TW201044597A - Optoelectronic semiconductor, conductor, and insulator with multi-component high-entropy alloy oxides and the design method thereof - Google Patents

Optoelectronic semiconductor, conductor, and insulator with multi-component high-entropy alloy oxides and the design method thereof Download PDF

Info

Publication number
TW201044597A
TW201044597A TW98119189A TW98119189A TW201044597A TW 201044597 A TW201044597 A TW 201044597A TW 98119189 A TW98119189 A TW 98119189A TW 98119189 A TW98119189 A TW 98119189A TW 201044597 A TW201044597 A TW 201044597A
Authority
TW
Taiwan
Prior art keywords
alloy
oxygen
entropy alloy
tin
copper
Prior art date
Application number
TW98119189A
Other languages
Chinese (zh)
Other versions
TWI395336B (en
Inventor
fu-sheng Xue
Rui-Song You
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW98119189A priority Critical patent/TWI395336B/en
Publication of TW201044597A publication Critical patent/TW201044597A/en
Application granted granted Critical
Publication of TWI395336B publication Critical patent/TWI395336B/en

Links

Landscapes

  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

The invention mainly provides an optoelectronic semiconductor with multi-component high-entropy alloy oxides and the relative design method and materials. Zinc, tin, copper, titanium, and niobium are selected to compose multi-component high-entropy alloy oxides. The atomic percentage of oxide ceramic material is 51.00at% to 57.00at%. Of these, the atomic percentage of zinc, tin, copper, titanium, and niobium occupy the optoelectronic semiconductor is 3.00at% to 13.00at%, which combines the high-entropy alloy and oxygen to form the optoelectronic semiconductor with high-entropy alloy oxides. In addition, when the atomic percentage of oxygen is smaller than 51.00at%, the high-entropy alloy oxides formed performs the characteristic of conductor. When it is larger than 59.00at%, the characteristic of transparent insulator presents. So the invention is applicable for the field of the optoelectronic technology and effectively improves the development of optoelectronic technology.

Description

201044597 - 六、發明說明: * 【發明所屬之技術領域】 轉明是有關於一種合金氧化物,特別是指一種多元 高摘合金氧化的光電半導體、導體、絕緣體,及其設計方 法。 【先前技術】 ' 多元高熵合金(Mum-eIement High_Emr〇py Αΐ_)是 —種以多元主成份取代傳統上使用單一主成份的合金設計 觀念,也就是多種主要元素構成的合金,其中,每種主要 疋素皆具有高但不超過35at%的原子百分比,因此,沒有 任一主要元素佔有50at%而成為唯一主要元素。 、& 6在的研究中發現’多元高熵合金由於高熵效應促 進各主要7G素的均勻混合,因此在晶體結構上會呈現容易 形成體心立方(ΒΓΓ、 陆广 ^ CC)、面心立方(FCC)結晶,或為非晶 f (a讀咖U〇等結構,並在材料性質方面,呈現具有高 ❹ ^度/…皿軟化 '耐高溫氧化、耐腐料特性,此外, :’熵。金的微結構因為多個元素的擴散與重分配而傾 ^丁'米化’料快速凝固或真空鍍膜過程而T,更展現非 曰曰化傾向’因此在材料應用上具有报大的產業潛力。 . 面透明導電氧化物(Transparent Conducting201044597 - VI. Description of the invention: * [Technical field to which the invention belongs] The transition is related to an alloy oxide, in particular to an optoelectronic semiconductor, conductor, insulator, and a method for designing a multi-element high-alloy oxide. [Prior Art] 'Mum-eIement High_Emr〇py Αΐ_ is a kind of alloy design concept that uses a multi-principal component instead of a single main component, that is, an alloy composed of various main elements, each of which The main elements all have a high atomic percentage of no more than 35 at%, so that no major element occupies 50 at% and becomes the only major element. In the study of & 6, it was found that 'multiple high-entropy alloy promotes the uniform mixing of the main 7G elements due to the high entropy effect, so it is easy to form body-centered cubics in the crystal structure (ΒΓΓ, 陆广^ CC), face core Cubic (FCC) crystallization, or amorphous f (a reading of the structure of the U 〇, and in terms of material properties, exhibits high ❹ ^ / / dish softening ' high temperature oxidation resistance, corrosion resistance characteristics, in addition, : ' Entropy. The microstructure of gold is due to the diffusion and redistribution of multiple elements, and it is a rapid solidification or vacuum coating process, but it exhibits a non-deuterated tendency, so it has a large application in material applications. Industrial potential. . Transparent Conductive Oxide (Transparent Conducting)

Ox* ’ TCQ)是光電元件的重要關鍵材料之―,主要的應 用是作為例如平;^ 面.,,、員不器(FPD)、太陽能電池(solar cell)、 觸控式面板營幕、電子書(e_b〇〇k)等光電元件的透明電極, 一般可區分為你丨‘ TO、ΖηΟ和Sn〇2等η型的透明導電氧 3 201044597 化物,以及例如 CuA102、CuCr〇2、CuFe〇2 和 SrCu2〇2 等 p 型的透明導電氧化物兩類。 但現有的n型透明導電氧化物,例如Zn〇為纖鋅礦結 構(Wurzite hexagonal structure),與p型的透明導電氧化 物例如CuA1〇2、CuCr02、CuFe〇2為黑銅鐵镇結構 (Delafosslte structure)’根據文獻指出,黑銅鐵礦結構具 有異向性,且較不易於室溫下合成。 因此’倘能應用高熵合金的多樣性與優異性質,開發 適用於光電技術領域的材料,將能促使光電技術往前邁進 一大步。 【發明内容】 由於目前並未有以高熵合金開發光電材料的研究,且 円烟合金因為各組成元素皆是主要元素,以目前已知元素 的組成而言,可開發的合金系統無以計數,因此在毫無開 發基礎的前提下,發明人的研究團隊從目前已有的IT〇 ' Zn〇、SnCh ' CnAl〇2、CuCr〇2 和 Ti〇2: Nb 等現有的透明導 電氧化物中,選擇鋅(Zn )、錫(Sn )、銅(Cu )、鈦 (Ti),與鈮(Nb)為主要元素成高燜合金,並與氧結合成 高熵合金氧化物進行研究。 而結果是令人驚喜地,當控制氧的原子百分比在佔陶 瓷材料的40at°/e〜8〇at%範圍中,並自4〇at%向上增加時, 此多元高熵合金與氧有規則地結合成導體、光電半導體與 透明絕緣體的特性。 ^ 於是,本發明提供具有多元高熵合金的陶瓷材料的設 201044597 計方法,是選擇辞、錫、鋼、料 ^ ^ ^ 鈦,與鈮構成一多元高熵合 金,其中,鋅、錫、鋼、鈦,蛊 /、起的原子百分比分別佔始 生成物的3.〇〇at% 〜13.00at% , 刀別佔、-,心 再調整氧佔總生成物的 5_%〜57.誠’使多元高熵合金與氧結合成 體0 另外’再調整氧的原子百分 _ _ 刀比不大於50.5at% ,可使多 元高熵合金與氧結合成導體;々 凋整虱的原子百分比大於Ox* ' TCQ ) is an important key material for optoelectronic components -- the main application is as, for example, flat; ^, face, FPD, solar cell, touch panel, Transparent electrodes of photoelectric elements such as e-books (e_b〇〇k) can be generally classified into n-type transparent conductive oxygen 3 201044597 compounds such as TO' TO, ΖηΟ, and Sn〇2, and, for example, CuA102, CuCr〇2, CuFe〇 2 and p-type transparent conductive oxides such as SrCu2〇2. However, the existing n-type transparent conductive oxide, such as Zn 〇 is a wurzite hexagonal structure, and the p-type transparent conductive oxide such as CuA1 〇 2, CuCr02, CuFe 〇 2 is a black copper-iron town structure (Delafosslte Structure) 'According to the literature, the black copper iron ore structure is anisotropic and less prone to synthesis at room temperature. Therefore, if the diversity and superior properties of high-entropy alloys can be applied, the development of materials suitable for optoelectronic technology will enable photovoltaic technology to take a big step forward. SUMMARY OF THE INVENTION Since there is currently no research on the development of photovoltaic materials with high-entropy alloys, and because the constituent elements are the main elements, the alloy systems that can be developed cannot be counted in terms of the composition of the currently known elements. Therefore, on the premise of no development basis, the inventor's research team is from the existing transparent conductive oxides such as IT〇' Zn〇, SnCh 'CnAl〇2, CuCr〇2 and Ti〇2: Nb. Zinc (Zn), tin (Sn), copper (Cu), and titanium (Ti) were selected, and yttrium (Nb) was used as a main element to form a yttrium alloy, and combined with oxygen to form a high-entropy alloy oxide. The result is surprising. When the atomic percentage of oxygen is controlled in the range of 40at°/e~8〇at% of the ceramic material and increases from 4〇at%, the multi-element high-entropy alloy has rules with oxygen. The characteristics of the conductor, the optoelectronic semiconductor and the transparent insulator are combined. ^ Thus, the present invention provides a method for setting a ceramic material having a multi-element high-entropy alloy, which is a method of selecting a word, tin, steel, material, and titanium, and forming a multi-element high-entropy alloy, wherein zinc, tin, The atomic percentages of steel, titanium, and yttrium, respectively, account for 3.〇〇at%~13.00at% of the starting product, and the knife does not account for, -, and the heart adjusts oxygen to account for 5_%~57 of the total product. The multi-high-entropy alloy is combined with oxygen to form body 0. In addition, the atomic percentage of oxygen is adjusted to _ _ knive ratio is not more than 50.5 at%, and the multi-element high-entropy alloy can be combined with oxygen to form a conductor; the atomic percentage of 々 虱 虱 is greater than

G 59.00at% ,則使多元高熵合金盥氧 土,、孔結合成透明絕緣體。 本發明之功效在於:提供— 攸仏種新的、由鋅、錫、銅、 鈦’與鈮構成的多元高熵合全盥 。宠興氧所成的光電半導體、導 體’及透明絕緣體,除了可以幽& θ么从人 J以直备目刖的合金氧化物的系 統之外,還可以供光電元件庫用 十應用而促進先電兀件的技術發 展。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 發明人以Znc^SnwCuiwNbc^靶材,配合基礎真空 (Base pressure ) 3.〇 xl〇-6T〇rr、工作壓力(w〇rking pressure) 3.0χ10-3Τ〇ΓΓ、射頻功率(RF p〇wer) 2〇〇w,並 分別在氧氣/氧氣+氬氣的通入氣氛比(〇2/〇2+Arrati〇)是 4·4%、4·7% 、5.0% 、5.3%下,以靶材與基材間距7〇rnm 濺鍍(sputtering)沉積2〇分鐘,分別於玻璃基材上得到 (Zn8.2Sn丨ojCiinjTiuNb" 2 ) 49 7〇5〇 3 (以下簡稱第一合金 201044597 氧化物)、(ZnmSnHCumTiwNbiCM ) 48 4〇51 6 (以下簡稱 第二合金氧化物)(Zn" 7Sn7 3CU8 5Ti7 lNbg 4 ) 44 〇〇5㈠(以 下簡稱第三合金氧化物)(Zni 2 23 Sn1〇 2CU9 6 ) 4〇.8〇59.2 (以下簡稱第四合金氧化物)。 參閱圖1,® 1是第一、二、三、四合金氧化物的χ· ray繞射圖,由圖中結果可知第一、二、三、四合金氧化物 均是非晶態結構。 參閱圖2、圖3、圖4、圖5,圖2'3、4、5分別是以 ^、銅、鈦、鈮的光電子強度(intensity ( a.u·))為縱座 標,東缚能(binding energy (eV))為橫座標得到的第一、 一、 二、四合金氧化物的X_ray光電能譜圖(Χιπ ph〇t〇electronic spectr〇sc〇py ),綜合四圖可以驗證第一、 二、 三、四合金氧化物隨著氧原子百分比的增加,第一、 -、^、四合金氧化物的束缚能增加’亦即,價電子被移 離或氧化態增加,也就是說多元高熵合金氧化物會依氧原 :百分比的增加而光學能隙增加,導電性漸減;換句話 -兄本發明確貫在預定的氧原子百分比範圍中調整氧原子 百分比而成導體、半導體與絕緣體。 厂声Γ,圖6是第―、二'三、四合金氧化物分別4 f,364nm、292nm、277nm' 209nm時對全波域光的冥 透率表現,由量測結果可以知道,保守、三、 化物的膜厚不大於300nm時對可見光具有… 度的穿透率,且膜厚愈薄、穿透率愈高 高烟合金合金氧化物會«氧原子百分_增加而光Γ 201044597 隙增加,也就是說,弟二、三合金氧化物非但是半導體, 而且是對可見光具有一定程度穿透率的光電半導體。 配合參閱圖7、圖8與圖9,圖7、圖8、圖9分別是 第 Ο Ο '三' 四合金氧化物的非直接能隙,在此要說.明的 是,由於第一合金氧化物為不透光的導體故不具有能隙, 由圊7、圖8與圖9可間接驗證在氧原子百分比的含量漸增 下,非直接能隙由1.69eV增加至2.66eV,第二、三合金氧 化物是半導體,第四合金氧化物是絕緣體。 再將第一、一、二、四合金氧化物的材料特性整理如G 59.00at%, the multi-high-entropy alloy earthworm, the pores are combined into a transparent insulator. The effect of the present invention is to provide a new multi-enriched high-energy complex consisting of zinc, tin, copper, titanium and tantalum. Optoelectronic semiconductors, conductors, and transparent insulators, which are made of oxygen, can be used in addition to the system of direct-seeing alloy oxides from humans. The technical development of electric components. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. The inventor used a Znc^SnwCuiwNbc^ target with a base pressure 3. 〇xl〇-6T〇rr, working pressure (w〇rking pressure) 3.0χ10-3Τ〇ΓΓ, RF power (RF p〇wer) 2〇〇w, and the oxygen/oxygen+argon gas inlet atmosphere ratio (〇2/〇2+Arrati〇) is 4·4%, 4·7%, 5.0%, 5.3%, with target And the substrate is separated by 7〇rnm sputtering deposition for 2〇 minutes, respectively, on the glass substrate (Zn8.2Sn丨ojCiinjTiuNb" 2 ) 49 7〇5〇3 (hereinafter referred to as the first alloy 201044597 oxide), (ZnmSnHCumTiwNbiCM ) 48 4〇51 6 (hereinafter referred to as the second alloy oxide) (Zn" 7Sn7 3CU8 5Ti7 lNbg 4 ) 44 〇〇 5 (1) (hereinafter referred to as the third alloy oxide) (Zni 2 23 Sn1〇2CU9 6 ) 4〇 .8〇59.2 (hereinafter referred to as the fourth alloy oxide). Referring to Figure 1, ® 1 is a χ·ray diffraction pattern of the first, second, third and fourth alloy oxides. It can be seen from the results that the first, second, third and fourth alloy oxides are all amorphous. Referring to Figure 2, Figure 3, Figure 4, Figure 5, Figure 2'3, 4, and 5 are the ordinates of the photoelectron intensity (intensity ( au·)) of ^, copper, titanium, and tantalum, respectively. Energy (eV)) is the X-ray photoelectron spectroscopy of the first, second, and fourth alloy oxides obtained by the abscissa (Χιπ ph〇t〇electronic spectr〇sc〇py). The integrated four graphs can verify the first and second With the increase of the percentage of oxygen atoms in the alloys of the third and fourth alloys, the binding energy of the first, -, ^, and four alloy oxides increases, that is, the valence electrons are removed or the oxidation state is increased, that is, the multivariate high entropy The alloy oxide will increase in optical energy gap according to the increase of the percentage of oxygen; the conductivity is gradually reduced; in other words, the present invention surely adjusts the percentage of oxygen atoms in the predetermined range of oxygen atomic percentage to form a conductor, a semiconductor and an insulator. The factory sounds, Figure 6 is the performance of the full-wavelength light of the first, second, and fourth alloy oxides at 4 f, 364 nm, 292 nm, and 277 nm' 209 nm. The measurement results can be known, conservative, 3. When the film thickness of the compound is not more than 300 nm, the transmittance of visible light is ..., and the thinner the film thickness, the higher the transmittance. The alloy oxide of the smoke alloy will increase the atomic percentage of oxygen and the light will be 201044597. Increasing, that is to say, the second and third alloy oxides are not semiconductors, but are optoelectronic semiconductors having a certain degree of transmittance for visible light. Referring to FIG. 7, FIG. 8 and FIG. 9, FIG. 7, FIG. 8 and FIG. 9 are respectively the indirect energy gaps of the third 四 'three' four-alloy oxide, which is said to be due to the first alloy. The oxide is an opaque conductor and therefore has no energy gap. From 圊7, Fig. 8 and Fig. 9, it can be indirectly verified that the indirect energy gap increases from 1.69eV to 2.66eV, and the second is gradually increased. The three alloy oxide is a semiconductor, and the fourth alloy oxide is an insulator. The material properties of the first, second, second and fourth alloy oxides are then

3.49χ1〇20 第一陶瓷材料 多二陶瓷材料3.49χ1〇20 First ceramic material Multi-two ceramic material

Gap (eV) 1.69 2.62χ1〇20Gap (eV) 1.69 2.62χ1〇20

carrier density 私· Hall mobilityCarrier density private · Hall mobility

Rh (m2/C) β (cm2/VS ) σ ((Ω cm)'1 ) -0.049 14.3 7‘98xl〇2 -0.081 1.36 57.2 -165 0.43 9.45χ10'3 — — Rh : Hall coefficient 〇 · electrical conductivity 系示上所述,本發明主座. 人人月主要疋耠供-種新的、由多元高熵 «金與氧結合成光電半導體、 生成物的設計方法,確實可在=、二明絕緣體以及此些 —範圍下,再精確氧:广叫 分別得到透明絕緣體、光電半、;Γ熵合金的組份關係而 除了可以豐富目肖導體等光電材料, 電元件廡用^⑴、σ、氧化物的系統之外,還可以供光 之目的Γ I進光電元件的技術發展,4實達到本發明 惟以上所述者,僅為本發明之較佳實施例而已,當不 7 201044597 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾^皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一 x-ray繞射圖,說明驗證本發明之實驗所製作 的四合金氧化物是非晶態結構; 圖2疋光電光5普圖,說明驗證本發明之實驗所製作 的四合金氧化物中,鋅光電子吸收強度與束缚能的關係; 圖3疋一光電光譜圖,說明驗證本發明之實驗所製作 的四合金氧化物中,銅光電子吸收強度與束缚能的關係; 圖4是一光電光譜圖,說明驗證本發明之實驗所製作 的四合金氧化物中,鈦光電子吸收強度與束縛能的關係; 圖5是一光電光譜圖,說明驗證本發明之實驗所製作 的四合金氧化物中’銳光電子吸收強度與束缚能的關係; 圖6是一光穿透率曲線圖,說明驗證本發明之實驗所 製作的四合金氧化物對200-1 〇〇〇nm波長的光穿透率; 圖7是一非直接能隙圖,說明本發明之實驗所製作的 —第二合金氧化物的非直接能隙; 圖8是一非直接能隙圖,說明本發明之實驗所製作的 _第三合金氧化物的非直接能隙;及 圖9是一非直接能隙圖,說明本發明之實驗所製作的 —第四合金氧化物的非直接能隙。 201044597 【主要元件符號說明】 無 ΟRh (m2/C) β (cm2/VS ) σ ((Ω cm)'1 ) -0.049 14.3 7'98xl〇2 -0.081 1.36 57.2 -165 0.43 9.45χ10'3 — — Rh : Hall coefficient 〇· electrical conductivity According to the above description, the main seat of the present invention. The main month of the present invention is a new type of design method that combines gold and oxygen into a photoelectric semiconductor and a product, and can be used in the =, two-ming insulator. And these - the range, the precise oxygen: widely known to obtain the transparent insulator, photoelectric half, Γ entropy alloy component relationship and in addition to enrich the optical material such as the conductor, the electrical components use ^ (1), σ, oxidation In addition to the system of the object, the technical development of the optoelectronic component can also be provided for the purpose of light, and the present invention is only the above described, and is only a preferred embodiment of the present invention, when not 7 201044597 can The scope of the present invention is defined by the scope of the invention, and the equivalent equivalents and modifications of the invention are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an x-ray diffraction diagram illustrating the verification of the four-alloy oxide produced by the experiment of the present invention as an amorphous structure; FIG. 2 is a diagram of the photoelectric light 5, illustrating the experiment for verifying the present invention. The relationship between the absorption intensity of zinc photoelectron and the binding energy of the prepared four-alloy oxide; Fig. 3 is a photoelectric spectrum diagram illustrating the absorption intensity and binding energy of copper photoelectron in the four-alloy oxide produced by the experiment of the present invention. Fig. 4 is a photoelectric spectrum diagram illustrating the relationship between the absorption intensity of titanium photoelectron and the binding energy in the four-alloy oxide produced by the experiment of the present invention; Fig. 5 is a photoelectric spectrum diagram illustrating the experimental station of the present invention. 'The relationship between the absorption intensity of sharp electrons and the binding energy in the fabricated four-alloy oxide; FIG. 6 is a graph of light transmittance, illustrating the verification of the four-alloy oxide produced in the experiment of the present invention to 200-1 〇〇〇nm Figure 7 is an indirect energy gap diagram illustrating the indirect energy gap of the second alloy oxide produced by the experiment of the present invention; Figure 8 is an indirect energy gap diagram, _ A third non-experimental alloy oxide produced according to the present invention a direct bandgap; and FIG. 9 is an indirect bandgap diagram illustrating practice of the present invention produced - a fourth non-direct bandgap alloy oxide. 201044597 [Key component symbol description] None Ο

99

Claims (1)

201044597 七、申請專利範圍: ι_種具有多疋向熵合金氧化物的光電半導體的設計方法, 包含: 畀泥稱成 選擇鋅、錫 中’辞、錫、銅'鈦’與銳占總生成物的原子百分 比是 3.〇〇at% 〜13.00at% ;及 ⑴調整氧佔光電半導體的原子百分比是儿軸 〜57·〇〇_的範圍,使多元高熵合金與氧結合成光電 半導'體。 2·依據申請專利範圍第1項所述的呈右夕_ - ,,^ 只严叮述的具有多兀尚熵合金氧化 物的光電半導體的設計方盆 5亥步驟(b)再調整 虱的原子百分比不大於50 5at% 合成導體。 使夕^網合金與氧結 據巾請專利範圍第1項所述的具有h “合金氧化 氧的眉、肀D亥步驟(b)再調整 百分比大於59.o°at% ’使使多元高網合金*氧 &合成透明絕緣體。 ^乳 4·—種多元高熵合金氧化物的光電半導體,包含: 原子百分比佔51.00at% 〜57 00at% 原子百分比組份的多元高熵合金 /、佔剩餘 辞、锡'銅、欽,與㈣成,網合金是 與鎚分別佔光電半導體總原子百分比二:、銅、鈦, % 。 白刀比疋 3.0〇at% 〜13.〇0at 5·—種多元高熵合金氧化物的導體,包含 10 201044597 原子百分比不大於50.50at%的氧, 分比的多元高熵合金,且該多元高熵 銅、欽’與銳構成’其中,鋅、錫、銅 佔多元高熵合金氧化物的導體總原子 ~13_00at% 。 6.種多元鬲熵合金氧化物的透明絕緣體, 原子百分比大於59.0〇at%且不超過 與佔剩餘原子百分比的多元高熵合金, 金是鋅、錫、銅、鈦’與鈮構成,其中 欽’與銳分別佔多元高熵合金氧化物的 比 3.0〇at% 〜13 〇〇at% 。 ❹ 與佔剩餘原子百 合金是鋅、錫、 、鈦’與銳分別 百分比3.〇〇at〇/。 包含: 80.00at% 的氧, 且該多元高熵合 ,鋅、錫、銅、 導體總原子百分 11201044597 VII. Patent application scope: ι_Design method of optoelectronic semiconductor with multi-turn entropy alloy oxide, including: 畀 mud is selected as zinc, tin in 'word, tin, copper 'titanium' and sharp account total generation The atomic percentage of the substance is 3.〇〇at%~13.00at%; and (1) the oxygen percentage of the optoelectronic semiconductor is adjusted to be the range of the axis ~57·〇〇_, and the multi-element high-entropy alloy is combined with oxygen to form a photoelectric semi-conductor. 'body. 2. According to the first paragraph of the scope of the patent application, the design of the optoelectronic semiconductor with multiple oxides and enriched alloy oxides is only described in the right-hand side _ - , , ^ The atomic percentage is not more than 50 5at% of the composite conductor. For the alloy of the cerium mesh and the oxygen entangled towel, please refer to the first paragraph of the patent scope, which has h "alloy oxide oxygen, eyebrows, 肀Dhai step (b) re-adjustment percentage is greater than 59.o °at% ' Mesh alloy * oxygen & synthetic transparent insulator. ^4 4 - a multi-element high-entropy alloy oxide optoelectronic semiconductor, including: atomic percentage accounted for 51.00at% ~ 57 00at% atomic percentage component of multi-energy entropy alloy /, accounted for Remaining remarks, tin 'copper, chin, and (four) into, net alloy is the total atomic percentage of the optoelectronic semiconductor with the hammer respectively: copper, titanium, %. White knife 疋 3.0 〇 at% ~ 13. 〇 0at 5 · a multi-element high-entropy alloy oxide conductor comprising 10 201044597 atomic percentage not more than 50.50at% of oxygen, a fractional multi-element high-entropy alloy, and the multi-element high-entropy copper, Chin 'and sharp composition' among them, zinc, tin, Copper accounts for ~13_00at% of the total conductor of a multi-element high-entropy alloy oxide. 6. A transparent insulator of a multi-element entropy alloy oxide having an atomic percentage greater than 59.0 〇 at% and not exceeding a multi-element high-entropy alloy with a percentage of the remaining atoms, Gold is zinc, tin Copper and titanium are composed of tantalum and tantalum, in which Qin and Rui respectively account for a ratio of 3.0〇at% to 13 〇〇at% of the multi-enriched enriched alloy oxide. ❹ The remaining atomic alloy is zinc, tin, titanium The percentage of sharpness is 3.3at〇/. Contains: 80.00at% of oxygen, and the multivariate high entropy, total atomic percentage of zinc, tin, copper, conductor 11
TW98119189A 2009-06-09 2009-06-09 Optoelectronic semiconductors, conductors, insulators and their design methods with multiple high entropy alloy oxides TWI395336B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98119189A TWI395336B (en) 2009-06-09 2009-06-09 Optoelectronic semiconductors, conductors, insulators and their design methods with multiple high entropy alloy oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98119189A TWI395336B (en) 2009-06-09 2009-06-09 Optoelectronic semiconductors, conductors, insulators and their design methods with multiple high entropy alloy oxides

Publications (2)

Publication Number Publication Date
TW201044597A true TW201044597A (en) 2010-12-16
TWI395336B TWI395336B (en) 2013-05-01

Family

ID=45001369

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98119189A TWI395336B (en) 2009-06-09 2009-06-09 Optoelectronic semiconductors, conductors, insulators and their design methods with multiple high entropy alloy oxides

Country Status (1)

Country Link
TW (1) TWI395336B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710607A (en) * 2013-12-16 2014-04-09 北京科技大学 Oxygen-strengthened TiZrNbHfO high-entropy alloy and preparation method thereof
CN109987935A (en) * 2019-03-20 2019-07-09 太原理工大学 (ZrHfCeTiZn) O with fluorite type structure2The high entropy oxide ceramic powder body of-δ and block preparation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006070715A1 (en) * 2004-12-28 2008-06-12 出光興産株式会社 Conductive film, conductive substrate, and organic electroluminescence element
WO2007026783A1 (en) * 2005-09-01 2007-03-08 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film and transparent electrode
CN101263744A (en) * 2005-09-12 2008-09-10 出光兴产株式会社 Conductive laminate and organic EL element
JP4231967B2 (en) * 2006-10-06 2009-03-04 住友金属鉱山株式会社 Oxide sintered body, method for producing the same, transparent conductive film, and solar cell obtained using the same
EP2168933B1 (en) * 2007-07-06 2017-09-06 Sumitomo Metal Mining Co., Ltd. Oxide sintered body, process for producing the same, target and use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710607A (en) * 2013-12-16 2014-04-09 北京科技大学 Oxygen-strengthened TiZrNbHfO high-entropy alloy and preparation method thereof
CN103710607B (en) * 2013-12-16 2016-01-06 北京科技大学 TiZrNbHfO high-entropy alloy of a kind of oxygen strengthening and preparation method thereof
CN109987935A (en) * 2019-03-20 2019-07-09 太原理工大学 (ZrHfCeTiZn) O with fluorite type structure2The high entropy oxide ceramic powder body of-δ and block preparation method

Also Published As

Publication number Publication date
TWI395336B (en) 2013-05-01

Similar Documents

Publication Publication Date Title
Yang et al. Cu2Ge (S3–x Se x) Colloidal Nanocrystals: Synthesis, Characterization, and Composition-Dependent Band Gap Engineering
WO2006030762A1 (en) Transparent conductive film, process for producing the same, transparent conductive base material and luminescent device
TW200816505A (en) Solar battery module
Wang et al. CO2 plasma-treated TiO2 film as an effective electron transport layer for high-performance planar perovskite solar cells
KR101056132B1 (en) Thin film type solar cell and manufacturing method thereof
Tai et al. Ultraviolet photodetector based on p-borophene/n-ZnO heterojunction
US20170213931A1 (en) Solar cell with graphene-silicon quantum dot hybrid structure and method of manufacturing the same
Sun et al. Synthesis and characterization of n-type NiO: Al thin films for fabrication of pn NiO homojunctions
Sahoo et al. Microwave assisted synthesis of ZnO nano-sheets and their application in UV-detector
TW201030994A (en) Two sided light absorbing type solar cell
Chiu et al. Study of a sandwich structure of transparent conducting oxide films prepared by electron beam evaporation at room temperature
TW201243869A (en) Transparent conductive film laminate and method for manufacturing the same, and thin film solar cell and method for manufacturing the same
Tippo et al. Influence of Co concentration on properties of NiO film by sparking under uniform magnetic field
Wang et al. Heterostructure engineering of NiO foam/In2S3 film for high-performance ethylene glycol gas sensors
Vásquez et al. Enhancement of CdS/CdTe solar cells by the interbuilding of a nanostructured Te-rich layer
Qian et al. Low work function of crystalline GeTe/Sb2Te3 superlattice-like films induced by Te dangling bonds
CN109192794B (en) Preparation method of back plate enhanced interdigital electrode diamond ultraviolet detector
Lee et al. Effect of rapid thermal annealing on the structural and electrical properties of solid ZnO/NiO heterojunctions prepared by a chemical solution process
TW201044597A (en) Optoelectronic semiconductor, conductor, and insulator with multi-component high-entropy alloy oxides and the design method thereof
Kang et al. Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films
JP2011174167A5 (en)
TW201236168A (en) Transparent conductive film laminate and method for manufacturing the same, and thin film solar cell and method for manufacturing the same
Wang et al. Highly response gas sensor based the Au-ZnO films processed by combining magnetron sputtering and Ar plasma treatment
Li et al. Room-temperature processed high-quality SnO2 films by oxygen plasma activated e-beam evaporation
Xia et al. Enhanced surface photovoltaic properties of TiO2 nanowires doped by Ag nanoparticles

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees