 4^arumc[n-[Trfsj]Qxp -j2n^n exp(-y2^crr) ^2〇) V J s ) 其中Lx」表示取最接近x的整數。若以接收的直接路徑參考 I頻信號仏“)的接收時間為參考點,則(2〇)可以表示為 ut[n] = ^arumc[n] ur [η] = ^[Frar umc [η - [fs J] exp - jin L·. n ) exp(_ β^τ)⑵)Turn off the processing output to eliminate the noise and meaning. In other words, when the correct Doppler frequency estimation and compensation is completed, the despreading frequency derivative == shrink processing still produces the maximum output power, and the target direction is estimated through the multi-mode; beam shaping process. Μ八波ΓΟ as shown in the figure ''The Quadrature Phase Shift Keying, οΡδΚ) ^ code), the output of the nebula encoder is § QPSK)_(星云编bk =—ppingic2k CM]yk,,K63 ((7) 201101720 The function in the expression represents the mapping function of the nebula encoder. When the QPSK is modified, it is a two-bit length of 1〇g24:2; the mapping: to a complex number, The code length of the directly stored signal is 6=. The MFS-MC-DSSS discrete fundamental frequency signal is umc{n)-~Yjbke 64-jlnn± (18) The reference signal and back are known by (7) and (13) The wave signal is passed through the mixer to reduce the Q frequency to the fundamental frequency and can be expressed as .U(〇= sr{t)e~^ = -Dit)Y^ = ^ΡΜ- rr)en^r^ ^ where the target radial velocity ! / is much smaller than the speed of light c, so c / (c + 〇 three i and + F) Ξ Ξ a is the Doppler frequency. If the analog-to-digital device samples the reference signal ... (wide) and the echo signal 仏U with the sampling rate A, then ~M = 4^t arUmdn - \jtfs J] exp(- j^7tfcTt) ^ urM = 4^arumc[n-[Trfsj]Qxp -j2n^n exp(-y2^crr) ^2〇) VJ s ) where Lx" denotes the integer closest to x. If the receiving time of the received direct path reference I-frequency signal 仏 ") is used as a reference point, then (2〇) can be expressed as ut[n] = ^arumc[n] ur [η] = ^[Frar umc [η - [fs J] exp - jin L·. n ) exp(_ β^τ)(2))

L v Λ J 利用離放傅立葉轉換(discrete-time Fourjer transform, 17 201101720 DFT)之變數擴張與時間延遲性質,由(18)可得 1 63 Ά—~ ]=k εχρ(/2;ζΦ - ~ V64),~ = b/i」(22)L v Λ J Using the variable expansion and time delay properties of the discrete-time Fourjer transform (17 201101720 DFT), (13) can obtain 1 63 Ά-~ ]=k εχρ(/2;ζΦ - ~ V64),~ = b/i"(22)

k=Q 將(22)代入(21),可得 ur[n\ .ar exp(-j2^;r) « ^^ Lh exp -j2mdk\J jlnjk-k^n^ 64 64 (23) 其中h二Ι_Λ/Δ/」,△/ = /s/64為相鄰子載波之間隔頻率。 由(23)可知子載波仏在接收端會具有价點的相位差與 點的頻率位移。64-FFT輸出的第灸’個子載波函數值可表示 為 bk> \nd, kD ] q 63 63 :"—ΣΣ^ «=〇^=〇 64 j2mdk j2n{k-kD~k')n ~64一e —64 (24) 因為Tfc = Lr/J與浴=LiVA/」=Lr/c/(cA/)」分別為了與F的函數 代入(24)可得 bk'(r,v) .a^e -j^cx 63 63 -J2n\jfs\k j^{k-\yfr l^f\-k'^t 64 ΣΣν n-0k~0 64 e 64 (25) 則第f個子載波函數值&(r,v)之QPSK解調器輸出序列為 {c2k'(T^v) c2^+i(^v)} = deMapping^kl(T,v)l\/k' = 〇,lsK ,63 (26) 式中函數c/e#app//^{ }代表QPSK解調器的映射函數,此 函數將個複數映射到長度Z的序列,則64個子載波函數 值之星雲解碼輸出序列重新組成回波信號的展頻碼序列 201101720 έ加)與訓練信號的序列4(0,0)做解展頻,產±脈波壓縮 輸出功率值。 P~\ xds(j^)= Σ^(0^)^(Γ,ν) (2 7)k=Q Substituting (22) into (21), we can get ur[n\ .ar exp(-j2^;r) « ^^ Lh exp -j2mdk\J jlnjk-k^n^ 64 64 (23) where h Two Ι Λ / Δ / ", △ / = / s / 64 is the interval frequency of adjacent subcarriers. It can be seen from (23) that the subcarrier 会 has a phase difference of the valence point and a frequency shift of the point at the receiving end. The value of the 'Machine Carrier Function' of the 64-FFT output can be expressed as bk> \nd, kD ] q 63 63 :"—ΣΣ^ «=〇^=〇64 j2mdk j2n{k-kD~k')n ~ 64-e - 64 (24) Since Tfc = Lr/J and bath = LiVA / "= Lr / c / (cA /)", in order to substitute (24) with the function of F, bk'(r, v) can be obtained. A^e -j^cx 63 63 -J2n\jfs\kj^{k-\yfr l^f\-k'^t 64 ΣΣν n-0k~0 64 e 64 (25) then the fth subcarrier function value The output sequence of the QPSK demodulator of &(r,v) is {c2k'(T^v) c2^+i(^v)} = deMapping^kl(T,v)l\/k' = 〇, lsK , 63 (26) where the function c/e#app//^{ } represents the mapping function of the QPSK demodulator, which maps a complex number to a sequence of length Z, then the nebula decoding output sequence of 64 subcarrier function values The spread spectrum code sequence 201101720 that reconstitutes the echo signal is summed with the sequence 4 (0, 0) of the training signal to produce a spread pulse output power value. P~\ xds(j^)= Σ^(0^)^(Γ,ν) (2 7)

/>=〇 J MFS-MC-DSSS雷達波形之混淆函數可以用(25)、(26)與⑼ 式產生。因為用來估測距離的反射回波信號為低訊雜比, 恢復的直接序列碼(^(〇,0)具有很高的位元錯誤率(以卯邠 ❹調變為例,在-l〇dB訊雜比的位元錯誤率為〇·2738),而無 法產生足夠的脈波壓縮功率。因此本發明提出以倍頻率展 頻方式降低恢復的直接序列碼4(〇,〇)的位元錯誤率。汾^倍 頻率展頻處理是將相鄰的5^個子載波傳送相同QpsK信號^ bi+o,NfSF=bMxN/SF =Λ = ,^-l (28) c>F y 在接收端做倍頻率解展頻 A =去黑乂/x娜,ν,· = 0,1,Κ,荟-1 (29) /=0 or/>=〇 J The aliasing function of the MFS-MC-DSSS radar waveform can be generated using equations (25), (26), and (9). Since the reflected echo signal used to estimate the distance is a low signal-to-noise ratio, the recovered direct sequence code (^(〇, 0) has a high bit error rate (in the case of 卯邠❹, in -l The bit error rate of the 〇dB signal-to-noise ratio is 〇·2738), and sufficient pulse compression power cannot be generated. Therefore, the present invention proposes to reduce the bit of the recovered direct sequence code 4 (〇, 〇) by the frequency spreading method. The error rate is 汾^ times the frequency spread spectrum processing is to transmit the same QpsK signal to the adjacent 5^ subcarriers ^ bi+o, NfSF=bMxN/SF =Λ = , ^-l (28) c>F y in the reception Do the frequency to spread the frequency A = go black / x na, ν, · = 0, 1, Κ, 荟 -1 (29) / =0 or

所以可以獲知获倍頻率展頻增益。以_16dB訊雜比的㈣^ 调變為例’經過八倍頻率展頻可以提高遞的訊雜比,位 元錯》吳率可以降低為〇· 229。因為使用四個天線元,多模 式波束成型產生的最大天線增益為6dB ,位元錯誤率可以 進一步降低為〇. 〇9838。因此目標侦測機率A會大於 1-0. 09838 = 0. 9016。 、 5.數值估算與模擬結果 多載波直接序列倍頻率展頻(MFS-MC-DSSS)雙態雷達 201101720 系統模擬參數表,如表1所示。圖15〜18為在 SNRt = 4dB訊雜比條件下,不同頻率展頻倍率(狀=工’ 4, 8)的MFS-MC-DSSS交相關函數。由圖15〜18可知頻率展 頻八倍抗雜訊之性能最好’ —16dB #低雜訊比時仍然可以 達到1.6dB的脈波壓縮增益,展頻四倍可以達到的脈 波壓縮增益,而當低於兩倍的展頻倍率則無法產生足夠的 脈波壓縮增益。由環形陣列天線之多波束數位波束成型處 理規格確定其解析度為波束寬度(22. 5。),再由多模式數= 波束成型處理之目標來向估測模式進行目標來向細估。振 幅比較輸出的差場型有相同的角斜率為1. 度。 表1多載波直接序列倍頻率展頻雙態雷達系統模擬參數表Therefore, it is known that the frequency gain gain is obtained. The _16dB signal-to-noise ratio (4) is changed to the example. After eight times the frequency spread spectrum, the hand-to-noise ratio can be improved, and the bit error can be reduced to 〇·229. Since four antenna elements are used, the maximum antenna gain produced by multimode beamforming is 6 dB, and the bit error rate can be further reduced to 〇.9838. Therefore, the target detection probability A will be greater than 1-0. 09838 = 0. 9016. 5. Numerical estimation and simulation results Multi-carrier direct sequence frequency spread spectrum (MFS-MC-DSSS) two-state radar 201101720 System simulation parameter table, as shown in Table 1. Figures 15 to 18 show the MFS-MC-DSSS cross-correlation function for different frequency spread ratios (shape = work ' 4, 8) under SNR t = 4 dB signal-to-noise ratio. It can be seen from Fig. 15~18 that the performance of the frequency spread spectrum eight times anti-noise is best - 16 dB # low noise ratio can still achieve 1.6dB pulse compression gain, and the spread frequency can reach the pulse compression gain of four times. And less than twice the spread frequency will not produce enough pulse compression gain. The multi-beam digital beamforming processing specification of the circular array antenna determines its resolution as the beam width (22.5), and then the target of the multi-mode number=beamforming process is used to estimate the target mode. The difference field of the amplitude comparison output has the same angular slope of 1. degrees. Table 1 Multi-carrier direct sequence double frequency spread spectrum two-state radar system simulation parameter table

天線增益(antenna gain, 6dB 調變(modulation) QPSK (L = l〇g24 = 2) 載波頻率(carrier frequency) 1GHz 信號長度(symbol interval) 500//s 子載波個數(Number of sub-carriers, N) 64 頻率展頻(spread frequency, 1,2,4,8 展頻碼長度(DS code length,尸) P = NxL/SF= 128, 64, 32, 16 bits 訊雜比(Signal-to-noise ratio) SNRt = 4dB, SNRr = -16dB 20 201101720 綜上所述,本發明之結構特徵及各實施例皆已詳細揭 示,而可充分顯示出本發明案在目的及功效上均深富實施 之進步性,極具產業之利用價值,且為目前市面上前所未 ‘ 見之運用,依專利法之精神所述,本發明案完全符合發明 專利之要件。 唯以上所述者,僅為本發明之較佳實施例而已,當不 能以之限定本發明所實施之範圍,即大凡依本發明申請專 利範圍所作之均等變化與修飾,皆應仍屬於本發明專利涵 〇 蓋之範圍内,謹請 貴審查委員明鑑,並祈惠准,是所 至禱。 〇 21 201101720 【圖式簡單說明】 第1圖為低訊雜比目標來向估測接收機架構示音圖 第2圖為環形16個天線元等波束寬陣列天線架構 第3圖為天線元分組示意圖 第4圖為陣列天線經路徑補償示意圖 第5圖為等寬波束之場型圖 第6圖為數位波束成型實現架構圖Antenna gain (6dB modulation) QPSK (L = l〇g24 = 2) carrier frequency 1GHz signal interval 500//s number of sub-carriers (Number of sub-carriers, N) 64 frequency spread frequency (spread frequency, 1, 2, 4, 8 spread code length (DS code length, corpse) P = NxL / SF = 128, 64, 32, 16 bits signal-to-noise ratio (Signal-to- Noise ratio) SNRt = 4dB, SNRr = -16dB 20 201101720 In summary, the structural features and embodiments of the present invention have been disclosed in detail, and it can be fully demonstrated that the present invention is fully implemented in terms of purpose and efficacy. Progressive, extremely industrial use value, and for the current use in the market, according to the spirit of the patent law, the invention is fully in line with the requirements of the invention patent. Only the above, only this The preferred embodiments of the invention are not intended to limit the scope of the invention, and the equivalent variations and modifications made by the invention in the scope of the invention are still within the scope of the invention. Please review the examination committee and pray for it. Prayer. 〇21 201101720 [Simple diagram of the diagram] Figure 1 shows the low-to-noise ratio target to the estimated receiver architecture. Figure 2 shows the beam-wide array antenna structure such as the ring 16 antenna elements. Figure 3 shows the antenna element. Figure 4 is a schematic diagram of the path compensation of the array antenna. Figure 5 is a field diagram of the equal-width beam. Figure 6 shows the architecture of the digital beamforming.

第7圖為多波束成型之相鄰兩波束場型圖 第8圖為相鄰兩波束之差場型圖 第9圖為多模式數位波束成型器架構圖 第10圖為多模式數位波束成型器硬體架構圖 第11圖為主要陣列天線場型圖 第12圖為輔助陣列天線場型圖 第13圖為合成陣列天線場型圖 第14圖為多載波直接展頻序列倍頻率展頻雙態相列雷 傳接機裝置方塊圖Figure 7 is the adjacent two beam field pattern of multi-beamforming. Figure 8 is the difference field pattern of the adjacent two beams. Figure 9 is the multi-mode digital beamformer architecture. Figure 10 is the multi-mode digital beamformer. The hardware architecture diagram is shown in Figure 11 for the main array antenna pattern. Figure 12 is the auxiliary array antenna pattern. Figure 13 is the composite array antenna pattern. Figure 14 shows the multi-carrier direct spread spectrum multiple frequency spread spectrum dual state. Phase column lightning relay device block diagram

多載波直接展頻序列倍頻率展頻交相關函數圖 (mf多載波直接展頻序列倍頻率展頻交相關函數圖 第π圖為多載波直接展頻序舰頻率展頻交相關函數圖 yor = 2) 第18圖為乡《直接展頻相倍解展縣函數圖 (Μ = 1) 22 201101720 【主要元件符號說明】 1〜多載波直接展頻序列發射機Multi-carrier direct spread spectrum sequence frequency spread spectrum cross correlation function graph (mf multi-carrier direct spread spectrum sequence frequency spread spectrum correlation function graph π map is multi-carrier direct spread frequency ship frequency spread frequency cross correlation function graph yor = 2) Figure 18 is the township "direct spread frequency phase doubled exhibition county function map (Μ = 1) 22 201101720 [main component symbol description] 1 ~ multi-carrier direct spread spectrum sequence transmitter

11〜多載波直接展頻序列倍頻率展頻波形產生器 111〜脈波產生器 112〜直接序列展頻器 113〜四相相移鍵控信號調變器 114〜倍頻率展頻器 115〜64-IFFT 〇 116〜數位/類比轉換器 12〜升頻器 2〜環形天線接收機 21〜環形陣列天線 22〜線性補償前置處理器 23〜降頻轉換器 231〜柴比雪夫窗戶處理器 232〜降頻器 q 233〜類比/數位轉換器 24〜零化處理器 241〜多模式數位波束成型器 2411〜多波束成型模組 2412〜振幅比較目標來向估測模組 2413〜零化指向波束成型模組 25〜移動目標指示處理器 26〜倍頻率解展頻電路 261〜倍頻率展頻器 23 20110172011~Multi-carrier direct spread spectrum multiple frequency spread spectrum waveform generator 111~pulse generator 112~direct sequence spreader 113~quad phase shift keying signal modulator 114~multiplier frequency spreader 115~64 -IFFT 〇 116 ~ digital / analog converter 12 ~ upconverter 2 ~ loop antenna receiver 21 ~ ring array antenna 22 ~ linear compensation pre-processor 23 ~ down converter 231 ~ Chebyshev window processor 232 ~ Frequency reducer q 233 ~ analog / digital converter 24 ~ zeroing processor 241 ~ multi-mode digital beamformer 2411 ~ multi-beam forming module 2412 ~ amplitude comparison target to estimate module 2413 ~ zero directed beamforming mode Group 25~moving target indication processor 26~multiple frequency despreading circuit 261~multiplier frequency spreader 23 201101720

262〜64-FFT 263〜四相相移鍵控信號調解器 2 7〜父相關處理裔 271〜64-FFT 272〜振幅相關處理器 273〜64點循環位移器 274〜倍頻率解展器 275〜四相相移鍵控信號調解器 276〜直接序列解展頻器 277〜數位頻率合成器 28〜目標偵測器 281〜目標偵測之最大值判斷器 29〜目標來向估測器 24262~64-FFT 263~quad phase shift keying signal conditioner 2 7~parent related processing patriarchal 271~64-FFT 272~amplitude correlation processor 273~64 point cyclic shifter 274~time frequency despreader 275~ Four-phase phase shift keying signal conditioner 276~direct sequence de-spreader 277~digital frequency synthesizer 28~target detector 281~target detection maximum value determiner 29~target to estimator 24

Claims (1)

201101720 七、申請專利範圍: 1. 一種結合環形陣列天線與多载波直接展頻序列倍頻率 展頻技術之低sfl雜比目標來向估測方法,係包括有下列 步驟: a. 利用一多載波直接序列倍頻率展頻發射機發射 出一多載波直接展頻序列倍頻率展頻調變波形; b. 利用一組環形天線接收機加以接收信號; c·環形陣列天線接收信號之多模式數位波束成型處 Ο 理包含?波束指向模式、目標來向估賴式與零化 指向模式;以及 d·利用直接路徑參考信號與目標回波信號的交相關 處理器估測反射回波信號目標來向。 2. 如申請專利範圍第丨項所述之結合環形陣列天線與多載 波直接展頻序列倍頻率展頻技術之低訊雜比目標來向 估測方法’其t該步驟b.之-組環料列天線的多模式 數位波束成型處理裝置將目標回波信號與參考信號分 〇 開’並消除特定方向的干擾信號,提高雙態雷達系統的 抗干擾性能與訊雜比。 3. 如申请專利範圍第2項所述之結合環形陣列天線與多載 波直接展頻序列倍頻率展頻技術之低訊雜比目標來向 估測方法’其中該步版.之多模式數位波束成型處理裝 置’其電路包含數位纽束成麵組、差場型目標來^ 估測模組與零化指向波束成型模組。 4. 如申請專職㈣㈣所述之結合環料列天線與多载 波直接展頻相倍頻率展頻技術之低訊雜比目標來向 25 201101720 估測方法’其中該步驟d.之交相關處理器係為利用一多 載波直接展頻序列倍頻率展頻調變技術提高直接路徑 參考㈣與目標回波信號的交相關處理之脈波壓縮择 益,降低目標偵測誤判率。 、9 5. -種結合環轉列天線與多舰直接展頻序列倍頻率 展頻技術之低訊雜比目標來向估測接收裝置,其係包括 有: ’、’、 一多載波直接展頻序射機,該多載波直接展頻序列 發射機更係包括有: 一多載波直接展頻序列倍頻率展頻波形產生器,脈波產 生器輸出第π脈波經過直接序列展頻器輸出直接序 列展頻信號;以及 升頻益,用以放大該多載波直接展頻序列倍頻率展頻 波形產生器的輸出基頻信號並將基頻信號升頻至 載波頻率’轉變為射頻信號; %形天線接收機,該環形天線接收機更係包括有: 一 J哀形陣列天線,具有複數個天線元,該複數個天線 元可以至少一個以上為一組子陣列天線,若干個子 陣列天線可用以接收36〇度方向的信號; 一線性補償前置處理器,接受環形陣列天線信號,並 使天線元接收信號經過延遲線進行線性補償前置 處理,使其等效為一非等間距之線性陣列天線; 一降頻轉換器’接收該線性補償前置處理器信號轉換 為一基頻信號; 一零化處理器’去除特定方向的干擾信號,並產生基 26 201101720 頻反射回波信號與基頻參考信號; -移動目標指示處理器,用以去除零化處理器所產生 之低訊雜比的基頻反射回波信號,該基頻反射回波 仏號係指散射體所產生的反射雜波; -倍頻率解展頻電路,用以制若干倍數之頻率 增益; 交相關處理器’估測低訊雜比飛行目標反射回波作 號之目標來向; &quot; Ο ❾ 一目標㈣H ’用以判_環形天線接收機若干個子 陣列天線何者為輪出最大功率,以初步判定飛行目 標的方向;以及 6. 目&amp;來向估· ’根據多模式數位波束成型處理事 $目標來向估測模式細部判定飛行目標的方向: =利範圍第5項所述之結合環形陣列天線與多載 f直接展頻序列倍頻率展頻技術之低訊雜比目標來向 波Μ 载波直接展列倍頻率展頻 器、一四相相移鍵控仲調㈣接序列展頻 …職-數位…倍頻率展頻器、- 彳天_载 估測接收裝狀餘雜比目標來向 =戶4理器、:降二更:轉包= 環形陣列天線與多裁 斤歹頻率展頻技術之低訊雜比目標來向 27 201101720 估測接收裝置,其中該零處理器係由一多模式數位波束 成型器所構成。 9. 如申請專利範圍第8項所述之結合環形陣列天線與多載 波直接展頻序列倍頻率展頻技術之低訊雜比目標來向 估測接收裝置,其中該多模式數位波束成型器更係包 括:一多波束成型模組、一振幅比較目標來向估測模組 及一零化指向波束成型模組。 10. 如申請專利範圍第5項所述之結合環形陣列天線與多 載波直接展頻序列倍頻率展頻技術之低訊雜比目標來 向估測接收裝置,其中該倍頻率解展頻電路更係包括有 一倍頻率展頻器、一64-FFT及一四相相移鍵控信號調解 器。 11. 如申請專利範圍第5項所述之結合環形陣列天線與多 載波直接展頻序列倍頻率展頻技術之低訊雜比目標來向 估測接收裝置,其中該交相關處理器更係包括有一 64-FFT、一振幅相關處理器、一64點循環位移器、一倍 頻率解展器、一四相相移鍵控信號調解器、一直接序列 解展頻器及一數位頻率合成器。 12. 如申請專利範圍第5項所述之結合環形陣列天線與多 載波直接展頻序列倍頻率展頻技術之低訊雜比目標來向 估測接收裝置,其中該目標偵測器係由一目標偵測之最 大值判斷器所構成。 28201101720 VII. Patent application scope: 1. A low-sfl-ratio target estimation method combining circular array antenna and multi-carrier direct spread spectrum sequence frequency spreading technology includes the following steps: a. Using a multi-carrier directly The sequence multiplier spread spectrum transmitter transmits a multi-carrier direct spread spectrum sequence frequency spread spectrum modulation waveform; b. uses a set of loop antenna receivers to receive signals; c. multi-mode digital beamforming of loop array antenna receive signals What is the processing? Beam pointing mode, target-directed and zero-pointing mode; and d· utilizing the intersection of the direct path reference signal and the target echo signal. The processor estimates the target of the reflected echo signal. 2. The method of estimating the low signal-to-noise ratio of the combination of the ring array antenna and the multi-carrier direct spread spectrum multiple frequency spread spectrum technique as described in the scope of the patent application, the step b. The multi-mode digital beamforming processing device of the column antenna splits the target echo signal and the reference signal and eliminates the interference signal in a specific direction, thereby improving the anti-interference performance and the signal-to-noise ratio of the two-state radar system. 3. The multi-mode digital beamforming method of the multi-mode direct-frequency array spread spectrum technique combined with the circular array antenna and the multi-carrier direct spread spectrum multiple frequency spread spectrum technique as described in claim 2 The processing device's circuit includes a digital beam constituting group, a differential field type target, an estimation module, and a nulling pointing beamforming module. 4. For the application of full-time (4) (4) combined loop antenna array and multi-carrier direct spread spectrum phase frequency spread spectrum technology low signal-to-noise ratio target to 25 201101720 estimation method 'where the step d. In order to utilize a multi-carrier direct spread spectrum sequence frequency spread spectrum modulation technology to improve the direct path reference (4) and the target echo signal cross-correlation processing pulse wave compression selection, reduce the target detection false positive rate. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; The sequencer, the multi-carrier direct spread spectrum sequence transmitter further includes: a multi-carrier direct spread spectrum sequence frequency spread spectrum waveform generator, and the pulse generator output π pulse wave directly through the direct sequence spreader output a sequence spread spectrum signal; and an up-frequency benefit for amplifying the output baseband signal of the multi-carrier direct spread spectrum multiple frequency spread spectrum waveform generator and up-converting the baseband signal to a carrier frequency' into a radio frequency signal; The antenna receiver further includes: a J-shaped array antenna having a plurality of antenna elements, wherein the plurality of antenna elements can be at least one of a group of sub-array antennas, and the plurality of sub-array antennas can be used for receiving 36-degree signal; a linear compensation pre-processor that accepts the circular array antenna signal and causes the antenna element to receive the signal through the delay line for linear compensation front To make it equivalent to a non-equal-spaced linear array antenna; a down-converter 'receives the linear compensation pre-processor signal into a baseband signal; and a zero-processor eliminates interference signals in a specific direction And generating a base 26 201101720 frequency reflected echo signal and a fundamental frequency reference signal; - a moving target indicating processor for removing a fundamental frequency reflected echo signal generated by the zeroing processor, the fundamental frequency reflection The echo nickname refers to the reflected clutter generated by the scatterer; the multiplier frequency despreading frequency circuit is used to make several times the frequency gain; the cross correlation processor 'estimates the low signal to noise ratio flight target reflection echo number The target is directed to; &quot; Ο ❾ a target (four) H 'used to determine _ loop antenna receiver several sub-array antennas which are the maximum power for the round to determine the direction of the flight target; and 6. the target &amp; The multi-mode digital beamforming process is used to determine the direction of the flight target to the estimated mode details: = the combination of the ring array antenna and the multi-load f directly in the range 5 Spread spectrum sequence frequency spread spectrum technology's low signal-to-noise ratio target to directly display the frequency spreader, a four-phase phase shift keying, and a four-phase phase shift keying. The spread spectrum... job-digit...multiplier frequency spread spectrum , - 彳天_Loading and measuring the receiving ratio of the residual ratio target to the = household 4 processor,: lower two more: subcontracting = circular array antenna and multi-cutting frequency spread spectrum technology low signal ratio target 27 201101720 Estimating a receiving device, wherein the zero processor is comprised of a multi-mode digital beamformer. 9. The low-noise-to-noise ratio target combined with the circular array antenna and the multi-carrier direct spread spectrum multiple frequency spread spectrum technique according to claim 8 of the patent application scope, wherein the multi-mode digital beamformer is further Including: a multi-beamforming module, an amplitude comparison target to the estimation module and a zero-pointing beamforming module. 10. The low-noise-to-noise ratio target combined with the circular array antenna and the multi-carrier direct spread spectrum multiple frequency spread spectrum technique described in claim 5, wherein the multiple frequency despreading circuit is further It includes a frequency spreader, a 64-FFT and a four-phase phase shift keying signal conditioner. 11. The low-noise-and-noise ratio target combining the ring array antenna and the multi-carrier direct spread spectrum multiple frequency spread spectrum technique according to claim 5, wherein the cross-correlation processor includes one 64-FFT, an amplitude correlation processor, a 64-point cyclic shifter, a double frequency despreader, a four-phase phase shift keying signal conditioner, a direct sequence despreader, and a digital frequency synthesizer. 12. Estimating a receiving device according to the low-to-noise ratio target of the circular array antenna and the multi-carrier direct spread spectrum multiple frequency spread spectrum technique described in claim 5, wherein the target detector is controlled by a target The maximum value of the detector is determined by the detector. 28
TW98122090A 2009-06-30 2009-06-30 Joint circular array antenna and mfs-mc-dsss technologies to estimate the doa of a very low signal-to-noise ratio air target for bistatic radar TWI388138B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98122090A TWI388138B (en) 2009-06-30 2009-06-30 Joint circular array antenna and mfs-mc-dsss technologies to estimate the doa of a very low signal-to-noise ratio air target for bistatic radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98122090A TWI388138B (en) 2009-06-30 2009-06-30 Joint circular array antenna and mfs-mc-dsss technologies to estimate the doa of a very low signal-to-noise ratio air target for bistatic radar

Publications (2)

Publication Number Publication Date
TW201101720A true TW201101720A (en) 2011-01-01
TWI388138B TWI388138B (en) 2013-03-01

Family

ID=44837102

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98122090A TWI388138B (en) 2009-06-30 2009-06-30 Joint circular array antenna and mfs-mc-dsss technologies to estimate the doa of a very low signal-to-noise ratio air target for bistatic radar

Country Status (1)

Country Link
TW (1) TWI388138B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104092634A (en) * 2014-07-29 2014-10-08 中国民航大学 Range finder impulse interference suppression method combining direction of arrival (DOA) estimation and main beam forming
CN111521968A (en) * 2020-05-22 2020-08-11 南京理工大学 Underdetermined DOA estimation method based on target space diversity
TWI806456B (en) * 2022-03-01 2023-06-21 瑞昱半導體股份有限公司 Signal receiving apparatus and operation method thereof having phase compensation mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158777B (en) * 2014-08-28 2017-09-08 中国民航大学 United orthogonal projects the rangefinder pulse interference suppression method with circulation beam forming

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104092634A (en) * 2014-07-29 2014-10-08 中国民航大学 Range finder impulse interference suppression method combining direction of arrival (DOA) estimation and main beam forming
CN104092634B (en) * 2014-07-29 2017-08-01 中国民航大学 The rangefinder pulse interference suppression method that allied DOA estimation is molded with main beam
CN111521968A (en) * 2020-05-22 2020-08-11 南京理工大学 Underdetermined DOA estimation method based on target space diversity
TWI806456B (en) * 2022-03-01 2023-06-21 瑞昱半導體股份有限公司 Signal receiving apparatus and operation method thereof having phase compensation mechanism

Also Published As

Publication number Publication date
TWI388138B (en) 2013-03-01

Similar Documents

Publication Publication Date Title
Godrich et al. Target localization accuracy gain in MIMO radar-based systems
CN102520395B (en) Clutter suppression method based on bistatic multiple-input and multiple-output radar
Hamid et al. Performance comparison of time-domain and frequency-domain beamforming techniques for sensor array processing
CN108693511B (en) Moving target angle calculation method of time division multiplexing MIMO radar
CN102981152A (en) Multiple-target and send-receive angle estimation method of double-base multiple-input and multiple-output radar
CN102707264A (en) Estimating method of direction of arrival of bistatic MIMO (Multi-Input Multi-Output) radar based on circular array
CN109765529B (en) Millimeter wave radar anti-interference method and system based on digital beam forming
CN109471083A (en) Airborne external illuminators-based radar clutter suppression method based on space-time cascade
CN105301580A (en) Passive detection method based on split array cross-spectrum phase difference variance weighing
CN103885052A (en) Polarization echo separation method of wide-range complete-polarization satellite-borne SAR
CN110531311A (en) A kind of LTE external illuminators-based radar DOA estimation method based on matrix recombination
TW201101720A (en) Joint circular array antenna and MFS-MC-DSSS technologies to estimate the DOA of a very low signal-to-noise ratio air target for bistatic radar
CN106680797A (en) Novel target parameter estimation based on wideband ambiguity function
CN108828504A (en) MIMO radar target direction method for quick estimating based on part waveform correlation
Yang et al. Spatial deception suppression for wideband linear frequency modulation signals based on fractional Fourier transform with robust adaptive beamforming
Liu et al. Joint DoA-range estimation using moving time-modulated frequency diverse coprime array
Soumekh et al. SAR-MTI processing of multi-channel airborne radar measurement (MCARM) data
Mecca et al. Slow-time MIMO STAP with improved power efficiency
CN108490425A (en) A kind of angle-measuring method of bistatic MIMO radar
He et al. Near-range clutter suppression with elevation element multifrequency subpulse coding array radar
CN114265058A (en) MIMO radar target angle measurement method and device, electronic equipment and storage medium
Farina et al. Estimation of target direction by pseudo-monopulse algorithm
CN105785315B (en) A kind of angle-measuring method of line array covariance matrix leading diagonal reconstruct
Kim et al. Low-complexity super-resolution detection for range-vital Doppler estimation FMCW radar
GB2433664A (en) Arrangement for determining the angle of incidence of an electromagnetic wave

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees