TW201101399A - Semiconductor device and method of forming UBM fixed relative to interconnect structure for alignment of semiconductor die - Google Patents

Semiconductor device and method of forming UBM fixed relative to interconnect structure for alignment of semiconductor die Download PDF

Info

Publication number
TW201101399A
TW201101399A TW099114344A TW99114344A TW201101399A TW 201101399 A TW201101399 A TW 201101399A TW 099114344 A TW099114344 A TW 099114344A TW 99114344 A TW99114344 A TW 99114344A TW 201101399 A TW201101399 A TW 201101399A
Authority
TW
Taiwan
Prior art keywords
conductive
layer
semiconductor
interconnect structure
conductive layer
Prior art date
Application number
TW099114344A
Other languages
Chinese (zh)
Other versions
TWI518810B (en
Inventor
Il-Kwon Shim
Seng Guan Chow
Rui Huang
Yao-Jian Lin
Original Assignee
Stats Chippac Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/476,447 external-priority patent/US8072059B2/en
Application filed by Stats Chippac Ltd filed Critical Stats Chippac Ltd
Publication of TW201101399A publication Critical patent/TW201101399A/en
Application granted granted Critical
Publication of TWI518810B publication Critical patent/TWI518810B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A semiconductor device is made by forming a first conductive layer over a temporary carrier. A UBM layer is formed over the temporary carrier and fixed in position relative to the first conductive layer. A conductive pillar is formed over the first conductive layer. A semiconductor die is mounted to the UMB layer to align the die relative to the conductive pillar. An encapsulant is deposited over the die and around the conductive pillar. The UBM layer prevents shifting of the semiconductor die while depositing the encapsulant. The temporary carrier is removed. A first interconnect structure is formed over a first surface of the encapsulant. A second interconnect structure is formed over a second surface of the encapsulant. The first and second interconnect structures are electricaaly connected through the conductive pillar. The first or second interconnect structure includes an integrated passive device electrically connected to the conductive pillar.

Description

201101399 六、發明說明: 【發明所屬之技術領域】 本發明大體上關於半導體元件,且更特別地,關於一 種半導體元件以及基於該半導體晶粒調準而形成與互連結 構相對固定之固定凸塊下金屬化(UMB)層之方法。 【先前技術】 半導體元件常見於現代電子產品中。半導體元件在電 性構件之數量及密度上有所變化。分立式半導體元件大體 某類型電性構件’例如,發光二極體(led)、小訊號 =體=器、電容器、電感器及功率式金氧半導體場 政尾日日體(MOSFET)。整人垚主道胁_ 儿 11式+導體兀件典型地包含成千上 4個電性構件。整人 _ .σ式+導體疋件範例包含微控制器、微 處理機、電荷鉍人士 射鏡元件(咖):CD)、太陽能蓄電池及數位微型反 接收電磁浊C 執仃廣泛功能’例如’高速計算、傳輸並 生11% L D h、控制電子元件、轉換光線成為電力及產 生電視顯不器之視謦 y 電力轉換、_ 體元件為見於娱樂、通訊、 見於軍事應用電腦及消費產品領域中。半導體元件也 見於皁事應用、航空、 半導體元件利用丰控制及辦公設備中。 ® ^ M ^ _ +導體材料之電特性。半導體材料之 原于釔構讓它的導 操控。捧雜技術將雜質Γ到施加電場或透過換雜製程來 體元件之導電性。貝y入該半導體材料内以操控該半導 201101399 一半導體元件包含主動及被動電性結構。包含二極體 及場效電晶體之主動結構控制電流流動。藉由改變摻雜位 準及施加電場或基極電流,該電晶體不是増加就是限制該 電流流動。包含電阻器、電容器及電感器之被動結構在執 行各種電性功能所需電壓與電流間產生某種關係。該些被 動及主動結構被電性連接以執行高速計算和其它有用功 能。 半導體元件大體上為使用二複合製程,也就是前端製 〇程和後端製程來製造之,每一個製程可能涉及數百個步 驟。,端製程涉及在一半導體晶圓表面上形成複數個晶 粒。每一個晶粒典型地一模一樣且内含電性連接之主動及 被動構件所形成之電路。後端製程涉及單粒化來自該已完 成晶圓之個別晶粒並構裝該晶粒以提供結構支撑及環境= 離。 半導體 的元件典型 效率地被製 空間,其可 經由改善該 動構件之晶 材料而產生 在形成 構裝内形成 有助於將該 ❹ 製程之一目標為製造較小的半導體元件。較小 也肩耗較少電力、具有較高執行效率且可更有 造。此外,較小的半導體元件具有—較小佔用 ^待提供較小的終端產品…較小晶粒尺寸可 前端製程以產生内含較小、較高密度主動和被 津而得後鈿製程可經由改善電性連接和構裝 具有-較小#用空間之半導體元件構裝。 晶圓級晶片尺寸構裝(WLcsp)時,常需要在該些 頁。p及底部互連結構。該頂部及底部互連結構 些晶圓級晶片尺寸構裝安u主機板及其它印 5 201101399 刷電路板(PCB)或基板上。經由 ,, 丄由在β亥構裝之頂部及底部表面 些互連結構,多個晶圓級晶片尺寸構裝可被放置 形成堆疊式構裝而於—小構裝體積内提供複雜 或導電貫穿導通孔(ΤΗν)ι 了形成直料晶穿孔或 導電通孔’ 一通孔被切刻 ° 乂貝穿該半導體材料或該半導體 晶粒周邊區域。該些通孔接著例如透過一電鑛製程之銅沉 積作用而被-導電材料填滿。然而,該半導體晶粒在晶粒 黏接期間難以調準且右气r #脚制< u 门平儿在》亥封膠製程期間會移位,其導致元 件失敗及較低的製造良率。 【發明内容】 現存有在垂直互連結構間進行半導體晶粒安裝和調準 而不使該晶粒移位之需求。有鑑於此,在一實施例中,本 發明為一種半導體元件之製造方法,包括之步驟為提供一 暫時載體、在該暫時載體上形成H電層、及在該暫 時載體上形成-凸塊下金屬化層。該凸塊下金屬化層為固 疋於該第一導電層的相對位置。該方法進一步包含之步驟 為在該第一導電層上形成一導電柱、將一半導體晶粒安裝 至該凸塊下金屬化層以將該半導體晶粒調準對應至該導電 柱並在該半導體晶粒上和該導電柱四周沉積一封膠劑。該 凸塊下金屬化層在沉積該封膠劑期間阻止該半導體晶粒移 位。該方法進一步包含之步驟為移除該暫時載體' 在該封 膠劑第一表面上形成一第一互連結構及在與該第一互連結 201101399 構相對之封膝劑第二表面上形成一第二互連結構。該第一 及第二互連結構為透過該導電柱進行電性連接。 Ο Ο 在另一實施例中,本發明為一種半導體元件之製造方 法,包括之步驟為提供一暫時载體、在該暫時載體上形成 -第-導電層及在該暫時載體上形成一凸塊下金屬化層。 該凸塊下金屬化層固定於該第一導電層的相對位置。該方 法進一步包含之步驟為在該第一導電層上形成一導電柱、 將-半導體晶粒安裝至該凸塊下金屬化層以將該半導體晶 粒調準對應至料餘、㈣半導體晶粒上和料電柱四 周沉積-封膠劑、移除該暫時載體、在該封膠劑第一表面 上形成一第一互連結構及在與該第一互連結構相對之封膠 劑第二表面上形成-第二互連結構。該第―及第二互連結 構為透過該導電柱進行電性連接。 構為透過該導電柱進行電性連接 、在實施射,本發明為一料導體元件之製造方 法,包括之步料形纟包含可濕潤接觸墊片#固定於該些 接觸墊片的相對位置之凸塊下金屬化層之一第一互連結 構、在該[互連結構之可濕潤接觸塾片上形成一導^ 柱、將一第一半導體構件安裝至該凸塊下金屬化層以將該 半導體構件調準對應至該導電柱、在該半導體構件上和該 導電柱四周沉積-封膠劑及在與該第一i連結構相對之封 膠劑第二表面上形成一第二互連結構。肖第一及第二互連 在另-實施例中,本發明為一種半導體元件,包括一 第-導電層和^於該第-導電層的相對位置之凸塊下金 7 201101399 屬化層。一導電柱形成於該第— ^ ^ 5 ^ Λ 等電層上。一半導體構件 女裝至该導電柱。一半導體構 以骆坊主道碰 女裝至该凸塊下金屬化層 以將該+導體晶粒調準對應至 兮主道脚曰, 等電杈。一封膠劑沉積於 "玄半導體日日粒上和該導電柱四周。_ 弟一互連結構形忐於 該封膠劑第-表面上。一第二石n再小成於 連、、、吉構形成於與該第一互 連結構相對之封膠劑第二表面上。 邊弟一及第二互連结構 為透過該導電柱進行電性連接。 連、、稱 【實施方式】 本發明參考圖形描述於下列說明之—或更多實施例 中,其中類似編號代表相同或類似構件。雖然本發明以最 佳模式來描述以達成本發明目的,然而那些熟知此項技術 之人士應理解到本發明要涵蓋下列揭示及圖式所支持附上 之申請專利範圍及它們等效例所定義之本發明精神及範圍 所包含之替代例、修改例、和等效例。 半導體元件大體上為使用二複合製程··前端製程和後 端製程來製造之。前端製程涉及在一半導體晶圓表面上形 成複數個晶粒。在該晶圓上之每一個晶粒内含主動及被動 電性構件,其為電性連接以形成功能性電性電路。例如電 晶體之主動電性構件具有控制電流流動之能力。例如電容 益、電感器、電阻器和變壓器之被動電性構件產生用以執 行電性電路功能所需之電壓和電流間的關係。 被動及主動構件為經由包含摻雜、沉積、微影成像、 蝕刻及平坦化之一系列製程而形成於該半導體晶圓表面 201101399 - 上。掺雜技術經由例如離子植入或勃被 引入該半導體材料中。該穆雜製程=散類之技術將雜質 體材料之導電性,以轉換該半導 ^動元件内部半導 體,或動態地改變該半導體材料導電性^一絕緣體、導 極電流。電晶體内含依需求 回應一電場或基 區域以使該電晶體可依據該電場或2 =類型與程度之 電流流動。 —土 π電’瓜來增進或限制 主動及被動構件為由具有不同 ❹成。該些材料層可由欲 ’之才料層所形 * 檟之材科類型所部分決定之各類 况積技術來形成之。例如, 各類 、、冗藉mvm从田々 “儿積技術可包含化學氣相 ;Γ二 沉積叫電鑛及無電錢各製程。 株門曰上經由圖案化而形成主動構件、被動構件㈣ 件間之電性連接部分。 再什A構 °亥4'材料層可使用微影成像技術來圖案化之,其包含 將例如光阻劑之咸弁袖# #β ' 泛 材料》儿積於欲圖案化之材料層上。 ❹2用光將一圖案自一光罩轉印至該光阻劑。該光阻劑圖案 遇到λ的部分為使用_溶劑來移除之,以露出下層中欲 圖案化的部分。該光阻劑其餘部分被移除,留下_圖案化 層。替代性地’ 一些材料類型為經由直接沉積材料於使用 例如無電鑛及電It類技術之先前沉積/敍刻製程 域或孔隙中而進行圖案化。 成之〔 、將一薄膜材料沉積於一現成圖案上可擴大該下層圖案 、、’產生不均勻平坦表面。一均勻平坦表面被需要以產生 較小且更密集封裝之主動及被動構件。平坦化技術可被使 9 201101399 用以移除該晶圓表面之材料並產生一均勻平坦表面。平妇 化技術涉及以一拋光墊片來拋光該晶圓表面。—研磨材料 及腐韻性化學藥品於拋光期間被添加至該晶圓表面。纟士人 研磨之機械性動作及化學藥品之腐蝕性動作可移除任何不 規則拓樸,產生一均勻平坦表面。 後端製程指切割或單粒化該已完成晶圓成為該個別晶 粒並接著構裝該晶粒以提供結構支撐及環境隔離。為了單 粒化該晶粒,將該晶圓沿著所謂割鋸道或劃線之晶圓無功 能區域做記號並切開。使用一雷射切割工具或鋸片切割該 晶圓成晶粒。單粒化後,個別晶粒被安裝至包含接腳或接 觸墊片以與其它系'统構件互相連接之構裝基板上。該半導 體晶粒上所形成之接觸墊片接著被連接至該構裝内:接觸 墊片。該電性連接可搭配錫球凸塊、短柱凸塊、導 接線來進行之…封膠劑或其它封膠材料被沉積在該構裝 上供實體支樓及電性隔離。該已完成構裝接著被插入 有一用電Γ且該半導體㈣功能對於其它系統構件是 片載體基板或印刷電路板52之電子元件5〇。電二裝之; 可具有某半導體構裝類型或多種半導體構裝類型,: 而定電:於說明㈣,不同半導體構裝類型示於圖二 電子兀件50可為使用該些半 Τ 電性功能之獨m替代性地,電子元件5G仃 型系統之子構件。例如,電 可為-較^ 可為能夠插入一電月: 10 201101399 内之繪圖卡、拖!牧w工μ J路界面卡或其它訊號處理卡。該半導體構 名可匕3微處理器、記憶體、特殊用途積體電路(ASIC)、邏 輯電路类員比電路、射頻電路、離散元件或其它半導體晶 粒或電性構件。 在圖1中’為了安裝在該印刷電路板上之半導體構裝 U支撐及電性互連’印刷電路板52提供—總基板。傳 導訊號軌跡線54使用蒸鍍製程、電鍍製程、無電鍍製程、 〇網印製程或其它合適金屬沉積製程來形成於印刷電路板52 之某一表面上或多層内。訊號軌跡線54提供該些半導體構 裝、安裝構件及其它外部系統構件中每—個間之電性通 訊軌跡線54也提供至該些半導體構裝中每一個之電力及 接地連接。 在一些實施例中,一半導體元件具有二構裝級。第一 級構裝為用以機械性和電性地黏結該半導體晶粒至一中介 載體之技術。第二級構裝涉及機械性和電性地黏結該中介 ◎載體至該印刷電路板。在其它實施例中,一半導體元件可 以只具有該第一級構裝,其中,該晶粒經由機械性和電性 方式直接安裝至該印刷電路板。 基於說明目的,包含打線接合構裝56及覆晶構裝58 之一些第一級構裝類型被示於印刷電路板52上。此外,包 含錫球陣列(BGA)構裝60、凸塊晶片載體(BCC)62、雙列式 構裝(DIP)、平面陣列(LGA)構裝66、多晶片模組(Mcm)構 裝68、四邊扁平無引腳構裝(QFN)7〇及四邊扁平構裝”之 些第二級構裝類型顯示安裝於印刷電路板52上。依據該 11 201101399 些系統需求,搭配第一及第二級構裝型式之任意結合以及 其它電子構件所建構之半導體構裝之任意結合可被連接至 印刷電路板52。在一些實施例中,電子元件5〇包含一單黏 結半導體構裝,而其它實施例需要多個連接構裝。經由結 合單一基板上之一或更多半導體構裝,製造商可整合預製 構件至電子元件及系統中。因為該些半導體構裝包含複雜 功能,故可使用較便宜構件及一現代化製程來製造電子元 件。所產元件較不可能失敗,且對於消費者而言製造成本 較低而使所產元件較便宜。 _ za_zc顯不不 一 一口化π文衣任tp 刷電路板52上之雙列式構裝64之進—部細部。半導體晶 粒74包含一内含類比或數位電路之作用區域,該些電路: 配置為形成於該晶粒内並根據該晶粒之電性設計進行電性 連之主動元件、被動元件、導電層和介電層。例如 電路可包含一或更多電晶體'二極體、電感器、電容器Γ 電阻器和形成於該半導體晶粒74之作用區域内之 觸墊片76為例如銘(A1)、銅(CU)、錫㈣、錦⑽)、 u〆銀(Ag)中之—或更多導電材料層,且被電性連 形成於半導體晶粒74 要至 期H Μ内之電路構件。在組合雙列式構裳64 8 +導體晶粒74為使用一金矽合金層戋例如I $ 脂類之黏搵好#卡6 / σ金層或例如熱環氧樹 純材科來文裝至一中介载體78 例如聚合物或陶瓷類之绍蝰拔肚u 王體包含 7 . 文類之絕緣構裝材料。導線80及拯始 k供半導體晶粒74 82 ..^ P刷電路板52間之電性互連。封^ 劑84被沉積在該構 封膠 Λ、、氣和微粒進入該構裳並、,亏 12 201101399 染晶粒74或接線82而提供環境保護。 圖2b說明安裝於印刷電路板52上之凸掄曰u 1 夕、仓北 , ϋ塊曰日片载體62 Ο 之進一步細部。半導體晶粒88為使用—底部填膠或 脂黏接材料92來安裝於載體90上。接線94提供接觸3 %及98間之第一級封裝互連。封膠化合物或封膠劑_被 沉積於半導體晶粒88及接線94上以提供該元件實體支撐 和電性隔離。接觸塾片102使用例如電鑛或無電鍍之合適 金屬沉積製程來形成於印刷電路板Μ之表面上以阻止氧化 作用。接觸墊片102被電性連接至印刷電路板“之傳導訊 號軌跡線54。焊料凸塊沉積於凸塊晶片载體以之接觸塾^ 9 8及印刷電路板5 2之接觸塾片】〇 2之間並被回焊以形成凸 塊104,其於凸塊晶片载體62及印刷電路板52之間形成一 機械和電性連接。 在圖2c中,半導體晶粒58為面向下安裝至具有一覆晶 式第一級構裝之中介載體1〇6。半導體晶粒58之作用區域 108包含根據該晶粒電性設計所形成做為主動元件、被動元 件、導電層和介電層而配置之類比或數位電路。例如,該 路可包3 —或更多電晶體、二極體、電感器、電容器、 電阻益及作用區域108内之其它電路構件。半導體晶粒58 為透過焊料凸塊或圓球11 〇電性及機械性地連接至載體 106。 錫球陣列構裝60使用焊料凸塊或圓球112以電性及機 找!生地連接至具有一錫球陣列式第二級構裝之印刷電路板 。半導體晶粒58透過焊料凸塊n〇、訊號線U4和焊料 13 201101399 凸塊U2來電性連接至印刷編反52之傳導訊號軌跡線 一封膠化合物或封滕劑116被沉積於半導體晶粒58及 ㈣^提供該元件實體支#和電性隔離。該覆晶半 導體疋件提供自半導體晶粒58上之主動元件至印刷電路板 52上之傳導軌跡線之一短導電路徑’用以減少訊號傳送距 離、降低電容、並改進整體電路執行效率。在另一實施例 ;中’,可不用中介載體1G6而使用覆晶式第—級構裝方式將 料導體晶粒58機械性及電性地直接連接至印刷電路板 52 ° 3h說明種形成具有導電柱和基於該半導體晶 粒調準而與互連結構相對固定之凸塊下金屬化(umb)層之 垂直互連結構之方法。在圖,—暫時或犧牲基板或載 體120包含例如石夕、聚合物、聚合物複合材料、金屬薄片、 陶堯、:璃、玻璃環氧化物、氧化鈹、卷帶或用於結構支 撐之其匕合適低成本硬式材料之底材。—選擇性晶種層122 可形成於載體120上以供後續電鍍製程。一導電層124使 用,里氣相,儿積、化學氣相沉積、濺鍍、電鍍、無電鍍製 程或其它合適金屬沉積製程進行圖案化來形成於載體120 導電層124可為鋁、銅 '錫、鎳、金、銀、鎢、多晶 矽或其它合適導電材料令其中一層或更多層。導電層124 包含用於稍後形成導電柱之可濕潤接觸墊片。在一實施例 ::導…24之可濕濁接觸墊片為預先電鍵於載體12〇 導電層1 26使用物理氣相沉積、化學氣相沉積、濺 14 201101399BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to semiconductor devices, and more particularly to a semiconductor device and a fixed bump that is relatively fixed to an interconnect structure based on alignment of the semiconductor die. A method of lowering a metallization (UMB) layer. [Prior Art] Semiconductor components are commonly found in modern electronic products. Semiconductor components vary in the number and density of electrical components. Discrete semiconductor components are generally a type of electrical component 'e.g., a light emitting diode (led), a small signal = body = device, a capacitor, an inductor, and a power MOS semiconductor field MOSFET (MOSFET). The whole person's main road threat _ children's 11 type + conductor element typically contains thousands of four electrical components. The whole person _. σ-type + conductor element examples include microcontrollers, microprocessors, charge 铋 射 射 咖 咖 咖 咖 咖 咖 : : : : : 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能High-speed computing, transmission and 11% LD h, control of electronic components, conversion of light into electricity and the production of television display y power conversion, _ body components for entertainment, communications, seen in military applications and consumer products . Semiconductor components are also found in soap applications, aerospace, semiconductor component utilization control, and office equipment. ® ^ M ^ _ + Electrical properties of the conductor material. The semiconductor material is controlled by its structure. The technique of rubbing impurities to the electric field or the conductivity of the body element through the replacement process. The semiconductor element is manipulated to control the semiconductor. 201101399 A semiconductor component includes active and passive electrical structures. Active structures containing diodes and field effect transistors control current flow. By changing the doping level and applying an electric or base current, the transistor does not increase or limit the current flow. Passive structures containing resistors, capacitors, and inductors have a relationship between the voltage and current required to perform various electrical functions. The passive and active structures are electrically connected to perform high speed calculations and other useful functions. Semiconductor components are typically fabricated using a two-composite process, known as a front-end process and a back-end process, each of which can involve hundreds of steps. The end process involves forming a plurality of crystal grains on the surface of a semiconductor wafer. Each die typically has exactly the same circuitry and contains circuitry formed by electrically connected active and passive components. The back end process involves singulating individual dies from the finished wafer and constructing the dies to provide structural support and environmental = separation. The components of the semiconductor are typically efficiently fabricated, which can be formed by modifying the crystalline material of the moving member to form within the formed structure to help target one of the processes to make smaller semiconductor components. It also consumes less power, has higher execution efficiency, and is more versatile. In addition, smaller semiconductor components have a smaller footprint to provide smaller end products... smaller die sizes can be used in front-end processes to produce smaller, higher density active and ready-to-use processes. The electrical connection and the mounting of the semiconductor component having a smaller space are improved. These pages are often required for wafer level wafer size (WLcsp). p and the bottom interconnect structure. The top and bottom interconnect structures are wafer-level wafer size mounted on the U-Board and other printed circuit boards (PCBs) or substrates. Through the interconnection structures on the top and bottom surfaces of the β-frame, a plurality of wafer-level wafer size packages can be placed to form a stacked package to provide complex or conductive penetration in a small package volume. The via hole (ΤΗν) ι forms a via hole or a conductive via hole. A via hole is etched. The mussel penetrates the semiconductor material or a peripheral region of the semiconductor die. The vias are then filled with a conductive material, for example by copper deposition in an electromine process. However, the semiconductor die is difficult to align during die bonding and the right gas r #foot system < u gate flat will shift during the process of the sealant, which leads to component failure and lower manufacturing yield. . SUMMARY OF THE INVENTION There is a need for semiconductor die mounting and alignment between vertical interconnect structures without displacing the die. In view of the above, in one embodiment, the present invention is a method of fabricating a semiconductor device, comprising the steps of providing a temporary carrier, forming an H-electrode layer on the temporary carrier, and forming a bump under the temporary carrier Metallized layer. The under bump metallization layer is fixed at a relative position of the first conductive layer. The method further includes the steps of forming a conductive pillar on the first conductive layer, mounting a semiconductor die to the under bump metallization layer to align the semiconductor die to the conductive pillar and at the semiconductor A glue is deposited on the die and around the conductive pillar. The under bump metallization layer prevents the semiconductor grain from shifting during deposition of the sealant. The method further includes the steps of: removing the temporary carrier to form a first interconnect structure on the first surface of the encapsulant and forming a second surface on the sealing agent opposite the first interconnecting junction 201101399 The second interconnect structure. The first and second interconnect structures are electrically connected through the conductive pillars.另一 Ο In another embodiment, the present invention is a method of fabricating a semiconductor device, comprising the steps of providing a temporary carrier, forming a first conductive layer on the temporary carrier, and forming a bump on the temporary carrier Lower metallization layer. The under bump metallization layer is fixed at a relative position of the first conductive layer. The method further includes the steps of forming a conductive pillar on the first conductive layer, mounting a semiconductor die to the under bump metallization layer to align the semiconductor die to the remainder, and (4) semiconductor die Depositing a sealant around the upper and lower electrodes, removing the temporary carrier, forming a first interconnect structure on the first surface of the sealant and a second surface of the sealant opposite the first interconnect structure Forming a second interconnect structure. The first and second interconnect structures are electrically connected through the conductive pillars. The invention is characterized in that the conductive pillar is electrically connected and is irradiated, and the invention is a method for manufacturing a conductor component, which comprises a step shape comprising a wettable contact pad # fixed to the relative positions of the contact pads. a first interconnect structure of the under bump metallization layer, a pillar formed on the wettable contact tab of the interconnect structure, and a first semiconductor component mounted to the under bump metallization layer to Aligning the semiconductor component to the conductive pillar, depositing a sealant on the semiconductor member and around the conductive pillar, and forming a second interconnect structure on the second surface of the sealant opposite to the first interconnect structure . The first and second interconnects. In another embodiment, the present invention is a semiconductor device comprising a first conductive layer and a bump underlying layer 7 201101399. A conductive pillar is formed on the first -^^5^ Λ isoelectric layer. A semiconductor component to the conductive column. A semiconductor structure touches the women's clothing to the under-metallization layer of the bump to match the +-conductor grain to the main track and the electric field. A glue is deposited on the "Xuan semiconductor daily granule and around the conductive column. _ An interconnect structure is formed on the first surface of the sealant. A second stone n is further formed on the second surface of the sealant opposite to the first interconnect structure. The first and second interconnect structures are electrically connected through the conductive pillars. DETAILED DESCRIPTION OF THE INVENTION [Embodiment] The present invention is described in the following description, or in more embodiments, wherein like numerals represent the same or similar components. While the present invention has been described in its preferred embodiments, the embodiments of the invention are intended to Alternatives, modifications, and equivalents are included in the spirit and scope of the invention. Semiconductor components are generally fabricated using a two-composite process, a front end process, and a back end process. The front end process involves forming a plurality of grains on a surface of a semiconductor wafer. Each of the dies on the wafer contains active and passive electrical components that are electrically connected to form a functional electrical circuit. For example, an active electrical component of a transistor has the ability to control the flow of current. Passive electrical components such as capacitors, inductors, resistors, and transformers create the relationship between voltage and current required to perform electrical circuit functions. The passive and active components are formed on the surface of the semiconductor wafer through a series of processes including doping, deposition, lithography, etching, and planarization. Doping techniques are introduced into the semiconductor material via, for example, ion implantation or bombardment. The technique of the impurity process = the technique of the bulk material to convert the conductivity of the impurity material to convert the internal semiconductor of the semiconductor device or to dynamically change the conductivity of the semiconductor material and the current of the conductor. The transistor contains an electric field or base region as needed to cause the transistor to flow according to the electric field or 2 = type and extent. - Earth π electric 'melon to enhance or limit the active and passive components for different composition. The layers of material may be formed by various types of conditional techniques determined by the type of material to be formed by the layer of material. For example, all kinds of, redundant borrowing mvm from Tian Wei "children's technology can include chemical gas phase; the second deposition is called electric ore and no electricity. Each process is formed by patterning to form active components, passive components (4) The electrical connection portion. The A4 structure layer can be patterned using lithography imaging technology, which includes, for example, a salt-resisting sleeve ##β 'ubiquitous material of a photoresist. ❹2 is used to transfer a pattern from a mask to the photoresist by light. The portion of the photoresist pattern that encounters λ is removed using _solvent to expose the underlying layer to be patterned. The remainder of the photoresist is removed leaving a patterned layer. Alternatively, some material types are previously deposited/synchronized process domains using direct deposition materials such as electroless ore-type technology. Or patterning in the pores. Forming a thin film material on a ready-made pattern expands the underlying pattern, 'generating a non-uniform flat surface. A uniform flat surface is needed to produce a smaller and denser package Active and passive The planarization technique can be used to remove material from the surface of the wafer and produce a uniform flat surface. The flattening technique involves polishing the surface of the wafer with a polishing pad. - Abrasive material and rot Sex chemicals are added to the surface of the wafer during polishing. The mechanical action of the gentleman's grinding and the corrosive action of the chemical remove any irregular topography and produce a uniform flat surface. The back end process refers to cutting or Singulating the completed wafer into the individual dies and then structuring the dies to provide structural support and environmental isolation. To singulate the dies, the wafer is scribed along a so-called cut saw or scribe line The non-functional area of the wafer is marked and cut. The wafer is cut into grains using a laser cutting tool or a saw blade. After singulation, individual dies are mounted to include pins or contact pads to be integrated with other systems. The component is connected to the substrate, and the contact pad formed on the semiconductor die is then connected to the component: the contact pad. The electrical connection can be matched with the solder ball bump, the short post bump, the conductive wire Come [...] a sealant or other encapsulant material is deposited on the structure for physical support and electrical isolation. The completed package is then inserted with an electrical amp and the semiconductor (4) function is a slice carrier for other system components. The electronic component of the substrate or printed circuit board 52 is electrically mounted. It may have a certain semiconductor package type or a plurality of semiconductor package types, and the power is fixed: in the description (4), the different semiconductor package types are shown in FIG. The component 50 can be a sub-component of the electronic component 5G-type system instead of using the semi-electrical functions. For example, the electricity can be - can be inserted into an electric moon: 10 201101399 Card, drag, grazing, μ J-channel interface card or other signal processing card. The semiconductor structure can be 微处理器 3 microprocessor, memory, special-purpose integrated circuit (ASIC), logic circuit class ratio circuit, RF circuit , discrete components or other semiconductor dies or electrical components. In Fig. 1, 'the main substrate is provided for the semiconductor package U-support and electrical interconnection' printed circuit board 52 mounted on the printed circuit board. The conductive trace lines 54 are formed on one surface or multiple layers of the printed circuit board 52 using an evaporation process, an electroplating process, an electroless plating process, a screen printing process, or other suitable metal deposition process. Signal trace 54 provides electrical and trajectory 54 for each of the semiconductor components, mounting members, and other external system components to provide electrical and ground connections to each of the semiconductor components. In some embodiments, a semiconductor component has a two-construction stage. The first stage of construction is a technique for mechanically and electrically bonding the semiconductor die to an intermediate carrier. The second level of construction involves mechanically and electrically bonding the carrier to the printed circuit board. In other embodiments, a semiconductor component can have only the first level of construction, wherein the die is mounted directly to the printed circuit board via mechanical and electrical means. Some first stage construction types including wire bond assembly 56 and flip chip assembly 58 are shown on printed circuit board 52 for illustrative purposes. In addition, a solder ball array (BGA) package 60, a bump wafer carrier (BCC) 62, a dual array package (DIP), a planar array (LGA) package 66, and a multi-chip module (Mcm) package 68 are included. The four-stage flat-type, lead-free (QFN) 7-pin and four-sided flat-mounted packages are mounted on the printed circuit board 52. According to the requirements of the 11 201101399 system, the first and second Any combination of the staged mounting patterns and any combination of semiconductor components constructed by other electronic components can be coupled to the printed circuit board 52. In some embodiments, the electronic components 5A comprise a single bonded semiconductor package, while other implementations For example, multiple connection configurations are required. By combining one or more semiconductor packages on a single substrate, manufacturers can integrate prefabricated components into electronic components and systems. Because these semiconductor packages contain complex functions, they can be used less expensive. Components and a modern process to manufacture electronic components. The components produced are less likely to fail, and the manufacturing costs are lower for the consumer and the components produced are cheaper. _ za_zc is not a bit of a smock The semiconductor die 74 includes an active region containing an analog or digital circuit, and the circuitry is configured to be formed in the die and in accordance with any of the features of the dual-array package 64. The electrical design of the die is electrically connected to the active component, the passive component, the conductive layer and the dielectric layer. For example, the circuit may comprise one or more transistors 'diodes, inductors, capacitors Γ resistors and formed in The contact pad 76 in the active region of the semiconductor die 74 is, for example, one of the first (A1), copper (CU), tin (four), brocade (10), u 〆 silver (Ag) or more conductive material layers, and Electrically connected to the circuit component of the semiconductor die 74 to be in the period of time H. In the combined double row structure 64 8 + conductor grain 74 is a metal ruthenium alloy layer, such as I $ lipid paste Good #卡6 / σ gold layer or, for example, hot epoxy tree pure material, the text is attached to an intermediary carrier 78, such as polymer or ceramics, which contains 7. Insulation material for the class The wire 80 and the sustaining electrode k are electrically interconnected between the semiconductor die 74 and the brush circuit board 52. The sealing agent 84 is deposited on the structure. The sealant, gas and particles enter the structure, and provide environmental protection by dyeing the grain 74 or the wire 82. Figure 2b illustrates the embossing u 1 仓, Cangbei, which is mounted on the printed circuit board 52. Further details of the wafer carrier 62. The semiconductor die 88 is mounted on the carrier 90 using a bottom-fill or grease bond material 92. The wire 94 provides a first-level package that contacts between 3% and 98. An interconnecting compound or encapsulant is deposited on the semiconductor die 88 and the wiring 94 to provide physical support and electrical isolation of the component. The contact die 102 is formed using a suitable metal deposition process such as electrowinning or electroless plating. It is formed on the surface of the printed circuit board to prevent oxidation. The contact pad 102 is electrically connected to the conductive signal track 54 of the printed circuit board. The solder bump is deposited on the bump wafer carrier to contact the contact pad of the printed circuit board 52. 〇 2 And being reflowed to form bumps 104 that form a mechanical and electrical connection between the bump wafer carrier 62 and the printed circuit board 52. In Figure 2c, the semiconductor die 58 is mounted face down to have a flip-chip first-stage dielectric carrier 1〇6. The active region 108 of the semiconductor die 58 includes an active device, a passive component, a conductive layer, and a dielectric layer formed according to the die electrical design. Analog or digital circuits, for example, may include three or more transistors, diodes, inductors, capacitors, resistors, and other circuit components within the active region 108. The semiconductor die 58 is a solder bump Or the ball 11 is electrically and mechanically connected to the carrier 106. The solder ball array assembly 60 is electrically and machine-finished using solder bumps or balls 112! The ground is connected to a second stage structure having a solder ball array. a printed circuit board mounted with semiconductor die 58 Bump n〇, signal line U4 and solder 13 201101399 Bump U2 is electrically connected to the printed signal track of the printed code 52. A glue compound or sealant 116 is deposited on the semiconductor die 58 and (4) The component is physically isolated and electrically isolated. The flip-chip semiconductor component provides a short conductive path from the active component on the semiconductor die 58 to the conductive trace on the printed circuit board 52 to reduce signal transmission distance and reduce capacitance. And improving the overall circuit execution efficiency. In another embodiment, the material conductor die 58 can be mechanically and electrically connected directly to the printed circuit without using the intermediate carrier 1G6 and using the flip-chip first-stage configuration. The plate 52 ° 3h illustrates a method of forming a vertical interconnect structure having a conductive pillar and an under bump metallization layer that is relatively fixed to the interconnect structure based on the alignment of the semiconductor die. In the figure, temporary or sacrificed The substrate or carrier 120 comprises, for example, a stone, a polymer, a polymer composite, a metal foil, a ceramic slab, a glass, a glass epoxy, a yttria, a tape, or a suitable low structure for structural support. The substrate of the hard material. The selective seed layer 122 can be formed on the carrier 120 for subsequent electroplating process. A conductive layer 124 is used, gas phase, gas phase deposition, chemical vapor deposition, sputtering, electroplating, no An electroplating process or other suitable metal deposition process is patterned to form the carrier 120. The conductive layer 124 can be aluminum, copper 'tin, nickel, gold, silver, tungsten, polysilicon or other suitable conductive material to have one or more layers. Conductive Layer 124 includes a wettable contact pad for later forming a conductive post. In one embodiment: a wet turbid contact pad of 24 is pre-bonded to carrier 12, conductive layer 126 using physical vapor deposition, Chemical vapor deposition, splashing 14 201101399

鍍、電鑛、I電鍍製程《其它合適金屬沉積製程進行圖案 化來形成於晶種層122上。導電層126可為鋁、銅、錫:、 鎳、金、銀或其它合適導電材料中其中一層或更多層。導 電層126與導電層124共平面。導電^ 126為一固定於導 電層124的相對位置之凸塊下金屬化層。凸塊下金屬化層 126可為具有黏接層、阻障層及晶種或濕潤層之多金屬堆 豐。該黏接層可為鈦、氮化鈦(TiN)、鈦鎢(Tiw)、鋁或鉻 (Cr) „亥阻障層為形成於該黏接層上且可由鎳、鎳釩(nw)、 鉑(Pt)鈀(Pd)、鈦鎢或鉻銅(CrCu)所構成。該阻障層禁止 銅擴散進入該晶粒作用區域内。該晶種層可為銅、錄、錄 釩、金或鋁。肖晶種層形成於該阻障層上。凸塊下金屬化 提仏低電阻互連以及對焊料擴散和提供焊料濕潤 能力之晶種層之阻障。 在圖3b中,複數個導電柱或杆128形成於導電層124 之可m接觸墊片上。在—實施例中,導電柱i28為藉由 將或更多光阻層沉積於晶種層122或載體12〇上而形 成導電124上的部分光阻層為經由—钮刻顯影製程而 被路出並移除。導電材料使用—選擇性電鑛製程來沉積於 忒光阻層之移除部分内。該光阻層被剝除而留下各個導電 柱128。導電柱128可為銅、雀呂、鶴(w)、金、焊錫或其它 合適導電材料。導電柱128具有2·ΐ2〇微米㈣範圍之高 度。在另-實施例中’形成之導電柱128可為短柱凸塊或 堆疊凸塊。在任何例子中m 128具有以焊料或内含 銅、銀、鉍或錫之介金屬化合物(IMC)所產生之一至凸塊下 15 201101399 金屬化層126之堅固又緊密金屬至金屬黏結。 在圖3c中,複數個半導體晶粒或構件130為以金屬凸 塊134朝下定位在載體120上方之覆晶安排方式來安寰至 凸塊下金屬化層126。半導體晶粒130包含一内含類比或數 位電路之作用區域136,該些電路為配置為形成於該晶粒内 並根據該晶粒之電性設計及功能進行電性互連之主動元 件、被動元件、導電層和介電層。例如,該電路可包含一 或更多電晶體 '二極體和形成於作用表面126内之其它電 路構件以配置例如數位訊號處理器(D S p )、特殊用途積體電 路、記憶體或其它訊號處理電路之基頻類比電路或數位電 路。半導體晶粒122也可包含用於射頻訊號處理之整合被 動元件,例如電感器、電容器和電阻器。在另一實施例°中, S立式半導體構件可被安裝至載體12〇上。 凸塊下金屬化層126固定於導電層m的相對位置。 導電柱128安裝在半導體晶粒13〇四周之導電層124上。 據此’凸塊下金屬化層126固定於導電柱128的相對位置。 藉由配對金屬凸塊134與凸塊下金屬化層126,半導體 130自我調準至導電柱128。 第3d圖顯示使用一錫膏印刷、壓縮成型、轉注成型、 :體封膝成型、真空疊合或其它合適塗抹器來沉積4導 體晶粒130和導電柱128上之封膠劑或封膠化合4勿138。封 膠劑138可為聚合物複合材料 樹脂、具有填充劑之環氧丙稀醋:=充劑之環氧 物。封…為無導電性且在==填充劑之聚合 竟上保濩該半導體元件 16 201101399 隔離外部構件及污染。利用牢牢安裝至固定凸塊下金屬化 層126之半導體晶粒130之金屬凸塊134,該晶粒在該封膠 製程期間為對準著導電柱128並未移位。Plating, Electro-Ore, I Electroplating Process "Other suitable metal deposition processes are patterned to form on the seed layer 122. Conductive layer 126 can be one or more of aluminum, copper, tin:, nickel, gold, silver, or other suitable electrically conductive material. Conductive layer 126 is coplanar with conductive layer 124. The conductive layer 126 is an under bump metallization layer fixed at a relative position of the conductive layer 124. The under bump metallization layer 126 can be a multi-metal stack having an adhesion layer, a barrier layer, and a seed or wetting layer. The adhesive layer may be titanium, titanium nitride (TiN), titanium tungsten (Tiw), aluminum or chromium (Cr). The barrier layer is formed on the adhesive layer and may be made of nickel, nickel vanadium (nw), Platinum (Pt) palladium (Pd), titanium tungsten or chromium copper (CrCu). The barrier layer inhibits the diffusion of copper into the grain active region. The seed layer can be copper, recorded, recorded vanadium, gold or Aluminium. A seed layer is formed on the barrier layer. The under bump metallization enhances the low resistance interconnection and the barrier of the seed layer for solder diffusion and solder wetting capability. In Figure 3b, a plurality of conductive layers A post or rod 128 is formed on the m-contact pad of the conductive layer 124. In an embodiment, the conductive post i28 is formed by depositing more or more photoresist layers on the seed layer 122 or the carrier 12〇. A portion of the photoresist layer on the 124 is removed and removed via a button-engraving process. The conductive material is deposited in the removed portion of the photoresist layer using a selective electro-mine process. The photoresist layer is stripped. In addition, each of the conductive pillars 128 is left. The conductive pillars 128 may be copper, freon, crane (w), gold, solder or other suitable conductive material. The conductive pillar 128 has 2 ΐ 2 〇 micrometer (four) range height. In another embodiment 'formed conductive pillars 128 may be short stud bumps or stacked bumps. In any example m 128 has solder or contains copper, silver, bismuth or One of the tin metal compounds (IMC) is produced to the under bump 15 201101399 The metallization layer 126 is a strong and tight metal to metal bond. In Figure 3c, a plurality of semiconductor dies or members 130 are oriented with metal bumps 134 A flip chip arrangement positioned over the carrier 120 is mounted to the under bump metallization layer 126. The semiconductor die 130 includes an active region 136 containing an analog or digital circuit configured to be formed in the crystal An active component, a passive component, a conductive layer, and a dielectric layer that are electrically interconnected within the particle and according to the electrical design and function of the die. For example, the circuit may include one or more transistor 'diodes and formed The other circuit components in the active surface 126 are configured with a baseband analog circuit or a digital circuit such as a digital signal processor (DSp), a special purpose integrated circuit, a memory or other signal processing circuit. Including integrated passive components for RF signal processing, such as inductors, capacitors, and resistors. In another embodiment, the S vertical semiconductor component can be mounted to the carrier 12A. The under bump metallization layer 126 is fixed. The conductive pillars 128 are mounted on the conductive layer 124 around the semiconductor die 13 . Accordingly, the under bump metallization layer 126 is fixed at the relative position of the conductive pillars 128. Block 134 and under bump metallization layer 126, semiconductor 130 self-aligns to conductive pillar 128. Figure 3d shows the use of a solder paste printing, compression molding, transfer molding, body sealing knee molding, vacuum lamination or other suitable application The device is used to deposit a 4-conductor die 130 and a sealant or sealant 4 on the conductive post 128. The sealant 138 may be a polymer composite resin, a propylene glycol acrylate having a filler: = an epoxy of a charge. The sealing is non-conductive and the semiconductor component is protected by polymerization of the == filler. 201101399 Isolating external components and contamination. The metal bumps 134 of the semiconductor die 130, which are firmly mounted to the under bump metallization layer 126, are not displaced during alignment of the conductive pillars 128 during the encapsulation process.

在圖3e中,封膠劑138進行研磨或電漿蝕刻以平坦化 該表面而形成一頂側增層式互連結構。在一實施例中,研 磨器丨39露出導電柱128頂部表面及半導體晶粒13〇背部 表面。替代性地,研磨器139露出導電柱128頂部表面並 保留内嵌於封膠劑13 8中之半導體晶粒13 〇。 在圖中,一頂側增層式互連結構140形成於導電柱 128、封膠劑138第一表面和半導體晶粒13〇背部表面上。 -絕緣或保制142使用物理氣相沉積、化學氣相沉積、 印刷、旋塗、纟塗、燒結或熱氧化製程形成之。該保護層 ⑷可為二氧化砂(Si〇2)、氮化石夕(Si3N小氮氧化石夕⑻⑽)、 五氧化二鈕(Ta2〇5)、氧化鋁(a12〇3)或具有類似絕緣和結構 特性之其它材料中其中-層或更多層ϋ刻製程移除 分保護層142而露出導電柱128。 -導電層144為使用物理氣相沉積、化學氣相沉積、 :鑛、電鑛、無電鑛製程或其它合適金屬沉積製程進行圖 案化來形成於保護層142及導電柱128 ±。導電層⑷可 為紹、銅 '錫、錄、金、銀或其它合適導電材二二 =多層。一部分導電層144為電性連接至導電枉US。 :4中的其它部分可依據該半導體元件之設計和功 月匕而為共電性或電性隔離。 -絕緣或保…46使用物理氣相沉積、化學氣相沉 201101399 積、印刷、;^ + 奴金、喷塗、燒結或熱氧化製程來形成於保 層142及導雷'思 导1:層144上。該保護層146可為二氧化矽、氮 ,氧化妙、五氧化二組、氧化鋁或具有類似絕緣和 結構特性之其它材料中其中一層或更多層。以一蝕刻製程 移除部分保護| 146而露出導電層144。 圖宮中,載體12 0經由化學濕式姓刻、電漿乾式蚀 ^機械脫落' 化學機械拋光、機械研磨、熱烘烤、雷射 ,描或濕式剝離移除之。在載體12〇移除後,封膠劑⑽ 提供半導體晶#13G結構支撲。载體12()移除後接著露出 導電層124及凸塊下金屬化層126。 圖3h中,一底側增層式互連結構15〇形成於與頂側 增層二互連結才冓14〇相對之導電柱128和封膠劑第二表面 上。-導電層152使用物理氣相沉積、化學氣相沉積、濺 鍍、電鍍、無電鐘製程或其它合適金屬沉積製程進行圖案 化來形成於導電層124及凸塊下金屬化層126上。導電層 W可為鋁、銅、錫、鎳、金、銀或其它合適導電材料中复 中-層或更多層。部分_ 152為電性連接至導電柱 128、導電層124及凸塊下金屬化層126。導電層152中的 其它部分可依據該半導體元件之設計和功能而為共電 電性隔離》 — «吧琢驭保隻層 %训,儿預、化学轧相订 積、印刷 '旋塗、喷塗、燒結或埶f &热虱化製程來形成於導| 層152和封膠劑138第二表面上。 ”豕保竣層1 5 4可為二辈 化石夕、氮化矽、氮氧化矽、五氧化- 孔1—钽、氧化鋁或具有类 18 201101399 似絕緣和結構特性之其它材料t其中-層或更多層。以— 姓刻製程移除部分保護層154而露出導電層152。 —、導電凸塊材料為使用蒸鍍、電鍍、無電鍍、錫球滴 洛或網印製程來沉積於導電層152上。該凸塊材料可為銘、 錫、錄、金、銀、錯、麵、銅、焊錫及上述之結合,加上 一選擇性助焊劑材料。例如,該凸塊材料可為共晶錫/鉛、 高錯焊錫或無料錫H合適黏接或黏結製程將該凸 塊材料黏結至導電層152。在—實施例中,該凸塊材料經由 將該材料加熱超過它的熔點而進行回焊以形成圓球或凸塊 156。在-些應用中,凸塊156被回焊一第二時間以改進對 導電層15 2之電性接觸。該些凸塊也可被壓縮黏結至導電 層152。凸塊156代表可被形成於導電層152上之某類型互 連結構。該互連結構也可使用接線、㈣膏、短柱凸塊、 微小凸塊或其它電性互連。 該半導體晶粒13G利用鑛片或雷射切割^ 164進行 單粒化而成為個別半導體㈣16卜單粒化後,該些個別半 導體元件160可如β 4所示地進行堆疊。導電柱128在頂 側増層式互連^ 140及底側增層式互連層15〇之間提供垂 直2方向互連。導電層144為透過導電柱128電性連接至每 一個半導體元件160之導電層152及金屬凸塊134。 圖5具有形成於該頂側互連結構中之多個整合被動元 件之垂直互連結構。類似於圖3a_3hm述方法,半導體元件 1 62使用具有—選擇性晶種層之犧牲或暫時基板或載體。— 導電層164使用物理氣相沉積、化學氣相沉積、滅鑛、電 19 201101399 二 =製程或其它合適金屬沉積製程進行圖案化來形 成載體上。導電層164可為銘、鋼、錫、錄、金、銀、 鶴、多晶石夕或其它合適導電材料中其中一層或更多層。又導 電層⑹包含用於稍後形成導電柱之可濕潤接觸墊片。 -導電層⑹使用物理氣相沉積、化學氣相沉積、滅 鍍電鑛、無電鍍製程或其它合適金屬沉積製程進行圖案 化來形成於鍵晶種層或載體上。導電I 166可為鋁、銅:、 錫、鎳'、金、銀或其它合適導電材料中其中—層或更多層。 導電層166為與導電4 164共平面。導㈣166為一固定 於導電層1 64的相對位置之凸塊下金屬化層。 複數個導電柱或杆168形成於導電層164之可濕潤接 觸墊片上。在-實施例中,導電纟168藉由將一或更多光 阻層沉積於晶種層或載體上而形成。導電^ 164上的部分 光阻層為經由一蝕刻顯影製程而被露出並移除。導電材二 使用一選擇性電鍍製程來沉積於該光阻層之移除部分内。 "亥光阻層被剝除而留下各個導電柱168。導電柱168可為 銅、鋁、鎢、金、焊錫或其它合適導電材料。導電柱 具有2-120微米範圍之高度。在另一實施例中,形成之導電 柱168可為短柱凸塊或堆疊凸塊。在任何例子中,導電柱 168具有以焊料或内含銅、銀、鉍或錫之介金屬化合物所產 生之一至凸塊下金屬化層166之堅固又緊密金屬至金屬黏 結0 複數個半導體晶粒或構件丨7〇為以金屬凸塊丨74朝下 疋位在該載體上方之覆晶安排方式來安裝至凸塊下金屬化 20 201101399 .層166。半導體晶粒170包含一内含類比或數位電路之作用 區域m’該些電路配置為形成於該晶粒内並根據該晶粒之 電性設計及功能進行電性互連之主動元件、被動元件、導 電層和介電層。例如,該電路可包含一或更多電晶體、二 極體和形成於作用表自176内之其它電路構件以配置例如 數位訊號處理器、特殊用途積體電路、記憶體或其它訊號 處理電路之基頻類比電路或數位電路。半導體晶纟⑺也 可包含用於射頻訊號處理之整合被動元件,例如電感器、 u 電容器和電阻器。 〜 凸塊下金屬化層166固定於導電層164的相對位置。 導電柱168安裝在半導體晶粒17〇四周之導電層164上。 據此,凸塊下金屬化層166固定於導電柱168的相對位置。 藉由配對金屬凸塊174與凸塊下金屬化層166,半導體晶粒 170自我調準至導電柱168。 aS"In Figure 3e, encapsulant 138 is ground or plasma etched to planarize the surface to form a top side build-up interconnect structure. In one embodiment, the grinder 丨 39 exposes the top surface of the conductive pillar 128 and the back surface of the semiconductor die 13 . Alternatively, the grinder 139 exposes the top surface of the conductive pillar 128 and retains the semiconductor die 13 内 embedded in the encapsulant 13 8 . In the figure, a top side build-up interconnect structure 140 is formed on the conductive pillars 128, the first surface of the sealant 138, and the back surface of the semiconductor die 13 . - Insulation or containment 142 is formed using physical vapor deposition, chemical vapor deposition, printing, spin coating, smear coating, sintering or thermal oxidation processes. The protective layer (4) may be silica sand (Si〇2), nitrite (Si3N small oxynitride eve (8) (10)), pentoxide (Ta2〇5), alumina (a12〇3) or have similar insulation and Among other materials of structural properties, one or more of the engraving processes remove the sub-protective layer 142 to expose the conductive pillars 128. The conductive layer 144 is patterned on the protective layer 142 and the conductive pillars 128 by patterning using physical vapor deposition, chemical vapor deposition, ore, electro-mine, electroless ore or other suitable metal deposition processes. The conductive layer (4) can be a copper, tin, tin, gold, silver or other suitable conductive material 22 = multiple layers. A portion of the conductive layer 144 is electrically connected to the conductive 枉US. The other part of : 4 may be electrically or electrically isolated depending on the design and power of the semiconductor component. -Insulation or protection...46 using physical vapor deposition, chemical vapor deposition 201101399 product, printing, ^^ slave gold, spray, sintering or thermal oxidation process to form in the protective layer 142 and guide mine 'Side 1: layer 144 on. The protective layer 146 can be one or more of cerium oxide, nitrogen, oxidizing, pentoxide, aluminum oxide or other materials having similar insulating and structural properties. The portion of the protective layer 146 is removed by an etching process to expose the conductive layer 144. In the palace, the carrier 120 is removed by chemical wet-type etching, plasma dry etching, mechanical shedding, chemical mechanical polishing, mechanical grinding, hot baking, laser, drawing or wet stripping. After the carrier 12 is removed, the sealant (10) provides a semiconductor crystal #13G structure. The carrier 12() is removed followed by the conductive layer 124 and the under bump metallization layer 126. In Figure 3h, a bottom side build-up interconnect structure 15 is formed on the conductive pillars 128 and the second surface of the sealant opposite the top side build-up interconnects. The conductive layer 152 is patterned on the conductive layer 124 and the under bump metallization layer 126 by physical vapor deposition, chemical vapor deposition, sputtering, electroplating, electroless clocking, or other suitable metal deposition process. The conductive layer W can be a complex layer or layers of aluminum, copper, tin, nickel, gold, silver or other suitable electrically conductive material. Portion 152 is electrically connected to conductive pillar 128, conductive layer 124, and under bump metallization layer 126. The other part of the conductive layer 152 can be electrically and electrically isolated according to the design and function of the semiconductor element - "There is only a layer of training, pre-chemical, chemical rolling, printing, spin coating, spraying A sintering or 埶f & thermalizing process is formed on the second surface of the conductive layer 152 and the encapsulant 138.豕保竣1 1 4 can be a second generation of fossils, tantalum nitride, niobium oxynitride, pentoxide-hole 1 - bismuth, alumina or other materials with class 18 201101399 like insulation and structural properties Or more layers. The portion of the protective layer 154 is removed by the etch process to expose the conductive layer 152. - The conductive bump material is deposited on the conductive layer by evaporation, electroplating, electroless plating, solder ball dropping or screen printing process. On the layer 152. The bump material may be a combination of Ming, Tin, Li, Gold, Silver, Wrong, Foil, Copper, Solder, and the like, plus a selective flux material. For example, the bump material may be a total The tin-lead/lead, high-stagger solder or no-material tin H is suitable for bonding or bonding the bump material to the conductive layer 152. In an embodiment, the bump material is heated by heating the material beyond its melting point. Reflowing to form spheres or bumps 156. In some applications, bumps 156 are reflowed for a second time to improve electrical contact to conductive layer 15. 2. The bumps can also be compression bonded to conductive Layer 152. Bumps 156 represent some type of interconnect that can be formed on conductive layer 152 The interconnect structure may also use wiring, (iv) paste, stud bumps, micro bumps, or other electrical interconnections. The semiconductor die 13G is singulated by a pellet or laser cutting 164 to become individual After semiconductor (4) 16 singulation, the individual semiconductor components 160 may be stacked as indicated by β 4. The conductive pillars 128 are between the top side germanium layer interconnect 140 and the bottom side buildup interconnect layer 15 A vertical 2-way interconnection is provided. The conductive layer 144 is electrically connected to the conductive layer 152 of each of the semiconductor elements 160 and the metal bumps 134 through the conductive pillars 128. Figure 5 has multiple integrations formed in the top-side interconnect structure Vertical interconnect structure of passive components. Similar to the method of Figures 3a-3, semiconductor component 162 uses a sacrificial or temporary substrate or carrier having a selective seed layer. - Conductive layer 164 uses physical vapor deposition, chemical vapor deposition, Excavation, electricity 19 201101399 Two = process or other suitable metal deposition process for patterning to form a carrier. Conductive layer 164 can be Ming, steel, tin, recorded, gold, silver, crane, polycrystalline stone or other suitable conductive In the material One or more layers. The conductive layer (6) comprises a wettable contact pad for later forming a conductive post. - The conductive layer (6) uses physical vapor deposition, chemical vapor deposition, de-plating, electroless plating, electroless plating or other A suitable metal deposition process is patterned to form on the bond seed layer or carrier. Conductive I 166 can be one or more layers of aluminum, copper:, tin, nickel', gold, silver, or other suitable electrically conductive material. The conductive layer 166 is coplanar with the conductive layer 164. The conductive (four) 166 is an under bump metallization layer fixed at a position opposite to the conductive layer 164. The plurality of conductive pillars or rods 168 are formed on the conductive layer 164. In the embodiment, the conductive germanium 168 is formed by depositing one or more photoresist layers on the seed layer or carrier. A portion of the photoresist layer on the conductive layer 164 is exposed and removed via an etch developing process. Conductive material 2 is deposited in the removed portion of the photoresist layer using a selective electroplating process. " The sea photoresist layer is stripped leaving the respective conductive pillars 168. Conductive post 168 can be copper, aluminum, tungsten, gold, solder or other suitable electrically conductive material. The conductive posts have a height in the range of 2-120 microns. In another embodiment, the formed conductive pillars 168 can be short stud bumps or stacked bumps. In any example, the conductive pillars 168 have a solid and tight metal to metal bond 0 of a plurality of semiconductor grains formed by solder or a metal-containing compound containing copper, silver, antimony or tin to the under bump metallization layer 166. Or the component 丨7〇 is mounted to the under bump metallization 20 201101399. The layer 166 is a flip chip arrangement in which the metal bump 丨 74 is clamped downwardly over the carrier. The semiconductor die 170 includes an active region, a passive component that is formed in the die and electrically interconnected according to the electrical design and function of the die. , conductive layer and dielectric layer. For example, the circuit can include one or more transistors, diodes, and other circuit components formed in the active table 176 to configure, for example, a digital signal processor, special purpose integrated circuit, memory, or other signal processing circuit. Base frequency analog circuit or digital circuit. The semiconductor wafer (7) may also include integrated passive components for RF signal processing, such as inductors, u capacitors, and resistors. The under bump metallization layer 166 is fixed to the opposite position of the conductive layer 164. Conductive posts 168 are mounted on conductive layer 164 around semiconductor die 17 . Accordingly, the under bump metallization layer 166 is fixed to the opposite position of the conductive pillars 168. The semiconductor die 170 self-aligns to the conductive posts 168 by mating the metal bumps 174 with the under bump metallization layer 166. aS"

一封膠劑或封膠化合物178使用一錫膏印刷、壓縮成 型、轉注成型、液體封膠成型、真空疊合或其它合適塗抹 器來/儿積於半導體晶粒17〇和導電柱168 ±。封膠齊"78 可為聚合物複合材料’例如,具有填充劑之環氧樹脂、具 =填充劑之環氧丙稀酿或具有正確填充劑之聚合物。封膠 =m為無導電性且在環境上保護該半導體元件隔離外部 、件及污染。利用牢牢安裝至固定凸塊下金屬化層166之 =體晶粒170之金屬凸塊174,該晶粒在該封膠製程期間 ♦準者導電柱168並未移位。 該封膠劑178進行研磨或電_刻以平坦化該表面而 21 201101399 形成一頂側增層式互連結構 頂部表面及半導體晶粒170 結構1 8 0形成於導電柱16 §、 晶粒170背部表面上。一絕 沉積、化學氣相沉積、印刷 製程形成之。該保護層i 82 化石夕、五氧化二钽、氧化鋁 其它材料中其中一層或更多 護層182而露出導電柱 。該研磨操作露出導電枉168 背部表面。該頂側增層式互連 封膠劑178第—表面和半導體 緣或保護層182使用物理氣相 紋塗噴塗、燒結或熱氧化 可為二氧化矽、氮化矽、氮氧 或具有類似絕緣和結構特性之 層。以一蝕刻製程移除部分保 一導電層184使用物理氣相沉積、化學氣相沉積、賤 鐘、電鍵、無電鑛製程或其它合適金屬沉積製程進行圖案 化來形成於保護層182及導電柱168上。導電層184可為 銘、銅、豸、錄、金、銀或其它合適導電材料中复中一層 或更多層。-部分導電層184為電性連接至導電柱168。導 電層m中的其它部分可依㈣半導體元件之設計和功能 而為共電性或電性隔離。 -電阻層186a-186b為使用物理氣相沉積或化學氣相 沉積來分別圖案化並沉積於導電層184和絕緣層Μ〗上。 電阻層1 86為TaxSiy或其它金屬矽化物 '氮化鈕、鎳鉻、 鈦、氮化鈦、鈦鎢或具有5至1〇〇歐姆/平方電阻率之摻雜 多晶矽。一絕緣層188使用物理氣相沉積、化學氣相沉積、 印刷、燒結或熱氧化製程進行圖案化來形成於導電層18以 上。該絕緣層188可為氮化⑦ '二氧化梦、氮氧化石夕、五 氧化二鈕、氧化鋅、氧化鍅、氧化鋁、聚醯亞胺、笨環丁 22 201101399 '婦、聚苯鳴哇或其它合適介電材料中其中—層或更夕 電阻層186及絕緣層188可以相同遮罩形成並同時二層。 刻。替代性地,電阻層186及絕緣層m 。仃蝕 行圖案化及蝕刻。 ㈣軍進 一絕緣或保護層190使用旋塗、物理氣相 氣相沉積、印刷、燒結或熱氧化製程來形成於保護岸1:學 =電層m、電阻層186及絕緣層⑻上。 、 為二氧化石夕、氮化石夕、氣氧化石夕、五氧化二組、氧化^A glue or sealant compound 178 is applied to the semiconductor die 17 and the conductive posts 168 ± using a solder paste printing, compression molding, transfer molding, liquid encapsulation molding, vacuum lamination or other suitable applicator. The sealant "78 can be a polymer composite', for example, an epoxy resin with a filler, an epoxy propylene with a filler, or a polymer with a correct filler. Sealing = m is non-conductive and environmentally protects the semiconductor component from externalities, parts and contamination. With the metal bumps 174 firmly attached to the body die 170 of the under bump metallization layer 166, the die is not displaced during the encapsulation process. The encapsulant 178 is ground or electrically ground to planarize the surface while 21 201101399 forms a top side build-up interconnect structure top surface and a semiconductor die 170 structure 1 80 is formed on the conductive pillar 16 §, the die 170 On the back surface. A deposition, chemical vapor deposition, and printing process are formed. The protective layer i 82 is one of the other materials of the fossil, the antimony pentoxide, the aluminum oxide, and the other layer 182 to expose the conductive pillar. This lapping operation exposes the back surface of the conductive crucible 168. The top side build-up interconnect sealant 178 first surface and the semiconductor edge or protective layer 182 may be cerium oxide, tantalum nitride, nitrogen oxide or the like using physical vapor deposition coating, sintering or thermal oxidation. And the layer of structural properties. The portion of the first conductive layer 184 is removed by an etching process using physical vapor deposition, chemical vapor deposition, cesium clock, electric bond, electroless ore or other suitable metal deposition process for patterning to form the protective layer 182 and the conductive pillars 168. on. The conductive layer 184 can be one or more layers of the inscription, copper, tantalum, gold, silver or other suitable conductive material. The partial conductive layer 184 is electrically connected to the conductive pillars 168. Other portions of the conductive layer m may be electrically or electrically isolated depending on the design and function of the (4) semiconductor component. The resistive layers 186a-186b are separately patterned and deposited on the conductive layer 184 and the insulating layer using physical vapor deposition or chemical vapor deposition. The resistive layer 186 is TaxSiy or other metal telluride 'nitride button, nickel chrome, titanium, titanium nitride, titanium tungsten or doped polysilicon having a resistivity of 5 to 1 ohm ohm/square. An insulating layer 188 is formed over the conductive layer 18 by patterning using physical vapor deposition, chemical vapor deposition, printing, sintering or thermal oxidation processes. The insulating layer 188 can be a nitrided 7' dioxide dream, a nitrogen oxynitride eve, a pentoxide pentoxide, a zinc oxide, a cerium oxide, an aluminum oxide, a polyimine, a stupid ring 22 201101399 'women, poly phenyl ring Or among other suitable dielectric materials, the layer or the resistive layer 186 and the insulating layer 188 may be formed in the same mask and simultaneously in two layers. engraved. Alternatively, the resistive layer 186 and the insulating layer m. Etching is patterned and etched. (4) Military advance An insulating or protective layer 190 is formed on the protective bank 1 by using spin coating, physical vapor deposition, printing, sintering or thermal oxidation processes: the electrical layer m, the resistive layer 186 and the insulating layer (8). , for the day of sulphur dioxide, nitrite, gas oxidized stone, pentoxide, oxidation, ^

具有合適絕緣特性之其它.材料中其中一層或 X 保護層被移除而露出導電層184、電阻 。部分 188。 电丨層186及絕緣層 導電層192使用物理氣相沉積、化學氣相沉積、:賤 ^電鍍、無電錢製程或其它合適金屬沉積製程進行圖宰 匕:沉積於保護層190、導電層184、電阻層186及絕❹ 上以形成個別部分或區段以供進一步互連性。導電層 〇 Γ雷:別部分可依據該個別半導體晶粒之連接性而為 -電性或電性隔離。導電層192可為紹、銅、錫、鎳、金、 銀或其它合適導電材料中其中一層或更多層。 广一絕緣或保護層194使用旋塗、物理氣相沉積、化學 亂相沉積、印刷、燒結或熱氧化製程來形成於導電層 =濩層190上。該保護層194可為二氧化矽、氮化矽、 —妯夕五氧化-鈕、氧化鋁或具有合適絕緣特性之其 =中其中-層或更多層。一部分保護層194被移除而 路出導電層192。 23 201101399 增層式互連結構18〇中所述結構構成—或更多被動電 路構件或整合被動元件。在一實施例中,導電層184、電阻 層186a、絕緣層188及導電層192為一金屬層-絕緣層-金屬 層(MIM)電容器。電阻層186b為該被動電路中之電阻器構 件:導電層m中之個別區段在平面視野上可被捲繞:盤 繞以產生或展示想要之電感器特性。 該整合被動元件結構提供例如共振器、高通濾波器、 低通遽波器、帶通驗器、對稱性高品f因數共振變壓号、 匹配網路及調諧電容器般之高頻應用所需之電性特徵曲 線。該些整合被動元件可充當前端無線射頻構件使用,其 可被定位在該天線及收發器之間。該電感器可為一以高達 1〇〇千兆赫操作之高品質因數平衡_不平衡變換器、變^ 或線圈。在一些應用中,多個平衡-不平衡變換器為形成於 同一基板上以進行多頻段操作。例 J ^ —或更多平衡-不平 衡變換器被使用於行動電話或其One of the other materials having suitable insulating properties or the X protective layer is removed to expose the conductive layer 184, electrical resistance. Part 188. The electric layer 186 and the insulating layer 192 are deposited by physical vapor deposition, chemical vapor deposition, electroplating, electroless process or other suitable metal deposition process: deposited on the protective layer 190, the conductive layer 184, The resistive layer 186 and the insulating layer are formed to form individual portions or sections for further interconnectivity. Conductive layer 〇 Thunder: Other parts can be electrically or electrically isolated depending on the connectivity of the individual semiconductor dies. Conductive layer 192 can be one or more of the layers of copper, tin, nickel, gold, silver or other suitable electrically conductive material. The Guangyi insulation or protective layer 194 is formed on the conductive layer 濩 layer 190 using spin coating, physical vapor deposition, chemical chaotic deposition, printing, sintering or thermal oxidation processes. The protective layer 194 may be ruthenium dioxide, tantalum nitride, ruthenium oxide, or aluminum oxide or a layer having more than one of the layers having suitable insulating properties. A portion of the protective layer 194 is removed to exit the conductive layer 192. 23 201101399 The structure described in the build-up interconnect structure 18〇—or more passive circuit components or integrated passive components. In one embodiment, conductive layer 184, resistive layer 186a, insulating layer 188, and conductive layer 192 are a metal-insulator-metal layer (MIM) capacitor. Resistive layer 186b is a resistor component in the passive circuit: individual segments of conductive layer m can be wound in a planar field of view: coiled to create or exhibit desired inductor characteristics. The integrated passive component structure provides the required high frequency applications such as resonators, high pass filters, low pass choppers, band passers, symmetrical high-factor f-factor resonance transformers, matching networks, and tuning capacitors. Electrical characteristic curve. The integrated passive components can be used as front-end radio frequency components that can be positioned between the antenna and the transceiver. The inductor can be a high quality factor balanced-unbalanced converter, transformer or coil operating at up to 1 〇〇 GHz. In some applications, multiple baluns are formed on the same substrate for multi-band operation. Example J ^ — or more balanced – unbalanced converters are used in mobile phones or

匕王垛仃動通訊系統(GSM 之四頻段中,每一個平衡_不平衡 ^ ^ w雯換态專門提供該四頻元 件中之一頻段操作。一典型 ^貝糸、4在一或更多半導體構 裝中需要多個整合被動元件及其千导篮稱 φ ^ Λ At 具匕阿頻電路以執行所需之 電性功能8 該載體經由化學濕式蝕刻、 ^漿乾式餘刻、機械脫落、 化學機械拋光、機械研磨、埶 欲…'、烤、雷射掃描或濕式剝離 移除之。在该载體移除後,封 从冰+Α W 1 徒供+導體晶粒170 釔構支撐。该載體移除後接著 屬化層166。 出導電層⑹及凸塊下金 24 201101399 一底側增層式互連結構形成於與頂側增層式互連 結構180相對之導電柱168和封膠劑178第 導電層202使用物理氣相沉積、化學氣相沉: 一電 製程或其它合適金屬沉積製程進行圖案化來形 、導電層164及凸塊下金屬化層166上。導電層2〇2可 Ο Ο 為鋁、銅、錫、鎳、金、銀或其它合適導電材料中其中一 層或更多層。部分導電層2〇2為電性連接至導妹⑹、導 電層164及凸塊下金屬化層166。導電層 可依據該半導體元件之設計和功能而為共電性 離0 一絕緣或保護層2〇4使用物理氣相沉積、化學氣相沉 積印刷、疑塗、喷塗、燒結或熱氧化製程來形成於導電 層202和封膠劑m第二表面上。該保護層2〇4可為二氧 化石夕、氮化石夕、氮氧化石夕、五氧化二紐、氧化銘或具有類 似絕緣和結構特性之其它材料中其中一層或更多層。以一 韻刻製程移除-部分保護層綱而露出導電層2们。 一導電凸塊材料使用蒸鑛、電鑛、無制、錫球滴落 或網印製程來沉積於導電層2〇2上。該凸塊材料可為銘、 錫鎳、金、銀、錯、叙、銅、焊錫及上述之結合,加上 一選擇性助焊㈣料。例如,該凸塊材料可為共晶錫/錯' 尚銘焊錫或無錯桿錫。使用一合適黏接或黏結製程將該凸 鬼材料黏、’Ό至導電層2〇2。在一實施例中,該凸塊材料經由 將該材料加熱超過它的熔點而進行回焊以形成圓球或凸塊 在二應用中,凸塊206被回烊-第二時間以改進對 25 201101399 導電層202之電性接觸。該些凸塊也可被壓縮黏結至導電 層202。凸塊206代表可被形成於導電層2〇2上之某類型互 連結構。該互連結構也可使用接線、導電膏、短柱凸塊、 微小凸塊或其它電性互連。 導電柱168在頂側增層式互連μ 18〇及底側增層式互 連層200之間提供垂直2方向互連。導電層184為透過導電 柱168電性連接至導電層2〇2及半導體晶粒17〇之金屬凸 塊 174。 圖6說明具有形成於底側互連結構中之多個整合被動 凡件之垂直互連結構實施例。類似於圖3a_3h所述方法,半 導體元件212制具有-選擇性晶種層之犧牲或暫時基板 或載體…導電層214使用物理氣相沉積、化學氣相沉積、 濺錄、電鍍、無電鍍製程或其它合適金屬沉積製程進行圖 案化來形成於該載體上。導電層214可為鋁、銅 '錫、鎳、 金、銀、鎢、多晶矽或其它合適導電材料中其中一層或更 多層。導電層214包含用於賴後形成導電柱之可濕潤 墊片。 一導電層216使用物理氣相沉積、化學氣相沉積、濺 鍍電鍍、無電鍍製程或其它合適金屬沉積製程進行圖案 化來形成於綏晶種層或載體上。導電層216可為鋁、銅、 錫、鎳、金、銀或其它合適導電材料中其中一層或更多層。 導電層216為與導電層214共平面。導電層216為一固定 於導電層214的相對位置之凸塊下金屬化層。 複數個導電柱或杆218形成於導電層214之可濕潤接 26 201101399 觸墊片上。在一實施例巾,I # # μ s 導電柱218為藉由將一或更多 ❹ 、一曰/几積於曰曰種層或载體上而形成。導電層上的部 =光阻層為經由1刻顯影製程而被露出並移除。導電材 ;用選擇性電鍍製程來沉積於該光阻層之移除部分 内:該光阻層被剝除而留下各個導電柱218。導電柱218可 為銅'H金、焊錫或其它合適導電材料。導電柱218 ’、有2 1 2G微米圍之高度。在另—實施例中,形成之導電 柱2 1 8可為短柱凸塊或堆疊凸塊。在任何例子中,導電柱 218具有以焊料或内含銅 '銀、銘或錫之介金屬化合物所產 ^-至凸塊下金屬化,216之堅固又緊密金屬至金屬黏 〜複數個半導體晶粒或構件22〇為以金屬凸塊224朝下 定位在該載體上方之覆晶安排方式來安裝至凸塊下金屬化 層216。半導體晶粒22〇包含一内含類比或數位電路之作用 區域226,該些電路配置為形成於該晶粒内並根據該晶粒之 〇 f性設計及功能進行電性互連之主動元件、被動元件、導 電層和介電層。例如,該電路可包含一或更多電晶體、二 極體和形成於作用表面226内之其它電路構件以配置例Z 數位訊號處理器、特殊用途積體電路、記憶體或其它訊號 處理電路之基頻類比電路或數位電路。半導體晶粒22〇也 可包含用於射頻訊號處理之整合被動元件,例如電感器、 電容器和電阻器。 凸塊下金屬化層216固定於導電層214的相對位置。 導電柱218安裝在半導體晶粒220四周之導電層214上。 27 201101399 攄此,凸塊下金屬化層216固定於導電柱218的相對位置。 藉由配對金屬ώ塊224與凸塊下金屬化層216,半導體晶粒 220自我調準至導電柱218。 一封膠劑或封膠化合物228使用一錫膏印刷、壓縮成 型、轉注成型、液體封膠成型、真空疊合或其它合適塗抹 器來沉積於半導體晶粒22〇和導電柱218上。封膠劑 可為聚合物複合材料,例如,具有填充劑之環氧樹脂、豆 有填充劑之環氧丙稀醋或具有正韻充劑之聚合物。封膠 劑228為無導電性且在環境上保護該半導體元件隔離外部 構件及污染。利用牢牢安裝至固定凸塊下金屬化層216之 半導體晶粒220之金屬λ换,94 —· a l 金屬凸塊224,该晶粒在該封膠製程期 對準著導電柱2 1 8並未移位。 該封膠劑228進行研磨或電漿蝕刻以平坦化唁 形成一頂側增層式互連結才籌。該研磨操作露出導電柱、218 頂部表面及半導體晶粒22G #部表面。該頂側增層式 結構230形成於導電柱218、封膠劑228第—表面、 體晶粒220背部表面上。一絕緣或保護層加使用物 相沉積:化學氣相沉積、印刷、旋塗、喷塗、燒結或心 化製㈣成之。該保護I 232可為二氧化矽、氮化矽一 乳化石夕i氧化—组、氧化紹或具有類似絕緣和結 之其它材料中其中-層或更多層。以-钱刻製程移除二 分保濩層232而露出導電柱2丨8。 -導電層234使用物理氣相沉積、化學氣相沉積 鑛、電鑛、無電鑛絮条呈_^甘#人、吞 鲅灰耘或其匕合適金屬沉積製程進行圖案 28 201101399 化來形成於保護層232及導電柱218上。導電層234可為 鋁、銅、錫、鎳、金、銀或其它合適導電材料中其中一層 或更多層。一部分導電層234為電性連接至導電柱218。^ 電層234中的其它部分可依據該半導體元件之設計和功能 而為共電性或電性隔離。 一絕緣或保護層236使用物理氣相沉積、化學氣相沉 積、印刷、旋塗、噴塗、燒結或熱氧化製程來形成於絕緣 層232及導電層234上。該保護層236可為二氧化石夕、氮 化矽、氮氧化矽、五氧化二鈕、氧化鋁或具有合適絕緣特 性之其它材料中其t 一層或更多層。以一蝕刻製程移除一 部分保護層236而露出導電層234。 該載體經由化學濕式蝕刻、電衆乾式蝕刻、機械脫落、 化學機械拋光、機械研磨、熱烘烤、雷射掃描或濕式剝離 移除之。在該載體移除後,封膠劑228提供半導體晶粒22〇 結構支撐。該載體移除後接著露出導電層214及凸塊下金 屬化層2 16。 底側增層式互連結構240形成於與頂側增層式互連 結構230相對之導電柱218和封膠劑228第二表面上。一 導電層242使用物理氣相沉積、化學氣相沉積、濺鍍、電 鍍、無電鍍製程或其它合適金屬沉積製程進行圖案化來形 成於導電層214及凸塊下金屬化層216上。導電層242可 為銘 '銅、錫、錄、金、銀或其它合適導電材料中其中一 層或更多層。部分導電層242為電性連接至導電柱21、8、導 電層214及凸塊下金屬化層216。導電層242中的其它部分 29 201101399 可依據該半導體元件之設計和功能而為共電性或電性隔 離。 -電阻層244使用物理氣相沉積或化學氣相沉積進行 圖案化及沉積。電阻層244TaxSly或其它金屬石夕化物、氮化 组、錄鉻、氮化鈦或具有5至100歐姆/平方電阻率之推雜 多晶石夕。-絕緣層246使用物理氣相沉積、化學氣相沉積、 印刷、燒結或熱氧化製程來形成於導電層242上。該絕緣 層246可為氮化石夕、二氧化石夕、氮氧化石夕、五氧化二组、 氧化鋅、氧化錯、氧化|呂、聚醯亞胺、苯環丁稀、聚苯。亞 嗤或其它合適介電材料中其中一層或更多層。電阻層… 及絕緣層246可以相同遮罩形成並同時進行蝕刻。替代性 二電阻層244及絕緣層246可以不同遮罩進行圖案化及 触刻。 a —絕緣或保護層248❹旋塗、物理氣相沉積、化學 亂相沉積、印刷、燒結或熱氧化製程來形成於導電層242、 =…及絕緣層…該保護層248可為二' 特性之ΐΪ氧化石夕、五氧化二组、氧化紹或具有合適絕緣 ::其它材料中其中一層或更多層。一部分保護層248 二而露出導電層242、電阻層244及絕緣層246。 以、=電層25〇使用物理氣相沉積、化學氣相沉積、滅 化in/電錢製程或其它合適金屬沉積製程進行圖案 ⑽=保護層248、導電層242、電阻層244及絕緣層 250中之^成個別部分或區段以供進一步互連性。導電層 個別部分可依據個別半導體晶粒之連接性而為共 30 201101399 電性或電性隔離。導電層250可為鋁、龥 j、錫、錄、金、 銀或其它合適導電材料中其中一層或更多層。 尸—絕緣或保護層252使用旋塗、物理氣相沉積、化學 乳相沉積、印刷、燒結或熱氧化製程來形成於導㈣25〇 矛:保護層248上。該保護層252可為二氧化♦、氮:匕石夕、 土氧切、五氧化二紐、氧化銘或具有合適絕緣特性之其 匕材料中其中一層或更多層。一部分 Ο Ο 露出導電層25。。 ““層⑸被移除而 增層式互連結構240中所述結構構成—或更多被動電 路構件或整合被動元件。在一實施例中,導電層⑷、絕緣 層⑽及導電層250為一金屬層'絕緣層-金屬層電容器。電 阻層244為該被動電路中之電阻器構件。導電^ μ"之 個別區段在平面視野上可被捲繞或盤繞以產生:戈展示想要 之電感器特性。 -導電凸塊材料使用蒸鍵、電鑛、無錢、錫球滴落 ^網印製程來沉積於導電層25G ±。該凸塊㈣可為|g、 ―、鎳、金、銀、鉛、鉍、銅、谭錫及上述之結合,加上 :::性助焊劑材料。例如’該凸塊材料可為共晶錫/鉛、匕王垛仃动动通信系统(Eight _Unbalanced in the four bands of GSM) ^ ^Wwen change state provides one of the four frequency components to operate. One typical ^Bei, four one or more semiconductors The assembly requires multiple integrated passive components and their thousands of baskets called φ ^ Λ At 匕 A frequency circuit to perform the required electrical functions. 8 The carrier is subjected to chemical wet etching, dry-drying, mechanical shedding, Chemical mechanical polishing, mechanical grinding, squeezing...', roasting, laser scanning or wet stripping. After the carrier is removed, the seal is supported by ice + Α W 1 The carrier is removed and then the generaized layer 166. The conductive layer (6) and the bump under gold 24 201101399 a bottom side build-up interconnect structure is formed on the conductive pillar 168 opposite the top side build-up interconnect structure 180 and Sealant 178 conductive layer 202 is patterned using physical vapor deposition, chemical vapor deposition: an electrical process or other suitable metal deposition process, conductive layer 164 and under bump metallization layer 166. Conductive layer 2 〇2 可Ο Ο is aluminum, copper, tin, nickel, gold, silver or other One or more layers of the conductive material. The partial conductive layer 2〇2 is electrically connected to the conductive layer (6), the conductive layer 164 and the under bump metallization layer 166. The conductive layer may be according to the design and function of the semiconductor element. Formed on the conductive layer 202 and the sealant m for the common charge from the insulating or protective layer 2〇4 using physical vapor deposition, chemical vapor deposition printing, suspect coating, spraying, sintering or thermal oxidation processes. On the surface, the protective layer 2〇4 may be one or more of the group consisting of silica, yttrium, yttrium oxide, pentoxide, oxidized or other materials having similar insulating and structural properties. The conductive layer 2 is exposed by a process of removing the portion of the protective layer. A conductive bump material is deposited on the conductive layer using a steaming, electromineral, unprocessed, solder ball dropping or screen printing process. The bump material may be a combination of stellite, tin-nickel, gold, silver, erbium, bismuth, copper, solder, and the like, plus a selective fluxing (four) material. For example, the bump material may be eutectic tin. / wrong ' Shang Ming solder or no wrong rod tin. Use a suitable bonding or bonding system Bonding the ghost material to the conductive layer 2〇2. In one embodiment, the bump material is reflowed by heating the material beyond its melting point to form a sphere or bump in two applications. The bumps 206 are backed up - a second time to improve the electrical contact of the pair of 201101399 conductive layers 202. The bumps can also be compression bonded to the conductive layer 202. The bumps 206 can be formed on the conductive layer 2 A type of interconnect structure on 2. The interconnect structure can also use wiring, conductive paste, stud bumps, tiny bumps, or other electrical interconnects. The conductive pillars 168 are on the top side of the layered interconnect μ 18〇 A vertical 2-way interconnection is provided between the bottom side build-up interconnect layer 200. The conductive layer 184 is a metal bump 174 electrically connected to the conductive layer 2〇2 and the semiconductor die 17〇 through the conductive pillars 168. Figure 6 illustrates an embodiment of a vertical interconnect structure having a plurality of integrated passive components formed in a bottom side interconnect structure. Similar to the method described in Figures 3a-3h, the semiconductor component 212 is fabricated with a sacrificial or temporary substrate or carrier of a selective seed layer. The conductive layer 214 is formed using physical vapor deposition, chemical vapor deposition, sputtering, electroplating, electroless plating, or Other suitable metal deposition processes are patterned to form on the support. Conductive layer 214 can be one or more of aluminum, copper 'tin, nickel, gold, silver, tungsten, polysilicon or other suitable electrically conductive material. Conductive layer 214 includes a wettable gasket for forming a conductive post. A conductive layer 216 is patterned on the seed layer or carrier using physical vapor deposition, chemical vapor deposition, sputtering plating, electroless plating, or other suitable metal deposition process. Conductive layer 216 can be one or more of aluminum, copper, tin, nickel, gold, silver, or other suitable electrically conductive material. Conductive layer 216 is coplanar with conductive layer 214. Conductive layer 216 is an under bump metallization layer that is fixed to the opposite location of conductive layer 214. A plurality of conductive posts or rods 218 are formed on the wettable joints of the conductive layer 214. In one embodiment, the I##μs conductive pillars 218 are formed by depositing one or more ❹, one 曰/s of a layer on a seed layer or carrier. Portion on the Conductive Layer = The photoresist layer is exposed and removed via a one-shot development process. A conductive material is deposited in the removed portion of the photoresist layer by a selective electroplating process: the photoresist layer is stripped leaving the respective conductive pillars 218. Conductive post 218 can be copper 'H gold, solder or other suitable electrically conductive material. The conductive post 218' has a height of 2 1 2G micron circumference. In another embodiment, the formed conductive pillars 2 18 may be short stud bumps or stacked bumps. In any example, the conductive pillars 218 are metallized by solder or copper-containing silver, silver, or tin-based intermetallic compounds, and 211 are strong and tightly metal-to-metal bonded to a plurality of semiconductor crystals. The pellets or members 22 are mounted to the under bump metallization layer 216 in a flip chip arrangement in which the metal bumps 224 are positioned downwardly over the carrier. The semiconductor die 22A includes an active region 226 containing an analog or digital circuit, and the circuits are configured as active components formed in the die and electrically interconnected according to the design and function of the die. Passive component, conductive layer and dielectric layer. For example, the circuit can include one or more transistors, diodes, and other circuit components formed in the active surface 226 to configure a Z-digital signal processor, special-purpose integrated circuit, memory, or other signal processing circuit. Base frequency analog circuit or digital circuit. The semiconductor die 22 can also include integrated passive components for RF signal processing, such as inductors, capacitors, and resistors. The under bump metallization layer 216 is fixed to the opposite position of the conductive layer 214. Conductive posts 218 are mounted on conductive layer 214 around semiconductor die 220. 27 201101399 As such, the under bump metallization layer 216 is fixed at the relative position of the conductive pillars 218. The semiconductor die 220 self-aligns to the conductive pillars 218 by mating the metal germanium block 224 with the under bump metallization layer 216. A glue or sealant compound 228 is deposited onto the semiconductor die 22 and the conductive posts 218 using a solder paste printing, compression molding, transfer molding, liquid encapsulation molding, vacuum lamination or other suitable applicator. The sealant may be a polymer composite such as an epoxy resin having a filler, a propylene glycol acrylate having a filler, or a polymer having a positive filler. The encapsulant 228 is non-conductive and environmentally protects the semiconductor component from external components and contamination. The metal bumps 244, which are firmly mounted to the semiconductor die 220 of the under bump metallization layer 216, are replaced by a metal bump 224 which is aligned with the conductive pillars 2 1 8 during the sealing process. Not shifted. The encapsulant 228 is ground or plasma etched to planarize 唁 to form a top side buildup interconnect junction. The polishing operation exposes the conductive pillars, the top surface of the 218, and the surface of the semiconductor die 22G#. The top side build-up structure 230 is formed on the conductive pillar 218, the first surface of the sealant 228, and the back surface of the bulk die 220. An insulating or protective layer plus phase deposit: chemical vapor deposition, printing, spin coating, spray coating, sintering or cardioforming (4). The protection I 232 may be a ruthenium dioxide, a ruthenium nitride- emulsifier, an oxidation layer or other materials having similar insulation and junctions, among which one or more layers. The two-dimensional protective layer 232 is removed by the engraving process to expose the conductive pillars 2丨8. The conductive layer 234 is formed by physical vapor deposition, chemical vapor deposition ore, electric ore, electroless ore strips, _^甘# human, swallowed ash or its suitable metal deposition process for patterning 28 201101399 Layer 232 and conductive pillars 218. Conductive layer 234 can be one or more of aluminum, copper, tin, nickel, gold, silver, or other suitable electrically conductive material. A portion of the conductive layer 234 is electrically connected to the conductive pillars 218. ^ Other portions of the electrical layer 234 may be electrically or electrically isolated depending on the design and function of the semiconductor component. An insulating or protective layer 236 is formed over the insulating layer 232 and the conductive layer 234 using physical vapor deposition, chemical vapor deposition, printing, spin coating, spray coating, sintering or thermal oxidation processes. The protective layer 236 can be one or more layers of SiO2, lanthanum nitride, lanthanum oxynitride, pentoxide oxide, aluminum oxide or other materials having suitable insulating properties. A portion of the protective layer 236 is removed by an etching process to expose the conductive layer 234. The support is removed by chemical wet etching, electric dry etching, mechanical shedding, chemical mechanical polishing, mechanical grinding, hot baking, laser scanning or wet stripping. After the carrier is removed, the encapsulant 228 provides structural support for the semiconductor die 22〇. The carrier is removed and the conductive layer 214 and the under bump metallization layer 2 16 are then exposed. A bottom side build-up interconnect structure 240 is formed on the second surface of the conductive pillar 218 and encapsulant 228 opposite the top side build-up interconnect structure 230. A conductive layer 242 is patterned on the conductive layer 214 and the under bump metallization layer 216 by physical vapor deposition, chemical vapor deposition, sputtering, electroplating, electroless plating, or other suitable metal deposition process. Conductive layer 242 can be one or more of the layers 'copper, tin, gold, silver, or other suitable electrically conductive material. The portion of the conductive layer 242 is electrically connected to the conductive pillars 21, 8, the conductive layer 214, and the under bump metallization layer 216. The other portion of the conductive layer 242 29 201101399 may be electrically or electrically isolated depending on the design and function of the semiconductor component. The resistive layer 244 is patterned and deposited using physical vapor deposition or chemical vapor deposition. The resistive layer 244TaxSly or other metal lithium, nitrided group, chrome, titanium nitride or a doped polycrystalline spine having a resistivity of 5 to 100 ohms/square. The insulating layer 246 is formed on the conductive layer 242 using a physical vapor deposition, chemical vapor deposition, printing, sintering or thermal oxidation process. The insulating layer 246 may be nitride, sulphur dioxide, sulphur oxynitride, pentoxide, zinc oxide, oxidized oxidized, oxidized lycopene, polyiminimide, benzocyclobutene, polyphenylene. One or more of the layers of the yttrium or other suitable dielectric material. The resistive layer ... and the insulating layer 246 may be formed by the same mask and simultaneously etched. The alternative two-resistive layer 244 and insulating layer 246 can be patterned and etched with different masks. a — insulating or protective layer 248 spin coating, physical vapor deposition, chemical chaotic deposition, printing, sintering or thermal oxidation process to form on the conductive layer 242, = ... and the insulating layer ... the protective layer 248 can be two ' characteristic ΐΪOxide oxide, pentoxide pentoxide, oxidized or have suitable insulation: one or more of the other materials. A portion of the protective layer 248 exposes the conductive layer 242, the resistive layer 244, and the insulating layer 246. Patterning (10) = protective layer 248, conductive layer 242, resistive layer 244, and insulating layer 250 using physical vapor deposition, chemical vapor deposition, inductive in/electricity process, or other suitable metal deposition process In the case of individual parts or sections for further interconnectivity. The individual portions of the conductive layer can be electrically or electrically isolated depending on the connectivity of the individual semiconductor dies. Conductive layer 250 can be one or more of aluminum, tantalum, tin, gold, silver, or other suitable electrically conductive material. The cadaver-insulating or protective layer 252 is formed on the conductive layer 248 using spin coating, physical vapor deposition, chemical emulsion deposition, printing, sintering or thermal oxidation processes. The protective layer 252 may be one or more of cerium oxide, nitrogen, strontium, earth oxide, pentoxide, oxidized or one of the bismuth materials having suitable insulating properties. A portion of the Ο 露出 exposes the conductive layer 25. . "The layer (5) is removed and the structure described in the build-up interconnect structure 240 constitutes - or more passive circuit components or integrated passive components. In one embodiment, the conductive layer (4), the insulating layer (10), and the conductive layer 250 are a metal layer 'insulating layer-metal layer capacitor. Resistive layer 244 is the resistor member in the passive circuit. The individual segments of the conductive ^μ" can be wound or coiled in a planar field of view to produce: the desired inductor characteristics. - The conductive bump material is deposited on the conductive layer 25G ± using a steam bond, an electric ore, a moneyless, a solder ball drop screen printing process. The bumps (4) may be |g, ―, nickel, gold, silver, lead, antimony, copper, tantalum and combinations thereof, plus ::: flux materials. For example, the bump material can be eutectic tin/lead,

兩錯焊錫或無船焊錫。佶用一 A 吏用〇適黏接或黏結製程將該凸 塊材料黏結至導電層2 一 纟實施例中,該凸塊材料經由 : 該材料加熱超過它的炼點而進行回焊以形成圓球或凸塊 導電層在if應:中,凸塊254被回焊一第二時間以改進對 之…f生接觸。該些凸塊也可被壓縮黏結至導電 胃〇凸塊254代表可被形成於導電層25〇上之某類型互 31 201101399 連’π構°亥互連結構也可使用接線、導電膏、短柱凸塊、 微小凸塊或其它電性互連。 導電柱218在頂側增層式互連層230及底側增層式互 連層240之間提供垂直ζ方向互連。導電層234為透過導電 柱218電性連接至導電層242和25〇及半導體晶粒22〇之 金屬凸塊2 2 4。 圖7說明具有形成於該底側互連結構中之多個整合被 動兀件之垂直互連結構之實施例。半導體元件26〇使用具 有一犧牲或暫時基板或載體。一底側互連結構形成於該載 體上。一導電層264使用物理氣相沉積、化學氣相沉積、 濺鍍、電鍍、無電鍍製程或其它合適金屬沉積製程進行圖 案化而得以形成個別部分或區段264a_264h。導電層可 為鋁、銅、錫、鎳、金、銀或其它合適導電材料中其中一 層或更多層。部分導電層264為電性連接至導電柱16'8。導 電層184中的其它部分可依據該半導體元件之設計和功能 而為共電性或電性隔離。 -電阻層266a韻使用物理氣相沉積或化學氣相沉 積來分別圖案化並沉積於導電層264和該载體上。電阻層 266為TaxSiy或其它金屬石夕化物、氮化组、錄絡、氮化欽二 具有5至100歐姆/平方電阻率之摻雜多晶矽。_絕緣層 使用物理氣相沉積、化學氣相沉積、印刷、燒結或孰氧化 製程來形成於導電層⑽上。該絕緣層⑽可為氮切、 二氧化石夕、氮氧化石夕、五氧化二组、氧化鋅、氧化錯、氧 化紹、聚酿亞胺、苯環丁烯、聚苯噪嗤或其它合適介電材 32 201101399 • 料中其中一層或更多層。 一絕緣或保護層270使用旋塗、物理氣相沉積、化學 氣相沉積、印刷、燒結或熱氧化製程來形成於導電層264、 電阻層266及絕緣層268上。該保護層27〇可為二氧化矽、 乳化石夕、氮氧化石夕、五氧化二组、氧化銘或具有合適絕緣 特性之其它材料t其中一層或更多層。一部分保護層27〇 被移除而露出導電層264、電阻層266及絕緣層268。 ❹ 一導電層272使用物理氣相沉積、化學氣相沉積、濺 '電錄無電鑛製程或其它合適金屬沉積製程進行圖案 化並沉積於保護層27〇、導電層264、電阻層咖及絕緣層 268上以形成個別部分或區段以供進一步互連性。導電層 272中之個別部分可依據個別半導體晶粒之連接性而為共 電性或電性隔離。導電層272可為鋁、銅、錫、鎳、金:、 或其匕&amp;適導電材料中其中一層或更多層。導電層272 包含用於稍後形成導電柱之可濕潤接觸墊片以及基於該半 〇導體晶粒調準而與該些導電柱相對固定之凸塊下金屬化 層。 ^ 、邑、或保°隻層274使用旋塗、物理氣相沉積、化學 氣相A積、印刷、燒結或熱氧化製程來形成於導電層272 和:濩層270上。該保護層274可為二氧化矽、氮化矽、 氮氧化妙、五氧化二组、氧化銘或具有合適絕緣特性之其 匕材料中其中_ — 、 層或更夕層。一部分保護層274被移除而 露出導電層272。 增層式互連結構262中所述結構構成一或更多被動電 33 201101399 路構件或整合被動元件。在—實施例中,導電層 阻層266a、絕緣層268及導電層272為—金屬層-絕緣層_ 金屬層電容器。電阻層祕為該被動電路中之電阻器構 牛導電層272中之其它個別區段在平面視野上可被捲繞 或盤繞以產生或展示想要之電感器特性。 複數個導電柱或杆278形成於導電層Μ之可濕潤接 觸墊片上。在-實施例中,導電柱278為藉由將一或更 絲層沉積於互連結構262上而形成。導電層Μ上的部 分光阻層為經由-#刻顯影製程而被露出並移除 料使用-選擇性電鍍製程來沉積於該光阻層之移除部分 内。該光阻層被剝除而留下各個導電柱278。導電柱可 為銅、紹、鶴、金、焊錫或其它合適導電材料。導電柱Μ 具有2_120微米範圍之高度。在另—實施例中,形成之導電 柱278可為短柱凸塊或堆疊凸塊。在任何例子中,導電柱 278具有以焊料或内含銅 '銀、鉍或錫之介金屬化合物所產 生之-至凸塊下金屬化^ 126之堅固又緊密金屬至金屬黏 ,衾吉0 複數個半導體晶粒或構件280為以金屬凸塊284朝下 定位在互連結構262上方之覆晶安排方式來安裝至導電層 272。半導體晶粒包含一内含類比或數位電路之作用區 域⑶,該些電路配置為形成於該晶粒内並根據該晶粒之電 性設:及功能進行電性互連之主動元件、被動元件、導電 層和&quot;電層。例如’該電路可包含—或更多電晶體、二極 體和形成於作用表® 126内之其它電路構件以配置例如數 34 201101399 • 位訊號處理器、牿掩田、今技減 特殊用途積體電路、記憶體或其它訊號虚 =電路之基頻類比電路或數位電路。半導 也 包含用於射頻訊號處理之整合被動元件,:也: 容器和電阻器。 电《χ盗電 封膠劑或封膠化合物288使用一錫 型、轉注成型、液體封膠成型、真空疊合或发」二縮成 器來沉積於半導體晶粒28 且二:適塗抹 可為聚A物、f “,,. 柙导電柱278上。封膠劑288 ❹壤:\ #,例如,具有填充劑之環氧樹脂、具 、却之環氧丙烯酯或具有正確填充劑之聚合物。封膠 劑2 8 8為益導^雷μ θ y* is 構件及.;保護該半導體元件隔離外部 =心。利用牢牢安裝至導電層272之半導體晶粒· 、、凸塊284,該晶粒在該封膠製程期間為對準著導 2 7 8並未移位。 該封膠劑288進行研磨或„_以平坦化該表面而 增層式互連結構。在一實施例中,該研磨操作 〇 ^導電柱278頂部表面及半導體晶粒·f部表面。替 代十地’該研磨操作露出導電柱278頂部表面並保留内嵌 於封膠劑288之半導體晶粒28〇β該頂側增層式互 形成於導電柱278、封膠劑挪第—表面 = “表面上。一絕緣或保護層292使用物理氣相沉積、 化學氣相沉積、印刷、旋塗、喷塗、燒結或熱氧化製 ^。該保護層292可為二氧切、氮切、氮氧化石夕、 一化一组、氧化鋁或具有類似絕緣和結構特性之並 料中其中-層或更多層。以一㈣製程移除一部分保= 35 201101399 292而露出導電柱278。 一導電層294使用物理氣相沉積、化學氣相沉積、賤 鍵 '電鍍、無電鍍製程或其它合適金屬沉積製程進行圖案 化來形成於保護層292及導電柱278上。導電層294可為 銘、銅、錫、鎳、金' 銀或其它合適導電材料中其中一層 或更多層。一部分導電層294為電性連接至導電柱278。導 電層294中的其它部分可依據該半導體元件之設計和功能 而為共電性或電性隔離。 一絕緣或保護層296使用物理氣相沉積、化學氣相沉 積、印刷、旋塗、噴塗、燒結或熱氧化製程來形成於絕緣 層292和導電層294上。該保護層296可為二氧化矽、氮 化矽、氮氧化矽、五氧化二鈕、氧化鋁或具有類似絕緣和 結構特性之其它材料中其中一層或更多層。以一蝕刻製程 移除一部分保護層296而露出導電層294。 該暫時載體經由化學濕式蝕刻、電漿乾式蝕刻、機械 脫洛' 化學機械拋光、機械研磨、熱烘烤、雷射掃描或濕 f剝離移除之。在該載體移除後’封膠劑288提供半導體 晶粒260結構支撐。該載體移除後接著露出導電層264。 —絕緣或保護層300使用物理氣相沉積、化學氣相沉 P刷旋塗、喷塗、燒結或熱氧化製程來形成於導電 層272和絕緣層274上。該保護層_可為二氧化石夕、氮 、氮氧化矽、i氧化二钽、氧化鋁或具有類似絕緣和 :特性之其它材料中其中一層或更多層。以一蝕刻製程 移除—部分保護層3〇〇而露出導電層272。 36 201101399 -導電層298使用物理氣相沉積、化學氣相沉積、濺 鑛、電鑛、無電鑛製程或其它合適金屬沉積製程進行圖案 化來形成於導電層272上。導電層可為鋁、銅、錫、 =、金、銀或其它合適導電材料中其中一層或更多層。部 刀導電層298為電性連接至導電柱278及導電層272。導電 層298中的其它部分可依據該半導體元件之設計和功能而 為共電性或電性隔離。 一導電凸塊材料使用蒸鍍、電鍍、無電鍍、錫球滴落 或網印製程來沉積於導電層298 ±。該凸塊材料可為銘、 錫、鎳、金、銀、鉛、鉍、銅、焊錫及上述之結合,加上 選擇性助焊劑材料。例如,該凸塊材料可為共晶錫/鉛、 高鉛焊錫或無鉛焊錫。使用一合適黏接或黏結製程將該凸 塊材料黏結至導電層298。在一實施例中,該凸塊材料經由 將違材料加熱超過它的熔點而進行回焊以形成圓球或凸塊 302。在一些應用中,凸塊302被回焊一第二時間以改進對 導電層298之電性接觸。該些凸塊也可被壓縮黏結至導電 層298 °凸塊302代表可被形成於導電層298上之某類型互 連結構。該互連結構也可使用接線、導電膏、短柱凸塊、 微小凸塊或其它電性互連。 一半導體晶粒或構件304為以金屬凸塊306電性連接 至導電層298之覆晶安排方式來安裝至半導體元件260背 面。半導體晶粒304包含一内含類比或數位電路之作用表 面 °亥些包路配置為形成於該晶粒内並根據該晶粒之電性 設計及功能進行電性互連之主動元件、被動元件、導電層 37 201101399 和介電層。例如,該電路可包含一或更多電晶體、二極體 和开》成於作用表面226内之其它電路構件以配置例如數位 δίΐ號處理器、特殊用途積體電路、記憶體或其它訊號處理 電路之基頻類比電路或數位電路。半導體晶粒304也可包 含用於射頻訊號處理之整合被動元件,例如電感器、電容 器和電阻器。一底部填膠材料308被沉積於半導體晶粒3〇4 下0 導電柱278在底側增層式互連層262及頂側增層式互 連層290之間提供垂直ζ方向互連。導電層294為透過導電 柱278電性連接至導電| 272和半導體晶粒之金屬凸 鬼 卩及導電層264、半導體晶粒304之金屬凸塊306 和互連層262中的整合被動元件。 戈0上所述,該整合被動 . _,,,丨母1饭形珉於該頂 層式互連層和底側增層式互連層中之任—者或兩者。丑 卜或更夕半導體晶粒可被堆疊或—起安裝於該些導_ 互:二ί它半導體晶粒、分立式構件及構裝可使用二级 層式互連層和底側增層式互連層。 •,- g本發明一或更多實施例 技術之人士會理解被辛加5兒明,熟知此項 而不偏離下列申==實施例之修正和改寫可被進行 幻甲明專利範圍所提之本發明範圍。 【圖式簡單說明】 圖 圖 1說明在表 2a_2c說明 面上安裝有各類型構裝之印刷電 安裝至該印刷電路板之代表性4 構 38 201101399 裝之進一步細部。 圖3a-3h說明一種使用導電柱和基於該半導體晶粒調 準/、。亥二導電枝相對固定之凸塊下金屬化層來形成一垂 直互連結構之方法。 圖 說明利用該些導電柱進行電性互連之堆疊半導體 元件。 ’ Ο 件之明具有形成於—頂側互連結構中之整合被動元 仟之牛導體元件。 元 件之半導體元件。 具有形成於―底側互連結構巾之整合被動 元 件二施:^ Ο 50 52 54 56 58 60 62 64 66 主要元件符號說明 電子元件 印刷電路板 軌跡線 打線接合構裝 覆晶構裝 錫球陣列構裴 凸塊晶片載體 雙列式構裝 平面陣列構裝 多晶片模組構裝 39 68 201101399 70 四邊爲平無引腳構裝 72 四邊扁平構裝 74 半導體晶粒 76 接觸墊片 78 中介載體 80 導線 82 接線 84 封膠劑 88 半導體晶粒 90 載體 92 底部填膠或環氧樹脂黏接材料 94 接線 96 接觸墊片 98 接觸墊片 100 封膠化合物或封膠劑 102 接觸墊片 104 凸塊 106 載體 108 作用區域 110 焊料凸塊或圓球 112 焊料凸塊或圓球 114 訊號線 116 封膠化合物或封膠劑 120 載體 201101399Two wrong solder or no ship solder. The bump material is bonded to the conductive layer 2 by a suitable bonding or bonding process. In one embodiment, the bump material is reflowed to form a circle by heating the material beyond its refining point. The ball or bump conductive layer is in if: the bump 254 is reflowed for a second time to improve the contact. The bumps can also be compression bonded to the conductive gastric fistula bumps 254 to represent a type of mutual phase that can be formed on the conductive layer 25〇. 201101399 even the 'π-structured interconnect structure can also use wiring, conductive paste, short Stud bumps, tiny bumps, or other electrical interconnections. Conductive posts 218 provide vertical ζ directional interconnections between top side build-up interconnect layer 230 and bottom side build-up interconnect layer 240. The conductive layer 234 is electrically connected to the conductive layers 242 and 25 and the metal bumps 22 of the semiconductor die 22 through the conductive pillars 218. Figure 7 illustrates an embodiment of a vertical interconnect structure having a plurality of integrated passive members formed in the bottom side interconnect structure. The semiconductor component 26 is used with a sacrificial or temporary substrate or carrier. A bottom side interconnect structure is formed on the carrier. A conductive layer 264 is patterned using physical vapor deposition, chemical vapor deposition, sputtering, electroplating, electroless plating, or other suitable metal deposition process to form individual portions or sections 264a-264h. The conductive layer can be one or more of aluminum, copper, tin, nickel, gold, silver or other suitable electrically conductive material. A portion of the conductive layer 264 is electrically connected to the conductive pillars 16'8. Other portions of the conductive layer 184 may be electrically or electrically isolated depending on the design and function of the semiconductor component. The resistive layer 266a is separately patterned and deposited on the conductive layer 264 and the carrier using physical vapor deposition or chemical vapor deposition. The resistive layer 266 is a doped polysilicon having a resistivity of 5 to 100 ohms/square of TaxSiy or other metal cerium, nitrided, nitrided, nitrided. The insulating layer is formed on the conductive layer (10) by physical vapor deposition, chemical vapor deposition, printing, sintering or ruthenium oxidation. The insulating layer (10) may be nitrogen cut, sulphur dioxide, sulphur oxynitride, pentoxide, zinc oxide, oxidized oxidized, oxidized, poly-imine, benzocyclobutene, polybenzazole or other suitable Dielectric material 32 201101399 • One or more layers in the material. An insulating or protective layer 270 is formed on the conductive layer 264, the resistive layer 266, and the insulating layer 268 using spin coating, physical vapor deposition, chemical vapor deposition, printing, sintering, or thermal oxidation processes. The protective layer 27 may be cerium oxide, emulsified stone, oxynitride, pentoxide, other materials or other materials having suitable insulating properties, one or more layers. A portion of the protective layer 27 is removed to expose the conductive layer 264, the resistive layer 266, and the insulating layer 268. ❹ A conductive layer 272 is patterned and deposited on the protective layer 27, the conductive layer 264, the resistive layer, and the insulating layer using physical vapor deposition, chemical vapor deposition, sputtering, electroless ore-free processes, or other suitable metal deposition processes. 268 is formed to form individual portions or sections for further interconnectivity. Individual portions of conductive layer 272 may be electrically or electrically isolated depending on the connectivity of the individual semiconductor dies. The conductive layer 272 can be one or more of aluminum, copper, tin, nickel, gold: or its conductive & conductive material. Conductive layer 272 includes a wettable contact pad for later forming a conductive post and an under bump metallization layer that is fixed relative to the conductive pillars based on the alignment of the semiconductor conductor. The ^, 邑, or SiO layer 274 is formed on the conductive layer 272 and the ruthenium layer 270 using spin coating, physical vapor deposition, chemical vapor deposition, printing, sintering, or thermal oxidation processes. The protective layer 274 may be ruthenium dioxide, tantalum nitride, nitrous oxide, pentoxide, oxidized or yttrium-containing material having suitable insulating properties. A portion of the protective layer 274 is removed to expose the conductive layer 272. The structure described in the build-up interconnect structure 262 constitutes one or more passive components or integrated passive components. In the embodiment, the conductive barrier layer 266a, the insulating layer 268, and the conductive layer 272 are - a metal layer - an insulating layer - a metal layer capacitor. The resistor layer is the resistor in the passive circuit. The other individual segments of the bovine conductive layer 272 can be wound or coiled in a planar field of view to create or exhibit desired inductor characteristics. A plurality of conductive posts or rods 278 are formed on the wettable contact pads of the conductive layer. In an embodiment, conductive pillars 278 are formed by depositing one or more layers of wire on interconnect structure 262. A portion of the photoresist layer on the conductive layer is exposed through the -# engraving process and the removal material is deposited in the removed portion of the photoresist layer using a selective electroplating process. The photoresist layer is stripped leaving the respective conductive pillars 278. The conductive posts can be copper, slag, crane, gold, solder or other suitable electrically conductive material. The conductive pillars have a height in the range of 2 to 120 microns. In another embodiment, the formed conductive posts 278 can be short stud bumps or stacked bumps. In any example, the conductive post 278 has a solid and tight metal to metal bond that is produced by solder or a mesometallic compound containing copper 'silver, tantalum or tin—to the under bump metallization 126. The semiconductor die or member 280 is mounted to the conductive layer 272 in a flip chip arrangement in which the metal bumps 284 are positioned downwardly over the interconnect structure 262. The semiconductor die includes an active region (3) including an analog or digital circuit, and the circuit is configured to be formed in the die and to electrically connect the active component and the passive component according to the electrical property of the die: , conductive layer and &quot; electrical layer. For example, the circuit may include - or more transistors, diodes, and other circuit components formed in the active table ® 126 to configure, for example, the number 34 201101399 • bit signal processor, 牿 牿 、, today's technical minus special purpose product Body circuit, memory or other signal virtual = circuit fundamental analog circuit or digital circuit. Semi-conductors also include integrated passive components for RF signal processing: also: containers and resistors. The electric slinger sealant or sealant compound 288 is deposited on the semiconductor die 28 using a tin-type, transfer molding, liquid-sealing molding, vacuum lamination or firing, and two: suitable for coating A, f ",,. 柙 conductive column 278. Sealant 288 ❹:: #, for example, epoxy resin with filler, with epoxy acrylate or polymer with correct filler The encapsulant 2 8 8 is a component and a protective member; and the semiconductor element is isolated from the outer core. The semiconductor die and the bump 284 are firmly mounted to the conductive layer 272. The die is not displaced during alignment of the bond during the encapsulation process. The sealant 288 is ground or __ to planarize the surface to form a layered interconnect structure. In one embodiment, the polishing operation 〇 ^ the top surface of the conductive pillar 278 and the surface of the semiconductor die · f. Instead of ten grounds, the polishing operation exposes the top surface of the conductive pillar 278 and retains the semiconductor die 28 embedded in the sealant 288. The top side layer is formed on the conductive pillar 278, and the sealant is moved to the surface = surface = "On the surface. An insulating or protective layer 292 is formed by physical vapor deposition, chemical vapor deposition, printing, spin coating, spray coating, sintering or thermal oxidation. The protective layer 292 may be dioxate, nitrogen cut, nitrogen. One or more layers of oxidized oxide, a group of alumina, or a mixture of similar insulating and structural properties. A portion of the bond is removed by a process of one (four) process = 35 201101399 292 to expose the conductive pillars 278. The layer 294 is patterned on the protective layer 292 and the conductive pillars 278 by physical vapor deposition, chemical vapor deposition, 贱 key 'electroplating, electroless plating process or other suitable metal deposition process. The conductive layer 294 can be Ming, copper. One or more of tin, nickel, gold 'silver or other suitable conductive material. A portion of conductive layer 294 is electrically connected to conductive pillar 278. Other portions of conductive layer 294 may depend on the design and function of the semiconductor component and Electro-mechanical or electrical isolation. An insulating or protective layer 296 is formed on the insulating layer 292 and the conductive layer 294 using physical vapor deposition, chemical vapor deposition, printing, spin coating, spray coating, sintering or thermal oxidation processes. The protective layer 296 can be one or more of cerium oxide, cerium nitride, cerium oxynitride, pentoxide oxide, aluminum oxide or other materials having similar insulating and structural properties. Part of the protection is removed by an etching process. The layer 296 exposes the conductive layer 294. The temporary carrier is removed by chemical wet etching, plasma dry etching, mechanical detachment 'chemical mechanical polishing, mechanical grinding, hot baking, laser scanning or wet f peeling. After the carrier is removed, the encapsulant 288 provides structural support for the semiconductor die 260. The carrier is removed and then the conductive layer 264 is exposed. - The insulating or protective layer 300 is deposited by physical vapor deposition, chemical vapor deposition, brushing, and spraying. A coating, sintering or thermal oxidation process is formed over the conductive layer 272 and the insulating layer 274. The protective layer may be a dioxide dioxide, nitrogen, bismuth oxynitride, bismuth oxide, aluminum oxide or similar insulating and: One or more of the other materials of the nature. The protective layer is removed by an etching process to expose the conductive layer 272. 36 201101399 - Conductive layer 298 uses physical vapor deposition, chemical vapor deposition, sputtering Patterning is performed on the conductive layer 272 by electroforming, electroless ore or other suitable metal deposition process. The conductive layer may be one or more of aluminum, copper, tin, =, gold, silver or other suitable conductive material. The portion of the knife conductive layer 298 is electrically connected to the conductive pillar 278 and the conductive layer 272. Other portions of the conductive layer 298 may be electrically or electrically isolated depending on the design and function of the semiconductor component. The material is deposited on the conductive layer 298 ± using evaporation, electroplating, electroless plating, solder ball dropping or screen printing processes. The bump material can be a combination of indium, tin, nickel, gold, silver, lead, antimony, copper, solder, and the like, plus a selective flux material. For example, the bump material can be eutectic tin/lead, high lead solder, or lead free solder. The bump material is bonded to conductive layer 298 using a suitable bonding or bonding process. In one embodiment, the bump material is reflowed by heating the material beyond its melting point to form a ball or bump 302. In some applications, bumps 302 are reflowed for a second time to improve electrical contact to conductive layer 298. The bumps can also be compression bonded to the conductive layer 298. The bumps 302 represent some type of interconnect structure that can be formed on the conductive layer 298. The interconnect structure can also use wiring, conductive paste, stud bumps, tiny bumps, or other electrical interconnects. A semiconductor die or member 304 is mounted to the back side of the semiconductor device 260 in a flip chip arrangement in which the metal bumps 306 are electrically connected to the conductive layer 298. The semiconductor die 304 includes an active component and a passive component that are embedded in an analog or digital circuit and configured to be electrically formed in the die and electrically interconnected according to the electrical design and function of the die. , conductive layer 37 201101399 and dielectric layer. For example, the circuit can include one or more transistors, diodes, and other circuit components that are formed within the active surface 226 to configure, for example, a digital delta processor, special purpose integrated circuitry, memory, or other signal processing. The fundamental frequency analog circuit or digital circuit of the circuit. Semiconductor die 304 may also include integrated passive components for RF signal processing, such as inductors, capacitors, and resistors. An underfill material 308 is deposited over the semiconductor die 3〇4. The conductive pillars 278 provide vertical turns interconnect between the bottom side buildup interconnect layer 262 and the top side buildup interconnect layer 290. The conductive layer 294 is an integrated passive component in the conductive bump 278 electrically connected to the conductive 272 and the metal bumps and conductive layers 264 of the semiconductor die, the metal bumps 306 of the semiconductor die 304, and the interconnect layer 262. As described above, the integration is passive. _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Ugly or even semiconductor dies can be stacked or mounted on the MOSFETs: semiconductor dies, discrete components and structures can use a two-layer interconnect layer and a bottom side build-up layer Interconnect layer. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 illustrates a further detail of a representative structure of a printed circuit board mounted with a printed circuit board mounted on the surface of the table 2a_2c. Figures 3a-3h illustrate the use of a conductive pillar and alignment based on the semiconductor die. A method of forming a vertical interconnect structure with respect to a fixed under bump metallization layer. The figure illustrates a stacked semiconductor component electrically interconnected using the conductive pillars. The device has an integrated passive element formed in the top-side interconnect structure. The semiconductor component of the component. Integrated passive component formed on the "bottom side interconnect structure towel": ^ Ο 50 52 54 56 58 60 62 64 66 Main component symbol description Electronic component printed circuit board trace line wire bonding structure flip chip solder ball array裴 裴 晶片 晶片 晶片 晶片 晶片 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 Wire 82 Wiring 84 Sealant 88 Semiconductor die 90 Carrier 92 Bottom or epoxy bonding material 94 Wiring 96 Contact pad 98 Contact pad 100 Sealing compound or sealant 102 Contact pad 104 Bump 106 Carrier 108 active area 110 solder bump or sphere 112 solder bump or sphere 114 signal line 116 encapsulant compound or sealant 120 carrier 201101399

122 晶種層 124 導電層 126 凸塊下金屬化層 128 導電柱或杆 130 半導體晶粒或構件 134 金屬凸塊 136 作用表面 138 封膠劑或封膠化合物 139 研磨器 140 頂側增層式互連結構 142 絕緣或保護層 144 導電層 146 絕緣或保護層 150 底側增層式互連結構 152 導電層 154 絕緣或保護層 156 圓球或凸塊 160 半導體元件 162 半導體元件 164 導電層 166 導電層 168 導電柱 170 半導體晶粒或構件 174 金屬凸塊 41 201101399 176 178 180 182 184 186 188 190 192 194 200 202 204 206 212 214 216 218 220 224 226 228 230 作用表面 封膠劑或封膠化合物 頂側增層式互連結構 絕緣或保護層 導電層 電阻層 絕緣層 絕緣或保護層 導電層 絕緣或保護層 底側增層式互連結構 導電層 絕緣或保護層 圓球或凸塊 半導體元件 導電層 導電層 導電柱 半導體晶粒或構件 金屬凸塊 作用表面 封膠劑或封膠化合物 頂側增層式互連結構 絕緣或保護層 42 232 201101399122 seed layer 124 conductive layer 126 under bump metallization layer 128 conductive pillar or rod 130 semiconductor die or member 134 metal bump 136 active surface 138 sealant or sealant compound 139 grinder 140 top side build-up Connection structure 142 insulating or protective layer 144 conductive layer 146 insulating or protective layer 150 bottom side build-up interconnect structure 152 conductive layer 154 insulating or protective layer 156 sphere or bump 160 semiconductor element 162 semiconductor element 164 conductive layer 166 conductive layer 168 Conductive post 170 Semiconductor die or member 174 Metal bump 41 201101399 176 178 180 182 184 186 188 190 192 194 200 202 204 206 212 214 216 218 220 224 226 228 230 Acting surface sealant or sealant top side increase Layered interconnect structure Insulation or protective layer Conductive layer Resistance layer Insulation layer Insulation or protective layer Conductive layer Insulation or protective layer Bottom side build-up interconnect structure Conductive layer Insulation or protective layer Ball or bump Semiconductor element Conductive layer Conductive layer Conductive column semiconductor die or member metal bump function surface sealant or sealant compound top side build-up Even the structure of the insulating layer or the protective 42232201101399

234 導電層 236 絕緣或保護層 240 底側增層式互連結構 242 導電層 244 電阻層 246 絕緣層 248 絕緣或保護層 250 導電層 252 絕緣或保護層 254 圓球或凸塊 260 半導體元件 262 底側增層式互連結構 264 導電層 266 電阻層 268 絕緣層 270 保護層 272 導電層 274 絕緣或保護層 278 導電柱或杆 280 半導體晶粒或構件 284 金屬凸塊 288 封膠劑或封膠化合物 290 頂側增層式互連結構 292 絕緣或保護層 43 201101399 294 導電層 296 絕緣或保護層 298 導電層 300 絕緣或保護層 302 圓球或凸塊 304 半導體晶粒或構件 306 金屬凸塊 308 底部填膠材料 44234 conductive layer 236 insulating or protective layer 240 bottom side build-up interconnect structure 242 conductive layer 244 resistive layer 246 insulating layer 248 insulating or protective layer 250 conductive layer 252 insulating or protective layer 254 ball or bump 260 semiconductor element 262 bottom Side-growth interconnect structure 264 Conductive layer 266 Resistive layer 268 Insulating layer 270 Protective layer 272 Conductive layer 274 Insulating or protective layer 278 Conductive post or rod 280 Semiconductor die or member 284 Metal bump 288 Sealant or sealant compound 290 top side build-up interconnect structure 292 insulation or protective layer 43 201101399 294 conductive layer 296 insulation or protective layer 298 conductive layer 300 insulation or protective layer 302 sphere or bump 304 semiconductor die or member 306 metal bump 308 bottom Filling material 44

Claims (1)

201101399 七、申睛專利範圍: κ一種製造半導體元件之方法,包括: 提供一暫時載體; 在該暫時載體上形成一第一導電層; 在該暫時栽體上形成一凸塊下金屬化(UBM)層,該凸塊 下金屬化層固定於該第一導電層的相對位置; 在該第一導電層上形成一導電柱; 將半導體晶粒安裝至該凸塊下金屬化層以將該半導 Ο 體晶粒調準對應至該導電柱; 在該半導體晶粒上和該導電柱四周沉積一封勝劑,該 凸塊下至屬化層在沉積該封膠劑期間阻止該半導體晶粒移 位; π味錄f日f載體; 在該封膠劑第一表面上形成—第一互連結構;及 …在與該第一互連結構相對之封膠劑第二表面上形成一 弟二互連結構,該第一及第-石4 ^ 〇 行電性連接。 -互連…構為透過該導電柱進 :如申請專利範圍第1項之方法,其中,該第一互連結 構包含電性連接至該導電柱之—整合被動元件。 45 201101399 堆疊複數個半導體元件;及 透過該導電柱來電性連接該些半導體元件。 &amp;如申請專利範圍帛1項之方法,其中,形成該第一互 連結構包含: 形成電性連接至該導電柱之一第二導電層; 在第一導電層上形成一第一絕緣層;及 在第一導電層上形成一第三導電層,肖第三導電層為 電性連接至該導電柱。 7· 一種製造半導體元件之方法,包括: 提供一暫時載體; 在該暫時載體上形成一第一導電層; 在該暫時載體上形成-凸塊下金屬化⑽M)層,該凸塊 下金屬化層固定於該第—導電層的相對位置; 在該第一導電層上形成一導電柱; 將-半導體晶粒安裝至該凸塊下金屬化層以將該半導 體晶粒調準對應至該導電柱; 和該導電柱四周沉積一封膠劑 在該半導體晶粒上 移除該暫時載體; 在該封膠劑第一表面上形成一第一互連結構;及 在與_互連結構相對之封膠劑第二表面上形成— 弟一互連結構,贫笛_ Ώ λ* 行電性連接。° 弟二互連結構為透過該導電才主進 46 201101399 7項之方法,其中,該第一互連結 柱之—整合被動元件。 7項之方法,進一步包含:移除 第互連結構之平面。 10項之方法,其中,移除部分封 内耿於該封膠劑中之半導體晶201101399 VII. Applicable Patent Range: κ A method for manufacturing a semiconductor component, comprising: providing a temporary carrier; forming a first conductive layer on the temporary carrier; forming a bump under metallization on the temporary carrier (UBM a layer, the under bump metallization layer is fixed at a relative position of the first conductive layer; forming a conductive pillar on the first conductive layer; mounting a semiconductor die to the under bump metallization layer to the half Leading the body grain alignment corresponding to the conductive pillar; depositing a sizing agent on the semiconductor die and around the conductive pillar, the bump down to the genus layer blocking the semiconductor die during deposition of the sealant a π-flavored f-f carrier; a first interconnect structure formed on the first surface of the sealant; and a second surface formed on the sealant opposite the first interconnect structure In the second interconnect structure, the first and the first-stones are electrically connected. The method of claim 1, wherein the first interconnect structure comprises an integrated passive component electrically connected to the conductive pillar. 45 201101399 stacking a plurality of semiconductor components; and electrically connecting the semiconductor components through the conductive pillars. The method of claim 1, wherein the forming the first interconnect structure comprises: forming a second conductive layer electrically connected to one of the conductive pillars; forming a first insulating layer on the first conductive layer And forming a third conductive layer on the first conductive layer, and the third conductive layer is electrically connected to the conductive pillar. 7. A method of fabricating a semiconductor device, comprising: providing a temporary carrier; forming a first conductive layer on the temporary carrier; forming a sub-bump metallized (10) M) layer on the temporary carrier, the under bump metallization a layer is fixed at a relative position of the first conductive layer; a conductive pillar is formed on the first conductive layer; and a semiconductor die is mounted to the under bump metallization layer to align the semiconductor die to the conductive And depositing a glue around the conductive pillar to remove the temporary carrier on the semiconductor die; forming a first interconnect structure on the first surface of the sealant; and opposing the interconnect structure The second surface of the sealant is formed - the first interconnect structure, the poor whistle _ Ώ λ* is electrically connected. ° The second interconnect structure is a method of traversing the conductive body, wherein the first interconnecting node is a passive component. The method of item 7, further comprising: removing the plane of the first interconnect structure. The method of claim 10, wherein the semiconductor crystal which is partially sealed in the sealant is removed 9. 如申請專利範圍第 構包含電性連接至該導電 10. 如申請專利範圍第 部分封膠劑以形成用於該 11 如申請專利範圍第 膠劑露出該導電柱而保留 粒0 12.如申請專利範圍帛7項之方法,$ —步包含 堆疊複數個半導體元件;及 透過該導電柱來電性連接該些半導體元件。 13·如申請專利範圍第7項之方法,其中,形成 互連結構包含: 形成電性連接至該導電柱之一第二導電層; 在第-導電層上形成一第一絕緣層;及 在第二導電層上形成一第三導電層,該第 電性連接至該導電柱。 為 14.一種製造半導體元件之方法,包括: 形成包含可濕潤接觸墊片和固定於該些接觸墊片的相 對位置之凸塊下金屬化層(UBM)之一第一互連結構; 在°亥第一互連結構之可濕潤接觸墊片上形成一導電 柱; 、,將—第一半導體構件安裝至該凸塊下金屬化層以將該 半導體構件調準對應至該導電柱、在該半導體構件上和該 導電柱四周沉積一封膠劑;及 201101399 〃在與該第-互連結構相對之封膠劑第二表面上形成— 第二互連結構’該第—及第二互連結構為透過該導電柱 行電性連接。 15. 如申請專利範圍第14項之方法,其中,該凸塊下金 屬化層固定於該導電柱的相對位置並在沉積該㈣劑期間 阻止該半導體構件移位。 16. 如申請專利範圍第14項之方法,其中,該第一互連 結構包含電性連接至該導電柱之一整合被動元件。 一丨7.如申請專利範圍第16項之方法,其中,該整合被動 元件包含一電容器、電阻器或電感器。 18·如申請專利範圍第14項之方法,進一步包含安裝至 與該第一半導體構件相對之第一互連結構之一第二半導體 構件。 19. 如申請專利範圍第14項之方法,進一步包括:移除 部分封膠劑以形成用於該第二互連結構之平面。 20. 如申請專利範圍第14項之方法,進一步包含: 堆疊複數個半導體元件;及 透過該導電柱來電性連接該些半導體元件。 21. —種半導體元件,包括: 一第一導電層; 一凸塊下金屬化(UBM)層,固定於該第一導電層的相對 位置; 一導電柱,形成於該第一導電層上; 一半導體構件’安裝至該凸塊下金屬化層以將該半導 48 201101399 . 體晶粒調準對應至該導電柱.; 一封膠劑’沉積於該半導體晶粒上和該導電柱四周; 一第—互連結構,形成於該封膠劑第一表面上;及 一第二互連結構,形成於與該第一互連結構相對之封 膠劑第二表面上,該第一及第二互連結構為透過該導電柱 進行電性連接。 22. 如申請專利範圍第21項之半導體元件,其中,該凸 塊下金屬化層在沉積該封膠劑期間阻止該半導體構件 〇 位。 23. 如申請專利範圍第21項之半導體元件,其中,該第 ,立速結構包含電性連接至該導電柱之一整合被動元:。 24. 如申請專利範圍第21項之半導體元件,其中,該第 二立連結構包含電性連接至該導電柱之—整合被動元 25. 如申請專利範圍第21項之半導體元件,進一步包含 透過該導電柱進行電性連接之複數個堆疊半導體元件。 〇 八、圖式: (如次頁) 499. If the scope of the patent application includes electrically connecting to the conductive material. 10. As part of the scope of the patent application, the sealant is formed for use in the present invention. In the method of claim 7, the method includes stacking a plurality of semiconductor components; and electrically connecting the semiconductor components through the conductive pillars. 13. The method of claim 7, wherein forming the interconnect structure comprises: forming a second conductive layer electrically connected to one of the conductive pillars; forming a first insulating layer on the first conductive layer; A third conductive layer is formed on the second conductive layer, and the first conductive layer is electrically connected to the conductive pillar. 14. A method of fabricating a semiconductor device, comprising: forming a first interconnect structure comprising a wettable contact pad and an under bump metallization layer (UBM) fixed at opposite locations of the contact pads; Forming a conductive pillar on the wettable contact pad of the first interconnect structure; mounting a first semiconductor component to the under bump metallization layer to align the semiconductor component to the conductive pillar, a layer of glue is deposited on the semiconductor member and around the conductive pillar; and 201101399 is formed on the second surface of the encapsulant opposite the first interconnect structure - the second interconnect structure 'the first and second interconnects The structure is electrically connected through the conductive pillars. 15. The method of claim 14, wherein the under bump metallization layer is fixed to the opposite position of the conductive pillar and prevents displacement of the semiconductor component during deposition of the (IV) agent. 16. The method of claim 14, wherein the first interconnect structure comprises an integrated passive component electrically coupled to the one of the conductive pillars. The method of claim 16, wherein the integrated passive component comprises a capacitor, a resistor or an inductor. 18. The method of claim 14, further comprising mounting a second semiconductor component of the first interconnect structure opposite the first semiconductor component. 19. The method of claim 14, further comprising: removing a portion of the sealant to form a plane for the second interconnect structure. 20. The method of claim 14, further comprising: stacking a plurality of semiconductor components; and electrically connecting the semiconductor components through the conductive pillars. 21. A semiconductor device, comprising: a first conductive layer; an under bump metallization (UBM) layer fixed to a first conductive layer; a conductive pillar formed on the first conductive layer; A semiconductor component is mounted to the under bump metallization layer to align the semiconductor wafer to the conductive pillar. A glue is deposited on the semiconductor die and around the conductive pillar a first interconnect structure formed on the first surface of the encapsulant; and a second interconnect structure formed on the second surface of the encapsulant opposite the first interconnect structure, the first The second interconnect structure is electrically connected through the conductive pillars. 22. The semiconductor component of claim 21, wherein the under bump metallization layer prevents the semiconductor component from being clamped during deposition of the sealant. 23. The semiconductor component of claim 21, wherein the first, vertical velocity structure comprises an integrated passive element electrically connected to the conductive pillar: 24. The semiconductor component of claim 21, wherein the second vertical structure comprises an integrated passive element 25 electrically connected to the conductive pillar. The semiconductor component of claim 21, further comprising The conductive pillars are electrically connected to a plurality of stacked semiconductor components. 〇 Eight, schema: (such as the next page) 49
TW099114344A 2009-06-02 2010-05-05 Semiconductor device and method of forming ubm fixed relative to interconnect structure for alignment of semiconductor die TWI518810B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/476,447 US8072059B2 (en) 2006-04-19 2009-06-02 Semiconductor device and method of forming UBM fixed relative to interconnect structure for alignment of semiconductor die

Publications (2)

Publication Number Publication Date
TW201101399A true TW201101399A (en) 2011-01-01
TWI518810B TWI518810B (en) 2016-01-21

Family

ID=44837011

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099114344A TWI518810B (en) 2009-06-02 2010-05-05 Semiconductor device and method of forming ubm fixed relative to interconnect structure for alignment of semiconductor die

Country Status (1)

Country Link
TW (1) TWI518810B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449588A (en) * 2015-08-05 2017-02-22 联发科技股份有限公司 Semiconductor package, semiconductor device using the same and manufacturing method thereof
TWI774640B (en) * 2015-01-13 2022-08-21 日商迪睿合股份有限公司 Bump-forming film, semiconductor device, method for manufacturing the same, and connecting structure
TWI848600B (en) * 2022-09-28 2024-07-11 台灣積體電路製造股份有限公司 Three-dimensional semiconductor device and method for forming the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI774640B (en) * 2015-01-13 2022-08-21 日商迪睿合股份有限公司 Bump-forming film, semiconductor device, method for manufacturing the same, and connecting structure
TWI824412B (en) * 2015-01-13 2023-12-01 日商迪睿合股份有限公司 Film for bump formation, semiconductor device and manufacturing method thereof, and connection structure
CN106449588A (en) * 2015-08-05 2017-02-22 联发科技股份有限公司 Semiconductor package, semiconductor device using the same and manufacturing method thereof
CN106449588B (en) * 2015-08-05 2019-04-05 联发科技股份有限公司 The manufacturing method of semiconductor packages, semiconductor equipment and semiconductor packages
US10312222B2 (en) 2015-08-05 2019-06-04 Mediatek Inc. Semiconductor package and semiconductor device using the same
TWI848600B (en) * 2022-09-28 2024-07-11 台灣積體電路製造股份有限公司 Three-dimensional semiconductor device and method for forming the same

Also Published As

Publication number Publication date
TWI518810B (en) 2016-01-21

Similar Documents

Publication Publication Date Title
TWI567866B (en) Semiconductor device and method of forming an interconnect structure with tsv using encapsulant for structural support
TWI538072B (en) Semiconductor device and method of forming a vertical interconnect structure for 3-d fo-wlcsp
US9224714B2 (en) Semiconductor device having a through-substrate via
US10395946B2 (en) Electronic package and manufacturing method thereof
US9013037B2 (en) Semiconductor package with improved pillar bump process and structure
TWI581345B (en) Semiconductor device and method of forming bond-on-lead interconnection for mounting semiconductor die in fo-wlcsp
TWI534974B (en) Semiconductor device and method of forming base substrate with cavities formed through etch-resistant conductive layer for bump locking
TWI508199B (en) Semiconductor device and method of providing z-interconnect conductive pillars with inner polymer core
TWI488261B (en) Semiconductor device and method of forming three-dimensional vertically oriented integrated capacitors
TWI490957B (en) Semiconductor device and method for forming passive curcuit elements with through silicon vias to backside interconnect structures
TWI452639B (en) Semiconductor device and method of making integrated passive devices
TWI495038B (en) Semiconductor device and method of forming ipd structure using smooth conductive layer and bottom-side conductive layer
TW201203409A (en) Semiconductor device and method of forming a dual UBM structure for lead free bump connections
TW201214626A (en) Semiconductor device and method of forming interposer frame over semiconductor die to provide vertical interconnect
TWI518811B (en) Semiconductor device and method of forming bump structure with multi-layer ubm around bump formation area
TW201113963A (en) Semiconductor device and method of forming no-flow underfill material around vertical interconnect structure
CN114207791A (en) Stackable all-molded semiconductor structure with vertical interconnects
TW201145455A (en) Semiconductor device and method of forming IPD in fan-out wafer level chip scale package
TW201108335A (en) Semiconductor device and method of forming dam material around periphery of die to reduce warpage
TW200917393A (en) Semiconductor device and method of providing common voltage bus and wire bondable redistribution
TW201246483A (en) Semiconductor device and method of bonding different size semiconductor die at the wafer level
TW201110253A (en) Semiconductor device and method of dual-molding die formed on opposite sides of build-up interconnect structure
TW201044499A (en) Semiconductor die and method of forming through organic vias having varying width in peripheral region of the die
TW201044500A (en) Semiconductor device and method of forming a thin wafer without a carrier
TW201041057A (en) Semiconductor device and method of forming enhanced UBM structure for improving solder joint reliability