TW201044104A - Camera module - Google Patents

Camera module Download PDF

Info

Publication number
TW201044104A
TW201044104A TW98118292A TW98118292A TW201044104A TW 201044104 A TW201044104 A TW 201044104A TW 98118292 A TW98118292 A TW 98118292A TW 98118292 A TW98118292 A TW 98118292A TW 201044104 A TW201044104 A TW 201044104A
Authority
TW
Taiwan
Prior art keywords
electromagnet
camera module
magnetic
coil
control unit
Prior art date
Application number
TW98118292A
Other languages
Chinese (zh)
Other versions
TWI448814B (en
Inventor
Yu-Chien Huang
Tai-Hsu Chou
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW098118292A priority Critical patent/TWI448814B/en
Publication of TW201044104A publication Critical patent/TW201044104A/en
Application granted granted Critical
Publication of TWI448814B publication Critical patent/TWI448814B/en

Links

Abstract

A camera module includes a control unit, and from the object side to the image side of the camera module further includes a transparent container allowing light to pass through, an image sensor and an electromagnet assembly. A transparent magnetic fluid is filled in the container and includes a liquid transparent carrier and a plurality of magnetic particles coated with a surfactant dispersed in the liquid transparent carrier. The electromagnet assembly includes a first ring-shaped electromagnet and a first coil twining surrounding the first electromagnet. When the control unit electrifies the first coil, a magnetic field is generated by the first electromagnet and adsorbs the magnetic particles to form an aperture. When the control unit controls the first coil out of electricity, the magnetic field disappears and the magnetic particles is dispersed in the liquid transparent carrier equably. Thereby, the camera module can change the aperture.

Description

201044104 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種應用於光學成像領域之相機模組。 【先前技 [0002] 光圈係成像裝置之相機模組上用以控制進入成像裝置内 之感光元件(如感光膠片 '影像感測器等)上之進光量, 該光圈之大小決定透過鏡頭進入感光元件之進光量,且 光圈值越大表示進入感光元件之光線越多。惟,有些時 候,如拍攝較大景深需要足夠之進光量,反而不需要光 圈,因此,如何需要在有光圈與無光圈之間變換成為需 要解決之技術問題。 【發明内容】 [0003] 有繁於此,有必要提供一種能在有光圈與無光圈之間變 換之相機模組。 [0004] 一種相機模組,其包括一控制單元及沿從該相機模組之 物侧至像側方向依次排列之一透光腔體、一感光元件及 一電磁鐵組件。該腔體内充滿透明磁性流體。該電磁鐵 組件包括呈圓環狀之第一電磁鐵及纏繞在該第一電磁鐵 上且與該控制單元電性連接之第一線圈。該腔體包括一 物側表面及一與該物側表面相對之像側表面。該磁性流 體包括一透明載液及複數均勻分散在該載液内且由表面 活性劑包覆之磁性奈米微粒。該控制單元籍由控制該第 一線圈通電使該第一電磁鐵產生磁場以吸引該磁性奈米 微粒聚集至該腔體之像側表面上並構成一光圈;該控制 單元撤銷該第一線圈之電流使該第一電磁鐵產生之磁場 098118292 表單編號Α0101 第4頁/共17頁 0982031014-0 201044104 消失時,構成該光圈之磁性奈米微粒均勻分散在該載液 中。 [0005] 與先前技術相比,所述相機模組將大量由表面活性劑包 覆之磁性奈米微粒與透明載液構成之透明磁性流體_納 在透光腔體内,籍由控制單元控制纏繞在第—電磁鐵上 之第一線圈之通電與斷電’從而控制該第一電磁鐵產生 磁場’進而控制該大量磁性奈米微粒構成光圈或均句分 Ο [0006] [0007] 散在該載液中,使該相機模組能在有光圈與無光圈之間 變換。 〇 [0008] 【實施方式】 ! . . .. :. :. ... : :.... 下面將結合附圖,對本發明作進一步的詳細說明。 請一併參閱圖1及圖2,為本發明第一實施方式提供之相 機模組100。該相機模組100包括一個控制單元1〇及沿從 該相機模組100之物侧至像側方向依次排列之—個鏡頭2〇 、一個用於承載該鏡頭20之基座3G、一個透光腔體4〇、 一個感光元件5 0、一個用於電性連接該感光元件5 〇之電 路板60及一電磁鐵組件70。該透光腔體40、該感光元件 50、該電路板60及該電磁鐵組件70收容在該基座3〇内。 該控制單元10電性設置在該電路板60上。 098118292 鏡頭20包括一個鏡筒21、一個透鏡22、一個間隔環23及 一個濾光片24。該鏡筒21用於收容透鏡22、間隔環23及 濾光片24。該透鏡22用於匯聚被拍攝物體反射之光線以 在該感光元件50上形成影像。該間隔環23設置在透鏡22 與濾光片24之間’用於在透鏡22與濾光片24之間隔開一 定距離,防止二者接觸或碰撞而造成損壞。該濾光片2 4 表單編號Α0101 第5頁/共17頁 0982031014-0 201044104 設置於透鏡22靠近該感光元件50之一侧,用於截止某種 波段之光線之通過。該基座30籍由螺紋與鏡筒21耦合, 並將鏡筒21收容在内。 [0009] 該腔體40内充滿透明磁性流體41,且該腔體4〇包括一個 物側表面4 2、一個與該物側表面4 2相對之像側表面4 3及 一個垂直連接該物側表面42與該像侧表面43之一個側壁 45。優選地’該側壁45之形狀為環型。該物側表面42及 該像侧表面43係可透光之表面;而該側壁45之材質則以 不透光材料為佳。 [0010] 容納在該腔體40内之磁性流體41包括大量磁性奈米微粒 410及透明載液412。該磁性奈米微粒410由表面活性劑 包覆’其均勻分佈在該載液412申。該磁性奈米微粒41〇 可選用四氧化三鐵(Fe3〇4)、錳鈷鐵氧磁體(MnFe 〇、 2 4201044104 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a camera module applied to the field of optical imaging. [Previous technology [0002] The camera module of the aperture imaging device is used to control the amount of light entering the photosensitive element (such as the photographic film 'image sensor, etc.) entering the imaging device, and the size of the aperture determines the sensitivity to enter through the lens. The amount of light entering the component, and the larger the aperture value, the more light entering the photosensitive element. However, sometimes, if you take a large depth of field, you need enough light to enter, but you don't need a light circle. Therefore, how to change between aperture and no aperture becomes a technical problem that needs to be solved. SUMMARY OF THE INVENTION [0003] In view of this, it is necessary to provide a camera module that can be changed between an aperture and an aperture. [0004] A camera module includes a control unit and a light-transmitting cavity, a photosensitive element, and an electromagnet assembly arranged in sequence from the object side to the image side of the camera module. The chamber is filled with a transparent magnetic fluid. The electromagnet assembly includes a first electromagnet in the shape of a ring and a first coil wound on the first electromagnet and electrically connected to the control unit. The cavity includes an object side surface and an image side surface opposite the object side surface. The magnetic fluid comprises a transparent carrier liquid and a plurality of magnetic nanoparticle uniformly dispersed in the carrier liquid and coated with a surfactant. The control unit controls the first coil to energize to cause the first electromagnet to generate a magnetic field to attract the magnetic nanoparticle to concentrate on the image side surface of the cavity and constitute an aperture; the control unit cancels the first coil The current causes the magnetic field generated by the first electromagnet 098118292 Form No. Α0101 Page 4/17 page 0982031014-0 201044104 When disappearing, the magnetic nanoparticles constituting the aperture are uniformly dispersed in the carrier liquid. [0005] Compared with the prior art, the camera module combines a large amount of a transparent magnetic fluid composed of a surfactant-coated magnetic nanoparticle and a transparent carrier liquid into the light-transmitting cavity, and is controlled by a control unit. Energizing and de-energizing the first coil wound on the first electromagnet to control the first electromagnet to generate a magnetic field', thereby controlling the large amount of magnetic nanoparticle to constitute an aperture or a uniform sentence [0006] [0007] In the carrier liquid, the camera module can be changed between aperture and no aperture. [0008] [Embodiment] The present invention will be further described in detail below with reference to the accompanying drawings. Please refer to FIG. 1 and FIG. 2 together to provide a camera module 100 according to a first embodiment of the present invention. The camera module 100 includes a control unit 1 — and a lens 2 依次 arranged in order from the object side to the image side of the camera module 100 , a pedestal 3G for carrying the lens 20 , and a light transmission The cavity 4A, a photosensitive element 50, a circuit board 60 for electrically connecting the photosensitive element 5, and an electromagnet assembly 70. The light-transmissive cavity 40, the photosensitive element 50, the circuit board 60, and the electromagnet assembly 70 are housed in the base 3''. The control unit 10 is electrically disposed on the circuit board 60. 098118292 The lens 20 includes a lens barrel 21, a lens 22, a spacer ring 23, and a filter 24. The lens barrel 21 is for housing the lens 22, the spacer ring 23, and the filter 24. The lens 22 is for collecting light reflected by a subject to form an image on the photosensitive element 50. The spacer ring 23 is disposed between the lens 22 and the filter 24 for spacing a distance between the lens 22 and the filter 24 to prevent contact or collision between the two to cause damage. The filter 2 4 Form No. Α0101 Page 5 of 17 0982031014-0 201044104 is disposed on the side of the lens 22 adjacent to the photosensitive element 50 for turning off light of a certain wavelength band. The base 30 is coupled to the lens barrel 21 by a thread and houses the lens barrel 21. The cavity 40 is filled with a transparent magnetic fluid 41, and the cavity 4 includes an object side surface 4, an image side surface 43 opposite to the object side surface 42, and a vertical connection side. The surface 42 and one side wall 45 of the image side surface 43. Preferably, the side wall 45 is in the shape of a ring. The object side surface 42 and the image side surface 43 are light transmissive surfaces; and the side wall 45 is preferably made of an opaque material. [0010] The magnetic fluid 41 housed in the cavity 40 includes a plurality of magnetic nanoparticles 410 and a transparent carrier liquid 412. The magnetic nanoparticle 410 is coated with a surfactant which is uniformly distributed in the carrier liquid 412. The magnetic nanoparticle 41〇 can be selected from ferroferric oxide (Fe3〇4), manganese cobalt ferrite magnet (MnFe 〇, 2 4

CoFe2〇4)專磁性奈米微粒’其粒徑大小優選為1〇〜1〇〇奈 米。这磁性奈米微粒410在:該磁性流體41中之含量優選為 1〜4%。該載液412可選用水、矽油、乙醇、甲醇、環己烷 或正辛烧等透明液態物質。該表面活性劑可選用聚乙烯 醇、油酸、亞油酸或撖欖油等高分子材料。在本實施方 式中,§亥載液412為水,該表面活性劑為油酸。由於磁性 奈米微粒410—般由Fe3〇4、MnFe2〇4、CoFe2〇4等單晶所 構成,其不溶於水,因此需要在磁性奈米微粒41〇表面披 覆上一層親水性之表面活性劑,以使磁性奈米微粒41〇能 穩疋地分散在水中。在無外加磁場下,該磁性流體41無 自發性磁偶極。但當有磁場施加在該磁性流體41時,液 體中之磁性奈米微粒41 〇之磁矩會傾向沿着外加磁場方向 098118292 表單編號A0101 0982031014-0 201044104 Ο [0011] ’因而產生了磁偶極。而當外加磁場移除時由於磁性 奈米微粒4Η)受水分子熱擾動之作用,再度呈現出零磁偶 極,這現象即所謂之超順磁性(superparamagnet㈣ ;K刀子之熱擾動現象會加速磁性奈米微粒安定 之分散在水中’助機模組1_可配置有加熱元件47, 該加熱元件47可為電阻料。該加熱元件47可設置在該 腔體40之側壁45内,且該加熱元糾由該㈣單元_ 制加.,、、/、否進一步說明,該加熱元件47與該控制單元 1〇之%〖生連接可以籍由埋藏在該側壁45内《導線(圖未示 )連接。 [0012]Ο [0013] 098118292 該感光元件5〇可為電荷耦合赛,(Charge e〇up丨ed Device,CCD)感測器或互補金屬氧化物半導體 .; :-... (Complementary Metal-Oxide Semiconductor CMOS)感測器等。 該電磁鐵組件70包括呈圓環狀之電磁鐵71及纏繞在該電 磁鐵71上之線圈73。該線圈73與該控制單元1〇電性連接 ,並由該控制單元10控制該線圈73之通電與斷電。兮線 圈73通電時,該電磁鐵71產生磁場;該線圈73斷電時, 該電磁鐵71產生之磁場消失。進一步說明,該線圈73與 該控制單元10之電性連接可以籍由埋藏在該側壁45内之 導線(圖未示)連接。 請結合圖3,對物體進行拍攝前,從物側表面42 —側入射 至該腔體4〇内之光線,經過透明磁性流體41到達像側表 面4 3。該控制單元1 〇籍由控制該線圈7 3通電使該電磁鐵 71產生礤場以吸引該磁性奈米微粒410聚集至批μ λ 卞王腔體40之像 表單編號ΑΟίοι 第7頁/共17頁 0982031014-0 201044104 側表面43上構成一光圈49。可以理解,該光圈49之形狀 與該電磁鐵71之形狀相同,均呈圓環型。該控制單元10 撤銷該線圈7 3之電流使該電磁鐵71產生之磁場消失時, 構成該光圈49之磁性奈米微粒410均勻分散在該透明載液 412中。該控制單元10控制該加熱元件47產生熱量以加熱 磁性流體41,從而可加快磁性奈米微粒410退磁,使其更 快地均勻地分散在透明載液412中。可以理解,籍由設計 該控制單元10之運行程式就可以控制該加熱元件47與該 線圈73之通電順序及通電時間。 [0014] 綜上所述,對物體進行拍攝時,相機模組100具有兩種工 作狀態: [0015] (a)第一狀態,參見圖3,給纏繞在該電磁鐵71上之線圈 73供電,該電磁鐵71將產生一磁場,磁化分散在透明載 液412中之磁性奈米微粒410,從而使該磁性奈米微粒 410聚集至腔體40之像侧表面43上形成該光圈49。 [0016] (b)第二狀態,參見圖2,停止給纏繞在該電磁鐵71上之 線圈73供電,由於該電磁鐵71不產生磁場,所述腔體40 内之磁性奈米微粒410將立即退磁,當停止給線圈73供電 之時給加熱元件4 7供電,使加熱元件4 7產生熱量以加熱 磁性流體41,從而可加快磁性奈米微粒410退磁,使其更 快地均勻地分散在透明載液412中。 [0017] 所述相機模組1 0 0將大量由表面活性劑包覆之磁性奈米微 粒410與透明載液41 2構成之透明磁性流體41容納在透光 腔體40内,籍由控制單元10控制纏繞在電磁鐵71上之線 098118292 表單編號A0101 第8頁/共17頁 0982031014-0 201044104 圈73之通電與斷電,從而控制該電磁鐵71產生磁場,進 而控制該大量磁性奈米微粒410構成光圈49或均勻分散在 該載液412中,使該相機模組100能在有光圈49與無光圈 49之間變換,具有變換光圈49之功能。 [0018] 請參閱圖4,為本發明第二實施方式提供之相機模組100a 。該相機模組100a與第一實施方式提供之相機模組100之 區別在於.該相機模組1 0 0 a之電磁鐵組件7 0 a包括兩個直 徑不同並呈圓環型之第一電磁鐵71 a與第二電磁鐵71b及 兩個分別纏繞在該第一電磁鐵71 a與該第二電磁鐵71b上 之第一線圈73a與第二線圈73b,該第二電磁鐵71b收容 在該第一電磁鐵71a内且該第一電磁鐵7 la與該第二電磁 鐵71b同心設置;該相機模組100a之控制單元10a控制該 第 ~~線圈73a通電使弟一電磁鐵71 a產生磁場’該磁場構 成一光圈49a ;該控制單元控制該第二線圈73b通電使第 二電磁鐵7lb產生磁場,該磁場構成另一光圈49b。該光 圈49b收容在該光圈49a内,且該光圈49a與該光圈49b同 心設置,該光圈49a與該光圈49b構成多段光圈491。該 相機模組可以變換該多段光圈491。 [0019] 請參閱圖5,為本發明第三實施方式提供之相機模組100c 。該相機模組100c與第一實施方式提供之相機模組100相 比,該相機模組100之電磁鐵組件70c包括兩個呈圓環型 之第一電磁鐵71c與第二電磁鐵7Id及分別纏繞在該第一 電磁鐵71c、該第二電磁鐵71d上之第一線圈73c、第二 線圈73d。該第一電磁鐵71c與第一線圈73c在該相機模 組100c中之設置第一實施方式中之相機模組100之電磁鐵 098118292 表單編號A0101 第9頁/共17頁 0982031014-0 201044104 71與線圈73在該相機模組100中之設置相同,在此不再細 述。該第二電磁鐵71 d收容在該側壁45a内且與該侧壁 4 5 a同心設置。 [0020] 該控制單元10a控制該第一線圈73c之通電使該第一電磁 鐵71c產生磁場,此時由該磁場構成一光圈49c(如圖5中 之虛線所示)。該控制單元10a控制該第二線圈73d之通電 使該第二電磁鐵71 d產生磁場’此時由該磁場構成一光圈 49d。該光圈49c與該光圈49d直徑不同,因此,該相機 模組100c可改變光圈之直徑大小。進一步說明,該第一 線圈73c與該第二線圈73d不同時供電,從而該光圈49c 與該光圈49d不同時出現。該相機模組100c可變換直徑不 同之光圈49c與光圈49d。 [0021] 可以理解,第二實施方式提供之電磁鐵組件70a中之第二 電磁鐵71b及第二線圈73b還可以增加在第三實施方式提 供之電磁鐵組件70c中,使相應之光圈不僅實現變換功能 ,還實現直徑可變及多段功能。 [0022] 综上所述,本發明符合發明專利要件,爰依法提出專利 申請。惟,以上所述者僅為本發明之較佳實施方式,本 發明之範圍並不以上述實施方式為限,舉凡熟悉本案技 藝之人士援依本發明之精神所作之等效修飾或變化,皆 應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0023] 圖1為本發明第一實施方式提供之一種相機模組之截面示 意圖。 098118292 表單編號A0101 第10頁/共17頁 0982031014-0 201044104 [0024] 圖2為圖1中相機模組之狀態示意圖。 [0025] 圖3為圖1中相機模組之另一種狀態示意圖。 [0026] 圖4為本發明第二實施方式提供之一種相機模組之戴面示 意圖。 [0027] 圖5為本發明第三實施方式提供之一種相機模組之截面示 意圖。 【主要元件符號說明】 相機模組 100、100a、 控制單元 10 、 10a 、 100c 10c 鏡頭 20 鏡筒 21 透鏡 22 間隔環 23 濾光片 24 基座 30 腔體 40 磁性流體 41 物側表面 42 像側表面 43 側壁 45 ' 45a 加熱元件 47 感光元件 50 電路板 60 線圈 73 磁性奈米微粒 410 載液 412 多段光圈 491 電磁鐵組件 70 、 70a 、 光圈 49 、 49a 、 70c 49b 、 49c 、 49d 第一電磁鐵 71a 、 71c 第二電磁鐵 71b 、 71d 第一線圈 73a 、 73c 第二線圈 73b ' 73d 電磁鐵 71 表單編號A0101 第11頁/共17頁 0982031014-0 098118292The CoFe2〇4) specific magnetic nanoparticle' has a particle size of preferably 1 Å to 1 Å. The content of the magnetic nanoparticle 410 in the magnetic fluid 41 is preferably from 1 to 4%. The carrier liquid 412 can be selected from transparent liquid materials such as water, eucalyptus oil, ethanol, methanol, cyclohexane or octane. The surfactant may be selected from a polymer material such as polyvinyl alcohol, oleic acid, linoleic acid or eucalyptus oil. In the present embodiment, the solution liquid 412 is water and the surfactant is oleic acid. Since the magnetic nanoparticle 410 is generally composed of single crystals such as Fe3〇4, MnFe2〇4, and CoFe2〇4, it is insoluble in water, so it is necessary to coat the surface of the magnetic nanoparticle 41 with a hydrophilic surface active. The agent is such that the magnetic nanoparticle 41 is stably dispersed in water. The magnetic fluid 41 has no spontaneous magnetic dipole in the absence of an applied magnetic field. However, when a magnetic field is applied to the magnetic fluid 41, the magnetic moment of the magnetic nanoparticle 41 in the liquid tends to follow the direction of the applied magnetic field 098118292. Form No. A0101 0982031014-0 201044104 Ο [0011] 'There is a magnetic dipole . When the external magnetic field is removed, due to the thermal perturbation of the magnetic nanoparticles, the phenomenon of zero magnetic dipole appears again. This phenomenon is called superparamagnet (four); the thermal disturbance of the K knife accelerates the magnetic phenomenon. The nanoparticle is stabilized and dispersed in the water. The assisting device module 1_ can be configured with a heating element 47, which can be a resistive material. The heating element 47 can be disposed in the side wall 45 of the cavity 40, and the heating The element is further explained by the unit (4) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [0012] 098 098118292 The photosensitive element 5 〇 can be a charge coupled game, (Charge e〇up ed Device, CCD) sensor or a complementary metal oxide semiconductor.; :-... (Complementary Metal-Oxide Semiconductor (CMOS) sensor, etc. The electromagnet assembly 70 includes an annular electromagnet 71 and a coil 73 wound around the electromagnet 71. The coil 73 is electrically connected to the control unit 1 And the coil 73 is controlled by the control unit 10 When the coil 73 is energized, the electromagnet 71 generates a magnetic field; when the coil 73 is de-energized, the magnetic field generated by the electromagnet 71 disappears. Further, the coil 73 is electrically connected to the control unit 10. It can be connected by wires (not shown) buried in the side wall 45. Please refer to Fig. 3, before the object is photographed, the light incident from the side of the object side surface 42 into the cavity 4 is transparent magnetic The fluid 41 reaches the image side surface 43. The control unit 1 energizes the coil 73 to cause the electromagnet 71 to generate a field to attract the magnetic nanoparticle 410 to the image of the batch μ λ 卞 腔 cavity 40 Form No. ΑΟίοι Page 7 of 17 0982031014-0 201044104 The side surface 43 is formed with an aperture 49. It can be understood that the shape of the aperture 49 is the same as that of the electromagnet 71, and is annular. The control unit 10 When the current of the coil 73 is cancelled and the magnetic field generated by the electromagnet 71 disappears, the magnetic nanoparticles 410 constituting the aperture 49 are uniformly dispersed in the transparent carrier liquid 412. The control unit 10 controls the heating element 47 to generate heat. heating The fluid 41 can accelerate the demagnetization of the magnetic nanoparticle 410 to be evenly dispersed in the transparent carrier liquid 412. It can be understood that the heating element 47 can be controlled by designing the operating program of the control unit 10. The energization sequence and the energization time of the coil 73. [0014] In summary, when the object is photographed, the camera module 100 has two working states: [0015] (a) The first state, see FIG. 3, for winding The coil 73 on the electromagnet 71 supplies power, and the electromagnet 71 generates a magnetic field to magnetize the magnetic nanoparticle 410 dispersed in the transparent carrier liquid 412, thereby collecting the magnetic nanoparticle 410 to the image of the cavity 40. The aperture 49 is formed on the side surface 43. [0016] (b) The second state, referring to FIG. 2, stops supplying power to the coil 73 wound on the electromagnet 71. Since the electromagnet 71 does not generate a magnetic field, the magnetic nanoparticle 410 in the cavity 40 will Immediate demagnetization, when the power supply to the coil 73 is stopped, the heating element 47 is supplied with power, so that the heating element 47 generates heat to heat the magnetic fluid 41, thereby accelerating the demagnetization of the magnetic nanoparticle 410, so that it is evenly dispersed evenly in the transparent In the carrier liquid 412. [0017] The camera module 100 houses a large amount of a transparent magnetic fluid 41 composed of a surfactant-coated magnetic nanoparticle 410 and a transparent carrier liquid 41 2 in the light-transmitting cavity 40, by the control unit. 10 Controlling the wire wound on the electromagnet 71 098118292 Form No. A0101 Page 8 of 17 0982031014-0 201044104 The energization and de-energization of the coil 73 controls the electromagnet 71 to generate a magnetic field, thereby controlling the large amount of magnetic nanoparticle. The optical film 49 is formed or uniformly dispersed in the carrier liquid 412, so that the camera module 100 can be changed between the aperture 49 and the non-aperture 49, and has the function of changing the aperture 49. [0018] Please refer to FIG. 4, which is a camera module 100a according to a second embodiment of the present invention. The camera module 100a differs from the camera module 100 provided in the first embodiment in that the electromagnet assembly 70 a of the camera module 100 includes two first electromagnets having different diameters and being annular 71 a and the second electromagnet 71 b and the first coil 73 a and the second coil 73 b respectively wound around the first electromagnet 71 a and the second electromagnet 71 b, and the second electromagnet 71 b is accommodated in the first An electromagnet 71a is disposed concentrically with the second electromagnet 71b; the control unit 10a of the camera module 100a controls the energization of the first coil 73a to generate a magnetic field of the electromagnet 71a. The magnetic field constitutes an aperture 49a; the control unit controls the second coil 73b to energize to cause the second electromagnet 71b to generate a magnetic field which constitutes another aperture 49b. The aperture 49b is housed in the aperture 49a, and the aperture 49a is disposed concentrically with the aperture 49b. The aperture 49a and the aperture 49b constitute a plurality of apertures 491. The camera module can transform the multi-segment aperture 491. [0019] Please refer to FIG. 5, which is a camera module 100c according to a third embodiment of the present invention. Compared with the camera module 100 provided by the first embodiment, the camera module 100c includes two first electromagnets 71c and a second electromagnet 7Id in a ring shape and respectively The first coil 73c and the second coil 73d are wound around the first electromagnet 71c and the second electromagnet 71d. The first electromagnet 71c and the first coil 73c are disposed in the camera module 100c with the electromagnet 098118292 of the camera module 100 in the first embodiment. Form No. A0101, page 9 / page 17 0982031014-0 201044104 71 The arrangement of the coil 73 in the camera module 100 is the same and will not be described in detail herein. The second electromagnet 71d is housed in the side wall 45a and disposed concentrically with the side wall 45a. [0020] The control unit 10a controls the energization of the first coil 73c to cause the first electromagnetic iron 71c to generate a magnetic field, and at this time, the magnetic field constitutes an aperture 49c (shown by a broken line in FIG. 5). The control unit 10a controls the energization of the second coil 73d to cause the second electromagnet 71d to generate a magnetic field. At this time, the magnetic field constitutes an aperture 49d. The aperture 49c is different in diameter from the aperture 49d. Therefore, the camera module 100c can change the diameter of the aperture. Further, the first coil 73c and the second coil 73d are not supplied with power at the same time, so that the aperture 49c does not occur simultaneously with the aperture 49d. The camera module 100c can change the aperture 49c and the aperture 49d of different diameters. [0021] It can be understood that the second electromagnet 71b and the second coil 73b of the electromagnet assembly 70a provided by the second embodiment can also be added to the electromagnet assembly 70c provided in the third embodiment, so that the corresponding aperture is realized not only The transformation function also enables variable diameter and multi-segment functions. [0022] In summary, the present invention complies with the requirements of the invention patent, and submits a patent application according to law. However, the above description is only the preferred embodiment of the present invention, and the scope of the present invention is not limited to the above-described embodiments, and equivalent modifications or variations made by those skilled in the art in light of the spirit of the present invention are It should be covered by the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0023] FIG. 1 is a cross-sectional view of a camera module according to a first embodiment of the present invention. 098118292 Form No. A0101 Page 10 of 17 0982031014-0 201044104 [0024] FIG. 2 is a schematic diagram of the state of the camera module of FIG. 3 is a schematic view showing another state of the camera module of FIG. 1. 4 is a front view of a camera module according to a second embodiment of the present invention. 5 is a schematic cross-sectional view of a camera module according to a third embodiment of the present invention. [Description of main component symbols] Camera module 100, 100a, control unit 10, 10a, 100c 10c Lens 20 Lens barrel 21 Lens 22 Spacer ring 23 Filter 24 Base 30 Cavity 40 Magnetic fluid 41 Object side surface 42 Image side Surface 43 Side wall 45' 45a Heating element 47 Photosensitive element 50 Circuit board 60 Coil 73 Magnetic nanoparticle 410 Carrier liquid 412 Multi-segment aperture 491 Electromagnet assembly 70, 70a, Aperture 49, 49a, 70c 49b, 49c, 49d First electromagnet 71a, 71c Second electromagnet 71b, 71d First coil 73a, 73c Second coil 73b '73d Electromagnet 71 Form No. A0101 Page 11 of 17 0982031014-0 098118292

Claims (1)

201044104 七、申請專利範圍: 1 . 一種相機模組,其改良在於,其包括一控制單元及沿從該 相機模組之物側至像側方向依次排列之一透光腔體、一感 光元件及一電磁鐵組件,該腔體内充滿透明磁性流體,該 電磁鐵組件包括呈圓環狀之第一電磁鐵及纏繞在該第一電 磁鐵上且與該控制單元電性連接之第一線圈,該腔體包括 一物側表面及一與該物側表面相對之像側表面,該磁性流 體包括一透明載液及複數均勻分散在該透明載液内之磁性 奈米微粒,該控制單元籍由控制該第一線圈通電使該第一 電磁鐵產生磁場以吸引該磁性奈米微粒聚集至該腔體之像 侧表面上並構成一光圈,該控制單元撤銷該第一線圈之電 流使該第一電磁鐵產生之磁場消失時,構成該光圈之磁性 奈米微粒均勻分散在該透明載液中。 2 .如申請專利範圍第1項所述之相機模組,其中,該腔體還 包括一個垂直連接該物側表面與該像側表面之侧壁,該相 機模組還包括一收容在該側壁内之加熱元件以在該第一電 磁鐵產生之磁場消失時,加熱該磁性流體以加快該磁性奈 米微粒快速退磁而均勻分散在該透明載液中。 3 .如申請專利範圍第2項所述之相機模組,其中,該加熱元 件為電阻絲。 4 .如申請專利範圍第1項所述之相機模組,其中,該腔體還 包括一個垂直連接該物側表面與該像側表面之環形側壁, 該電磁鐵組件還包括一個收容在該環型側壁内且與該環型 側壁同心之呈圓環狀之第二電磁鐵及纏繞在該第二電磁鐵 上之第二線圈,該控制單元與該第二線圈電連接以控制第 098118292 表單編號A0101 第12頁/共17頁 0982031014-0 201044104 二線圈之通電與斷電。 5 .如申請專利範圍第1項所述之相機模組,其中,該磁性奈 米微粒之材質選自四氧化三鐵及錳鈷鐵氧磁體中之一種。 6 .如申請專利範圍第1項所述之相機模組,其中,該磁性奈 米微粒之重量比含量範圍為卜4%。 7 .如申請專利範圍第1項所述之相機模組,其中,該透明載 液選自水、石夕油、乙醇、曱醇、環己烧及正辛烧中之一種 〇 8 .如申請專利範圍第1項所述之相機模組,其中,該磁性流 & 體還包括表面活性劑,該表面活性劑自聚乙烯醇、油酸、 亞油酸及橄欖油中之一種。 9 .如申請專利範圍第1項所述之相機模組,其中,該電磁鐵 組件還包括一呈圓環狀之第二電磁鐵及分別纏繞在該第二 電磁鐵上之一第二線圈,且該第二電磁鐵與該第一電磁鐵 同心設置。 〇 0982031014-0 098118292 表單編號A0101 第13頁/共17頁201044104 VII. Patent application scope: 1. A camera module, which is improved in that it comprises a control unit and a light-transmitting cavity and a photosensitive element arranged in sequence from the object side to the image side of the camera module. An electromagnet assembly, the cavity is filled with a transparent magnetic fluid, and the electromagnet assembly includes a first electromagnet in a ring shape and a first coil wound on the first electromagnet and electrically connected to the control unit. The cavity includes an object side surface and an image side surface opposite to the object side surface, the magnetic fluid includes a transparent carrier liquid and a plurality of magnetic nano particles uniformly dispersed in the transparent carrier liquid, the control unit is Controlling the first coil to energize the first electromagnet to generate a magnetic field to attract the magnetic nanoparticle to concentrate on the image side surface of the cavity and forming an aperture, the control unit canceling the current of the first coil to make the first When the magnetic field generated by the electromagnet disappears, the magnetic nanoparticle constituting the aperture is uniformly dispersed in the transparent carrier liquid. 2. The camera module of claim 1, wherein the cavity further comprises a side wall perpendicularly connecting the object side surface and the image side surface, the camera module further comprising a housing on the side wall The heating element inside heats the magnetic fluid to accelerate the demagnetization of the magnetic nanoparticle to be uniformly dispersed in the transparent carrier liquid when the magnetic field generated by the first electromagnet disappears. 3. The camera module of claim 2, wherein the heating element is a resistance wire. 4. The camera module of claim 1, wherein the cavity further comprises an annular side wall perpendicularly connecting the object side surface and the image side surface, the electromagnet assembly further comprising a ring received in the ring a second electromagnet in the shape of a ring and concentric with the annular side wall and a second coil wound on the second electromagnet, the control unit being electrically connected to the second coil to control the form number 098118292 A0101 Page 12 of 17 0982031014-0 201044104 Power and power off of the two coils. 5. The camera module of claim 1, wherein the magnetic nanoparticle material is selected from the group consisting of triiron tetroxide and manganese cobalt ferrite. 6. The camera module of claim 1, wherein the magnetic nanoparticles have a weight ratio of 4%. 7. The camera module of claim 1, wherein the transparent carrier liquid is selected from the group consisting of water, daisy oil, ethanol, decyl alcohol, cyclohexane and octyl burning. The camera module of claim 1, wherein the magnetic flow & body further comprises a surfactant from one of polyvinyl alcohol, oleic acid, linoleic acid and olive oil. 9. The camera module of claim 1, wherein the electromagnet assembly further comprises a second electromagnet in the shape of a ring and a second coil wound on the second electromagnet, respectively. And the second electromagnet is disposed concentrically with the first electromagnet. 〇 0982031014-0 098118292 Form No. A0101 Page 13 of 17
TW098118292A 2009-06-03 2009-06-03 Camera module TWI448814B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098118292A TWI448814B (en) 2009-06-03 2009-06-03 Camera module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098118292A TWI448814B (en) 2009-06-03 2009-06-03 Camera module

Publications (2)

Publication Number Publication Date
TW201044104A true TW201044104A (en) 2010-12-16
TWI448814B TWI448814B (en) 2014-08-11

Family

ID=45001214

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098118292A TWI448814B (en) 2009-06-03 2009-06-03 Camera module

Country Status (1)

Country Link
TW (1) TWI448814B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998430A (en) * 2017-08-10 2020-04-10 索尼公司 Camera shake correction device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0115073D0 (en) * 2001-06-20 2001-08-15 1 Ltd Camera lens positioning using an electro-active device
TWI385477B (en) * 2006-10-11 2013-02-11 Hon Hai Prec Ind Co Ltd Image pickup apparatus
TWI411861B (en) * 2007-11-09 2013-10-11 Hon Hai Prec Ind Co Ltd Lens module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998430A (en) * 2017-08-10 2020-04-10 索尼公司 Camera shake correction device
US11212445B2 (en) 2017-08-10 2021-12-28 Sony Corporation Camera shake correction device

Also Published As

Publication number Publication date
TWI448814B (en) 2014-08-11

Similar Documents

Publication Publication Date Title
US20080252960A1 (en) Optical Element
CN104903788B (en) Electric light aperture device
US20080198440A1 (en) Active reflective polarizer and magnetic display panel comprising the same
CN101902568B (en) Camera module
EP3022485B1 (en) Coherent light waveguide illumination system with speckle noise reducer
WO2011086257A2 (en) Fluidic actuator and display device having fluidic actuators
TW201044104A (en) Camera module
CN101162349B (en) Image forming apparatus
US3876288A (en) Light controlling device
TW200807165A (en) Radiation generating device, lithographic apparatus, device manufacturing method and device manufactured thereby
Koch et al. Smart surfaces: Magnetically switchable light diffraction through actuation of superparamagnetic plate‐like microrods by dynamic magnetic stray field landscapes
Yan et al. Stereopsis‐Inspired 3D Visual Imaging System Based on 2D Ruddlesden–Popper Perovskite
JPS63235778A (en) Solenoid valve device
US3910687A (en) Light control device
CN111786530A (en) High efficiency voice coil loudspeaker voice coil driver and deformable mirror
US20070286597A1 (en) Magnetic fluid adjustable optical iris
TWI253508B (en) Optical system with magnetorheological fluid
JP2007174222A (en) Camera module
TW200532717A (en) Transformer and lamp driving system using the same
TWI385477B (en) Image pickup apparatus
US11614364B2 (en) Long-wave infrared detecting element, long-wave infrared detecting element array structure, long-wave infrared temperature detecting device, and thermal imaging device
TWI474350B (en) Proportional electromagnet device
US709837A (en) Electrically-controlled optical appliance.
JP2006208662A (en) Liquid-reflecting mirror, illumination apparatus using the same and reflecting telescope using the liquid-reflecting mirror
TWM451563U (en) Lightfiltering switcher for camera lens

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees