TW201101552A - Thermoelectric convertion material - Google Patents
Thermoelectric convertion material Download PDFInfo
- Publication number
- TW201101552A TW201101552A TW98120773A TW98120773A TW201101552A TW 201101552 A TW201101552 A TW 201101552A TW 98120773 A TW98120773 A TW 98120773A TW 98120773 A TW98120773 A TW 98120773A TW 201101552 A TW201101552 A TW 201101552A
- Authority
- TW
- Taiwan
- Prior art keywords
- carbon nanotube
- thermoelectric conversion
- conversion material
- conductive polymer
- material according
- Prior art date
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
201101552 六、發明說明: 【發明所屬之技術領域】 [0001]本發明涉及一種熱電轉換材料,尤其涉及一種具有柔性 熱電轉換材料。 [先前技術] • ⑽02]熱電效應(Thermoelectric Effect)係指當物體兩端 溫度不同時(即物體内部存在溫度梯度),物體中的載 流子將順著溫度梯度由高溫區向低溫區擴散,致使低溫 區的載流子數目逐漸多於高溫區,從雨建立内建電場。 〇 内建電場將迫使載流子進行與擴散運動反向的漂移運動 ,最終漂移運參與擴散運動平衡,使得物體兩端存在一 恒定電勢差。衡量熱電效應的主要參數係塞貝克係數( Seeback coefficient)。塞貝克係數等於物體兩端的 電勢差除以物體兩端的溫差。定義當載流子為空穴時, 塞貝克係數為正,當載流子為電子時,塞貝克係數為負 〇 t〇〇〇3]熱電轉換材料的一個重要性能指瀨:係優值係數 ,優值係數 Z= S2c/ic 越大,熱電轉換材料的熱電轉換效率越高。在公式中201101552 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a thermoelectric conversion material, and more particularly to a flexible thermoelectric conversion material. [Prior Art] • (10)02] Thermoelectric effect means that when the temperature at both ends of the object is different (ie, there is a temperature gradient inside the object), the carriers in the object will diffuse from the high temperature zone to the low temperature zone along the temperature gradient. The number of carriers in the low temperature region is gradually increased more than the high temperature region, and the built-in electric field is established from the rain. 〇 The built-in electric field will force the carrier to perform a drift motion that is opposite to the diffusion motion. Finally, the drift is involved in the balance of the diffusion motion, so that there is a constant potential difference across the object. The main parameter for measuring the thermoelectric effect is the Seeback coefficient. The Seebeck coefficient is equal to the potential difference across the object divided by the temperature difference across the object. It is defined that when the carrier is a hole, the Seebeck coefficient is positive, and when the carrier is an electron, the Seebeck coefficient is negative 〇t〇〇〇3] An important performance index of the thermoelectric conversion material: the coefficient of merit The larger the figure of merit Z=S2c/ic, the higher the thermoelectric conversion efficiency of the thermoelectric conversion material. In the formula
S 098120773 表單編號A0101 第3頁/共24頁 0982035400-0 201101552 係塞貝克係數, σ 係電導率, 係熱導率。 κ σ 愈大,表示材料電阻愈小,由於焦耳熱造成的熱電性能 降低也就愈小; κ 愈小,表示從熱端到冷端的導熱損失愈小。提高 Ζ 值,就可以提高發電或製冷效率。由於S 098120773 Form No. A0101 Page 3 of 24 0982035400-0 201101552 Zebeck coefficient, σ system conductivity, thermal conductivity. The larger the κ σ is, the smaller the material resistance is, and the smaller the thermoelectric performance is due to Joule heat; the smaller the κ, the smaller the heat conduction loss from the hot end to the cold end. Increasing the value of enthalpy can increase the efficiency of power generation or cooling. due to
S 係分子上平方項的貢獻,故提高材料的塞貝克係數The contribution of the squared term on the S-system molecule, so the Seebeck coefficient of the material is increased.
S 係提高優值係數 Ζ 值的主要手段。 [0004] 金屬導體的熱電效應早在170多年前就被發現,但由於金 屬的熱電效應微弱,其應用長期以來一直局限於作為熱 電偶測量溫度。從20世紀50年代某些半導體材料被發現 098120773 表單編號Α0101 第4頁/共24頁 0982035400-0 201101552 具有較強熱電效應後,熱I轉換材料的新應用研九弓 人們高度重梘,比如在發電(熱電政應)、製泠(熱電 效應逆效應/帕爾帖致應Peltier Effect)方面有著非 常巨大的潛在應用價值。與傳統發電、製冷設備相比, 利用熱電效應及其逆效應製成的設備具有取用方使、設 備簡單、無雜訊(無機械傳動)、無污染(不用液態或 氣態工質’如氟利昂)等諸多優點。然而,金屬材料製 成的熱電轉換材料硬度較大,不具有柔性,限制了熱電 轉換材料的應用。S is the main means of increasing the figure of merit Ζ value. [0004] The thermoelectric effect of metal conductors was discovered more than 170 years ago, but due to the weak thermoelectric effect of metals, its application has long been limited to measuring temperature as a thermocouple. Some semiconductor materials were discovered from the 1950s 098120773 Form No. 1010101 Page 4 / Total 24 Page 0982035400-0 201101552 After the strong thermoelectric effect, the new application of thermal I conversion materials is highly focused, for example in Power generation (thermal power politician), enthalpy (thermal effect inverse effect / Peltier effect) has a huge potential application value. Compared with traditional power generation and refrigeration equipment, the equipment made by the thermoelectric effect and its inverse effect has the means of taking the device, the equipment is simple, no noise (no mechanical transmission), no pollution (no liquid or gaseous working medium) such as Freon ) and many other advantages. However, the thermoelectric conversion material made of a metal material has a large hardness and does not have flexibility, which limits the application of the thermoelectric conversion material.
[0005] 近年來,導電聚合物(聚乙炔、聚苯胺、聚料、聚噻 吩等)在熱電♦域的顧逐漸被人們研究。他們的優點 係兼具較好的導電性能和較低的熱導率、 聚備成本低、 輕便和柔性等。但實際應用於熱電轉換材料時,基於導 電聚合物的熱電轉換材料的熱電轉換 還有待進一步 【發明内容】[0005] In recent years, conductive polymers (polyacetylene, polyaniline, polymer, polythiophene, etc.) have been gradually studied in the field of thermoelectricity. Their advantages are both good electrical conductivity and low thermal conductivity, low cost of assembly, light weight and flexibility. However, when it is actually applied to a thermoelectric conversion material, thermoelectric conversion of a thermoelectric conversion material based on a conductive polymer remains to be further [invention]
[0006] 有鑒於此,提供一種具有柔性且熱電 電轉換材料實為必要。 轉換效率較高的熱 [0007] 一種熱電轉換材料,所述熱電轉換材料包括〜齐米*管 結構及一導電聚合物層。該奈米碳管結構包括複數個卉 来碳管’所述導電聚合物層包覆在所述奈心 [0008] —種熱電轉換材料,所述熱電轉換材料包括多個一維的 奈米碳管複合結構通過凡德瓦爾力相互連接 該一維的 098120773 奈米碳管複合結構包括I少一奈米碳管以及〜人 表單編號A0101 第5萸/共24頁 ^ 0982035400-0 201101552 [0009] [0010] [0011] [0012] 098120773 物層包覆在所述奈米碳管的表面。 一種熱電轉換材料,所述熱電轉換材料包括多個一維的 奈米碳管複合結構通過凡德瓦爾力相互連接,該一維的 奈米碳管複合結構包括一個一維導電聚合物材料以及至 少一奈米碳管複合於該一維導電聚合物内部。 與先前技術相比較,所述熱電轉換材料採用導電聚合物 包覆在所述奈米碳管結構中的奈米碳管的表面,在奈米 碳管的表面形成一導電聚合物層。由於奈米碳管結構本 身具有較好的柔性與自支撐性,故,以奈米碳管結構作 為骨架的熱電轉換材料具有較好的柔性。另外,由於導 電聚合物層以包覆在所述奈米碳管的表面的形式複合於 奈米碳管結構,所述熱電轉換材料具有的賽貝克係數較 大,從而所述熱電轉換材料的熱電轉換效率較高。 【實施方式】 以下將結合附圖詳細說明本發明實施例的熱電轉換材料 Ο 請參閱圖1,本發明第一實施例提供一熱電轉換材料10, 其包括一奈米礙管結構16及一導電聚合物層14。所述奈 米碳管結構16由複數個奈米碳管12相互連接形成。相鄰 的奈米碳管12之間通過凡德瓦爾力相互連接。所述熱電 轉換材料10中,該奈米碳管結構16作為骨架,所述導電 聚合物層14包覆在所述奈米碳管結構16中的奈米碳管12 的表面,即,所述奈米碳管結構16可支撐該導電聚合物 層14,使得該導電聚合物層14可分佈在所述奈米碳管12 的表面。在本實施例中,所述導電聚合物層14均勻地分 表單編號A0101 第6頁/共24頁 0982035400-0 201101552 佈在所述奈米碳管結構16的全部表面,即,所述奈米碳 管結構1 6中每個奈米碳管12的表面都均勻分佈有導電聚 合物層14。此外,所述奈米碳管結構16上具有複數個微 孔18。這些微孔18係由複數個奈米碳管12所圍成,且每 一個微孔18的内表面均設置有上述導電聚合物層14 ^所 述微孔的尺寸範圍為60奈米〜400奈米。由於複數個微孔 18的存在,使得所述熱電轉換材料10具有較小的密度, 從而重量較輕。 [0013] 所述奈米碳管12包括單壁奈米碳管、雙壁奈米碳管及多 壁奈米碳管中的一種或幾種。單壁奈米碳管的直徑優選 為0. 5奈米〜50奈米,雙壁奈米碳管的直徑優選為1. 0奈 米〜50奈米,多壁奈米碳管的直徑優選為1.5奈米〜50奈 米。所述奈米碳管的長度優選為在100奈米到10毫米之間 。本實施例中,所述奈米碳管12形成的奈米碳管結構16 為一無序排列的奈米碳管網狀結構。所謂“無序”即指 奈米碳管結構16中的奈米碳管12的排列方式為無規則排 列或各向同性排列。 德瓦爾力相互吸引、 網狀結構。優選地, 管結構16的表面。 所述無序排列的奈米碳管12通過凡 相互纏繞、均勻分佈,從而形成一 所述奈米碳管12基本平行於奈米碳 [0014] 所述無序排列的奈米碳管網狀結構包括真空抽濾法製備 的無序排列的奈米碳管紙以及奈米碳管粉末經過15MPa以 上的壓力壓平形成的奈米碳管片等。本實施例中,所述 奈米碳管網狀結構為真空抽濾法製備的無序排列的奈米 碳管紙。 098120773 表單編號A0101 第7頁/共24頁 0982035400-0 201101552 [0015] [0016] [0017] [0018] 098120773 所述導絲合物層U的㈣絲笨胺1。叫、聚嗟吩 4乙炔'聚對笨及聚對笨樓乙稀中的—種或幾種。所 述導電聚合物層14的厚度優選在3H15Q奈米之間, 本實施例中為5〇奈米,奈米。所述導電聚合物層Η在所 «電轉換材料10的質量百分含量優選為2〇%〜8〇%。本 實施例中,所料電聚合物層14為聚笨胺層,且所述導 電聚合物層14包覆在上述的無序奈米唉管 網狀結構表面 圖2係本發明熱電轉換材料論電效貝克係數測量裝 置100之示意圖。所述熱電效應塞貝克係數測量裝置1〇〇 包括-低溫端銅塊!〇2及-高溫端銅塊1〇3,所述高溫端 銅塊103與所述低溫端銅塊102間隔且相對設置。所述低 溫端銅塊102與高溫端銅塊103相對的表面分別設置有測 溫電偶107。所述低溫端銅塊102通過—循環水裝置1〇4 降溫,所述高溫端銅塊103通過一恒流恒壓源1〇5加熱。 為了便於測量上述熱電轉換材料1〇的塞貝克係數,將上 述熱電轉換材料10教剪成兩偶圓形薄片。每個圓形薄片 的直徑優選為13毫米、厚度優選為55微米 '質量優選為 3. 95毫克(mg)。 測量上述熱電轉換材料10的塞貝克係數時,可將上述熱 電轉換材料10的圓形薄片樣品放置在所述低溫端銅塊102 與所述高溫端銅塊103之間,並對所述低溫端銅塊1〇2與 所述高溫端鋼塊103施加一定壓力使所述熱電轉換材料10 的圓形薄片樣品分別與所述低溫端銅塊102及高溫端銅塊 103緊密接觸。低溫端銅塊102與循環水裝置104相速’ 表單編號A0101 第8頁/共24頁 0985 201101552 並通過所述循環水裝置104保持低溫在17攝氏度〜19攝氏 度。高溫端銅塊10 3與恒流恒壓源10 5相連,並通過恒流 恒壓源105保持高溫在47攝氏度〜49攝氏度。由測溫電偶 107讀數計算出圓形薄片樣品兩端的溫度差In view of this, it is necessary to provide a flexible and thermoelectric conversion material. Heat with High Conversion Efficiency [0007] A thermoelectric conversion material comprising a ~zomi* tube structure and a conductive polymer layer. The carbon nanotube structure includes a plurality of carbon nanotubes, wherein the conductive polymer layer is coated on the nanosphere [0008], and the thermoelectric conversion material comprises a plurality of one-dimensional nanocarbons. The tube composite structure is interconnected by the van der Waals force. The one-dimensional 098120773 carbon nanotube composite structure includes one less carbon nanotube and one person form number A0101. 5萸/24 pages^ 0982035400-0 201101552 [0009] [0012] [0012] 098120773 The layer is coated on the surface of the carbon nanotube. A thermoelectric conversion material comprising a plurality of one-dimensional carbon nanotube composite structures interconnected by a van der Waals force, the one-dimensional carbon nanotube composite structure comprising a one-dimensional conductive polymer material and at least A carbon nanotube is composited inside the one-dimensional conductive polymer. In comparison with the prior art, the thermoelectric conversion material is coated with a conductive polymer on the surface of a carbon nanotube in the carbon nanotube structure to form a conductive polymer layer on the surface of the carbon nanotube. Since the carbon nanotube structure itself has good flexibility and self-supporting properties, the thermoelectric conversion material having a carbon nanotube structure as a skeleton has good flexibility. In addition, since the conductive polymer layer is composited to the carbon nanotube structure in the form of a surface coated on the surface of the carbon nanotube, the thermoelectric conversion material has a larger Seebeck coefficient, and thus the thermoelectricity of the thermoelectric conversion material The conversion efficiency is high. [Embodiment] Hereinafter, a thermoelectric conversion material according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Referring to FIG. 1, a first embodiment of the present invention provides a thermoelectric conversion material 10 including a nano tube structure 16 and a conductive Polymer layer 14. The carbon nanotube structure 16 is formed by interconnecting a plurality of carbon nanotubes 12. Adjacent carbon nanotubes 12 are connected to each other by van der Waals force. In the thermoelectric conversion material 10, the carbon nanotube structure 16 serves as a skeleton, and the conductive polymer layer 14 covers the surface of the carbon nanotube 12 in the carbon nanotube structure 16, that is, the The carbon nanotube structure 16 can support the conductive polymer layer 14 such that the conductive polymer layer 14 can be distributed on the surface of the carbon nanotube 12. In the present embodiment, the conductive polymer layer 14 is uniformly distributed on the entire surface of the carbon nanotube structure 16, that is, the nanometer, in the form number A0101, page 6 / page 24, 0982035400-0 201101552. The surface of each of the carbon nanotube structures 16 is uniformly distributed with a conductive polymer layer 14 on the surface of each of the carbon nanotubes 12. Additionally, the carbon nanotube structure 16 has a plurality of micropores 18. The micropores 18 are surrounded by a plurality of carbon nanotubes 12, and the inner surface of each of the micropores 18 is provided with the above conductive polymer layer 14. The size of the micropores ranges from 60 nm to 400 nm. Meter. Due to the presence of a plurality of micropores 18, the thermoelectric conversion material 10 has a small density and is light in weight. [0013] The carbon nanotube 12 includes one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is preferably 0.5 nm to 50 nm, and the diameter of the double-walled carbon nanotube is preferably 1.0 nm to 50 nm, and the diameter of the multi-walled carbon nanotube is preferably 1.5 nm ~ 50 nm. The length of the carbon nanotubes is preferably between 100 nm and 10 mm. In this embodiment, the carbon nanotube structure 16 formed by the carbon nanotubes 12 is a disordered arrangement of carbon nanotube networks. By "disorder", it is meant that the arrangement of the carbon nanotubes 12 in the carbon nanotube structure 16 is irregular or isotropic. Devalli attracts each other and has a mesh structure. Preferably, the surface of the tube structure 16. The disordered array of carbon nanotubes 12 are intertwined and evenly distributed to form a carbon nanotube network 12 in which the carbon nanotubes 12 are substantially parallel to the carbon nanotubes [0014]. The structure includes a disordered arrangement of carbon nanotube paper prepared by a vacuum filtration method, and a carbon nanotube sheet formed by pressure flattening of a carbon nanotube powder of 15 MPa or more. In this embodiment, the carbon nanotube network structure is a disordered arrangement of carbon nanotube paper prepared by vacuum filtration. 098120773 Form No. A0101 Page 7 of 24 0982035400-0 201101552 [0015] [0018] [0018] 098120773 The silk fibroin layer U of the silk guiding compound layer U. Called, polyporphin 4 acetylene 'poly pair stupid and poly pairs of stupid buildings in the kind or a few. The thickness of the conductive polymer layer 14 is preferably between 3H15Q nanometers, and in this embodiment, 5 nanometers, nanometer. The conductive polymer layer is preferably in the range of 2% by weight to 8% by mass of the electric conversion material 10. In this embodiment, the electropolymer layer 14 is a polyaniline layer, and the conductive polymer layer 14 is coated on the surface of the disordered nanotube network. FIG. 2 is a thermoelectric conversion material of the present invention. Schematic diagram of the electric effect Becker coefficient measuring device 100. The thermoelectric effect Seebeck coefficient measuring device 1 包括 includes a low temperature end copper block! 〇2 and - high temperature end copper block 1〇3, the high temperature end copper block 103 is spaced apart from and opposite to the low temperature end copper block 102. The surface of the low temperature end copper block 102 opposite to the high temperature end copper block 103 is provided with a temperature measuring coupler 107, respectively. The low temperature end copper block 102 is cooled by a circulating water device 1〇4, and the high temperature end copper block 103 is heated by a constant current constant voltage source 1〇5. In order to facilitate measurement of the Seebeck coefficient of the above-described thermoelectric conversion material 1 ,, the above-described thermoelectric conversion material 10 is taught to be a two-even circular sheet. Each of the circular sheets preferably has a diameter of 13 mm and a thickness of preferably 55 μm. The mass is preferably 3.95 mg (mg). When measuring the Seebeck coefficient of the thermoelectric conversion material 10 described above, a circular sheet sample of the above thermoelectric conversion material 10 may be placed between the low temperature end copper block 102 and the high temperature end copper block 103, and the low temperature end is The copper block 1〇2 and the high temperature end steel block 103 are applied with a pressure such that the circular sheet samples of the thermoelectric conversion material 10 are in close contact with the low temperature end copper block 102 and the high temperature end copper block 103, respectively. The low temperature end copper block 102 and the circulating water device 104 are at a phase speed 'Form No. A0101, page 8 of 24, 0985 201101552 and are maintained at a low temperature of 17 degrees Celsius to 19 degrees Celsius by the circulating water device 104. The high temperature end copper block 10 3 is connected to the constant current constant voltage source 105, and is maintained at a high temperature of 47 degrees Celsius to 49 degrees Celsius by the constant current constant voltage source 105. The temperature difference between the two ends of the circular sheet sample is calculated from the thermocouple 107 reading
AT ,再由納伏表連接圓形薄片樣品兩端,測出樣品兩端的 電勢差 ΔΚ ❹ [0019] 。通過公式:AT, and then connected to both ends of the circular sheet sample by a nanovoltmeter, the potential difference ΔΚ ❹ at both ends of the sample was measured [0019]. By formula:
S NFΔΓ [0020] Ο [0021] 計算出樣品的赛貝克係數。作為比較,本實施例還通過 相同的方法測量了由純聚苯胺粉末壓成的純聚苯胺薄片 樣品,以及奈米碳管紙的塞貝克係數。 圖3為本實施例中熱電轉換材料10與純聚苯胺薄片以及奈 米碳管紙在不同壓力下的塞貝克係數分佈圖。從圖3可以 看出,本實施例中的熱電轉換材料10的賽貝克係數要遠 大於純聚苯胺薄片以及奈米碳管紙的塞貝克係數。由此 可見,在奈米碳管結構16中的奈米碳管12上包覆導電聚 合物材料,形成導電聚合物層14,可以提高熱電轉換材 料10的塞貝克係數。 [0022] 請參閱圖4,本發明第二實施例提供一種熱電轉換材料20 098120773 表單編號A0101 第9頁/共24頁 0982035400-0 201101552 ,所述熱電轉換材料2〇包括一奈米碳管結構26及—導電 聚合物層24。本實施例中,熱電轉換材料2〇與第—實施 例的熱電轉換材料10的結構類似,區別在於所述奈米碳 管結構26包括複數個有序排列的奈米碳管22。相鄰的务 米碳管22之間通過凡德瓦爾力相互連接。所述“有序排 列”係指奈米碳管結構26中的奈米碳管22的排歹彳方 <係、 規則的。具體地,該有序排列的奈米碳管結構26中的奈 米碳管2 2沿一個方向或複數個方向擇優取向排列^所述 導電聚合物層24包覆在所述奈米碳管22的表面,即奈米 碳管結構2 6的表面,該奈濟磷管結_ 2 6對導電聚合物層 24提供支撐。所述熱電轉換材料20還皂括複數個微孔28 ,這些微孔28由複數個奈米破管22所固成,且每一個微 孔28的内.表面均汉置有上述導電聚合物層24。所述微孔 28的尺寸範圍為50奈米〜500奈米。由於複數個微孔28的 存在,使得所述熱電轉換材料20的密度較小,重量較輕 Ο | ..... . :!:_ , [0023] 具體而言,所述導電聚合物層24的材料包括聚苯胺、聚 0比嘻、聚嘆吩、聚乙炔、聚對苯及聚對笨撐乙稀中的一 種或幾種。所述導電聚合物層24的厚度優選為在3〇奈米 到120奈米之間。所述導電聚合物層24的厚度範圍為35奈 米〜145奈米。所述導電聚合物層24在所述熱電轉換材料 20的質量百分含量優選為20%~80%。 [0024] 所述有序排列的奈米碳管結構26包括通過直接拉伸一奈 米碳管陣列獲得的奈米碳管拉膜、通過碾壓法滾壓一個 奈米碳管陣列獲得的奈米碳管碾壓膜。 098120773 表單編號A0101 第1〇頁/共24頁 0982035400-0S NFΔΓ [0020] [0021] The Seebeck coefficient of the sample was calculated. For comparison, this example also measured a sample of pure polyaniline sheet pressed from pure polyaniline powder by the same method, and the Seebeck coefficient of the carbon nanotube paper. Fig. 3 is a distribution diagram of the Seebeck coefficient of the thermoelectric conversion material 10 and the pure polyaniline sheet and the carbon nanotube paper under different pressures in the present embodiment. As can be seen from Fig. 3, the Seebeck coefficient of the thermoelectric conversion material 10 in the present embodiment is much larger than that of the pure polyaniline sheet and the carbon nanotube paper. It can be seen that the conductive polymer material is coated on the carbon nanotube 12 in the carbon nanotube structure 16 to form the conductive polymer layer 14, which can improve the Seebeck coefficient of the thermoelectric conversion material 10. [0022] Referring to FIG. 4, a second embodiment of the present invention provides a thermoelectric conversion material 20 098120773, Form No. A0101, page 9 / 24 pages 0982035400-0 201101552, and the thermoelectric conversion material 2 includes a carbon nanotube structure. 26 and - a conductive polymer layer 24. In the present embodiment, the thermoelectric conversion material 2 is similar in structure to the thermoelectric conversion material 10 of the first embodiment, except that the carbon nanotube structure 26 includes a plurality of ordered carbon nanotubes 22. The adjacent carbon nanotubes 22 are connected to each other by Van der Waals force. The "ordered arrangement" refers to the arrangement of the carbon nanotubes 22 in the carbon nanotube structure 26 < Specifically, the carbon nanotubes 2 in the ordered carbon nanotube structure 26 are arranged in a preferred orientation in one direction or in a plurality of directions. The conductive polymer layer 24 is coated on the carbon nanotubes 22 The surface, i.e., the surface of the carbon nanotube structure 26, provides support to the conductive polymer layer 24. The thermoelectric conversion material 20 further includes a plurality of micropores 28, and the micropores 28 are formed by a plurality of nanotubes 22, and the inner surface of each of the micropores 28 is provided with the above conductive polymer layer. twenty four. The micropores 28 range in size from 50 nanometers to 500 nanometers. Due to the presence of the plurality of micropores 28, the thermoelectric conversion material 20 has a small density and is light in weight. [0023] Specifically, the conductive polymer layer The material of 24 includes one or more of polyaniline, polyoxan, polyseptene, polyacetylene, polyparaphenylene, and poly(p-ethylene). The thickness of the conductive polymer layer 24 is preferably between 3 nanometers and 120 nanometers. The conductive polymer layer 24 has a thickness ranging from 35 nm to 145 nm. The mass percentage of the conductive polymer layer 24 in the thermoelectric conversion material 20 is preferably from 20% to 80%. [0024] The ordered carbon nanotube structure 26 includes a nano carbon tube film obtained by directly stretching a carbon nanotube array, and a nano tube obtained by rolling a carbon nanotube array by a rolling method. Carbon tube rolled film. 098120773 Form No. A0101 Page 1 of 24 0982035400-0
201101552 L0025J ❹ 所述奈米碳管拉膜包括複數個基本平行且基本平行於奈 米碳管膜表面的奈米碳管。具體地,所述複數個奈米碳 管通過凡德瓦爾力首尾相連,且基本沿同一方向擇優取 向排列。所述有序排列的奈米碳管結構2 6可以進一步包 括至少兩個層疊設置的奈米碳管拉膜。相鄰的兩個奈米 碳管拉膜中的奈米碳管沿同一方向或沿不同方向排列, 具體地,相鄰的兩個奈米碳管拉膜中的奈米碳管具有一 交叉角度α,且0 α 90°,具體可依據實際需求製備 。可以理解,由於有序排列的奈米碳管結構26中的奈米 碳管拉膜可層疊設置,故,上述有序排列的奈米碳管結 構26厚度不限,可根據實際需要製成具有任意厚度的有 序排列的奈米碳管結構26。 [0026] Ο 所述奈米碳管碾壓膜包括均勻分佈的奈米碳管,奈米碳 管各向同性’沿同一方向或不同方向擇優取向排列。優 選地,所述奈米碳管碾壓膜中的奈米碳管平行於奈米碳 管碾壓膜的表面。所述奈米碳管碾壓膜中的奈米碳管相 互交疊。所述奈米碳管碾壓膜中奈米碳管之間通過凡德 瓦爾力相互吸引,緊密結合,使得該奈米碳管碾壓膜具 有很好的柔韌性,可以彎曲折疊成任意形狀而不破裂。 且由於奈米碳管碾壓膜中的奈米碳管之間通過凡德瓦爾 力相互吸引,緊密結合,使奈米碳管碾壓膜為一自支撐 的結構,可無需基底支撐,自支撐存在。所述奈米碳管 碾壓膜可通過碾壓一奈米碳管陣列獲得。所述奈米碳管 碾壓膜中的奈米碳管與形成奈米碳管陣列的基底的表面 形成一夾角α,其中,α大於等於0度且小於等於15度(0 098120773 表單編號Α0101 第11頁/共24頁 0982035400-0 201101552 α I5 ),該夾角α與施加在奈米碳管陣列上的壓力 有關,壓力越大,該夾角越小。所述奈米碳管碾壓膜的 長度和寬度不限。本實施例中,所述有序排列的奈米碳 S結構26為多層奈米碳管拉伸臈平行重疊設置構成。 [0027] [0028] [0029] 098120773 如圖4所示,本實施例的熱電轉換材料2〇中,所述奈米碳 s、、'°構26包括多個首尾相連基本沿同一方向擇優取向排 列的奈米碳管22。圖4僅示出該熱電轉換材料2〇的部分結 構’其中虛線代表一根奈米碳管2 2。 •月參見圖5,本發明第三賁施例提供一種熱電轉換材料3〇 所述熱電轉換材料3 0包括一奈米碳管結構3 6以及導電 聚合物層34。本實施例中,熱電轉換材料2〇與第一實施 例的熱電轉換材料10及第二實施例的熱電轉換材料2〇的 結構類似,區別在於所述奈米碳管結構3§為一奈米碳管 陣列。其包括複數個奈米碳管32,所述複數個奈米碳管 32基本相互平行,且所述複數個奈米碳管32的長度基本 相同。所述導電聚合杨層34包覆在奈米碳管結構36中的 奈米碳管32的表面。所述奈米碳管結構36中進一步包括 複數個微孔38。這些微孔38由複數個奈米碳管32所圍成 ,且每一個微孔38的内表面均設置有上述導電聚合物層 34。所述微孔的尺寸範圍為1〇〇奈米〜5〇〇奈米。由於複 數個微孔38的存在,使得所述熱電轉換材料3〇具有較小 的密度,從而重量較輕。 所述導電聚合物層34包括聚苯胺、聚吡咯、聚噻吩、聚 乙炔、聚對笨及聚對笨撐乙烯中的一種或幾種。本實施 例中,所述導電聚合物層34的厚度優選為在3〇奈米到12〇 表單编號A0101 第12頁/共24頁 _ 201101552 〇 [0031] [0032] 奈米之間。所述導電聚合物層34在所述熱電轉換材料3〇 的質量百分含量優選為20%〜80%。 [0030] 所述奈米碳管32包括單壁奈米碳管、雙壁奈米碳管及多 壁奈米碳管中的一種或幾種。單壁奈米碳管的直徑優選 為0. 5奈米〜50奈米,雙壁奈米碳管的直徑優選為1.〇奈 米〜50奈米’多壁奈米碳管的直徑優選為1.5奈米〜50奈 米。所述奈米碳管32的長度優選為在100奈米到1〇毫米之 間。 圖6為本實施例中熱電轉換材料3〇與聚苯胺薄片以及奈米 碳管陣列在不同壓力下的塞貝克係數分佈圖。從圖6中可 以看出’本實施例中的熱電轉換材料30的賽貝克係數要 遠大於純聚苯胺薄片以及奈米碳管陣列的塞貝克係數。 由此可見,在奈米碳管32上包覆導電聚合物材料,形成 導電聚合物材料層34,可以提高熱電轉換材料3〇的塞貝 克係數。 本發明實施例的熱電轉換材料採用,奈米硪管結構作為骨 架,導電聚合物層形成在奈米碳管結構中的奈米碳管表 面。一方面,可使彳于導電聚合物材料以一維的形式均勻 地分佈於整個熱電轉換材料中,而一維结構在費米能級 具有較南的態密度,故所述熱電轉換材料具有更好的熱 電轉換效率。另一方面,本發明實施例的熱電轉換材料 在應用時,當載子從一個包覆導電聚合物層的奈米碳管 運輸到另外一個包覆導電聚合物層的奈米碳管時,載子 將穿過奈米破官/聚本胺介面和_個薄聚菜胺層。很多聚 集在奈米碳管/聚笨胺介面的载子將沿所述熱電轉換材料 098120773 表單編號A0101 第13頁/共24頁 0982035400-0 201101552 的厚度方向輸運’能量高於所形成的量子尺度的勢壘在 載子得以通過該勢壘,能量較低的載子不能通過該勢壘 。能量高的載子的增加,使載子流中載子的平均能量得 到了增加,故提高了熱電轉換材料的賽貝克係數。故, 本發明實施例的熱電轉換材料的熱電轉換效率比較高。 另外,由於奈米碳管結構本身具有較好的柔性與自支撐 性,故,以奈米碳管結構作為骨架的熱電轉換材料具有 較好柔性。 [0033] 綜上所述’本發明確已符合發明專利之要件,遂依法提 出專利申請。惟’以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。来凡熟乘本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0034] 圖1係本發明第一實施例的包含無序奈米碳管的熱電轉換 材料的結構示意圖。 [0035] 圖2係本發明熱電轉換粉料的熱電效應塞貝克係數測量裝 置示意圖。 [0036] 圖3係本發明第一實施例的熱電轉換材料與純奈米碳管及 導電聚合物在不同壓力下的塞貝克係數分佈圖。 [0037] 圖4係本發明第二實施例的包含有序奈米碳管的熱電轉換 材料的結構示意圖。 [0038] 圖5係本發明第三實施例的包含奈米碳管陣列的熱電轉換 材料的結構不意圖。 098120773 表單編號A0101 第14 1/共24頁 0982035400-0 201101552 [0039] 圖6係本發明第三實施例的熱電轉換材料與純奈米碳管及 導電聚合物在不同壓力下的塞貝克係數分佈圖。 【主要元件符號說明】 熱電轉換材料 10, 20, 30 奈米碳管結構 16, 26, 36 奈米碳管 12, 22, 32 導電聚合物層 14, 24, 34 微孔 18, 28, 38 熱電效應塞貝克係數測量裝置 100 低溫端銅塊 102 南溫端銅塊 103 :戀’ 屬鐵1^ '1琴”:學 循環水裝置 104 恒流恒壓源 105 測溫電偶 107201101552 L0025J ❹ The carbon nanotube film comprises a plurality of carbon nanotubes which are substantially parallel and substantially parallel to the surface of the carbon nanotube film. Specifically, the plurality of carbon nanotubes are connected end to end by Van der Waals force and are arranged in a preferred orientation in substantially the same direction. The ordered arrangement of carbon nanotube structures 26 may further comprise at least two stacked carbon nanotube membranes. The carbon nanotubes in the adjacent two carbon nanotube films are arranged in the same direction or in different directions. Specifically, the carbon nanotubes in the adjacent two carbon nanotube films have an intersection angle. α, and 0 α 90 °, can be prepared according to actual needs. It can be understood that, since the carbon nanotube film in the ordered arrangement of the carbon nanotube structure 26 can be stacked, the thickness of the above-mentioned ordered carbon nanotube structure 26 is not limited, and can be made according to actual needs. An ordered arrangement of carbon nanotube structures 26 of any thickness. [0026] The carbon nanotube rolled film comprises uniformly distributed carbon nanotubes, and the carbon nanotubes are isotropically arranged in the same direction or in different directions. Preferably, the carbon nanotubes in the carbon nanotube rolled film are parallel to the surface of the carbon nanotube film. The carbon nanotubes in the carbon nanotube rolled film overlap each other. The carbon nanotubes in the carbon nanotube film are attracted to each other by van der Waals force, and the carbon nanotubes have good flexibility and can be bent and folded into any shape. Does not break. And because the carbon nanotubes in the carbon nanotube film are attracted to each other through the van der Waals force, the carbon nanotube film is a self-supporting structure, which can be self-supported without substrate support. presence. The carbon nanotube rolled film can be obtained by rolling an array of carbon nanotubes. The carbon nanotubes in the carbon nanotube rolled film form an angle α with the surface of the substrate forming the carbon nanotube array, wherein α is greater than or equal to 0 degrees and less than or equal to 15 degrees (0 098120773 Form No. Α 0101 11 pages/24 pages 0982035400-0 201101552 α I5 ), the angle α is related to the pressure applied to the carbon nanotube array, and the larger the pressure, the smaller the angle. The length and width of the carbon nanotube rolled film are not limited. In this embodiment, the ordered nanocarbon S structure 26 is formed by parallel stacking of a plurality of layers of carbon nanotubes. [0029] [0029] 098120773 As shown in FIG. 4, in the thermoelectric conversion material 2 of the present embodiment, the nano carbon s, "° structure 26 includes a plurality of first and last ends connected in a substantially optimal orientation in the same direction. Arranged carbon nanotubes 22. Fig. 4 shows only a part of the structure of the thermoelectric conversion material 2', wherein the broken line represents a carbon nanotube 22. • Referring to Fig. 5, a third embodiment of the present invention provides a thermoelectric conversion material 3. The thermoelectric conversion material 30 includes a carbon nanotube structure 36 and a conductive polymer layer 34. In this embodiment, the thermoelectric conversion material 2 is similar in structure to the thermoelectric conversion material 10 of the first embodiment and the thermoelectric conversion material 2 of the second embodiment, except that the carbon nanotube structure 3 is a nanometer. Carbon tube array. It comprises a plurality of carbon nanotubes 32, said plurality of carbon nanotubes 32 being substantially parallel to each other, and said plurality of carbon nanotubes 32 having substantially the same length. The conductive polymeric positive layer 34 is coated on the surface of the carbon nanotube 32 in the carbon nanotube structure 36. The plurality of micropores 38 are further included in the carbon nanotube structure 36. These micropores 38 are surrounded by a plurality of carbon nanotubes 32, and the inner surface of each of the micropores 38 is provided with the above-mentioned conductive polymer layer 34. The size of the micropores ranges from 1 nanometer to 5 nanometers. Due to the presence of a plurality of micropores 38, the thermoelectric conversion material 3 has a small density and is light in weight. The conductive polymer layer 34 includes one or more of polyaniline, polypyrrole, polythiophene, polyacetylene, polypyrene, and poly(p-vinyl). In this embodiment, the thickness of the conductive polymer layer 34 is preferably between 3 nm and 12 Å. Form No. A0101 Page 12 / Total 24 pages _ 201101552 〇 [0031] Between the nanoparticles. The mass percentage of the conductive polymer layer 34 in the thermoelectric conversion material 3 is preferably from 20% to 80%. [0030] The carbon nanotubes 32 include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is preferably 0.5 nm to 50 nm, and the diameter of the double-walled carbon nanotube is preferably 1. The diameter of the multi-walled carbon nanotube is preferably 1. 1.5 nm ~ 50 nm. The length of the carbon nanotube 32 is preferably between 100 nm and 1 mm. Fig. 6 is a distribution diagram of the Seebeck coefficient of the thermoelectric conversion material 3〇 and the polyaniline sheet and the carbon nanotube array at different pressures in the present embodiment. As can be seen from Fig. 6, the Seebeck coefficient of the thermoelectric conversion material 30 in the present embodiment is much larger than that of the pure polyaniline sheet and the nanotube array. Thus, it can be seen that the conductive polymer material is coated on the carbon nanotube 32 to form the conductive polymer material layer 34, which can improve the Sebec coefficient of the thermoelectric conversion material 3〇. The thermoelectric conversion material of the embodiment of the invention adopts a nano tube structure as a skeleton, and a conductive polymer layer is formed on the surface of the carbon nanotube in the carbon nanotube structure. On the one hand, the conductive polymer material can be uniformly distributed in the entire thermoelectric conversion material in a one-dimensional form, and the one-dimensional structure has a souther density of states at the Fermi level, so the thermoelectric conversion material has more Good thermoelectric conversion efficiency. On the other hand, when the thermoelectric conversion material of the embodiment of the present invention is applied, when the carrier is transported from a carbon nanotube coated with a conductive polymer layer to another carbon nanotube coated with the conductive polymer layer, The child will pass through the nano-destructive/polyamine interface and a thin layer of polyamidamine. A large number of carriers clustered on the carbon nanotube/polyamine interface will transport along the thickness direction of the thermoelectric conversion material 098120773 Form No. A0101 Page 13 / Total 24 page 0982035400-0 201101552 'Energy is higher than the formed quantum The barrier of the scale passes through the barrier when the carrier is passed, and the carrier with lower energy cannot pass through the barrier. The increase in the energy of the carrier increases the average energy of the carrier in the carrier stream, thereby increasing the Seebeck coefficient of the thermoelectric conversion material. Therefore, the thermoelectric conversion efficiency of the thermoelectric conversion material of the embodiment of the invention is relatively high. In addition, since the carbon nanotube structure itself has good flexibility and self-supporting property, the thermoelectric conversion material having a carbon nanotube structure as a skeleton has better flexibility. [0033] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art will be encompassed within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0034] Fig. 1 is a schematic view showing the structure of a thermoelectric conversion material containing a disordered carbon nanotube according to a first embodiment of the present invention. 2 is a schematic view showing a thermoelectric effect Seebeck coefficient measuring device of the thermoelectric conversion powder of the present invention. 3 is a Seebeck coefficient distribution diagram of a thermoelectric conversion material, a pure carbon nanotube, and a conductive polymer according to a first embodiment of the present invention at different pressures. [0036] FIG. 4 is a schematic structural view of a thermoelectric conversion material containing ordered carbon nanotubes according to a second embodiment of the present invention. 5 is a schematic view showing the structure of a thermoelectric conversion material including a carbon nanotube array according to a third embodiment of the present invention. 098120773 Form No. A0101 No. 14 1/24 pages 0992035400-0 201101552 [0039] FIG. 6 is a distribution of Seebeck coefficient of a thermoelectric conversion material, a pure carbon nanotube and a conductive polymer under different pressures according to a third embodiment of the present invention. Figure. [Main component symbol description] Thermoelectric conversion material 10, 20, 30 Carbon nanotube structure 16, 26, 36 Carbon nanotube 12, 22, 32 Conductive polymer layer 14, 24, 34 Microporous 18, 28, 38 Thermoelectric Effect Seebeck coefficient measuring device 100 low temperature end copper block 102 south temperature end copper block 103: love 'genus iron 1 ^ '1 piano": learning circulating water device 104 constant current constant voltage source 105 temperature measuring couple 107
098120773 表單編號A0101 第15頁/共24頁 0982035400-0098120773 Form No. A0101 Page 15 of 24 0982035400-0
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098120773A TWI485895B (en) | 2009-06-22 | 2009-06-22 | Thermoelectric convertion material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098120773A TWI485895B (en) | 2009-06-22 | 2009-06-22 | Thermoelectric convertion material |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201101552A true TW201101552A (en) | 2011-01-01 |
TWI485895B TWI485895B (en) | 2015-05-21 |
Family
ID=44837044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098120773A TWI485895B (en) | 2009-06-22 | 2009-06-22 | Thermoelectric convertion material |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI485895B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI753126B (en) * | 2017-03-09 | 2022-01-21 | 里卡多 瑞西斯 | Energy conversion material and method for manufacturing the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005050669A (en) * | 2003-07-28 | 2005-02-24 | Tdk Corp | Electrode and electrochemical element using it |
US7494910B2 (en) * | 2006-03-06 | 2009-02-24 | Micron Technology, Inc. | Methods of forming semiconductor package |
US20090133731A1 (en) * | 2007-11-01 | 2009-05-28 | New Jersey Institute Of Technology | Criss-crossed and coaligned carbon nanotube-based films |
TWI356438B (en) * | 2007-12-14 | 2012-01-11 | Hon Hai Prec Ind Co Ltd | Field emission pixel tube |
-
2009
- 2009-06-22 TW TW098120773A patent/TWI485895B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI753126B (en) * | 2017-03-09 | 2022-01-21 | 里卡多 瑞西斯 | Energy conversion material and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
TWI485895B (en) | 2015-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jin et al. | Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold | |
US8829327B2 (en) | Thermoelectric material and thermoelectric device | |
Jin et al. | Cellulose fiber-based hierarchical porous bismuth telluride for high-performance flexible and tailorable thermoelectrics | |
Li et al. | Present and future thermoelectric materials toward wearable energy harvesting | |
Li et al. | Recent advances in flexible thermoelectric films and devices | |
Wu et al. | Polypyrrole nanotube film for flexible thermoelectric application | |
Song et al. | Preparation and properties of PEDOT: PSS/Te nanorod composite films for flexible thermoelectric power generator | |
Dun et al. | Flexible n-type thermoelectric films based on Cu-doped Bi2Se3 nanoplate and Polyvinylidene Fluoride composite with decoupled Seebeck coefficient and electrical conductivity | |
Wu et al. | High-performance organic thermoelectric modules based on flexible films of a novel n-type single-walled carbon nanotube | |
Wang et al. | Fabrication of core-shell structured poly (3, 4-ethylenedioxythiophene)/carbon nanotube hybrids with enhanced thermoelectric power factors | |
Dey et al. | Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting | |
Xiao et al. | Construction of a fish‐like robot based on high performance graphene/PVDF bimorph actuation materials | |
Mytafides et al. | High-power all-carbon fully printed and wearable SWCNT-based organic thermoelectric generator | |
Du et al. | Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite | |
Guo et al. | Flexible and thermostable thermoelectric devices based on large-area and porous all-graphene films | |
Wang et al. | Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement | |
JP6110818B2 (en) | Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric power generation using the same, and power source for sensor | |
Piao et al. | Preparation and characterization of expanded graphite polymer composite films for thermoelectric applications | |
Al Naim et al. | Review on recent development on thermoelectric functions of PEDOT: PSS based systems | |
Chen et al. | Construction of a cement–rebar nanoarchitecture for a solution‐processed and flexible film of a Bi2Te3/CNT hybrid toward low thermal conductivity and high thermoelectric performance | |
Miao et al. | Significantly enhanced thermoelectric properties of ultralong double-walled carbon nanotube bundle | |
Wang et al. | Low-voltage, large-strain soft electrothermal actuators based on laser-reduced graphene oxide/Ag particle composites | |
Liu et al. | Flexible thermoelectric power generators fabricated using graphene/PEDOT: PSS nanocomposite films | |
Huang et al. | Fabrication of free-standing flexible and highly efficient carbon nanotube film/PEDOT: PSS thermoelectric composites | |
Slobodian et al. | Thermoelectric properties of carbon nanotube and nanofiber based ethylene‐octene copolymer composites for thermoelectric devices |