201044800 六、發明說明: 【發明所屬之技術領域】 尤其是有關於可調式阻抗 本發明係有關於無線通訊 匹配電路的應用。 【先前技術】 在高頻訊號的傳輸線上,却缺 線兩端之阻抗匹雜度諸大量傳輸效率與傳輪 訊模組中,高頻資料傳輸路…此在傳統的無線通 會利用阻抗匹配電路來改善能量傳輪效率。 都 然而隨著無線應用的廣 切換至多種不同頻段。除此之外同:通訊褒置可能會需要 式通訊裝置中時,傳輪旬缺 ®無線通訊應用在可攜 位置和周圍物體的移動。的=;會隨著裝置本身的 不能符合上述各種不叫_ =固疋的阻抗匹配電路並 $於此’-種可以適應不同環境條件的訊號處理 法疋有待開發的。 【發明内容】 本發明實施例之一是一種通訊裝置,包含接收器,基 頻模組,發射器,一控制器以及至少一感測器。接收器可 接收内送射頻訊號以產生一内送資料訊號,其中接收器包 含多個可調式阻抗匹配電路用以優化訊號能量之轉換。基 頻模組可接收該内送資料訊號,並產生一外送資料訊號。 發射器可調變該外送資料訊號以對外發射一外送射頻訊 號’其中發射器包含多個可調式阻抗匹配電路用以優化訊 號月bl之轉換。該感測器可感測一環境參數。而控制器根 4 HTC098086-0/〇746-A42049TWf/fmal 201044800 據該環境參數產生至少一控制訊號,用以改變該接收器及 該發射器中之多個可調式阻抗匹配電路的阻抗值。 本發明另一實施例是一種訊號處理方法,實作於上述 通訊裝置中。首先,使用多個可調式阻抗匹配電路於—訊 號接收路徑上優化訊號能量之轉換,藉此接收内送射頻訊 號而產生一内送資料訊號。接著使用多個可調式阻抗匹配 電路於一訊號發射路徑上優化訊號能量之轉換,藉此調變 一外送資料訊號以發射一外送射頻訊號。最後感測至少一 〇環境參數,並根據該環境參數產生至少一控制訊號,藉以 改變該些可調式阻抗匹配電路的阻抗值。 【實施方式】 第1圖係為本發明實施例之通訊裝置架構圖,將習知 技術所採用的阻抗匹配電路都改為可調式阻抗匹配電路。 通訊裝置100中使用了一或多個感測器1〇4,用以感測各 種環境參數,以作為調整這些可調式阻抗匹配電路的依據。 在通訊裝置100中,主要包含一接收器11〇,一基頻模 ❹組130和一發射器120。接收器11〇可用以接收内送射頻 訊號以產生一内送資料訊號#SIN。基頻模組13〇耦接該接 收器110,可接收該内送資料訊號邶取’並產生一外送資料 訊號#s0UT。發射器120可調變該外送資料訊號#8〇听以對 外發射一外送射頻訊號。與傳統技術不同的是,接收器 和發射器120中包含了多個可調式阻抗匹配電路,可彈性 的隨著環境參數的改變而受調整,藉此優化訊號能量之轉 換。該通訊裝置100包括一控制器14〇,耦接該感測器1〇4, 可根據該環境參數產生至少一控制訊號,用以改變該接收 HTC098086-0/0746-A42049TW位final 5 201044800 态110及該發射器120中之可調式阻抗匹配電路的阻抗值。 傳統的基頻模組處理的是基頻訊號,因此並不存在可 調式阻抗匹配電路的設計。然而,在本發明實施例中,該 基頻模組130可以是一種軟體定義無線電(s〇ftwareradi〇) 模組。而該内送資料訊號#SlN和該外送資料訊號#s〇ut為軟 體定義無線電訊號,也就是說,基頻模組13〇可以直接處 理高頻的數位訊號而不需經過升頻調變的階段。也因為處 理的訊號屬於尚頻的領域,該基頻模組13〇和該接收器11〇 及發射器120之間也需要有可調式阻抗匹配電路的配置。 如第1圖所示,該接收器110和基頻模組13〇之間配置有 一可調式阻抗匹配電路2〇〇c’而基頻模組13〇和發射器12〇 之間配置有一可調式阻抗匹配電路2〇〇d。同樣地,該可調 式阻抗匹配電路200c和200d皆可受到控制器140的控 制’而彈性地適應於環境參數的變化。 舉例來說,該控制器140根據該環境參數調整該可調 式阻抗匹配電路200c之阻抗值,用以優化該内送資料訊號 #sw之能量傳輸效率。而另一方面,該控制器14〇根據該 環境參數調整該可調式阻抗匹配電路2〇〇d之阻抗值,藉此 優化該外送^料訊號#S0UT之能量傳輸效率。然而本發明並 不限定該基頻模組130為軟體定義無線電模組。如果該基 頻模組130是採用傳統普通的基頻模組,則第丨圖中的可 調式阻抗匹配電路200c和200d就不是必要元件,可以移 除不計。 在該接收器110中,大致包含接收天線112,濾波器 114以及解調變器Π6。接收天線112可接收内送射頻訊 HTC098086-0/0746-A42049TWMnal 6 201044800201044800 VI. Description of the invention: [Technical field to which the invention pertains] In particular, the invention relates to an adjustable impedance. The invention relates to the application of a wireless communication matching circuit. [Prior Art] In the transmission line of high-frequency signals, there are a large number of transmission efficiencies in the transmission lines at both ends of the line, and a high-frequency data transmission path in the transmission of the polling module... This uses impedance matching in the conventional wireless communication. Circuitry to improve energy transfer efficiency. However, as wireless applications are widely switched to many different frequency bands. In addition to this: the communication device may need to be in the communication device, the transmission of the wireless communication application in the portable position and the surrounding objects. The signal processing method that can adapt to different environmental conditions is not yet developed as the device itself cannot meet the above-mentioned various impedance matching circuits that are not called _=solids. SUMMARY OF THE INVENTION One embodiment of the present invention is a communication device including a receiver, a baseband module, a transmitter, a controller, and at least one sensor. The receiver can receive the in-line RF signal to generate an incoming data signal, wherein the receiver includes a plurality of adjustable impedance matching circuits to optimize the conversion of the signal energy. The baseband module can receive the incoming data signal and generate an outgoing data signal. The transmitter can adjust the outgoing data signal to externally transmit an outgoing RF signal. The transmitter includes a plurality of adjustable impedance matching circuits for optimizing the conversion of the signal month bl. The sensor can sense an environmental parameter. The controller root 4 HTC098086-0/〇746-A42049TWf/fmal 201044800 generates at least one control signal according to the environmental parameter for changing the impedance values of the plurality of adjustable impedance matching circuits in the receiver and the transmitter. Another embodiment of the present invention is a signal processing method implemented in the above communication device. First, a plurality of adjustable impedance matching circuits are used to optimize the conversion of signal energy on the signal receiving path, thereby receiving an internal RF signal to generate an internal data signal. A plurality of adjustable impedance matching circuits are then used to optimize the conversion of the signal energy on a signal transmission path, thereby modulating an outgoing data signal to transmit an outgoing RF signal. Finally, at least one environmental parameter is sensed, and at least one control signal is generated according to the environmental parameter, thereby changing the impedance value of the adjustable impedance matching circuits. [Embodiment] FIG. 1 is a structural diagram of a communication device according to an embodiment of the present invention, and the impedance matching circuits used in the prior art are all changed to an adjustable impedance matching circuit. One or more sensors 1〇4 are used in the communication device 100 to sense various environmental parameters as a basis for adjusting these adjustable impedance matching circuits. In the communication device 100, a receiver 11A, a baseband analog group 130 and a transmitter 120 are mainly included. The receiver 11 is operable to receive an incoming RF signal to generate an incoming data signal #SIN. The baseband module 13 is coupled to the receiver 110 to receive the incoming data signal and generate an outgoing data signal #s0UT. The transmitter 120 can adjust the outgoing data signal #8 to listen to the external transmission and send an external RF signal. Different from the conventional technology, the receiver and transmitter 120 include a plurality of adjustable impedance matching circuits that can be flexibly adjusted with changes in environmental parameters to optimize signal energy conversion. The communication device 100 includes a controller 14A coupled to the sensor 1〇4, and generates at least one control signal according to the environmental parameter for changing the receiving HTC098086-0/0746-A42049TW bit final 5 201044800 state 110 And an impedance value of the adjustable impedance matching circuit in the transmitter 120. The traditional baseband module processes the fundamental frequency signal, so there is no design of a tunable impedance matching circuit. However, in the embodiment of the present invention, the baseband module 130 may be a software defined radio (s〇ftwareradi〇) module. The inbound data signal #SlN and the outgoing data signal #s〇ut define a radio signal for the software, that is, the baseband module 13 can directly process the high frequency digital signal without going through the up-conversion modulation. Stage. Also, since the processed signal belongs to the field of frequency, the configuration of the adjustable impedance matching circuit is also required between the baseband module 13A and the receiver 11A and the transmitter 120. As shown in FIG. 1 , an adjustable impedance matching circuit 2〇〇c′ is disposed between the receiver 110 and the baseband module 13〇, and an adjustable type is disposed between the baseband module 13〇 and the transmitter 12〇. The impedance matching circuit 2〇〇d. Similarly, the adjustable impedance matching circuits 200c and 200d can be flexibly adapted to changes in environmental parameters by the control of the controller 140. For example, the controller 140 adjusts the impedance value of the adjustable impedance matching circuit 200c according to the environmental parameter to optimize the energy transmission efficiency of the transmitted data signal #sw. On the other hand, the controller 14 adjusts the impedance value of the adjustable impedance matching circuit 2〇〇d according to the environmental parameter, thereby optimizing the energy transmission efficiency of the external feed signal #SOUT. However, the present invention does not limit the baseband module 130 to a software-defined radio module. If the baseband module 130 is a conventional conventional baseband module, the adjustable impedance matching circuits 200c and 200d in the second diagram are not essential components and can be removed. In the receiver 110, a receiving antenna 112, a filter 114 and a demodulation transformer Π6 are roughly included. Receiving antenna 112 can receive in-line RF signal HTC098086-0/0746-A42049TWMnal 6 201044800
Ο =慮波器114耗接該接收天線112 ’可過濾該内送射 '、訊號解η周變器116耦接該渡波器可解調變該内 送射頻訊,以產生該内送資料訊號#8取。接收器U〇的架 構可能隨著應用的不同而有各種的變化,但本發明實施例 強調各個不同7〇件之間的阻抗匹配元件皆採用可調式阻抗 匹配電路,在控制器14()的_之下彈性的匹配各種阻抗 變化,以優化訊號傳輸效率。其中,_可調式阻抗匹配電 路鳥係位於該接收天、線112和該渡波n 114之間,受到 控制電£#Va的控制…可調式阻抗匹配電路位於遽 波器114和解調變器116之間,受到控制電壓綱的控制。、 至於控制電壓#Va和#Vb與環境參數的_,則由控制 器140中的一查詢表142定義。 另一方面,在發射器12〇中大致包含發射天線122,功 率放大器124以及混波器126。混波器126耦接該基頻模 組130,可調變該外送資料訊號#8〇町以產生一外送射頻訊 號,而功率放大器124耦接該混波器126,可放大該外送 射頻訊號的增益。發射天線122負責發射外送射頻訊號。 發射器120的架構同樣是隨著應用的不同而有各種的°變 化,但本發明實施例強調各個不同元件之間的阻抗匹配元 件皆採用可調式阻抗匹配電路,在控制器14〇的控制之下 彈性的匹配各種阻抗變化,以優化訊號傳輸效率。其中, 一可調式阻抗匹配電路2〇〇e係位於該功率放大器124和該 混波器126之間,受到控制電壓#Ve的控制。一可調式阻 抗匹配電路200f位於發射天線122和功率放大器124之 間,受到控制電壓#乂£的控制。至於控制電壓#Ve和#vf HTC098086-0/0746-A42049TWf/fmal η 201044800 則同樣的是由控制器140中的查 與環境參數#si的關係 詢表142定義。 該感測器104可以應用 該感測器ΠΗ可以是〜距離泛、。舉例來說, 100是否貼近一物體。而該俨产 以感測該通訊裝置 對於-手持式行動裝置而'言衣兄'即為與該物體之距離。 其場形,進而使減傳輪效# L物體的彳目對位置會影響 置被放置在桌上,或4:::=:舉例r裝 都會有不同的變化。更進—步5 *近H'場形 折疊狀態與打開狀態即為兩種^例如折疊式手機,其 ^ 馬兩種截然不同的場形。對於滑蓋 ^手機而言,疊合狀態與滑開狀態也是兩種不同場形,會 各自需要*同的阻抗⑼參數。因此動態調整可調式阻抗 匹配電路㈣應這些h是有㈣改善減品質的。 該控制器14G中包含—查詢表142,用以定義該環境參 數與該控制喊之_、。至於詳_環境參數值,並不在 本發明的限定|&圍這些數值可以藉*實驗或經驗找出較 佳的結果,並事先定義在查詢表142中。該控制器⑽接 收到該環境參數時’便可直接查賊查絲I42以產生該 控制訊號。 -般阻抗匹配電路是電容和f感組成。本發明實施例 中的可調式阻抗匹配電路,改用壓控電容,可受到電壓的 控制而改變電容值,進而使整個阻抗改變。該控制器 查詢查詢表142後所產生的控制訊號可以是電壓訊號,直 接衫響該些可調式阻抗匹配電路中的麼控電容值,藉此調 整該些可調式阻抗匹配電路之阻抗。由於阻抗匹配電路的 HTC098086-0/0746-A42049TWf7fmal 。 201044800 結構與接法隨著通訊裝置的應用與元件結構的不同而異, 本發明並不限定其具體的實施方式,而主要是強調壓控電 谷文到控制器14〇控制之概念。 第2圖係為本發明訊號處理方法之流程圖。訊號處理 方法主要實作於如第i圖所示之通訊裝置刚中。在步驟 201中啟動通訊裝置⑽,由接收器m形成一訊號接收路 徑:而發射器120形成一訊號發射路後,其間所經過的兩 兩兀件之間皆係採用本發明所提出的可調式阻抗匹配電路 〇串接在-起。在步驟203巾,由至少—感測器1〇4_環 境參數。在步驟205中,由控制器14〇查詢一查詢表142, 根據該些環境參數以產生各個可調式阻抗匹配—電路對應的 控制電壓如控制電壓#%,#¥13,#%,_,#%,#^等。在 步驟207中,該控制器14〇將這些控制電壓傳送至對應的 可調式阻抗匹配電路中,如可調式阻抗匹配電路2〇^,2嶋, 200c,200d,200e,200f中’使其中的壓控電容受到影響而改 變阻抗匹配的效果。 ❹ 本發明中所述的控制器140不限定為一個,也可以是 多個同時負貴感測不同項目。所負責感測的項目也不限定 是只有物體距離。舉例來說,手持式行動裝置的正面朝上 或朝下,對於無線傳輸也有些微影響,因此也可列為感測 項目之一。有些手機的天線是可伸縮的,因此天線的伸縮 狀態也可列入感測項目之一。另一方面,手機與基地臺之 間的通訊頻帶可能有許多不同值,這也是調整可調式阻抗 匹配電路的因素之一。該查詢表142可將上述感測到之多 種環境參數與控制電壓之關係建立一交叉對照表,讓控制 HTC098086-0/0746-A42049TWf7fmal 〇 201044800 器140在各種狀況之組合下都能快速查到適用的控制電壓 值0 雖然本發明以較佳實施例說明如上’但可以理解的是 本發明的範圍未必如此限定。相對的,任何基於相同精神 或對本發明所屬技術領域中具有通常知識者為顯而易 改良皆在本發明涵蓋範圍内。因此專利要求範園必 的 廣義的方式解讀。 (、頊以最 【圖式簡單說明】 以及 第1圖係為本發明實施例之通訊裝置架構圖; 第2圖係為本發明訊號處理方法之流程圖。 【主要元件符號說明】 100通訊裝置 104感測器 11〇接收器 12〇發射器 130基頻模組 140控制器 112接收天線 114濾波器 116解調變器 122發射天線 124功率放大器 126混波器 140控制器 142查詢表 200a〜200f可調式阻抗匹配電路 #Va,#Vb, #Vc,#Vd,#Ve,#Vf 控制電壓 #S1環境參數 #SIN内送資料訊號 #S〇uT 外送資料訊號 HTC098086-0/0746-A42049TWf^fmal 10Ο = the filter 114 is consuming the receiving antenna 112 'filters the internal transmission', and the signal demodulation 116 is coupled to the ferroelectric to demodulate the internal RF signal to generate the internal data signal #8取. The architecture of the receiver U〇 may vary from application to application, but the embodiment of the present invention emphasizes that the impedance matching components between the different components are all adjustable impedance matching circuits, and the controller 14() _ elastically matches various impedance changes to optimize signal transmission efficiency. Wherein, the _ adjustable impedance matching circuit bird is located between the receiving day, the line 112 and the ferry wave n 114, and is controlled by the control electric circuit ##Va... the adjustable impedance matching circuit is located in the chopper 114 and the demodulation transformer 116 In between, controlled by the control voltage class. As for the control voltages #Va and #Vb and the environmental parameter _, it is defined by a lookup table 142 in the controller 140. On the other hand, a transmitter antenna 122, a power amplifier 124, and a mixer 126 are roughly included in the transmitter 12A. The mixer 126 is coupled to the baseband module 130, and can adjust the outgoing data signal #8〇町 to generate an outgoing RF signal, and the power amplifier 124 is coupled to the mixer 126 to amplify the external transmission. The gain of the RF signal. The transmitting antenna 122 is responsible for transmitting the outgoing RF signal. The architecture of the transmitter 120 is also varied from application to application, but embodiments of the present invention emphasize that the impedance matching components between the various components employ an adjustable impedance matching circuit, which is controlled by the controller 14 The lower elasticity matches various impedance changes to optimize signal transmission efficiency. Wherein, an adjustable impedance matching circuit 2〇〇e is located between the power amplifier 124 and the mixer 126 and is controlled by the control voltage #Ve. A tunable impedance matching circuit 200f is located between the transmit antenna 122 and the power amplifier 124 and is controlled by the control voltage. As for the control voltages #Ve and #vf HTC098086-0/0746-A42049TWf/fmal η 201044800, the same is defined by the relationship table 142 of the check and environment parameter #si in the controller 140. The sensor 104 can be applied to the sensor ΠΗ can be ~ distance pan. For example, 100 is close to an object. The sputum is used to sense the communication device. For the hand-held mobile device, the 'speaking brother' is the distance from the object. The shape of the field, which in turn causes the effect of the reduction of the wheel effect #L object to be placed on the table, or 4:::=: for example, r will have different changes. More-step 5 * Near H' field shape Folded state and open state are two kinds of ^, for example, a folding type mobile phone, which has two distinct fields. For the slider ^ mobile phone, the overlap state and the slide open state are also two different field shapes, each of which requires the same impedance (9) parameter. Therefore, the dynamic adjustment of the adjustable impedance matching circuit (4) should be such that h is (4) improved quality. The controller 14G includes a lookup table 142 for defining the environment parameter and the control call. As for the details of the environmental parameter values, it is not limited to the present invention. & These values can be used to find better results by experiment or experience, and are defined in the lookup table 142 in advance. When the controller (10) receives the environmental parameter, it can directly check the thief check wire I42 to generate the control signal. The general impedance matching circuit is composed of a capacitor and a sense of f. The adjustable impedance matching circuit in the embodiment of the present invention uses a voltage-controlled capacitor, which can be controlled by voltage to change the capacitance value, thereby changing the entire impedance. The control signal generated by the controller after querying the lookup table 142 may be a voltage signal, and the value of the control capacitor in the adjustable impedance matching circuit is directly applied to adjust the impedance of the adjustable impedance matching circuits. Due to the impedance matching circuit HTC098086-0/0746-A42049TWf7fmal. The structure and connection of the 201044800 differs depending on the application and component structure of the communication device. The present invention is not limited to the specific embodiment, and mainly emphasizes the concept of the voltage control system to the controller. Figure 2 is a flow chart of the signal processing method of the present invention. The signal processing method is mainly implemented in the communication device as shown in Fig. i. In step 201, the communication device (10) is activated, and the receiver m forms a signal receiving path: after the transmitter 120 forms a signal transmitting path, the two-way components passing between them adopt the adjustable method proposed by the present invention. The impedance matching circuit is connected in series. At step 203, at least - the sensor 1 〇 4_ environmental parameters. In step 205, the controller 14 queries a query table 142 to generate control voltages corresponding to the respective adjustable impedance matching circuits according to the environmental parameters, such as control voltage #%, #¥13, #%, _,# %, #^, etc. In step 207, the controller 14 transmits the control voltages to corresponding adjustable impedance matching circuits, such as the adjustable impedance matching circuits 2〇, 2嶋, 200c, 200d, 200e, 200f. The voltage-controlled capacitor is affected to change the impedance matching effect. The controller 140 described in the present invention is not limited to one, and may be a plurality of simultaneous negative sensing different items. The items that are responsible for sensing are not limited to only object distances. For example, a handheld mobile device with its front side facing up or down has a slight impact on wireless transmission and can therefore be listed as one of the sensing items. Some mobile phone antennas are retractable, so the telescopic status of the antenna can also be included in one of the sensing items. On the other hand, the communication band between the mobile phone and the base station may have many different values, which is one of the factors for adjusting the adjustable impedance matching circuit. The lookup table 142 can establish a cross-reference table between the sensed plurality of environmental parameters and the control voltage, so that the control HTC098086-0/0746-A42049TWf7fmal 〇201044800 140 can be quickly found under various combinations of conditions. Control Voltage Value 0 Although the invention has been described above by way of a preferred embodiment, it is to be understood that the scope of the invention is not necessarily limited. Rather, any modifications based on the same spirit or the ordinary skill in the art to which the invention pertains are obvious. Therefore, the patent requires Fan Park to interpret it in a broad way. (The following is a brief description of the drawings and the first figure is a communication device architecture diagram of the embodiment of the present invention; FIG. 2 is a flow chart of the signal processing method of the present invention. [Main component symbol description] 100 communication device 104 sensor 11 〇 receiver 12 〇 transmitter 130 baseband module 140 controller 112 receiving antenna 114 filter 116 demodulation transformer 122 transmitting antenna 124 power amplifier 126 mixer 140 controller 142 lookup table 200a ~ 200f Adjustable impedance matching circuit #Va,#Vb, #Vc,#Vd,#Ve,#Vf Control voltage#S1Environmental parameter#SINIncoming data signal#S〇uT Delivery data signal HTC098086-0/0746-A42049TWf^ Fmal 10