TW201044599A - Film for solar cell backsheet, solar cell backsheet using the same, and solar cell - Google Patents

Film for solar cell backsheet, solar cell backsheet using the same, and solar cell Download PDF

Info

Publication number
TW201044599A
TW201044599A TW98118163A TW98118163A TW201044599A TW 201044599 A TW201044599 A TW 201044599A TW 98118163 A TW98118163 A TW 98118163A TW 98118163 A TW98118163 A TW 98118163A TW 201044599 A TW201044599 A TW 201044599A
Authority
TW
Taiwan
Prior art keywords
layer
film
back sheet
solar cell
partial discharge
Prior art date
Application number
TW98118163A
Other languages
Chinese (zh)
Inventor
Shigeru Aoyama
Takayuki Ohira
Kozo Takahashi
Original Assignee
Toray Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries filed Critical Toray Industries
Priority to TW98118163A priority Critical patent/TW201044599A/en
Publication of TW201044599A publication Critical patent/TW201044599A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are a film for solar cell backsheet which keep up mechanical strength during a long period even it is thin and has a high partial discharge voltage, and a solar cell backsheet having a high partial discharge voltage even it is thin by using the film. Moreover, the present invention provides a highly durable and/or a thin-type solar cell by using the solar cell backsheet. The film for solar cell backsheet has a laminated structure of at least two or more layers and comprises a layer (A layer) having a surface (hereinafter referred to as A surface) with a surface specific resistance of 10<SP>6</SP> Ω / □ to 10<SP>14</SP> Ω / □ and a substrate layer (B layer) wherein the B layer comprises a layer of polyester (B1 layer) and the polyester of the B1 layer has a mass average molecular weight of 37500 to 60000.

Description

201044599 六、發明說明: 【發明所屬之技術領域】 本發明關於即使薄也具有高的部分放電電壓之太陽電 池背板用薄膜,使用其之太陽電池背板以及使用其之太陽 電池。 【先前技術】 近年來,作爲半永久且無公害的下一世代之能源,綠 能的太陽光發電係'受到注目,太陽電池係正急速普及著。 第1圖顯示一般的太陽電池的代表構成。太陽電池係在以 EVA(乙烯-醋酸乙烯酯共聚物)等的透明塡充材2密封發電 元件3者上,貼合玻璃等的透明基板4及稱爲背板1的玻 璃片而構成。太陽光係通過透明基板4而導入太陽電池內 。導入太陽電池內的太陽光係被發電元件3所吸收,所吸 收的光能係轉換成電能。所轉換的電能係由連接於發電元 件3的引線(第1圖中未顯示)來取出,而使用於各種電氣 機器。此處,所謂的背板1,就是相對於太陽,設置在比 發電元件3還靠近背面側,所謂的發電元件3,就是不直 接相接的片構件。關於此太陽電池的系統或各構件,有進 行各種提案,但關於背板1,主要使用聚乙烯系或聚酯系 、氟系的樹脂製之薄膜(參照專利文獻1〜3),而且最近有 提案使用含有氣泡的薄膜當作液晶顯示器用反射薄膜而用 於太陽電池背板等(專利文獻4、5) » 此處,太陽電池一般係安裝在家庭或公共施設等的屋 頂,或設置在大規模發電的廣大場地內。又,由於在太陽 -4- 201044599 電池系統作動時長期間受到高電壓,故在背板希望兼具長 期保持機械強度,而且耐電氣特性高之兩者。若耐電氣特 性差’則在太陽電池系統作動時發生稱爲部分放電的在膜 內部之微小電荷的放電,若此連續不斷,則構成背板的樹 脂進行化學降解。此係因爲若由於部分放電現象而進行化 學降解,則在由於落雷等而使系統瞬間遭受高電壓時,則 即使通常具有能充分耐得住落雷的之程度的耐電壓性,也 有發生致命的絕緣破壞之可能性。因此,作爲背板,爲了 稍微抑制部分放電現象的發生,要求提供部分放電現象的 發生電壓(以下稱爲「部分放電電壓」)。又,從太陽電池 系統的省空間化、輕量化之觀點來看,希望背板的薄型化 〇 先前技術文獻 專利文獻 專利文獻1 :特開平1 1 -261 085號公報 專利文獻2 :特開平1 1 - 1 86575號公報 專利文獻3 :特開2006-270025號公報 專利文獻4:特開2009-1 24 54號公報 專利文獻5 :特開2009-4242 1號公報 【發明内容】 發明所欲解決的問題 然而,以往的薄膜構件係無法長期積極地提高耐濕熱 性與部分放電電壓。因此’爲了保持長期的機械強度’而 且表現高的部分放電電壓’只有增加薄膜厚度的方法’因 201044599 8 獨 放 分 部 的 高 與 持 保 度 強 械 機。 θ 隹 序 難 期困 長係 ,存 度並 限之 有化 係型 化薄 型 、 薄壓 此電 解決問題的手段 因此’本發明係鑒於相關先前技術的背景,提供即使 薄也具有長期的機械強度保持及高的部分放電電壓之太陽 電池背板用薄膜,使用其之太陽電池背板,以及使用其之 太陽電池。即,本發明係太陽電池背板用薄膜、使用其之 太陽電池及太陽電池,該太陽電池背板用薄膜具有至少2 層以上的積層構造,包含具有表面比電阻R0爲1 〇6Ω/□以 上1014Ω/□以下的面(以下當作Α面)之層(Α層)及基材層(Β 層),B層包含由聚酯所成的層(B1層),而且該B1層的聚 酯之質量平均分子量爲3 75 00以上60000以下。 發明的效果 依照本發明,可提供即使薄也具有長期的機械強度保持 與高的部分放電電壓之太陽電池背板用薄膜。 又,藉由使用它而可使太陽電池背板的耐久性提高或薄 型化等,亦可使太陽電池的耐久性提高、薄型化等。 【實施方式】 實施發明的形態 本發明對於前述課題,也就是即使薄也具有長期的機械 強度保持與高的部分放電電壓之太陽電池背板用薄膜,進 行專心致力的檢討,結果查明藉由將表面的電特性控制在 某一固定範圍,可一舉解決上述問題。 本發明的太陽電池背板用薄膜係以下的構成。即’太陽 -6- 201044599 電池背板用薄膜具有至少2層以上的積層構造,包含具有 表面比電阻RO爲1〇δΩ/□以上1014Ω/□以下的面(以下當作A 面)之層(A層)及基材層(B層),其中B層包含由聚酯所成的 層(B1層),而且該B1層的聚酯之質量平均分子量爲375 00 以上60000以下。 藉由成爲此構成,當在太陽電池背板用薄膜的厚度方向 施加高電壓時,經由A層,可使薄膜所接受的電場之一部 分在薄膜面方向中適度地導通,而擴散。因此,可減低薄 〇 膜的厚度方向中每單位體積所接受的電場量。結果,即使 當施加高電壓時,也可抑制電場對絕緣性能差的部分之集 中,可抑制部分放電現象的發生。 又,作爲基材層(B層),由於包含由聚酯所成的層(B1 層),而且該B1層的聚酯之質量平均分子量爲37500以上 60000以下,故與以往的背板相比,可提高長期的機械強度 保持。 根據上述,可使以往的薄膜所困難的無法提高薄膜厚度 〇 Θ 、提高長期的機械強度保持及提高部分放電電壓之事成爲 可能。 本發明的太陽電池背板用薄膜之與A面相反側的表面 之表面比電阻R2較佳爲1014Ω/□以上。如後述地,將本發 明的太陽電池背板用薄膜倂入太陽電池系統時,較佳爲以 密封有發電元件的樹脂層之相反側的面(第1圖的6)當作A 面。藉由成爲如此的構成,可提高部分放電電壓,成爲高 耐久的太陽電池,減低太陽電池的厚度。 201044599 此處,若使太陽電池背板用薄膜的兩側表面之表面比電 阻皆成爲106Q/□以上,則會有降低太陽電池背板的耐電氣 特性之情況,或會有當從引線取出電能時,取出效率低而 發電效率降低的情況。 本發明的太陽電池背板用薄膜之斷裂伸長度較佳爲50% 以上。此處所言的斷裂伸長度係指依照ASTM-D882(1 999) ,將樣品切成lcmx 2 0cm的大小,在夾頭間5cm、拉伸速度 300mm/min進行拉伸而測定者。尤佳地,藉由上述方法所 求得的伸長度爲60%以上,更佳爲80%以上,特佳爲100% 以上,最佳爲120%以上。於本發明的太陽電池背板用薄膜 中,斷裂伸長度若不滿5 0%,則當將用其的背板倂入太陽電 池而使用之際,由外部施加某些衝撃給太陽電池時(例如, 搬運時的振動,或在搬運、施工時的作業中施加某些荷重 時),背板會斷裂。於本發明的太陽電池背板用薄膜中,藉 由使伸長度保持率成爲5 0%以上,可提高太陽電池之對於衝 擊的特性。 又,本發明的太陽電池背板用薄膜在溫度125 °C、濕度 100%RH的條件下放置24小時後的伸長度保持率較佳爲 5 0%以上。此處所言的伸長度保持率係指依照 ASTM-D882(1999)來測定,以處理前的薄膜之斷裂伸長度當 作E0,以溫度125°C、濕度l〇〇%RH的條件下放置24小時 後的斷裂伸長度當作E1時,由下述式(1)所得之値。 伸長度保持率(%) = E1/E0xl00 (1) 再者,E 1係指將試料切成測定片的形狀後,使用溫度 201044599 1 25 °C、濕度100%的條件下施有24小時處理者而測定之値 〇 尤佳爲上述方法所求得之伸長度保持率爲5 5 %以上,更 佳爲60%以上,特佳爲65 %以上,最佳爲70%以上。於本發 明的太陽電池背板用薄膜中,伸長度保持率不滿50%,則長 期使用時的機械強度降低,結果於使用具有使用其的背板 之太陽電池中,由外部施加某些衝撃給太陽電池時(例如落 石等碰撞太陽電池時等),背板會斷裂。於本發明的太陽電 池背板用薄膜中,藉由使伸長度保持率成爲50%以上,可提 高長期使用時的背板之機械強度的耐久性。 以下更詳細記載本發明的太陽電池背板用薄膜之構成。 本發明的太陽電池背板用薄膜若滿足上述要件則可較 佳使用,作爲其構成之一例,必須具有至少2層以上的積 層構造,其包含具有導電性的層(A層)與基材層(B層),而 且至少一側表面必須由A層所構成。藉由成爲此構成,利 用具有導電性的A層而可提高部分放電電壓,利用基材層 (B層)而可賦予機械強度、薄膜厚度方向的電絕緣性等之機 能。 此處,本發明的太陽電池背板用薄膜之具有導電性的層 (A層)’係指當測定其表面比電阻R0時,具有1 〇6ω/□以上 1014Ω/□以下的面(Α面)之層。尤佳爲1〇7Ω/□以上1014Ω/口 以下’更佳108Ω/□以上1014Ω/□以下,特佳爲1〇9Ω/□以上 1014Ω/□以下,最佳爲ι〇9ω/□以上1〇13Ω/□以下。Α層的表 面比電阻R0若低於106 Ω/□,則A層容易過度導電,而在 201044599 厚度方向亦導通,結果A層全體具有當作僞電極的作用, 在面方向中喪失將電場緩和的效果,無法提高部分放電電 壓,或在從引線取出電能之際,取出效率低而發電效率降 低,故不宜。又,A層的表面比電阻R0若超過1014Ω/口, 則導通性太小,在面方向中喪失將電場緩和的效果,無法 提高部分放電電壓,故不宜。藉由將本發明的太陽電池背 板用薄膜之Α層的表面比電阻R〇控制在1〇6Ω/□以上 10 14Ω/□以的範圍,於高電壓印加時可將對薄膜厚度方向所 施加的電場之一部分適度地在薄膜面方向中導通,可緩和 電場朝厚度方向的集中,可不增加薄膜厚度而提高部分放 電電壓。又’可顯著提高用此薄膜的背板之部分放電特性 、耐電氣特性。 本發明的太陽電池背板用薄膜之Α層在溫度125 °C、濕 度100%的條件下放置24小時後的A面之表面比電阻R1較 佳爲106Ω/□以上1014Ω/□以下,尤佳爲1〇7Ω/□以上1014Ω/口 以下,更佳爲1〇8Ω/□以上1〇14〇/□以下,特佳爲109Ω/□以 上1014Ω/□以下,最佳爲1〇9ω/□以上1013Ω/□以下。處理後 的Α面之表面比電阻R1若不滿106ω/□,則長期使用時, 導通性變過高,喪失在兩方向將電場緩和的效果,部分放 電電壓降低下’太陽電池的發電效率降低。又,若超過 1〇ΜΩ/□’則導通性太低,喪失在面方向中將電場緩和的效 果’部分放電電壓降低。於本發明的太陽電池背板用薄膜 中,藉由將處理後的Α層之表面比電阻R1控制在ι〇6ω/口 以上10 14Ω/□以下的範圍’即使於長期使用中,也可維持部 -10- 201044599 分放電電壓的提高效果。結果’可提高採用本發明的太陽 電池背板用薄膜之背板的部分放電特性、耐電氣特性的耐 久性。 此處,於本發明的太陽電池背板用薄膜中’ A面只要滿 足上述特性即可,作爲其具體例,可舉出含有使A層展現 導電性的成分。此處,作爲展現導電性的成分,較佳爲使 用有機系導電性材料、無機系導電性材料、有機系/無機系 複合導電性材料的任一者。 作爲有機系的導電性材料之例,可舉出分子中具有銨基 、胺鹽基、四級銨基等的陽離子性取代基之陽離子系導電 性化合物、磺酸鹽基、磷酸鹽基、羧酸鹽基等的具有陰離 子性之陰離子系導電性化合物、具有陰離子性取代基、陽 離子性取代基兩者的兩性系導電性化合物等之離子性導電 性材料、具有共軛多烯系骨架的聚乙炔、聚對伸苯基、聚 苯胺、聚噻吩、聚對伸苯基伸乙烯基、聚耻咯等的導電性 高分子化合物等。 此等導電性材料係藉由以下(1)〜(4)的方法而導入構成 A層的基質之材料中,皆可較佳地使用。藉此,可展現a 層導電性。即,藉由 (1) 使基質的材料與具有導電性的骨架共聚合, (2) 於基質的材料中添加.混合•相溶導電性材料, (3) 於基質的材料中添加.混合導電性材料後,使導電材料 遷移到表面’在表面附近濃縮, (4) 於基質的材料中添加•混合導電性材料及使分散,形成 201044599 導電性網絡, 等的方法,可使A層展現導電性,皆可較佳地使用。 於此等化合物(導電性材料)之中,尤其在形成薄膜當作 溶液製膜時,或在基材層(B層)上塗設而形成A層時,從即 使在該高電壓印加時也具有高的導電性等之點來看,較佳 爲離子性導電性材料,從塗布性、密接性、長期提高部分 放電電壓的效果之點來看,更佳爲陽離子系導電性化合物 。此等導電性化合物例如可較佳地使用低分子量型導電性 化合物、高分子量型導電性化合物等的任一者,但於本發 明中從耐久性等之點來看,較宜使用高分子量型導電性化 合物。又,於藉由熔融擠出而使A層的A面展現導電性之 情況中,當使用(4)的方法時,從耐熱性及A面的耐濕熱性 優異之點來看,宜使用分散在汽巴日本(股)製“Irgastat”P系 列的基質中,形成導電性網絡的聚醚醯胺系共聚合型化合 物等。 此等有機系的導電性材料可較佳地使用水溶性、非水溶 性的任一者,由於本發明的太陽電池背板用薄膜之A面較 佳爲具有耐濕熱特性,故較佳爲使用非水溶性的導電性化 合物。此處,於離子性導電性材料的情況,水溶性、非水 溶性係由構成此等材料的單體種類來決定,爲了成爲非水 溶性,由具有上述官能基的單體種類與不具有上述官能基 的單體種類之共聚合比例來決定,具有上述官能基的單體 種類之莫耳數與不具有上述官能基的單體種類之莫耳數的 比(具有上述官能基的單體種類之莫耳數/不具有上述官能 -12- 201044599 基的單體種類之莫耳數)較佳爲10/90以上90/10以下,尤 佳爲20/80以上80/20以下,更佳爲30/70以上70/3 0以下 。若比小於1 〇/90,則所形成的A層之A面的表面比電阻 R0變過高,會喪失部分放電電壓提高效果。而且,若比超 過9 0/10,則由於水溶性變高,所形成的A面之耐濕熱特性 變差。於本發明的太陽電池背板用薄膜中,藉由將具有上 述官能基的單體種類與不具有上述官能基的單體種類之共 聚合比例控制在10/90以上90/10以下,可提高部分放電電 U 壓及賦予其特性的耐濕熱性。 又,於本發明的太陽電池背板用薄膜中,當A層所用的 導電性材料係有機系導電性材料時,爲了耐濕熱性提高、A 層的強度提高等,而且在基材層(B層)製造時藉由線內 (in-line)塗覆法塗設A層時,爲了賦予A層的製膜性,作爲 加到有機系導電性材料中之構成A層的基質之材料,較佳 爲使用聚酯系樹脂、丙烯酸系樹脂、聚烯烴系樹脂、聚醯 0 胺系樹脂、聚碳酸酯、聚苯乙烯、聚醚、聚酯醢胺、聚醚 酯、聚氯乙烯、聚乙烯醇及以此等當作成分的共聚物等之 非水溶性樹脂。於藉由塗布來形成A層時,可添加、混合 在塗劑中,於藉由熔融擠出來形成A層時,可進行熔融混 煉而混合。於該情況下,即使上述有機系導電性材料爲水 溶性導電性材料時,也可賦予耐濕熱特性,於非水溶性導 電性材料的情況下,可更提高耐濕熱特性。上述有機系導 電性材料與非水溶性樹脂的混合比(有機系導電性材料的質 量/非水溶性樹脂的質量),當有機導電性材料爲水溶性導電 -13- 201044599 材料時’較佳爲5/95以上50/50以下。更佳爲ι〇/9〇以上 40/60以下。上述混合比若少於5/95,則a層的表面比電阻 變筒’無法提筒部分放電電壓,故不宜。上述混合比若 多於50/5 0,則所形成的A層之耐濕熱性變差。又,當有機 導電性材料爲非水溶性導電材料時,上述有機系導電性材 料與非水溶性樹脂的混合比(有機系導電性材料的質量/非 水溶性樹脂的質量)較佳爲26/74以上98/2以下,更佳爲 30/70以上95/5以下。上述混合比若少於26/74,則A層的 表面比電阻R0變高’無法提高部分放電電壓,故不宜。上 述混合比若多於98/2,則所形成的A層之耐濕熱性變差。 於本發明的太陽電池背板用薄膜中,當有機導電性材料爲 水溶性導電材料時,藉由控制在5/95以上50/50以下,當 有機導電性材料爲非水溶性導電材料時,藉由將上述有機 系導電性材料與非水溶性樹脂的混合比(有機系導電性材料 的質量/非水溶性樹脂的質量)控制在26/74以上98/2以下, 可提高部分放電電壓及賦予其特性的耐濕熱性。 又’作爲藉由熔融擠出來形成A層時的非水溶性樹脂之 例’可使用聚對苯二甲酸乙二酯(以下簡稱「PET」)、聚2,6-萘二甲酸乙二酯、聚對苯二甲酸丙二酯 '聚對苯二甲酸丁 二酯、聚對苯二甲酸1,4-環己二甲酯、聚乳酸等的聚酯系樹 脂、聚乙烯、聚苯乙烯、聚丙烯、聚異丁烯、聚丁烯、聚 甲基戊烯等的聚烯烴系樹脂、環烯烴系樹脂、聚醯胺系樹 脂、聚醯亞胺系樹脂、聚醚系樹脂、聚酯醯胺系樹脂、聚 醚醋系樹脂、丙烯酸系樹脂、聚胺甲酸酯系樹脂、聚碳酸 -14- 201044599 酯系樹脂、聚氯乙烯系樹脂、氟系樹脂等。於此等之中, 基於共聚合的單體種類之多樣性以及由其容易調整材料物 性等的理由’較佳爲聚酯系樹脂、聚烯烴系樹脂、環烯烴 系樹脂、聚醯胺系樹脂、丙烯酸系樹脂、氟系樹脂、或由 此等的混合物所選出的熱塑性樹脂所主要構成者。從機械 強度、成本之點來看,特佳爲主要由聚酯系樹脂所構成者 ’再者,非水溶性樹脂成爲一軸或二軸配向,係可藉由配 向結晶化而提高機械強度,或於聚酯系樹脂等的情況,可 r&gt; _ 提高長期使用時的A層之耐加水分解性。 又,當A層所用的導電性材料爲有機系導電性材料的情 況,爲了更提高耐濕熱特性,尤其當塗設在基材層(B層)上 當作A層的情況,爲了提高與基材層(B層)的密接性,特別 是在形成薄膜當作溶液製膜的情況,於基材層(B層)上塗設 A層的情況,從防止薄膜的黏連之點來看,亦較佳爲加到有 機系導電性材料、非水溶性樹脂中,使含有交聯劑。作爲 交聯劑,較佳爲使用與構成上述有機系材料及/或非水溶性 〇 樹脂的樹脂中所存在的官能基,例如羥基、羧基、縮水甘 油基、醯胺基等進行交聯反應的樹脂或化合物,作爲其例 子,可使用羥甲基化或烷醇化尿素系、蜜胺系、丙烯醯胺 系、聚醯胺系樹脂及環氧化合物、氧雜環丁烷系化合物、 異氰酸酯化合物、偶合劑、氮雜環丙烷系化合物、噚唑啉 系化合物等、碳化二亞胺系化合物、酸酐、羧酸酯衍生物 及彼等的混合物等。 該交聯劑種類及含量係可依照構成A層的有機系導電 -15- 201044599 性材料 '非水溶性樹脂、基材層(B層)等來適宜選擇。作爲 本發明的太陽電池背板薄膜中的交聯劑,當形成薄膜當作 溶液製膜時,或當塗設於基材層(B層)上當作A層時,當有 機系導電性材料及/或非水溶性樹脂具有丙烯酸系骨架時, 作爲交聯劑,更佳爲噚唑啉化合物,當有機系導電性材料 及/或非水溶性樹脂具有聚酯系骨架時,作爲交聯劑,較佳 爲蜜胺系化合物,此從所形成的A層之耐濕熱特性更優異 之點來看係更佳。又,當藉由熔融擠出來形成A層時,作 爲使用聚酯系樹脂當作非水溶性樹脂時的交聯劑,曙唑啉 系化合物、環氧系化合物、氧雜環丁烷系化合物、碳化二 亞胺系化合物、酸酐、羧酸酯衍生物係適用。 交聯劑的添加量,通常相對於構成A層的全部樹脂成分 100質量份而言,較佳爲0.01質量份以上50質量份以下, 尤佳爲0.2質量份以上40質量份以下,更佳爲〇.5質量份 以上3 0質量份以下的範圔。 此處,於交聯劑中,亦較佳爲倂用觸媒以促進交聯反應 。再者,作爲交聯反應方式,可爲加熱方式、電磁波照射 方式、吸濕方式等的任一種,通常較宜使用加熱的方法。 於本發明的太陽電池背板用薄膜中,當構成A層的材料 爲有機系導電性材料時,A面的表面比電阻R〇係依照A層 中所含有的有機系導電性材料之種類、非水溶性樹脂或交 聯劑的種類及混合比例、與其它材料的混合比例、膜厚等 來決定。相對於A層中所含有有機系導電性材料而言,非 水溶性樹脂或交聯劑的比例愈大則表面比電阻RO愈高,愈 -16- 201044599 小則表面比電阻R0愈小。又,A層的膜厚愈厚則表面比電 阻R0愈低,愈小則表面比電阻R0愈高。最合適的組成、 膜厚等係隨著所使用的材料種類、薄膜構成等而變化,以A 面的表面比電阻R0滿足上述要件的方式來形成。此處,於 本發明的太陽電池背板用薄膜中,當構成A層的材料爲有 機系導電性材料的情況,在基材層(B層)製造時藉由線內塗 覆法來塗設A層時,從賦予A層的製膜性,且所得到的A 層之膜厚即使薄也部分放電電壓高,以及耐濕熱性高之點 Θ 來看,作爲更佳的組合,可爲導電性材料係具有丙烯酸骨 架的陽離子系導電性化合物,非水溶性樹脂係具有丙烯酸 系骨架的化合物,交聯劑係噚唑啉化合物之組合。再者, 以全部樹脂成分爲100質量份時,含有50質量份以上的上 述有機系導電性材料,上述有機系導電性材料與非水溶性 樹脂的混合比(有機系導電性材料的質量/非水溶性樹脂的 質量)爲25/75以上98/2以下(更佳爲5 0/5 0以上95/5以下) ,交聯劑的比例相對於100質量份的全部樹脂成分而言爲1 〇 質量份以上20質量份以下(更佳爲2質量份以上20質量份 以下)。 又,於本發明的太陽電池背板用薄膜中,當構成具有導 電性的層(A層)之材料爲無機系導電性材料時,例子可舉出 將以金、銀、銅、鉑、矽、硼、鈀、鍊、釩、餓 '鈷、鐵 、鋅、釕、鐯、鉻、鎳、鋁、錫、鋅、鈦、钽、鍩、銻、 銦、釔、鑭、鎂、鈣、铈、鈴、鋇等的無機物群當作主要 成分者氧化、亞氧化、次氧化者,或上述無機物群與將上 -17- 201044599 述無機物群氧化、亞氧化、次氧化者的混合物(以下將此等 稱爲無機氧化物)、將以上述無機物群當作主要成分者氮化 、亞氮化、次氮化者,或上述無機物群與將上述無機物群 氮化、亞氮化、次氮化者的混合物(以下將此等稱爲無機氮 化物),將以上述無機物群當作主要成分者氧氮化、亞氧氮 化、次氧氮化者,或上述無機物群與將上述無機物群氧氮 化、亞氧氮化、次氧氮化者的混合物(以下稱此等稱爲無機 氧氮化物),將以上述無機物群當作主要成分者碳化、亞碳 化、次碳化者,或上述無機物群與將上述無機物群碳化、 亞碳化、次碳化者的混合物(以下稱此等稱爲無機碳化物) 、將以上述無機物群當作主要成分者氟化及/或氯化及/或溴 化及/或碘化(以下將此等稱爲鹵化)、亞鹵化、次鹵化者, 上述無機物群與將上述無機物群鹵化、亞鹵化、次鹵化者 的混合物(以後將此等稱爲無機鹵化物),或上述無機物群與 將上述無機物群硫化、亞硫化、次硫化者的混合物(以下將 此等稱爲無機硫化物),及於上述化合物中慘合不同元素者 ’石墨狀碳、鑽石型碳、碳纖維'碳奈米管、富樂烯等的 碳系化合物(以下將此等稱爲碳系化合物),及此等的混合物 等。上述材料可至少含於A層中,尤其當a層的層厚度爲 Ιμιη以下時’爲了使表面比電阻在上述範圍內,更佳可當 作主要成分。再者,將在該層中超過50質量%的情況定義 爲主成分。 於本發明的太陽電池背板用薄膜中,當構成具有導電性 的層(Α層)之材料爲無機系導電性材料時,a層的a面之表 -18- 201044599 面比電阻R0係依照膜中所含有無機物群之改性(氧化、氮 化' 氧氮化、碳化、鹵化、硫化等)程度,或無機物群與經 改性的無機物群之混合比例、與其它材料的混合比例、膜 厚等來決定。無機物群的改性程度愈高則A面的表面比電 阻R0愈高,改性程度愈低則A面的表面比電阻R〇愈小。 又,相對於A層中所含的無機物群,經改性的無機物群之 比例愈大則表面比電阻R0愈高,愈小則表面比電阻R0愈 小。又,膜厚愈厚則表面比電阻R0愈低,愈小則表面比電 π 一 ^ 阻R〇愈高。最合適的組成、膜厚係隨著所使用的金屬種類 或改性方式等而變化,以表面比電阻R0滿足上述要件的方 式來形成。 又,於本發明的太陽電池背板用薄膜中,在構成A層的 材料爲有機系/無機系複合導電性材料的情況(例如(i),使用 非導電性的非水溶性樹脂當作基質,使用無機系導電性材 料當作導電性材料的情況,(ii)倂用有機系導電性材料與無 機系導電性材料的情況,(iii)於有機系導電性材料中倂用無 ❹ 機系非導電性材料的情況,(iv)於無機系導電材料中分散有 非導電性非水溶性樹脂的情況等等),適宜組合上述有機系 導電性材料、無機系導電性材料、非水溶性樹脂、交聯劑 以及無機系非導電性材料而構成。 於(0的情況之例,當作A層的基質,可舉出使用非水溶 性樹脂’分散有無機系導電性材料的構成。關於非水溶性 楱f脂’可採用與上述有機導電性材料的情況所用的同樣者 °又’作爲成爲A層之基質的在非水溶性樹脂中所分散的 -19- 201044599 無機導電性材料之形狀,可爲真球狀、旋轉橢圓體狀、扁 平體狀、數珠狀、板狀或針狀等,並沒有特別的限定。再 者,亦包含在非水溶性樹脂中將微粒子以二次元或三次元 連結者。而且,此等無機粒子可由單一元素所構成,也可 由複數的元素所構成。 於上述無機系導電性材料中,從容易在成爲A層的基質 之非相溶性樹脂中分散之點來看,較宜使用氧化鋅、氧化 鈦、氧化鉋、氧化銻、氧化錫、銦•錫氧化物、氧化釔、 氧化鑭、氧化鉻、氧化鋁、氧化矽等的金屬氧化物、碳黑 、碳纖維、奈米碳管、富樂烯等的碳系微粒子等。又,其 無機系導電性材料的平均粒徑爲任意,較佳爲0.001 μπι以 上20μιη以下,尤佳爲〇·〇〇5μηι以上ΙΟμιη以下,特佳爲 Ο.ΟΙμιη以上Ιμιη以下,更佳爲〇.〇2μιη以上0.5μιη以下。 此處所言的粒徑係指中位粒徑d50。該粒徑若爲Ο.ΟΟΙμιη以 下’則在成爲基質的非水溶性樹脂中分散係有困難,故不 宜,而且若爲20μιη以上,則難以形成均勻的Α層。藉由使 無機系導電材料的平均粒徑成爲0.001 μιη以上20 μπι以下, 可使導電性與所形成的薄膜之均一性並存。 又’當更進一步提高機械強度、耐濕熱特性,或尤其當 塗設在基材層(Β層)上當作a層時,爲了提高與基材層(Β 層)的密接性’或特別是當形成薄膜當作溶液製膜時,或當 塗設在基材層(B層)上當作a層時,爲了防止黏連,亦較佳 爲加到非水溶性樹脂中,使含有交聯劑。關於交聯劑,可 合適地使用與上述有機導電性材料之情況所用的同樣者。 -20- 201044599 再者’作爲(ϋ)或(iii)的情況之例,當使用有機系導電性 材料當作導電性材料時,較佳爲含有非水溶性樹脂、交聯 劑,以及含有用於A層的滑性改良或防黏連性賦予、光澤 度調整、表面比電阻控制的微粒子。作爲其例,可使用無 機微粒子或有機微粒子等。作爲該無機微粒子,例如可使 用金、銀、銅、鉑、鈀、銶、釩、餓、鈷、鐵、鋅、釕、 鐯、鉻、鎳、鋁、錫、鋅、鈦、钽、锆、銻、銦、釔、鑭 等的金屬,或石墨狀碳、鑽石型碳等的碳系化合物之微粒 ^ 子或碳奈米管、富樂烯等的無機系導電性材料所成的微粒 子、氧化鋅、氧化鈦、氧化鉋、氧化銻、氧化錫、銦·錫 氧化物、氧化釔、氧化鑭、氧化鉻、氧化鋁、氧化矽等的 金屬氧化物、氟化鋰、氟化鎂、氟化鋁、冰晶石等的金屬 氟化物、磷酸鈣等的金屬磷酸鹽、碳酸鈣等的碳酸鹽、硫 酸鋇等的硫酸鹽、其它滑石及高嶺土等的無機系非導電性 微粒子。此等微粒子的粒徑(數平均粒徑)較佳爲0.05 μηι以 上15μιη以下,更佳爲Ο.ίμιη以上ΙΟμιη以下。又,相對於 構成Α層的全部樹脂成分而言,含量較佳爲5質量%以上 50質量%以下,尤佳爲6質量%以上30質量%以下,更佳爲 7質量%以上20質量%以下。藉由使所含有的粒子之粒徑在 上述範圍,則可將表面比電阻控制在上述範圍,而且可賦 予表面的滑性,可調整表面的光澤度。 作爲(iv)的情況之例,可舉出含有至少2層以上的具有 導電性之層(A層)與基材層(B層)的積層構造’在構成A層 的無機系導電材料中分散有非導電性非水溶性樹脂的構成 -21- 201044599 。關於無機系導電性材料,可採用與上述無機導電性材料 之情況所用的同樣者。又,作爲無機系導電性材料中所分 散的非水溶性樹脂之形狀,可爲真球狀、真球狀橢圓體狀 、扁平體狀、數珠狀、板狀或針狀等,並沒有特別的限定 。再者,亦包含在無機系導電性材料中將非水溶性樹脂的 微粒子以二次元或三次元連結者。而且,此非水溶性樹脂 可由單一樹脂所構成,也可由複數的樹脂所構成。 又,作爲非水溶性樹脂,可採用與上述有機導電性材料 之情況所用的上述非水溶性樹脂同樣者,而且亦可使用聚 矽氧系化合物、交聯苯乙烯或交聯丙烯酸、交聯蜜胺等的 交聯微粒子。 而且,於本發明的太陽電池背板用薄膜中,A層較佳爲 含有用於防止A層及/或基材層(B層)的紫外線劣化之光安 定化劑。此處所言的光安定化劑,例如是吸收紫外線等的 光線而轉換成熱能的化合物,捕捉A層之光吸收分解所產 生的自由基,抑制分解連鎖反應的材料等。更佳爲可使用 吸收紫外線等的光線而轉換成熱能的化合物。藉由在A層 中含有光安定化劑,即使遭受長期的紫外線照射,也能可 長期間高度保持A層的A面之部分放電電壓的提高效果, 可防止A層及/或基材層(B層)之由於紫外線所致的色調変 化、強度劣化等。此處所言的紫外線吸收劑,在不損害其 它特性的範圍內,可較佳使用有機系紫外線吸收劑、無機 系紫外線吸收劑及此等的倂用之任一者,並沒有特別的限 定,但希望耐濕熱性優異,可均勻分散在A層中。作爲如 -22- 201044599 此的紫外線吸收劑之例,例如在有機系的紫外線吸收劑之 情況,可舉出水楊酸系、二苯甲酮系、苯并三唑系、氰基 丙烯酸酯系等的紫外線吸收劑及受阻胺系等的紫外線安定 劑等。具體地,例如可舉出水楊酸系的對第三丁基苯基水 楊酸酯、對辛基苯基水楊酸酯、二苯甲酮系的2,4-二羥基二 苯甲酮、2·羥基-4-甲氧基二苯甲酮、2-羥基-4-甲氧基-5-磺 基二苯甲酮、2,2’,4,4’-四羥基二苯甲酮、雙(2-甲氧基-4-羥基-5-苯甲醯基苯基)甲烷、苯并三唑系的2-(2’-羥基-5’-U 甲基苯基)苯并三唑、2-(2’-羥基- 5’-甲基苯基)苯并三唑、 2,2’-亞甲基雙[4-(1,1,3,3-四甲基丁基)-6-(211苯并三唑-2-基)苯酚]、氰基丙烯酸酯系的乙基-2-氰基-3,3’-二苯基丙烯 酸酯)、三阱系的2-(4,6-二苯基-1,3,5-三畊-2-基)-5-[(己基) 氧基]-苯酚、受阻胺系的雙(2,2,6,6-四甲基-4-哌啶基)癸二 酸酯、琥珀酸二甲酯· 1-(2-羥乙基)-4-羥基-2,2,6,6-四甲基 哌啶聚縮合物,其它爲鎳雙(辛基苯基)硫化物、及2,4-二第 三丁基苯基- 3’,5’-二第三丁基-4,-羥基苯甲酸酯等。於此等[Technical Field] The present invention relates to a solar cell backsheet for a solar cell backsheet having a high partial discharge voltage even thin, and a solar cell using the same and a solar cell using the same. [Prior Art] In recent years, as a semi-permanent and pollution-free energy source for the next generation, the solar power generation system of Green Energy has attracted attention, and solar cell systems are rapidly spreading. Fig. 1 shows a representative configuration of a general solar cell. In the case of sealing the power generating element 3 with a transparent enamel material 2 such as EVA (ethylene-vinyl acetate copolymer), the solar cell is bonded to a transparent substrate 4 such as glass and a glass plate called a back sheet 1. The sunlight is introduced into the solar cell through the transparent substrate 4. The sunlight introduced into the solar cell is absorbed by the power generating element 3, and the absorbed light energy is converted into electric energy. The converted electric energy is taken out by a lead wire (not shown in Fig. 1) connected to the power generating element 3, and is used in various electric machines. Here, the back sheet 1 is disposed on the back side of the power generating element 3 with respect to the sun, and the so-called power generating element 3 is a sheet member that is not directly connected. Various proposals have been made for the system or the components of the solar cell. However, the back sheet 1 mainly uses a polyethylene-based or polyester-based or fluorine-based resin film (see Patent Documents 1 to 3), and recently It is proposed to use a film containing bubbles as a reflective film for a liquid crystal display for use in a solar cell back sheet or the like (Patent Documents 4 and 5). Here, the solar cell is generally installed on a roof such as a home or a public facility, or is set in a large The vast scale of power generation within the venue. Further, since the solar cell is subjected to a high voltage during the operation period of the solar -4- 201044599, it is desirable to maintain both the mechanical strength and the high electrical resistance characteristics in the back sheet. If the electrical resistance is poor, a discharge of a small charge inside the film called partial discharge occurs when the solar cell system is activated. If this is continuous, the resin constituting the back sheet is chemically degraded. This is because if the system is subjected to chemical degradation due to a partial discharge phenomenon, when the system is subjected to a high voltage instantaneously due to a lightning strike or the like, even if it has a withstand voltage which is sufficiently resistant to the lightning strike, a fatal insulation occurs. The possibility of destruction. Therefore, in order to slightly suppress the occurrence of a partial discharge phenomenon, it is required to provide a voltage at which a partial discharge phenomenon occurs (hereinafter referred to as "partial discharge voltage"). In addition, from the viewpoint of space saving and weight reduction of the solar cell system, it is desirable to reduce the thickness of the back sheet. PRIOR ART DOCUMENT Patent Document Patent Document 1: Japanese Patent Publication No. Hei 1 1 -261 085 Patent Document 2: Special Kaiping 1 Japanese Unexamined Patent Publication No. Publication No. JP-A No. Hei No. Hei. No. Hei. No. Hei. No. Hei. However, the conventional film member system cannot actively improve the moist heat resistance and the partial discharge voltage for a long period of time. Therefore, the 'partial discharge voltage' which is high in order to maintain long-term mechanical strength' is only a method of increasing the thickness of the film, because of the high and the maintenance degree of the 201044599. θ 隹 难 难 , , , , , , , , , , , 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此A solar cell backsheet film that maintains a high partial discharge voltage, a solar cell backsheet using the same, and a solar cell using the same. In other words, the present invention relates to a solar cell back sheet thin film, a solar cell using the same, and a solar cell, wherein the solar cell back sheet thin film has a laminated structure of at least two or more layers, and has a surface specific resistance R0 of 1 〇 6 Ω/□ or more. a layer of 1014 Ω/□ or less (hereinafter referred to as a kneading surface) and a base material layer (Β layer), the B layer comprising a layer (B1 layer) made of polyester, and the polyester of the B1 layer The mass average molecular weight is from 3,500 to 60000. Advantageous Effects of Invention According to the present invention, it is possible to provide a film for a solar battery back sheet which has a long-term mechanical strength retention and a high partial discharge voltage even if it is thin. Further, by using this, the durability of the solar battery back sheet can be improved or reduced, and the durability of the solar battery can be improved and made thinner. [Embodiment] The present invention has been intensively reviewed for the above-mentioned problem, that is, a thin film for a solar cell back sheet having a long-term mechanical strength retention and a high partial discharge voltage. By controlling the electrical characteristics of the surface to a certain fixed range, the above problems can be solved in one fell swoop. The film for a solar cell back sheet of the present invention has the following constitution. In other words, the solar cell-back film has a laminated structure of at least two or more layers, and includes a layer having a surface specific resistance RO of 1 〇 δ Ω / □ or more and 10 14 Ω / □ or less (hereinafter referred to as A surface). The layer A and the base layer (layer B), wherein the layer B comprises a layer (B1 layer) made of polyester, and the mass average molecular weight of the polyester of the layer B1 is 375 00 or more and 60,000 or less. With this configuration, when a high voltage is applied in the thickness direction of the film for solar battery back sheet, a part of the electric field received by the film can be appropriately conducted and diffused in the film surface direction via the layer A. Therefore, the amount of electric field received per unit volume in the thickness direction of the thin film can be reduced. As a result, even when a high voltage is applied, the concentration of the portion where the electric field is poor in insulation performance can be suppressed, and the occurrence of the partial discharge phenomenon can be suppressed. Further, since the base layer (layer B) contains a layer (B1 layer) made of polyester, and the mass average molecular weight of the polyester of the B1 layer is 37,500 or more and 60000 or less, it is compared with the conventional back sheet. Can improve long-term mechanical strength retention. According to the above, it is possible to improve the film thickness 〇 困难 , to improve the long-term mechanical strength retention, and to increase the partial discharge voltage, which are difficult in the conventional film. The surface specific resistance R2 of the surface of the film for solar battery back sheet of the present invention on the side opposite to the A surface is preferably 1014 Ω/□ or more. As will be described later, when the solar cell back sheet film of the present invention is impregnated into the solar cell system, it is preferable that the surface (the sixth drawing in Fig. 1) on the opposite side to the resin layer in which the power generating element is sealed is referred to as the A surface. With such a configuration, the partial discharge voltage can be increased to become a highly durable solar cell, and the thickness of the solar cell can be reduced. 201044599 Here, if the surface specific resistance of both sides of the film for solar battery back sheet is 106 Q/□ or more, the electrical resistance of the solar battery back sheet may be lowered, or electric power may be taken out from the lead. In this case, the extraction efficiency is low and the power generation efficiency is lowered. The film for solar cell back sheet of the present invention preferably has an elongation at break of 50% or more. The elongation at break referred to herein means a sample which is cut into a size of 1 cm x 20 cm in accordance with ASTM-D882 (1 999) and stretched at a distance of 5 cm between the chucks and a tensile speed of 300 mm/min. More preferably, the elongation obtained by the above method is 60% or more, more preferably 80% or more, particularly preferably 100% or more, and most preferably 120% or more. In the film for solar battery back sheet of the present invention, if the elongation at break is less than 50%, when the back sheet is used for the solar cell, when some solar cell is applied to the solar cell (for example, The backing plate may break when the vibration during transportation or when some load is applied during handling or construction. In the film for solar battery back sheet of the present invention, the elongation of the solar cell can be improved by setting the elongation retention ratio to 50% or more. Further, the film for solar battery back sheet of the present invention preferably has an elongation retention ratio of 50% or more after standing for 24 hours under the conditions of a temperature of 125 ° C and a humidity of 100% RH. The elongation retention ratio as referred to herein is measured in accordance with ASTM-D882 (1999), and the elongation at break of the film before treatment is taken as E0, and is placed at a temperature of 125 ° C and a humidity of 10% RH. When the elongation at break after the hour is taken as E1, it is obtained by the following formula (1). Elongation retention rate (%) = E1/E0xl00 (1) In addition, E 1 means that the sample is cut into the shape of the measurement piece, and then treated for 24 hours under the conditions of temperature 201044599 1 25 ° C and humidity 100%. Further, the elongation retention ratio obtained by the above method is preferably 55% or more, more preferably 60% or more, particularly preferably 65% or more, and most preferably 70% or more. In the film for solar battery back sheet of the present invention, when the elongation retention ratio is less than 50%, the mechanical strength during long-term use is lowered. As a result, in the solar battery having the back sheet using the same, some rinsing is applied from the outside. When the solar cell is used (for example, when a falling stone hits a solar cell, etc.), the back plate may break. In the film for a solar cell back sheet of the present invention, the elongation of the mechanical strength of the back sheet during long-term use can be improved by setting the elongation retention ratio to 50% or more. The structure of the film for solar battery back sheets of the present invention will be described in more detail below. The film for a solar cell back sheet of the present invention can be preferably used if it satisfies the above requirements. As an example of the configuration, it is necessary to have a laminated structure of at least two or more layers including a layer (A layer) and a substrate layer having conductivity. (layer B), and at least one side surface must be composed of layer A. With this configuration, the conductive layer A can be used to increase the partial discharge voltage, and the base layer (layer B) can impart mechanical strength and electrical insulation properties in the thickness direction of the film. Here, the conductive layer (layer A) of the film for a solar cell back sheet of the present invention has a surface of 1 〇6ω/□ or more and 1014 Ω/□ or less when the surface specific resistance R0 is measured. The layer of). It is preferably 1〇7Ω/□ or more and 1014Ω/□ or less 'better 108Ω/□ or more and 1014Ω/□ or less, especially preferably 1〇9Ω/□ or more and 1014Ω/□ or less, preferably ι〇9ω/□ or more. 13Ω/□ or less. If the surface specific resistance R0 of the tantalum layer is lower than 106 Ω/□, the layer A is easily over-conducting, and is also turned on in the thickness direction of 201044599. As a result, the entire layer A has a function as a dummy electrode, and the electric field is alleviated in the plane direction. The effect is that the partial discharge voltage cannot be increased, or when the electric energy is taken out from the lead wire, the extraction efficiency is low and the power generation efficiency is lowered, which is not preferable. Further, when the surface specific resistance R0 of the layer A exceeds 1014 Ω/□, the conductivity is too small, and the effect of relaxing the electric field is lost in the plane direction, and the partial discharge voltage cannot be increased, which is not preferable. The surface specific resistance R 〇 of the film for a solar cell back sheet of the present invention is controlled to be in the range of 1 〇 6 Ω/□ or more and 10 14 Ω/□, which can be applied to the film thickness direction at the time of high voltage printing. One of the electric fields is moderately conducted in the direction of the film surface, which can alleviate the concentration of the electric field in the thickness direction, and can increase the partial discharge voltage without increasing the thickness of the film. Further, the partial discharge characteristics and electrical resistance characteristics of the back sheet using the film can be remarkably improved. It is preferable that the surface specific resistance R1 of the surface A of the film for a solar cell back sheet of the present invention is placed at a temperature of 125 ° C and a humidity of 100% for 24 hours, preferably 106 Ω / □ or more and 10 14 Ω / □ or less. It is 1〇7Ω/□ or more and 1014Ω/□ or less, more preferably 1〇8Ω/□ or more and 1〇14〇/□ or less, and particularly preferably 109Ω/□ or more and 1014Ω/□ or less, and most preferably 1〇9ω/□ or more. 1013 Ω / □ or less. If the surface of the kneading surface after the treatment is less than 106 ω/□ than the resistance R1, the conductivity is excessively high when used for a long period of time, and the effect of relaxing the electric field in both directions is lost, and the partial discharge voltage is lowered, and the power generation efficiency of the solar cell is lowered. On the other hand, if it exceeds 1 〇Μ Ω / □ ', the conductivity is too low, and the effect of the electric field relaxation in the plane direction is lost. In the film for solar battery back sheet of the present invention, the surface specific resistance R1 of the treated ruthenium layer is controlled to a range of 10 14 Ω/□ or less in the range of ι〇6ω/port or more, even in long-term use. Department-10-201044599 The effect of increasing the discharge voltage. As a result, the partial discharge characteristics and the durability against electrical characteristics of the back sheet using the film for a solar cell back sheet of the present invention can be improved. Here, in the film for solar battery back sheets of the present invention, the 'A surface' may satisfy the above characteristics, and specific examples thereof include a component which exhibits conductivity of the layer A. Here, as the component exhibiting conductivity, any of an organic conductive material, an inorganic conductive material, and an organic/inorganic composite conductive material is preferably used. Examples of the organic conductive material include a cationic conductive compound having a cationic substituent such as an ammonium group, an amine salt group or a quaternary ammonium group, a sulfonate group, a phosphate group, and a carboxyl group. An anionic conductive compound having an anionic anion-based conductive compound such as an acid salt group, an amphoteric conductive compound having an anionic substituent or a cationic substituent, or the like, and a polycondensation of a conjugated polyene skeleton Conductive polymer compounds such as acetylene, polyparaphenylene, polyaniline, polythiophene, polyparaphenylene vinylene, polypyrrole, and the like. These conductive materials are preferably used by introducing the material of the matrix constituting the layer A by the following methods (1) to (4). Thereby, the conductivity of the a layer can be exhibited. That is, by (1) the material of the matrix is copolymerized with the conductive skeleton, and (2) is added to the material of the matrix. Mixed • compatible conductive materials, (3) added to the matrix material. After mixing the conductive material, the conductive material is transferred to the surface to be concentrated near the surface, (4) the conductive material is added to the material of the substrate, and the conductive material is dispersed to form a conductive network of 201044599, etc., and the layer A can be made. It exhibits conductivity and can be preferably used. Among these compounds (conductive materials), especially when the film is formed as a solution film or when the base layer (layer B) is applied to form the layer A, it is obtained even when the high voltage is applied. In view of high electrical conductivity and the like, the ionic conductive material is more preferably a cationic conductive compound from the viewpoints of applicability, adhesion, and effect of increasing the partial discharge voltage for a long period of time. For the conductive compound, for example, any of a low molecular weight type conductive compound and a high molecular weight type conductive compound can be preferably used. However, in the present invention, it is preferable to use a high molecular weight type from the viewpoint of durability and the like. Conductive compound. Further, in the case where the A side of the layer A exhibits conductivity by melt extrusion, when the method (4) is used, dispersion is preferably used from the viewpoint of excellent heat resistance and heat and humidity resistance of the A side. A polyether amide-based copolymerized compound having a conductive network is formed in a matrix of the "Irgastat" P series manufactured by Ciba Japan Co., Ltd. Any of the organic conductive materials can be preferably water-soluble or water-insoluble. Since the film A of the solar cell back sheet of the present invention preferably has moisture-heat resistance, it is preferably used. A water-insoluble conductive compound. Here, in the case of an ionic conductive material, water-soluble and water-insoluble are determined by the type of the monomer constituting the materials, and in order to be water-insoluble, the monomer type having the above functional group does not have the above. The copolymerization ratio of the monomer type of the functional group determines the ratio of the number of moles of the monomer species having the above functional group to the number of moles of the monomer species having no such functional group (monomer type having the above functional group) The number of moles/the number of moles of the monomer type not having the above functional group -12-201044599 is preferably 10/90 or more and 90/10 or less, more preferably 20/80 or more and 80/20 or less, more preferably 30/70 or more 70/3 0 or less. If the ratio is less than 1 〇/90, the surface of the A side of the formed A layer becomes too high in resistance R0, and the partial discharge voltage increasing effect is lost. Further, when the ratio exceeds 90/10, the water-repellent heat resistance of the formed A-face deteriorates due to the high water solubility. In the film for a solar cell back sheet of the present invention, the copolymerization ratio of the monomer having the functional group and the monomer having no functional group is controlled to 10/90 or more and 90/10 or less. Partial discharge U pressure and heat and humidity resistance imparted to its characteristics. Further, in the film for solar battery back sheet of the present invention, when the conductive material used for the layer A is an organic conductive material, the heat resistance is improved, the strength of the layer A is improved, and the substrate layer (B) is used. When the layer A is applied by in-line coating at the time of production, in order to impart the film forming property of the layer A, as a material of the matrix constituting the layer A added to the organic conductive material, It is preferred to use polyester resin, acrylic resin, polyolefin resin, polyamine resin, polycarbonate, polystyrene, polyether, polyester decylamine, polyether ester, polyvinyl chloride, polyethylene. A water-insoluble resin such as an alcohol or a copolymer which is used as a component. When the layer A is formed by coating, it may be added and mixed in a coating agent, and when the layer A is formed by melt extrusion, it may be melt-kneaded and mixed. In this case, even when the organic conductive material is a water-soluble conductive material, moist heat resistance characteristics can be imparted, and in the case of a water-insoluble conductive material, moist heat resistance characteristics can be further improved. The mixing ratio of the organic conductive material to the water-insoluble resin (the mass of the organic conductive material / the mass of the water-insoluble resin), when the organic conductive material is the water-soluble conductive-13-201044599 material, it is preferably 5/95 or more and 50/50 or less. More preferably ι〇/9〇 or more 40/60 or less. If the mixing ratio is less than 5/95, the surface of the layer a is not suitable for the partial discharge voltage of the resistor, so it is not preferable. When the mixing ratio is more than 50/5, the moisture resistance of the formed layer A is deteriorated. Further, when the organic conductive material is a water-insoluble conductive material, the mixing ratio of the organic conductive material to the water-insoluble resin (the mass of the organic conductive material/the mass of the water-insoluble resin) is preferably 26/ 74 or more and 98/2 or less, more preferably 30/70 or more and 95/5 or less. When the mixing ratio is less than 26/74, the surface of the layer A becomes higher than the resistance R0. The partial discharge voltage cannot be increased, which is not preferable. When the mixing ratio is more than 98/2, the moisture resistance of the formed layer A is deteriorated. In the film for solar battery back sheet of the present invention, when the organic conductive material is a water-soluble conductive material, when the organic conductive material is a water-insoluble conductive material, it is controlled to be 5/95 or more and 50/50 or less. By controlling the mixing ratio of the organic conductive material and the water-insoluble resin (the mass of the organic conductive material/the quality of the water-insoluble resin) to 26/74 or more and 98/2 or less, the partial discharge voltage can be increased and It imparts heat and humidity resistance to its characteristics. In addition, as an example of the water-insoluble resin when the A layer is formed by melt extrusion, polyethylene terephthalate (hereinafter referred to as "PET") or polyethylene-2,6-naphthalate may be used. Polybutylene terephthalate 'polybutylene terephthalate, polybutylene terephthalate, 1,4-cyclohexanedimethyl ester, polylactic acid, polyester resin, polyethylene, polystyrene, poly A polyolefin resin such as propylene, polyisobutylene, polybutene or polymethylpentene, a cycloolefin resin, a polyamine resin, a polyimide resin, a polyether resin, or a polyester amide resin. Polyether vinegar resin, acrylic resin, polyurethane resin, polycarbonate-14- 201044599 ester resin, polyvinyl chloride resin, fluorine resin, and the like. Among these, the reason for the diversity of the monomer type of the copolymerization and the ease of adjusting the physical properties of the material are preferably a polyester resin, a polyolefin resin, a cycloolefin resin, or a polyamide resin. A thermoplastic resin selected from an acrylic resin, a fluorine-based resin, or a mixture thereof, is mainly composed of a thermoplastic resin. From the point of view of mechanical strength and cost, it is particularly preferred that the polyester resin is composed of a polyester resin. Further, the water-insoluble resin is aligned in one axis or two axes, and the mechanical strength can be improved by alignment crystallization, or In the case of a polyester resin or the like, r &gt; _ improves the hydrolysis resistance of the layer A during long-term use. Further, in the case where the conductive material used for the layer A is an organic conductive material, in order to further improve the moist heat resistance characteristics, particularly when applied to the base material layer (layer B) as the layer A, in order to improve the substrate The adhesion of the layer (layer B), especially in the case where a film is formed as a solution film, and the layer A is applied to the substrate layer (layer B), from the viewpoint of preventing adhesion of the film, It is preferably added to an organic conductive material or a water-insoluble resin to contain a crosslinking agent. As the crosslinking agent, it is preferred to carry out a crosslinking reaction using a functional group existing in a resin constituting the organic material and/or the water-insoluble oxime resin, for example, a hydroxyl group, a carboxyl group, a glycidyl group or a guanylamino group. Examples of the resin or the compound include a methylolated or alkoxylated urea-based, melamine-based, acrylamide-based, polyamid-based resin, an epoxy compound, an oxetane compound, an isocyanate compound, and the like. A coupling agent, an aziridine-based compound, an oxazoline-based compound, a carbodiimide-based compound, an acid anhydride, a carboxylic acid ester derivative, and a mixture thereof. The type and content of the crosslinking agent can be appropriately selected in accordance with the organic conductive material -15- 201044599 material constituting the layer A, the water-insoluble resin, the substrate layer (layer B), and the like. As the crosslinking agent in the solar cell back sheet film of the present invention, when the film is formed as a solution film, or when it is applied as a layer A on the substrate layer (layer B), the organic conductive material and When the water-insoluble resin has an acrylic skeleton, it is more preferably an oxazoline compound as a crosslinking agent, and a crosslinking agent when the organic conductive material and/or the water-insoluble resin have a polyester skeleton. It is preferably a melamine-based compound, which is more preferable from the viewpoint that the formed layer A is more excellent in moist heat resistance. In addition, when the layer A is formed by melt extrusion, an oxazoline compound, an epoxy compound, an oxetane compound, or a crosslinking agent when a polyester resin is used as the water-insoluble resin, A carbodiimide compound, an acid anhydride, or a carboxylic acid ester derivative is suitable. The amount of the crosslinking agent to be added is usually 0.% by mass based on 100 parts by mass of all the resin components constituting the layer A. 01 parts by mass or more and 50 parts by mass or less, particularly preferably 0. 2 parts by mass or more and 40 parts by mass or less, more preferably 〇. 5 parts by mass or more of 30 parts by mass or less. Here, in the crosslinking agent, it is also preferred to use a catalyst to promote the crosslinking reaction. Further, the crosslinking reaction method may be any one of a heating method, an electromagnetic wave irradiation method, and a moisture absorption method, and a heating method is usually preferably used. In the film for a solar cell back sheet of the present invention, when the material constituting the layer A is an organic conductive material, the surface specific resistance R of the surface A is in accordance with the type of the organic conductive material contained in the layer A, The type and mixing ratio of the water-insoluble resin or the crosslinking agent, the mixing ratio with other materials, and the film thickness are determined. With respect to the organic conductive material contained in the layer A, the higher the ratio of the water-insoluble resin or the crosslinking agent, the higher the surface specific resistance RO, and the smaller the surface specific resistance R0 is, the smaller the ratio is -16 - 201044599. Further, the thicker the film thickness of the layer A, the lower the surface specific resistance R0, and the smaller the surface, the higher the surface specific resistance R0. The most suitable composition, film thickness, and the like vary depending on the type of material used, the film composition, and the like, and the surface of the A surface is formed so that the surface resistance R0 satisfies the above requirements. Here, in the film for solar battery back sheets of the present invention, when the material constituting the layer A is an organic conductive material, it is applied by the in-line coating method in the production of the base layer (layer B). In the case of the layer A, the film forming property of the layer A is imparted, and the thickness of the layer A obtained is thin, and the partial discharge voltage is high, and the heat and humidity resistance is high. The material is a cationic conductive compound having an acrylic skeleton, and the water-insoluble resin is a compound having an acrylic skeleton and a crosslinking agent-based oxazoline compound. In addition, when the total amount of the resin component is 100 parts by mass, the organic conductive material is contained in an amount of 50 parts by mass or more, and the mixing ratio of the organic conductive material and the water-insoluble resin (the quality of the organic conductive material/non- The mass of the water-soluble resin is 25/75 or more and 98/2 or less (more preferably 5 0/5 0 or more and 95/5 or less), and the ratio of the crosslinking agent is 1 相对 with respect to 100 parts by mass of the total resin component. The mass part is 20 parts by mass or more or more (more preferably 2 parts by mass or more and 20 parts by mass or less). Further, in the film for solar battery back sheet of the present invention, when the material constituting the conductive layer (layer A) is an inorganic conductive material, examples thereof include gold, silver, copper, platinum, and rhodium. , boron, palladium, chain, vanadium, hungry 'cobalt, iron, zinc, antimony, bismuth, chromium, nickel, aluminum, tin, zinc, titanium, antimony, bismuth, antimony, indium, antimony, bismuth, magnesium, calcium, antimony a mixture of inorganic substances such as bells and scorpions as the main component, such as oxidation, sub-oxidation, and sub-oxidation, or a mixture of the above-mentioned inorganic group and the inorganic group of -17-201044599, which is oxidized, sub-oxidized, and oxidized (hereinafter, Nitrogen, nitriding, or nitriding, or the inorganic group and the nitriding, nitriding, and sub-nitriding of the inorganic group, the inorganic group is used as a main component. a mixture (hereinafter referred to as an inorganic nitride), oxynitriding, oxynitriding, or oxynitriding using the above inorganic group as a main component, or the above inorganic group and the above-mentioned inorganic group oxygen nitrogen a mixture of nitrous oxide and hypoxylene nitride (hereinafter referred to as (Inorganic oxynitride), a mixture of carbonized, carbonized, or secondary carbonized as the main component, or a mixture of the inorganic group and the carbonized, carbonized, and secondary carbonized inorganic group (hereinafter referred to as These are referred to as inorganic carbides, and those having the above inorganic group as a main component are fluorinated and/or chlorinated and/or brominated and/or iodinated (hereinafter referred to as halogenated), subhalogenated, and secondary. In the halogenated group, the inorganic group and the mixture of the above-mentioned inorganic group, which are halogenated, subhalogenated, or subhalogenated (hereinafter referred to as inorganic halide), or the inorganic group and the inorganic group, vulcanized, subsulfided, and sub-vulcanized. a mixture (hereinafter referred to as an inorganic sulfide), and a carbon-based compound such as a graphite-like carbon, a diamond-type carbon, a carbon fiber-carbon nanotube, or a fullerene in which the above-mentioned compounds are different in composition (hereinafter These are referred to as carbon-based compounds, and mixtures thereof and the like. The above material may be contained in at least the layer A, and particularly when the layer thickness of the layer a is Ιμηη or less, in order to make the surface specific resistance within the above range, it is more preferable to use it as a main component. Further, a case where more than 50% by mass in the layer is defined as a main component. In the film for a solar cell back sheet of the present invention, when the material constituting the conductive layer (tantalum layer) is an inorganic conductive material, the surface of the a-layer a surface -18-201044599 is more specific than the resistor R0. The degree of modification (oxidation, nitridation 'oxynitridation, carbonization, halogenation, vulcanization, etc.) of the inorganic substance group contained in the film, or the mixing ratio of the inorganic substance group and the modified inorganic substance group, the mixing ratio with other materials, and the film Thick and so on. The higher the degree of modification of the inorganic group, the higher the surface specific resistance R0 of the A surface, and the lower the degree of modification, the smaller the surface specific resistance R 〇 of the A surface. Further, the larger the ratio of the modified inorganic group to the inorganic substance group contained in the layer A, the higher the surface specific resistance R0, and the smaller the surface specific resistance R0 is. Further, the thicker the film thickness is, the lower the surface specific resistance R0 is. The smaller the surface is, the higher the surface is than the electric π. The most suitable composition and film thickness vary depending on the type of metal to be used, the modification method, and the like, and are formed in such a manner that the surface specific resistance R0 satisfies the above requirements. Further, in the film for solar battery back sheet of the present invention, when the material constituting the layer A is an organic/inorganic composite conductive material (for example, (i), a non-conductive water-insoluble resin is used as a substrate. When an inorganic conductive material is used as the conductive material, (ii) the organic conductive material and the inorganic conductive material are used, and (iii) the organic conductive material is used as the conductive system. In the case of a non-conductive material, (iv) a case where a non-conductive water-insoluble resin is dispersed in an inorganic conductive material, and the like, it is preferable to combine the above-mentioned organic conductive material, inorganic conductive material, and water-insoluble resin. And a crosslinking agent and an inorganic non-conductive material. In the case of the case of (0), a structure in which an inorganic conductive material is dispersed using a water-insoluble resin is used as a substrate of the layer A. The organic conductive material may be used as the water-insoluble 楱f grease. In the case of the same, the shape of the inorganic conductive material dispersed in the water-insoluble resin as the matrix of the A layer can be a true spherical shape, a spheroidal shape, or a flat shape. There is no particular limitation on the number of beads, the plate shape, or the needle shape. Further, the microparticles are also included in the water-insoluble resin by two or three elements. Moreover, the inorganic particles may be composed of a single element. The composition may be composed of a plurality of elements. In the inorganic conductive material, it is preferable to use zinc oxide, titanium oxide, or oxidized planant from the viewpoint of being easily dispersed in the incompatible resin which is the matrix of the layer A. Carbon oxides such as cerium oxide, tin oxide, indium tin oxide, antimony oxide, antimony oxide, chromium oxide, aluminum oxide, antimony oxide, carbon black, carbon fiber, carbon nanotube, and fullerene Particles and the like. Further, its average particle diameter of the inorganic conductive material is arbitrary, preferably 0. 001 μπι is above 20μηη, especially for 〇·〇〇5μηι or more ΙΟμιη, especially good for Ο. ΟΙμιη above Ιμιη below, more preferably 〇. 〇2μιη above 0. 5μιη below. The particle size referred to herein means the median diameter d50. If the particle size is Ο. It is not preferable to disperse in the water-insoluble resin which becomes a matrix, and it is unpreferable, and if it is 20 μm or more, it is difficult to form a uniform ruthenium layer. By making the average particle diameter of the inorganic conductive material 0. 001 μιη or more and 20 μπι or less can make the conductivity and the uniformity of the formed film coexist. 'When further improving the mechanical strength, the moist heat resistance, or especially when applied as a layer on the substrate layer (Β layer), in order to improve the adhesion to the substrate layer (Β layer)' or especially when When a film is formed as a solution film or when it is applied as a layer on the substrate layer (layer B), it is preferably added to the water-insoluble resin to prevent adhesion, and a crosslinking agent is contained. As the crosslinking agent, the same as those used in the case of the above organic conductive material can be suitably used. -20- 201044599 In addition, as an example of the case of (ϋ) or (iii), when an organic conductive material is used as the conductive material, it is preferred to contain a water-insoluble resin, a crosslinking agent, and a content. Fine particles in the A layer with improved slip resistance or anti-blocking properties, gloss adjustment, and surface specific resistance control. As an example, inorganic fine particles or organic fine particles or the like can be used. As the inorganic fine particles, for example, gold, silver, copper, platinum, palladium, rhodium, vanadium, cobalt, cobalt, iron, zinc, ruthenium, osmium, chromium, nickel, aluminum, tin, zinc, titanium, lanthanum, zirconium, or the like can be used. a metal such as ruthenium, indium, osmium or iridium, or a fine particle of a carbon-based compound such as graphite carbon or diamond-based carbon, or an inorganic conductive material such as a carbon nanotube or a fullerene, and oxidized. Metal oxides such as zinc, titanium oxide, oxidized planer, cerium oxide, tin oxide, indium tin oxide, cerium oxide, cerium oxide, chromium oxide, aluminum oxide, cerium oxide, etc., lithium fluoride, magnesium fluoride, fluorination A metal fluoride such as aluminum or cryolite; a metal phosphate such as calcium phosphate; a carbonate such as calcium carbonate; a sulfate such as barium sulfate; and inorganic non-conductive fine particles such as talc and kaolin. The particle size (number average particle diameter) of the fine particles is preferably 0. 05 μηι is above 15μιη, more preferably Ο. Ίμιη Above ΙΟμιη below. In addition, the content is preferably 5% by mass or more and 50% by mass or less, and particularly preferably 6% by mass or more and 30% by mass or less, and more preferably 7% by mass or more and 20% by mass or less based on the total of the resin components constituting the enamel layer. . By setting the particle diameter of the particles to be contained in the above range, the surface specific resistance can be controlled to the above range, and the surface smoothness can be imparted, and the gloss of the surface can be adjusted. In the case of the case of (iv), a laminated structure including at least two or more layers (A layer) and a base layer (layer B) having conductivity may be dispersed in the inorganic conductive material constituting the layer A. Composition of non-conductive, water-insoluble resin-21- 201044599. The inorganic conductive material may be the same as that used in the case of the above inorganic conductive material. Further, the shape of the water-insoluble resin dispersed in the inorganic conductive material may be a true spherical shape, a true spherical ellipsoid shape, a flat shape, a bead shape, a plate shape, or a needle shape, and is not particularly Limited. Further, it is also included in the inorganic conductive material that the microparticles of the water-insoluble resin are connected in a two-dimensional or three-dimensional manner. Further, the water-insoluble resin may be composed of a single resin or a plurality of resins. Further, as the water-insoluble resin, the same as the above-mentioned water-insoluble resin used in the case of the above-mentioned organic conductive material, and a polyfluorene-based compound, cross-linked styrene or cross-linked acrylic acid, and crosslinked honey may be used. Crosslinked microparticles such as amines. Further, in the film for solar battery back sheet of the present invention, the layer A preferably contains a light stabilizer for preventing ultraviolet light deterioration of the layer A and/or the substrate layer (layer B). The light stabilizer of the present invention is, for example, a compound which absorbs light such as ultraviolet rays and converts it into heat energy, and captures a radical generated by light absorption and decomposition of the layer A, and suppresses a material which decomposes a chain reaction. More preferably, a compound which absorbs light such as ultraviolet rays and converts it into heat energy can be used. By including the light stabilizer in the layer A, even if it is subjected to long-term ultraviolet irradiation, the effect of improving the partial discharge voltage of the A side of the layer A can be maintained for a long period of time, and the layer A and/or the substrate layer can be prevented ( B layer), color tone deterioration due to ultraviolet rays, strength deterioration, and the like. The ultraviolet absorber of the present invention is preferably one of an organic ultraviolet absorber, an inorganic ultraviolet absorber, and the like, and is not particularly limited, but is not particularly limited, but is not particularly limited. It is desired to have excellent heat and humidity resistance and can be uniformly dispersed in the layer A. As an example of the ultraviolet absorber of -22-201044599, for example, in the case of an organic ultraviolet absorber, a salicylic acid type, a benzophenone type, a benzotriazole type, and a cyanoacrylate type are mentioned. An ultraviolet absorber such as a UV absorber or a hindered amine system. Specific examples thereof include salicylic acid-based p-tert-butylphenyl salicylate, p-octylphenyl salicylate, and benzophenone-based 2,4-dihydroxybenzophenone. , 2·hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2,2′,4,4′-tetrahydroxybenzophenone , bis(2-methoxy-4-hydroxy-5-benzylidenephenyl)methane, benzotriazole-based 2-(2'-hydroxy-5'-U-methylphenyl)benzotriene Oxazole, 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2,2'-methylenebis[4-(1,1,3,3-tetramethylbutyl) -6-(211 benzotriazol-2-yl)phenol], cyanoacrylate-based ethyl-2-cyano-3,3'-diphenyl acrylate), tri-trapped 2-( 4,6-diphenyl-1,3,5-trin-2-yl)-5-[(hexyl)oxy]-phenol, hindered amine double (2,2,6,6-tetramethyl) Poly-4-piperidinyl) sebacate, dimethyl succinate, 1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, Others are nickel bis(octylphenyl) sulfide, and 2,4-di-t-butylphenyl-3',5'-di-t-butyl-4,-hydroxybenzoate, etc.Here

Q 紫外線吸收劑之中,從對於重複紫外線吸收的耐性高之點 來看,更佳爲三畊系紫外線吸收劑。再者,此等紫外線吸 收劑係可將上述紫外線吸收劑單體加到A層中,也可爲以 使有機系導電性材料或非水溶性樹脂與具有紫外線吸收劑 能力的單體共聚合的形態來導入。 又,作爲無機系的紫外線吸收劑,可舉出氧化鈦、氧化 鋅、氧化姉等的金屬氧化物,或碳、富樂烯、碳纖維、碳 奈米管等的碳系材料等。再者,此等紫外線吸收劑係可將 -23- 201044599 上述紫外線吸收劑單體加到A層中,也可兼用無機系導電 性材料的機能,或導入有機系導電性材料或非水溶性樹脂 中。 而且,上述紫外線吸收劑可爲單獨或倂用2種類以上, 亦可併用無機系、有機系的化合物。 本發明的太陽電池背板用薄膜的A層中之紫外線吸收 劑的含量,當爲有機系紫外線吸收劑時,相對於A層中的 全部固體成分而言,較佳爲〇.〇5質量%以上20質量%以下 ,更佳爲0 · 1質量%以上1 5質量%以下,特佳爲〇 . 1 5質量% 以上15質量%以下。紫外線吸收劑的含量若低於〇.〇5質量 %,則耐光性不足,長期使用時A層會劣化,部分放電電壓 降低,故不宜,而若多於20質量%,則A層的著色會變大 〇 又,當爲無機系紫外線吸收劑時,係A層的全部固體成 分之1質量%以上50質量%以下,更佳爲2質量%以上45 質量%以下,尤佳5質量%以上40質量%以下,特佳爲8質 量%以上3 5質量%以下,最佳爲1 2質量%以上3 0質量%以 下。當爲無機系紫外線吸收劑時,紫外線吸收劑的含量若 低於1質量%,則耐光性不足,長期使用時A層會劣化,部 分放電電壓降低,故不宜,而若多於50質量%,則A層的 強度會降低。 於本發明的太陽電池背板用薄膜中,在有機系紫外線吸 收劑的情況,相對於A層中的全部固體成分而言,藉由使A 層的紫外線吸收劑含量成爲0.05質量%•以上20質量%以下 -24- 201044599 ,在無機系紫外線吸收劑的情況’成爲A層的全部固體成 分之1質量%以上5 0質量%以下,則A層不會著色或強度 不會降低,可賦予耐光性。 A層的厚度較佳爲0.001 μπι以上50 μιη以下。於此等之 中,當構成Α層的材料以有機系材料當作主要構成成分, 藉由塗布A層而形成時,一般較佳爲0.01 μιη以上50 μιη以 下,尤其當基材層(Β層)爲經一軸或二軸拉伸的薄膜,且在 其製造中形成Α層時,從Α層的形成容易性、均勻性之觀 Ο 點來看,一般較佳爲0.01 μιη以上1 μιη以下,更佳爲0.02μιη 以上Ιμιη以下,特佳爲0.0 5 μιη以上Ιμιη以下的範圍內。 又,當構成Α層的材料以無機系材料當作主要構成成分時 ,較佳爲Ο.ΟΟΙμηι以上Ιμιη以下,尤其在如後述地藉由蒸 鍍法、濺鍍法的乾式法來形成時,從Α層的形成之控制容 易性、均勻性等來看,更佳爲0.005 μιη以上0.8 μιη以下, 特佳爲0.01 μιη以上0.5 μπι以下的範圍內。藉由將α層的厚 度控制在上述範圍,可使部分放電電壓的提高效果、A層的 形成性、均勻性等並存。 又’當欲提高A層對紫外線的耐久性時,較佳爲增加a 層的厚度,於該情況下’較佳爲藉由熔融擠出來形成A層 。該情況下的A層之較佳厚度爲0.05μιη以上50μπι以下, 更佳爲1 μιη以上50μιη以下’尤更佳爲2μιη以上30μιη以下 ’特佳爲3μπι以上20μιη以下,最佳爲3μιη以上15以下。 藉由將Α層的厚度控制在上述範圍,則除了部分放電電壓 的提高效果、A層的形成性、均勻性,亦可賦予耐久性。 -25- 201044599 本發明的太陽電池背板用薄膜中的基材層(B層)係可採 用聚酯樹脂、聚烯烴樹脂、丙烯酸樹脂、聚醯胺樹脂、聚 醯亞胺樹脂、聚醚系樹脂、聚碳酸酯系樹脂等的有機薄膜 基材’或矽、玻璃、不銹鋼、鋁、鋁合金、鐵、鋼、鈦等 的金屬基材及混凝土等的無機基材、矽系樹脂等的有機無 機複合基材,及此等的組合者等,較佳爲包含有機系的材 料,從操作性或輕量性之點來看,較佳爲使用具有可撓性 的基材。更佳爲以熱塑性樹脂當作主要構成成分。作爲熱 塑性樹脂之例,可使用聚對苯二甲酸乙二酯、聚2,6-萘二甲 酸乙二酯、聚對苯二甲酸丙二酯、聚對苯二甲酸丁二酯、 聚對苯二甲酸1,4-環己二甲酯、聚乳酸等的聚酯系樹脂、聚 乙烯、聚苯乙烯、聚丙烯、聚異丁烯、聚丁烯、聚甲基戊 烯等的聚烯烴系樹脂、環烯烴系樹脂、聚醯胺系樹脂、聚 醯亞胺系樹脂、聚醚系樹脂、聚酯醯胺系樹脂、聚醚酯系 樹脂、丙烯酸系樹脂、聚胺甲酸酯系樹脂、聚碳酸酯系樹 脂、聚氯乙烯系樹脂、氟系樹脂等。於此等之中,基於共 聚合的單體種類之多樣性以及由其容易調整材料物性等的 理由,較佳爲聚酯系樹脂、聚烯烴系樹脂、環烯烴系樹脂 、聚醯胺系樹脂、丙烯酸系樹脂、氟系樹脂、或由此等的 混合物所選出的熱塑性樹脂所主要構成者。從機械強度、 成本之點來看,特佳爲主要由聚酯系樹脂所構成者。 又,此等樹脂可爲均聚樹脂,也可爲共聚物或摻合物, 當B層所用的樹脂爲聚酯樹脂時,構成的主要重複單位可 以採用對苯二甲酸乙二酯、2,6-萘二羧酸乙二酯、對苯二甲 -26- 201044599 酸丙二酯、對苯二甲酸丁二酯、對苯二甲酸1,4·環己二甲酯 、2,6-萘二羧酸乙二酯及此等的混合物所構成者。再者,此 處所言的主要重複單位,從機械強度、耐熱性之點來看, 上述重複單位的合計係聚酯樹脂的全部重複單位之70莫耳 %以上,較佳爲80莫耳%以上,更佳爲90莫耳%以上。 再者,從低成本,可更容易聚合,且耐熱性優異之點來 看,較佳爲以對苯二甲酸乙二酯、2,6-萘二羧酸乙二酯及此 等的混合物當作主要構成成分。於此情況下,當使用對苯 二甲酸乙二酯當作更多的構成單位時,可得到廉價且具有 通用性之具耐濕熱性的薄膜,而當使用2,6-萘二羧酸乙二酯 當作更多的構成單位時,可成爲耐濕熱性優異的薄膜。 又,從耐熱性、機械強度之點來看,Β層必須含有由聚 酯所成的層(Β1層)。又,構成Β1層的聚酯較佳爲使用上述 聚酯。 而且,構成Β1層的聚酯之質量平均分子量Mwl必須爲 3 75 00以上600 00以下。此處所言的質量平均分子量係指藉 〇 由凝膠滲透層析術所求得的値,係使用PET-DMT(標準品) 來製作分子量校正曲線,以該分子量校正曲線爲基礎所得 之値。 更詳細起,首先使用搭載有當作管柱的2支ShodexHFIP 8 06M(昭和電工(股)製),當作檢測器的RI型差示折射率器 (2414型,感度256,WATERS公司製)的凝膠滲透層析器 GCP-244(WATERS公司製),使用PET-DMT(標準品),在室 溫(23°C )、流速〇.5mL/min實施GPC測定。使用所得到的 -27- 201044599 沖提容積(V)及分子量(Μ),計算下述式(2)的3次近似式之 係數(Α〇,製作校正曲線圖。Among the UV absorbers, a three-till ultraviolet absorber is more preferable from the viewpoint of high resistance to repeated ultraviolet absorption. Furthermore, these ultraviolet absorbers may be added to the layer A in the ultraviolet absorber, or may be copolymerized with an organic conductive material or a water-insoluble resin and a monomer having an ultraviolet absorber. Form to import. In addition, examples of the inorganic ultraviolet ray absorbing agent include metal oxides such as titanium oxide, zinc oxide, and cerium oxide, and carbon materials such as carbon, fullerene, carbon fibers, and carbon nanotubes. Further, these ultraviolet absorbers may be used to add the above-mentioned ultraviolet absorber monomer of -23 to 201044599 to the layer A, or to function as an inorganic conductive material, or to introduce an organic conductive material or a water-insoluble resin. in. Further, the ultraviolet absorber may be used alone or in combination of two or more kinds, and an inorganic or organic compound may be used in combination. When the content of the ultraviolet absorber in the layer A of the film for a solar cell back sheet of the present invention is an organic ultraviolet absorber, it is preferably 〇.〇5 mass% with respect to all the solid components in the layer A. The amount is 20% by mass or less, more preferably 0. 1% by mass or more and 15% by mass or less, and particularly preferably 5% by mass or more and 15% by mass or less. When the content of the ultraviolet absorber is less than 5% by mass, the light resistance is insufficient, and the A layer is deteriorated during long-term use, and the partial discharge voltage is lowered, so that it is not suitable, and if it is more than 20% by mass, the color of the A layer will be When it is an inorganic ultraviolet absorber, it is 1 mass% or more and 50 mass% or less of all the solid components of the layer A, more preferably 2 mass% or more and 45 mass% or less, and particularly preferably 5 mass% or more. The mass% or less is particularly preferably 8 mass% or more and 35 mass% or less, and more preferably 12 mass% or more and 30 mass% or less. When the content of the ultraviolet absorber is less than 1% by mass, the light resistance is insufficient, and the A layer is deteriorated during long-term use, and the partial discharge voltage is lowered, which is not preferable, and if it is more than 50% by mass, Then the strength of the A layer will decrease. In the film for a solar cell backsheet of the present invention, in the case of the organic ultraviolet absorber, the content of the ultraviolet absorber of the layer A is 0.05% by mass or more with respect to all the solid components in the layer A. When the amount of the inorganic ultraviolet ray absorbing agent is 1% by mass or more and 50% by mass or less of the total solid content of the A layer, the A layer is not colored or the strength is not lowered, and the light resistance can be imparted to the light. Sex. The thickness of the layer A is preferably 0.001 μm or more and 50 μmη or less. Among these, when the material constituting the ruthenium layer is made of an organic material as a main component and is formed by coating the A layer, it is generally preferably 0.01 μm or more and 50 μm or less, particularly when the substrate layer (the ruthenium layer) When it is a film which is stretched by one axis or two axes and a ruthenium layer is formed in the production thereof, it is generally preferably 0.01 μm or more and 1 μmη or less from the viewpoint of easiness of formation of the ruthenium layer and uniformity. More preferably, it is 0.02 μmη or more and Ιμιη or less, and particularly preferably 0.0 5 μm or more and Ιμιη or less. In addition, when the material constituting the ruthenium layer is mainly composed of an inorganic material, it is preferably Ο.ΟΟΙηηι or more Ιμηη or less, particularly when it is formed by a dry method of a vapor deposition method or a sputtering method as will be described later. From the viewpoints of ease of control of formation of the ruthenium layer, uniformity, and the like, it is more preferably 0.005 μm or more and 0.8 μm or less, and particularly preferably 0.01 μm or more and 0.5 μm or less. By controlling the thickness of the α layer within the above range, the effect of improving the partial discharge voltage, the formation of the layer A, the uniformity, and the like can be coexisted. Further, when it is desired to increase the durability of the layer A to ultraviolet rays, it is preferred to increase the thickness of the layer a, and in this case, it is preferable to form the layer A by melt extrusion. The thickness of the layer A in this case is preferably 0.05 μm or more and 50 μm or less, more preferably 1 μm or more and 50 μm or less, and more preferably 2 μm or more and 30 μm or less, particularly preferably 3 μm or more and 20 μm or less, and most preferably 3 μm or more and 15 or less. . By controlling the thickness of the ruthenium layer to the above range, durability can be imparted in addition to the effect of improving the partial discharge voltage, the formability of the layer A, and the uniformity. -25- 201044599 The base material layer (layer B) in the film for solar battery back sheet of the present invention may be a polyester resin, a polyolefin resin, an acrylic resin, a polyamide resin, a polyimide resin, or a polyether system. Organic film substrate such as resin or polycarbonate resin, or metal substrate such as enamel, glass, stainless steel, aluminum, aluminum alloy, iron, steel, or titanium, inorganic substrate such as concrete, or organic resin such as lanthanum resin. The inorganic composite substrate, and the like, etc., preferably contain an organic material, and it is preferable to use a flexible substrate from the viewpoint of workability or lightness. More preferably, a thermoplastic resin is used as a main component. As an example of the thermoplastic resin, polyethylene terephthalate, polyethylene 2,6-naphthalenedicarboxylate, polytrimethylene terephthalate, polybutylene terephthalate, polyparaphenylene can be used. a polyester resin such as 1,4-cyclohexanedimethyl dicarboxylate or polylactic acid; a polyolefin resin such as polyethylene, polystyrene, polypropylene, polyisobutylene, polybutene or polymethylpentene; Cycloolefin resin, polyamine resin, polyimide resin, polyether resin, polyester amide resin, polyether ester resin, acrylic resin, polyurethane resin, polycarbonate An ester resin, a polyvinyl chloride resin, a fluorine resin, or the like. Among these, the polyester resin, the polyolefin resin, the cycloolefin resin, and the polyamide resin are preferable because of the diversity of the monomer types of the copolymerization and the ease of adjusting the physical properties of the materials. A thermoplastic resin selected from an acrylic resin, a fluorine-based resin, or a mixture thereof, is mainly composed of a thermoplastic resin. From the viewpoint of mechanical strength and cost, it is particularly preferred to be composed mainly of a polyester resin. Moreover, the resin may be a homopolymer resin or a copolymer or a blend. When the resin used for the layer B is a polyester resin, the main repeating unit may be ethylene terephthalate or two. 6-Naphthalene dicarboxylate, p-Benzene-26- 201044599 Acid propylene diester, butylene terephthalate, 1,4·cyclohexanedimethyl ester, 2,6-naphthalene Ethylene dicarboxylate and a mixture of these. In the main repeating unit, the total repeating unit is 70 mol% or more, preferably 80 mol% or more, based on the total mechanical strength and heat resistance. More preferably, it is more than 90% by mole. Further, from the viewpoint of low cost, easier polymerization, and excellent heat resistance, it is preferred to use ethylene terephthalate, ethylene 2,6-naphthalenedicarboxylate, and the like. As the main component. In this case, when ethylene terephthalate is used as a more constituent unit, an inexpensive and versatile film having heat and humidity resistance can be obtained, and when 2,6-naphthalenedicarboxylic acid B is used, When the diester is used as a constituent unit, it can be a film excellent in moist heat resistance. Further, from the viewpoint of heat resistance and mechanical strength, the ruthenium layer must contain a layer (Β1 layer) composed of a polyester. Further, it is preferred to use the above polyester as the polyester constituting the first layer. Further, the mass average molecular weight Mwl of the polyester constituting the Β1 layer must be 3,700 00 or more and 600 00 or less. The mass average molecular weight as used herein refers to the enthalpy obtained by gel permeation chromatography, which is obtained by using PET-DMT (standard) to prepare a molecular weight calibration curve based on the molecular weight calibration curve. In more detail, the RI type differential refractometer (Model 2414, sensitivity 256, manufactured by WATERS), which is a detector, is used as the sig-derivative refractometer (manufactured by Showa Denko KK). The gel permeation chromatography GCP-244 (manufactured by WATERS) was subjected to GPC measurement at room temperature (23 ° C) and a flow rate of 55 mL/min using PET-DMT (standard product). Using the obtained volume (V) and molecular weight (Μ) of -27- 201044599, the coefficient of the third approximation formula of the following formula (2) was calculated (Α〇, and a calibration curve was prepared.

Log(M) = A〇 + A, ν + Α2ν2 + Α3ν3 (2) 其次,使用六氟丙醇(0.0 05Ν-三氟乙酸鈉)當作溶劑,以 成爲0.06質量%的方式溶解Β1層而製作溶液,使用此溶液 進行GPC測定。再者,測定條件雖然任意,但表示以注射 量0.300ml、流速0.5ml/min實施時的値。 重叠所得到的沖提曲線分子量曲線與分子量校正曲線 ,求得對應於各流出時間的分子量,取得下式(3)所算出之 値,當作質量平均分子量。 質量平均分子量(Mw) = S(Ni _ Μί2)/Σ(Νί · Mi) (3) (此處,Ni係莫耳分率,Mi係經由分子量校正曲線所得之 GPC曲線的各沖提位置的分子量)。 再者,當於該測定所使用的B1層中含有有機微粒子、 無機微粒子、金屬、金屬鹽、其它添加劑等不溶於溶劑的 成分時,係透過過濾器的過濾,或以離心分離等來去除不 溶成分後,再度調製溶液而測定之値。又,當該B1層中有 含有可塑劑、界面活性劑、染料等的添加劑之可能性時, 係在去除不溶成分後,藉由再沈澱法、再結晶法、層析法 、萃取法等,與前述同樣地去除該不溶添加劑後,再度調 製溶液而測定之値。 於本發明的太陽電池背板用薄膜中,B1層的質量平均分 子量較佳爲37500以上60000以下,質量平均分子量尤佳 爲38500以上58000以下,更佳爲40000以上55000以下 -28- 201044599 。當構成B1層的聚酯樹脂之質量平均分子量不滿37500時 ’耐濕熱特性變差,長期使用時進行水解,結果機械強度 有降低的可能性’故不宜。又,若超過60000,則聚合變困 難’或即使能聚合,擠壓機的樹脂擠出也變困難,製膜會 變困難’故不宜。於本發明的太陽電池背板用薄膜中,藉 由使構成B層的B1層之質量平均分子量在3 75 00以上 6 0 000以下的範圍,可使製膜性與耐水解性並存。 又’當基材層(B層)爲積層構造時,係將其它層剝離, 〇 或邊以顯微鏡觀察邊硏磨該薄膜,使用僅B1層的樣品實施 測定之値。 而且,構成B1層的聚酯之數量平均分子量較佳爲8000 以上40000以下。此處所言的數量平均分子量係指由以上 述質量平均分子量的測定所得之對應於各流出小時的分子 量之値,藉由下述式(4)所算出之値。 數量平均分子量(Μη)= ΣΝίΜί/ΣΝί (4) (此處’ Ni係莫耳分率,Mi係經由分子量校正曲線所得之Log(M) = A〇+ A, ν + Α2ν2 + Α3ν3 (2) Next, hexafluoropropanol (0.005 Ν-trifluoroacetate) was used as a solvent to dissolve Β1 layer in a manner of 0.06 mass%. Solution, using this solution for GPC determination. Further, although the measurement conditions were arbitrary, it indicates a enthalpy when the injection amount was 0.300 ml and the flow rate was 0.5 ml/min. The molecular weight curve of the elution curve obtained by the superposition and the molecular weight calibration curve were obtained, and the molecular weight corresponding to each elution time was determined, and the enthalpy calculated by the following formula (3) was obtained as the mass average molecular weight. Mass average molecular weight (Mw) = S(Ni _ Μί2) / Σ (Νί · Mi) (3) (here, Ni is the molar fraction, and Mi is the respective elution position of the GPC curve obtained by the molecular weight calibration curve. Molecular weight). In addition, when the B1 layer used in the measurement contains a component which is insoluble in a solvent such as organic fine particles, inorganic fine particles, a metal, a metal salt or another additive, it is filtered through a filter or removed by centrifugation or the like to remove insoluble matter. After the ingredients, the solution was again prepared and measured. Further, when the B1 layer contains an additive such as a plasticizer, a surfactant, a dye or the like, the insoluble component is removed by a reprecipitation method, a recrystallization method, a chromatography method, an extraction method, or the like. After the insoluble additive was removed in the same manner as above, the solution was again prepared and measured. In the film for solar battery back sheet of the present invention, the mass average molecular weight of the B1 layer is preferably 37,500 or more and 60,000 or less, and the mass average molecular weight is preferably 38,500 or more and 58,000 or less, more preferably 40,000 or more and 55,000 or less -28 to 201044599. When the mass average molecular weight of the polyester resin constituting the B1 layer is less than 37,500, the wet heat resistance is deteriorated, and hydrolysis is carried out for a long period of time, and as a result, the mechanical strength is lowered, which is not preferable. On the other hand, if it exceeds 60,000, polymerization becomes difficult or even if polymerization is possible, resin extrusion of the extruder becomes difficult, and film formation becomes difficult, which is not preferable. In the film for a solar battery back sheet of the present invention, the film forming property and the hydrolysis resistance can be coherent by setting the mass average molecular weight of the B1 layer constituting the layer B to be in the range of 3,500 to 6,000 or less. Further, when the base material layer (layer B) has a laminated structure, the other layer is peeled off, and the film is honed by microscopic observation, and the measurement is carried out using a sample of only the B1 layer. Further, the number average molecular weight of the polyester constituting the B1 layer is preferably 8,000 or more and 40,000 or less. The number average molecular weight as used herein refers to the enthalpy calculated from the following formula (4), which is obtained by measuring the mass average molecular weight described above and corresponding to the molecular weight of each outflow hour. The number average molecular weight (Μη) = ΣΝίΜί/ΣΝί (4) (here, 'Ni is the molar fraction, Mi is obtained from the molecular weight calibration curve.

G GPC曲線的各沖提位置之分子量)。 於本發明的太陽電池背板用薄膜中,B1層的聚酯之數量 平均分子量較佳爲9500以上40000以下,更佳爲10000以 上40000以下,更佳爲10500以上40000以下,更佳爲11000 以上40000以下’更佳爲18500以上40000以下,更佳爲 19000以上35000以下,特佳爲20000以上3 3000以下。當 構成B1層的聚酯樹脂之數量平均分子量不滿8000時,耐 濕熱特性變差,長期使用時進行水解,結果機械強度有降 -29- 201044599 低的可能性。又,若超過40000,則聚合變困難,或即使能 聚合,擠壓機的樹脂擠出也變困難,製膜會變困難。於本 發明的太陽電池背板用薄膜中,藉由使構成B層的B1層之 數量平均分子量在8000以上40000以下的範圍,可使製膜 性與耐水解性並存。 於本發明的太陽電池背板用薄膜中,B1層的聚酯之固有 黏度(IV)較佳爲0.65以上。尤佳爲0.68以上,更佳爲0.7 以上,特佳爲0.72以上。IV若不滿0.65,則長期使用時的 機械強度保持會降低。於本發明的聚酯薄膜中,藉由使構 成聚酯層(P層)的聚酯樹脂之IV在0.65以上,可抑制長期 使用時的機械強度保持之降低。再者,IV的上限係沒有特 別的規定’但從聚合時間變長則成本不利,熔融擠出變困 難之點來看’較佳爲1.0以下,更佳爲0.9以下。 又,於本發明的太陽電池背板用薄膜中,構成B層的 B1層較佳係經一軸或二軸配向。藉由拉伸,可經由配向結 晶化而提高機械強度,當於聚酯系樹脂等時,可提高耐水 解性。顯示其配向程度的面配向係數較佳爲0.16以上,尤 佳爲0.162以上,更佳爲0.165以上。面配向係數若不滿0.16 ’則會無法提高耐濕熱性。於本發明的聚酯薄膜中,藉由 使面配向係數成爲0.16以上,可得到高的耐濕熱性。 於此情況下,差示掃描熱量測定(DSC)所得之B 1層的微 少吸熱峰溫度TmetaB 1與B 1層的熔點TmB 1較佳爲滿足下 述式(5)。 40 °C ^ TmBl-TmetaBl^ 90 °C (5) -30- 201044599 此處所言的B1層之TmetaBl、熔點TniBl係指藉由差 示掃描熱量測定(以下稱爲DSC)所得之升溫過程(升溫速度 :20°C/min)的値。具體地,藉由依照JIS Κ·7121(1 999)的 方法,從25°C到300°C爲止以20°C /分鐘的升溫速度進行加 熱(IstRUN),在該狀態下保持5分鐘,接著急冷到25°C以 下,再度從室溫以20°C /分鐘的升溫速度到300°C爲止進行 升溫,以所得的1 stRUN之差示掃描熱量測定圖的結晶熔解 峰前的微少吸熱峰溫度當作TmetaBl,及以2ndRun的結晶 D 融解峰之峰頂溫度當作B1層的TmBl。 較佳爲 50°CSTmBl-TmetaBl$80t:,更佳爲 55 TmBl-TmetaBl $ 75 °C。TmBl-TmetaBl 若超過 90 °C,則拉 伸時的殘留應力之消除係不充分,結果薄膜的熱收縮變大 ,於倂入太陽電池時的貼合步驟中,貼合變困難,或即使 能貼合而倂入太陽電池中,在高溫下使用時,太陽電池系 統的翹曲也大幅發生。又,TmBl-TmetaBl若不滿40t, D 則配向結晶性降低,耐水解性變差。於本發明的太陽電池 背板用薄膜中,藉由使構成B層的B1層成爲40 TmBl-TmetaBlS90°C ’可使收縮率的減低及耐水解性並存 再者’於本發明的太陽電池背板用薄膜中,構成B層的 B1層之TmetaBl較佳爲1 6 0 t以上TmB 1-4 0。(:(但是, TmBl-40°C&gt;160°C)以下,尤佳爲 17(TC 以上 TmBl-5(TC (但 是 ’ TmBl-50°C &gt;170 °C)以下,TmetaBl 更佳爲 180°C 以上 TmBl-55°C(但是,TmBl-55t &gt;180°C)以下。TmetaBl 若不 滿1 60°C,則薄膜的耐熱性降低,作爲背板的耐久性降低。 -31- 201044599 又’於本發明的太陽電池背板用薄膜中,構成B層的 B1層之熔點TmBl在耐熱性方面較佳爲220。(:以上,更佳 爲240°C以上,特佳爲25 0°C。而且,B1層的熔點TmBl之 上限雖然沒有特別的限制,但在生產性方面較佳爲3 0 0。(:以 下。 於本發明的太陽電池背板用薄膜中,構成B層的B1層 之羧酸末端基數較佳爲20當量/t以下,尤佳爲15當量/t 以下,更佳爲1 3當量/t以下,特佳爲1 〇當量/t以下。若超 過15當量/t,則由羧酸末端基的質子之觸媒作用促進水解 而容易進行劣化。再者,若羧酸末端基數爲20當量/t以下 ,可藉由(1)使二羧酸成分與二醇成分進行酯化反應,藉由 熔融聚合在成爲指定的熔融黏度之時間點吐出,進行線料 化、切割而碎片化後,進行固相聚合的方法,(2)在從酯交 換反應或酯化反應結束後到聚縮合反應初期(固有黏度低於 0.3)爲止的期間,添加緩衝劑的方法,(3)於成形時添加緩 衝劑或封端劑的方法等之組合等來獲得。 於本發明的太陽電池背板用薄膜中,在構成B1層的聚 酯中,較佳爲含有〇·1莫耳/t以上5.0莫耳/t的緩衝劑。本 發明的緩衝劑係指在構成B1層的聚酯之二醇殘基成分例如 乙二醇等中爲可溶性,而且溶解後進行解離而顯示離子性 的物質。於本發明的太陽電池背板用薄膜中,藉由在構成 B1層的聚酯中含有緩衝劑,可更減低初期的羧基末端數, 可抑制水解反應。又,藉由中和水解反應所新發生的羧基 末端之當作水解反應的觸媒之作用的質子,可抑制水解反 -32- 201044599 應,結果可進一步抑制聚酯薄膜的濕熱劣化。 作爲緩衝劑的具體例,從聚合反應性、耐濕熱性 看,緩衝劑較佳爲鹼金靥鹽,例如可舉出苯二甲酸 酸、碳酸、乳酸、酒石酸、磷酸、亞磷酸、次磷酸 烯酸酸等的化合物之鹼金屬鹽。其中,作爲鹼金屬 從不易生成觸媒殘渣的析出物之點來看,較佳爲鉀 具體地可舉出苯二甲酸氫鉀、檸檬酸二氫鈉、檸檬 鈉、檸檬酸二氫鉀、檸檬酸氫二鉀、碳酸鈉、酒石 Π u 酒石酸鉀、乳酸鈉、乳酸鉀、碳酸氫鈉、磷酸氫二 酸氫二鉀、磷酸二氫鉀、磷酸二氫鈉、亞磷酸氫鈉 酸氫鉀、次磷酸鈉、次磷酸鉀、聚丙烯酸酸鈉等。 又,從構成B1層的聚酯之聚合反應性或熔融成 耐熱性之點來看,較佳爲下述式所示的鹼金屬鹽, 反應性、耐熱性、耐濕熱性之點來看,鹼金屬較佳;! 或鉀,從聚合反應性、耐濕熱性之點來看,特佳爲 鈉及/或鉀的金屬鹽。 〇 POxHyMz · . . (I) (此處,X係2〜4的整數,y係1或2,z係1或2, 金屬)。 相對於構成B層的B1層而言,緩衝劑的含量較仓 莫耳/t以上5.0莫耳/t以下,更佳爲0.3莫耳/t以上 耳/t。若低於0 · 1莫耳/t,則得不到充分的耐濕熱性 使用時徐徐進行水解而成爲機械特性降低的原因。 5.0莫耳/t,則由於過剩的鹼金屬促進分解反應,分 之點來 、檸檬 、聚丙 元素, 、鈉, 酸氫二 酸鈉、 納、憐 、亞磷 形時的 從聚合 專納及/ 磷酸與 Μ係鹼 i 爲 ο.1 3.0莫 ,長期 若超過 子窠降 -33- 201044599 低,成爲耐濕熱性或機械特性降低的原因。 緩衝劑係可在構成B層的B1層之聚酯的聚合時添加, 也可在熔融成形時添加,但從緩衝劑在薄膜中均句分散之 點來看,較佳爲在聚合時添加。於聚合時添加時,添加時 期若在聚酯的聚合時之酯化反應、或從酯交換反應結束後 到聚縮合反應初期(固有黏度低於0.3未満)爲止的期間,則 可在任意的時間添加。作爲緩衝劑的添加方法,可爲直接 添加粉體,或調製成溶解在乙二醇等的二醇成分中之溶液 而添加,較佳爲當作溶解在乙二醇等的二醇成分中之溶液 而添加。該情況下溶液濃度若稀釋到1 0質量%以下而添加 ,則從在添加口附近,緩衝劑之附著少,添加量的誤差變 小之點,以及反應性之點來看係較宜。 於本發明的太陽電池背板用薄膜中,構成B1層的聚酯 中較佳爲含有〇. 1質量%以上至1 〇質量%的封端劑。此處所 言的封端劑係指具有可與聚酯的末端之羧基末端反應的取 代基之化合物,作爲該取代基之例,可舉出具有碳化二亞 胺基、環氧基、噚唑啉基的化合物。 具有碳化二亞胺基的碳化二亞胺系化合物係有一官能 性碳化二亞胺與多官能性碳化二亞胺,作爲一官能性碳化 二亞胺,可舉出二環己基碳化二亞胺、二異丙基碳化二亞 胺、二甲基碳化二亞胺、二異丁基碳化二亞胺、二辛基碳 化二亞胺、第三丁基異丙基碳化二亞胺、二苯基碳化二亞 胺、二第三丁基碳化二亞胺 '二-β-萘基碳化二亞胺等。特 佳爲二環己基碳化二亞胺或二異丙基碳化二亞胺。作爲多 -34- 201044599 官能性碳化二亞胺,較佳爲聚合度3〜15的碳化二亞胺。 具體地,1,5-萘碳化二亞胺、4.4’-二苯基甲烷碳化二亞胺、 4,4’-二苯基二甲基甲烷碳化二亞胺、1,3-伸苯基碳化二亞胺 、1,4-伸苯基二異氰酸酯、2,4-伸甲苯基碳化二亞胺、2,6-伸甲苯基碳化二亞胺、2,4-伸甲苯基碳化二亞胺與2,6·伸甲 苯基碳化二亞胺的混合物、六亞甲基碳化二亞胺、環己烷 -1,4-碳化二亞胺、苯二甲基碳化二亞胺、異佛爾酮碳化二 亞胺、異佛爾酮碳化二亞胺、二環己基甲烷-4,4’-碳化二亞 ^ 胺、甲基環己烷碳化二亞胺、四甲基苯二甲基碳化二亞胺 、2,6-二異丙基苯基碳化二亞胺、1·3·5_三異丙基苯-2,4-碳化二亞胺等。The molecular weight of each elution position of the G GPC curve). In the film for solar battery back sheet of the present invention, the number average molecular weight of the polyester of the B1 layer is preferably from 9,500 to 40,000, more preferably from 10,000 to 40,000, still more preferably from 10,500 to 40,000, and still more preferably more than 11,000. More than 40,000' is more preferably 18,500 or more and 40,000 or less, more preferably 19000 or more and 35,000 or less, and particularly preferably 20,000 or more and 33,000 or less. When the number average molecular weight of the polyester resin constituting the B1 layer is less than 8,000, the moist heat resistance is deteriorated, and hydrolysis is carried out for a long period of time, and as a result, the mechanical strength is lowered -29-201044599. On the other hand, when it exceeds 40,000, polymerization becomes difficult, or even if it can be polymerized, extrusion of the resin of the extruder becomes difficult, and film formation becomes difficult. In the film for a solar cell backsheet of the present invention, the film forming property and the hydrolysis resistance can be made possible by setting the number average molecular weight of the B1 layer constituting the B layer to be in the range of 8,000 or more and 40,000 or less. In the film for solar battery back sheets of the present invention, the inherent viscosity (IV) of the polyester of the B1 layer is preferably 0.65 or more. It is preferably 0.68 or more, more preferably 0.7 or more, and particularly preferably 0.72 or more. If IV is less than 0.65, the mechanical strength during long-term use will remain low. In the polyester film of the present invention, by setting the IV of the polyester resin constituting the polyester layer (P layer) to 0.65 or more, it is possible to suppress the decrease in the mechanical strength retention during long-term use. Further, the upper limit of IV is not particularly specified. However, when the polymerization time is long, the cost is unfavorable, and it is preferable that the melt extrusion becomes difficult to be 1.0 or less, and more preferably 0.9 or less. Further, in the film for solar battery back sheet of the present invention, the B1 layer constituting the B layer is preferably aligned by one axis or two axes. By stretching, the mechanical strength can be improved by the crystallization of the alignment, and when it is a polyester resin or the like, the hydrolysis resistance can be improved. The surface alignment coefficient showing the degree of alignment is preferably 0.16 or more, more preferably 0.162 or more, still more preferably 0.165 or more. If the surface alignment coefficient is less than 0.16 Å, the heat and humidity resistance cannot be improved. In the polyester film of the present invention, high surface heat resistance can be obtained by setting the surface alignment coefficient to 0.16 or more. In this case, the minute endothermic peak temperature TmetaB 1 of the B 1 layer obtained by differential scanning calorimetry (DSC) and the melting point TmB 1 of the B 1 layer preferably satisfy the following formula (5). 40 °C ^ TmBl-TmetaBl^ 90 °C (5) -30- 201044599 The TmetaBl and melting point TniBl of the B1 layer referred to here means the temperature rising process by differential scanning calorimetry (hereinafter referred to as DSC). Speed: 20 ° C / min). Specifically, heating (IstRUN) is performed at a temperature elevation rate of 20 ° C /min from 25 ° C to 300 ° C according to the method of JIS 712 7121 (1 999), and is kept for 5 minutes in this state, followed by Quenching to 25 ° C or less, and then increasing the temperature from room temperature to 300 ° C at a temperature increase rate of 20 ° C / min, and the difference between the obtained 1 stRUN indicates the micro endothermic peak temperature before the crystal melting peak of the scanning calorimetry chart. As TmetaBl, and the peak top temperature of the crystal D melting peak of 2ndRun is taken as the TmBl of the B1 layer. It is preferably 50 ° C STmBl-TmetaBl $ 80t:, more preferably 55 TmBl-TmetaBl $ 75 °C. When TmBl-TmetaBl exceeds 90 °C, the residual stress at the time of stretching is insufficient, and as a result, the heat shrinkage of the film becomes large, and the bonding process becomes difficult in the bonding step when the solar cell is inserted, or even if When it is bonded and inserted into a solar cell, the warpage of the solar cell system also occurs greatly when it is used at a high temperature. Further, if TmBl-TmetaBl is less than 40t, D will lower the crystallinity of the alignment and deteriorate the hydrolysis resistance. In the film for solar battery back sheet of the present invention, the B1 layer constituting the B layer is 40 TmBl-TmetaBlS90 ° C', and the shrinkage ratio and the hydrolysis resistance can be coexisted in the solar cell back of the present invention. In the film for a sheet, the TmetaB1 of the B1 layer constituting the layer B is preferably 1 60 t or more and TmB 1-4 0. (: (but, TmBl-40 ° C &gt; 160 ° C) or less, particularly preferably 17 (TC above TmBl-5 (TC (but 'TmBl-50 ° C &gt; 170 ° C) or less, TmetaBl is better 180 °C or more TmBl-55°C (however, TmBl-55t &gt; 180°C) or less. If TmetaBl is less than 1600°C, the heat resistance of the film is lowered, and the durability of the back sheet is lowered. -31- 201044599 In the film for solar battery back sheets of the present invention, the melting point TmB1 of the B1 layer constituting the B layer is preferably 220 in terms of heat resistance. (: Above, more preferably 240 ° C or higher, particularly preferably 25 0 ° C Further, although the upper limit of the melting point TmB1 of the B1 layer is not particularly limited, it is preferably 300 in terms of productivity. (The following is the B1 layer constituting the B layer in the film for solar battery back sheet of the present invention. The number of terminal groups of the carboxylic acid is preferably 20 equivalents/t or less, more preferably 15 equivalents/t or less, still more preferably 13 equivalents/t or less, particularly preferably 1 〇 equivalent/t or less. If more than 15 equivalents/t, Then, the catalytic action of the proton of the carboxylic acid terminal group promotes hydrolysis and is easily deteriorated. Further, if the number of terminal groups of the carboxylic acid is 20 equivalent/t or less, the dicarboxylic acid can be made by (1) The esterification reaction is carried out by esterification reaction with a diol component, and is carried out by melt polymerization at a time point of a predetermined melt viscosity, followed by stranding, dicing, and fragmentation, followed by solid phase polymerization, and (2) transesterification. After the completion of the reaction or the esterification reaction, a method of adding a buffering agent to the initial stage of the polycondensation reaction (inherent viscosity is less than 0.3), (3) a method of adding a buffering agent or a blocking agent during molding, and the like, etc. In the film for solar battery back sheet of the present invention, the polyester constituting the B1 layer preferably contains a buffer of 〇·1 mol/t or more and 5.0 mol/t. The buffer of the present invention means In the diol residue component of the polyester constituting the B1 layer, for example, ethylene glycol or the like, which is soluble, and dissociates after dissolving to exhibit ionic properties. In the film for solar battery back sheet of the present invention, The polyester of the B1 layer contains a buffering agent, which can reduce the initial number of carboxyl groups and inhibit the hydrolysis reaction. Further, the protons which act as a catalyst for the hydrolysis reaction by neutralizing the carboxyl terminal at the newly occurring hydrolysis reaction Can suppress In the meantime, as a specific example of the buffering agent, the buffering agent is preferably an alkali metal ruthenium salt, and examples thereof include, for example, an alkali metal ruthenium salt. An alkali metal salt of a compound such as phthalic acid, carbonic acid, lactic acid, tartaric acid, phosphoric acid, phosphorous acid or hypophosphoric acid, wherein the alkali metal is preferably precipitated from a catalyst residue. Specific examples of potassium include potassium hydrogen phthalate, sodium dihydrogen citrate, sodium citrate, potassium dihydrogen citrate, dipotassium hydrogen citrate, sodium carbonate, tartar Π u potassium tartrate, sodium lactate, potassium lactate, and carbonic acid. Sodium hydrogen, dipotassium hydrogen phosphate dihydrogen phosphate, potassium dihydrogen phosphate, sodium dihydrogen phosphate, potassium hydrogen hydride hydrogen phosphate, sodium hypophosphite, potassium hypophosphite, sodium polyacrylate, and the like. Moreover, from the viewpoint of the polymerization reactivity of the polyester constituting the B1 layer or the heat resistance to melting, it is preferably an alkali metal salt represented by the following formula, in terms of reactivity, heat resistance, and moist heat resistance. The alkali metal is preferably a potassium or a potassium metal salt from the viewpoint of polymerization reactivity and heat and humidity resistance. 〇 POxHyMz · . . (I) (here, X is an integer of 2 to 4, y is 1 or 2, z is 1 or 2, metal). The buffering agent is present in an amount of 5.0 mol/t or less, more preferably 0.3 mol/t or more per tm/t, relative to the B1 layer constituting the layer B. If it is less than 0·1 mol/t, sufficient moist heat resistance cannot be obtained. Hydrolysis is slowly carried out during use, which causes a decrease in mechanical properties. 5.0 Moer / t, due to the excess alkali metal to promote the decomposition reaction, points, lemon, polypropylene, sodium, sodium dihydrogen acid, sodium, pity, sub-phosphorus form from the polymerization and / Phosphoric acid and lanthanide i are ο.1 3.0 莫, and if it is lower than the 窠 - -33- 201044599 in the long term, it is a cause of deterioration of moist heat resistance or mechanical properties. The buffering agent may be added during the polymerization of the polyester constituting the B1 layer of the layer B, or may be added during the melt molding, but it is preferably added during the polymerization from the viewpoint that the buffer is uniformly dispersed in the film. When it is added at the time of polymerization, the period of the addition may be at any time during the esterification reaction at the time of polymerization of the polyester or from the end of the transesterification reaction to the initial stage of the polycondensation reaction (inherent viscosity is less than 0.3). Add to. The method of adding the buffer may be added by directly adding a powder or preparing a solution dissolved in a glycol component such as ethylene glycol, and is preferably dissolved in a glycol component such as ethylene glycol. Add as a solution. In this case, when the concentration of the solution is diluted to 10% by mass or less, it is preferable from the viewpoint that the adhesion of the buffer is small in the vicinity of the addition port, the error in the amount of addition is small, and the reactivity. In the film for a solar cell back sheet of the present invention, the polyester constituting the B1 layer preferably contains a terminal blocking agent of from 0.1% by mass to 1% by mass. The term "blocking agent" as used herein refers to a compound having a substituent reactive with the carboxyl terminal of the terminal of the polyester. Examples of the substituent include a carbodiimide group, an epoxy group, and an oxazoline. Base compound. The carbodiimide compound having a carbodiimide group is a functional carbodiimide and a polyfunctional carbodiimide, and as the monofunctional carbodiimide, dicyclohexylcarbodiimide, Diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, tert-butylisopropylcarbodiimide, diphenylcarbamate Diimine, di-tert-butylcarbodiimide 'di-β-naphthylcarbodiimide, and the like. Particularly preferred is dicyclohexylcarbodiimide or diisopropylcarbodiimide. As the poly-34-201044599 functional carbodiimide, a carbodiimide having a polymerization degree of 3 to 15 is preferred. Specifically, 1,5-naphthalene carbodiimide, 4.4'-diphenylmethane carbodiimide, 4,4'-diphenyldimethylmethane carbodiimide, 1,3-phenylene carbonization Diimine, 1,4-phenylene diisocyanate, 2,4-tolyl carbodiimide, 2,6-tolyl carbodiimide, 2,4-tolyl carbodiimide and 2,6·toluene carbodiimide mixture, hexamethylene carbodiimide, cyclohexane-1,4-carbodiimide, benzenedimethylcarbodiimide, isophorone carbonization Diimine, isophorone carbodiimide, dicyclohexylmethane-4,4'-carbodiimide, methylcyclohexanecarbodiimide, tetramethylbenzyldimethylcarbodiimide 2,6-diisopropylphenylcarbodiimide, 1·3·5_triisopropylbenzene-2,4-carbodiimide, and the like.

又,作爲環氧化合物的較佳例,可舉出縮水甘油酯系化 合物或縮水甘油醚系化合物等。作爲縮水甘油酯化合物的 具體例,可舉出苯甲酸縮水甘油酯、第三丁基苯甲酸縮水 甘油酯、對甲苯醯基酸縮水甘油酯、環己烷羧酸縮水甘油 酯、壬酸縮水甘油酯、硬脂酸縮水甘油酯、月桂酸縮水甘 油酯、棕櫚酸縮水甘油酯、蘿酸縮水甘油酯、維沙酸縮水 甘油酯、油酸縮水甘油酯、亞油酸縮水甘油酯、亞麻酸縮 水甘油酯、蘿炔酸縮水甘油酯、硬脂炔酸縮水甘油酯、對 苯二甲酸二縮水甘油酯、異苯二甲酸二縮水甘油酯、苯二 甲酸二縮水甘油酯、萘二羧酸二縮水甘油酯、甲基對苯二 甲酸二縮水甘油酯、六氫苯二甲酸二縮水甘油酯、四氫苯Further, preferred examples of the epoxy compound include a glycidyl ester compound or a glycidyl ether compound. Specific examples of the glycidyl ester compound include glycidyl benzoate, glycidyl third butyl benzoate, glycidyl p-tolylaminate, glycidyl cyclohexanecarboxylate, and glycidyl phthalate. Ester, glycidyl stearate, glycidyl laurate, glycidyl palmitate, glycidyl sorbate, glycidyl vilate, glycidyl oleate, glycidyl linoleate, linolenic acid shrinkage Glyceryl ester, glycidyl aldanoate, glycidyl stearyl acetylate, diglycidyl terephthalate, diglycidyl phthalate, diglycidyl phthalate, dihydrate of naphthalene dicarboxylic acid Glyceryl ester, diglycidyl methyl terephthalate, diglycidyl hexahydrophthalate, tetrahydrobenzene

酸二縮水甘油酯、琥珀酸二縮水甘油酯、癸二酸二縮水甘 -35- 201044599 油酯、十二酸二縮水甘油酯、十二烷二羧酸二縮水甘油酯 、偏苯三酸三縮水甘油酯、均苯四酸四縮水甘油酯等,此 等可用1種或2種以上。作爲縮水甘油醚化合物的具體例 ,可舉出苯基縮水甘油醚、鄰苯基縮水甘油醚、1,4-雙(β·γ-環氧基丙氧基)丁烷、1,6-雙(β,γ-環氧基丙氧基)己烷、1,4-雙(β,γ-環氧基丙氧基)苯、1-(β,γ-環氧基丙氧基)_2_乙氧基 乙院、1_(β_Υ·環氧基丙氧基)-2 -节氧基乙院、2,2 -雙-[ρ-(β,γ-環氧基丙氧基)苯基]丙烷及2,2-雙-(4-羥基苯基)丙烷或 2,2-雙-(4-羥基苯基)甲烷等的雙苯酚與環氧氯丙烷的反應 而得之雙縮水甘油基聚醚等。此等可單獨使用,也可複數 使用。 又,作爲噚唑啉化合物,較佳爲雙噚唑啉系化合物,具 體地可例示 2,2’-雙(2-噚唑啉)、2,2’-雙(4-甲基-2-噚唑啉) 、2,2’-雙(4,4-二甲基-2-噚唑啉)、2,2’-雙(4-乙基-2-噚唑啉) 、2,2’-雙(4,4,-二乙基-2-噚唑啉)、2,2’-雙(4·丙基-2-噚唑啉 )、2,2’-雙(4-丁基-2-噚唑啉)、2,2’-雙(4-己基-2-曙唑啉)、 2,2’-雙(4-苯基-2-曙唑啉)、2,2’-雙(4-環己基-2-噚唑啉)、 2,2’-雙(4-苄基-2-噚唑啉)、2,2’-ρ-伸苯基雙(2-曙唑啉)、 2,2’-m-伸苯基雙(2-噚唑啉)、2,2’-〇-伸苯基雙(2-Df唑啉)' 2,2’-?-伸苯基雙(4-甲基-2-噚哇啉)、2,2’-?-伸苯基雙(4,4-二甲基-2-噚唑啉)、2,2’-m-伸苯基雙(4-甲基-2-噚唑啉)、 2,2’-m-伸苯基雙(4,4-二甲基-2-噚唑啉)、2,2’-乙烯雙(2-噚 唑啉)、2,2-四亞甲基雙(2-曙唑啉)' 2,2’-六亞甲基雙(2-噚唑 啉)、2,2’-八亞甲基雙(2 -噚唑啉)、2,2’-十亞甲基雙(2-曙 -36- 201044599 唑啉)、2,2’·乙烯雙(4-甲基-2·噚唑啉)、2,2’-四亞甲基雙 (4,4-二甲基-2-曙唑啉)、2,2’-9,9’-二苯氧基乙烷雙(2-噚唑啉 )、2,2’-伸環己基雙(2-噚唑啉)、2,2’-二伸苯基雙(2-噚唑啉) 等,於此等之中,從與聚酯的反應性之觀點來看,最佳爲 2,2’-雙(2-噚唑啉)。此等可單獨使用,也可複數使用。 於本發明的太陽電池背板用薄膜中,構成B1層的聚酯 中之封端劑的含量之較佳範圍爲0.3質量%以上8質量%以 下,更佳爲0.5質量%以上5質量%以下,特佳的範圍爲0.5 質量%以上2質量%以下。 封端劑若少於〇. 1質量%,則無法表現封閉羧基末端的 效果,故不宜,而若大於10質量%,則製膜時產生多的異 物或分解氣體,製膜變困難,或即使能製膜,所得到的薄 膜之耐熱性也會降低。於本發明的太陽電池背板中,藉由 使封端劑的添加量成爲〇. 1質量%以上1 〇質量%以下’可不 降低耐熱性,提高耐濕熱性。 於本發明的太陽電池背板用薄膜中,作爲構成B1層的 聚酯之封端劑,當添加碳化二亞胺系化合物時,更佳爲以 B1層中的氮含量成爲0.01質量%以上0.5質量%以下的方式 進行添加、製膜。尤佳爲〇.〇5質量%以上〇·3質量%以下’ 更佳爲0.08質量%以上0.2質量%以下。氮含量若少於0·01 質量%,則無法表現封閉羧基末端的效果,故不宜’而若大 於0.5質量%,則製膜時產生許多異物或分解氣體,製膜變 困難,或即使能製膜,所得到的薄膜之耐熱性也會降低。 於本發明的太陽電池背板中,藉由使B1層中的氮含量成爲 -37- 201044599 ο · ο 1 ·質量%以上0.5質量%以下,可不降低耐熱性,更提高 耐濕熱性。 於本發明的太陽電池背板用薄膜中,按照需要在不損害 本發明的效果之範圍內,於構成Β層的Β1層中可摻合當作 其它添加劑的耐熱安定劑、耐氧化安定劑、紫外線吸收劑 、紫外線安定劑、有機系/無機系的易滑劑、有機系/無機系 的微粒子、塡充劑、核劑、染料、分散劑、偶合劑等的添 加劑或氣泡。例如,爲了提高太陽電池的發電效率,Β1層 較佳爲表現反射性,於該情況下,可含有有機系/無機系的 微粒子或氣泡,而且爲了賦予圖案設計性,可添加用於著 色的欲著色之色的材料。 於本發明的太陽電池背板用薄膜中,基材層(Β層)係可 僅由滿足上述要件的Β1層所形成,亦可爲與其它層(Β2層) 的積層構造。又,薄膜的厚度較佳爲ΙΟμιη以上500μιη以下 ,尤佳爲20μπι以上3 00μηι以下,更佳爲25μχη以上200μιη 以下。厚度若低於1 〇 μιη,則難以確保薄膜的平坦性。另一 方面,若比500μιη厚,則在使用於太陽電池時,厚度變過 大。 又’於本發明的太陽電池背板用薄膜中,當基材層(Β層 )爲含有Β1層的積層構造時,Β1層的厚度相對於Β層全體 的厚度而言較佳爲20%以上’尤佳爲30%以上,更佳爲50% 以上。若不滿2 0 %,則耐濕熱特性會變差。 於本發明的太陽電池背板用薄膜中,在基材層(Β層), 爲了改善與Α層或其它片材料、包埋有發電元件的乙烯醋 -38- 201044599 酸乙烯酯之密接性’可設置易黏著層,或用於提高耐衝撃 性的硬被覆層,或具有耐紫外線性的耐紫外線層,用於賦 予難燃性的難燃層等,以及具有其它機能的層(c層)。 又’於本發明的太陽電池背板用薄膜中,在構成基材層 (B層)的B1層及/或B2層中較佳爲含有氣泡。藉由含有氣 泡’可使基材層成爲低介電常數化,結果可更提高部分放 電電壓。氣泡的含有率較佳爲10體積。/。以上,尤佳爲20體 積%以上’更佳爲3 0體積%以上。上限雖然沒有特別的限制 ’但若爲8 0體積%以上,則薄膜容易裂開,因此背板用薄 膜的機械強度降低。 接著,關於本發明的太陽電池背板用薄膜製造方法,說 明其一例,惟本發明不是僅限定於該例。 首先,構成基材層(Β層)的原料之製造方法,當爲聚酯 系樹脂時,可藉由以下的方法來製造。 於本發明的太陽電池背板用薄膜製造方法中,其原料的 樹脂係可將丙二酸、琥珀酸、戊二酸、己二酸、辛二酸、 〇 _ 癸二酸、十二烷二酸、二聚酸、二十烷二酸、庚二酸、壬 二酸、甲基丙二酸、乙基丙二酸等的脂肪族二羧酸類、金 剛烷二羧酸、原冰片烯二羧酸、異山梨酸、環己烷二羧酸 、十氫萘二羧酸等的脂環族二羧酸、對苯二甲酸、異苯二 甲酸、苯二甲酸、1,4-萘二羧酸、1,5-萘二羧酸' 2,6-萘二 羧酸、1,8-萘二羧酸、4,4,-二苯基二羧酸、4,4’-二苯基醚二 羧酸、5-鈉磺基異苯二甲酸、苯基乙烷二羧酸、蒽二羧酸、 菲二羧酸、9,9’-雙(4-羧基苯基)莽酸等芳香族二羧酸等的二 -39- 201044599 羧酸、或其酯衍生物與乙二醇、1,2-丙二醇、1,3-丙二醇、 1,4-丁二醇、1,2-丁二醇、1,3-丁二醇等的脂肪族二醇類、 環己烷二甲醇、螺二醇、異山梨糖醇等的脂環式二醇類、 雙苯酚A、1,3-苯二甲醇' 1,4-苯二甲醇、9,9’-雙(4-羥基苯 基)弗等的芳香族二醇類等之二醇類以周知的方法進行酯交 換反應而得。作爲習知的反應觸媒,可舉出鹼金屬化合物 、鹼土類金屬化合物、鋅化合物、鉛化合物、錳化合物、 鈷化合物、鋁化合物、鍊化合物、鈦化合物、磷化合物等 。較佳爲在通常聚酯樹脂的製造方法完成以前的任意階段 ,添加銻化合物或鍺化合物、鈦化合物當作聚合觸媒。作 爲如此的方法’例如以鍺化合物當作例子,較佳爲照原樣 地添加鍺化合物粉體。 作爲如此的方法,例如若以鍺化合物當作例子,較佳爲 照原樣地添加鍺化合物粉體。使用銻化合物及/或鍺化合物 當作聚合觸媒時,從聚縮合反應性、固相聚合反應性之點 來看,其銻元素、鍺元素較佳爲50ppm以上300ppm以下, 從耐熱性、耐濕熱性之點來看,較佳爲50以上200ppm以 下。若超過3 00ppm,雖然聚縮合反應性、固相聚合反應性 會升高,但是亦會促進再熔融時的分解反應,故羧酸末端 基增加,成爲耐熱性、耐濕熱性降低的原因。作爲可合適 使用的銻化合物、鍺化合物,可舉出五氧化銻、三氧化鍊 良當聚 最,相 調物固 色合或 , 化應 如銻反 例爲合 。 者縮 用好聚 使良從 別性, 分應時 的反造 目合製 照聚系 按相銻 可固非 自’以 各物, , 合面 鍺化方 化鍺境 氧爲環 二者慮 、 好考 -40- 201044599 合的反應性良好之點來看,較佳爲鈦觸媒。 使用鈦化合物當作聚縮合觸媒時,從聚縮合反應性、固 相聚合反應性之點來看,以鈦元素計較佳爲〇. lppm以上 20ppm以下。鈦元素量若超過20ppm,雖然可提高聚縮合反 應性、固相聚合反應性,但是成爲耐熱性、耐濕熱性、色 調降低的原因。作爲聚縮合觸媒所使用的鈦觸媒,可舉出 四丁氧基鈦酸酯或四異丙基鈦酸酯等的烷氧化物,或鈦與 乳酸、檸檬酸等的鈦螯合化合物等,其中從耐熱性、耐濕 〇 ^ 熱性、色調之點來看,較佳爲鈦螯合化合物。 使用鈦化合物當作聚縮合觸媒時,作爲緩衝劑,若使用 苯二甲酸氫鉀、檸檬酸氫二鈉、檸檬酸二氫鈉、檸檬酸二 氫鉀、檸檬酸氫二鉀、碳酸鈉、酒石酸鈉、酒石酸鉀、乳 酸鈉、乳酸鉀、碳酸氫鈉等之磷系以外的緩衝劑,則不損 害聚縮合反應性、固相聚合反應性,在某求耐濕熱性的提 高方面係較佳。又,使用下述式(I)的化合物當作緩衝劑時 ,藉由在添加鈦化合物的5分鐘以上之前,或5分鐘以上 〇 之後,添加緩衝劑,可不損害聚縮合反應性、固相聚合反 應性,在某求耐濕熱性的提高方面係較宜。 POxHyMz ---(1) (此處,X係2〜4的整數,y係1或2,Z係1或2,Μ係鹼 金屬)。 又,酯化反應、聚縮合反應係可藉由以往的方法來進行 ,較佳爲在從酯化反應結束到聚縮合反應初期(固有黏度低 於0.3)爲止的期間,分別添加當作耐熱安定劑的磷酸或磷酸 -41- 201044599 酯、當作聚縮合觸媒的銻化合物或鍺化合物或鈦化合物。 而且,在聚合階段添加緩衝劑時,較佳爲在此階段亦加緩 衝劑。從聚縮合反應性、耐濕熱性之點來看,其添加順序 較佳爲以耐熱安定劑、聚縮合觸媒、緩衝劑的順序,隔5 分鐘以上的添加間隔進行。 而且’於構成B1層的聚酯中含有封端劑時,可使用事 先均勻熔融混煉而摻合製作的母料,或直接供應給混煉擠 壓機等’但於本發明中’使用採用二軸擠壓機事先熔融混 煉而摻合的母料,或藉由二軸擠壓機在熔融混煉後直接製 膜,此從封端劑的分散性之點來看係較宜。 又,爲了將構成B1層的聚酯之質量平均分子量控制在 3 7500以上60000以下,較佳於聚合質量平均分子量爲 3 6 000左右的通常分子量之聚酯系樹脂後,在19(rc以上且 低於熱塑性樹脂的熔點之溫度,於減壓或如氮氣的惰性氣 體之流通下加熱,使用所謂的固相聚合碎片當作原料。又 ,爲了將構成B1層的聚酯之數量平均分子量控制在185 00 以上40000以下,較佳爲藉由上述方法一旦聚合數量平均 分子量爲18000左右的通常分子量之聚酯系樹脂後,在190 °C以上且低於熱塑性樹脂的熔點之溫度,於減壓或如氮氣 的惰性氣體之流通下加熱,進行所謂的固相聚合後,在氮 氣環境下縮短滯留時間而擠出的方法。從不會增加熱塑性 樹脂的末端羧基量,可提高質量平均分子量或數量平均分 子量之點來看,較佳爲進行該方法。 其次,基材層(B層)的製造方法,當B層係僅由B1層所 -42- 201044599 成的單膜構成時,可使用在擠壓機內加熱熔融B1層用原料 ,由噴嘴擠出到經冷卻的流延筒上,加工成片狀的方法(熔 融流延法)。作爲其它方法,亦可使用將B1層用的原料溶 解在溶劑中,將其溶液由噴嘴擠出到流延筒、環形帶等的 支持體上以成爲膜狀,接著由該膜層乾燥去除溶劑而加工 成片狀的方法(溶液流延法)等。 又’ B層爲含有B1層的積層構造時之製造方法係如以 下。當所積層的各層之材料係以熱塑性樹脂當作主要構成 ^ 時’可使用將兩種不同的熱塑性樹脂投入兩二台擠壓機內 ,進行熔融’然後從噴嘴共擠出到經冷卻的流延筒上,而 加工成片狀的方法(共擠出法),於以單膜所製作的片上,將 被覆層原料投入擠壓機內,進行熔融擠出,邊由噴嘴擠出 邊層合的方法(熔融層合法),分別製作B1層與積層的材料 ’經由加熱輥群等來熱壓黏的方法(熱層合法),經由黏著劑 來貼合的方法(黏著法),以及使積層的材料之形成用材料溶 解在溶劑中,將其溶液塗布在預先製作的B1層上之方法( 塗覆法),及組合此等的方法等。 而且’當積層的材料不是熱塑性樹脂時,可使用分別製 作B1層與積層的材料’經由黏著劑等來貼合的方法(黏著 法),或當爲硬化性材料時,可使用在B1層上塗布後,經 由電磁波照射、加熱處理等使硬化的方法等。 又’當選擇經一軸或二軸拉伸的薄膜基材當作基材層(B 層)及/或構成B層的B1層時,作爲其製造方法,首先在擠 壓機(積層構造的情況爲複數台的擠壓機)中投入原料,進行 -43- 201044599 熔融’從噴嘴擠出(積層構造的情況爲共擠出),在經冷卻到 表面溫度爲10°c以上60°c以下的滾筒上,藉由靜電使密著 而冷卻固化’而製作未拉伸薄膜。將此未拉伸薄膜導引至 經加熱到70°C以上140°C以下的溫度之輥群,在長度方向( 縱向’即薄膜的行進方向)中拉伸3倍以上5倍以下,藉由 2 0 °C以上5 0 °C以下的溫度之輥群來冷卻。 接著’邊以夾具抓住薄膜的兩端邊導引至拉幅機,於經 加熱到80°C以上150°C以下的溫度之環境中,在與長度方 向成垂直的方向(寬度方向)中拉伸3倍以上5倍以下。拉伸 倍率係在長度方向與寬度方向各爲3倍以上5倍以下,其 面積倍率(縱拉伸倍率X橫拉伸倍率)較佳爲9倍以上1 6倍以 下。面積倍率若低於9倍,則所得到的二軸拉伸薄膜之薄 膜強度、耐濕熱性變不充分,相反地面積倍率若超過16倍 ,則拉伸時有容易發生破裂的傾向。作爲二軸拉伸的方法 ,除了如上述地分開地進行長度方向與寬度方向的拉伸之 逐次二軸拉伸方法,也可爲同時進行長度方向與寬度方向 的拉伸之同時二軸拉伸方法。 爲了完成所得到的二軸拉伸薄膜之結晶配向,賦予平面 性及尺寸安定性,繼續在拉幅機內,較佳爲在原料的樹脂 之Tg以上且低於熔點的溫度,進行1秒以上3 0秒以下的 熱處理,均勻徐冷後,冷卻到室溫爲止。一般地,由於熱 處理溫度Ts若低則薄膜的熱收縮大,爲了賦予高的熱尺寸 安定性,較佳爲熱處理溫度高者。然而,若過度提高熱處 理溫度,則配向結晶性降低,結果所形成的薄膜之耐水解 -44- 201044599 性變差。因此’本發明的太陽電池背板用薄膜之熱處理溫 度Ts較佳爲40°CSTmBl-TsS90t:。熱處理溫度Ts尤佳 爲 StTCSTmBl-TsSSOt,更佳爲 55°CSTmBl-TsS75t: 。再者’本發明的太陽電池背板用薄膜係用作爲太陽電池 的背板’使用時爲了將環境溫度上升到10(TC左右爲止,熱 處理溫度Ts較佳爲16〇。(:以上TmBl-4(TC(但是,TmBl-40 °C &gt;160°C )以下,尤佳爲170°C以上TmBl-5〇t:(但是,Acid diglycidyl ester, diglycidyl succinate, succinic acid diglycol-35- 201044599 oil ester, dodecyl diglycidyl ester, dodecane dicarboxylic acid diglycidyl ester, trimellitic acid three The glycidyl ester, the tetraglycidyl pyromelliate, etc. may be used alone or in combination of two or more. Specific examples of the glycidyl ether compound include phenyl glycidyl ether, o-phenyl glycidyl ether, 1,4-bis(β·γ-epoxypropoxy)butane, and 1,6-double. (β,γ-epoxypropoxy)hexane, 1,4-bis(β,γ-epoxypropoxy)benzene, 1-(β,γ-epoxypropoxy)_2_ Ethoxylated ethoxylate, 1_(β_Υ·epoxypropoxy)-2-ethoxylated ethoxylate, 2,2-bis-[ρ-(β,γ-epoxypropoxy)phenyl] A bisglycidyl group obtained by reacting propane with 2,2-bis-(4-hydroxyphenyl)propane or 2,2-bis-(4-hydroxyphenyl)methane or the like and epichlorohydrin Ether, etc. These can be used alone or in multiples. Further, the oxazoline compound is preferably a bisoxazoline compound, and specifically, 2,2'-bis(2-oxazoline), 2,2'-bis(4-methyl-2-) Oxazoline), 2,2'-bis(4,4-dimethyl-2-oxazoline), 2,2'-bis(4-ethyl-2-oxazoline), 2,2' - bis(4,4,-diethyl-2-oxazoline), 2,2'-bis(4-propyl-2-oxazoline), 2,2'-bis(4-butyl- 2-oxazoline), 2,2'-bis(4-hexyl-2-oxazoline), 2,2'-bis(4-phenyl-2-oxazoline), 2,2'-double (4-cyclohexyl-2-oxazoline), 2,2'-bis(4-benzyl-2-oxazoline), 2,2'-ρ-phenylphenylbis(2-oxazoline) , 2,2'-m-phenylphenylbis(2-oxazoline), 2,2'-fluorene-phenylenebis(2-Dfoxazoline) 2,2'-?-phenylene (4-methyl-2-indolyl), 2,2'-?-phenylphenylbis(4,4-dimethyl-2-oxazoline), 2,2'-m-phenylene Bis(4-methyl-2-oxazoline), 2,2'-m-phenylphenylbis(4,4-dimethyl-2-oxazoline), 2,2'-ethylene double (2 -oxazoline), 2,2-tetramethylenebis(2-oxazoline)' 2,2'-hexamethylenebis(2-oxazoline), 2,2'-octamethine Bis(2-oxazoline), 2,2'-decamethylene bis(2-indole-36-201044599 oxazoline), 2,2'-ethylenebis(4-methyl-2.oxazoline) , 2,2'-tetramethylenebis(4,4-dimethyl-2-oxazoline), 2,2'-9,9'-diphenoxyethane bis(2-oxazoline) , 2,2'-cyclohexyl bis(2-oxazoline), 2,2'-diphenylene bis(2-oxazoline), etc., among these, from the reaction with polyester From the viewpoint of sex, the most preferred is 2,2'-bis(2-oxazoline). These can be used alone or in multiples. In the film for solar battery back sheets of the present invention, the content of the blocking agent in the polyester constituting the B1 layer is preferably 0.3% by mass or more and 8% by mass or less, more preferably 0.5% by mass or more and 5% by mass or less. A particularly preferable range is 0.5% by mass or more and 2% by mass or less. When the amount of the terminal blocking agent is less than 0.1% by mass, the effect of blocking the carboxyl group end is not exhibited, so that it is not preferable, and if it is more than 10% by mass, a large amount of foreign matter or decomposition gas is generated during film formation, making film formation difficult or even The film can be formed, and the heat resistance of the obtained film is also lowered. In the solar battery back sheet of the present invention, the amount of the blocking agent to be added is not more than 1% by mass and not more than 1% by mass. The heat resistance can be lowered and the moist heat resistance can be improved. In the film for a solar cell backsheet of the present invention, when a carbodiimide-based compound is added as a terminal blocking agent for a polyester constituting the B1 layer, the nitrogen content in the B1 layer is preferably 0.01% by mass or more and 0.5. The film is added and formed in a mass % or less. More preferably, it is 5% by mass or more and 3 is 3% by mass or less, and more preferably 0.08% by mass or more and 0.2% by mass or less. When the nitrogen content is less than 0. 01% by mass, the effect of blocking the carboxyl terminal is not exhibited, so it is not suitable. If it is more than 0.5% by mass, a large amount of foreign matter or decomposition gas is generated during film formation, and film formation becomes difficult, or even if it can be produced. The heat resistance of the obtained film is also lowered. In the solar battery back sheet of the present invention, by setting the nitrogen content in the B1 layer to -37 to 201044599 ο · ο 1 · mass% or more and 0.5 mass% or less, the heat resistance can be improved and the moist heat resistance can be further improved. In the film for solar battery back sheet of the present invention, a heat-resistant stabilizer, an oxidation-resistant stabilizer which is used as another additive, and a layer of the ruthenium layer constituting the ruthenium layer may be blended as needed within a range not impairing the effects of the present invention. Additives such as an ultraviolet absorber, an ultraviolet stabilizer, an organic/inorganic slip agent, organic/inorganic fine particles, a chelating agent, a nucleating agent, a dye, a dispersing agent, a coupling agent, or the like. For example, in order to improve the power generation efficiency of the solar cell, the Β1 layer preferably exhibits reflectivity, and in this case, organic/inorganic fine particles or bubbles may be contained, and in order to impart pattern design, an additive for coloring may be added. Coloring material. In the film for a solar cell back sheet of the present invention, the base material layer (tantalum layer) may be formed only of the Β1 layer satisfying the above requirements, or may be a laminated structure with other layers (Β2 layer). Further, the thickness of the film is preferably ΙΟμηη or more and 500 μm or less, more preferably 20 μπι or more and 300 μηη or less, and more preferably 25 μχη or more and 200 μηη or less. If the thickness is less than 1 〇 μηη, it is difficult to ensure the flatness of the film. On the other hand, if it is thicker than 500 μm, the thickness becomes excessive when used in a solar cell. Further, in the film for solar battery back sheet of the present invention, when the base material layer (ruthenium layer) is a laminated structure containing ruthenium, the thickness of the ruthenium layer is preferably 20% or more with respect to the entire thickness of the ruthenium layer. 'More than 30%, more preferably 50% or more. If it is less than 20%, the moist heat resistance will deteriorate. In the film for a solar cell back sheet of the present invention, in the base material layer (tantalum layer), in order to improve the adhesion to the vinyl layer of the vinyl acetate-38- 201044599 vinyl ester of the power generation element in the base layer or other sheet material. It is possible to provide an easy-adhesion layer, a hard coating layer for improving the impact resistance, an ultraviolet-resistant layer having ultraviolet resistance, a flame-retardant layer for imparting flame retardancy, and the like (c layer) having other functions. . Further, in the film for solar battery back sheet of the present invention, it is preferable that the B1 layer and/or the B2 layer constituting the base material layer (layer B) contain bubbles. By including the bubble, the base material layer can be made low in dielectric constant, and as a result, the partial discharge voltage can be further increased. The content of the bubbles is preferably 10 volumes. /. The above is more preferably 20% by volume or more, and more preferably 30% by volume or more. The upper limit is not particularly limited. However, if it is 80% by volume or more, the film is easily cleaved, so that the mechanical strength of the film for the back sheet is lowered. Next, an example of the method for producing a film for a solar cell back sheet of the present invention will be described, but the present invention is not limited to this example. First, the method for producing the raw material constituting the base layer (ruthenium layer) can be produced by the following method when it is a polyester resin. In the method for producing a film for a solar cell back sheet of the present invention, the resin of the raw material may be malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, cerium azelaic acid or dodecane Aliphatic dicarboxylic acids such as acid, dimer acid, eicosanedioic acid, pimelic acid, sebacic acid, methylmalonic acid, ethylmalonic acid, adamantane dicarboxylic acid, ornidyl dicarboxylate Alicyclic dicarboxylic acid such as acid, isosorbic acid, cyclohexane dicarboxylic acid, decahydronaphthalene dicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalene dicarboxylic acid 1,5-naphthalene dicarboxylic acid '2,6-naphthalenedicarboxylic acid, 1,8-naphthalene dicarboxylic acid, 4,4,-diphenyldicarboxylic acid, 4,4'-diphenyl ether Aromatic carboxylic acid, 5-sodium sulfoisophthalic acid, phenylethane dicarboxylic acid, stilbene dicarboxylic acid, phenanthrene dicarboxylic acid, 9,9'-bis(4-carboxyphenyl)nonanoic acid Di-39- 201044599 carboxylic acid, or an ester derivative thereof, and ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, An aliphatic diol such as 1,3-butanediol, a fat such as cyclohexanedimethanol, spirodiol or isosorbide Glycols such as aromatic diols such as diols, bisphenol A, 1,3-benzenedimethanol', 1,4-benzenedimethanol, and 9,9'-bis(4-hydroxyphenyl) The compound is obtained by a transesterification reaction by a known method. The conventional reaction catalyst may, for example, be an alkali metal compound, an alkaline earth metal compound, a zinc compound, a lead compound, a manganese compound, a cobalt compound, an aluminum compound, a chain compound, a titanium compound or a phosphorus compound. It is preferred to add a ruthenium compound or a ruthenium compound or a titanium compound as a polymerization catalyst at any stage before the usual production method of the polyester resin is completed. As such a method, for example, a ruthenium compound is used as an example, and it is preferred to add a ruthenium compound powder as it is. As such a method, for example, when a ruthenium compound is used as an example, it is preferred to add a ruthenium compound powder as it is. When a ruthenium compound and/or a ruthenium compound are used as a polymerization catalyst, the ruthenium element and the ruthenium element are preferably 50 ppm or more and 300 ppm or less from the viewpoints of polycondensation reactivity and solid phase polymerization reactivity, and are resistant to heat and resistance. From the viewpoint of moist heat, it is preferably 50 or more and 200 ppm or less. When the amount is more than 30,000 ppm, the polycondensation reactivity and the solid phase polymerization reactivity are increased. However, the decomposition reaction at the time of remelting is promoted, so that the terminal group of the carboxylic acid increases, which causes a decrease in heat resistance and moist heat resistance. Examples of the ruthenium compound and the ruthenium compound which can be suitably used include ruthenium pentoxide and a oxidized chain, and the phase of the condensed product is the most suitable. The contractor uses the good group to make the good from the other, and the counter-production method of the time-sharing system is based on the fact that it can be self-contained, and the combination of phlegm and phlegm Good test -40 - 201044599 The point of good reactivity is preferably titanium catalyst. When a titanium compound is used as the polycondensation catalyst, from the viewpoint of the polycondensation reactivity and the solid phase polymerization reactivity, the titanium element is preferably from 1.00 ppm to 20 ppm. When the amount of the titanium element exceeds 20 ppm, the polycondensation reactivity and the solid phase polymerization reactivity can be improved, but the heat resistance, the moist heat resistance, and the color tone are lowered. Examples of the titanium catalyst used for the polycondensation catalyst include alkoxides such as tetrabutoxytitanate or tetraisopropyl titanate, or titanium chelate compounds such as titanium and lactic acid or citric acid. Among them, a titanium chelate compound is preferred from the viewpoints of heat resistance, moisture resistance, heat resistance, and color tone. When a titanium compound is used as the polycondensation catalyst, as a buffer, potassium hydrogen phthalate, disodium hydrogen citrate, sodium dihydrogen citrate, potassium dihydrogen citrate, dipotassium hydrogen citrate, sodium carbonate, A buffer other than phosphorus such as sodium tartrate, potassium tartrate, sodium lactate, potassium lactate or sodium hydrogencarbonate does not impair the polycondensation reactivity and the solid phase polymerization reactivity, and is preferable in terms of improving the heat and humidity resistance. Further, when a compound of the following formula (I) is used as a buffering agent, by adding a buffering agent before adding the titanium compound for 5 minutes or more, or after 5 minutes or more, the polycondensation reactivity and solid phase polymerization are not impaired. The reactivity is preferably in terms of improving the heat and humidity resistance. POxHyMz ---(1) (here, X is an integer of 2 to 4, y is 1 or 2, Z is 1 or 2, lanthanide alkali metal). Further, the esterification reaction and the polycondensation reaction can be carried out by a conventional method, and it is preferred to add them as heat-resistant stabilizers from the end of the esterification reaction to the initial stage of the polycondensation reaction (inherent viscosity is less than 0.3). Phosphate or phosphoric acid -41- 201044599 ester, an antimony compound or a bismuth compound or a titanium compound. Further, when a buffer is added during the polymerization stage, it is preferred to add a buffer at this stage. From the viewpoint of the polycondensation reactivity and the moist heat resistance, the order of addition is preferably in the order of a heat-resistant stabilizer, a polycondensation catalyst, or a buffer, at intervals of addition of 5 minutes or more. Further, when the polyester constituting the B1 layer contains a terminal blocking agent, a master batch prepared by uniformly melt-kneading in advance may be used, or may be directly supplied to a kneading extruder or the like, but in the present invention, The master batch prepared by melt-kneading in advance by a two-axis extruder or directly formed by melt-kneading by a two-axis extruder is preferable from the viewpoint of dispersibility of the terminal blocking agent. Further, in order to control the mass average molecular weight of the polyester constituting the B1 layer to be 3,700 or more and 60,000 or less, it is preferably 19 (rc or more) after a polyester resin having a usual molecular weight of a polymerization mass average molecular weight of about 36,000. The temperature lower than the melting point of the thermoplastic resin is heated under reduced pressure or a flow of an inert gas such as nitrogen, using so-called solid phase polymerization chips as a raw material. Further, in order to control the number average molecular weight of the polyester constituting the B1 layer 185 00 or more and 40,000 or less, preferably a polyester-based resin having a usual molecular weight of about 18,000, and a temperature of 190 ° C or higher and lower than the melting point of the thermoplastic resin, under reduced pressure or A method in which a so-called solid phase polymerization is carried out by heating under a nitrogen gas inert gas, and the residence time is shortened in a nitrogen atmosphere, and the amount of terminal carboxyl groups of the thermoplastic resin is not increased, and the mass average molecular weight or the number average is increased. From the viewpoint of molecular weight, it is preferred to carry out the method. Secondly, the method for producing the substrate layer (layer B), when the layer B is only composed of the layer B1 -42- 201044599 When forming a single film, it is possible to use a method in which the raw material for the B1 layer is heated and melted in an extruder and extruded from a nozzle onto a cooled casting tube to form a sheet (melt casting method). As another method, a raw material for the B1 layer may be dissolved in a solvent, and the solution may be extruded from a nozzle onto a support of a casting cylinder, an endless belt or the like to form a film, and then dried by the film layer. A method of processing into a sheet by a solvent (solution casting method), etc. The manufacturing method in the case where the layer B is a layered structure containing a B1 layer is as follows. The material of each layer of the layer is mainly composed of a thermoplastic resin. ^ When 'two different thermoplastic resins can be put into two or two extruders, melted' and then co-extruded from the nozzle onto the cooled casting tube, and processed into a sheet (co-extrusion) In the film produced by a single film, the coating material is put into an extruder, melt-extruded, and laminated by nozzle extrusion (melt layering) to form a B1 layer and a laminate. Material 'via heating roller group, etc. A method of thermocompression bonding (hot lamination), a method of bonding by an adhesive (adhesive method), and a material for forming a laminated material are dissolved in a solvent, and a solution thereof is coated on a pre-made B1 layer. The method (coating method), the method of combining these, etc. Moreover, when the material of the laminated layer is not a thermoplastic resin, a method of bonding a material of a layer B1 and a layer separately by an adhesive or the like can be used (adhesive method) When it is a curable material, a method of hardening by electromagnetic wave irradiation, heat treatment, etc. after coating on the B1 layer can be used. Further, when a film substrate which is stretched by one axis or two axes is selected as a base In the case of the material layer (B layer) and/or the B1 layer constituting the B layer, as a method for producing the same, first, a raw material is introduced into an extruder (an extruder having a plurality of laminated structures), and -43-201044599 is melted. 'Extrusion from the nozzle (co-extrusion in the case of a laminated structure), and cooling to a surface having a surface temperature of 10° C. or more and 60° C. or less, and cooling and solidifying by electrostatic adhesion to produce unstretched film. The unstretched film is guided to a roll group heated to a temperature of 70 ° C or more and 140 ° C or less, and stretched by 3 times or more and 5 times or less in the longitudinal direction (longitudinal direction, that is, the traveling direction of the film). The roller group at a temperature of 20 ° C or higher and 50 ° C or lower is cooled. Then, the two ends of the film are grasped by the clamp to the tenter, and in an environment heated to a temperature of 80 ° C or more and 150 ° C or less, in a direction perpendicular to the longitudinal direction (width direction) Stretch 3 times or more and 5 times or less. The stretching ratio is three times or more and five times or less in the longitudinal direction and the width direction, and the area magnification (longitudinal stretching ratio X transverse stretching ratio) is preferably 9 times or more and 16 times or less. When the area ratio is less than 9 times, the film strength and moist heat resistance of the obtained biaxially stretched film become insufficient. On the contrary, if the area magnification exceeds 16 times, cracking tends to occur during stretching. As a method of biaxial stretching, in addition to the sequential biaxial stretching method of separately stretching in the longitudinal direction and the width direction as described above, it is also possible to simultaneously perform the stretching in the longitudinal direction and the width direction while biaxial stretching. method. In order to complete the crystal alignment of the obtained biaxially stretched film, and to impart planarity and dimensional stability, it is preferably carried out in a tenter, preferably at a temperature of not less than Tg of the raw material resin and lower than the melting point, for 1 second or longer. After heat treatment for 30 seconds or less, it is uniformly cooled and cooled to room temperature. Generally, if the heat treatment temperature Ts is low, the heat shrinkage of the film is large, and in order to impart high heat dimensional stability, it is preferred that the heat treatment temperature is high. However, if the heat treatment temperature is excessively increased, the alignment crystallinity is lowered, and as a result, the formed film is inferior in hydrolysis resistance - 44 - 201044599. Therefore, the heat treatment temperature Ts of the film for a solar cell back sheet of the present invention is preferably 40 ° C STmBl - TsS90t:. The heat treatment temperature Ts is particularly preferably StTCSTmBl-TsSSOt, more preferably 55 °C STmBl-TsS75t: . In addition, when the film for solar cell back sheet of the present invention is used as a back sheet of a solar cell, the heat treatment temperature Ts is preferably 16 Å in order to raise the ambient temperature to about 10 (TC: (T: above TmBl-4) (TC (but, TmBl-40 °C &gt; 160 °C) or less, especially preferably 170 ° C or more TmBl-5〇t: (However,

TmBl-50°C&gt;17〇°C)以下,Ts 較佳爲 180°C 以上 TmBl-55°C π (但是’ TmB1-5°C &gt;180°C )以下。再者,藉由控制Ts,可控 制TmetaBl。又’於上述熱處理步驟中,按照需要亦可在寬 度方向或長度方向中施予3〜12 %的鬆弛處理。接著按照需 要’可進行用於更提高與其它材料的密接性之電暈放電處 理等’藉由捲繞’可形成本發明的太陽電池背板用薄膜的 基材層。 其次’作爲在基材層(B層)上形成具有導電性的層(a層 )之方法,可使用蒸鍍法 '濺鍍法等的乾式法、鍍敷法等的 〇 濕式法、複數台的擠壓機,將B層用的原料與A層用的原 料在各自不同的擠壓機內熔融,從噴嘴共擠出到經冷卻的 流延筒上,加工成片狀的方法(共擠出法),於以單膜所製作 的基材層(B層)上,將A層用原料投入擠壓機內,進行熔融 擠出’邊由噴嘴擠出邊層合的方法(熔融層合法),分別製作 基材層(B層)與A層,經由加熱輥群等來熱壓黏的方法(熱 層合法)’經由黏著劑來貼合的方法(黏著法),以又使A層 用原料溶解在溶劑中’將其溶液塗布在預先製作的基材層 -45- 201044599 (B層)上之方法(塗覆法),及組合此等的方法等。 在A層主要係由有機系材料所構成的情況,或在有機系 /無機系複合導電性材料,前述(i)使用非導電性的非水溶性 樹脂當作基質,使用無機系的導電性材料當作導電性材料 的情況,(ii)倂用有機系導電性材料與無機系導電性材料的 情況,(iii)於有機系導電性材料中倂用無機系非導電性材料 的情況,此等上述方法之中共擠出法、塗覆法係更佳的形 成方法,所形成的A層之形成係較爲容易。 作爲藉由共擠出法在基材層(B層)上形成A層的方法, 可使用複數台的擠壓機,將B層用及/或構成的B層的B1 層用原料、A層用原料在各自不同的擠壓機內進行熔融,從 噴嘴共擠出,在經冷卻到表面溫度爲10。(:以上60。(:以下的 滾筒上,藉由靜電使密著而冷卻固化,得到在B層及/或構 成B層的B1層上形成有A層的片。 又,當基材層(B層)及/或構成B層的B1層係經一軸或 二軸拉伸的薄膜基材時,可藉由與前述方法同樣的方法, 將上述A層用原料與基材層(B層)用原料及/或構成b層的 B 1層所積層的片拉伸而得。 而且’作爲藉由塗覆法在基材層(B層)及/或構成B層的 B1層上形成A層的方法,可舉出在基材層(B層)及/或構成 B層的B1層之製膜中塗設的線內塗覆法,在製膜後的基材 層(B層)及/或構成B層的B1層上塗設的離線塗覆法,任一 方法皆可使用’更佳在基材層(B層)及/或構成B層的B1層 之製膜的同時有效率地完成,而且基於A層對基材層(B層) -46- 201044599 及/或構成B層的B1層之黏著性高的理由,較佳爲使用線 內塗覆法。又,於塗設之際,從提高塗布液對支持體上的 潤濕性 '提高黏著力的觀點來看,較佳爲對基材層(B層)及 /或構成B層的B1層表面進行電暈處理等。 作爲藉由上述塗覆法,將A層形成在基材層(B層)及/ 或構成B層的B1層上之方法,較佳爲使用將上述構成A層 的材料溶解/分散在溶劑而成的塗液,塗布在基材層(B層) 及/或構成B層的B1層上及進行乾燥的手段。於此情況下 0 ,所用的溶劑係任意,但尤其在線內塗覆法中,從安全性 之點來看,較佳爲使用水當作主成分。於該情況下,爲了 改良塗布性或溶解性等,可在水中少量添加能溶解的有機 溶劑。 又,當A層主要係由無機系的材料所構成時,於此等上 述方法之中,所形成的A層之控制容易且對基材的密接性 、均勻性優異的蒸鍍法及濺鍍法等的乾式法係更佳的形成 方法。Below TmBl - 50 ° C &gt; 17 ° C), Ts is preferably 180 ° C or more and TmB1 - 55 ° C π (but 'TmB 1-5 ° C &gt; 180 ° C) or less. Furthermore, by controlling Ts, TmetaBl can be controlled. Further, in the above heat treatment step, a relaxation treatment of 3 to 12% may be applied in the width direction or the length direction as needed. Then, a substrate layer for forming a film for a solar cell back sheet of the present invention can be formed by winding a corona discharge treatment or the like for further improving the adhesion to other materials. Next, as a method of forming a layer (a layer) having conductivity on the base material layer (layer B), a dry method such as a vapor deposition method such as a sputtering method, a wet method such as a plating method, or the like can be used. The extruder of the table, the material for the layer B and the material for the layer A are melted in different extruders, and are co-extruded from the nozzle to the cooled casting tube, and processed into a sheet shape (total Extrusion method) A method in which a raw material for layer A is placed in an extruder and melt-extruded while being extruded by a nozzle on a base material layer (layer B) produced by a single film (melting layer) (Method): A method in which a base material layer (B layer) and an A layer are separately formed by a heat roller group or the like, and a method of bonding (adhesive method) via an adhesive (adhesive method) is used to make A A method in which a layer raw material is dissolved in a solvent, a solution thereof is applied onto a previously prepared base material layer-45-201044599 (layer B) (coating method), and a method of combining the same or the like. In the case where the layer A is mainly composed of an organic material, or the organic/inorganic composite conductive material, the (i) non-conductive water-insoluble resin is used as a matrix, and an inorganic conductive material is used. When it is used as a conductive material, (ii) when an organic conductive material and an inorganic conductive material are used, (iii) when an inorganic non-conductive material is used for an organic conductive material, Among the above methods, a co-extrusion method and a coating method are more preferable, and the formation of the formed A layer is relatively easy. As a method of forming the A layer on the base material layer (B layer) by the co-extrusion method, a plurality of extruders can be used, and the B layer for the B layer and/or the B1 layer for the B layer can be used as the raw material and the A layer. The raw materials were melted in separate extruders, coextruded from the nozzles, and cooled to a surface temperature of 10. (: the above 60. (: The following roller is cooled and solidified by static electricity to obtain a sheet in which the layer A is formed on the layer B and/or the layer B1 constituting the layer B. Further, when the substrate layer ( When the B layer) and/or the B1 layer constituting the B layer is a film substrate which is stretched by one axis or two axes, the material for the layer A and the substrate layer (layer B) can be obtained by the same method as the above method. It is obtained by stretching a sheet of a raw material and/or a layer B1 constituting the b layer. Further, 'the layer A is formed on the base layer (layer B) and/or the layer B1 constituting the layer B by a coating method. The method of the present invention may be an in-line coating method applied to a film formation of a base material layer (layer B) and/or a B1 layer constituting the B layer, and a base material layer (layer B) after film formation and/or The off-line coating method applied to the B1 layer constituting the B layer can be efficiently performed by using a film which is more preferably formed on the substrate layer (layer B) and/or the layer B1 layer. Further, it is preferable to use an in-line coating method for the reason that the adhesion of the A layer to the base material layer (B layer) -46 to 201044599 and/or the B1 layer constituting the B layer is high. From raising the coating solution to the branch From the viewpoint of improving the adhesion of the body, it is preferred to subject the substrate layer (layer B) and/or the surface of the layer B1 constituting the layer B to corona treatment or the like. The method of forming the layer A on the base layer (layer B) and/or the layer B1 of the layer B is preferably a coating liquid obtained by dissolving/dispersing the material constituting the layer A described above in a solvent, and coating the base layer. The material layer (layer B) and/or the B1 layer constituting the layer B and the means for drying. In this case, the solvent used is arbitrary, but especially in the in-line coating method, from the viewpoint of safety In this case, water is preferably used as a main component. In this case, a soluble organic solvent may be added in a small amount in order to improve coatability, solubility, etc. Further, the layer A is mainly composed of an inorganic material. In the above-mentioned methods, a dry method such as a vapor deposition method or a sputtering method which is easy to control the A layer and which is excellent in adhesion and uniformity to the substrate is more preferable.

D θ 於本發明的太陽電池背板用薄膜製造方法中,作爲藉由 乾式法來形成A層的方法,可舉出電阻加熱蒸鑛、電子束 蒸鍍、感應加熱蒸鍍,以及對此等的電漿或離子束輔助法 等的真空蒸鍍法、反應性濺鍍法、離子束濺鍍法、ECR(電 子回旋加速器)濺鍍法等的濺鍍法、離子鍍法等的物理氣相 成長法(PVD法)、利用熱或光、電漿等的化學氣相成長法 (CVD法)等。 此處’當形成A層的材料係以無機氧化物、無機氮化物 -47- 201044599 、無機氧氮化物、無機鹵化物、無機硫化物等當作主要構 成成分時,亦可使與所形成的A層之組成相同的材料直接 揮發,堆積在基材層(B層)及/或構成B層的B1層之表面上 ,但以此方法進行時,揮發中組成會變化,結果所形成的 膜會無法呈現均勻特性。因此,可舉出(1)使用與所形成的 A層相同組成的材料當作揮發源,無機氧化物時爲氧氣,無 機氮化物時爲氮氣,無機氧氮化物時爲氧氣與氮氣的混合 氣體,無機鹵化物時爲鹵素系氣體,無機硫化物時爲硫系 氣體,邊將各自輔助地導入系內邊使揮發的方法;(2)使用 無機物群揮發源,邊使其揮發,無機氧化物時爲氧氣,無 機氮化物時爲氮氣,無機氧氮化物時爲氧氣與氮氣的混合 氣體,無機鹵化物時爲鹵素系氣體,無機硫化物時爲硫系 氣體,邊將各自導入系內,邊使無機物與所導入的氣體反 應,邊堆積在基材1表面上;(3)使用無機物群當作揮發源 ,使其揮發而形成無機物群的層後,無機氧化物時爲氧氣 環境下,無機氮化物時爲氮氣環境下,無機氧氮化物時爲 氧氣與氮氣的混合氣體環境下,無機鹵化物時爲鹵素系氣 體環境下,無機硫化物時爲硫系氣體環境下’將其保持而 使無機物層與所導入的氣體反應等。於此等之中’從由揮 發源的容易揮發之點來看,更佳爲使用(2)或(3),從膜質的 控制容易之點來看,更佳爲使用(2)的方法。又’當A層爲 無機氧化物時,使用無機物群當作揮發源’使其揮發而形 成無機物群的層後,在空氣中放置’而使無機物群自然氧 化的方法,從容易形成之點,亦較宜使用。 -48- 201044599 此處,於本發明的太陽電池背板用薄膜中,當藉由乾式 法來形成A層時,A層的A面之表面比電阻R0係可藉由氣 體的反應程度來調整。反應的程度係可有所導入的氣體流 量、溫度等來調整。當反應的程度少時,表面比電阻R0變 低,而當反應的程度多時,表面比電阻R0變高。最合適的 條件雖然隨著所使用的金屬種類、反應的氣體、裝置等而 變化,但可以表面比電阻R0滿足上述要件的方式,調整條 件而形成。 D 又,當藉由?乂0法形成入層時,在揮發前減壓之際, 較佳爲提高系統內的真空度。藉由提高系統內的真空度, 可形成緻密且缺點少的A層,可均勻形成A層。 而且,當A層係由積層構造所構成時,在無機物群不同 的情況,用具備複數的揮發源之裝置,可於形成第一層後, 改變揮發源而形成第二層、第三層,而且在同一的無機物 群,僅反應的程度及/或反應氣體的種類不同時,可於形成 第一層後,改變導入的氣體流量及/或導入氣體的種類來形 D — 成第二層、第二層···。 又,當構成本發明的太陽電池背板用薄膜之A層的材料 係有機系/無機系複合導電性材料時,在(iv)的情況,可依照 所用的材料之種類、組成等,從上述製造方法之中適當地 選擇而形成。 本發明的太陽電池背板用薄膜係可藉由上述步驟來形 成,所得到的薄膜之特徵爲即使薄,部分放電電壓也高。 本發明的太陽電池背板之特徵爲包含上述太陽電池背 -49- 201044599 板用薄膜。與以往的薄膜相比,本發明的太陽電池背板用 薄膜由於即使薄,部分放電電壓也高,故可將背板減薄。 本發明的太陽電池背板之構成,只要使用上述太陽電池 背板’則可爲任意的構成,藉由在本發明的太陽電池背板 上形成用於提高與密封發電元件的EVA之密接性的EVA密 接層、用於提高與EVA密接層的密接性之錨固層、水蒸氣 障壁層、用於防止紫外線劣化的紫外線吸收層、用於提高 發電效率的光反射層、用於表現圖案設計性的光吸收層、 用於黏著各層的黏著層等,而構成本發明的太陽電池背板 〇 EVA密接層係提高與將發電元件密封的EVA系樹脂之 密接性的層’設置最靠近發電元件之側,有助於背板與系 統的黏著。其材料只要展現與EVA系樹脂的密接性,則沒 有特別的限制,例如較佳爲使用EVA、或EVA與乙烯-丙烯 酸甲酯共聚物(EMA)、乙烯-丙烯酸乙酯共聚物(eea)、乙烯 -丙烯酸丁酯共聚物(EBA)、乙烯-甲基丙烯酸共聚物(EM A A) 、離子交聯聚合物樹脂、聚酯樹脂、胺甲酸酯樹脂、丙烯 酸樹脂、聚乙烯樹脂、聚丙烯樹脂、聚醯胺樹脂等的混合 物。 又,按照需要爲了提高EVA密接層對背板的密接性,亦 較佳爲形成錨固層。其材料只要展現與EVA密接層的密接 性’則沒有特別的限制,例如較佳爲使用以丙烯酸樹脂或 聚酯樹脂等樹脂當作主要構成成分的混合物。 水蒸氣障壁層係在構成太陽電池時用於防止發電元件 -50- 201044599 的水蒸氣之劣化,用於防止水蒸氣從背板側進入的層。藉 由真空蒸鍍或濺鍍等的周知方法在薄膜表面上設置氧化矽 、氧化鋁等的氧化物或鋁等的金屬層而形成。其厚度一般 較佳爲100埃以上200埃以下的範圍。 此時,較佳爲使用在本發明的太陽電池背板用薄膜上直 接設置阻氣層的情況,與在另一薄膜上設置阻氣性,將此 ' 薄膜積層在本發明的薄膜表面上之情況的任一者。又,亦 可使用將金屬箔(例如鋁箔)積層在薄膜表面上的方法。從加D θ In the method for producing a film for a solar cell back sheet of the present invention, as a method for forming the layer A by a dry method, resistance heating, steam evaporation, electron beam evaporation, induction heating vapor deposition, and the like are mentioned. Physical vapor phase such as vacuum vapor deposition method, reactive sputtering method, ion beam sputtering method, ECR (electron cyclotron) sputtering method, etc., or ion plating method such as plasma or ion beam assist method A growth method (PVD method), a chemical vapor phase growth method (CVD method) using heat or light, plasma, or the like. Here, when the material forming the layer A is mainly composed of an inorganic oxide, an inorganic nitride-47-201044599, an inorganic oxynitride, an inorganic halide, an inorganic sulfide, or the like, it may be formed. The material of the same composition of the A layer is directly volatilized and deposited on the surface of the substrate layer (layer B) and/or the layer B1 constituting the layer B, but when it is carried out by this method, the composition in the volatilization changes, and the resulting film Will not be able to present uniform characteristics. Therefore, (1) a material having the same composition as that of the formed layer A is used as a volatilization source, oxygen is used for the inorganic oxide, nitrogen is used for the inorganic nitride, and a mixed gas of oxygen and nitrogen is used for the inorganic oxynitride. In the case of an inorganic halide, it is a halogen-based gas, and when the inorganic sulfide is a sulfur-based gas, a method of volatilizing each of them is introduced into the system, and (2) volatilization is carried out using an inorganic group volatilization source, and an inorganic oxide is used. When it is oxygen, it is nitrogen in the case of inorganic nitride, a mixed gas of oxygen and nitrogen in the case of inorganic oxynitride, a halogen-based gas in the case of inorganic halide, and a sulfur-based gas in the case of inorganic sulfide, and each is introduced into the system. The inorganic substance is allowed to react with the introduced gas and deposited on the surface of the substrate 1; (3) the inorganic substance group is used as a volatilization source to volatilize to form a layer of the inorganic group, and the inorganic oxide is in an oxygen atmosphere, and the inorganic layer When the nitride is in a nitrogen atmosphere, the inorganic oxynitride is a mixed gas atmosphere of oxygen and nitrogen, the inorganic halide is a halogen-based gas, and the inorganic sulfide is sulfur. The atmosphere 'to hold it while the reaction gas introduced with the inorganic layer and the like. In the above, it is more preferable to use (2) or (3) from the point of volatilization of the source of volatilization, and it is more preferable to use the method of (2) from the viewpoint of easy control of the film quality. Further, when the layer A is an inorganic oxide, a method in which an inorganic group is used as a volatilization source to volatilize to form a layer of an inorganic group, and then placed in the air to naturally oxidize the inorganic group is formed from an easily formed point. It is also more suitable to use. -48- 201044599 Here, in the film for solar battery back sheet of the present invention, when the layer A is formed by a dry method, the surface of the surface A of the layer A can be adjusted by the degree of reaction of the gas with respect to the resistance R0. . The degree of reaction can be adjusted by the introduced gas flow rate, temperature, and the like. When the degree of the reaction is small, the surface specific resistance R0 becomes low, and when the degree of the reaction is large, the surface specific resistance R0 becomes high. The most suitable conditions vary depending on the type of metal to be used, the gas to be reacted, the device, and the like, but may be formed by adjusting the conditions such that the surface resistance R0 satisfies the above requirements. D Again, when? When the 乂0 method is formed into the layer, it is preferable to increase the degree of vacuum in the system at the time of decompression before volatilization. By increasing the degree of vacuum in the system, a layer A which is dense and has few defects can be formed, and the layer A can be uniformly formed. Further, when the A layer is composed of a laminated structure, when the inorganic group is different, a device having a plurality of volatilization sources can be used to form the first layer, and then the volatilization source can be changed to form the second layer and the third layer. Further, in the same inorganic substance group, when only the degree of reaction and/or the type of the reaction gas are different, after the first layer is formed, the flow rate of the introduced gas and/or the type of the introduced gas may be changed to form the second layer. Second floor···. Further, when the material of the layer A of the film for solar battery back sheet of the present invention is an organic/inorganic composite conductive material, in the case of (iv), the type and composition of the material to be used may be Among the manufacturing methods, it is appropriately selected and formed. The film for a solar cell back sheet of the present invention can be formed by the above steps, and the obtained film is characterized in that even if it is thin, the partial discharge voltage is high. The solar battery back sheet of the present invention is characterized by comprising the above-mentioned solar cell back-49-201044599 film for sheet. Compared with the conventional film, the film for a solar cell back sheet of the present invention has a high partial discharge voltage even if it is thin, so that the back sheet can be made thin. The solar cell back sheet of the present invention may have any configuration as long as the solar cell back sheet is used, and the solar cell back sheet of the present invention is formed to improve the adhesion to the EVA of the sealed power generating element. EVA adhesion layer, anchor layer for improving adhesion to EVA adhesion layer, water vapor barrier layer, ultraviolet absorbing layer for preventing ultraviolet ray deterioration, light reflection layer for improving power generation efficiency, and pattern design property The light absorbing layer, the adhesive layer for adhering the respective layers, and the like, and the solar cell back sheet 〇EVA adhesion layer of the present invention is provided to improve the adhesion of the EVA resin which seals the power generating element to the side closest to the power generating element. To help the backboard and system adhere. The material is not particularly limited as long as it exhibits adhesion to the EVA resin. For example, EVA or EVA and ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (eea), Ethylene-butyl acrylate copolymer (EBA), ethylene-methacrylic acid copolymer (EM AA), ionomer resin, polyester resin, urethane resin, acrylic resin, polyethylene resin, polypropylene resin A mixture of a polyamide resin or the like. Further, it is preferable to form an anchor layer in order to improve the adhesion of the EVA adhesion layer to the back sheet as needed. The material is not particularly limited as long as it exhibits adhesion to the EVA adhesion layer. For example, a mixture of a resin such as an acrylic resin or a polyester resin as a main component is preferably used. The water vapor barrier layer is used to prevent deterioration of water vapor of the power generating element -50 - 201044599 when the solar cell is constructed, and a layer for preventing water vapor from entering from the backing plate side. A metal layer such as an oxide such as yttrium oxide or aluminum oxide or aluminum is formed on the surface of the film by a known method such as vacuum deposition or sputtering. The thickness thereof is generally preferably in the range of 100 Å or more and 200 Å or less. In this case, it is preferable to use a gas barrier layer directly on the film for a solar cell back sheet of the present invention, and to provide gas barrier properties on the other film, and to laminate the film on the surface of the film of the present invention. Any of the circumstances. Further, a method of laminating a metal foil (e.g., aluminum foil) on the surface of the film can also be used. From plus

A V/ 工性及阻氣性來看,此情況下的金屬箔之厚度較佳爲ΙΟμπι 以上50μιη以下的範圍。 紫外線吸收層係爲防止內層的樹脂之紫外線劣化,用於 遮斷紫外線的層,可使用具有遮斷3 8 Onm以下的紫外線之 機能的任意者。 光反射層係將光反射的層,係用於藉由形成本層,而防 止內層的樹脂之紫外線劣化,或將太陽電池系統所不吸收 而到達背板爲止光反射,使返回系統側,用於提高發電效 〇 率之層,其係含有氧化鈦或硫酸鋇等的白色顔料或氣泡等 的層。 光吸收層係將光吸收的層,係用於藉由形成本層,而防 止內層的樹脂之紫外線劣化,或用於提高太陽電池的圖案 設計性之層。 藉由組合上述各層與本發明的薄膜,而形成本發明的太 陽電池背板。再者,於本發明的太陽電池背板中,上述的 層未必要皆形成獨立的層,亦較佳的形態爲形成兼具複數 -51- 201044599 機能的機能統合層。又,本發明的太陽電池背板用薄膜亦 可能省略已具有的機能,例如當本發明的背板用薄膜含有 白色顏料或氣泡而具有光反射性時,可省略光反射層,當 含有光吸收劑而具有光吸收性時,可省略吸收層,當含有 紫外線吸收劑時,可省略紫外線吸收層。 又,關於阻氣層,亦較佳爲使用在本發明的薄膜上直接 設置阻氣層的情況,與在另一薄膜上設置具有阻氣性的層 ,將此薄膜積層在本發明的聚酯薄膜表面上之情況的任一 者。又,亦可使用將金屬箔(例如鋁箔)積層在薄膜表面上的 方法。從加工性及阻氣性來看,此情況下的金屬箔之厚度 較佳爲ΙΟμπι以上50μιη以下的範圍。 此處,與以往的薄膜相比,本發明的太陽電池背板係部 分放電電壓高,與以往的背板相比,若用其來形成的背板 ,則可提高部分放電電壓。於本發明的太陽電池背板中, 可由本發明的薄膜以外之層來形成太陽電池背板的兩表層 ,也可爲至少一個表層係由本發明的薄膜所形成。與任意 以往的薄膜相比,由於皆部分放電電壓高,故可提高太陽 電池背板的安全性,或可減薄厚度。更佳地,成爲太陽電 池背板的至少一側表面具有表面比電阻R0爲1〇6Ω/□以上 1〇14Ω/□以下的面(以下當作Α1面)之構成的背板,再者從可 更提高部分放電電壓之點來看,Α1面係本發明的太陽電池 背板用薄膜之Α面。而且,較佳爲以至少一側的表面成爲 本發明的太陽電池背板用薄膜之A面的方式來構成。藉由 成爲此構成,則即使背板的內側成爲A面之構成,也可更 -52- 201044599 提高部分放電電壓,結果可提高太陽電池背板的耐電氣特 性,或更減薄背板的厚度。 當本發明的太陽電池背板以具有A1面的方式來構成時 ,與A1面相反側的表面之表面比電阻R3較佳爲1014Ω/口 以上。如後述地,於將本發明的太陽電池背板用薄膜倂入 太陽電池系統之際,從可成爲高耐久的太陽電池,或可減 薄厚度之點來看,藉由使密封發電元件的樹脂層之相反側 的面成爲Α1層係較佳的構成。此係因爲當本發明的太陽電 Ο 池背板之與Α1面相反側的表面之表面比電阻R3爲1014Ω/口 以上,太陽電池背板的耐電氣特性會降低,或當由引線取 出電能之際,取出效率降低下而降密發電效率。 本發明的太陽電池背板之厚度較佳爲20μπι以上500μιη 以下,尤佳爲25μιη以上3 00μπι以下,更佳爲30μιη以上 200μιη以下。厚度若低於ΐ〇μιη,則難以確保薄膜的平坦性 。另一方面,若比500μηι厚,則搭載於太陽電池時,太陽 電池的厚度會變過大》 〇 y 本發明的太陽電池之特徵爲包含本發明的太陽電池背 板。本發明的太陽電池背板係利用比以往的背板較高部分 放電電壓的特徴’與以往的太陽電池相比,係高耐久、可 減薄。 第1圖之具有透光性的基材4係位於太陽電池的最表層 ’故係使用高透過率而且具有高耐候性、高耐污染性、高 機械強度特性的透明材料。於本發明的太陽電池中,具有 透光性的基材4係可使用滿足上述特性的任何材質。作爲 -53- 201044599 其例,較佳可舉出玻璃、四氟乙烯-乙烯共聚物(etfe)、聚 氟乙烯樹脂(PVF)、聚偏二氟乙烯樹脂(PVDF)、聚四氟乙烯 樹脂(TFE)、四氟乙烯-六氟丙烯共聚物(FEP)、聚三氟氯乙 烯樹脂(CTFE)、聚偏二氟乙烯樹脂等的氟系樹脂、烯烴系 樹脂、丙烯酸系樹脂及此等的混合物等。又,當爲樹脂製 的透光基材時,從機械強度之觀點來看,上述樹脂可經一 軸或二軸拉伸,而且對基材表面亦可施予電暈處理、電漿 處理、臭氧處理、易黏著處理。 用於密封發電元件的樹脂2係保護發電元件防止外部環 境,爲具有電絕緣、透光性的基材或具有黏著於背板與發 電元件的機能者,作爲其例,可舉出代表例爲乙烯-醋酸乙 烯酯共聚物(EVA)、乙烯-丙烯酸甲酯共聚物(EMA)、乙烯-丙烯酸乙酯共聚物(EEA)樹脂、乙烯-甲基丙烯酸共聚物 (EM A A)、離子交聯聚合物樹脂、聚乙烯縮丁醛樹脂及此等 的混合物等。 此處,於本發明的太陽電池中,上述太陽電池背板1係 設置在密封有發電元件的樹脂層2之背面,但於上述太陽 電池背板具有A1面的構成時,A1面係可以成爲樹脂層2 側(第1圖的5)而配置,也可以成爲與樹脂層2的相反側( 第1圖的6)而配置。由於即使爲任一構成,本發明的太陽 電池背板與以往者相比,即使薄,部分放電電壓也高,故 可提高太陽電池系統的耐久性,或減薄厚度。更佳爲上述 太陽電池背板的A1面係成爲與樹脂層相反側(第〗圖的6) 的構成。藉由此構成,與A1面爲樹脂層側(第1圖的5)之 -54- 201044599 構成相比,可成爲更高耐久的太陽電池,可減薄厚度。 如以上地,藉由將本發明的背板倂入太陽電池系統,與 以往的太陽電池相比,可成爲高耐久及/或薄型的太陽電池 系統。 本發明的太陽電池係不限定於太陽光發電系統、小型電 子零件的電源等室外用途、室內用途,而可適用於各種用 途。 [特性的評價方法] Ο A.表面比電阻R0、Rl、R2、R3 薄膜的表面比電阻R〇、R2及背板之與A面相反側的表 面比電阻R3係藉由數位超高電阻微小電流計R8340(股 )ADVANTEST製來測定。但是,當表面比電阻爲105Ω/□以 下時,藉由具備ASP探針的Loresta-EP ((股)DIA儀器製)來 測定。再者,測定係於薄膜面內的任意1 〇個地方實施測定 ,以其平均値當作表面比電阻R〇。又,測定試料係使用在 溫度23°C、濕度65%RH的室內放置一夜者來測定。而且, 〇 表面比電阻R1係在TBAESPEC(股)製加壓蒸煮器中,於溫 度125°C、濕度l〇〇%RH的條件下對薄膜進行24小時處理 後,藉由與上述同樣的方法測定處理後的樣品之表面比電 阻R1。再者,測定係於薄膜面內的任意1 〇個地方實施測定 ,以其平均値當作表面比電阻R1。又,測定試料係使用處 理後從加壓蒸煮器中取出後,在溫度23 °C、濕度65 %RH的 室內放置一夜者來實施測定。 B.斷裂伸長度、伸長度保持率 -55- 201044599 斷裂伸長度係以ASTM-D8 82( 1 999)爲根據,將樣品切成 lcmx20cm的大小,測定夾頭間5cm、拉伸速度300mm/min 拉伸時的斷裂伸長度。再者,測定係對5個樣品實施測定 ,以其平均値當作斷裂伸長度E0。接著,將試料切成測定 片的形狀(lcmx20cm)後,在TBAESPEC(股)製加壓蒸煮器中 於125°C、濕度100%RH的條件下進行24小時處理後,處 理後的樣品之斷裂伸長度係以ASTM-D882(1 999)爲根據, 測定夾頭間5cm、拉伸速度300mm/min拉伸時的斷裂伸長 度。再者,測定係對5個樣品實施測定,取其平均値當作 斷裂伸長度E1。使用所得到的斷裂伸長度EO、E1,藉由下 述式(1)來算出伸長度保持率。 伸長度保持率(%) = E1/E0xl00 (1) 關於所得到的伸長度保持率,如以下地判斷決定。 伸長度保持率爲70%以上時:S 伸長度保持率爲60%以上、低於70 %時:A 伸長度保持率爲50%以上、低於60% : B 伸長度保持率低於50% : C S、A或B爲良好,S係最優良。 C.質量平均分子量(Mw)'數量平均分子量(Μη) 使用2支Shodex HFIP 806Μ(昭和電工(股)製)當作管柱 ,使用搭載有RI型(2414型,感度256,WATERS公司製) 檢測器的凝膠滲透層析儀GCP-244(WATERS公司製)’使用 PET-DMT(標準品),在室溫(23°C)、流速 〇.5mL/min進行 GPC測定。使用所得到的沖提容積(V)及分子量(M) ’計算 -56- 201044599 下述式(2)的3次近似式之係數(A 〇,製作校正曲線圖。In view of A V / workability and gas barrier properties, the thickness of the metal foil in this case is preferably in the range of ΙΟμπι or more and 50 μmη or less. The ultraviolet absorbing layer is used to prevent ultraviolet rays from degrading the resin of the inner layer, and a layer for blocking ultraviolet rays can be used as long as it has a function of blocking ultraviolet rays of 3 8 Onm or less. The light-reflecting layer is a layer that reflects light, and is used to prevent ultraviolet rays from degrading the resin of the inner layer by forming the layer, or to reflect light after reaching the backing plate without being absorbed by the solar cell system, so as to return to the system side. A layer for improving the power generation efficiency is a layer containing a white pigment such as titanium oxide or barium sulfate or a bubble. The light absorbing layer is a layer for absorbing light, which is used to prevent ultraviolet degradation of the resin of the inner layer or to improve the pattern design of the solar cell by forming the layer. The solar battery back sheet of the present invention is formed by combining the above layers with the film of the present invention. Furthermore, in the solar cell backsheet of the present invention, the above-mentioned layers are not necessarily formed as separate layers, and a preferred embodiment is to form a functional integration layer having a plurality of functions of -51 - 201044599. Further, the film for a solar cell back sheet of the present invention may omit the function already possessed. For example, when the film for a back sheet of the present invention contains white pigment or bubbles and has light reflectivity, the light reflecting layer may be omitted, and when it contains light absorption When the agent has light absorbing properties, the absorbing layer can be omitted, and when the ultraviolet absorbing agent is contained, the ultraviolet absorbing layer can be omitted. Further, as for the gas barrier layer, it is also preferred to use a gas barrier layer directly on the film of the present invention, and a gas barrier layer is provided on the other film, and the film is laminated on the polyester of the present invention. Any of the conditions on the surface of the film. Further, a method of laminating a metal foil (e.g., aluminum foil) on the surface of the film may also be used. The thickness of the metal foil in this case is preferably in the range of ΙΟμπι or more and 50 μmη or less in view of workability and gas barrier properties. Here, the solar cell back sheet of the present invention has a higher discharge voltage than the conventional film, and the partial discharge voltage can be increased by using the back sheet formed by the back sheet compared with the conventional back sheet. In the solar cell backsheet of the present invention, the two skin layers of the solar cell backsheet may be formed by layers other than the film of the present invention, or at least one of the skin layers may be formed of the film of the present invention. Compared with any conventional film, since the partial discharge voltage is high, the safety of the solar cell back sheet can be improved, or the thickness can be reduced. More preferably, at least one side surface of the solar battery back sheet has a surface having a surface specific resistance R0 of 1 〇 6 Ω / □ or more and 1 〇 14 Ω / □ or less (hereinafter referred to as a Α 1 surface), and further In view of the fact that the partial discharge voltage can be further increased, the Α1 surface is the surface of the film for a solar cell back sheet of the present invention. Further, it is preferable that at least one of the surfaces is formed as the surface A of the film for solar battery back sheets of the present invention. With this configuration, even if the inner side of the backing plate is formed as the A-side, the partial discharge voltage can be increased by -52- 201044599, and as a result, the electrical resistance characteristics of the solar battery back sheet can be improved, or the thickness of the back sheet can be reduced. . When the solar battery back sheet of the present invention has an A1 surface, the surface specific resistance R3 of the surface opposite to the A1 surface is preferably 1014 Ω/□ or more. As will be described later, when the solar cell back sheet film of the present invention is impregnated into the solar cell system, the resin for sealing the power generating element can be obtained from a point which can be a highly durable solar cell or a thickness which can be reduced. The surface on the opposite side of the layer is preferably a layer of Α1 layer. This is because when the surface ratio of the surface of the surface of the solar cell back sheet of the present invention opposite to the surface of the crucible 1 is 1014 Ω/□ or more, the electrical resistance of the solar battery back sheet is lowered, or when the electric power is taken out by the lead wire. At the same time, the extraction efficiency is lowered and the power generation efficiency is reduced. The thickness of the solar battery back sheet of the present invention is preferably 20 μm or more and 500 μm or less, more preferably 25 μm or more and 300 μm or less, and still more preferably 30 μm or more and 200 μm or less. If the thickness is less than ΐ〇μιη, it is difficult to ensure the flatness of the film. On the other hand, when it is thicker than 500 μm, the thickness of the solar cell becomes too large when it is mounted on a solar battery. 〇 y The solar cell of the present invention is characterized by including the solar battery back sheet of the present invention. The solar battery back sheet of the present invention is superior in durability and thinner than conventional solar cells in that it has a higher discharge voltage than a conventional back plate. The light-transmitting substrate 4 of Fig. 1 is located at the outermost layer of the solar cell. Therefore, a transparent material having high transmittance and high weather resistance, high stain resistance, and high mechanical strength characteristics is used. In the solar cell of the present invention, the substrate 4 having light transmissivity can be any material that satisfies the above characteristics. Examples of -53-201044599 include glass, tetrafluoroethylene-ethylene copolymer (etfe), polyvinyl fluoride resin (PVF), polyvinylidene fluoride resin (PVDF), and polytetrafluoroethylene resin ( Fluorine resin such as TFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polychlorotrifluoroethylene resin (CTFE), polyvinylidene fluoride resin, olefin resin, acrylic resin, and the like Wait. Further, in the case of a light-transmitting substrate made of a resin, the resin may be subjected to one-axis or two-axis stretching from the viewpoint of mechanical strength, and corona treatment, plasma treatment, and ozone may be applied to the surface of the substrate. Handling and easy adhesion treatment. The resin 2 for sealing the power generating element protects the power generating element from the external environment, and is a substrate having electrical insulation and light transmissivity or a function of adhering to the back sheet and the power generating element. As an example, a representative example is Ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA) resin, ethylene-methacrylic acid copolymer (EM AA), ion crosslinking polymerization Resin, polyvinyl butyral resin, mixtures of these, and the like. Here, in the solar battery of the present invention, the solar battery back sheet 1 is provided on the back surface of the resin layer 2 on which the power generating element is sealed. However, when the solar battery back sheet has the A1 surface configuration, the A1 surface system can be used. The resin layer 2 is disposed on the side (5 in Fig. 1), and may be disposed on the opposite side to the resin layer 2 (6 in Fig. 1). In any configuration, the solar battery back sheet of the present invention has a higher partial discharge voltage even if it is thinner than the conventional one, so that the durability of the solar battery system can be improved or the thickness can be reduced. More preferably, the A1 surface of the solar battery back sheet has a configuration opposite to the resin layer (6 in the first drawing). According to this configuration, compared with the configuration of -54 to 201044599 in which the A1 surface is the resin layer side (5 of Fig. 1), it is possible to obtain a more durable solar cell and to reduce the thickness. As described above, by incorporating the back sheet of the present invention into the solar cell system, it is possible to be a highly durable and/or thin solar cell system as compared with the conventional solar cell. The solar battery of the present invention is not limited to outdoor use and indoor use such as a solar power generation system or a power source for small electronic components, and can be applied to various uses. [Evaluation method of characteristics] Ο A. Surface specific resistance R0, Rl, R2, R3 The surface specific resistance R〇, R2 of the film and the surface specific resistance R3 of the back plate opposite to the A surface are microscopically high resistance The galvanometer R8340 (stock) was manufactured by ADVANTEST. However, when the surface specific resistance was 105 Ω/□ or less, it was measured by a Loresta-EP (manufactured by DIA Instruments) equipped with an ASP probe. Further, the measurement was carried out at any one place in the plane of the film, and the average enthalpy was used as the surface specific resistance R 〇 . Further, the measurement sample was measured by using it in a room at a temperature of 23 ° C and a humidity of 65% RH overnight. Further, the tantalum surface specific resistance R1 was applied to a TBAESPEC pressure cooker, and the film was treated for 24 hours under the conditions of a temperature of 125 ° C and a humidity of 10% RH, and the same method as described above was carried out. The surface specific resistance R1 of the treated sample was measured. Further, the measurement was carried out at any one place in the plane of the film, and the average enthalpy was used as the surface specific resistance R1. Further, the measurement sample was taken out from the pressure cooker after the treatment, and then placed in a room at a temperature of 23 ° C and a humidity of 65% RH overnight to carry out measurement. B. Elongation at break and elongation retention -55- 201044599 The elongation at break is based on ASTM-D8 82 (1 999). The sample is cut into a size of 1 cm x 20 cm, and the gap between the chucks is 5 cm and the tensile speed is 300 mm/min. Elongation at break when stretched. Further, the measurement system was carried out on five samples, and the average enthalpy was taken as the elongation at break E0. Next, the sample was cut into a shape of a measurement piece (lcm x 20 cm), and then subjected to treatment in a TBAESPEC pressure cooker under the conditions of 125 ° C and a humidity of 100% RH for 24 hours, and then the sample was broken. The elongation was measured by ASTM-D882 (1 999), and the elongation at break at a tensile strength of 5 cm and a tensile speed of 300 mm/min was measured. Further, the measurement was carried out on five samples, and the average enthalpy was taken as the elongation at break E1. Using the obtained elongation at break EO and E1, the elongation retention ratio was calculated by the following formula (1). Elongation retention ratio (%) = E1/E0xl00 (1) The obtained elongation retention ratio is determined as follows. When the elongation retention ratio is 70% or more: When the S elongation retention ratio is 60% or more and less than 70%, the A elongation retention ratio is 50% or more and less than 60%: B elongation retention rate is less than 50%. : CS, A or B is good, and S is the best. C. Mass average molecular weight (Mw)' Quantitative average molecular weight (Μη) Two Shodex HFIP 806 Μ (made by Showa Denko Co., Ltd.) was used as the column, and the RI type (Model 2414, sensitivity 256, manufactured by WATERS) was used. Gel permeation chromatograph GCP-244 (manufactured by WATERS) of the detector was subjected to GPC measurement at room temperature (23 ° C) at a flow rate of 55 mL/min using PET-DMT (standard product). Using the obtained flushing volume (V) and molecular weight (M)', calculate the coefficient of the third approximation formula of the following formula (2) (A 〇, and prepare a calibration graph.

Lo g (M) = A〇 +A1 V +Aa V2 +A3 V3 (2) 其次,使用六氟丙醇(〇.〇〇 5N-三氟乙酸鈉)當作溶劑,以 成爲0.06質量%的方式溶解B1層而製作溶液,使用此溶液 進行GPC測定》再者,測定條件雖然任意,但於本測定中 ,以注射量0.300m卜流速0.5ml/min來實施。 重疊所得到的沖提曲線分子量曲線與分子量校正曲線 ,求得對應於各流出時間的分子量,取得下式(3)所算出之 Ο 値,當作質量平均分子量。 質量平均分子量(Μ\ν) = Σ(Νί · Mi2)/£(Ni · Mi) (3) 又,取由下述(4)所算出之値,求得數量平均分子量。 數量平均分子量(Μη) = ΣΝί · Mi/ΣΝί (4) (此處,Ni係莫耳分率,Mi係經由分子量校正曲線所得之 GPC曲線的各沖提位置的分子量)。 再者,當基材層(B層)爲積層構造時,將其它層剝離, 或邊以顯微鏡觀察邊硏磨該薄膜,使用僅B1層的樣品實施 測定。 D.微少吸熱峰溫度TmetaBl、熔點TmBl B1層的微少吸熱峰溫度TmetaBl、熔點TmBl係依照JIS K7 122(1999),使用精工電子工業(股)製差示掃描熱量測定 裝置“Robot DSC-RDC220”,數據分析係使用 Disk Session “SSC/5200”實施測定。在樣品盤各秤量5毫克B1層,升溫 速度爲20°C /min,在IstRun將樹脂從25°C以20°C /分鐘的 升溫速度加熱到3 00 °C爲止,在該狀態下保持5分鐘,接著 -57- 201044599 急冷到成爲25°C以下,2ndRun係再度從室溫以20t /分鐘 的升溫速度升溫到3 00t爲止,進行測定。以所得的IstRun 之差示掃描熱量測定圖的結晶融解峰前的微少吸熱峰溫度 當作TmetaBl ’而且以2ndRun的結晶融解峰之峰頂溫度當 作B1層的TmB 1。 E.部分放電電壓 使用部分放電試驗器KPD2050(菊水電子工業(股)製), 求得部分放電電壓。再者,試驗條件係如下述。 •輸出片的輸出電壓施加模式係選擇:第1階段爲從0V到 指定的試驗電壓爲止以單純電壓上升的模式,第2階段 爲維持指定的試驗電壓之模式,第3階段係從指定的試 驗電壓到0V爲止以單純電壓下降的模式之3階段所構成 的模式者。 .頻率爲50Hz。試驗電壓爲lkV。 •第1階段的時間T1爲1 0秒,第2階段的時間T2爲2秒 ,第3階段的時間T 3爲10秒。 •脈衝計數片的計數方法爲「+」(正),檢測水平爲5 0%。 •測距片的電荷量爲測距lOOOpc » •於保護片,在電壓的檢驗箱中引入校驗後,輸入2kV。又 ,脈衝計數爲100000。 •計測模式的開始電壓爲l.Opc,熄滅電壓爲l.Opc。 再者,於測定中,當A面側爲上部電極側時,當A面側 爲下部電極側時,各自在薄膜面內的任意1〇個地方實施測 定,求得其平均値,以各自的平均値中之較高的値當作部 -58- 201044599 分放電電壓ν〇。又,測定試料係使用在23°C、65%RH的室 內放置一夜者來實施測定。 又,濕熱處理後的部分放電電壓 VI係將薄膜在 TBAESPEC(股)製加壓蒸煮器中,於溫度125t、濕度 1 00%RH的條件下進行24小時處理後,測定處理後的部分 放電電壓VI。再者,於測定中,當A面側爲上部電極側時 ,當A面側爲下部電極側時,各自係在薄膜面內的任意10 個地方實施測定,求得其平均値,以各自的平均値中之較 〇 高的値當作部分放電電壓VI。又,測定試料係在處理後從 加壓蒸煮器取出後,使用在溫度23 °C、65 %RH的室內放置 一夜者來實施測定。 又,耐光(UV)試驗後的部分放電電壓V2係對於薄膜, 使用紫外線劣化促進試驗機Eyesper Tester SUV-W131(岩 崎電氣(股)製),在照光24小時(照度:100mW/Cm2,溫濕度 :60°C x5 0%RH)的條件下,進行4小時紫外線照射試驗,測 定處理後的部分放電電壓V2。再者,測定係在薄膜面內的 w 任意1 〇個地方實施測定,測定試料係在處理後從紫外線劣 化促進試驗機取出後,使用在溫度23 °c、65 %RH的室內放 置一夜者來實施測定。而且,當A面側爲上部電極側時, 當B面側爲上部電極側時,各自係實施上述測定,以各自 的平均値中之較高的値當作部分放電電壓V2。 F.氮含有率 僅削掉B1層,將其在真空中於4 0 °C乾燥處理5小時後 ,使用柳本分析工業公司製的全自動元素分析裝置Lo g (M) = A 〇 + A1 V + Aa V2 + A3 V3 (2) Next, using hexafluoropropanol (〇.〇〇5N-trifluoroacetate) as a solvent to become 0.06 mass% The B1 layer was dissolved to prepare a solution, and the solution was used for GPC measurement. Further, although the measurement conditions were arbitrary, in the present measurement, the injection rate was 0.300 mb and the flow rate was 0.5 ml/min. The molecular weight curve of the elution curve obtained by the superposition and the molecular weight calibration curve were obtained, and the molecular weight corresponding to each elution time was obtained, and Ο 算出 calculated by the following formula (3) was obtained as the mass average molecular weight. Mass average molecular weight (Μ\ν) = Σ(Νί · Mi2)/£(Ni · Mi) (3) Further, the number average molecular weight is determined by the enthalpy calculated by the following (4). The number average molecular weight (?n) = ΣΝί · Mi/ΣΝί (4) (here, the Ni-based molar fraction, Mi is the molecular weight of each of the elution positions of the GPC curve obtained by the molecular weight calibration curve). Further, when the base material layer (layer B) has a laminated structure, the other layer is peeled off, or the film is honed while observing with a microscope, and the measurement is performed using a sample of only the B1 layer. D. Minimal endothermic peak temperature TmetaBl, melting point TmBl B1 layer slightly less endothermic peak temperature TmetaBl, melting point TmBl according to JIS K7 122 (1999), using Seiko Electronics Co., Ltd. differential scanning calorimeter "Robot DSC-RDC220" The data analysis system uses the Disk Session "SSC/5200" to perform the measurement. Weigh 5 mg of B1 layer on the sample tray and raise the temperature by 20 °C /min. Heat the resin from 25 °C to 30 °C at a temperature increase rate of 20 °C /min until it reaches 300 °C. Minutes, then -57-201044599 was quenched to 25 ° C or less, and the 2ndRun was again heated from room temperature to 300 t / min to 300 Torr and measured. The slightly endothermic peak temperature before the crystal melting peak of the differential scanning calorimetry chart of the obtained IstRun was taken as TmetaBl' and the peak top temperature of the crystal melting peak of 2ndRun was taken as the TmB 1 of the B1 layer. E. Partial discharge voltage A partial discharge voltage was obtained using a partial discharge tester KPD2050 (manufactured by Kikusui Electronics Co., Ltd.). Furthermore, the test conditions are as follows. • The output voltage application mode of the output chip is selected: the first stage is a mode in which a simple voltage rises from 0V to a specified test voltage, the second stage is a mode in which a specified test voltage is maintained, and the third stage is from a specified test. A mode consisting of three stages of a mode in which the voltage is reduced to 0 V in a simple voltage drop mode. The frequency is 50 Hz. The test voltage is lkV. • The time T1 of the first stage is 10 seconds, the time T2 of the second stage is 2 seconds, and the time T 3 of the third stage is 10 seconds. • The counting method of the pulse counter is “+” (positive) and the detection level is 50%. • The charge of the distance measuring piece is the distance measuring lOOOOpc. • In the protective sheet, after introducing the check in the voltage check box, input 2kV. Also, the pulse count is 100,000. • The starting voltage of the measurement mode is l.Opc, and the extinguishing voltage is l.Opc. In the measurement, when the A surface side is the upper electrode side and the A surface side is the lower electrode side, the measurement is performed at any one place in the film surface, and the average enthalpy is obtained. The higher 値 of the average 値 is treated as a section -58- 201044599 divided discharge voltage ν〇. Further, the measurement sample was placed in a room at 23 ° C and 65% RH overnight to carry out measurement. Further, the partial discharge voltage VI after the wet heat treatment was carried out in a TBAESPEC pressure cooker at a temperature of 125 t and a humidity of 100% RH for 24 hours, and then the partial discharge voltage after the treatment was measured. VI. In the measurement, when the A surface side is the upper electrode side and the A surface side is the lower electrode side, the measurement is performed at any 10 places in the film surface, and the average enthalpy is obtained. The higher 値 in the average 値 is regarded as the partial discharge voltage VI. Further, the measurement sample was taken out from the pressure cooker after the treatment, and then placed in a room at a temperature of 23 ° C and 65% RH overnight to carry out the measurement. In addition, the partial discharge voltage V2 after the light-resistant (UV) test was applied to the film using an ultraviolet degradation-promoting tester Eyesper Tester SUV-W131 (made by Iwasaki Electric Co., Ltd.) for 24 hours (illuminance: 100 mW/cm2, temperature and humidity). Under the conditions of 60 ° C x 5 0% RH), a UV irradiation test was performed for 4 hours, and the partial discharge voltage V2 after the treatment was measured. In addition, the measurement was performed at any one of w in the film surface, and the measurement sample was taken out from the ultraviolet degradation promotion tester after the treatment, and then placed in a room at a temperature of 23 ° C and 65% RH for one night. The assay was carried out. Further, when the A surface side is the upper electrode side and the B surface side is the upper electrode side, the above measurement is performed, and the higher average enthalpy of each of the average turns is regarded as the partial discharge voltage V2. F. Nitrogen content rate Only the B1 layer was cut off, and it was dried in vacuum at 40 ° C for 5 hours, and then a fully automatic elemental analysis device manufactured by Ryumoto Analytical Co., Ltd. was used.

vario EL -59- 201044599 來求得氮含量。 G. 氣泡含有率 藉由下述(A1)〜(A5)的程序來求得。再者,測定係改變 10個地方來測定,以其平均値當作含氣泡的層之氣泡含有 率。 (A1)使用切片機,在厚度方向不破壞薄膜截面,而在相 對於薄膜面方向,垂直地切割。 (A2)接著使用電子顯微鏡來觀察所切割的截面,得到放 大2 00 0倍觀察的影像。再者,觀察位置雖然係在含氣泡的 層內隨意地決定,但是以影像的上下方向平行於薄膜的厚 度方向,且影像的左右方向分別平行於薄膜面方向的方式 〇 (A3)計測前述(A2)所得之影像中之含氣泡的層之面積, 將其當作A。 (A4)計測影像中之含氣泡的層內所存在的全部氣泡之 面積,將總面積當作B。此處,計測對象係不僅包含氣泡的 全體收納在影像內者,而且亦包含在影像內僅—部分出現 的氣泡。 (A5)將B除以A(B/A),將其乘以1〇〇’而算出含氣泡的 層之氣泡含有率(體積%)。 H. 固有黏度 使 B1層溶解在100ml的鄰氯苯酿中(溶液濃度 C=1.2g/ml),使用奧斯特瓦爾德黏度計來測定該溶液在25 °C的黏度。又,同樣地測定溶劑的黏度。使用所得到的溶 -60- 201044599 液黏度、溶劑黏度,藉由下述式(3)來算出[^] ’以所得到的 値當作固有黏度(IV)。 η sp/C = [η ]+ Κ [η ] 2 · C (3) (此處,ηβρ = (溶液黏度/溶劑黏度)-1 ’ Κ係赫金常數(0.343)) 〇 實施例 以下舉出實施例來說明本發明,惟本發明未必受此等所 限定。 Ο (藉由塗布法來形成Α層時的Α層之原料) •導電性材料(a) a_l :非水溶性陽離子系導電性材料的水分散體: “BONDEIP-PM(註冊商標)”主劑(Konishi油脂(股)製,固體 成分30%) a-2 :非水溶性聚噻吩系導電性高分子水分散體:“Baytr〇n( 註冊商標)” P(Bayer公司/H. C_ Stark公司(德國)製,固體 成分1.2%) O a-3:水溶性陽離子系材料:聚苯乙烯磺酸銨鹽(質量平均分 子量:65000) a-4:碳奈米管水分散體(於97.15質量份的純水中添加0.85 質量份的2層CNT (科學實驗室公司,純度95%)、2質量份 的聚乙烯吡咯啶酮,使用超音波粉碎機(東京理科機器(股) 製CX-502,輸出250W,直接照射)進行30分鐘超音波處理 而得者) •黏結劑樹脂(b) -61- 201044599 b-l:非水溶性丙烯酸系樹脂:甲基丙烯酸甲酯/丙烯酸乙酯 /丙烯酸/N-羥甲基丙烯醯胺=62/3 5/2/ 1 (質量比)共聚合丙烯 酸樹脂(玻璃轉移溫度:42t )以粒子狀、固體成分10%分散 在水中者。 b-2 :非水溶性聚酯系樹脂:將共聚合有當作酸成分的對苯 二甲酸/間苯二甲酸/5-磺基間苯二甲酸鈉=60/30/1 0與當作 二醇成分的乙二醇/二乙二醇/聚乙二醇=9 5/3/2之聚酯樹脂( 玻璃轉移溫度48 °C )以10質量%的濃度分散者 •交聯劑(c) c-1 :含有嗶唑啉基的化合物水分散體:“Epocros(註冊商標 )WS-500(日本觸媒(股)製,固體成分40%) c-2:環氧基系交聯劑:聚甘油聚縮水甘油醚系環氧基交聯 劑 EX-512(分子量約 630)(Nagasechemtex(股)製) •界面活性劑(d) d-1:乙炔二醇系界面活性劑:“Olfine (註冊商標)“EXP40 5 1 F( 日信化學工業(股)製) •光安定化劑(e) e-1 :二氧化鈦水分散體:“Nanotec”(註冊商標 )RTIW15WT%G0(C.I.化成(股)製,氧化鈦粒徑2 0〜3 0 nm, 濃度15質量%) 卜2:氧化鋅水分散體:GZOW15WT%-E05(C.I_化成(股)製, 氧化鋅粒徑20〜30nm,濃度15質量%)。 (實施例1-1) 第一步驟爲在150°C、氮氣環境下’將1〇〇質量份的對 -62- 201044599 苯二甲酸二甲酯、57.5質量份的乙二醇、0.06質量份的醋 酸鎂、0.03質量份的三氧化銻熔融後,邊攪拌邊費3小時 升溫到2 3 0°C,餾出甲醇,完成酯交換反應。 第二步驟爲在最終到達溫度285 °C、真空度0.1 Ton·進 行聚合反應,而得到固有黏度0.54的聚酯。第三步驟爲將 所得到的聚對苯二甲酸乙二酯在160T:乾燥6小時’使結晶 化後,在22(TC、真空度0.3T〇rr進行8小時的固相聚合’ 而得到固有黏度0.81的聚酯。 〇 將所得到的固有黏度0.8 1之聚對苯二甲酸乙二酯(熔點Vario EL -59- 201044599 to find the nitrogen content. G. Bubble content rate is obtained by the following procedures (A1) to (A5). Further, the measurement system was changed in 10 places to measure, and the average enthalpy was used as the bubble content rate of the bubble-containing layer. (A1) Using a microtome, the film cross section is not broken in the thickness direction, and is cut vertically in the direction of the film surface. (A2) Next, an electron microscope was used to observe the cut section, and an image obtained by magnifying 200 times was obtained. Further, although the observation position is arbitrarily determined in the bubble-containing layer, the above-described (A3) is measured such that the vertical direction of the image is parallel to the thickness direction of the film, and the left-right direction of the image is parallel to the film surface direction (A3). A2) The area of the bubble-containing layer in the resulting image, which is taken as A. (A4) The area of all the bubbles existing in the bubble-containing layer in the image is measured, and the total area is regarded as B. Here, the measurement target includes not only the entire bubble is accommodated in the image but also the bubble which appears only partially in the image. (A5) B is divided by A (B/A), and this is multiplied by 1 〇〇' to calculate the bubble content (vol%) of the bubble-containing layer. H. Intrinsic viscosity The B1 layer was dissolved in 100 ml of o-chlorobenzene (solution concentration C = 1.2 g/ml), and the viscosity of the solution at 25 ° C was measured using an Ostwald viscometer. Further, the viscosity of the solvent was measured in the same manner. Using the obtained solution viscosity -60 - 201044599 liquid viscosity and solvent viscosity, [^] ' was calculated by the following formula (3), and the obtained enthalpy was regarded as the intrinsic viscosity (IV). η sp / C = [η ] + Κ [η ] 2 · C (3) (here, ηβρ = (solution viscosity / solvent viscosity) - 1 ' Κ system Herkin constant (0.343)) 〇 Examples below The invention is illustrated by the examples, but the invention is not necessarily limited thereto. Ο (The raw material of the ruthenium layer when the ruthenium layer is formed by the coating method) • Conductive material (a) a_l : Water dispersion of the water-insoluble cationic conductive material: "BONDEIP-PM (registered trademark)" main agent (Konishi Oils Co., Ltd., solid content 30%) a-2: Water-insoluble polythiophene-based conductive polymer aqueous dispersion: "Baytr〇n (registered trademark)" P (Bayer/H. C_ Stark (Germany), solid content 1.2%) O a-3: water-soluble cationic material: ammonium polystyrene sulfonate (mass average molecular weight: 65000) a-4: carbon nanotube water dispersion (at 97.15 quality 0.85 parts by mass of two layers of CNT (Science Laboratories, purity 95%) and 2 parts by mass of polyvinylpyrrolidone were added to the pure water, using an ultrasonic pulverizer (Tokyo Science Machine Co., Ltd. CX-502) , output 250W, direct irradiation) for 30 minutes of ultrasonic processing) • Adhesive resin (b) -61- 201044599 bl: water-insoluble acrylic resin: methyl methacrylate / ethyl acrylate / acrylic / N -Hydroxymethyl acrylamide = 62/3 5/2/ 1 (mass ratio) copolymerized acrylic resin (glass The transfer temperature: 42 t) is dispersed in water in the form of particles and solid components of 10%. B-2 : water-insoluble polyester resin: terephthalic acid/isophthalic acid/5-sulfoisophthalate sodium = 60/30/1 0 which is copolymerized as an acid component Polyol resin of ethylene glycol/diethylene glycol/polyethylene glycol=9 5/3/2 (glass transition temperature 48 °C) dispersed at a concentration of 10% by mass • Crosslinking agent (c) C-1 : aqueous dispersion of an oxazoline group-containing compound: "Epocros (registered trademark) WS-500 (manufactured by Nippon Shokubai Co., Ltd., solid content: 40%) c-2: epoxy group-based crosslinking agent: Polyglycerol polyglycidyl ether epoxy crosslinker EX-512 (molecular weight about 630) (manufactured by Nagasechemtex) • Surfactant (d) d-1: acetylene glycol surfactant: “Olfine ( Registered trademark) "EXP40 5 1 F (made by Nissin Chemical Industry Co., Ltd.) • Light stabilizer (e) e-1 : Titanium dioxide aqueous dispersion: "Nanotec" (registered trademark) RTIW15WT%G0 (CI Chengcheng (share) ), titanium oxide particle size 2 0~3 0 nm, concentration 15% by mass) Bu 2: Zinc oxide water dispersion: GZOW15WT%-E05 (C.I_Chemical), zinc oxide particle size 20~30nm , concentration 15% by mass) (Example 1-1) The first step is to treat 1 part by mass of -62-201044599 dimethyl phthalate, 57.5 parts by mass of ethylene glycol, 0.06 parts by mass of magnesium acetate, and 0.03 parts by mass at 150 ° C under a nitrogen atmosphere. After melting the antimony trioxide, it is heated to 2300 ° C for 3 hours while stirring, and methanol is distilled off to complete the transesterification reaction. The second step is to carry out polymerization at a final temperature of 285 ° C and a vacuum of 0.1 Ton·. A polyester having an intrinsic viscosity of 0.54 is obtained. The third step is to carry out the obtained polyethylene terephthalate at 160 T: drying for 6 hours to crystallization, and then at 22 (TC, vacuum degree 0.3 T rrrr). 8 hours of solid phase polymerization' to obtain a polyester having an intrinsic viscosity of 0.81. The obtained polyethylene terephthalate having an intrinsic viscosity of 0.8 1 (melting point)

TmB 1 =25 5 °C )在180 °C的溫度真空乾燥3小時後,供應給擠 壓機,於氮氣環境下在280 °C的溫度使熔融’導入T模頭噴 嘴。接著,由T模頭噴嘴內擠出成片狀,而成爲熔融單層 片,藉由靜電施加法使該熔融單層片在裏面溫度保持25 °C 的滾筒上密著冷卻固化,而得到未拉伸單層薄膜。然後, 以經加熱90。(:的溫度之輥群來預熱該未拉伸單層薄膜後’ 使用95°C的溫度之加熱輥,在長度方向(縱向)中進行3.3 ^ 倍拉伸,以25 °C的溫度之輕群冷卻而得到—軸拉伸薄膜。 對經一軸拉伸的薄膜施予電暈處理後’藉由#6的計量桿來 塗布下述塗劑1 -1。 &lt;塗劑1 -1 &gt; 18質量份 3質量份 0.7 5質量份 0.1質量份 •導電性材料:a-1 •黏結劑樹脂:b-1 •交聯劑:c-1 •界面活性劑:d-1 -63- 201044599 •水 78. 1 5質量份》 邊以夾具抓住所得到的一軸拉伸薄膜之兩端邊導引至 拉幅機內的95°C溫度之預熱區,接著連續地在l〇5°C溫度 的加熱區中於與長度方向成垂直的方向(寬度方向)拉伸3.5 倍。然後緊接著,在拉幅機內的熱處理區中於20(TC的溫度 施予20秒的熱處理,再者於180 °C的溫度進行4%寬度方向 的鬆弛處理後,再於140 °C的溫度進行3%寬度方向的鬆驰 處理。接著,均勻徐冷後,藉由捲繞而得到在表面上形成 有膜厚0.15 μπι的A層之厚度50 μιη的二軸拉伸薄膜。測定 所得到的薄膜之Β1層的質量平均分子量、數量平均分子量 、Α面的表面比電阻、與Α面相反側之面的表面比電阻、 斷裂伸長度、部分放電電壓、熱收縮率、濕熱處理後的表 面比電阻、斷裂伸長度、部分放電電壓。結果顯示於表1 、表2中。可知各特性優異。接著,使用此薄膜當作第1 層,塗布90質量份當作黏著層的“Takerak(註冊商標)”A3 10( 三井武田化學(股)製)、“Takenet(註冊商標)”A3(三井武田化 學(股)製),於其上貼合當作第2層的厚度125 μπι二軸拉伸 聚酯薄膜“Lumirror(註冊商標)”S10(東麗(股)製,兩面之表 面比電阻皆爲4.5χ1015Ω/α)。接著在第2層上塗布上述的黏 著層,以蒸鍍層成爲與第2層的相反側之方式貼合厚度 12μιη的Barrial〇X“HGTS”(東麗薄膜加工(股)製的氧化鋁蒸 鍍PET薄膜),而形成厚度188 μπι的背板。再者,關於第1 層,製作以Α面成爲內側(與第2層相對向)的方式貼合之情 況及成爲外側(與第2層相反側)的方式貼合之情況兩方。測 -64- 201044599 定所得到的背板之部分放電電壓。結果顯示於表3中。可 知皆顯示高的部分放電電壓,尤其在外側形成有A面的情 況中,顯示更高的部分放電電壓。 (實施例1-2〜1-3) 除了作爲形成A層的塗劑,各自使用下述塗劑1-2、塗 劑1-3以外,藉由與實施例1-1同樣的方法,得到在表面上 各自以膜厚0.15 μιη形成有A層的厚度50 μπι之二軸拉伸薄 膜。 〇 〇 &lt;塗劑1 - 2 &gt; 1 6質量份 6質量份 1.25質量份 0.1質量份 76.65質量份 1 2質量份 12質量份 •導電性材料:a-1 •黏結劑樹脂:b-1 •交聯劑:c -1 •界面活性劑:d -1 .水 &lt;塗劑1 - 3 &gt; •導電性材料:a-1 •黏結劑樹脂:b-1 •交聯劑:c-1 2.5質量份 •界面活性劑:d-1 0.1質量份 .水 7 3.4質量份 測定所得到的薄膜之B1層的質量平均分子量、數量平 均分子量、A面的表面比電阻、與A面相反側的面之表面 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 -65- 201044599 顯示於表1、表2中。可知與實施例1-1同樣地,各特性優 異。又,關於所得到的薄膜’與實施例i·1同樣地形成背板 。測定所得到的背板之部分放電電壓。結果顯示於表3中 。可知皆與實施例1-1同樣地顯示高的部分放電電壓’尤其 在外側形成有A面的情況中’顯示更高的部分放電電壓。 (實施例1-4、1-5) 除了作爲形成A層的塗劑,各自使用下述塗劑1_4、塗 劑1 -5以外,藉由與實施例1 -1同樣的 各自以膜厚0.15 μιη、膜厚〇·〇3 μ»1形成 之二軸拉伸薄膜 〇 &lt;塗劑1 - 4 &gt; •導電性材料: a -1 1 0質量份 •黏結劑樹脂: b-1 1 5質量份 •交聯劑:c -1 3.7 5質窠份 •界面活性劑: d-1 0.1質窠份 •水 71.1 5質窠@ &lt;塗劑1 - 5 &gt; •導電性材料·· a- 2 4 1.6質窠份 •黏結劑樹脂: b-2 2 · 5質窠ί分 •交聯劑·· c - 2 0.2 5質虞份' •界面活性劑: d-1 0.1質囊份 .水 3 2.1質虞份 測定所得到的薄膜之 Β 1層的質里 均分子量、A面的表面比電阻 、g A面相反側的面之表面 -66- 201044599 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 顯tf:於表1、表2中。可知雖然不如實施例,但是 顯示高的部分放電電壓,而且各特性優異。又’關於所得 到的薄膜,與實施例1 -1同樣地形成背板。測定所得到的背 板之部分放電電壓。結果顯示於表3中。可知雖然皆不如 實施例1·1〜1-3,但是顯示高的部分放電電壓,尤其在外 側形成有Α面的情況中,顯示更高的部分放電電壓。 (實施例1-6) 除了作爲形成A層的塗劑,使用下述塗劑ι_6以外,藉 由與實施例1-1同樣的方法,得到在表面上形成有膜厚 0·03μιη的A層之厚度50μιη的二軸拉伸薄膜。TmB 1 = 25 5 ° C) After vacuum drying at 180 ° C for 3 hours, it was supplied to an extruder, and the melt was introduced into a T-die nozzle at a temperature of 280 ° C under a nitrogen atmosphere. Then, it was extruded into a sheet shape from a T-die nozzle to form a molten single-layer sheet, and the molten single-layer sheet was cooled and solidified by a static-pressing method on a drum having a temperature of 25 ° C therein. Stretch a single layer film. Then, it is heated to 90. (: Roller group of temperature to preheat the unstretched single-layer film) Using a heating roller at a temperature of 95 ° C, stretching in the longitudinal direction (longitudinal direction) by 3.3 ^ times, at a temperature of 25 ° C The light group was cooled to obtain a shaft-stretched film. After the one-axis stretched film was subjected to corona treatment, the following coating agent 1 -1 was applied by a metering rod of #6. &lt;Coating agent 1 -1 &gt 18 parts by mass 3 parts by mass 0.7 5 parts by mass 0.1 parts by mass • Conductive material: a-1 • Adhesive resin: b-1 • Crosslinking agent: c-1 • Surfactant: d-1 -63- 201044599 • Water 78.1 parts by mass. The two ends of the obtained one-axis stretched film are grasped by a jig and guided to a preheating zone at a temperature of 95 ° C in the tenter, and then continuously at l〇5°. The heating zone of the C temperature is stretched 3.5 times in the direction perpendicular to the longitudinal direction (width direction), and then, in the heat treatment zone in the tenter, heat treatment is performed at 20 (the temperature of TC is 20 seconds, and then After the relaxation treatment in the width direction of 4% in the temperature of 180 ° C, the relaxation treatment in the width direction of 3% was carried out at a temperature of 140 ° C. Then, after uniform cooling A biaxially stretched film having a thickness of 50 μm formed on the surface of the layer A having a film thickness of 0.15 μm was obtained by winding. The mass average molecular weight, the number average molecular weight, and the surface of the tantalum layer of the obtained film were measured. Specific resistance, surface specific resistance, elongation at break, partial discharge voltage, heat shrinkage rate, surface specific resistance after wet heat treatment, elongation at break, partial discharge voltage, the results are shown in Table 1 and Table. 2, it is known that each of the properties is excellent. Next, the film is used as the first layer, and 90 parts by mass of "Takerak (registered trademark)" A3 10 (manufactured by Mitsui Takeda Chemical Co., Ltd.) and "Takenet" are applied as an adhesive layer. Registered trademark) "A3 (Mitsui Takeda Chemical Co., Ltd.), which is attached as a second layer of 125 μπι biaxially stretched polyester film "Lumirror (registered trademark)" S10 (Toray) The surface specific resistance of both surfaces is 4.5 χ 1015 Ω / α. Then, the above-mentioned adhesive layer is applied on the second layer, and the vapor-deposited layer is bonded to the opposite side of the second layer to fit the Barrial 〇 X "HGTS having a thickness of 12 μm. "Toray A film-processed (aluminum-based alumina-deposited PET film) was used to form a backing plate having a thickness of 188 μm. Further, the first layer was formed so that the kneading surface became inside (opposite to the second layer). In the case of the outer side (the side opposite to the second layer), the partial discharge voltage of the backing plate obtained by the measurement was measured. The results are shown in Table 3. The results are shown to be high. The partial discharge voltage, particularly in the case where the A side is formed on the outer side, shows a higher partial discharge voltage. (Examples 1-2 to 1-3) The same procedure as in Example 1-1 was carried out except that the coating agent for forming the layer A was used in the same manner as in Example 1-1 except that the following coating agent 1-2 and coating agent 1-3 were used. A biaxially oriented film having a thickness of 50 μm was formed on the surface by a film thickness of 0.15 μm. 〇〇 &lt;Coating agent 1 - 2 &gt; 16 parts by mass 6 parts by mass 1.25 parts by mass 0.1 parts by mass 76.65 parts by mass 12 parts by mass 12 parts by mass • Conductive material: a-1 • Adhesive resin: b-1 • Crosslinker: c -1 • Surfactant: d -1 . Water &lt; Paint 1 - 3 &gt; • Conductive material: a-1 • Adhesive resin: b-1 • Crosslinker: c- 1 2.5 parts by mass • Surfactant: d-1 0.1 parts by mass. Water 7 3.4 parts by mass The mass average molecular weight, the number average molecular weight of the B1 layer of the obtained film, the surface specific resistance of the A side, and the side opposite to the A side. Surface surface specific resistance R2, elongation at break, partial discharge voltage, heat shrinkage ratio, surface specific resistance after wet heat treatment, elongation at break, partial discharge voltage. Results -65- 201044599 are shown in Tables 1 and 2. It is understood that each characteristic is superior to that of the embodiment 1-1. Further, the obtained film was formed into a back sheet in the same manner as in Example i.1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. In the same manner as in Example 1-1, it was found that a high partial discharge voltage 'in particular, in the case where the A side was formed on the outside,' showed a higher partial discharge voltage. (Examples 1-4 and 1-5) The film thickness was 0.15 in the same manner as in Example 1-1, except that the coating agent for forming the A layer was used, except that the following coating agent 1_4 and the coating agent 1-5 were used. Μιη, film thickness 〇·〇3 μ»1 formed by the biaxially stretched film 〇&lt;Coating agent 1 - 4 &gt; • Conductive material: a -1 1 0 parts by mass • Adhesive resin: b-1 1 5 Parts by mass • Crosslinker: c -1 3.7 5 mass parts • Surfactant: d-1 0.1 mass part • water 71.1 5 mass 窠 @ &lt; paint 1 - 5 &gt; • Conductive material ·· a - 2 4 1.6 Quality Resin • Adhesive Resin: b-2 2 · 5 窠 分 • • Crosslinker · · c - 2 0.2 5 虞 ' ' • Surfactant: d-1 0.1 vesicles. Water 3 2.1 Determination of the obtained film Β The mass average molecular weight of the 1 layer, the surface specific resistance of the A surface, and the surface of the surface opposite to the g A surface - 66 - 201044599 Specific resistance R2, elongation at break, part Discharge voltage, heat shrinkage rate, surface specific resistance after wet heat treatment, elongation at break, partial discharge voltage. Results tf: in Table 1, Table 2. It is understood that although not as good as the examples, a high partial discharge voltage is exhibited, and each characteristic is excellent. Further, regarding the obtained film, a back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that although not all of Examples 1·1 to 1-3, a high partial discharge voltage is exhibited, and particularly in the case where a kneading surface is formed on the outer side, a higher partial discharge voltage is exhibited. (Example 1-6) A layer A having a film thickness of 0·03 μm was formed on the surface by the same method as Example 1-1, except that the coating agent for forming the layer A was used, except that the following coating agent ι_6 was used. A biaxially stretched film having a thickness of 50 μm.

&lt;塗劑1 - 6 &gt; •導電性材料:a-2 50 •黏結劑樹脂:b-2 2 % •交聯劑:c-2 0.2 •界面活性劑:d -1 0.1 .水 47. 測定所得到的薄膜之Β1 I量份 量份 質量份 質量份 7質量份 層的質量平均分子量、數量平 均分子量、Α面的表面比電阻、與Α面相反側的面之表面 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 顯示於表1、表2中。可知雖然不如實施例1-4、1-5,但是 顯示高的部分放電電壓,而且各特性優異。又,關於所得 -67- 201044599 到的薄膜,與實施例1 -1同樣地形成背板。測定所得到的背 板之部分放電電壓。結果顯示於表3中。可知雖然皆不如 實施例1-4、1-5,但是顯示高的部分放電電壓’尤其在外 側形成有A面的情況中’顯示更高的部分放電電壓。 (實施例1-7) 除了作爲形成A層的塗劑,使用下述塗劑1-7以外,藉 由與實施例1-1同樣的方法,得到在表面上形成有膜厚 0.03μιη的A層之厚度50μηι的二軸拉伸薄膜。 &lt;塗劑1 - 7 &gt; .導電性材料:a-2 66.7質量份 •黏結劑樹脂:b-2 1質量份 .交聯劑:c-2 〇.1質量份 •界面活性劑:d-1 0.1質量份 .水 3 2.1質量份。 測定所得到的薄膜之B1層的質量平均分子量、數量平 均分子量、A面的表面比電阻、與A面相反側的面之表面 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 顯示於表1、表2中。可知雖然不如實施例1-6,但是顯示 高的部分放電電壓,而且各特性優異。又,關於所得到的 薄膜’與實施例1 -1同樣地形成背板。測定所得到的背板之 部分放電電壓。結果顯示於表3中。可知雖然皆不如實施 例1-6,但是顯示高的部分放電電壓,尤其在外側形成有A 面的情況中’顯示更高的部分放電電壓。 -68- 201044599 (實施例1-8) 除了薄膜厚度爲125 μιη以外,藉由與實施例1-1同樣的 方法,得到在表面上形成有膜厚0.15 μιη的Α層之厚度 1 25 μιη的二軸拉伸薄膜。測定所得到的薄膜之表面比電阻 、與Α面相反側的面之表面比電阻R2、斷裂伸長度、部分 放電電壓、熱收縮率、濕熱處理後的表面比電阻、斷裂伸 長度、部分放電電壓。結果顯示於表1、表2中。可知各特 性優異。除了使用所得到的薄膜,使用厚度50μπι的二軸拉 Ο 伸聚酯薄膜“Lumirror (註冊商標)”S10(東麗(股)製)當作第2 層以外,與實施例1 -1同樣地形成背板。測定所得到的背板 之部分放電電壓。結果顯示於表3中。可知雖然皆不如實 施例1-1,但是顯示高的部分放電電壓,尤其在外側形成有 A面的情況中,顯示更高的部分放電電壓。 (實施例1-9) 除了薄膜厚度爲188 μιη以外,藉由與實施例1-1同樣的 方法,得到在表面上形成有膜厚〇.15μιη的Α層之厚度&lt;Coating agent 1 - 6 &gt; • Conductive material: a-2 50 • Adhesive resin: b-2 2 % • Crosslinking agent: c-2 0.2 • Surfactant: d -1 0.1 . The amount of the obtained film is measured in parts by mass, parts by mass, parts by mass, 7 parts by mass of the mass average molecular weight, the number average molecular weight, the surface specific resistance of the face, the surface specific resistance R2, and the elongation at break of the face opposite to the face. Degree, partial discharge voltage, heat shrinkage rate, surface specific resistance after wet heat treatment, elongation at break, partial discharge voltage. The results are shown in Tables 1 and 2. It is understood that although it is not as in Examples 1-4 and 1-5, a high partial discharge voltage is exhibited, and each characteristic is excellent. Further, regarding the obtained film of -67-201044599, a back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that although not as in Examples 1-4 and 1-5, it is shown that a high partial discharge voltage 'in the case where the A side is formed on the outer side' exhibits a higher partial discharge voltage. (Example 1-7) An A having a film thickness of 0.03 μm was formed on the surface by the same method as Example 1-1 except that the coating agent for forming the layer A was used as the coating agent 1-7 described below. A biaxially oriented film having a thickness of 50 μm. &lt;Coating agent 1 - 7 &gt; . Conductive material: a-2 66.7 parts by mass • Adhesive resin: b-2 1 part by mass. Crosslinking agent: c-2 〇.1 part by mass • Surfactant: d -1 0.1 parts by mass. Water 3 2.1 parts by mass. The mass average molecular weight, the number average molecular weight of the B1 layer of the obtained film, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the damp heat were measured. Surface specific resistance, elongation at break, and partial discharge voltage after treatment. The results are shown in Tables 1 and 2. It is understood that although not as in Examples 1-6, a high partial discharge voltage is exhibited, and each characteristic is excellent. Further, a back sheet was formed in the same manner as in Example 1-1 regarding the obtained film. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that although not as in Examples 1-6, a high partial discharge voltage is shown, especially in the case where the A side is formed on the outer side, and a higher partial discharge voltage is displayed. -68-201044599 (Example 1-8) The thickness of the ruthenium layer having a film thickness of 0.15 μm formed on the surface was obtained by the same method as in Example 1-1 except that the film thickness was 125 μm. Biaxially stretched film. The surface specific resistance of the obtained film, the surface specific resistance R2, the elongation at break, the partial discharge voltage, the heat shrinkage rate, the surface specific resistance after the wet heat treatment, the elongation at break, and the partial discharge voltage were measured. . The results are shown in Tables 1 and 2. It is known that each characteristic is excellent. In the same manner as in Example 1-1 except that the obtained film was used, a two-axis stretched polyester film "Lumirror (registered trademark)" S10 (manufactured by Toray Industries, Inc.) having a thickness of 50 μm was used as the second layer. Form a backing plate. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that although not as in Example 1-1, a high partial discharge voltage is exhibited, and particularly in the case where the A side is formed on the outer side, a higher partial discharge voltage is displayed. (Example 1-9) A thickness of a ruthenium layer having a film thickness of 1515 μm was formed on the surface by the same method as that of Example 1-1 except that the film thickness was 188 μm.

G 1 8 8 μιη的二軸拉伸薄膜。測定所得到的薄膜之B 1層的質量 平均分子量、數量平均分子量、Α面的表面比電阻、與A 面相反側的面之表面比電阻R2、斷裂伸長度、部分放電電 壓、熱收縮率、濕熱處理後的表面比電阻、斷裂伸長度、 部分放電電壓。結果顯示於表1、表2中。可知各特性優異 。作爲所得到的薄膜第1層,將此薄膜固定在電子束蒸鍍 裝置,使用氧化鋁當作揮發源,在真空度3.4x1 0_5Pa、蒸鍍 速度10埃/sec、蒸鍍源-基材間距離25cm的條件下,自薄 -69- 201044599 膜面的法線方向以電子束蒸鍍氧化鋁,形成由膜厚〇·2 μπι 的氧化鋁所成的第2層。再者,關於第1層,製作以Α面 成爲內側(與第2層相對向)的方式蒸鍍之情況及成爲外側( 與第2層相反側)的方式蒸鍍之情況兩方。測定所得到的背 板之部分放電電壓•結果顯示於表3中。可知皆與實施例 1-1同樣地顯示高的部分放電電壓,尤其在外側形成有A面 的情況中,顯示更高的部分放電電壓。 (實施例1 -1 0) 除了作爲形成A層的塗劑,使用下述塗劑1-1〇以外, 藉由與實施例1-1同樣的方法,得到在表面上形成有膜厚 0.15 μιη的A層之厚度50 μιη的二軸拉伸薄膜。 &lt;塗劑1 - 1 0 &gt; •導電性材料:a-1 18質量份 •黏結劑樹脂:b-1 6質量份 .界面活性劑:c -1 〇 . 1質量份 •水 75.9質量份。 測定所得到的薄膜之B1層的質量平均分子量、數量平 均分子量、A面的表面比電阻、與A面相反側的面之表面 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 顯示於表1、表2中。可知與實施例1-1同樣地,各特性優 異。又,關於所得到的薄膜,與實施例1-1同樣地形成背板 。測定所得到的背板之部分放電電壓。結果顯示於表3中 。可知與實施例1-1同樣地顯示高的部分放電電壓,尤其在 -70- 201044599 外側形成有A面的情況中,顯示更高的部分放電電壓。 (實施例1-11) 除了作爲形成A層的塗劑’各自使用下述塗劑丨-11以 外,藉由與實施例1-1同樣的方法’得到在表面上形成有膜 厚0.15μπι的A層之厚度50μιη的二軸拉伸薄膜。 &lt;塗劑1 -1 1 &gt; •黏結劑樹脂:a-1 12質量份 •界面活性劑:C-1 0.1質量份 Ο ·水 87.9質量份 測定所得到的薄膜之B1層的質量平均分子量、數量平 均分子量、A面的表面比電阻、與A面相反側的面之表面 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 顯示於表1、表2中。可知與實施例1-1相比,雖然耐濕熱 處理後的部分放電電壓差,但是各特性優異。又,關於所 得到的薄膜,與實施例1 -1同樣地形成背板。測定所得到的 〇 背板之部分放電電壓。結果顯示於表3中。可知與實施例 1-1同樣地顯示高的部分放電電壓,尤其在外側形成有A面 的情況中,顯示更高的部分放電電壓。 (實施例1-12) 除了作爲形成A層的塗劑,使用下述塗劑1-12以外, 藉由與實施例1-1同樣的方法,得到在表面上形成有膜厚 0·15μιη的A層之厚度50μιη的二軸拉伸薄膜。 &lt;塗劑1 -1 2 &gt; -71- 201044599 •導電性材料:a •黏結劑樹脂:b •交聯劑: •界面活性劑:d 1 .5質量份 3 5質量份 4.2質量份 0.1質量份 5 9.2質量份 測定所得到的薄膜之B1層的質量平均分子量、數量平 均分子量、A面的表面比電阻、與A面相反側的面之表面 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 顯示於表1、表2中。可知與實施例1-1同樣地,各特性優 異。又,關於所得到的薄膜,與實施例1-1同樣地形成背板 。測定所得到的背板之部分放電電壓》結果顯示於表3中 。可知與實施例同樣地顯示高的部分放電電壓,尤其在 外側形成有A面的情況中,顯示更高的部分放電電壓。 (實施例1-13) 除了作爲形成A層的塗劑,使用下述塗劑1 -1 3以外, 藉由與實施例1-1同樣的方法,得到在表面上形成有膜厚 0.15μιη的A層之厚度50μιη的二軸拉伸薄膜。 &lt;塗劑1 -1 3 &gt; •導電性材料:a-3 1.5質量份 •黏結劑樹脂:b -1 4 5質量份 •界面活性劑:c -1 〇 . 1質量份 •水 53.4質量份 測定所得到的薄膜之B 1層的質量平均分子量、數量平 -72- 201044599 均分子量、A面的表面比電阻、與A面相反側的面之表面 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 顯示於表1、表2中。可知與使用非水溶性陽離子系導電材 料的實施例1 -1 〇之情況相比,雖然耐濕熱處理後的部分放 電電壓低,但是各特性優異。又,關於所得到的薄膜,與 實施例1 -1同樣地形成背板。測定所得到的背板之部分放電 電壓。結果顯示於表3中。可知與實施例1-1同樣地顯示高 〇 的部分放電電壓,尤其在外側形成有A面的情況中,顯示 更高的部分放電電壓。 (實施例1 · 1 4) 除了作爲形成A層的塗劑,使用下述塗劑1-14以外’ 藉由與實施例1-12同樣的方法,得到在表面上形成有膜厚 〇·15μιη的A層之厚度50μηι的二軸拉伸薄膜。 &lt;塗劑1 -1 4 &gt; α ·導電性材料:a-3 6質量份 0 •界面活性劑:C-1 0.1質量份 •水 9 3.9質量份 測定所得到的薄膜之B1層的質量平均分子量、數量平 均分子量、A面的表面比電阻、與A面相反側的面之表面 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 顯示於表1、表2中。可知與使用非水溶性陽離子系導電材 料的實施例1 · 1 0的情況不同,雖然濕熱處理後沒有見到部 -73- 201044599 分放電電壓的提高,但是其它特性優異。又,關於所得到 的薄膜,與實施例1 -1同樣地形成背板。測定所得到的背板 之部分放電電壓。結果顯示於表3中。可知與實施例1-1 同樣地顯示高的部分放電電壓,尤其在外側形成有A面的 情況中,顯示更高的部分放電電壓。 (實施例1·15〜17) 除了各自的第三步驟之固相聚合小時爲5.5小時、4_5 小時、3 · 5小時以外,使用由與實施例1 -1同樣方法所得之 固有黏度爲0.75、0.70、0.66的聚對苯二甲酸乙二酯,除 了縱拉伸溫度各自爲95°C、90°C、85°C以外,藉由與實施 例1-1同樣的方法,得到在表面上形成有膜厚〇.15μπι的A 層之厚度50μιη的二軸拉伸薄膜。測定所得到的薄膜之B 1 層的質量平均分子量、數量平均分子量、Α面的表面比電阻 、與A面相反側的面之表面比電阻R2、斷裂伸長度、部分 放電電壓、熱收縮率、濕熱處理後的表面比電阻、斷裂伸 長度、部分放電電壓。結果顯示於表1、表2中。可知與實 施例1-1相比,雖然濕熱處理後的斷裂伸長度差,但各種特 性優異。又,關於所得到的薄膜,與實施例1 -1同樣地形成 背板。測定所得到的背板之部分放電電壓。結果顯示於表3 中。可知與實施例1-1同樣地顯示高的部分放電電壓’尤其 在外側形成有A面的情況中’顯示更高的部分放電電壓。 (實施例 1-18、1-19)A biaxially stretched film of G 1 8 8 μηη. The mass average molecular weight, the number average molecular weight of the B 1 layer of the obtained film, the surface specific resistance of the facet, the surface specific resistance R2 of the face opposite to the A face, the elongation at break, the partial discharge voltage, the heat shrinkage rate, Surface specific resistance, elongation at break, and partial discharge voltage after wet heat treatment. The results are shown in Tables 1 and 2. It is known that each characteristic is excellent. As the first layer of the obtained film, the film was fixed in an electron beam evaporation apparatus using alumina as a volatilization source at a vacuum degree of 3.4 x 1 0_5 Pa, a vapor deposition rate of 10 Å/sec, and an evaporation source-substrate. Under the condition of a distance of 25 cm, alumina was vapor-deposited from the normal direction of the film surface from -69 to 201044599 to form a second layer of alumina having a film thickness of μ·2 μm. In addition, in the case of the first layer, the vapor deposition is performed on the inner side (opposite the second layer) and the outer side (the side opposite to the second layer) is vapor-deposited. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that a high partial discharge voltage is exhibited in the same manner as in the embodiment 1-1, and particularly in the case where the A surface is formed on the outer side, a higher partial discharge voltage is exhibited. (Example 1 - 1 0) A film thickness of 0.15 μm was formed on the surface by the same method as Example 1-1, except that the coating agent for forming the layer A was used, except that the following coating agent 1-1 was used. A layer of 50 μm thick biaxially stretched film of layer A. &lt;Coating agent 1 - 1 0 &gt; • Conductive material: a-1 18 parts by mass • Adhesive resin: b-1 6 parts by mass. Surfactant: c -1 〇. 1 part by mass • Water 75.9 parts by mass . The mass average molecular weight, the number average molecular weight of the B1 layer of the obtained film, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the damp heat were measured. Surface specific resistance, elongation at break, and partial discharge voltage after treatment. The results are shown in Tables 1 and 2. It is understood that each characteristic is superior to that of the embodiment 1-1. Further, a back sheet was formed in the same manner as in Example 1-1 on the obtained film. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that a high partial discharge voltage is exhibited in the same manner as in the embodiment 1-1, and particularly in the case where the A surface is formed outside the -70 to 201044599, a higher partial discharge voltage is exhibited. (Example 1-11) A film thickness of 0.15 μm was formed on the surface by the same method as in Example 1-1 except that the coating agent for forming the A layer was used as the coating agent 丨-11 described below. A layer of biaxially oriented film having a thickness of 50 μm. &lt;Coating agent 1 -1 1 &gt; • Adhesive resin: a-1 12 parts by mass • Surfactant: C-1 0.1 parts by mass Ο Water 87.9 parts by mass The mass average molecular weight of the B1 layer of the obtained film was measured. , the number average molecular weight, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, the surface specific resistance after the wet heat treatment, the elongation at break, the portion Discharge voltage. The results are shown in Tables 1 and 2. It is understood that the partial discharge voltage after the wet heat treatment is inferior to that of Example 1-1, but each characteristic is excellent. Further, regarding the obtained film, a back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that a high partial discharge voltage is exhibited in the same manner as in the embodiment 1-1, and particularly in the case where the A surface is formed on the outer side, a higher partial discharge voltage is exhibited. (Example 1-12) A film thickness of 0.15 μm was formed on the surface by the same method as Example 1-1 except that the coating agent for forming the layer A was used as the coating agent 1-12 described below. A layer of biaxially oriented film having a thickness of 50 μm. &lt;Coating agent 1 -1 2 &gt; -71- 201044599 • Conductive material: a • Adhesive resin: b • Crosslinking agent: • Surfactant: d 1.5 parts by mass 3 5 parts by mass 4.2 parts by mass 0.1 5 parts by mass of 9.2 parts by mass. The mass average molecular weight, the number average molecular weight of the B1 layer of the obtained film, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, and the partial discharge voltage. , heat shrinkage rate, surface specific resistance after wet heat treatment, elongation at break, partial discharge voltage. The results are shown in Tables 1 and 2. It is understood that each characteristic is superior to that of the embodiment 1-1. Further, a back sheet was formed in the same manner as in Example 1-1 on the obtained film. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that a high partial discharge voltage is exhibited in the same manner as in the embodiment, and particularly in the case where the A surface is formed on the outer side, a higher partial discharge voltage is displayed. (Example 1-13) A film thickness of 0.15 μm was formed on the surface by the same method as Example 1-1 except that the coating agent for forming the layer A was used as the coating agent 1-1. A layer of biaxially oriented film having a thickness of 50 μm. &lt;Coating agent 1 -1 3 &gt; • Conductive material: a-3 1.5 parts by mass • Adhesive resin: b -1 4 5 parts by mass • Surfactant: c -1 〇. 1 part by mass • Water 53.4 mass The mass average molecular weight of the B 1 layer of the obtained film was measured, and the number was flat -72 - 201044599. The average molecular weight, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, and the partial discharge. Voltage, heat shrinkage rate, surface specific resistance after wet heat treatment, elongation at break, partial discharge voltage. The results are shown in Tables 1 and 2. It is understood that the partial discharge voltage after the moisture-resistant heat treatment is lower than that in the case of Example 1-1 using the water-insoluble cationic conductive material, but each characteristic is excellent. Further, a back sheet was formed in the same manner as in Example 1-1 on the obtained film. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that a partial discharge voltage of a high 〇 is exhibited in the same manner as in the embodiment 1-1, and particularly in the case where the A surface is formed on the outer side, a higher partial discharge voltage is displayed. (Example 1 · 1 4) A film thickness 〇·15 μm was formed on the surface by the same method as in Example 1-12 except that the coating agent for forming the A layer was used except for the following coating agents 1-14. A layer of a biaxially stretched film having a thickness of 50 μm. &lt;Coating agent 1 -1 4 &gt; α · Conductive material: a-3 6 parts by mass 0 • Surfactant: C-1 0.1 parts by mass • Water 9 3.9 parts by mass The quality of the B1 layer of the obtained film was measured. Average molecular weight, number average molecular weight, surface specific resistance of side A, surface specific resistance R2 of surface opposite to side A, elongation at break, partial discharge voltage, heat shrinkage ratio, surface specific resistance after wet heat treatment, elongation at break Partial discharge voltage. The results are shown in Tables 1 and 2. It is understood that unlike the case of Example 1·10 which uses a water-insoluble cationic conductive material, although the portion-73-201044599 discharge voltage is not improved after the wet heat treatment, other characteristics are excellent. Further, regarding the obtained film, a back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that a high partial discharge voltage is exhibited in the same manner as in the embodiment 1-1, and particularly in the case where the A surface is formed on the outer side, a higher partial discharge voltage is exhibited. (Examples 1·15 to 17) The intrinsic viscosity obtained by the same method as that of Example 1-1 was 0.75, except that the solid phase polymerization hours in the third step were 5.5 hours, 4-5 hours, and 3.5 hours. Polyethylene terephthalate of 0.70 and 0.66 was formed on the surface by the same method as Example 1-1 except that the longitudinal stretching temperatures were 95 ° C, 90 ° C, and 85 ° C, respectively. A biaxially stretched film having a thickness of 50 μm of a layer A of a film thickness of 15 μm. The mass average molecular weight, the number average molecular weight of the B 1 layer of the obtained film, the surface specific resistance of the facet, the surface specific resistance R2 of the face opposite to the A face, the elongation at break, the partial discharge voltage, the heat shrinkage rate, Surface specific resistance, elongation at break, and partial discharge voltage after wet heat treatment. The results are shown in Tables 1 and 2. It is understood that the elongation at break after the wet heat treatment is inferior to that of the embodiment 1-1, but various characteristics are excellent. Further, a back sheet was formed in the same manner as in Example 1-1 on the obtained film. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that, in the same manner as in the embodiment 1-1, a high partial discharge voltage ' is displayed, particularly in the case where the A side is formed on the outer side, and a higher partial discharge voltage is displayed. (Examples 1-18, 1-19)

除了熱處理溫度各自爲210 °C、160 °C以外,藉由與實施 例1 -1同樣的方法,得到在表面上形成有膜厚0.1 5 Mm的A -74- 201044599 層之厚度50 μιη的二軸拉伸薄膜。測定所得到的薄膜之B1 層的質量平均分子量、數量平均分子量、A面的表面比電阻 、與A面相反側的面之表面比電阻R2、斷裂伸長度、部分 放電電壓、熱收縮率、濕熱處理後的表面比電阻、斷裂伸 長度、部分放電電壓。結果顯示於表1、表2中。可知與實 施例1-1相比,雖然濕熱處理後的斷裂伸長度差,但是各種 特性優異,關於所得到的薄膜,與實施例1 -1同樣地形成背 板。測定所得到的背板之部分放電電壓。結果顯示於表3 〇 中。可知與實施例id同樣地顯示高的部分放電電壓,尤其 在外側形成有A面的情況中,顯示更高的部分放電電壓。 (實施例1-20) 第一步驟爲在150 °C、氮氣環境下,將1〇〇質量份的2,6-萘二羧酸二甲酯、60質量份的乙二醇、0.06質量份的醋酸 鎂、0.0 3質量份的三氧化銻熔融後,邊攪拌邊費3小時升 溫到24(TC,餾出甲醇,完成酯交換反應。第二步驟爲在最 終到達溫度290°C、真空度〇·1Τογγ進行聚合反應,而得到 〇 固有黏度0.54的聚酯。第三步驟爲將所得到的聚萘二甲酸 乙二酯在160°C乾燥6小時,使結晶化後,在225°C、真空 度0.3 Torr進行8小時的固相聚合,而得到固有黏度0.82 的聚酯。 除了 B1層的原料使用固有黏度0.82的聚萘二甲酸乙二 酯(熔點TmBl=270°C),擠出溫度爲290°C,縱拉伸溫度爲 140°C,橫拉伸溫度爲150°C以外,藉由與實施例1-1同樣 的方法,得到在表面上形成有膜厚0.15 μιη的A層之厚度 -75- 201044599 5 Ομηι的二軸拉伸薄膜。測定所得到的薄膜之B 1層的質量 平均分子量、數量平均分子量、A面的表面比電阻、與A 面相反側的面之表面比電阻R2、斷裂伸長度、部分放電電 壓、熱收縮率、濕熱處理後的表面比電阻、斷裂伸長度、 部分放電電壓。結果顯示於表1、表2中。可知與實施例 1 -1同樣地,各特性優異。又,關於所得到的薄膜,與實施 例1 -1同樣地形成背板。測定所得到的背板之部分放電電壓 。結果顯示於表3中。可知與實施例1-1同樣地顯示高的部 分放電電壓,尤其在外側形成有A面的情況中,顯示更高 的部分放電電壓。 (實施例1-21〜23) 除了各自之第三步驟的固相聚合小時爲1 〇小時、1 1小 時、12小時以外,使用由與實施例1-1同樣的方法所得之 固有黏度爲0.90、1.0、1.2的聚對苯二甲酸乙二酯,縱拉 伸溫度爲95 °C以外,藉由與實施例1 -1同樣的方法,得到 在表面上形成有膜厚0.15 μπι的A層之厚度50 μπι的二軸拉 伸薄膜。測定所得到的薄膜之Β 1層的質量平均分子量、數 量平均分子量、Α面的表面比電阻、與Α面相反側的面之 表面比電阻R2、斷裂伸長度、部分放電電壓 '熱收縮率、 濕熱處理後的表面比電阻、斷裂伸長度、部分放電電壓。 結果顯示於表1、表2中。可知與實施例1-1相比’濕熱處 理後的斷裂伸長度優異,各種特性優異。又,關於所得到 的薄膜,與實施例1-1同樣地形成背板。 測定所得到的背板之部分放電電壓。結果顯示於表3中 -76- 201044599 ^ 。可知與實施例1-1同樣地顯示高的部分放電電壓’尤其在 外側形成有A面的情況中’顯示更高的部分放電電壓。 (實施例1-24) 除了作爲形成A層的塗劑’使用下述塗劑1-16以外’ 藉由與實施例1-1同樣的方法’得到在表面上形成有膜厚 0.03 μιη的A層之厚度50 μπα的二軸拉伸薄膜。 &lt;塗劑1 - 1 6 &gt; .導電性材料:a-4 5質量份 Ο .黏結劑樹脂:b-1 2.5質量份 .水 92.5質量份 測定所得到的薄膜之B1層的質量平均分子量、數量平 均分子量、A面的表面比電阻、與A面相反側的面之表面 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 顯示於表1、表2中。可知與實施例1-1同樣地各特性優異 ,UV照射後的部分放電電壓與實施例1 -1相比係提高。又 ® ,關於所得到的薄膜,與實施例1 -1同樣地形成背板。測定 所得到的背板之部分放電電壓。結果顯示於表3中。可知 與實施例1-1同樣地顯示高的部分放電電壓,尤其在外側形 成有A面的情況中,顯示更高的部分放電電壓。 (實施例 1-25、26、27) 除了作爲形成A層的塗劑,各自使用下述塗劑1-17、1-18 、1-19以外,藉由與實施例id同樣的方法,得到在表面 上形成有膜厚〇·15μιη的A層之厚度50μιη的二軸拉伸薄膜 -77- 201044599 &lt;塗劑1 -1 7 &gt; •導電性材料:a-1 1 8質量份 •黏結劑樹脂:b-1 3質量份 •交聯劑:c-1 0.75質量份 •界面活性劑:d-1 〇. 1質量份 •光安定化劑:e-1 5質量份 •水 73.15質量份 (A層中含有相對於A層而言1 1質量%的當作光安定化劑的 氧化鈦) &lt;塗劑1 -1 8 &gt; •導電性材料:a-1 1 8質量份 •黏結劑樹脂:b-1 3質量份 .交聯劑:c-1 〇 . 7 5質量份 界面活性劑:d-1 0.1質量份 •光安定化劑:e-1 1 〇質量份 •水 6 8 . 1 5質量份。 (A層中含有相對於 氧化鈦) &lt;塗劑1 -1 9 &gt; A層而言20質量%的當作光安定化劑的 •導電性材料:a-1 1 8質量份 •黏結劑樹脂:b-1 3質量份 •交聯劑:c -1 0.7 5質量份 .界面活性劑:d-1 0.1質量份 -78- 201044599 ' •光安定化劑:e-2 1〇質量份 .水 73.15質量份。 (A層中含有相對於A層而言20質量%的當作光安定化劑的 氧化鋅) 測定所得到的薄膜之B1層的質量平均分子量、數量平 均分子量、A面的表面比電阻、與A面相反側的面之表面 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 〇 顯示於表1、表2中》可知與實施例1-1同樣地各特性優異 ,UV照射後的部分放電電壓與實施例1-1相比係提高。又 ,關於所得到的薄膜,與實施例1 · 1同樣地形成背板。測定 所得到的背板之部分放電電壓。結果顯示於表3中。可知 與實施例1-1同樣地顯示高的部分放電電壓,尤其在外側形 成有A面的情況中,顯示更高的部分放電電壓。 (實施例1-28) 第一步驟爲在15(TC、氮氣環境下,將1〇〇質量份的對 〇 苯二甲酸二甲酯、57.5質量份的乙二醇、0.06質量份的醋 酸鎂、〇.〇3質量份的三氧化銻熔融後,邊攪拌邊費3小時 升溫到23 0 °C,餾出甲醇,完成酯交換反應》第二步驟爲在 酯交換反應結束後,添加由0.019質量份(相當於1.9mol/ton) 的磷酸與〇·〇27質量份(相當於umoi/ton)的磷酸二氫鈉2 水合物溶解在0.5質量份的乙二醇中而成的乙二醇溶液 (PH5.0)。 第三步驟爲在最終到達溫度285 1:、真空度0.1 Torr進 -79- 201044599 行聚合反應,而得到固有黏度〇·54的聚酯。第四步驟爲將 所得到的聚對苯二甲酸乙二酯在160 °C乾燥6小時,使結晶 化後,在220°C、真空度〇.3Torr進行8小時的固相聚合, 而得到固有黏度0.81的聚酯。 除了使用上述聚酯樹脂以外,藉由與實施例1-1同樣的 方法,得到在表面上形成有膜厚0.15 μιη的A層之厚度50 μπι 的二軸拉伸薄膜。測定所得到的薄膜之Β1層的質量平均分 子量、數量平均分子量、Α面的表面比電阻、與Α面相反 側之面的表面比電阻R2、斷裂伸長度、部分放電電壓、熱 收縮率、濕熱處理後的表面比電阻、斷裂伸長度、部分放 電電壓。結果顯示於表1、表2中。可知與實施例1-1同樣 地各特性優異,尤其與實施例1-1相比,濕熱處理後的斷裂 伸長度高。又,關於所得到的薄膜,與實施例1 -1同樣地形 成背板。測定所得到的背板之部分放電電壓。結果顯示於 表3中。可知與實施例1-1同樣地顯示高的部分放電電壓, 尤其在外側形成有A面的情況中,顯示更高的部分放電電 壓。 (實施例1-29) 對附真空排氣口的二軸擠壓機,供應90質量份與實施 例1-1同樣方法所得之固有黏度0.81的聚對苯二甲酸乙二 酯(熔點TmBl=25 5°C )及10質量份當作封端劑的“Stabaxol P4 0 0”(Rheiii Chemie公司製),在260°C的溫度進行熔融混 煉’由模頭在60°C的水中擠出腸狀,進行急冷,形成線料 。接著,將其裁切,得到含有i 〇%封端劑的母料。接著,除 -80- 201044599 J 了將10質量份的所得之母料、90質量份與實施例i·1同樣 的方法所得之固有黏度0.81的聚對苯二甲酸乙二酯(熔點 TmBl=255 t )的混合者,在1 8(TC的溫度真空乾燥3小時後 ,供應給擠壓機以外,藉由與實施例1 -1同樣的方法’得到 在表面上形成有膜厚0.15 μιη的A層之厚度50 μηι的二軸拉 伸薄膜。測定所得到的薄膜之Β1層的質量平均分子量、數 量平均分子量、Α面的表面比電阻、與Α面相反側的面之 表面比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、 〇 濕熱處理後的表面比電阻、斷裂伸長度、部分放電電壓。 結果顯示於表1、表2中。可知與實施例1-1同樣地,各特 性優異,尤其與實施例1 - 1相比,濕熱處理後的斷裂伸長度 高。再者,本薄膜中的氮含量爲0.11質量%。又,關於所 得到的薄膜,與實施例1 -1同樣地形成背板。測定所得到的 背板之部分放電電壓。結果顯示於表3中。可知與實施例 1-1同樣地顯示高的部分放電電壓,尤其在外側形成有A面 的情況中,顯示更高的部分放電電壓。 〇 (實施例1-30) 於具有主擠壓機與副擠壓機的複合製膜裝置中,作爲主 層用原料,將95質量份與實施例1-1同樣的方法所得之固 有黏度0.81的聚對苯二甲酸乙二酯(熔點TmBlzSSSt)在 18〇°C的溫度經真空乾燥3小時者,與5質量份的在80°C的 熱風烘箱中經乾燥5小時的聚甲基戊烯,供應給主擠壓機 側’在280。(:的溫度熔融擠出後,導入T模頭複合噴嘴。另 一方面’於副擠壓機中,作爲B1層用原料,將由與實施例 -81- 201044599 1-1同樣的方法所得之固有黏度0.81的聚對苯二甲酸乙二 酯(熔點TmBl=255 °C),在180°C的溫度真空乾燥3小時後 ,供應給副擠壓機,在28〇t的溫度熔融擠出後,導入T模 頭複合噴嘴。接著,在該T模頭複合噴嘴內,以副擠壓機 所擠出的樹脂層積層在主擠壓機所擠出的樹脂層之兩表層 上(副擠壓機所擠出的樹脂層/主擠壓機所擠出的樹脂層/副 擠壓機所擠出的樹脂層)的方式使合流後,共擠出成片狀而 成爲熔融積層片,藉由靜電荷法使該熔融積層片在表面溫 度保持25 t的滾筒上密著冷卻固化,而得到未拉伸積層薄 膜。除了使用所得到的未拉伸積層薄膜以外,藉由與實施 例1-1同樣的方法,得到在表面上形成有膜厚0.15μπι的A 層之厚度50μιη的二軸拉伸薄膜。所得到的薄膜係內部含有 氣泡的層且該層的兩側形成有Β1層,Β1層的厚度各自爲 10 μιη。測定所得到的薄膜之Β1層的質量平均分子量、數量 平均分子量、Α面的表面比電阻、與Α面相反側之面的表 面比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕 熱處理後的表面比電阻、斷裂伸長度、部分放電電壓。表1 〜結果顯示於表3中。可知與實施例1-1同樣地’各特性優 異,尤其與實施例1-1相比,部分放電電壓高。再者’本薄 膜中之含氣泡的層之氣泡含有率爲25體積%。 (實施例 1 - 3 1、1 - 3 2) 除了作爲形成A層的塗劑,各自使用與實施例1-7,實 施例1 -4相同的塗劑的以外,藉由與實施例1 -7相同的方法 ,得到在表面上形成有膜厚0.15 μιη的A層之厚度50 μηα的 -82- 201044599 二軸拉伸薄膜。 測定所得到的薄膜之B1層的質量平均分子量、數量平 均分子量、A面的表面比電阻、與A面相反側的面之表面 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 顯示於表1、表2中。可知實施例1-31雖然不如實施例1-6 ,且實施例1-32雖然不如實施例但是顯示高的 部分放電電壓,而且與實施例1-1相比,雖然濕熱處理後的 〇 斷裂伸長度差’但是各特性優異。又,關於所得到的薄膜 ’與實施例1-1同樣地形成背板。測定所得到的背板之部分 放電電壓。結果顯示於表3中。可知實施例1-31雖然不如 實施例1-6,且實施例1-32雖然不如實施例1-1〜1-3,但 是尤其在外側形成有A面的情況中,顯示更高的部分放電 電壓》 (實施例1-33、34) 除了使用與實施例1-23相同的聚對苯二甲酸乙二酯, Θ 縱拉伸溫度爲95°C以外,藉由與實施例1_31、1_32同樣的 方法,得到在表面上形成有膜厚〇.15μιη的A層之厚度50μιη 的二軸拉伸薄膜。 測定所得到的薄膜之Β1層的質量平均分子量、數量平 均分子量、Α面的表面比電阻、與a面相反側的面之表面 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 顯示於表1、表2中。可知實施例ι_33雖然不如實施例ι_6 -8 3 - 201044599 ,且實施例1-34雖然不如實施例id〜丨一,但是顯示 部分放電電壓,而且與實施例1_丨相比,濕熱處理後的 伸長度提高’各特性優異。又,關於所得到的薄膜, 施例1 -1同樣地形成背板。測定所得到的背板之部分放 壓。結果顯示於表3中。可知實施例1_33雖然不如實 1-6’且實施例1-34雖然不如實施例但是尤 外側形成有A面的情況中,顯示更高的部分放電電壓 (實施例1-35、36) 除了使用與實施例1-16相同的聚對苯二甲酸乙二 縱拉伸溫度爲90 °C以外,藉由與實施例1_31、1-32同 方法’得到在表面上形成有膜厚0.15 μιη的A層之厚度 的二軸拉伸薄膜。測定所得到的薄膜之B1層的質量平 子量、數量平均分子量、A面的表面比電阻、與A面 側的面之表面比電阻R2、斷裂伸長度、部分放電電壓 收縮率、濕熱處理後的表面比電阻、斷裂伸長度、部 電電壓。結果顯示於表1、表2中。可知實施例1-35 不如實施例1-6,且實施例1-36雖然不如實施例1-1 ,但是顯示高的部分放電電壓,而且與實施例1-1相tt 然濕熱處理後的斷裂伸長度差,但是各特性優異。又 於所得到的薄膜,與實施例1 -1同樣地形成背板。測 到的背板之部分放電電壓。結果顯示於表3中。可 實施例1-35不如實施例1-6,且實施例1-36雖然不 例1-1〜1-3,但是尤其在外側形成有A面的情況中 更高的部分放電電壓。 高的 斷裂 與實 電電 施例 其在 酯, 樣的 5 0 μιη 均分 相反 、熱 分放 雖然 〜1-3 ],雖 ,關 :所得 I雖然 I實施 顯示 -84- 201044599 (實施例1-37、38) 使用與實施例1-15相同的聚對苯二甲酸乙二酯’縱拉 伸溫度爲95 °C以外,藉由與實施例1-31、1-32同樣的方法 ,得到在表面上形成有膜厚〇.15μιη的A層之厚度50μιη的 二軸拉伸薄膜。 測定所得到的薄膜之Β1層的質量平均分子量、數量平 均分子量、Α面的表面比電阻、與Α面相反側的面之表面 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱 Ο 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 顯示於表1'表2中。可知實施例1-37雖然不如實施例1-6 ,且實施例1-3 8雖然不如實施例1-1〜1-3,但是顯示高的 部分放電電壓,而且與實施例1-1相比,雖然濕熱處理後的 斷裂伸長度差,但是各特性優異。又,關於所得到的薄膜 ,與實施例1 -1同樣地形成背板。測定所得到的背板之部分 放電電壓。結果顯示於表3中。可知實施例1-37雖然不如 實施例1-6,且實施例1-38雖然不如實施例1-1〜1-3,但 〇 是尤其在外側形成有A面的情況中,顯示更高的部分放電 電壓。 (實施例1-39、40) 除了使用與實施例1-21相同的聚對苯二甲酸乙二酯, 縱拉伸溫度爲95 °C以外,藉由與實施例1-31、1-32同樣的 方法,得到在表面上形成有膜厚0.15 μιη的A層之厚度50 μιη 的二軸拉伸薄膜。測定所得到的薄膜之Β1層的質量平均分 子量、數量平均分子量、Α面的表面比電阻、與α面相反 -85- 201044599 側的面之表面比電阻R2、斷裂伸長度、部分放電電壓 收縮率、濕熱處理後的表面比電阻、斷裂伸長度、部 電電壓。結果顯示於表1、表2中。可知實施例1-39 不如實施例1-6,且實施例1-40雖然不如實施例1-1 ' ’但是顯示高的部分放電電壓,而且與實施例1-1相比 熱處理後的斷裂伸長度提高,各特性優異。又,關於 到的薄膜,與實施例1 -1同樣地形成背板。測定所得到 板之部分放電電壓。結果顯示於表3中。可知實施例 雖然不如實施例1-6,且實施例1-40雖然不如實施例1 1 - 3,但是尤其在外側形成有A面的情況中,顯示更高 分放電電壓。 (實施例1-41、42) 除了使用與實施例1-22相同的聚對苯二甲酸乙二 縱拉伸溫度爲95 °C以外,藉由與實施例1-31、1-3 2同 方法,得到在表面上形成有膜厚0.15 μπι的A層之厚度 的二軸拉伸薄膜。 測定所得到的薄膜之B1層的質量平均分子量、數 均分子量、A面的表面比電阻、與A面相反側的面之 比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、 處理後的表面比電阻、斷裂伸長度、部分放電電壓。 顯示於表1、表2中。可知實施例1-41雖然不如實施f ,且實施例1-42雖然不如實施例1-1〜1-3,但是顯示 部分放電電壓,而且與實施例1-1相比,濕熱處理後的 伸長度提高,各特性優異。又,關於所得到的薄膜, 、熱 分放 雖然 、1-3 ’濕 所得 的背 1-39 I -1〜 的部 酯, 樣的 5 0 μ m 量平 表面 濕熱 結果 利1-6 :高的 斷裂 與實 -86- 201044599 ^ .施例1-1同樣地形成背板。測定所得到的背板之部分 壓。結果顯示於表3中。可知實施例1-41雖然不如 1-6,且實施例1-42雖然不如實施例1-1〜1-3,但是 外側形成有A面的情況中,顯示更高的部分放電電J! (實施例2-1) 除了不形成A層以外,藉由與實施例1-1相同的 製作厚度50μηι的二軸拉伸薄膜。將所得到的薄膜固 子束蒸鍍裝置,使用純度99.999%的鋁當作揮發源, 〇 度3.4xl(T5Pa、蒸鍍速度10埃/sec、蒸鍍源-基材間距Ϊ 的條件下,邊自薄膜面的法線方向導入350sccm的 邊電子束蒸鍍鋁,而形成由膜厚0.15 μπι的鋁氧化物 Α層。測定所得到的薄膜之Β1層的質量平均分子量 平均分子量、A面的表面比電阻、與A面相反側的 面比電阻R2、斷裂伸長度、部分放電電壓、熱收縮 熱處理後的表面比電阻、斷裂伸長度、部分放電電 果顯示於表1、表2中。可知與實施例1-1同樣地, 〇 性優異。又,關於所得到的薄膜,與實施例1-1同樣 背板。測定所得到的背板之部分放電電壓。結果顯牙 中。可知與實施例1-1同樣地顯示高的部分放電電壓 在外側形成有A面的情況中,顯示更高的部分放電‘ (實施例2-2、2-3) 除了氧供給量各自爲400sccm、500sccm以外, 實施例2-1相同的方法,在厚度50 μιη的二軸拉伸薄 成膜厚0.15 μιη的Α層。測定所得到的薄膜之Β1層 放電電 實施例 尤其在 方法, 定在電 在真空 涯 2 5 cm 氧氣, 所成的 、數量 面之表 率、濕 壓。結 各種特 地形成 :於表3 ,尤其 壓。 藉由與 膜上形 的質量 -87- 201044599 平均分子量、數量平均分子量、A面的表面比電阻、與A 面相反側的面之表面比電阻R2、斷裂伸長度、部分放電電 壓、熱收縮率、濕熱處理後的表面比電阻、斷裂伸長度、 部分放電電壓。結果顯示於表1、表2中。可知與實施例 2-1同樣地,各種特性優異。又,關於所得到的薄膜,與實 施例1 -1同樣地形成背板。測定所得到的背板之部分放電電 壓》結果顯示於表3中。可知實施例2-1同樣地顯示高的部 分放電電壓,尤其在外側形成有A面的情況中,顯示更高 的部分放電電壓。 (實施例2-4、2-5) 除了氧供給量各自爲600sccm、330sccm以外,藉由與 實施例2-1相同的方法,在厚度50μιη的二軸拉伸薄膜上各 自形成膜厚〇 · 1 5 μιη的Α層。測定所得到的薄膜之Β 1層的 質量平均分子量、數量平均分子量、A面的表面比電阻、與 A面相反側的面之表面比電阻R2、斷裂伸長度、部分放電 電壓 '熱收縮率、濕熱處理後的表面比電阻、斷裂伸長度 、部分放電電壓。結果顯示於表1、表2中。可知雖然不如 實施例2-1〜2-3,但是顯示高的部分放電電壓,各特性優 異。又,關於所得到的薄膜,與實施例1 -1同樣地形成背板 。測定所得到的背板之部分放電電壓。結果顯示於表3中 。可知雖然不如實施例2-1〜2-3,但是顯示高的部分放電 電壓’尤其在外側形成有A面的情況中,顯示更高的部分 放電電壓。 (實施例2-6) -88- 201044599 除了氧供給量各自爲320sccm以外,藉由與實施例2-1 相同的方法,在厚度50μιη的二軸拉伸薄膜上形成膜厚 0.1 5 μπι的Α層。測定所得到的薄膜之Β1層的質量平均分 子量、數量平均分子量、A面的表面比電阻、與A面相反 側的面之表面比電阻R2、斷裂伸長度、部分放電電壓、熱 收縮率、濕熱處理後的表面比電阻、斷裂伸長度、部分放 電電壓。結果顯示於表1、表2中。可知雖然不如實施例 2-4、2-5,但是顯示高的部分放電電壓,各特性優異。又, 〇 關於所得到的薄膜,與實施例1 -1同樣地形成背板。測定所 得到的背板之部分放電電壓。結果顯示於表3中。可知雖 然不如實施例2-4、2-5,但是顯示高的部分放電電壓,尤 其在外側形成有A面的情況中,顯示更高的部分放電電壓 特。 (實施例2-7) 除了氧供給量各自爲3 1 Osccm以外,藉由與實施例2-1 相同的方法,在厚度50μπι的二軸拉伸薄膜上形成膜厚 ^ 0.15 μιη的Α層。測定所得到的薄膜之Β1層的質量平均分 子量、數量平均分子量、A面的表面比電阻、與A面相反 側的面之表面比電阻R2、斷裂伸長度、部分放電電壓、熱 收縮率、濕熱處理後的表面比電阻、斷裂伸長度、部分放 電電壓。結果顯示於表1、表2中。可知雖然不如實施例 2-6,但是顯示高的部分放電電壓,各特性優異。又,關於 所得到的薄膜,與實施例1 -1同樣地形成背板。測定所得到 的背板之部分放電電壓。結果顯示於表3中。可知雖然不 -89- 201044599 如實施例2-6 ’但是顯示高的部分放電電壓,尤其在外側形 成有A面的情況中,顯示更高的部分放電電壓特。 (實施例3-1) 將由與實施例1-1同樣的方法所得之固有黏度0.81的聚 對苯二甲酸乙二酯(熔點ΤιηΒ 1 =2 5 5 Χ:),在180。(:的溫度真 空乾燥3小時後’供應給主擠壓機。又,使用與主擠壓機 不同的副擠壓機’將85質量份由與實施例1-1同樣的方法 所得之固有黏度0.81的聚對苯二甲酸乙二酯(熔點ΤΑ: 255 °C )在180 °C的溫度經真空乾燥3小時者及15質量份的在 100 °C經真空乾燥6小時的聚醚醯胺系導電高分子材料 “IRGASTAT” P18(汽巴日本(股)製)供應給至該副擠壓機。 各自在氮氣環境下於2 8 0°C的溫度熔融,接著以供應給主擠 壓機的成分層之與在兩側表層的供應給副擠壓機的成分層 之厚度比率,即主擠壓機的成分層:副擠壓機的成分層=9:1 的方式使合流,自T模頭噴嘴內,進行熔融2層積層共擠 出,成爲積層片,藉由靜電施加法使在表面溫度保持20°C 的滾筒上密著冷卻固化,而得到未配向(未拉伸)積層片。除 了使用所得到的未拉伸片,在縱拉伸後不進行電暈處理、 塗覆以外,藉由與實施例1 -1相同的方法,得到在表面上形 成有膜厚5 μιη的A層之厚度50 μιη的二軸拉伸薄膜。測定 所得到的薄膜之Β1層的質量平均分子量、數量平均分子量 、Α面的表面比電阻、與Α面相反側之面的表面比電阻R2 、斷裂伸長度、部分放電電壓、熱收縮率、濕熱處理後的 表面比電阻、斷裂伸長度、部分放電電壓。結果顯示於表1 -90- 201044599 、表2中。可知各特性優異。又,關於所得到的薄膜,與 實施例1-1同樣地形成背板。測定所得到的背板之部分放電 電壓。結果顯示於表3中。可知與實施例1-1同樣地顯示高 的部分放電電壓,尤其在外側形成有A面的情況中,顯示 更高的部分放電電壓。 (實施例3-2) 除了混合10質量份的由75質量份的與實施例1-1同樣 的方法所得之固有黏度0.81的聚對苯二甲酸乙二酯、20質 〇 量份的十二基苯磺酸鈉、5質量%的聚合度400之聚乙二醇 所混合成的主九粒及90質量份的固有黏度0.81之聚對苯二 甲酸乙二酯(熔點TmA = 255 °C),在180°C的溫度真空乾燥3 小時後,用作爲供應給副擠壓機的原料以外,藉由與實施 例3-1相同的方法,得到在表面上形成有膜厚5μιη的A層 之厚度50 μπι的二軸拉伸薄膜。測定所得到的薄膜之B1層 的質量平均分子量、數量平均分子量、Α面的表面比電阻、 與A面相反側的面之表面比電阻R2、斷裂伸長度、部分放 〇 w 電電壓、熱收縮率、濕熱處理後的表面比電阻、斷裂伸長 度、部分放電電壓。結果顯示於表1、表2中。濕熱處理後 雖然未見到部分放電電壓的提高,但是其它特性優異。又 ,關於所得到的薄膜,與實施例1-1同樣地形成背板。測定 所得到的背板之部分放電電壓。結果顯示於表3中。可知 與實施例1-1同樣地顯示高的部分放電電壓,尤其在外側形 成有A面的情況中,顯示更高的部分放電電壓。 (實施例3-3) -91- 201044599 除了供應給副擠壓機的原料,使用65質量份與實施例 1-1同樣的方法所得之固有黏度0.81的聚對苯二甲酸乙二 酯(熔點TmA = 2 5 5 °C )在18 0°C的溫度經真空乾燥3小時者、 20質量份的含有平均粒徑23 Onm的金紅石型氧化鈦之PET( 固有黏度0.81的PET與氧化鈦以質量比計成爲PET/氧化鈦 = 1/1的方式’在附有排氣口的二軸擠壓機中混煉而製作)在 180°C的溫度經真空乾燥3小時者、15質量份的在100°C經 真空乾燥6小時的聚醚醯胺系導電高分子材料“irg AST AT” P18(汽巴日本(股)製)(A層中含有相對於A層而言1〇質量% 的當作光安定化劑的氧化鈦)以外,藉由與實施例3 -1相同 的方法,得到在表面上形成有膜厚5 μιη的A層之厚度50 μιη 的二軸拉伸薄膜。測定所得到的薄膜之Β1層的質量平均分 子量、數量平均分子量、Α面的表面比電阻、與a面相反 側之面的表面比電阻R2、斷裂伸長度、部分放電電壓、熱 收縮率、濕熱處理後的表面比電阻、斷裂伸長度、部分放 電電壓。結果顯示於表1、表2中。可知各特性優異,尤其 UV照射後的部分放電電壓與實施例1-1相比係提高。又, 關於所得到的薄膜,與實施例1 -1同樣地形成背板。測定所 得到的背板之部分放電電壓。結果顯示於表3中。可知與 實施例1-1同樣地顯示高的部分放電電壓,尤其在外側形成 有A面的情況中,顯示更高的部分放電電壓。 (實施例3-4) 除了供應給副擠壓機的原料,使用65質量份與實施例 1-1同樣的方法所得之固有黏度〇·81的PET(熔點TmA = 255 -92- 201044599 °C )在18 0°C的溫度經真空乾燥3小時者、40質量份的含有 平均粒徑230nm的金紅石型氧化鈦之PET(固有黏度0.81的 PET與氧化鈦以質量比計成爲pet/氧化鈦=ιη的方式,在 附有排氣口的二軸擠壓機中混煉而製作)在180。(:的溫度經 真空乾燥3小時者、15質量份的在100。(:經真空乾燥6小 時的聚醚醯胺系導電高分子材料“111〇八8 7人1'”?18(汽巴日 本(股)製)(A層中含有相對於A層而言20質量%的當作光安 定化劑的氧化鈦)以外,藉由與實施例3-1相同的方法,得 〇 到在表面上形成有膜厚5 μιη的A層之厚度50 μιη的二軸拉 伸薄膜。測定所得到的薄膜之Β1層的質量平均分子量、數 量平均分子量' Α面的表面比電阻、與Α面相反側之面的 表面比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、 濕熱處理後的表面比電阻、斷裂伸長度、部分放電電壓。 結果顯示於表1、表2中。可知各特性優異,尤其UV照射 後的部分放電電壓與實施例3-3相比係提高。 又’關於所得到的薄膜,與實施例1 -1同樣地形成背板 ^ 。測定所得到的背板之部分放電電壓。結果顯示於表3中 。可知與實施例1-1同樣地顯示高的部分放電電壓,尤其在 外側形成有Α面的情況中,顯示更高的部分放電電壓。 (實施例3-5) 除了供應給副擠壓機的原料,使用35質量份與實施例 1-1同樣的方法所得之固有黏度0.81的PET(熔點TmA = 2 5 5 °C)在18〇C的溫度經真空乾燥3小時者、50質量份的含有 平均粒平均粒徑30nm的氧化鋅之pet(固有黏度0.81的 -93- 201044599 PET與氧化鋅以質量比計成爲PET/氧化鋅=8/2的方式,在 附有排氣口的二軸擠壓機中混煉而製作)在1 8 0 °C的溫度經 真空乾燥3小時者、1 5質量份的在1 00 °C經真空乾燥6小 時的聚醚醯胺系導電高分子材料“IRGASTAT” P18(汽巴日 本(股)製)(A層中含有相對於A層而言10質量%的當作光安 定化劑的氧化鋅)以外,藉由與實施例3 -1相同的方法,得 到在表面上形成有膜厚5 μΐη的A層之厚度50 μιη的二軸拉 伸薄膜。測定所得到的薄膜之Β1層的質量平均分子量、數 量平均分子量、Α面的表面比電阻、與Α面相反側的面之 表面比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、 濕熱處理後的表面比電阻、斷裂伸長度、部分放電電壓。 結果顯示於表1、表2中。可知各特性優異,尤其UV照射 後的部分放電電壓與實施例3 -3相比係提高。又,關於所得 到的薄膜,與實施例1 -1同樣地形成背板。測定所得到的背 板之部分放電電壓。結果顯示於表3中。可知與實施例1-1 同樣地顯示高的部分放電電壓,尤其在外側形成有A面的 情況中,顯示更高的部分放電電壓。 (實施例3-6、實施例3-7) 除了供應給副擠壓機的原料,使用65質量份與實施例 卜1同樣的方法所得之固有黏度0.81的PET(熔點TmA = 2 5 5 °C )在1 8 0 °C的溫度經真空乾燥3小時者、4 0質量份的在1 8 〇 。(:的溫度經真空乾燥3小時的含有平均粒徑23 〇nm的金紅 石型氧化鈦之PET(固有黏度0.81的PET與氧化鈦以質量比 計成爲PET/氧化鈦=1/1的方式,在附有排氣口的二軸擠壓 -94- 201044599 機中混煉而製作)在18 0°C的溫度經真空乾燥3小時者、15 質量份的在1〇〇 °C經真空乾燥6小時的聚醚醯胺系導電高分 子材料“IRGASTAT” P18(汽巴日本(股)製)(A層中含有相對 於A層而言20質量%的當作光安定化劑的氧化鈦),以供應 給主擠壓機的成分層之與兩側表層的供應給副擠壓機的成 分層之厚度比率,即各自成爲主擠壓機的成分層:副擠壓 機的成分層=24:1、48:1之方式使合流,自T模頭噴嘴內, 進行熔融2層積層共擠出以外,藉由與實施例3-1相同的方 ^ 法,得到在表面上形成有各自膜厚2μιη、Ιμιη的A層之厚 度5 0 μιη的二軸拉伸薄膜。測定所得到的薄膜之B1層的質 量平均分子量、數量平均分子量、Α面的表面比電阻、與A 面相反側的面之表面比電阻R2、斷裂伸長度、部分放電電 壓、熱收縮率、濕熱處理後的表面比電阻、斷裂伸長度、 部分放電電壓。結果顯示於表1、表2中。可知各特性優異 ’尤其UV照射後的部分放電電壓與實施例3-5相比雖然差 ,但是比實施例3 -1高。又,關於所得到的薄膜,與實施例 〇 1-1同樣地形成背板。測定所得到的背板之部分放電電壓。 結果顯示於表3中。可知與實施例1-1同樣地顯示高的部分 放電電壓,尤其在外側形成有A面的情況中,顯示更高的 部分放電電壓。 (比較例1-1) 除了不形成A層以外,藉由與實施例1-1相同的方法, 製作厚度50μπι的二軸拉伸薄膜。測定所得到的薄膜之B1 層的質量平均分子量、數量平均分子量、A面的表面比電阻 -95- 201044599 、與A面相反側的面之表面比電阻R2、斷裂伸長度、部分 放電電壓、熱收縮率、濕熱處理後的表面比電阻、斷裂伸 長度、部分放電電壓。結果顯示於表1、表2中。可知與不 形成A層的情況相比,部分放電電壓係低。又,關於所得 到的薄膜,與實施例1 -1同樣地形成背板。測定所得到的背 板之部分放電電壓。結果顯示於表3中。可知與不形成a 層的情況相比,部分放電電壓係低。 (比較例1-2) 除了不形成A層以外,藉由與實施例1-1相同的方法, 製作厚度1 2 5 μπι二軸拉伸薄膜。測定所得到的薄膜之B 1層 的質量平均分子量、數量平均分子量、Α面的表面比電阻、 與A面相反側的面之表面比電阻R2、斷裂伸長度、部分放 電電壓、熱收縮率、濕熱處理後的表面比電阻、斷裂伸長 度、部分放電電壓。結果顯示於表1、表2中。可知與不形 成A層的情況相比,部分放電電壓係低。又,關於所得到 的薄膜,與實施例1 -8同樣地形成背板。測定所得到的背板 之部分放電電壓。結果顯示於表3中。可知與不形成a層 的情況相比,部分放電電壓係低。 (比較例1-3) 除了不形成A層以外,藉由與實施例1-1相同的方法, 製作厚度1 8 8 μϊη二軸拉伸薄膜。測定所得到的薄膜之b i層 的質量平均分子量、數量平均分子量、A面的表面比電阻、 與A面相反側的面之表面比電阻R2、斷裂伸長度、部分放 電電壓、熱收縮率、濕熱處理後的表面比電阻、斷裂伸長 -96- 201044599 度、部分放電電壓。結果顯示於表1、表2中。可知與不形 成A層的情況相比,部分放電電壓係低。又,關於所得到 的薄膜,與實施例1-9同樣地形成背板。測定所得到的背板 之部分放電電壓。結果顯示於表3中》可知與不形成A層 的情況相比,部分放電電壓係低。 (比較例1 - 4 ) 除了作爲形成A層的塗劑,使用下述塗劑1 - 1 5以外, 藉由與實施例1“相同的方法,製作形成有膜厚0.03μιη的 Α層之厚度50 μιη二軸拉伸薄膜。 &lt;塗劑1 -1 5 &gt; •導電性材料:a-2 83質量份 •界面活性劑:d -1 〇 . 1質量份 •水 1 6.9質量份 測定所得到的薄膜之B1層的質量平均分子量、數量平 均分子量、A面的表面比電阻、與A面相反側的面之表面 比電阻R2、斷裂伸長度、部分放電電壓 '熱收縮率、濕熱 處理後的表面比電阻、斷裂伸長度、部分放電電壓。結果 顯示於表1、表2中。可知與實施例相比,雖然表面比電阻 是低的値,但是與實施例相比,部分放電電壓係低。又, 關於所得到的薄膜,與實施例1-1同樣地形成背板。測定所 得到的背板之部分放電電壓。結果顯示於表3中。可知與 實施例相比,部分放電電壓係低。 (比較例 1 - 5、1 - 6、1 - 7) 除了第三步驟的固相聚合小時爲2.5小時,使用所得到 -97- 201044599 的固有黏度0.63之聚對苯二甲酸乙二酯以外’得到在表面 上形成有膜厚0.15 μιη的A層之厚度50 μιη的二軸拉伸薄膜 。測定所得到的薄膜之Β1層的質量平均分子量、數量平均 分子量、Α面的表面比電阻、與Α面相反側的面之表面比 電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、濕熱處 理後的表面比電阻、斷裂伸長度、部分放電電壓。表1〜結 果顯示於表3中。各自與實施例1-17' 1-13’ 1-32相比’ 雖然部分放電電壓顯示同樣的特性,但是濕熱處理後的斷 裂伸長度係大幅變差,沒有實用特性者。再者’關於所得 到的薄膜,與實施例1 -1同樣地形成背板。測定其部分放電 電壓,結果與實施例1-17、1-13、1-32顯示同樣的特性。 可知顯示高的部分放電電壓,尤其在外側形成有A面的情 況中,顯示更高的部分放電電壓。 (比較例2 -1) 除了氧供給量爲300sccm以外,藉由與實施例2-1相同 的方法,在厚度50μηι的二軸拉伸薄膜上形成膜厚0.15 μιη 的Α層。測定所得到的薄膜之Β1層的質量平均分子量、數 量平均分子量、A面的表面比電阻、與A面相反側的面之 表面比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、 濕熱處理後的表面比電阻、斷裂伸長度、部分放電電壓。 結果顯示於表1、表2中。可知與實施例相比,雖然表面比 電阻是低的値,但是與實施例相比,部分放電電壓係低。 又,關於所得到的薄膜,與實施例1 -1同樣地形成背板。測 定所得到的背板之部分放電電壓。結果顯示於表3中。可 -98- 201044599 知與實施例相比,部分放電電壓係低。 (比較例2-2) 除了使用氧化鋁當作蒸鍍源以外,藉由與實施例2-1相 同的方法,在厚度50 μιη的二軸拉伸薄膜上形成膜厚0.15 μιη 的Α層。測定所得到的薄膜之Β1層的質量平均分子量、數 量平均分子量、A面的表面比電阻、與A面相反側的面之 表面比電阻R2、斷裂伸長度、部分放電電壓、熱收縮率、 濕熱處理後的表面比電阻、斷裂伸長度、部分放電電壓。 〇 結果顯示於表1、表2中。可知與實施例相比,表面比電阻 高、部分放電電壓低。又,關於所得到的薄膜,與實施例 1 -1同樣地形成背板。測定所得到的背板之部分放電電壓。 結果顯示於表3中。可知與實施例相比,部分放電電壓係 低。 (比較例3-1、3-2) 除了供應給副擠壓機的原料,由與實施例1-1同樣的方 法所得之固有黏度0.81的PET(熔點TmA = 2 5 5 °C)在18〇t 〇 w 的溫度經真空乾燥3小時者,與含有平均粒徑23 0nm的金 紅石型氧化鈦之PET(以固有黏度0.81的PET與氧化欽以質 量比計成爲PET /氧化鈦=1/1的方式,在附有排氣口的二軸 擠壓機中混煉而製作)在1 8 0 °C的溫度經真空乾燥3小時者 ,以質量比計ΡΕΊ7含有氧化鈦的PET = 8/ 2、6/4來混合(八 層中含有相對於A層而言各自爲1〇質量%、20質量的冑{乍 光安定化劑的氧化鈦)以外,藉由與實施例3-1相同的方$ ’得到在表面上形成有膜厚5 μιη的A層之厚度5 0 μπι的二 -99- 201044599 軸拉伸薄膜。測定所得到的薄膜之B1層的質量平均分子量 、數量平均分子量、A面的表面比電阻、與A面相反側的 面之表面比電阻R2、斷裂伸長度、部分放電電壓、熱收縮 率、濕熱處理後的表面比電阻、斷裂伸長度、部分放電電 壓。結果顯示於表1、表2中。可知與實施例相比,表面比 電阻高,部分放電電壓低。又,關於所得到的薄膜’與實 施例1 -1同樣地形成背板。測定所得到的背板之部分放電電 壓。結果顯示於表3中。可知與實施例相比’部分放電電 壓係低。 -100- 201044599 〇 φ^^_«ι ni!lz_ft 0— 0_I 0— 000£寸 lgloe 寸οοοε 寸 0— 0— 0震1 00§ 0— oil oil 00§ 00031 00§ §01A thickness of 50 μm of A-74-201044599 layer having a film thickness of 0.15 Mm formed on the surface was obtained by the same method as in Example 1-1 except that the heat treatment temperature was 210 ° C and 160 ° C, respectively. Axial stretch film. The mass average molecular weight, the number average molecular weight of the B1 layer of the obtained film, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the damp heat were measured. Surface specific resistance, elongation at break, and partial discharge voltage after treatment. The results are shown in Tables 1 and 2. It was found that the elongation at break after the wet heat treatment was inferior to that of Example 1-1, but various characteristics were excellent, and a back sheet was formed in the same manner as in Example 1-1 on the obtained film. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3 〇. It is understood that a high partial discharge voltage is displayed in the same manner as in the example id, and particularly in the case where the A surface is formed on the outer side, a higher partial discharge voltage is displayed. (Example 1-20) The first step is 1 part by mass of dimethyl 2,6-naphthalenedicarboxylate, 60 parts by mass of ethylene glycol, and 0.06 parts by mass in a nitrogen atmosphere at 150 °C. After the magnesium acetate and 0.03 parts by mass of antimony trioxide are melted, the temperature is raised to 24 (TC, and the methanol is distilled off to complete the transesterification reaction with stirring for 3 hours. The second step is the final temperature of 290 ° C, vacuum degree. 〇·1Τογγ was polymerized to obtain a polyester having an intrinsic viscosity of 0.54. The third step was to dry the obtained polyethylene naphthalate at 160 ° C for 6 hours to crystallize, at 225 ° C, The solid phase polymerization was carried out for 8 hours under a vacuum of 0.3 Torr to obtain a polyester having an intrinsic viscosity of 0.82. In addition to the raw material of the B1 layer, polyethylene naphthalate having an intrinsic viscosity of 0.82 (melting point TmBl = 270 ° C), extrusion temperature was used. An A layer having a film thickness of 0.15 μm was formed on the surface by the same method as in Example 1-1 except that the temperature was 290 ° C, the longitudinal stretching temperature was 140 ° C, and the transverse stretching temperature was 150 ° C. Thickness -75- 201044599 5 二μηι biaxially stretched film. Determine the mass average score of the B 1 layer of the obtained film. The amount, the number average molecular weight, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, the surface specific resistance after the wet heat treatment, the elongation at break, The results of the partial discharge were shown in Tables 1 and 2. It was found that the properties were excellent in the same manner as in Example 1-1, and a back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that a high partial discharge voltage is exhibited in the same manner as in Example 1-1, and particularly in the case where the A side is formed on the outer side, a higher partial discharge voltage is displayed. (Examples 1-21 to 23) The intrinsic viscosity obtained by the same method as in Example 1-1 was used except that the solid phase polymerization in the third step was 1 hour, 11 hours, and 12 hours. Polyethylene terephthalate having a film thickness of 0.15 μm was formed on the surface by the same method as in Example 1-1 except that the polyethylene terephthalate of 0.90, 1.0, and 1.2 had a longitudinal stretching temperature of 95 °C. Two-axis pull of thickness 50 μπι Film. The mass average molecular weight, the number average molecular weight of the first layer of the obtained film, the surface specific resistance of the surface of the crucible, the surface specific resistance R2 of the surface opposite to the crucible surface, the elongation at break, and the partial discharge voltage 'thermal shrinkage. The surface specific resistance, the elongation at break, and the partial discharge voltage after the wet heat treatment. The results are shown in Tables 1 and 2. It is understood that the elongation at break after the wet heat treatment is superior to that of Example 1-1, and the various properties are excellent. Further, regarding the obtained film, a back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3 -76- 201044599 ^. It is understood that, in the same manner as in the embodiment 1-1, a high partial discharge voltage 'in particular, in the case where the A side is formed on the outer side,' shows a higher partial discharge voltage. (Examples 1 to 24) A having a film thickness of 0.03 μm formed on the surface was obtained by the same method as in Example 1-1 except that the coating agent for forming the layer A was used. A biaxially oriented film having a thickness of 50 μπα. &lt;Coating agent 1 - 1 6 &gt; . Conductive material: a-4 5 parts by mass 黏. Adhesive resin: b-1 2.5 parts by mass. Water 92.5 parts by mass The mass average molecular weight of the B1 layer of the obtained film was measured. , the number average molecular weight, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, the surface specific resistance after the wet heat treatment, the elongation at break, the portion Discharge voltage. The results are shown in Tables 1 and 2. It was found that each of the properties was excellent in the same manner as in Example 1-1, and the partial discharge voltage after the UV irradiation was improved as compared with Example 1-1. Further, about the obtained film, a back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that a high partial discharge voltage is exhibited in the same manner as in the embodiment 1-1, and particularly in the case where the A surface is formed on the outer side, a higher partial discharge voltage is exhibited. (Examples 1-25, 26, and 27) In the same manner as in Example id except that the coating agents for forming the layer A were used, respectively, using the following coating agents 1-17, 1-18, and 1-19. A biaxially stretched film having a thickness of 50 μm of a layer A having a film thickness of 15 μm is formed on the surface -77- 201044599 &lt;Coating agent 1 -1 7 &gt; • Conductive material: a-1 18 parts by mass • Adhesive resin: b-1 3 parts by mass • Crosslinking agent: c-1 0.75 parts by mass • Surfactant: d -1 〇. 1 part by mass • Light stabilizer: e-1 5 parts by mass • 73.15 parts by mass of water (A layer contains 11% by mass of titanium oxide as a light stabilizer for A layer) &lt;Coating agent 1 -1 8 &gt; • Conductive material: a-1 18 parts by mass • Adhesive resin: b-1 3 parts by mass. Crosslinking agent: c-1 〇. 7 5 parts by mass of surfactant :d-1 0.1 parts by mass • Light stabilizer: e-1 1 〇 parts by mass • Water 6 8 .15 parts by mass. (A layer contains relative to titanium oxide) &lt;Coating agent 1 -1 9 &gt; 20% by mass of the layer A as a light stabilizer; Conductive material: a-1 18 parts by mass • Adhesive resin: b-1 3 parts by mass • Coupling agent: c -1 0.7 5 parts by mass. Surfactant: d-1 0.1 parts by mass - 78 - 201044599 ' • Light stabilizer: e-2 1 part by mass. Water 73.15 parts by mass. (A layer contains 20% by mass of zinc oxide as a light stabilizer for A layer). The mass average molecular weight, the number average molecular weight, the surface specific resistance of the A surface, and the surface specific resistance of the B1 layer of the obtained film are measured. Surface specific resistance R2, elongation at break, partial discharge voltage, heat shrinkage ratio, surface specific resistance after wet heat treatment, elongation at break, and partial discharge voltage of the surface on the opposite side of the A surface. The results are shown in Tables 1 and 2, and it is understood that each of the properties is excellent in the same manner as in Example 1-1, and the partial discharge voltage after UV irradiation is improved as compared with Example 1-1. Further, regarding the obtained film, a back sheet was formed in the same manner as in Example 1:1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that a high partial discharge voltage is exhibited in the same manner as in the embodiment 1-1, and particularly in the case where the A surface is formed on the outer side, a higher partial discharge voltage is exhibited. (Example 1-28) The first step is to apply 1 part by mass of dimethyl p-phthalate, 57.5 parts by mass of ethylene glycol, and 0.06 part by mass of magnesium acetate in 15 (TC, nitrogen atmosphere). After 锑.〇3 parts by mass of antimony trioxide is melted, the temperature is raised to 23 0 ° C for 3 hours while stirring, and methanol is distilled off to complete the transesterification reaction. The second step is to add 0.019 after the end of the transesterification reaction. A mass fraction (corresponding to 1.9 mol/ton) of phosphoric acid and ruthenium and osmium 27 parts by mass (corresponding to umoi/ton) of sodium dihydrogen phosphate 2 hydrate dissolved in 0.5 part by mass of ethylene glycol Solution (pH 5.0) The third step is to carry out polymerization at a final temperature of 285 1:, a vacuum of 0.1 Torr, and -79 to 201044599, to obtain a polyester having an intrinsic viscosity of 〇·54. The fourth step is obtained. The polyethylene terephthalate was dried at 160 ° C for 6 hours, and after crystallization, solid phase polymerization was carried out at 220 ° C under a vacuum of 3 Torr for 8 hours to obtain a polyester having an intrinsic viscosity of 0.81. A film thickness formed on the surface was obtained by the same method as in Example 1-1 except that the above polyester resin was used. .15 μιη A layer of biaxially oriented film having a thickness of 50 μπι. The mass average molecular weight, the number average molecular weight, the surface specific resistance of the tantalum surface, and the surface opposite to the surface of the tantalum surface of the obtained film were measured. Specific resistance R2, elongation at break, partial discharge voltage, heat shrinkage ratio, surface specific resistance after wet heat treatment, elongation at break, and partial discharge voltage. The results are shown in Tables 1 and 2. It is understood that the same as in Example 1-1. Each of the properties was excellent, and the elongation at break after the wet heat treatment was higher than that of Example 1-1. Further, the obtained film was formed into a back sheet in the same manner as in Example 1-1. The obtained back sheet was measured. The partial discharge voltage was measured. The results are shown in Table 3. It is understood that a high partial discharge voltage is exhibited in the same manner as in Example 1-1, and particularly in the case where the A surface is formed on the outside, a higher partial discharge voltage is exhibited. 1-29) For a two-axis extruder equipped with a vacuum exhaust port, 90 parts by mass of polyethylene terephthalate having an intrinsic viscosity of 0.81 obtained in the same manner as in Example 1-1 (melting point TmBl=25 5°) C) and 10 parts by weight as a seal "Stabaxol P40 0" (manufactured by Rheiii Chemie Co., Ltd.) was melt-kneaded at a temperature of 260 ° C. The intestine was extruded from a die at 60 ° C in water and quenched to form a strand. Next, This was cut to obtain a master batch containing i 〇% of a blocking agent. Then, in addition to -80-201044599 J, 10 parts by mass of the obtained master batch and 90 parts by mass were obtained in the same manner as in Example i.1. A mixture of polyethylene terephthalate (melting point TmBl=255 t) having a viscosity of 0.81 was supplied to the extruder after vacuum drying for 3 hours at a temperature of 18 °, by using Example 1-1. In the same manner, a biaxially stretched film having a thickness of 50 μm of a layer A having a film thickness of 0.15 μm was formed on the surface. The mass average molecular weight, the number average molecular weight, the surface specific resistance of the tantalum surface, the surface specific resistance R2, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the tantalum of the surface of the tantalum surface of the obtained film were measured. Surface specific resistance, elongation at break, and partial discharge voltage after wet heat treatment. The results are shown in Tables 1 and 2. In the same manner as in Example 1-1, it was found that each of the properties was excellent, and in particular, the elongation at break after the wet heat treatment was higher than that of Example 1-1. Further, the nitrogen content in the film was 0.11% by mass. Further, regarding the obtained film, a back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that a high partial discharge voltage is exhibited in the same manner as in the embodiment 1-1, and particularly in the case where the A surface is formed on the outer side, a higher partial discharge voltage is exhibited.实施 (Example 1-30) In a composite film forming apparatus having a main extruder and a sub-extruder, 95 parts by mass of the intrinsic viscosity obtained in the same manner as in Example 1-1 was 0.81 as a raw material for the main layer. Polyethylene terephthalate (melting point TmBlzSSSt) was dried in vacuum at a temperature of 18 ° C for 3 hours, and 5 parts by mass of polymethylpentene dried in a hot air oven at 80 ° C for 5 hours. , supplied to the main extruder side 'at 280. (The temperature is melt-extruded and introduced into a T-die compound nozzle. On the other hand, in the sub-extruder, the raw material for the B1 layer is inherently obtained by the same method as in Example-81-201044599 1-1. Polyethylene terephthalate having a viscosity of 0.81 (melting point TmBl = 255 ° C), vacuum dried at 180 ° C for 3 hours, supplied to a secondary extruder, and melt extruded at a temperature of 28 〇t. Introducing a T-die compound nozzle. Then, in the T-die compound nozzle, the resin layer extruded by the sub-extruder is laminated on both surface layers of the resin layer extruded by the main extruder (sub-extruder) The resin layer extruded/the resin layer extruded by the main extruder/the resin layer extruded by the sub-extruder) is joined together and then coextruded into a sheet to form a molten laminated sheet, which is electrostatically charged. The molten laminated sheet was cooled and solidified on a roll having a surface temperature of 25 t to obtain an unstretched laminated film. The same procedure as in Example 1-1 was carried out except that the obtained unstretched laminated film was used. The method of obtaining a thickness of 50 μm of the A layer having a film thickness of 0.15 μm on the surface The film was stretched, and the obtained film was a layer containing bubbles inside and a layer of ruthenium was formed on both sides of the layer, and the thickness of the ruthenium layer was 10 μm each. The mass average molecular weight and the number average molecular weight of the ruthenium layer of the obtained film were measured. Surface specific resistance, surface resistance R2, elongation at break, partial discharge voltage, heat shrinkage ratio, surface specific resistance after wet heat treatment, elongation at break, partial discharge voltage. The results of 1 to 1 are shown in Table 3. It is understood that the characteristics are excellent in the same manner as in Example 1-1, and in particular, the partial discharge voltage is higher than that of Example 1-1. Further, the layer containing bubbles in the film is The bubble content rate was 25% by volume. (Examples 1 - 3 1 and 1 - 3 2) Except for the coating agent for forming the layer A, the same coating agents as those of Examples 1 to 7 and Example 1-4 were used. By the same method as in Example 1-7, a -82-201044599 biaxially stretched film having a thickness of 50 μηα of a layer A having a film thickness of 0.15 μm was formed. The B1 layer of the obtained film was measured. Mass average molecular weight The amount, the surface specific resistance of the surface A, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, the surface specific resistance after the wet heat treatment, the elongation at break, and the partial discharge voltage. The results are shown in Tables 1 and 2. It is understood that Examples 1-31 are not as in Examples 1-6, and Examples 1-32 show a high partial discharge voltage although not as in the examples, and are similar to Example 1-1. The ratio was excellent in the elongation at break of the enthalpy after the heat treatment. However, the obtained film was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It can be seen that Examples 1-31 are not as in Examples 1-6, and Examples 1-32 are not as in Examples 1-1 1-3, but in the case where the A side is formed on the outside, a higher partial discharge is exhibited. Voltage (Examples 1-33, 34) The same polyethylene terephthalate as in Example 1-23 was used, and the longitudinal stretching temperature was 95 ° C, which was the same as in Examples 1_31 and 1_32. In the method, a biaxially stretched film having a thickness of 50 μm of a layer A having a film thickness of 1515 μm was formed on the surface. The mass average molecular weight, the number average molecular weight, the surface specific resistance of the tantalum surface, the surface specific resistance R2 of the surface opposite to the a surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the damp heat were measured. Surface specific resistance, elongation at break, and partial discharge voltage after treatment. The results are shown in Tables 1 and 2. It can be seen that the example ι_33 is not as in the examples ι_6 -8 3 - 201044599, and the examples 1-34, although not as in the example id~丨, show a partial discharge voltage, and compared with the example 1_丨, after the wet heat treatment Increased elongation is excellent in each characteristic. Further, regarding the obtained film, the back sheet was formed in the same manner as in Example 1-1. The partial pressure of the obtained back sheet was measured. The results are shown in Table 3. It can be seen that the embodiment 1_33 is not as good as 1-6' and the embodiment 1-34 shows a higher partial discharge voltage (Examples 1-35, 36) except for the case where the A side is formed outside the embodiment. A was formed on the surface with a film thickness of 0.15 μm by the same method as in Examples 1_31 and 1-32 except that the same polyethylene terephthalate longitudinal stretching temperature was 90 °C as in Examples 1-16. A biaxially stretched film of the thickness of the layer. The mass amount of the B1 layer of the obtained film, the number average molecular weight, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface on the A side, the elongation at break, the partial discharge voltage shrinkage, and the wet heat treatment were measured. Surface specific resistance, elongation at break, and partial electrical voltage. The results are shown in Tables 1 and 2. It is understood that Examples 1-35 are inferior to Examples 1-6, and Examples 1-36, although not as in Example 1-1, exhibit a high partial discharge voltage, and are fractured after the wet heat treatment with Example 1-1. The elongation is poor, but each characteristic is excellent. Further, a back sheet was formed in the same manner as in Example 1-1 on the obtained film. The partial discharge voltage of the backplane was measured. The results are shown in Table 3. Examples 1-35 are inferior to Examples 1-6, and Examples 1-36, although not 1-1 to 1-3, have a higher partial discharge voltage especially in the case where the A side is formed on the outer side. The high fracture and the electro-electrical electrolysis are in the ester, the opposite of the 50 μιη, and the thermal partitioning is ~1-3], although, the off I obtained I-I show -84- 201044599 (Example 1 37, 38) Using the same polyethylene terephthalate as in Example 1-15, the longitudinal stretching temperature was 95 ° C, and the same method as in Examples 1-31 and 1-32 was used. A biaxially stretched film having a thickness of 50 μm of the layer A of 15 μm was formed on the surface. The mass average molecular weight, the number average molecular weight, the surface specific resistance of the tantalum surface, the surface specific resistance R2, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the damp heat of the tantalum surface of the obtained film were measured.表面 Surface specific resistance, elongation at break, and partial discharge voltage after treatment. The results are shown in Table 2 of Table 1. It is understood that Examples 1-37 are not as in Examples 1-6, and Examples 1-3 8 are not as in Examples 1-1 to 1-3, but exhibit a high partial discharge voltage, and compared with Example 1-1. Although the elongation at break after the wet heat treatment is inferior, each characteristic is excellent. Further, regarding the obtained film, a back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It can be seen that although Examples 1-37 are inferior to Examples 1-6, and Examples 1-38 are not as in Examples 1-1 to 1-3, the 〇 is particularly high in the case where the A side is formed on the outer side. Partial discharge voltage. (Examples 1-39, 40) Except that the same polyethylene terephthalate as in Example 1-21 was used, the longitudinal stretching temperature was 95 ° C, and Examples 1-31 and 1-32 were used. In the same manner, a biaxially stretched film having a thickness of 50 μm of the layer A having a film thickness of 0.15 μm was formed on the surface. The mass average molecular weight, the number average molecular weight, the surface specific resistance of the tantalum surface of the obtained film, and the surface specific resistance R2, the elongation at break, and the partial discharge voltage shrinkage of the surface on the side opposite to the α-plane -85-201044599 were measured. Surface specific resistance, elongation at break, and partial electric voltage after wet heat treatment. The results are shown in Tables 1 and 2. It is understood that Examples 1-39 are inferior to Examples 1-6, and Examples 1-40 are not as good as Example 1-1 '' but exhibit a high partial discharge voltage, and the elongation at break after heat treatment as compared with Example 1-1. The degree is improved and each characteristic is excellent. Further, with respect to the obtained film, a back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained plate was measured. The results are shown in Table 3. It is understood that the examples are not as in the examples 1-6, and the examples 1-40 are not as in the embodiment 1 1 - 3, but in the case where the side A is formed on the outer side, a higher partial discharge voltage is exhibited. (Examples 1-41, 42) Except that the same polyethylene terephthalate longitudinal stretching temperature as in Example 1-22 was 95 ° C, by the same as Examples 1-31 and 1-3 2 In the method, a biaxially stretched film having a thickness of a layer A having a film thickness of 0.15 μm was formed on the surface. The mass average molecular weight, the number average molecular weight of the B1 layer of the obtained film, the surface specific resistance of the A surface, the specific resistance R2 of the surface opposite to the A surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the after treatment were measured. Surface specific resistance, elongation at break, partial discharge voltage. Shown in Table 1, Table 2. It is understood that Examples 1-41 are not as good as F, and Examples 1-42 are not as in Examples 1-1 to 1-3, but show partial discharge voltage, and elongation after wet heat treatment as compared with Example 1-1. The degree is improved and each characteristic is excellent. Further, regarding the obtained film, although the heat distribution was 1-3 'wet back 1-39 I -1 to the partial ester, the sample 50 μm flat surface damp heat result 1-6 : high The fracture was formed in the same manner as in Example 1-1. The partial pressure of the obtained back sheet was measured. The results are shown in Table 3. It can be seen that although Examples 1-41 are not as good as 1-6, and Examples 1-42 are not as in Examples 1-1 to 1-3, in the case where the A side is formed on the outer side, a higher partial discharge electric power J! Example 2-1) A biaxially oriented film having a thickness of 50 μm was produced in the same manner as in Example 1-1 except that the A layer was not formed. The obtained film solid beam vapor deposition apparatus uses aluminum having a purity of 99.999% as a volatilization source, and has a twist of 3.4×l (T5Pa, a vapor deposition rate of 10 Å/sec, and an evaporation source-substrate spacing Ϊ). An aluminum oxide ruthenium layer having a film thickness of 0.15 μm was formed by introducing a 350 sccm side electron beam from the normal direction of the film surface, and the mass average molecular weight average molecular weight of the Β1 layer of the obtained film was measured. The surface specific resistance, the surface specific resistance R2 on the opposite side to the A surface, the elongation at break, the partial discharge voltage, the surface specific resistance after heat shrinkage heat treatment, the elongation at break, and the partial discharge electric energy are shown in Tables 1 and 2. In the same manner as in Example 1-1, the obtained film was excellent in the same manner as in Example 1-1, and the partial discharge voltage of the obtained back sheet was measured. Example 1-1 similarly shows that the high partial discharge voltage shows a higher partial discharge in the case where the A surface is formed on the outer side (Examples 2-2 and 2-3) except that the oxygen supply amounts are each 400 sccm and 500 sccm. , the same method as in Embodiment 2-1, A 50-μm-thick biaxially-stretched thin layer of 0.15 μm thick film. The Β1 layer discharge electricity of the obtained film is measured, especially in the method, which is determined by the amount of oxygen in the vacuum of 2 5 cm. The surface is characterized by the wet pressure. The knots are specially formed: in Table 3, especially the pressure. By the mass of the film on the surface -87- 201044599 average molecular weight, number average molecular weight, surface specific resistance of side A, opposite side of side A The surface specific resistance R2, the elongation at break, the partial discharge voltage, the heat shrinkage rate, the surface specific resistance after the wet heat treatment, the elongation at break, and the partial discharge voltage. The results are shown in Tables 1 and 2. The examples and examples are shown. In the same manner, various characteristics were obtained in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. Example 2-1 similarly shows a high partial discharge voltage, particularly in the case where the A side is formed on the outer side, and shows a higher partial discharge voltage. (Examples 2-4, 2-5) Except that the oxygen supply amount is 600 sccm each. , 3 A ruthenium layer having a thickness of 〇·15 μm was formed on each of the biaxially oriented films having a thickness of 50 μm by the same method as in Example 2-1 except for 30 sccm. The mass average of the Β 1 layer of the obtained film was measured. Molecular weight, number average molecular weight, surface specific resistance of the A surface, surface specific resistance R2 of the surface opposite to the A surface, elongation at break, partial discharge voltage 'thermal shrinkage ratio, surface specific resistance after wet heat treatment, elongation at break, The results of the partial discharge voltages are shown in Tables 1 and 2. It is understood that although not as in Examples 2-1 to 2-3, a high partial discharge voltage is exhibited, and each characteristic is excellent. Further, a back sheet was formed in the same manner as in Example 1-1 on the obtained film. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that although it is not as in the examples 2-1 to 2-3, the high partial discharge voltage ' is displayed, particularly in the case where the A side is formed on the outer side, and a higher partial discharge voltage is displayed. (Example 2-6) -88-201044599 A film having a film thickness of 0.15 μm was formed on a biaxially stretched film having a thickness of 50 μm by the same method as in Example 2-1 except that the oxygen supply amount was 320 sccm. Floor. The mass average molecular weight, the number average molecular weight, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the damp heat of the layer 1 of the obtained film were measured. Surface specific resistance, elongation at break, and partial discharge voltage after treatment. The results are shown in Tables 1 and 2. It is understood that although not as in Examples 2-4 and 2-5, a high partial discharge voltage is exhibited, and each characteristic is excellent. Further, about the obtained film, a back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. Although it is understood that the partial partial discharge voltage is not as good as in the examples 2-4 and 2-5, particularly in the case where the A surface is formed on the outer side, a higher partial discharge voltage is exhibited. (Example 2-7) A ruthenium layer having a film thickness of 0.15 μm was formed on a biaxially oriented film having a thickness of 50 μm by the same method as in Example 2-1, except that the oxygen supply amount was 3 1 Osccm. The mass average molecular weight, the number average molecular weight, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the damp heat of the layer 1 of the obtained film were measured. Surface specific resistance, elongation at break, and partial discharge voltage after treatment. The results are shown in Tables 1 and 2. It is understood that although not as in the case of Example 2-6, a high partial discharge voltage was exhibited, and each characteristic was excellent. Further, a back sheet was formed in the same manner as in Example 1-1 on the obtained film. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that although not -89-201044599 as in the embodiment 2-6', a high partial discharge voltage is exhibited, particularly in the case where the A side is formed on the outer side, a higher partial discharge voltage is exhibited. (Example 3-1) Polyethylene terephthalate (melting point ΤιηΒ 1 = 2 5 5 Χ:) having an intrinsic viscosity of 0.81 obtained in the same manner as in Example 1-1 was used. (The temperature of the vacuum was dried for 3 hours, and then supplied to the main extruder. Further, 85 parts by mass of the intrinsic viscosity obtained by the same method as in Example 1-1 was used using a sub-extrusion machine different from the main extruder. 0.81 polyethylene terephthalate (melting point ΤΑ: 255 ° C) was vacuum dried at 180 ° C for 3 hours and 15 parts by mass of polyether amide at 100 ° C for 6 hours under vacuum drying The conductive polymer material "IRGASTAT" P18 (manufactured by Ciba Japan) was supplied to the sub-extruder. Each was melted at a temperature of 280 ° C under a nitrogen atmosphere, and then supplied to the main extruder. The ratio of the thickness of the constituent layer to the constituent layer of the surface layer supplied to the secondary extruder on both sides, that is, the constituent layer of the main extruder: the constituent layer of the secondary extruder = 9:1, the confluence, from the T mode In the head nozzle, two layers of the melt were co-extruded to form a laminated sheet, and the sheet was kept in a state where the surface temperature was kept at 20 ° C by electrostatic application to cool and solidify, thereby obtaining an unaligned (unstretched) laminated sheet. Except that the obtained unstretched sheet is used, it is not subjected to corona treatment and coating after longitudinal stretching. A biaxially stretched film having a thickness of 5 μm of a layer A having a film thickness of 5 μm formed on the surface was obtained by the same method as in Example 1-1. The mass average molecular weight of the ruthenium layer of the obtained film was measured. The number average molecular weight, the surface specific resistance of the kneading surface, the surface specific resistance R2 of the surface opposite to the kneading surface, the elongation at break, the partial discharge voltage, the thermal shrinkage rate, the surface specific resistance after the wet heat treatment, the elongation at break, the partial discharge The results are shown in Tables 1-90-201044599 and Table 2. It is understood that each of the properties is excellent. Further, a back sheet was formed in the same manner as in Example 1-1, and the obtained partial discharge of the back sheet was measured. The results are shown in Table 3. It is understood that a high partial discharge voltage is exhibited in the same manner as in Example 1-1, and particularly in the case where the A surface is formed on the outside, a higher partial discharge voltage is exhibited. (Example 3-2) In addition to 10 parts by mass of 75 parts by mass of polyethylene terephthalate having an intrinsic viscosity of 0.81 obtained by the same method as that of Example 1-1, 20 parts by weight of sodium dodecylbenzenesulfonate, 5 mass% polymerization degree The main nine particles mixed with 400 polyethylene glycol and 90 parts by mass of polyethylene terephthalate (melting point TmA = 255 ° C) with an inherent viscosity of 0.81, vacuum dried at 180 ° C for 3 hours A biaxially stretched film having a thickness of 5 μm of a layer A having a thickness of 5 μm formed on the surface was obtained by the same method as in Example 3-1 except that the raw material was supplied to the sub-extrusion machine. The mass average molecular weight, the number average molecular weight of the B1 layer of the obtained film, the surface specific resistance of the facet, the surface specific resistance R2 of the face opposite to the A face, the elongation at break, the partial discharge w electric voltage, the heat shrinkage rate, Surface specific resistance, elongation at break, and partial discharge voltage after wet heat treatment. The results are shown in Tables 1 and 2. After the wet heat treatment, although the partial discharge voltage was not improved, other characteristics were excellent. Further, a back sheet was formed in the same manner as in Example 1-1 on the obtained film. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that a high partial discharge voltage is exhibited in the same manner as in the embodiment 1-1, and particularly in the case where the A surface is formed on the outer side, a higher partial discharge voltage is exhibited. (Example 3-3) -91- 201044599 In addition to the raw material supplied to the secondary extruder, 65 parts by mass of polyethylene terephthalate having an intrinsic viscosity of 0.81 obtained by the same method as that of Example 1-1 was used (melting point) TmA = 2 5 5 °C) 20 parts by mass of PET containing rutile-type titanium oxide having an average particle diameter of 23 Onm at a temperature of 18 ° C for 3 hours by vacuum drying (PET and titanium oxide having an intrinsic viscosity of 0.81) The mass ratio is determined by the method of PET/titanium oxide = 1/1, which is produced by kneading in a two-axis extruder equipped with a vent, and dried at a temperature of 180 ° C for 3 hours under vacuum for 15 hours. Polyether amide-based conductive polymer material "irg AST AT" P18 (manufactured by Ciba Japan) at 100 ° C for 6 hours under vacuum (A layer contains 1% by mass relative to layer A) A biaxially oriented film having a thickness of 5 μm of a layer A having a thickness of 5 μm formed on the surface thereof was obtained by the same method as in Example 3-1 except for the titanium oxide as a light stabilizer. The mass average molecular weight, the number average molecular weight, the surface specific resistance of the tantalum surface, the surface specific resistance R2 of the surface opposite to the a surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the damp heat were measured. Surface specific resistance, elongation at break, and partial discharge voltage after treatment. The results are shown in Tables 1 and 2. It was found that each characteristic was excellent, and in particular, the partial discharge voltage after UV irradiation was improved as compared with Example 1-1. Further, a back sheet was formed in the same manner as in Example 1-1 on the obtained film. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It was found that a high partial discharge voltage was exhibited in the same manner as in Example 1-1, and particularly in the case where the A surface was formed on the outer side, a higher partial discharge voltage was exhibited. (Example 3-4) In addition to the raw material supplied to the secondary extruder, 65 parts by mass of PET having an intrinsic viscosity of 〇·81 obtained in the same manner as in Example 1-1 (melting point TmA = 255 -92 - 201044599 ° C) was used. PET which was dried under vacuum at a temperature of 18 ° C for 3 hours and 40 parts by mass of rutile-type titanium oxide having an average particle diameter of 230 nm (PET and titanium oxide having an intrinsic viscosity of 0.81 were made into pet/titanium oxide by mass ratio) The method of =ιη is produced by kneading in a two-axis extruder equipped with a vent) at 180. (The temperature of the vacuum is dried for 3 hours, and 15 parts by mass is at 100. (: Polyether amide-based conductive polymer material dried by vacuum for 6 hours "111〇8 8 7 people 1'"? In the same manner as in Example 3-1, the same method as in Example 3-1 was carried out in the same manner as in Example 3-1 except that the layer A contained 20% by mass of the titanium oxide as the light stabilizer in the layer A. A biaxially stretched film having a thickness of 5 μm of A layer of 50 μm was formed thereon. The mass average molecular weight and the number average molecular weight of the Β1 layer of the obtained film were measured, and the surface specific resistance of the surface of the crucible was opposite to the surface of the crucible. Surface specific resistance R2, elongation at break, partial discharge voltage, heat shrinkage ratio, surface specific resistance after wet heat treatment, elongation at break, partial discharge voltage. The results are shown in Tables 1 and 2. It is known that each characteristic is excellent. In particular, the partial discharge voltage after UV irradiation was improved as compared with Example 3-3. Further, regarding the obtained film, a back sheet was formed in the same manner as in Example 1-1. The partial discharge of the obtained back sheet was measured. Voltage. The results are shown in Table 3. Knowing and implementing Example 1-1 similarly shows a high partial discharge voltage, particularly in the case where a kneading surface is formed on the outer side, showing a higher partial discharge voltage. (Example 3-5) In addition to the raw material supplied to the secondary extruder, use 35 parts by mass of PET having an intrinsic viscosity of 0.81 obtained by the same method as in Example 1-1 (melting point TmA = 2 5 5 ° C) was dried under vacuum at a temperature of 18 ° C for 3 hours, and 50 parts by mass contained an average particle average. The zinc oxide of 30 nm particle size (-93-201044599 PET with an inherent viscosity of 0.81 and zinc oxide in a mass ratio of PET/zinc oxide = 8/2, in a two-axis extruder with an exhaust port) It is prepared by kneading) by vacuum drying at a temperature of 180 ° C for 3 hours, and 15 parts by mass of a polyether amide-based conductive polymer material "IRGASTAT" P18 (at 100 ° C for 6 hours at 100 ° C). In the same manner as in Example 3-1, the surface was obtained in the same manner as in Example 3-1 except that CB (Japan) was used (the A layer contained 10% by mass of zinc oxide as a light stabilizer for the layer A). A biaxially stretched film having a thickness of 5 μm of A layer of 50 μm was formed thereon. The first layer of the obtained film was measured. Mass average molecular weight, number average molecular weight, surface specific resistance of the kneading surface, surface specific resistance R2 of the surface opposite to the kneading surface, elongation at break, partial discharge voltage, thermal shrinkage, surface specific resistance after wet heat treatment, fracture The results are shown in Tables 1 and 2. The results are excellent in each characteristic, and in particular, the partial discharge voltage after UV irradiation is improved as compared with Example 3-4. The back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that a high partial discharge voltage is exhibited in the same manner as in the embodiment 1-1, and particularly in the case where the A surface is formed on the outer side, a higher partial discharge voltage is exhibited. (Examples 3 to 6 and 3 to 3) In addition to the raw material supplied to the secondary extruder, 65 parts by mass of PET having an intrinsic viscosity of 0.81 obtained in the same manner as in Example 1 was used (melting point TmA = 2 5 5 °). C) After drying at a temperature of 180 ° C for 3 hours under vacuum, 40 parts by mass at 18 Torr. PET having a rutile-type titanium oxide having an average particle diameter of 23 〇nm (the PET having an intrinsic viscosity of 0.81 and titanium oxide were PET/titanium oxide = 1/1 by mass ratio) by vacuum drying for 3 hours. It is produced by kneading in a two-axis extrusion-94-201044599 machine with a vent.) It is vacuum-dried at a temperature of 180 ° C for 3 hours, and 15 parts by mass is vacuum dried at 1 ° C. An hourly polyether amide-based conductive polymer material "IRGASTAT" P18 (manufactured by Ciba Japan Co., Ltd.) (A layer contains 20% by mass of titanium oxide as a light stabilizer for A layer), The thickness ratio of the constituent layers supplied to the main extruder to the constituent layers of the sub-extrusion machine, which are the constituent layers of the main extruder: the constituent layer of the sub-extruder = 24: In the method of 1,48:1, the film was formed, and the film thickness was formed on the surface by the same method as in Example 3-1 except that the two layers of the T-die nozzle were melted and co-extruded. A biaxially oriented film having a thickness of 5 μm of a layer of 2 μm and Ιμιη. The mass average of the B1 layer of the obtained film was measured. Sub-quantity, number average molecular weight, surface specific resistance of the surface of the crucible, surface specific resistance R2 of the surface opposite to the A surface, elongation at break, partial discharge voltage, thermal shrinkage, surface specific resistance after wet heat treatment, elongation at break The results are shown in Tables 1 and 2. The results show that each of the characteristics is excellent. In particular, the partial discharge voltage after UV irradiation is inferior to that of Example 3-5, but is higher than that of Example 3-1. The back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that the high portion is displayed in the same manner as in Example 1-1. The discharge voltage, in particular, in the case where the A surface was formed on the outer side, showed a higher partial discharge voltage. (Comparative Example 1-1) A thickness was produced by the same method as in Example 1-1 except that the A layer was not formed. 50 μππ biaxially stretched film. The mass average molecular weight, the number average molecular weight of the B1 layer of the obtained film, the surface specific resistance of the surface A-95- 201044599, and the surface specific resistance R2 of the surface opposite to the A surface were measured. elongation Partial discharge voltage, heat shrinkage rate, surface specific resistance after wet heat treatment, elongation at break, partial discharge voltage. The results are shown in Tables 1 and 2. It is understood that the partial discharge voltage system is compared with the case where the A layer is not formed. Further, the obtained film was formed into a back sheet in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that compared with the case where the a layer is not formed. The partial discharge voltage was low. (Comparative Example 1-2) A biaxially stretched film having a thickness of 1 2 5 μm was produced in the same manner as in Example 1-1 except that the layer A was not formed. The mass average molecular weight, the number average molecular weight of the B 1 layer of the obtained film, the surface specific resistance of the facet, the surface specific resistance R2 of the face opposite to the A face, the elongation at break, the partial discharge voltage, the heat shrinkage rate, Surface specific resistance, elongation at break, and partial discharge voltage after wet heat treatment. The results are shown in Tables 1 and 2. It is understood that the partial discharge voltage is lower than in the case where the layer A is not formed. Further, regarding the obtained film, a back sheet was formed in the same manner as in Example 1-8. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that the partial discharge voltage is lower than in the case where the a layer is not formed. (Comparative Example 1-3) A biaxially stretched film having a thickness of 18 8 μm was produced in the same manner as in Example 1-1 except that the layer A was not formed. The mass average molecular weight, the number average molecular weight of the bi layer of the obtained film, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the damp heat were measured. Surface specific resistance after treatment, elongation at break -96- 201044599 degrees, partial discharge voltage. The results are shown in Tables 1 and 2. It is understood that the partial discharge voltage is lower than in the case where the layer A is not formed. Further, a back sheet was formed in the same manner as in Example 1-9 on the obtained film. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3, which shows that the partial discharge voltage is lower than in the case where the A layer is not formed. (Comparative Example 1 - 4) A thickness of a tantalum layer having a film thickness of 0.03 μm was produced by the same method as in Example 1 except that the coating agent for forming the layer A was used, except that the following coating agent 1-5 was used. 50 μιη biaxially oriented film. &lt;Coating agent 1 -1 5 &gt; • Conductive material: a-2 83 parts by mass • Surfactant: d -1 〇. 1 part by mass • Water 1 6.9 parts by mass Determination of the quality of the B1 layer of the obtained film Average molecular weight, number average molecular weight, surface specific resistance of side A, surface specific resistance R2 of surface opposite to side A, elongation at break, partial discharge voltage 'thermal shrinkage ratio, surface specific resistance after wet heat treatment, elongation at break Partial discharge voltage. The results are shown in Tables 1 and 2. It is understood that the surface specific resistance is lower than that of the embodiment, but the partial discharge voltage is lower than that of the embodiment. Further, a back sheet was formed in the same manner as in Example 1-1 on the obtained film. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that the partial discharge voltage is lower than that of the embodiment. (Comparative Example 1 - 5, 1 - 6, 1 - 7) In addition to the solid phase polymerization in the third step, the hour was 2.5 hours, and the obtained -97-201044599 having an intrinsic viscosity of 0.63 other than polyethylene terephthalate was used. A biaxially stretched film having a thickness of 50 μm of the layer A having a film thickness of 0.15 μm was formed on the surface. The mass average molecular weight, the number average molecular weight, the surface specific resistance of the tantalum surface, the surface specific resistance R2, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the damp heat of the tantalum surface of the obtained film were measured. Surface specific resistance, elongation at break, and partial discharge voltage after treatment. Table 1 - The results are shown in Table 3. Each of them was compared with Example 1-17' 1-13' 1-32. Although the partial discharge voltage showed the same characteristics, the elongation at break after the wet heat treatment was greatly deteriorated, and there was no practical property. Further, regarding the obtained film, a back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage was measured, and the results were the same as those of Examples 1-17, 1-13, and 1-32. It can be seen that a high partial discharge voltage is displayed, particularly in the case where the A side is formed on the outer side, and a higher partial discharge voltage is displayed. (Comparative Example 2-1) A ruthenium layer having a film thickness of 0.15 μm was formed on a biaxially stretched film having a thickness of 50 μm by the same method as in Example 2-1 except that the oxygen supply amount was 300 sccm. The mass average molecular weight, the number average molecular weight, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the damp heat of the first layer of the obtained film were measured. Surface specific resistance, elongation at break, and partial discharge voltage after treatment. The results are shown in Tables 1 and 2. It is understood that the surface specific resistance is lower than that of the embodiment, but the partial discharge voltage is lower than that of the embodiment. Further, a back sheet was formed in the same manner as in Example 1-1 on the obtained film. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. -98- 201044599 It is understood that the partial discharge voltage is lower than that of the embodiment. (Comparative Example 2-2) A ruthenium layer having a film thickness of 0.15 μm was formed on a biaxially oriented film having a thickness of 50 μm by the same method as in Example 2-1 except that alumina was used as a vapor deposition source. The mass average molecular weight, the number average molecular weight, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the damp heat of the first layer of the obtained film were measured. Surface specific resistance, elongation at break, and partial discharge voltage after treatment. 〇 The results are shown in Tables 1 and 2. It was found that the surface specific resistance was higher and the partial discharge voltage was lower than that of the examples. Further, a back sheet was formed in the same manner as in Example 1-1 on the obtained film. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that the partial discharge voltage is lower than that of the embodiment. (Comparative Examples 3-1 and 3-2) In addition to the raw material supplied to the sub-extrusion machine, PET having an intrinsic viscosity of 0.81 (melting point TmA = 2 5 5 ° C) obtained in the same manner as in Example 1-1 was obtained at 18 〇t 〇w The temperature of the 〇t 〇w was dried in vacuum for 3 hours, and the PET containing rutile-type titanium oxide having an average particle diameter of 230 nm (the ratio of PET to oxidized intrinsic viscosity of 0.81 was PET / titanium oxide = 1 / The method of 1 is produced by kneading in a two-axis extruder equipped with a vent). After vacuum drying at a temperature of 180 ° C for 3 hours, PET 7 containing titanium oxide in mass ratio is PET = 8/ 2, 6/4 to be mixed (the eight layers each contain 1% by mass relative to the A layer, and 20% of the ruthenium {tbright stabilizer), except that the same as in Example 3-1 The square $' is obtained by forming a 2-99-201044599 axially stretched film having a thickness of 5 μm on the surface of the layer A of 5 μm. The mass average molecular weight, the number average molecular weight of the B1 layer of the obtained film, the surface specific resistance of the A surface, the surface specific resistance R2 of the surface opposite to the A surface, the elongation at break, the partial discharge voltage, the heat shrinkage rate, and the damp heat were measured. Surface specific resistance, elongation at break, and partial discharge voltage after treatment. The results are shown in Tables 1 and 2. It is understood that the surface specific resistance is higher and the partial discharge voltage is lower than that of the examples. Further, a back sheet was formed in the same manner as in Example 1-1. The partial discharge voltage of the obtained back sheet was measured. The results are shown in Table 3. It is understood that the partial discharge voltage system is lower than that of the examples. -100- 201044599 〇 φ^^_«ι ni!lz_ft 0— 0_I 0—000£ inch lgloe inch οοοε inch 0— 0— 0 shock 1 00§ 0—oil oil 00§ 00031 00§ §01

0SSI 0S卜6 00§0SSI 0S Bu 6 00§

0震I 0— 000ΔΙ oi 00S03 1 οοοε 寸 οοοε寸 οοοε 寸 οοοε 寸 οοοε 寸 οοοε 寸 οοοε 寸 οοοε 寸 οοοε 寸 οοοε 寸 οοοε 寸 ooso 寸 οο〇6ε 000°°ε οοοε 寸 οοοε 寸 οοοε 寸 000寸寸 000^寸 000卜寸 οοοε 寸 ¢18 (ρ) IQB芯 UIH— Iffiulx (p) 5—εΗ0震I 0—00ΔΙ oi 00S03 1 οοοε inch οοοε inch οοοε inch οοοε inch οοοε inch οοοε inch οοοε inch οοοε inch οοοε inch οοοε inch οοοε inch ooso inch οο〇6ε 000°°ε οοοε inch οοοε inch οοοε inch inch inch inch 000^ Inch 000 寸 οοοε inch ¢ 18 (ρ) IQB core UIH — Iffiulx (p) 5—εΗ

(p) SSI 耻画 (□/ϋ) s SI鯽-胆撇; ?3 S9 061 061 061 i£L TR Y5^ l'-o 18.0 18.0 ll Π 01X0.'°° 0ΓΧ0μι .01X0^ sro(p) SSI shame (□/ϋ) s SI鲫-撇撇; ?3 S9 061 061 061 i£L TR Y5^ l'-o 18.0 18.0 ll Π 01X0.'°° 0ΓΧ0μι .01X0^ sro

SI 0SI 0

OS N e-1挈滔w ''I莩握舾 I_l孽辑_ 061OS N e-1挈滔w ''I莩莩舾 I_l孽 _ 061

IS 0 ,01X0-IS 0 ,01X0-

SISI

OS 2 sm. 061 ssz 18 ,0IX°s sOS 2 sm. 061 ssz 18 ,0IX°s s

OS S9 061OS S9 061

IS 、οιχο·ε εοIS, οιχο·ε εο

OS S9 061 18 -IX·00 εο 061OS S9 061 18 -IX·00 εο 061

IS -ιέ·9 8_I S 镯* S9 061 18 1.9IS -ιέ·9 8_I S Bracelet* S9 061 18 1.9

SI 6丨一華镯* S9 061 18 201X5SI 6丨一华镯* S9 061 18 201X5

SI 01-一莩辑鹣 S9 061 061 061 061 061 061 061 0ΙΖ S6 091 § S9 061 S9 061 S9 ιοτ 061 061SI 01-一莩编鹣 S9 061 061 061 061 061 061 061 0ΙΖ S6 091 § S9 061 S9 061 S9 ιοτ 061 061

SSZSSZ

SSNSSN

QJLZ s sszQJLZ s ssz

IS 18IS 18

ISIS

IS S卜 0卜 99 I00 18 s ο 060IS S Bu 0 Bu 99 I00 18 s ο 060

•I ΓΙ ι°°0 -Ixs- ποιχο.寸 一一 01X0,1 ,ΟΙΧ·寸 ,οιχ-9 -Ιχ°9 -1X0.9 1-9 ,0ιχ·9 ,ΟΙέ.9 ,01χ°·9 °IX0_9 ,01X01 -Ixo.s•I ΓΙ ι°°0 -Ixs- ποιχο. inch one 01X0,1 ,ΟΙΧ·inch, οιχ-9 -Ιχ°9 -1X0.9 1-9 ,0ιχ·9 ,ΟΙέ.9 ,01χ°·9 °IX0_9 , 01X01 -Ixo.s

SISI

SISI

SI πSI π

SISI

SISI

SISI

SISI

SI -SI -

SISI

SI 0 π·ο εο·οSI 0 π·ο εο·ο

OSOS

OSOS

OSOS

OSOS

OSOS

0S0S

0S0S

OSOS

OSOS

OS os u-1 雲*OS os u-1 cloud*

SM --1冕镯舾 sm. 卜1-1挈握Λ 81-1 莩毽* {}'1莩辑« I'I 孽辑* z'lji^镯# εζ-一挈镯# 对'1冕握_ 201044599 2« 基材層(B層) B1層 數量平均 分子量 12000 12000 12000 12000 12000 12000 9750 9750 20500 20500 1 9750 9750 i 9750 9750 9750 9750 9750 9750 質量平均 分子量 43000 43000 ! 43000 43000 43000 43000 38000 38000 47000 47000 1 38000 i 38000 38000 38000 38000 38000 38000 38000 TmBl — TmetaBl (°C) ν〇 Ό VD in VO v〇 v£&gt; ΙΛ&gt; VO SO VO VO v〇 v〇 SO 必 in TmetaBl (°C) Ο Os Ο ο Ο 〇\ Ο Os o Os O os 〇 Os o ON o 〇\ O Os 〇 OS o os o os o o o 〇 Os ο σ\ ο ο 原料 TmBl (°C) κη 的 (Ν κη &lt;S 们 in (N in CN vn cs IT) (S m vn (N (N IT) (N (N m &lt;N &lt;N in CS vn (N ^Λ&gt; vn cs »r&gt; fS ιη &lt;Ν 固有 黏度 Ο Ο Ο 〇 〇 o Ό v〇 〇_ Ό v〇 〇 (N CN 〇 d o 卜 d to O 〇· O Os 〇 o Os d Ο Ο 導電層(A層) ϋ m 1 9.0Χ109 j 1 9.0Χ109 1 1 9.0Χ109 1 | 6.0X109 1 | 6.0X109 I | 6.0X109 1 'O X vn 00 5.〇xl013 | 8.5X106 I 1 5.0X1013 1 1 8.5X106 1 5.〇xl013 1 8.5xl06 5-OxlO13 8.5xl06 5.〇xl013 Ό X κη 00 5.〇χ1013 Mb tt 5 tiO Ο in Ο in Ο o m o tn o o 〇 o o to o O to o in O O V) 〇 VI ο Ο ft ^ mm | 嫌 w ο ο Ο κη o yn o κη o o o o o κη o vr&gt; o o o o vn 〇 in ο Ο 實施例1-25 實施例1-26 實施例1-27 實施例1-28 實施例1-29 實施例1-30 實施例1-31 實施例1-32 實施例1-33 實施例1-34 實施例1-35 實施例1-36 實施例1-37 |實施例1-38 j 實施例1-39 實施例1-40 實施例1-41 實施例1-42 -sl_ 201044599 〇 ο ε-ι嗽 基材層(Β層) B1層 數量平均 分子量 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 L 12000 12000 12000 12000 12000 12000 9600 9600 9600 12000 12000 12000 12000 質量平均 分子量 43000 43000 43000 43000 43000 43000 ί 43000 ; 43000 ί 43000 43000 43000 43000 43000 43000 43000 43000 1 43000 43000 37000 37000 37000 43000 43000 43000 43000 TmBl ^ TmetaBl (°c) in VO Ό in in \〇 «η VO ν〇 v〇 Ό v〇 Ό Ό »〇 so so »〇 Ό in SO l〇 Ό fT) Ό VO v〇 v〇 VO TmetaBl (°C) o o o 〇&gt; Ο 〇\ ο σ\ Ο 〇\ Ο σ\ Ο ΟΝ o o o Os 〇 On 〇 Os o as o Os o On 〇 σ\ 〇 os o ON 〇 Os 〇 o\ 〇 〇\ ο 〇\ ο σ\ 〇 Os o ON 原料 TmBl (°C) (N »〇 (N (Ν ιτ&gt; in CS »〇 (Ν »〇 v-i CN νη CN ιτ&gt; m \Tt &lt;N »Γϊ (N •Ο »r&gt; &lt;N Ό V) CS «η V) CN CN \Ti (N »Ti *T) CN *n CS »〇 CN cs in CN m &lt;N (N yn cs 固有 黏度 oo o 〇 S Ο ο ο S Ο s ο Ο 〇 s o s o S o S o 〇 〇 〇 O s o CO v〇 〇 cn v〇 〇 fO o s o s o 〇 S d 導電層(Α層) 表面比電 阻R0 (Ω/ ) 2.〇xl09 2.0xl0u Ι.ΟχΙΟ13 9.5χ1〇13 4.0Χ108 1.5Χ107 7.0χ106 |5.0xl0u i |5.〇xlOu 1 |5·〇χ10π | |5.〇xlOn | |5.〇xlOn | | l.oxio12 1 cs 〇 Ϊ r-^ «ί r-( o 寸· ΙΛ r-H o 4.0X1015 8.0xl05 6·〇χ109 〇 X 00 5.〇xl013 | 7.〇xl05 2.0X1015 4.0xl015 4.0xl015 厚度 (μηι) o o Ο in Ο Ο »〇 ο ο iTi 1 1 1 m O d 〇 cn o o’ »ri 〇 &gt;〇 o 4Π o 1 1 ft ^ mm 1 嫩 w o 〇 o »〇 〇 o o o &lt;N 00 00 o o o »Λ) o ΙΛ 丨實施例2-1 丨實施例2-2 實施例2-3 1實施例2-4 實施例2-5 實施例2-6 實施例2-7 丨實施例3-1 實施例3-2 1 丨實施例3-3 實施例3-4 實施例3-5 實施例3-6 丨實施例3-7 1比較例1-1 1比較例1-2 丨比較例1-3 1比較例1-4 1比較例1-5 丨比較例1-6 1比較例1-7 1比較例2-1 1比較例2-2 1比較例3-1 比較例3-2 — sl- 201044599 l-rsl撇 部分放電電 壓 V2 (V) 500 500 500 490 490 480 470 700 950 500 490 500 470 470 500 500 500 1 500 :500 500 500 500 500 510 部分放電 電壓 VI (V) 600 600 600 540 540 ; 520 500 800 ! 1 1100 ] 600 1___540^I 600 500 480 600 ! 600 600 600 600 600 600 600 600 600 伸長度保, 持率 (%) Ό 00 —1-4 00 'Ο 00 00 00 00 00 1 83.3 1 1 80.6 ] 1 83.3 1 | 83.3 | | 83.3 | | 83.3 | cn 00 75.0 69.4 so 77.8 77.8 88.9 90.5 92.6 95.0 VD 00 斷裂伸長 度 E1 (%) 155 155 IT) ^&quot;4 155 ! 155 丨 155 I 1 150 i 丨 145 1 1 150 1 1_150 1 丨 150 1 1 iso | 1 150 1 135 125 110 140 140 160 155 155 155 155 導電層(A層) 表面比電阻 R1 (Ω/口) 9.5χ109 6.0xl0u Ι.ΟχΙΟ13 5.0x\0li 1 9.〇xl08 | | 5.0X107 1 [9.5xl06 | | 9.5x10&quot; | 9.5χ10ν 1 1.5X1012 1 | 8.5x10&quot; 1 6.〇χ10η | 9.5X1013 1 m Ο Ο 1 9.5xlOy 1 9.5χ10ν 1 9.5xl0y 1 9.5x10s | i 9.5x1ο9 :9.5xlOy 9.5xlOy 9.5χ109 9.5χ109 5_〇xlOy 1 1 熱收縮率 (%) 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 &lt; 〇 〇 〇 〇 〇 部分放電電 壓 V0 (V) 600 600 i 600 | 540 540 520 500 840 1100 ! 600 600 ! 600 600 1_ i 600 : 600 600 600 600 600 600 600 600 600 600 斷裂伸長 度 E0 (%) 1^180__1 180 180 180 180 180 180 180 180 180 180 180 180 1 180 ;180 180 180 180 180 180 180 180 180 180 4.5χ1015 4·5χ10【5 | 4.5xl015 | 4.5χ1015 4.5xl015 4.5xl015 I 4.5χ1015 1 I 4.5xl015 I 1 4.5X1015 1 1 4.5xl015 1 4.5xl015 I 4.5χ1015 1 | 4.5χ1015 | 4.5χ1015 \r&gt; 4.5χ1015 | 4.5xl015 I 4.5X1015 4.5xl015 4.5xl015 4.5xl015 4.5χ1015 4,5χ1015 4.5χ1015 實施例1-1 1實施例1-2 實施例1-3 : 實施例1-4 實施例1-5 丨實施例1-6 1 1實施例1-7 丨實施例1-8 實施例1-9 1實施例l-io I實施例1-11 |實施例1-12 實施例1-13 實施例1-14 |實施例卜15 1實施例1-16 實施例1-17 實施例1-18 I實施例1-19 I 實施例1-20 實施例1-21 實施例1-22 1實施例1-23 實施例卜24 407 201044599 ο ο &lt;N-(N嗽 部分放電 電壓 V2 (V) Ο &lt;Ti 〇 (S iTi o 〇 ντ&gt; CN IT) o 寸 〇 Ο 〇 〇 卜 〇 〇 〇 寸 〇 卜 寸 Ο Ο Qs 寸 部分放電 電壓 VI (V) ο O o O s o 沄 v〇 o o ο o o o in o o tn 〇 寸 Ο 芝 〇 ο Ο 寸 so 00 F&quot;H v〇 00 00 90.6 | | 94.4 I o ! 95.0 1 95.0 69.4 69.4 75.0 75.0 in ο On 〇 〇 92.6 92.6 11] ί κ 1 in κη ^r\ κη m m VO o 卜 o o o in &lt;s κη (S m m i〇 Ό r-H iTi in vr&gt; Η vr&gt; 導電層(A層) 表面比電阻 R1 (Ω/口) 9.〇χ109 9.〇xl09 9_〇χ109 1 9.5xl09 9.5xl09 9.5xl09 9.5xl06 P〇 r-H X o iTi 9.5χ106 | 5.0X1013 9·5χ106 5.〇xl013 9.5xl06 5.〇xl013 9.5xl06 5·〇χ1013 9·5χ106 5.〇χ1013 熱收縮率 (%) 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 部分放電電 壓 V0 (V) 〇 s 〇 v〇 o s o s o o m v〇 o 芝 o o 艺 o o 〇 ?: o 芝 〇 Ο Ο 呀 Ο Ο 寸 斷裂伸長 度 E0 (%) g *—» o oo o 00 o 〇〇 s to m o 00 g o 00 s s o 00 o oo ο 00 Ο οο ο 00 恶:Sg &amp; 4.5xl015 , 4.5xl015 4.5xl015 4_5xl015 | 4.5X1015 I 4.5xl015 | 4.5X1015 I V» &quot;o X ITi 1 4.5X1015 4.5xl015 '4.5X1015 4.5xl015 4.5xl015 4.5xl015 4.5χ1015 4.5χ1015 4.5xl015 4.5χ1015 實施例1-25 實施例1-26 實施例1-27 實施例1-28 實施例1-29 實施例1-30 實施例1-31 實施例1-32 實施例1-33 實施例1-34 實施例1-35 實施例1-36 實施例1-37 實施例1-38 實施例1-39 實施例1-40 實施例1-41 實施例1-42SM --1冕 bracelet舾sm. 卜挈挈挈 81-1 莩毽* {}'1莩« I'I 孽系列* z'lji^ bracelet# εζ-一挈镯# Pair '1冕 _ 201044599 2« Substrate layer (B layer) B1 layer number average molecular weight 12000 12000 12000 12000 12000 12000 9750 9750 20500 20500 1 9750 9750 i 9750 9750 9750 9750 9750 9750 Mass average molecular weight 43000 43000 ! 43000 43000 43000 43000 38000 38000 47000 47000 1 38000 i 38000 38000 38000 38000 38000 38000 38000 TmBl — TmetaBl (°C) ν〇Ό VD in VO v〇v£&gt;ΙΛ&gt; VO SO VO VO v〇v〇SO must be in TmetaBl (°C) Ο Os ο Ο 〇 〇 Ο s Os o Os O os 〇 Os o ON o 〇 \ O Os 〇 OS o os o os ooo 〇 Os ο σ ο ο Raw material TmBl (°C) κη (Ν κη &lt;S In (N in CN vn cs IT) (S m vn (N (N IT) (N (N m &lt; N &lt; N in CS vn (N ^Λ&gt; vn cs »r&gt; fS ιη &lt;Ν inherent viscosity CN Ο Ο 〇〇o Ό v〇〇_ Ό v〇〇(N CN 〇do 卜d to O 〇· O Os 〇o Os d Ο 导电 Conductive layer (layer A) ϋ m 1 9.0Χ109 j 1 9.0Χ109 1 1 9.0Χ109 1 | 6.0X109 1 | 6.0X109 I | 6.0X109 1 ' OX vn 00 5.〇xl013 | 8.5X106 I 1 5.0X1013 1 1 8.5X106 1 5.〇xl013 1 8.5xl06 5-OxlO13 8.5xl06 5.〇xl013 Ό X κη 00 5.〇χ1013 Mb tt 5 tiO Ο in Ο In Ο omo omo tn oo 〇 oo to o O to o in OOV) 〇 VI ο Ο ft ^ mm | w w ο ο Ο κη o yn o κη ooooo κη o vr&gt; oooo vn 〇in ο Ο Example 1-25 Implementation Examples 1-26 Examples 1-27 Examples 1-28 Examples 1-29 Examples 1-30 Examples 1-31 Examples 1-32 Examples 1-33 Examples 1-34 Examples 1-35 Implementation Examples 1-36 Examples 1-37 | Examples 1-38 j Examples 1-39 Examples 1-40 Examples 1-41 Examples 1-42 - sl_201044599 〇ο ε-ι嗽 substrate layer (Β Layer) B1 layer number average molecular weight 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 9600 9600 9600 12000 12000 12000 12000 Mass average molecular weight 43000 43000 43000 43000 43000 43000 ί 43000 ; 43000 ί 43000 43000 43000 43000 43000 43000 43000 43000 1 43000 43000 37000 37000 37000 43000 43000 43000 43000 TmBl ^ TmetaBl (°c) in VO Ό in in \〇«η VO ν〇v〇Ό v〇Ό Ό »〇so so »〇Ό in SO l〇Ό fT) Ό VO v〇v〇VO TmetaBl (°C) ooo 〇&gt; Ο 〇 \ ο σ\ Ο 〇\ Ο σ\ Ο ΟΝ ooo Os 〇On 〇Os o as o Os o On 〇σ\ 〇os o ON 〇Os 〇o\ 〇〇\ ο 〇\ ο σ\ 〇Os o ON TmBl (°C) (N »〇(N (Ν ιτ&gt; in CS »〇(Ν »〇vi CN νη CN ιτ&gt; m \Tt &lt;N »Γϊ (N •Ο »r&gt;&lt;N Ό V) CS «η V) CN CN \Ti (N »Ti *T) CN *n CS »〇CN cs in CN m &lt;N (N yn cs intrinsic viscosity oo o 〇S Ο ο ο S Ο s ο Ο 〇soso S o S o 〇〇〇O so CO v〇〇cn v〇〇fO ososo 〇S d Conductive layer (Α layer) Surface specific resistance R0 (Ω/ ) 2.〇xl09 2.0xl0u Ι.ΟχΙΟ13 9.5χ1〇13 4.0 Χ108 1.5Χ107 7.0χ106 |5.0xl0u i |5.〇xlOu 1 |5·〇χ10π | |5.〇xlOn | |5.〇xlOn | | l.oxio12 1 cs 〇Ϊ r-^ «ί r-( o Inch · ΙΛ rH o 4.0X1015 8.0xl05 6·〇χ109 〇X 00 5.〇xl013 | 7.〇xl05 2.0X1015 4.0xl015 4.0xl015 Thickness (μηι) oo Ο in Ο Ο »〇 ο ο iTi 1 1 1 m O d 〇cn o o' »ri 〇&gt;〇o 4Π o 1 1 ft ^ mm 1 tender wo 〇o »〇〇ooo &lt;N 00 00 ooo »Λ) o ΙΛ 丨Example 2-1 丨 Example 2-2 Example 2-3 1 Example 2-4 Example 2-5 Example 2-6 Example 2-7 丨 Example 3-1 Example 3-2 1 丨Implementation Example 3-3 Example 3-4 Example 3-5 Example 3-6 丨 Example 3-7 1 Comparative Example 1-1 1 Comparative Example 1-2 丨 Comparative Example 1-3 1 Comparative Example 1-4 1 Comparative Example 1-5 丨 Comparative Example 1-6 1 Comparative Example 1-7 1 Comparative Example 2-1 1 Comparative Example 2-2 1 Comparative Example 3-1 Comparative Example 3-2 — sl- 201044599 l-rsl撇 partial discharge Voltage V2 (V) 500 500 500 490 490 480 470 700 950 500 490 500 470 470 500 500 500 1 500 : 500 500 500 500 500 510 Partial discharge voltage VI (V) 600 600 600 540 540 ; 520 500 800 ! 1 1100 ] 600 1___540^I 600 500 480 600 ! 600 600 600 600 600 600 600 600 600 Elongation retention, holding rate (%) Ό 00 —1-4 00 'Ο 00 00 00 00 00 1 83.3 1 1 80.6 ] 1 83.3 1 | 83.3 | | 83.3 | | 83.3 | cn 00 75.0 69.4 so 77.8 77.8 88.9 90.5 92.6 95.0 V5.0 00 Breaking elongation E1 (%) 155 155 IT) ^&quot;4 155 ! 155 丨155 I 1 150 i 丨145 1 1 150 1 1_150 1 丨150 1 1 iso | 1 150 1 135 125 110 140 140 160 155 155 155 155 Conductive layer (layer A) Surface specific resistance R1 (Ω/port) 9.5χ109 6.0xl0u Ι.ΟχΙΟ13 5.0x\0li 1 9.〇xl08 | | 5.0X107 1 [9.5xl06 | | 9.5x10&quot; | 9.5χ10ν 1 1.5X1012 1 | 8.5x10&quot; 1 6.〇χ10η | 9.5X1013 1 m Ο Ο 1 9.5xlOy 1 9.5χ10ν 1 9.5xl0y 1 9.5x10s | i 9.5x1ο9 :9.5xlOy 9.5xlOy 9.5χ109 9.5χ109 5_〇xlOy 1 1 Heat Shrinkage ( %) 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇&lt; 〇〇〇〇〇 Partial discharge voltage V0 (V) 600 600 i 600 | 540 540 520 500 840 1100 ! 600 600 ! 600 600 1_ i 600 : 600 600 600 600 600 600 600 600 600 600 Elongation at break E0 (%) 1^180__1 180 180 180 180 180 180 180 180 180 180 180 180 1 180 ; 180 180 180 180 180 180 180 180 180 180 4.5χ1015 4·5χ10【5 | 4.5xl015 | 4.5χ1015 4.5xl015 4.5xl015 I 4.5χ1015 1 I 4.5xl015 I 1 4.5X1015 1 1 4.5xl015 1 4.5xl015 I 4.5χ1015 1 | 4.5χ1015 | 4.5χ1015 \r&gt; 4.5χ1015 | 4.5xl015 I 4.5X1015 4.5xl015 4.5xl015 4.5xl015 4.5χ1015 4,5χ1015 4.5χ1015 Example 1-1 1 Example 1-2 Example 1-3: Example 1- 4 Examples 1-5 丨 Examples 1-6 1 1 Examples 1-7 丨 Examples 1-8 Examples 1-9 1 Examples l-io I Examples 1-11 | Examples 1-12 Examples 1-13 Example 1-14 | Example Example 15 1 Example 1-16 Example 1-17 Example 1-18 I Example 1-19 I Example 1-20 Example 1-21 Example 1- 22 1 Embodiment 1-23 Example 24 407 201044599 ο ο &lt; N-(N嗽 partial discharge voltage V2 (V) Ο &lt;Ti 〇(S iTi o 〇ντ&gt; CN IT) o inch 〇Ο 〇〇 〇〇〇 〇〇〇 〇 Ο Ο Ο Qs inch partial discharge voltage VI (V) ο O o O so 沄v〇oo ο ooo in oo tn 〇 inch 〇 〇 〇 Ο inch so 00 F&quot;H v〇00 00 90.6 | | 94.4 I o ! 95.0 1 95.0 69.4 69.4 75.0 75.0 in ο On 〇〇92.6 92.6 11] ί κ 1 in κη ^r\ κη mm VO o 卜ooo in &lt;s κη (S mmi〇Ό rH iTi in Vr&gt; Η vr&gt; Conductive layer (layer A) surface specific resistance R1 (Ω/口) 9.〇χ109 9.〇xl09 9_〇χ109 1 9.5xl09 9.5xl09 9.5xl09 9.5xl06 P〇rH X o iTi 9.5χ106 | 5.0X1013 9·5χ106 5.〇xl013 9.5xl06 5.〇xl013 9.5xl06 5·〇χ1013 9·5χ106 5.〇χ1013 Heat shrinkage rate (%) 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇Partial discharge voltage V0 (V) 〇s 〇v〇ososoomv 〇o 芝 oo Art oo 〇?: o 芝〇Ο Ο Ο Ο 寸 断裂 Elongation E0 (%) g *—» o oo o 00 o 〇〇s to mo 00 go 00 sso 00 o oo ο 00 Ο οο ο 00 恶: Sg & 4.5xl015 , 4.5xl015 4.5xl015 4_5xl015 | 4.5X1015 I 4.5xl015 | 4.5X1015 IV» &quot;o X ITi 1 4.5X1015 4.5xl015 '4.5X1015 4.5xl015 4.5xl015 4.5xl015 4.5χ1015 4.5χ1015 4.5 Xl015 4.5χ1015 Example 1-25 Example 1-26 Example 1-27 Example 1-28 Example 1-29 Example 1-30 Example 1-31 Example 1-32 Example 1-33 Example 1-34 Examples 1-35 Examples 1-36 Examples 1-37 Examples 1-38 Examples 1-39 Examples 1-40 Examples 1-41 Examples 1-42

_ST 201044599 ε-OJ嗽 部分放電 電壓 V2 (V) Ο Ο Ο § Ο ο Ό Ο Ο Ο &lt;Ν ιη Ο 艺 Ο m m Ο 卜 Ο ι〇 Ο 00 Ο 00 Ο iT) Ο (Ν yr\ Ο 寸 ο 艺 Ο &lt;Ν ν^ϊ 寸 o o o 卜 O 5 o 卜 Ο Ο 寸 部分放電 電壓 VI (V) Ο ο ο 2 Ο Ο SO ο 寸 ιη Ο Ο CS ν〇 Ο ο ιη ο ο νο ο ο S ο ο νο Ο Ο 必 ο 卜 寸 ο Ο οο ο o o 艺 o o o 寸 ο ο 畔 伸長度保 持率 (%) 00 00 00 Ό 00 ν〇 00 ν〇 QO 00 '-ο 00 νο 00 00 00 00 00 00 ΓΟ m 00 so ο 00 00 m m 00 (N ΓΛ (N cn m cn (T\ ΓΛ m 00 m m 00 m m 00 m cn 00 111 % ί κ I in V» ΙΤί &lt;η ίη m tn m κη tn κη w^&gt; ιη ο in *Τϊ ο 寸 o in ΓΛ m Ό s〇 o o ο o v-&gt; 導電層(Α層) 表面比電阻 R1 (Ω/D) 2.5χ109 2.5χ10π X in ιτΉ 9.5χ1013 _1 8.〇χ108 , 7.5χ107 'ύ ο X ο Os 5.〇χ10η 1 5.0Χ1011 1 5·〇χ10π 1 5.0Χ1011 1 1 5.0x1ο11 1 Ι.ΟχΙΟ12 1·5χ1012 4.5χ1015 ! 4.5x1ο15 4.5χ10,5 9.〇xl05 9.5xl09 9.5xl06 5.〇xl013 4_5xl05 2.〇xl015 VI &quot;ο X 寸. 4_〇xl015 熱收縮率 (%) 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 部分放電 電壓 V0 (V) ο Ο ο Ό Ο S ο ο Ο CS m Ο ο § ο ο ο ν〇 ο S ο ο % ο \〇 ο 卜 寸 ο Ο S 〇 o s o \T) o o o 卜 ο 〇 yrt 斷裂伸長 度 E0 (%) ο 00 ο 00 ο 00 ο 00 ο οο ο 00 ο 00 ο 00 ο οο ο 00 ο 00 ο 00 ο 00 ο 00 ο οο ο 00 ο 〇〇 〇 00 o oo o oo g o 00 ο 00 ο οο O 00 - 4.5χ1015 4.5χ1015 4.5χ1015 4.5χ1015 , 4.5χ1015 4.5χ1015 ί 4.5Χ1015 1 4.5Χ1015 1 I 4.5Χ1015 1 I 4.5Χ1015 I 4.5χ1015 4.5χ1015 4.5χ1015 ! 4.5x1ο15 1 4.5Χ1015 4.5χ1015 4.5χ1015 4.5xl015 4.5xl015 4.5xl015 4.5xl015 4.5xl015 4.5χ1015 4.5χ1015 4.5xl015 實施例2-1 實施例2-2 實施例2-3 實施例2-4 1實施例2-5 實施例2-6 實施例2-7 1實施例3-1 1實施例3-2 實施例3-3 實施例3-4 實施例3-5 實施例3-6 丨實施例3-7 比較例1-1 1比較例1-2 1比較例1-3 比較例1-4 比較例1-5 1比較例1-6 比較例1-7 比較例2-1 比較例2-2 比較例3-1 比較例3-2 -90I- 201044599 ο ο ι_ε« 部分放電電壓(V) Α層外側 1000 1000 1000 900 900 860 840 1000 1050 1000 1000 1000 1000 1000 1000 l looo 1 1000 1000 1000 1000 1000 1000 1000 1000 A層內側 1100 1100 1100 990 990 950 920 1100 1100 i 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 總膜厚 (μιη) 188 188 188 188 188 [188 1 1 188 1 1 188 1 M88 | 丨 188 1 丨 188_ I Li»» J 丨 188 1 1 188 I 1 188 I 188 188 188 188 188 188 188 188 188 第3層 膜厚(μιη) CN CN (N cs CN 1 (N &lt;N (N CN (N &lt;N CN CN (N CN CN &lt;N 種類 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 1 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鎪PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 第2層 膜厚(μιη) 125 125 125 125 125 ί 1__125__1 1__125__1 〇 (N 〇 1125I 1_125I 125 125 1_125__I 125 125 , 125 125 125 125 125 125 125 125 種類 PET PET PET PET PET PET PET ] | PET 1 1氧化鋁1 | PET 1 | PET 1 | PET 1 1 PET 1 | PET I | PET 1 PET PET PET PET PET PET PET PET PET 搬 膜厚(μηι) ο ο ο ο ο ο ο 125 188 〇 in ο in o o in o o o o in o o 〇 o o o o 實施例1-1 實施例1-2 實施例1-3 實施例1-4 實施例1-5 實施例1-6 實施例1-7 實施例1-8 實施例1-9 實施例l-io 實施例ι-ll 實施例1-12 實施例1-13 實施例1-14 實施例1-15 實施例1-16 實施例卜π 實施例卜18 實施例1-19 實施例1-20 實施例卜21 實施例1-22 實施例1-23 實施例卜24 丨卜οτ 201044599 部分放電電壓(V) |A層外側1 1000 1000 1000 1000 1000 1050 840 900 840 900 840 900 840 900 840 900 ί 840 900 A層內側 1100 1100 1100 1100 1100 1150 920 990 920 990 920 990 920 990 1 920 1 990 ! 920 990 總膜厚 (μιη) 188 188 188 188 188 188 1 188 1 丨 188 1 丨 188 ] 丨188 I 丨⑻i 丨⑻1 1 188 | 丨哪i 丨⑻1 丨⑽1 丨 188 1 18$ 第3層 膜厚(μιη) (N (N (N CN fS (Ν CN (N (N (Ν CS (Ν CN (N ^ * 種類 氧化鋁蒸鍍PET 氧化鋁蒸鎪PET 氧化鋁蒸鑛PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET i氧化鋁蒸鍍PET 丨氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 第2層 I 膜厚(μιη) I L 125_I 丨 125 1 125 VO 1_125I 1125__I L — 125_I 1125I 1125__I 1_125__I j 125 125 1 125 125 125 125 125 125 種類 | PET 1 1 PET J 1 PET J 1 PET J 1 PET I | PET I | PET I | PET 1 | PET 1 1 PET 1 PET | PET PET | PET PET PET PET PET is 城 膜厚(μπι) ο Ο o o κη ο ο ir&gt; o m 〇 o ο ο ο κη 實施例1-25 j 實施例1-26 實施例1-27 實施例1-28 實施例1-29 實施例1-30 實施例卜31 實施例1-32 實施例1-33 實施例1-34 實施例1-35 實施例1-36 實施例1-37 實施例卜38 實施例1-39 實施例1-40 實施例1-41 實施例卜42 .1·'' c _80I, 201044599_ST 201044599 ε-OJ嗽 Partial discharge voltage V2 (V) Ο Ο § § Ο ο Ό Ο Ο Ο &lt;Ν ιη Ο Ο Ο mm Ο Ο 〇Ο 〇Ο 〇Ο 00 00 T T T Ν Ν Ν Ν Ν yr yr yr yr 寸 寸ο Ο Ο &lt;Ν ν^ϊ inch ooo 卜 O 5 o Ο Ο 部分 partial discharge voltage VI (V) Ο ο ο 2 Ο Ο SO ο ι ι Ο Ο CS ν〇Ο ο ιη ο ο νο ο ο S ο ο νο Ο 必 必 ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ΓΟ m 00 so ο 00 00 mm 00 (N ΓΛ (N cn m cn (T\ ΓΛ m 00 mm 00 mm 00 m cn 00 111 % ί κ I in V» ΙΤί &lt;η ίη m tn m κη tn κη w ^&gt; ιη ο in *Τϊ ο 寸 o in ΓΛ m Ό s〇oo ο o v-&gt; Conductive layer (Α layer) Surface specific resistance R1 (Ω/D) 2.5χ109 2.5χ10π X in ιτΉ 9.5χ1013 _1 8 .〇χ108 , 7.5χ107 'ύ ο X ο Os 5.〇χ10η 1 5.0Χ1011 1 5·〇χ10π 1 5.0Χ1011 1 1 5.0x1ο11 1 Ι.ΟχΙΟ12 1·5χ1012 4.5χ1015 ! 4.5x1ο15 4.5χ10,5 9.〇 Xl05 9.5xl09 9.5xl06 5.〇xl013 4_5xl0 5 2.〇xl015 VI &quot;ο X inch. 4_〇xl015 Heat shrinkage rate (%) 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇 Partial discharge voltage V0 (V) ο Ο ο Ό Ο S ο ο Ο CS m Ο ο § ο ο ο ν 〇 S S S S 〇 〇 〇 \ \ rt rt rt rt rt rt rt rt rt rt rt rt rt rt E0 (%) ο 00 ο 00 ο 00 ο 00 ο οο ο 00 ο 00 ο 00 ο οο ο 00 ο 00 ο 00 ο 00 ο 00 ο οο ο 00 ο 〇〇〇 00 o oo o oo go 00 ο 00 ο Οο O 00 - 4.5χ1015 4.5χ1015 4.5χ1015 4.5χ1015 , 4.5χ1015 4.5χ1015 ί 4.5Χ1015 1 4.5Χ1015 1 I 4.5Χ1015 1 I 4.5Χ1015 I 4.5χ1015 4.5χ1015 4.5χ1015 ! 4.5x1ο15 1 4.5Χ1015 4.5χ1015 4.5χ1015 4.5xl015 4.5xl015 4.5xl015 4.5xl015 4.5xl015 4.5χ1015 4.5χ1015 4.5xl015 Embodiment 2-1 Embodiment 2-2 Embodiment 2-3 Embodiment 2-4 1 Embodiment 2-5 Embodiment 2-6 Example 2-7 1 Example 3-1 1 Example 3-2 Example 3-3 Example 3-4 Example 3-5 Example 3-6 丨 Example 3-7 Comparative Example 1-1 1 Comparative Example 1-2 1 Comparative Example 1-3 Comparative Example 1-4 Comparative Example 1-5 1 Comparative Example 1-6 Comparative Example 1-7 Comparative Example 2-1 Comparative Example 2-2 Comparative Example 3-1 Comparative Example 3-2 - 90I- 201044599 ο ο ι_ε« Part Discharge voltage (V) 外侧 outside 1000 1000 1000 900 900 860 840 1000 1050 1000 1000 1000 1000 1000 1000 l looo 1 1000 1000 1000 1000 1000 1000 1000 1000 A layer inside 1100 1100 1100 990 990 950 920 1100 1100 i 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 Total film thickness (μιη) 188 188 188 188 188 [188 1 1 188 1 1 188 1 M88 | 丨188 1 丨188_ I Li»» J 丨188 1 1 188 I 1 188 I 188 188 188 188 188 188 188 188 188 3rd layer film thickness (μιη) CN CN (N cs CN 1 (N &lt; N (N CN (N &lt; N CN (N CN CN &lt; N type Alumina vapor deposition PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET 1 alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina steam PET Alumina Evaporation PET Alumina Evaporation PET Alumina Evaporation PET Alumina Evaporation PET Alumina Evaporation PET Alumina Evaporation PET 2nd Film Thickness (μιη) 125 125 125 125 125 ί 1__125__1 1__125__1 〇(N 〇1125I 1_125I 125 125 1_125__I 125 125 , 125 125 125 125 125 125 125 125 PET PET PET PET PET PET PET | PET 1 1 Alumina 1 | PET 1 | PET 1 | PET 1 1 PET 1 | PET I | PET 1 PET PET PET PET PET PET PET PET PET film thickness (μηι) ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο 3 Examples 1-5 Examples 1-5 Examples 1-6 Examples 1-7 Examples 1-8 Examples 1-9 Examples 1 - io Examples 1-4 - Examples 1-12 Example 1 13 Examples 1-14 Examples 1-15 Examples 1-16 Examples π Examples Examples 18 Examples Examples 1-19 Examples 1-20 Examples Examples 21 Examples 1-22 Examples 1-23 Examples卜24 丨卜οτ 201044599 Partial discharge voltage (V) | A layer outside 1 1000 1000 1000 1000 1000 1050 840 900 840 900 840 900 840 900 840 900 ί 840 900 A layer inside 1100 1100 1100 1100 1100 1150 920 990 920 990 920 990 920 990 1 920 1 990 ! 920 990 Total film thickness (μιη) 188 188 188 188 188 188 1 188 1 丨188 1 丨188 ] 丨188 I 丨(8)i 丨(8)1 1 188 |丨我 i 丨(8)1 丨(10)1 丨188 1 18$ 3rd layer film thickness (μιη) (N (N (N (N (N (N ( ( ( ( ( ( ( ( ( ( ( ( PET Alumina Steamed PET Alumina Steamed PET Alumina Evaporated PET Alumina Evaporated PET Alumina Evaporated PET Alumina Evaporated PET Alumina Evaporated PET Alumina Evaporated PET Alumina Evaporated PET i Alumina Steamed PET Plating Alumina Evaporation PET Alumina Evaporation PET Alumina Evaporation PET Alumina Evaporation PET Alumina Evaporation PET Alumina Evaporation PET Alumina Evaporation PET Layer 2 I Film Thickness (μιη) IL 125_I 丨125 1 125 VO 1_125I 1125__I L — 125_I 1125I 1125__I 1_125__I j 125 125 1 125 125 125 125 125 125 Type | PET 1 1 PET J 1 PET J 1 PET J 1 PET I | PET I | PET I | PET 1 | PET 1 1 PET 1 PET | PET PET | PET PET PET PET PET is a film thickness (μπι) ο Ο oo κη ο ο ir> om 〇o ο ο ο κη Example 1-25 j Example 1-26 Example 1-27 Example 1-28 Example 1-29 Example 1-30 Example Example 31 1-32 Example 1-33 Example 1-34 Implementation Examples 1-35 Examples 1-36 Examples 1-37 Examples Bu 38 Examples 1-39 Examples 1-40 Examples 1-41 Examples Bu 42.1·'' c _80I, 201044599

〇 Q 部分放電電壓(ν) Α層外側 1000 1000 1000 900 900 860 840 1000 1000 1000 1000 1000 1000 1000 800 800 800 Ο 1000 840 900 780 800 780 780 A層內側 1100 1100 1100 990 990 950 920 1100 1100 1100 1100 1100 1100 1100 00 卜 1100 920 990 總膜厚 (μιη) 188 188 188 188 188 188 188 188 i 1 188 I 1 188 ; 丨 188 1 188 1 188 1 188 1 188 1 188 丨 188 1 丨 188 | 188 188 188 188 188 188 188 第3層 膜厚(μιη) CN (Ν (N (Ν cs &lt;Ν &lt;N &lt;N cs (Ν &lt;N (Ν &lt;s CN (Ν 1 CS CN CN (Ν (Ν CN (Ν (Ν 種類 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 1 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鍍PET 氧化鋁蒸鏟PET 氧化鋁蒸鍍PET 第2層 膜厚(μιη) 125 125 125 125 125 125 125 125 1125I 125 125 125 125 125 125 Ο CN Ο , 125 125 125 125 125 125 125 125 種類 PET PET PET PET PET PET 1 1 PET 1 1 PET 1 | PET 1 | PET I 1 PET 1 1 PET 1 1 PET 1 1 PET 1 1 PET 1 1 PET 1 1氧化鋁 PET PET PET PET PET PET PET PET 濉 膜厚(μιη) ο ν-» ο Ο Ο ο ο o o o ο ο ο ο ο 125 188 ο κη ο ο yn ο ο 實施例2-1 實施例2-2 實施例2-3 實施例2-4 實施例2-5 實施例2-6 實施例2-7 實施例3-1 實施例3-2 實施例3-3 實施例3-4 實施例3-5 實施例3-6 實施例3-7 比較例1-1 比較例1-2 比較例1-3 比較例1-4 比較例1-5 比較例1-6 比較例1-7 比較例2-1 比較例2-2 比較例3-1 比較例3-2〇Q partial discharge voltage (ν) 外侧 outside 1000 1000 1000 900 900 860 840 1000 1000 1000 1000 1000 1000 1000 800 800 800 Ο 1000 840 900 780 800 780 780 A layer inside 1100 1100 1100 990 990 950 920 1100 1100 1100 1100 1100 1100 1100 00 1100 920 990 Total film thickness (μιη) 188 188 188 188 188 188 188 188 i 1 188 I 1 188 ; 丨 188 1 188 1 188 1 188 1 188 1 188 丨 188 1 丨 188 | 188 188 188 188 188 188 188 3rd layer film thickness (μιη) CN (Ν (N (Ν cs &lt;Ν &lt;N &lt;N cs (Ν &lt;N (Ν &lt;s CN (Ν 1 CS CN CN (Ν ( Ν CN (Ν (Ν type alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina steaming PET-coated alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET alumina evaporation PET 1 alumina evaporation PET alumina evaporation PET alumina Evaporation PET Alumina Evaporation PET Alumina Evaporation PET Alumina Evaporation PET Alumina Steamer Shovel PET Alumina Evaporation PET 2 layers of film thickness (μιη) 125 125 125 125 125 125 125 125 1125I 125 125 125 125 125 125 Ο CN Ο , 125 125 125 125 125 125 125 125 Type PET PET PET PET PET PET 1 1 PET 1 1 PET 1 | PET 1 | PET I 1 PET 1 1 PET 1 1 PET 1 1 PET 1 1 PET 1 1 PET 1 1 Alumina PET PET PET PET PET PET PET PET film thickness (μιη) ο ν-» ο Ο Ο ο ο ooo ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο 3-1 Example 3-2 Example 3-3 Example 3-4 Example 3-5 Example 3-6 Example 3-7 Comparative Example 1-1 Comparative Example 1-2 Comparative Example 1-3 Comparative Example 1-4 Comparative Example 1-5 Comparative Example 1-6 Comparative Example 1-7 Comparative Example 2-1 Comparative Example 2-2 Comparative Example 3-1 Comparative Example 3-2

-60T 201044599 產業上的利用可能性 本發明的太陽電池背面密封用薄膜當然適用於當作jg 頂材所用的太陽電池,而且亦適用具有撓性的太陽電池$ 電子零件等。 【圖式簡單說明】 第1圖係示意地顯示太陽電池的構成之一例的截面 圖。 【主要元件符號說明】 1 太陽電池背板 2 透明塡充劑 3 發電元件 4 透明基板 5 太陽電池背板的樹脂層2側之面 6 太陽電池背板的與樹脂層2相反側之面-60T 201044599 Industrial Applicability The solar cell back sealing film of the present invention is of course suitable for use as a solar cell for use as a jg top material, and is also applicable to a flexible solar cell, an electronic component, or the like. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view schematically showing an example of a configuration of a solar cell. [Description of main components] 1 Solar battery backing plate 2 Transparent enameling agent 3 Power generating element 4 Transparent substrate 5 Surface of resin layer 2 side of solar battery back sheet 6 Surface of solar battery back sheet opposite to resin layer 2

Claims (1)

201044599 七、申請專利範圍: 1. 一種太陽電池背板用薄膜,係具有至少2層以上的積層構 造,包含具有表面比電阻R0爲106Ω/□以上1014Ω/□以下 的面(以下當作Α面)之層(以下當作Α層)及基材層(以下 當作B層),其特徵爲:B層包含由聚酯所成的層(以下當 作B1層),而且該B1層的聚酯之質量平均分子量爲37500 以上60000以下。 2. 如申請專利範圍第1項之太陽電池背板用薄膜,其中前述 〇 薄膜在125 °c、濕度100%的條件下放置24小時後的A面 之表面比電阻R1爲1〇6〜1014Ω/[]。 3. 如申請專利範圍第1或2項之太陽電池背板用薄膜,其中 前述聚酯的固有黏度(IV)爲0.65以上,羧基末端爲15當 量/t以下。 4. 如申請專利範圍第1至3項中任一項之太陽電池背板用薄 膜,其中B1層中含有0.1莫耳/t以上5.0莫耳/t的緩衝 劑。 ❹ 5.如申請專利範圍第1至4項中任一項之太陽電池背板用薄 膜,其中B1層的氮含量爲〇.〇1質量%以上〇.5質量%以 下。 6. 如申請專利範圍第1至5項中任一項之太陽電池背板用薄 膜,其中構成B1層的樹脂係以聚2,6 -萘二甲酸乙二酯當 作主要構成成分。 7. 如申請專利範圍第1至6項中任一項之太陽電池背板用薄 膜,其中B1層係經二軸配向,而且面配向係數爲〇.16以 上0 -111- 201044599 8 ·如申請專利範圍第1至7項中任一項之太陽電池背板用薄 膜,其中由差示掃描熱量測定(DSC)所得之B1層的微少 吸熱峰溫度TmetaB 1係相對於B1層的熔點TmB 1而滿足 下述式(5), 40 °C ^ TmBl-TmetaBl^ 90 °C (5)。 9_如申請專利範圍第1至8項中任一項之太陽電池背板用薄 膜,其中A層的厚度爲Ο.ΟΙμηι以上ΐμιη以下。 1 0 ·如申請專利範圍第1至9項中任一項之太陽電池背板用薄 膜,其中Α層的厚度爲Ιμπι以上50μηι以下。 11.如申請專利範圍第1至10項中任—項之太陽電池背板用 薄膜,其中 Α層係具有當作導電性材料之具有丙烯酸骨 架的陽離子系導電性化合物、當作非水溶性樹脂之具有丙 烯酸系骨架的化合物、當作交聯劑的噚唑啉化合物。 12_如申請專利範圍第1至η項中任一項之太陽電池背板用 薄膜’其中Α層中含有0.1質量%以上50質量%以下的光 安定化劑。 1 3 .如申請專利範圍第1至1 2項中任—項之太陽電池背板用 薄膜,其中與 A面相反側的表面之表面比電阻R2爲 1〇ΐ4Ω/□以上。 1 4 ·如申請專利範圍第丨至13項中任一項之太陽電池背板用 薄膜’其中含有氣泡含有率爲1 0體積%以上的層(Β2層)。 1 5 · ~種太陽電池背板,其係使用如申請專利範圍第1至1 4 1頁中任一項之太陽電池背板用薄膜所成。 1 6·如申請專利範圍第1 5項之太陽電池背板,其中具有表面 比電阻R0爲1〇6Ω/□以上1014Ω/□以下的面(以下當作Α1 201044599 &quot; 面)。 17. 如申請專利範圍第或16項之太陽電池背板,其中A1 面係如申請專利範圍第1至14項中任一項之太陽電池背 板用薄膜的A面。 18. 如申請專利範圍第15至17項中任一項之太陽電池背板, 其中與A1相反側的表面之表面比電阻R3爲1014Ω/□以 上。 19. 一種太陽電池,其係使用如申請專利範圍第15至18項中 〇 任一項之太陽電池背板所成。 2 0.如申請專利範圍第19項之太陽電池,其中在與Α1面相反 的面側形成有發電元件》201044599 VII. Patent application scope: 1. A film for a solar cell back sheet having a laminated structure of at least two or more layers, and having a surface having a surface specific resistance R0 of 106 Ω/□ or more and 1014 Ω/□ or less (hereinafter referred to as a kneading surface) a layer (hereinafter referred to as a layer of tantalum) and a substrate layer (hereinafter referred to as a layer B) characterized in that the layer B comprises a layer made of polyester (hereinafter referred to as a layer B1), and the layer of the layer B1 is aggregated. The mass average molecular weight of the ester is 37,500 or more and 60,000 or less. 2. The film for solar cell back sheet according to the first aspect of the patent application, wherein the surface ratio of the surface of the A surface of the tantalum film after being left at 125 ° C and 100% humidity for 24 hours is 1 〇 6 to 1014 Ω. /[]. 3. The film for solar battery back sheet according to claim 1 or 2, wherein the polyester has an intrinsic viscosity (IV) of 0.65 or more and a carboxyl terminal of 15 equivalent/t or less. 4. The solar cell backsheet film according to any one of claims 1 to 3, wherein the layer B1 contains 0.1 mol/t or more and 5.0 mol/t of a buffer. The film for a solar cell back sheet according to any one of claims 1 to 4, wherein the B1 layer has a nitrogen content of 〇.〇1% by mass or more and 〇5% by mass or less. 6. The film for a solar cell back sheet according to any one of claims 1 to 5, wherein the resin constituting the B1 layer is made of polyethylene-2,6-naphthalenedicarboxylate as a main constituent. 7. The film for solar battery back sheet according to any one of claims 1 to 6, wherein the B1 layer is biaxially aligned, and the surface alignment coefficient is 〇.16 or more. 0 -111- 201044599 8 The film for solar battery back sheet according to any one of the items 1 to 7, wherein the minute endothermic peak temperature TmetaB 1 of the B1 layer obtained by differential scanning calorimetry (DSC) is relative to the melting point TmB 1 of the B1 layer. The following formula (5), 40 ° C ^ TmBl-TmetaBl ^ 90 ° C (5) is satisfied. The film for a solar cell back sheet according to any one of claims 1 to 8, wherein the thickness of the layer A is Ο.ΟΙηηι or more ΐμιη or less. The film for a solar cell back sheet according to any one of claims 1 to 9, wherein the thickness of the ruthenium layer is Ιμπι or more and 50 μηι or less. The film for a solar cell back sheet according to any one of claims 1 to 10, wherein the ruthenium layer has a cationic conductive compound having an acrylic skeleton as a conductive material, and is regarded as a water-insoluble resin. A compound having an acrylic skeleton and an oxazoline compound as a crosslinking agent. The film for a solar cell back sheet according to any one of claims 1 to 4, wherein the ruthenium layer contains 0.1% by mass or more and 50% by mass or less of a light stabilizer. The film for a solar battery back sheet according to any one of the first to the first aspect of the invention, wherein the surface of the surface opposite to the A surface has a specific resistance R2 of 1 〇ΐ 4 Ω/□ or more. The film for a solar cell back sheet according to any one of the above-mentioned claims, wherein the film contains a layer having a bubble content of 10% by volume or more (Β2 layer). 1 5 · A solar cell backsheet formed using a film for a solar cell backsheet as disclosed in any one of claims 1 to 104. 1 6· For example, the solar cell backsheet of the fifteenth patent application has a surface having a surface specific resistance R0 of 1〇6 Ω/□ or more and 1014 Ω/□ or less (hereinafter referred to as Α1 201044599 &quot; surface). 17. The solar cell backsheet of claim 16 or claim 16, wherein the A1 surface is the A side of the film for a solar cell backsheet according to any one of claims 1 to 14. 18. The solar battery back sheet according to any one of claims 15 to 17, wherein the surface of the surface opposite to A1 has a surface specific resistance R3 of 1014 Ω/□ or more. A solar cell produced by using a solar cell back sheet according to any one of claims 15 to 18. 2: The solar cell of claim 19, wherein a power generating element is formed on a side opposite to the surface of the crucible 1 113-113-
TW98118163A 2009-06-02 2009-06-02 Film for solar cell backsheet, solar cell backsheet using the same, and solar cell TW201044599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98118163A TW201044599A (en) 2009-06-02 2009-06-02 Film for solar cell backsheet, solar cell backsheet using the same, and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98118163A TW201044599A (en) 2009-06-02 2009-06-02 Film for solar cell backsheet, solar cell backsheet using the same, and solar cell

Publications (1)

Publication Number Publication Date
TW201044599A true TW201044599A (en) 2010-12-16

Family

ID=45001370

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98118163A TW201044599A (en) 2009-06-02 2009-06-02 Film for solar cell backsheet, solar cell backsheet using the same, and solar cell

Country Status (1)

Country Link
TW (1) TW201044599A (en)

Similar Documents

Publication Publication Date Title
JP5686397B2 (en) Film for solar cell backsheet, solar cell backsheet using the same, and solar cell
WO2010137099A1 (en) Film for solar cell backsheet, solar cell backsheet using the same, and solar cell
US8609255B2 (en) Polyester film, and solar-cell back sheet and solar-cell using the same
US8981212B2 (en) Polyester film, laminated film, solar battery backsheet and solar battery
JP5565020B2 (en) Polyester film and solar cell using the same
EP1898470A1 (en) Back sheet for photovoltaic modules and photovoltaic module using the same
US9831376B2 (en) Polyester film and method for producing the same, back sheet for solar cell, and solar cell module
WO2012133515A1 (en) Polyester film, solar cell backsheet using same, and process for producing polyester film
TW201125729A (en) Biaxial orientation polyester film
JP5617668B2 (en) Polyester film, solar cell backsheet using the same, and solar cell
KR20180013845A (en) BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell backsheet film,
JPWO2016052133A1 (en) Laminate
WO2014129641A1 (en) White multilayer polyester film, laminiated film, backsheet for solar cell module, and solar cell module
JP2011192789A (en) Back protective film for solar cell
JP2011202058A (en) Polyester film, solar cell back sheet using the same, and reflector for led source
JP5551973B2 (en) Polyester film laminate and method for producing the same
TW201044599A (en) Film for solar cell backsheet, solar cell backsheet using the same, and solar cell
JP2011167909A (en) Laminated polyester film, solar cell back sheet using this film and solar cell
JP2015188015A (en) Laminate polyester film for solar battery backside protection, solar battery backside protective sheet, and solar battery module
JP2017212438A (en) Back sheet for solar battery module and solar battery module
JP2016111037A (en) Solar battery back protection sheet, and solar cell using the same
JP2011222580A (en) Laminated film for solar cell
JP2014231147A (en) Solar cell rear surface protective sheet
JP2015044333A (en) Readily adhesive sheet
JP2015124226A (en) Easily adhesive polyester film for solar cell back protection sheet