TW201044022A - Diffusion sheet, light control unit, and light source unit - Google Patents

Diffusion sheet, light control unit, and light source unit Download PDF

Info

Publication number
TW201044022A
TW201044022A TW099106677A TW99106677A TW201044022A TW 201044022 A TW201044022 A TW 201044022A TW 099106677 A TW099106677 A TW 099106677A TW 99106677 A TW99106677 A TW 99106677A TW 201044022 A TW201044022 A TW 201044022A
Authority
TW
Taiwan
Prior art keywords
sheet
diffusion
light source
light
aspect ratio
Prior art date
Application number
TW099106677A
Other languages
Chinese (zh)
Inventor
Kotaro Oda
Takayuki Kuroda
Masako Goto
Yousuke Hata
Naoki Taniguchi
Original Assignee
Asahi Chemical Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009055635A external-priority patent/JP2010210828A/en
Application filed by Asahi Chemical Ind filed Critical Asahi Chemical Ind
Publication of TW201044022A publication Critical patent/TW201044022A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0263Diffusing elements; Afocal elements characterised by the diffusing properties with positional variation of the diffusing properties, e.g. gradient or patterned diffuser
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Abstract

Provided is a diffusion sheet which can reduce uneven brightness and in which light incident upon a sheet surface at a right angle is emitted at a diffusion angle which periodically varies in a predetermined direction in a sheet surface. In a diffusion angle distribution diagram in which the abscissa represents relative positions in the sheet surface in the predetermined direction and the ordinate represents the diffusion angles at the relative positions in the sheet surface, there are a plurality of peak values of the diffusion angle and bottom values of the diffusion angle, and the arithmetic average value of the diffusion angles between the adjacent peak values and bottom values is greater than the arithmetic average value of the diffusion angles at all points distributed between the adjacent peak values and bottom values.

Description

201044022 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種用於液晶顯示裴置等之背面照明 (back lighting)的擴散片材、光線控制單元及光源單元。 【先前技術】 當則,液晶顯示裝置被利用於行動電話、PDA終端、數 位相機、電視機、個人電腦用顯示器、筆記型個人電腦等 廣泛之領域。在液晶顯示裝置中,例如於液晶顯示面板之 〇201044022 VI. Description of the Invention: The present invention relates to a diffusion sheet, a light control unit, and a light source unit for back lighting of a liquid crystal display device or the like. [Prior Art] When the liquid crystal display device is used in a wide range of fields such as mobile phones, PDA terminals, digital cameras, televisions, personal computer displays, and notebook personal computers. In a liquid crystal display device, for example, a liquid crystal display panel

背後配置如背光單元之類的光源單元,並將來自該光源單 元之光供給至液晶顯示面板,藉此顯示圖像。為了容易觀 看該顯示圖像,要求用於此種液晶顯示裝置之光源單元對 液晶顯示面板不僅要供給均勻之光’而且要求供給儘可能 夕的光。?卩’要求光源單元具有光擴散性優異且可獲得高 亮度之光學特性。 於先前之光源單元中,例如,為了使人射至液晶顯示面 板之光均句分布於整個面板,採用對導光板或擴散板賦予 凹凸形狀之方法。作為賦予上述形狀之方法,有利用模且 對樹脂進行射出成形之方法,或藉由鑽石刀具(dia_dA light source unit such as a backlight unit is disposed behind the backlight unit, and light from the light source unit is supplied to the liquid crystal display panel, thereby displaying an image. In order to easily view the display image, it is required that the light source unit for such a liquid crystal display device not only supplies uniform light to the liquid crystal display panel but also requires supply of light as much as possible. ? The light source unit is required to have excellent optical diffusibility and high optical characteristics. In the conventional light source unit, for example, in order to distribute light to a liquid crystal display panel over the entire panel, a method of imparting a concave-convex shape to the light guide plate or the diffusion plate is employed. As a method of imparting the above shape, there is a method of using a mold and performing injection molding of a resin, or a diamond cutter (dia_d)

Made)在輥上加卫凹凸結構,並利料進行_成形之方 法。 ’上述機械性的凹凸形成方法存在有 =用高的問題。並且’上述凹凸形成方法中還存在以 + ’程度之結構即為極限,提高形狀之均勻 ♦易。對此’揭示出—種發明,其係藉由雷射束之 146177.doc 201044022 光斑(speckle)而將凹凸形狀記錄於感光性媒體上,製造圖 案轉印用之模具,並使用該模具在直下型大型液晶顯示裝 置用之導光板表面形成凹凸,製成全像導光板(專利文獻 1,圖 41)。 [先行技術文獻] [專利文獻] [專利文獻1]日本專利特開2001-23422號公報 【發明内容】 [發明所欲解決之問題] 然而’近年來’液晶顯示裝置之薄型化正在發展,光源 與用以使該光源光擴散之光學片材(全像導光體等)之間的 距離變短。又,為了降低成本及降低消耗電力,亦採用削 減光源單元之光源數之方法。此處,與先前之光源相比, 光源之間距(p)與光源-光學片材間距離(h)之比(p/h)越大, 亦即,h越小(圖27⑷之h,)及/或p越大(圖27(b)之p,),則背 光之焭度不均會越顯著。然而,以專利文獻丨所揭示之先 前方法無法充分減輕亮度不均,從而無法應對液晶顯示I 置之薄型化、光源數之削減。 本發明係鑑於上述情形而完成者,其目的在於提供—種 可減輕亮度不均之擴散片材及光線控制單元。 [解決問題之技術手段] 本發明之擴散片材之特徵在於:其係使光線垂直入射至 片材面時之出射光之擴散角度沿著上述片材面内之特定之 方向進行週期性變化者,且在將上述較之方向上之上述 146177.d〇, 201044022 月材面内之相對位置描繪於橫軸、將上述片材面内之相對 位置處之擴散角度描繪於縱軸的擴散角度分布圖 I複:個的上述擴散角度之峰值與複數個的上述擴散角度 算術平均值係大於上、十.ΓΓ1㈣散角度之 八 係上述相鄰之上科值與上述谷值之間所 分布之所有點處的擴散角度之算術平均值。 ❹ ❹ 本發明之擴散片材之特徵在於:其係使光線垂直入射至 片材面時之出射光之擴散角度沿著上述片材面内之特定之 方向進行週期性變化者,且在將上述特定之方向上之上述 片材面内之相對位置描繪於橫軸、將上述片材面内之相對 位置處之擴散角度描緣於縱轴的擴散角度分布圖中,於— 個同擴散角度區域包含複數個峰值。 在本發明之擴散片材中,上述高擴散角度區域内的相鄰 之峰值間之擴散角度分布宜為直線狀。 在本發明之擴散片材中,上述高擴散角度區域内的相鄰 峰值間之擴散角度分布宜為向下凸出之曲線狀、或曲線 與直線之混合形狀。 本發明之擴散片材之特徵在於:其係使光線垂直入射至 片材面時之出射光之擴散角度沿著上述片材面内之特定之 方向進行週期性變化者,且在將上述特定之方向上之上述 片材面内之相對位置描繪於橫轴、將上述片材面内之相對 位置處之擴散角度描綠於縱軸的擴散角度分布圖中,存在 有述擴散角度之谷值’並且包含上述谷值之低擴散角度 區域内之擴散角度分布為以上述谷值作為極小值之向下凸 146177.doc 201044022 出的曲線狀。 本發明之擴散片材中,較好的是,週期性地交替存在有 上述擴散角度之峰值與上述擴散角度之谷值,且相鄰之上 述峰值與上述谷值之兩點處的擴散角度之算術平均值係大 於上述相鄰之上述峰值與上述谷值之間所分布之所有點處 的擴散角度之算術平均值,並且含有:擴散角度之分布包 述峰值且具有向上凸出之曲線形狀的第一區間、及擴 散角度之分布包含上述谷值且具有向下凸出之曲線形狀的 第二區間。 本發明之擴散片材中,於上述擴散角度分布圖中,整個 區域内之擴散光之擴散角度宜係在〇1。以上、12〇。以下之 範圍内。 孚發明之擴散片材中 度之最小值宜為0.1。以上、40。以下 本發明之擴散片材中, ψ上述擴政角度之最大值與最小4 之差宜為40。以上' 80。以下。 本發明之擴韵;Μ # & ,、^Made) The embossed structure is reinforced on the roll and the _ forming method is facilitated. The above-mentioned mechanical unevenness forming method has a problem of high use. Further, the above-mentioned unevenness forming method also has a structure of a degree of +', which is a limit, and the uniformity of the shape is improved. In this regard, a invention is disclosed in which a concave-convex shape is recorded on a photosensitive medium by a speckle of a laser beam 146177.doc 201044022, and a mold for pattern transfer is produced, and the mold is used in a straight line. A surface of the light guide plate for a large-sized liquid crystal display device is formed with irregularities to form a holographic light guide plate (Patent Document 1, Fig. 41). [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2001-23422 [Draft of the Invention] [Problems to be Solved by the Invention] However, the thinning of liquid crystal display devices in recent years is progressing, and light sources are being developed. The distance between the optical sheet (the hologram light guide or the like) for diffusing the light of the light source is shortened. Further, in order to reduce the cost and reduce the power consumption, a method of reducing the number of light sources of the light source unit is also employed. Here, the ratio (p/h) of the distance between the light source (p) and the distance between the light source and the optical sheet (h) is larger as compared with the previous light source, that is, the smaller h is (h of FIG. 27(4)). And / or p is larger (p of Figure 27 (b)), the more uneven the brightness of the backlight will be. However, the prior art disclosed in the patent document does not sufficiently reduce the unevenness in brightness, and it is impossible to cope with the reduction in the thickness of the liquid crystal display I and the reduction in the number of light sources. The present invention has been made in view of the above circumstances, and an object thereof is to provide a diffusion sheet and a light control unit which can reduce uneven brightness. [Technical means for solving the problem] The diffusion sheet of the present invention is characterized in that it is such that the diffusion angle of the outgoing light when the light is incident perpendicularly to the sheet surface periodically changes along a specific direction in the plane of the sheet. And the relative position in the above-mentioned 146177.d〇, 201044022, the horizontal position is plotted on the horizontal axis, and the diffusion angle at the relative position in the sheet surface is plotted on the vertical axis. The sum of the above-mentioned diffusion angles and the plurality of the above-mentioned diffusion angles are larger than the upper, ten. ΓΓ 1 (four) scattered angles, and all of the above-mentioned adjacent upper values are distributed with the above-mentioned valley values. The arithmetic mean of the diffusion angle at the point.扩散 ❹ The diffusion sheet of the present invention is characterized in that it is such that the diffusion angle of the outgoing light when the light is incident perpendicularly to the sheet surface periodically changes along a specific direction in the plane of the sheet, and The relative position in the plane of the above-mentioned sheet in a specific direction is plotted on the horizontal axis, and the diffusion angle at the relative position in the plane of the sheet is plotted on the diffusion angle distribution map of the vertical axis, in the same diffusion angle region. Contains multiple peaks. In the diffusion sheet of the present invention, the diffusion angle distribution between adjacent peaks in the high diffusion angle region is preferably linear. In the diffusion sheet of the present invention, the diffusion angle distribution between adjacent peaks in the high diffusion angle region is preferably a downwardly convex curve or a mixed shape of a curve and a straight line. The diffusion sheet of the present invention is characterized in that the diffusion angle of the emitted light when the light is incident perpendicularly to the sheet surface is periodically changed along a specific direction in the plane of the sheet, and the specific The relative position in the plane of the sheet in the direction is plotted on the horizontal axis, and the diffusion angle at the relative position in the plane of the sheet is plotted on the vertical axis. The valley value of the diffusion angle is present. And the diffusion angle distribution in the low diffusion angle region including the above-mentioned valley value is a curved shape of the downward convexity 146177.doc 201044022 which is the minimum value of the above-mentioned valley value. In the diffusion sheet of the present invention, it is preferable that the peak value of the diffusion angle and the valley value of the diffusion angle are alternately periodically, and the diffusion angle between the adjacent peak and the valley at the two points is periodically The arithmetic mean value is greater than the arithmetic mean of the diffusion angles at all points distributed between the adjacent peaks and the valleys, and includes: the distribution of the diffusion angles is a peak and has an upwardly convex curve shape. The distribution of the first interval and the diffusion angle includes the above-described valley value and has a second interval of a downwardly convex curve shape. In the diffusion sheet of the present invention, in the above diffusion angle distribution map, the diffusion angle of the diffused light in the entire region is preferably 〇1. Above, 12〇. Within the scope below. The minimum of the diffusion sheet of the invention is preferably 0.1. Above, 40. In the following diffusion sheet of the present invention, the difference between the maximum value and the minimum 4 of the above-mentioned expansion angle is preferably 40. Above '80. the following. The rhyme of the present invention; Μ # & , , ^

^ V擴散角度宜係藉由形成於J 这擴散片材面之凹凸結構而產生者。 本發明之擴散片材 π - ^ 特徵在於.其係使設於片材面之Ε 凸結構之縱橫比沿著 性變化者,且在將h / 之特定之方向進行週势 字上述特定之方向上之上 對位置描繪於橫軸、 相 ,t I上述片材面内之相對位置上之鄉錯 比描繪於縱軸的縱橫T位置上之緃損 橫比之峰值與複數個V 存在有複數個的上述縱 ,上述縱橫比之谷值,且相鄰之上述 146177.doc 201044022 峰值與上述谷值之間的縱橫比之算術平均值係大於上述相 鄰2述峰值與上述谷值之間所分布之所有點處的縱橫比 - 之鼻術平均值〇 : 本發明之擴散片材之特徵在於:其係使設於片材面之凹 .&结構之縱橫比沿著上述片材面内之特定之方向進行週期 !·生I化者,且在將上述特定之方向上之上述片材面内之相 對位置描繪於橫軸、將上述片材面内之相對位置上之縱橫 时讀於縱軸的縱橫比分布圖中,於—個高縱橫比區域包 ^ 含複數個峰值。 本發明之擴散片絲ψ,μ、+、_ _ ” 上逸南縱+頁比區域内的相鄰之峰 值間之縱橫比分布宜為直線狀。 . 本發明之擴散片材中’上述高縱橫比區域内的相鄰之峰 • I間之縱橫比分布宜為向下凸出之曲線狀、或曲線與直線 之混合形狀。 本發明之擴散片材之特徵在於:其係使設.於片材面之凹 〇 &結構之縱橫比沿著上述片材面内之料之方向進行週期 性變化者’且在將上述特定之方向上之上述片材面内之相 對位置也繪於寺頁轴、將上述片材面内之相對位置上之縱橫 • &描緣於縱軸的縱橫比分布圖中,存在有上述縱橫比之谷 .值並匕3上述谷值之低縱橫比區域内t縱橫比分布為 . 以上述夺值作為極小值之向下凸出的曲線狀。 • 本發明之擴散片材中’較好的是,週期性地交替存在有 上述縱&比为布之蜂值與上述縱橫比分布之谷值,且相鄰 之上述峰值與上述谷值之兩點處的縱橫比分布之算術平均 146177.doc 201044022 值係大於上述相鄰之上述蜂值與上述谷值之間所分布之所 有點處的縱橫比分布之算術平均值,並且含有:縱橫比分 布包3上述峰值且具有向上凸出之曲線形狀的第一區間、 及縱橫比分布包含上述谷值且具有向下凸出之曲線形狀的 弟-區間。 本發明之擴散片材宜係具有如下形狀:隨著上述凹凸結 構之高度之變化,上述縱橫比會發生變化。 本發明之擴散片材宜係具有如下形狀:隨著上述凹凸結 構之間距之變化,上述縱橫比會發生變化。 本發明之擴散片材中,上述凹凸結構宜係使用由干涉曝 光(interference exposure)產生之光斑圖案所形成。 本發明之光源單元宜為包含兩個以上之光源、及配設於 上述光源上方之上述擴散片材。 本發明之光源單元宜包含至少兩個光源、配設於上述光 源下方且使來自上述光源之光發生反射之反射片材、及配 設於上述光源上方之上述擴散片材。 本發明之光源單元宜包含至少兩個光源、配設於上述光 源下方且使來自上述光源之光發生反射之反射片材、配設 於上述光源上方且使來自上述光源之光發生擴散之擴散 板、及配設於上述擴散板上方之上述擴散片材。 本發明之光源單元中,上述光源宜為線狀光源。 本發明之光源單元中,上述光源宜為點狀光源。 本發明之光源單元中,較好的是上述擴散片材之擴散角 度分布之週期、與上述擴散片材之入光面上之照度分布之 146177.doc 201044022 週期係大致相等。 本發明之光源單元宜包含:配置於上述擴散片材與光源 之間、且内部含有擴散劑之擴散板;及配置於上述光源下 方之反射片材。 本發明之光源單元宜包含配置於上述擴散片材上方之透 鏡片材。 本發明之光源單元宜包含配置於上述擴散片材上方之稜 鏡片材。 本發明之光源單元宜包含配置於上述擴散片材上方之反 射型偏光片材。 本發明之光源單元宜包含表面形成有由複數之透鏡所構 成之透鏡部之光學片材,且於上述光學片材之表面側配置 有上述擴散片材。 本發明之光源單元中,較好的是,上述光學片材之上述 透鏡部係由複數之單位透鏡排列所構成,且上述單位透鏡 之底面形狀為具有各向異性之形狀。 本發明之光源單元中,上述單位透鏡之底面形狀宜為橢 圓形或長方形。 本發明之光源單元中,上述單位透鏡宜為扁豆狀透鏡 (lenticular lens)或稜鏡條列。 本發明之光源單元中,較好的是,上述光學片材之上述 透鏡部係由複數之單位透鏡排列所構成,且上述單位透鏡 之底面形狀為具有各向同之形狀。 本發明之光源單元中,上述單位透鏡之底面形狀宜為圓 146177.doc 201044022 形、正方形、正六角形。 本發明之錢、單元中,上述單位透鏡宜為微透鏡或微稜 鏡。 本七月之光源早7〇中’上述光學片材之上述透鏡部宜係 由底面形狀為具有各向異性之形狀之透鏡、及底面形狀為 具有各向同性之形狀之透鏡排列所構成。 本發明之液晶顯示裝置宜係包含液晶顯示面板、及 供給至上述液晶顯示面板之以上記載之光源單元。 本發明之域控制單元之龍在於:其係包含··光學片 材,該光學片材含有使來自光源之光進行入光之入光面、 及使自上述入光面所入射之光進行出光之出光面,且於表 面形成有由複數之透鏡所構成之透鏡部;以及擴散片材, ^擴散片材係在將光線垂直入射至上述光學片材之片材面 時,可使擴散角度沿著上述片材面内之特定之 = 期性變化。 门進订週 本發明之光線控制單元之特徵在於:其係包含 材,該光W材含有使來自光源之光進行人光之 及使自上述入光面所入射之光進行出光之出光面,且:表 面形成有由複數之透鏡所構成之透鏡部;以及擴散片材, 峨片材係在將光線垂直入射至上述光學片材之片材面 時™於片材面之凹凸結構之縱橫比沿著上述片^ 内之特疋之方向進行週期性變化。 本發明之光線控制單元中,於上述光學片材之上述表面 側宜配置有上述擴散片材。 31表面 146177.doc 201044022 本發明之光線控制單元中,較好的是,上述光學片材之 上述透鏡部係由複數之單位透鏡排列所構成,且上述單位 • 透鏡之底面形狀為具有各向異性者。 .本發明之光線控制單元中,上述單位透鏡之底面形狀宜 為橢圓形或長方形。 本發明之光線控制單元中,上述單位透鏡宜為扁豆狀透 鏡或稜鏡條列。 本發明之光線控制單元中,較好的是,上述光學片材之 上述透鏡部係由複數之單位透鏡排列所構成,且上述單位 透鏡之底面形狀係具有各向同性之形狀。 本發明之光線控制單元中,上述單位透鏡之底面形狀宜 • 為圓形、正方形、正六角形。 本發明之光線控制單元中,上述單位透鏡宜為微透鏡或 微稜鏡。 本發明之光線控制單元中,上述光學片材之上述透鏡部 〇 I係由底面形狀為具有各向異性之形狀之透鏡、及底面形 狀為具有各向同性之形狀之透鏡排列所構成。 本發明之光線控制單元中,上述擴散片材之擴散角度宜 係在0.1。以上、120。以下之範圍内。 本發明之光線控制單元中’上述擴散角度宜係藉由形成 • 於上述擴散片材表面之凹凸結構而產生。 •本發明之光線控制單元中,上述凹凸結構宜係使用由干 涉曝光產生之光斑圖案所形成。 本發明之光源單元之特徵在於:其係包含兩個以上之光 146177.doc • 11 - 201044022 源、及配設於上述光源上方之上述光線控制單元。 本發明之光源單兀中,較好的是使上述擴散片材之擴散 角度分布之週期、與上述擴散片材之入光面上之照度分布 之週期大致相等。 本發明之光源單元宜包含配置於上述光源下方之反射片 材。 本發明之光源單元宜包含配置於上述擴散片材上方之稜 鏡片材。 本發明之光源單s宜包含配置於上述擴散片材上方之反 射型偏光片材。 本發明之液晶顯示裝置之特徵在於:其係包含液晶顯示 面板、及將光供給至上述液晶顯示面板之上述光源單元。 [發明之效果] 藉由本發明之擴散片材,可實現—種能夠減輕亮度不均 之擴散片材。 根據本發明之光線控制單元,其係包含:光學片材,續 光學片材含有使來自光源之光進行人光之人光面、及使自/ 光面所人射之光進行出光之出光面,且於表面形成 複數之透鏡所構成之透鏡部;以及擴散片材,該擴散 片材係在將光線垂直入射至 放μ « * 町王上述先學片材之片材面時,可 使擴散角度沿著上述片材面 ^ 之特疋之方向進行週期性變 ,於上述擴散片材係配置於該光學片材之形 透鏡之面側,因此藉由氐 有上述 匕藉由兩張片材所具有之擴散性 果,可將光供給至光源盥光 協同效 ,、尤/原之間的區域,從而可減少亮 146177.doc -12- 201044022 度不均。 【實施方式】 • 以下’參照隨附圖式,詳細說明本發明之實施形態。 . (實施形態1) 在實施形態1中,對本發明之擴散片材之一例加以說 •明。 圖2(a)、(b)係表不光源之投影區域與光源之間的投影區 域的圖。光源係配設有複數個(至少兩個)。作為光源,如 〇 圖2(a)所示’可使用冷陰極管(CCFL,Cold Cathode Fluorescent Lamp)101等之線光源,或者如圖2(b)所示可 使用 LEDdight-emitting diode’ 發光二極體)1〇2、雷射等 • 之點光源。於圖2(a)、(b)中’參照符號1〇3係表示光源正 上方之投影區域,參照符號1〇4係表*光源間之投影區 域再者,於圖2(a)、(b)中,例示出將整個區域分割成光 源正上方之投影區域與光源間之投影區域該兩部分,但亦 ❹彳分割為設有光源正上方之投影區域、光源間之投影區域 、卜區戈又,光源間之投影區域亦可與光源正上方之 投影區域不相鄰,只要包含位於接近之光源之中間的區域 即可。 本實施形態1中所揭示之擴散片材之特徵在於:使光線 +直射至片材面時之出射光之擴散角度沿著上述片材面 Θ之特疋之方向進行週期性變化。在將該片材配設於光源 2方之凊形時,較好的是使片材之擴散角度之週期、與包 含光源正上方區域及光源間區域彡HMitH ^ 146177.doc ·13· 201044022 藉此,可降低亮度不均。 考X月中所„胃擴散角度」,係指穿透光強度衰減至 峰值強度之半之角(半值角)的2倍的角度(FWHM : Full W祕Half Maxlmum(半高寬))(參照圖8(川。該擴散角度 °藉由以下方法求出.例如利用心⑽股份有限公司製造 之Photon ’自擴散片材之凹凸面之法線方向來測定相對於 自凹凸面側入射之光之穿透光強度的角度分布。此處,所 明擴散片材之法線方向,係指圖8(b)所示之方向。 又作為本發明之擴散片材,可使用不受測定方向影響 而能獲得大致相同之擴散角度的各向同性擴散片材、及受 測定方向影響而會導致擴散角度不同之各向異性擴散片材 之雙方所謂各向異性擴散片材,例如係在正交之兩個方 向上測定擴散角度時擴散角度不同之擴散片材。 圖1係表示實施形態1中所揭示之擴散片材中之擴散角度 (或縱橫比)之分布的圖。該擴散片材係使光線垂直入射至 片材面時之出射光之擴散角度(或縱橫比)沿著上述片材面 内之特定之方向進行週期性變化者。於圖丨所示之擴散角 度(或縱橫比)分布圖中,將片材面内之特定之方向上之上 述片材面内之相對位置描繪於橫軸,並將上述片材面内之 相對位置處之擴散角度(或縱橫比)描繪於縱軸。在實施形 態1之擴散片材中’存在有複數個的擴散角度(或縱橫比)之 峰值與複數個的擴散角度(或縱橫比)之谷值(圖1中顯示i 個)。所謂峰值,係指於擴散角度(或縱橫比)之分布之1個 週期中最高的擴散角度(或縱橫比)之值,所謂谷值,係指 146177.doc -14· 201044022 於擴散角度(或縱横比)之分布u個週期中最低的擴散角度 (或縱橫比)之值。 . 實施形態1所揭示之擴散片材之特徵在於:在上述擴散 ,肖度分布圖中,相鄰之峰值與谷值之間的擴散角度之算術 . +均值係大於上述相鄰之峰值與谷值之間所分布之所有點 處的擴散角度之算術平均值。此處所述之「所有點」,係 指所有的測定點。 只要相鄰之峰值與谷值之算術平均值係大於相鄰之峰值 與谷值之間所分布的擴散角度之算術平均值,則擴散角度 之變化既可為並非嚴密的直線狀、曲線狀、階梯狀,亦可 為因擴散角度之測定不均等而自直線狀、曲線狀、階梯狀 • 肖偏離之形狀、或直線與曲線之混合形狀。當自光源正上 • #區域向光源間區域推移時,相對於其位置之入光角度會 直線性地增大。考慮到在入光角度越大時,自擴散片材向 下反射之光及相對於擴散片材之法線方向斜向偏離之光會 ❹ #增大’故隨著自光源上區域向光源間區域推移,應擴散 之光之量並非直線狀、而是更進一步地大幅衰減。亦即, 只要係相鄰之峰值與谷值之算術平均值大於相鄰之峰值盘 #值之間所分布之擴散角度之算術平均值的擴散片材,則 . 可根據應擴散之光之衰減而降低亮度不均。圖3⑷〜圖3(f) .巾’例示出擴散角度以直線狀、曲線狀、直線與曲線之混 . 合形狀而變化之擴散片材。 關於片材内之各區域之擴散角度,可將擴散肖度相對較 高之區域配置於光源正上方,亦可將擴散角度相㈣低之 146177.doc -15- 201044022 區域配置於光源正上方。又,各區域間之擴散角度宜平滑 地變化。尤其當具有於高擴散角度區域包含連續之複數個 峰值之形狀時,自降低亮度不均之觀點而言為佳,上述形 狀宜為直線狀或向下凸出之曲線狀、或者直線與向下凸出 之曲線之混合形狀(圖3⑷、⑴)。於光源為線光源時此種 圖案特別有效。又,當存在有擴散角度之谷值,並且包含 上述谷值之低擴散角度區域内之擴散角度分布係以上述谷 值作為極小值之向下凸出的曲線狀者(圖3⑷〜⑷)時,自降 低亮度不均之觀點而言亦較佳。圖3(〇中,含有:擴散角 度之刀布匕3上述峰值且具有向上凸出之曲線形狀的第一 區間及擴散角度之分布包含上述谷值且具有向下凸出之 曲線形狀的第二區間’於光源為點光源時此種圖案特別有 效。 此處所明呵擴散角度區域,係指峰值之最大值與谷值 之取小值之异術平均值以上的角度區域所謂低擴散角度 區域’係指峰值之最大值與谷值之最小值之算術平均值以 下的角度區域。根據本發明中之峰值與谷值,算術平均值 係可利用基於上述定義之擴散角度之分布而計算者。再 者,於-週期+,峰值、谷值並不限定於一個,亦可存在 複數個相同的值。例如,於圖1中,於-個高擴散角度區 域存在有複數個(兩個)峰值。 又所明相鄰之峰值與谷值之間所分布之擴散角度,係 指圖1之虛線區間部分所存在之擴散角度。即,係指當存 在有複數個峰值時,與相鄰之谷值對應之位置、及與峰值 146177.doc -16 - 201044022 對應之位置之間的區間内所存在之擴散角度。 又’所謂「週期性」變化’係、指對被重複之圖案彼此進 峰,若相當於相同重複之峰值及賦予峰值之週期之起 .始點的變位、以及谷值及賦予谷值之週期之起始點的變位 分別係在所有重複圖案之平均值之士丨5 %以内(宜為丨〇 %以 内,較佳者為5%以内)的範圍内,則為進行週期性變化 者。表示上述週期性之方向於擴散片材面内至少存在一個 即可’關於擴散片材面,可藉由製作擴散角度之分布而特 〇 定。 本發明中,關於被重複之複數個峰值之擴散角度,測定 後之所有峰值之擴散角度之差宜為5。以内,較佳者為3。以 内,最佳者為2。以内。對於谷值亦相同。 圖5〜7係例示本發明之擴散片材之高擴散角度(高縱橫 比)區域與低擴散角度(低縱橫比)區域之配置的圖。圖5、6 係表示高擴散角度(高縱橫比)區域2〇1與低擴散角度(低縱 Q 橫比)區域202在上述擴散片材面内之X軸方向上週期性地 存在,即,擴散角度(縱橫比)如圖3、4所示進行週期性變 化此種圖案適宜用於線光源,但視需要,對點光源亦可 使用。又,圖7係高擴散角度(高縱橫比)區域2〇3與低擴散 角度(低縱橫比)區域204在上述片材面内之x軸方向及y轴方 • 向上週期性地存在之圖,其亦在擴散片材之X軸或y轴方向 • 之剖面上如圖3、4所示擴散角度(縱橫比)在推移。此種圖 案適宜用於點光源,但對線光源亦可使用。 於該擴散片材中,若考慮降低面内之整個區域内之亮度 146177.doc •17- 201044022 不均’則自擴散片材出光之擴散光之擴散角度宜為01。以 上、120。以下之範圍。又,為了獲得較高之正面亮度,上 述擴散角度適宜被控制在0.1。以上、1 〇〇。以下之範圍内, 更適宜被控制在〇. 1 °以上、80。以下之範圍内。特別是在與 表面形成有稜鏡條列之光學片材併用之情形時,將上述擴 散片材形成為上述擴散角度在〇1〇以上、8〇。以下之範圍 内’自消除亮度不均及提高亮度之觀點而言,上述擴散角 度差宜較大。又,擴散角度之最小值適宜被控制在〇 ι。以 ❹ 上、40。以下之範圍内。自消除亮度不均之觀點而言,擴 散角度之最小值更適宜被控制在01。以上、3〇。以下,最好 是被控制在G.1。以上、2〇。以下。但是,在不會對光學特性 造成影響之部分,例如在形成製品時無需光學功能之最端 部,或者在不會對光學特性造成影響之程度之微小的區域 内’擴散角度亦可為上述範圍之外。^ V diffusion angle is preferably produced by the concave-convex structure formed on the diffused sheet surface of J. The diffusion sheet of the present invention is characterized in that it is such that the aspect ratio of the convex structure provided on the sheet surface is changed along the slope, and the specific direction of the peripheral word is made in the specific direction of h / The upper and lower positions are plotted on the horizontal axis and the phase, and the relative position of the relative position in the sheet surface of t I is larger than the peak value of the loss ratio and the complex number V at the vertical and horizontal T positions of the vertical axis. The longitudinal value of the above aspect ratio, and the arithmetic mean value of the aspect ratio between the peak value of the adjacent 146177.doc 201044022 and the above-mentioned valley value is greater than the above-mentioned adjacent peak value and the above-mentioned valley value. Aspect ratio at all points of the distribution - the average value of the nose 〇: The diffusion sheet of the present invention is characterized in that the aspect ratio of the structure provided on the surface of the sheet is along the plane of the sheet In the specific direction, the cycle is performed, and the relative position in the plane of the sheet in the specific direction is plotted on the horizontal axis, and the vertical and horizontal positions in the relative positions in the sheet surface are read. In the aspect ratio distribution diagram of the vertical axis, in a high aspect ratio region ^ Package containing a plurality of peaks. In the diffusion sheet of the present invention, the aspect ratio distribution between the adjacent peaks in the area of the south and the longitudinal direction of the μ, +, _ _ ” is preferably linear. The diffusion sheet of the present invention has the above-mentioned high The adjacent peaks in the aspect ratio region • The aspect ratio distribution between I and I should preferably be a curved shape that is convex downward or a mixed shape of a curved line and a straight line. The diffusion sheet of the present invention is characterized in that it is designed to be The aspect ratio of the concave surface of the sheet surface is periodically changed along the direction of the material in the surface of the sheet, and the relative position in the plane of the sheet in the specific direction is also painted on the temple. The page axis, the aspect ratio in the relative position in the plane of the sheet, and the aspect ratio distribution in the vertical axis, there is a valley value of the aspect ratio and a low aspect ratio region of the valley value The inside t aspect ratio distribution is a downwardly convex curve having the above-mentioned robbed value as a minimum value. • In the diffusion sheet of the present invention, it is preferable that the above-mentioned longitudinal & ratio is periodically alternately present. The value of the bee and the valley of the above aspect ratio distribution, and the adjacent peaks and The arithmetic mean of the aspect ratio distribution at two points of the valley value 146177.doc 201044022 The value is greater than the arithmetic mean of the aspect ratio distribution at all points between the above-mentioned adjacent bee values and the above-mentioned valley values, and The first section in which the aspect ratio distribution package 3 has the above-mentioned peak value and has a curved shape which is convex upward, and the aspect ratio in which the aspect ratio distribution includes the above-described valley value and has a downwardly convex curve shape. The diffusion sheet of the present invention. Preferably, the aspect ratio is changed as the height of the uneven structure changes, and the diffusion sheet of the present invention preferably has a shape in which the aspect ratio occurs depending on the distance between the uneven structures. In the diffusion sheet of the present invention, the uneven structure is preferably formed by using a spot pattern generated by interference exposure. The light source unit of the present invention preferably includes two or more light sources and is disposed on the light source. The above-mentioned diffusing sheet. The light source unit of the present invention preferably includes at least two light sources, disposed under the light source and from a reflecting sheet that reflects light of the light source and the diffusing sheet disposed above the light source. The light source unit of the present invention preferably includes at least two light sources disposed under the light source and generating light from the light source a reflective reflecting sheet, a diffusing plate disposed above the light source and diffusing light from the light source, and the diffusing sheet disposed above the diffusing plate. In the light source unit of the present invention, the light source is preferably In the light source unit of the present invention, the light source is preferably a point light source. In the light source unit of the present invention, preferably, the period of the diffusion angle distribution of the diffusion sheet and the light incident surface of the diffusion sheet are The light source unit of the present invention preferably includes: a diffusing plate disposed between the diffusing sheet and the light source and containing a diffusing agent therein; and a reflection disposed under the light source Sheet. Preferably, the light source unit of the present invention comprises a lens material disposed above the diffusion sheet. Preferably, the light source unit of the present invention comprises a prismatic material disposed above the diffusion sheet. The light source unit of the present invention preferably includes a reflective polarizer disposed above the diffusion sheet. The light source unit of the present invention preferably includes an optical sheet having a lens portion formed of a plurality of lenses formed on its surface, and the diffusion sheet is disposed on the surface side of the optical sheet. In the light source unit of the present invention, it is preferable that the lens portion of the optical sheet is composed of a plurality of unit lens arrays, and a shape of a bottom surface of the unit lens has an anisotropic shape. In the light source unit of the present invention, the shape of the bottom surface of the unit lens is preferably an ellipse or a rectangle. In the light source unit of the present invention, the unit lens is preferably a lenticular lens or a string. In the light source unit of the present invention, it is preferable that the lens portion of the optical sheet is composed of a plurality of unit lens arrays, and the bottom surface of the unit lens has a shape of a different shape. In the light source unit of the present invention, the shape of the bottom surface of the unit lens is preferably a circle 146177.doc 201044022 shape, a square shape, a regular hexagon shape. In the money and unit of the present invention, the unit lens is preferably a microlens or a micro-mirror. In the light source of the seventh embodiment, the lens portion of the optical sheet is preferably composed of a lens having an anisotropic shape on the bottom surface and a lens array having a shape having an isotropic shape on the bottom surface. The liquid crystal display device of the present invention preferably includes a liquid crystal display panel and a light source unit described above supplied to the liquid crystal display panel. The dragon of the domain control unit of the present invention comprises: an optical sheet comprising a light incident surface for allowing light from the light source to enter the light, and light emitted from the light incident surface to emit light. a light-emitting surface on which a lens portion composed of a plurality of lenses is formed; and a diffusion sheet, which is a diffusion angle along which a light is incident perpendicularly to a sheet surface of the optical sheet A specific change in the surface of the above sheet. The light control unit of the present invention is characterized in that it comprises a material comprising a light-emitting surface for causing light from a light source to emit light and light incident from the light-incident surface. And: a lens portion formed of a plurality of lenses is formed on the surface; and a diffusion sheet is used to form an aspect ratio of the uneven structure of the TM surface on the sheet surface when the light is incident perpendicularly to the sheet surface of the optical sheet The periodic variation is made along the direction of the features in the above-mentioned sheet. In the light control unit of the present invention, the diffusion sheet is preferably disposed on the surface side of the optical sheet. 31 surface 146177.doc 201044022 In the light control unit of the present invention, preferably, the lens portion of the optical sheet is composed of a plurality of unit lens arrays, and the bottom surface of the unit lens is anisotropic. By. In the light control unit of the present invention, the shape of the bottom surface of the unit lens is preferably elliptical or rectangular. In the light control unit of the present invention, the unit lens is preferably a lenticular lens or a string. In the light control unit of the present invention, preferably, the lens portion of the optical sheet is composed of a plurality of unit lens arrays, and the bottom surface of the unit lens has an isotropic shape. In the light control unit of the present invention, the shape of the bottom surface of the unit lens is preferably a circular shape, a square shape, or a regular hexagon shape. In the light control unit of the present invention, the unit lens is preferably a microlens or a microlens. In the light control unit of the present invention, the lens portion 〇 I of the optical sheet is composed of a lens having an anisotropic shape on the bottom surface and a lens array having an isotropic shape on the bottom surface. In the light control unit of the present invention, the diffusion angle of the diffusion sheet is preferably 0.1. Above, 120. Within the scope below. In the light control unit of the present invention, the above-mentioned diffusion angle is preferably produced by forming the uneven structure on the surface of the diffusion sheet. In the light control unit of the present invention, the uneven structure is preferably formed using a pattern of spots generated by interference exposure. The light source unit of the present invention is characterized in that it comprises two or more light sources 146177.doc • 11 - 201044022 and the light control unit disposed above the light source. In the light source unit of the present invention, it is preferred that the period of the diffusion angle distribution of the diffusion sheet is substantially equal to the period of the illuminance distribution on the light incident surface of the diffusion sheet. The light source unit of the present invention preferably includes a reflective sheet disposed under the light source. Preferably, the light source unit of the present invention comprises a prismatic material disposed above the diffusion sheet. The light source unit s of the present invention preferably includes a reflective polarizing sheet disposed above the diffusion sheet. A liquid crystal display device of the present invention is characterized in that it comprises a liquid crystal display panel and the light source unit that supplies light to the liquid crystal display panel. [Effects of the Invention] According to the diffusion sheet of the present invention, a diffusion sheet capable of reducing unevenness in brightness can be realized. The light control unit according to the present invention comprises: an optical sheet comprising a human face that causes the light from the light source to emit human light, and a light exit surface that emits light emitted from the light surface. And a lens portion formed by forming a plurality of lenses on the surface; and a diffusion sheet which is diffused when the light is incident perpendicularly to the sheet surface of the above-mentioned precursor sheet of the film The angle is periodically changed along the direction of the sheet surface of the sheet, and the diffusion sheet is disposed on the surface side of the lens of the optical sheet, so that the sheet is separated by the sheet. The diffusing fruit has the effect of supplying light to the light source to achieve synergistic effect, especially between the original area, thereby reducing the unevenness of the brightness 146177.doc -12- 201044022 degrees. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. (Embodiment 1) In Embodiment 1, an example of a diffusion sheet of the present invention will be described. 2(a) and 2(b) are diagrams showing a projection area between a projection area of a light source and a light source. The light source is provided with a plurality of (at least two). As a light source, as shown in Fig. 2(a), a line source such as a Cold Cathode Fluorescent Lamp (CCFL) can be used, or an LED dight-emitting diode can be used as shown in Fig. 2(b). Polar body light source such as 1〇2, laser, etc. In Figs. 2(a) and 2(b), reference numeral 1〇3 denotes a projection area directly above the light source, and reference numeral 1〇4 denotes a projection area between the light sources and again, in Fig. 2(a), ( In b), the whole area is divided into two parts, a projection area directly above the light source and a projection area between the light sources, but is also divided into a projection area directly above the light source, a projection area between the light sources, and a region. Ge, the projection area between the light sources may not be adjacent to the projection area directly above the light source, as long as it includes an area located in the middle of the light source. The diffusion sheet disclosed in the first embodiment is characterized in that the diffusion angle of the outgoing light when the light is transmitted directly to the sheet surface is periodically changed in the direction of the characteristics of the sheet surface. When the sheet is disposed on the side of the light source 2, it is preferable to make the period of the diffusion angle of the sheet, and the area directly above the light source and the area between the light sources 彡HMitH ^ 146177.doc ·13· 201044022 This can reduce uneven brightness. In the X month, the "stomach diffusion angle" refers to the angle at which the transmitted light intensity is attenuated to half the angle of the peak intensity (half-value angle) (FWHM: Full W Secret Halflmum). Referring to Fig. 8, the diffusion angle is obtained by the following method. For example, the light incident from the concave-convex side is measured by the normal direction of the uneven surface of the photon' self-diffused sheet manufactured by Shin (10) Co., Ltd. The angular distribution of the transmitted light intensity. Here, the normal direction of the diffused sheet refers to the direction shown in Fig. 8(b). Further, as the diffusion sheet of the present invention, it can be used without being affected by the measurement direction. An isotropic diffusion sheet which can obtain substantially the same diffusion angle and an anisotropic diffusion sheet which is affected by the measurement direction and which causes an anisotropic diffusion sheet having a different diffusion angle is, for example, orthogonal. A diffusion sheet having a different diffusion angle when the diffusion angle is measured in two directions. Fig. 1 is a view showing a distribution of a diffusion angle (or an aspect ratio) in the diffusion sheet disclosed in Embodiment 1. The light is incident perpendicularly to The diffusion angle (or aspect ratio) of the outgoing light when the surface is periodically changed along a specific direction in the plane of the sheet. In the diffusion angle (or aspect ratio) distribution diagram shown in FIG. The relative position in the plane of the sheet in a specific direction in the plane is plotted on the horizontal axis, and the diffusion angle (or aspect ratio) at the relative position in the sheet surface is plotted on the vertical axis. In the diffusion sheet, there is a valley value of a plurality of diffusion angles (or aspect ratios) and a plurality of diffusion angles (or aspect ratios) (i is shown in Fig. 1). The so-called peak refers to diffusion. The value of the highest diffusion angle (or aspect ratio) in one cycle of the distribution of the angle (or aspect ratio), the so-called valley value, refers to the distribution of the diffusion angle (or aspect ratio) of 146177.doc -14· 201044022 The value of the lowest diffusion angle (or aspect ratio) in the cycle. The diffusion sheet disclosed in Embodiment 1 is characterized by the diffusion angle between adjacent peaks and valleys in the above-mentioned diffusion, the degree distribution diagram. Arithmetic. + Mean The arithmetic mean of the diffusion angles at all points distributed between the adjacent peaks and valleys. "All points" as used herein refers to all measured points. As long as adjacent peaks and valleys The arithmetic mean value is greater than the arithmetic mean of the diffusion angles between the adjacent peaks and valleys, and the change in the diffusion angle may be either a strictly linear, curved, stepped or diffuse diffusion. The angle is measured unevenly from a linear shape, a curved shape, a stepped shape, a shape of a slanting deviation, or a mixed shape of a straight line and a curved line. When the light source is directly on the upper side of the light source, the position is shifted relative to the position of the light source. The light angle will increase linearly. Considering that the light reflected downward from the diffusion sheet and the light obliquely deviated from the normal direction of the diffusion sheet will increase when the angle of entrance is increased. As the area from the upper region of the light source moves toward the region between the light sources, the amount of light that should be diffused is not linear, but is further greatly attenuated. That is, as long as the arithmetic mean of the adjacent peaks and valleys is greater than the arithmetic mean of the diffusion angles distributed between adjacent peaks # values, the attenuation according to the light to be diffused may be used. And reduce the uneven brightness. Fig. 3 (4) to Fig. 3 (f). The towel's example shows a diffusion sheet in which the diffusion angle is linear, curved, straight, and curved. Regarding the diffusion angle of each region in the sheet, a region having a relatively high diffusion vortex may be disposed directly above the light source, or a region having a lower diffusion angle phase (4) may be disposed directly above the light source. Further, the diffusion angle between the regions should be smoothly changed. In particular, when the shape having a high diffusion angle region includes a plurality of continuous peaks, it is preferable from the viewpoint of reducing unevenness in brightness, and the shape is preferably a straight line or a downward convex curve, or a straight line and a downward line. The mixed shape of the convex curve (Fig. 3 (4), (1)). This pattern is particularly effective when the light source is a line source. Further, when there is a valley value of the diffusion angle, and the diffusion angle distribution in the low diffusion angle region including the above-described valley value is a downward convex curve with the above-mentioned bottom value as a minimum value (Fig. 3 (4) to (4)) It is also preferable from the viewpoint of reducing uneven brightness. Figure 3 (in the middle, the first section containing the above-mentioned peak of the diffusion angle of the knives 3 and having the upwardly convex curve shape and the distribution of the diffusion angles including the above-mentioned valley value and having a downwardly convex curve shape This pattern is particularly effective when the light source is a point source. The area of the diffusion angle here refers to the angle between the peak value and the valley value, which is smaller than the average value of the mean value. Refers to an angular region below the arithmetic mean of the maximum value of the peak and the minimum value of the valley. According to the peak and valley values in the present invention, the arithmetic mean can be calculated using the distribution of the diffusion angle based on the above definition. The period - the period +, the peak value, and the bottom value are not limited to one, and there may be a plurality of identical values. For example, in Fig. 1, there are a plurality of (two) peaks in a high diffusion angle region. It is also indicated that the diffusion angle between the adjacent peak and the valley value refers to the diffusion angle existing in the dotted line portion of Fig. 1. That is, when there are multiple peaks, adjacent to The diffusion angle between the position corresponding to the valley value and the position corresponding to the peak 146177.doc -16 - 201044022. The so-called "periodic" change means that the pattern is repeated with each other. If it is equivalent to the peak of the same repetition and the period from which the peak is given, the displacement of the starting point, and the displacement of the valley and the starting point of the period giving the valley value are respectively the average of all the repeating patterns. Within 5 % (preferably within 丨〇%, preferably within 5%), it is a periodic change. It means that the direction of the above-mentioned periodicity exists at least one in the plane of the diffusion sheet. The diffusion sheet surface can be specifically determined by the distribution of the diffusion angle. In the present invention, the difference between the diffusion angles of the plurality of peaks to be repeated and the measured peak angles after the measurement is preferably 5 or less. The best is less than 3. The best one is 2. The same is true for the bottom value. Figures 5 to 7 illustrate the high diffusion angle (high aspect ratio) region and the low diffusion angle (low aspect ratio) of the diffusion sheet of the present invention. Area Fig. 5 and Fig. 6 show that the high diffusion angle (high aspect ratio) region 2〇1 and the low diffusion angle (low longitudinal Q transverse ratio) region 202 are periodically in the X-axis direction in the plane of the above-mentioned diffusion sheet. Existence, that is, the diffusion angle (aspect ratio) is periodically changed as shown in Figs. 3 and 4. This pattern is suitable for a line source, but may be used for a point source as needed. Further, Fig. 7 is a high diffusion angle ( The high aspect ratio region 2〇3 and the low diffusion angle (low aspect ratio) region 204 are periodically present in the x-axis direction and the y-axis direction of the sheet surface, and are also present in the diffusion sheet X. The diffusion angle (aspect ratio) of the axis or y-axis direction is shown in Figures 3 and 4. This pattern is suitable for point light sources, but it can also be used for line sources. Consider reducing the brightness in the entire area of the surface 146177.doc •17- 201044022 Uneven 'The diffusion angle of the diffused light from the diffused sheet should be 01. Above, 120. The following range. Further, in order to obtain a high front luminance, the above diffusion angle is suitably controlled to be 0.1. Above, 1 〇〇. Within the following ranges, it is more suitable to be controlled at °. 1 ° or higher, 80. Within the scope below. In particular, in the case where an optical sheet having a string line formed on the surface is used in combination, the above-mentioned diffusion sheet is formed so that the diffusion angle is 〇1 〇 or more and 8 〇. In the following range, the above diffusion angle difference should be large from the viewpoint of eliminating uneven brightness and increasing brightness. Also, the minimum value of the diffusion angle is suitably controlled at 〇 ι. Take ❹, 40. Within the scope below. From the standpoint of eliminating uneven brightness, the minimum value of the diffusion angle is more preferably controlled to be 01. Above, 3〇. Below, it is best to be controlled at G.1. Above, 2〇. the following. However, the portion where the optical characteristics are not affected, for example, the end portion of the optical function is not required to form the article, or the diffusion angle can be the above range in a region where the degree of the optical property is not affected. Outside.

之'宜為40。以上、80。以下。使上述擴散角度差為“ 上,藉此可獲得充分之擴散特性之差,從而可應對光$ 元之薄型4匕或光源數削減等情形時的較高的亮度不均$ 之要求。X ’使上述擴散角度差為8〇。以下,以抑 於上述片材面内之位置變化之擴散特性的變化量,藉d 精細地控制上述擴散角分布,因此消除亮度不均之二 高。由此,可將擴散特性之差設定於較佳之範圍内,名 可獲得亮度不均較少之光源Ή。特別是在以液晶顯7 置之溥型化或光源數之削減為目的時,會顯示較高的; 146177.doc -18- 201044022 不均消除性能,故適宜使用β 此種擴散角度可藉由在擴散片材之表面具有許多的凹凸 • 結構而實現。所謂凹凸結構,例如係於表面設有許多突起 .•冑之結構。突起部之形狀可為大致圓錐狀、大致球狀、大 致橢圓體狀、大致爲豆狀透鏡狀、大致拋物線狀中之任一 者,各突起部可規則地排列,亦可不規則地排列。又突 起部間亦可由連續之曲面連接。而且,亦可較佳地使用由 $續之曲面來連接不規則之凹凸的模擬無規結構。作為該 _擬無規結構’以藉由非平面光斑而具特徵之微細的三維 結構為佳。 藉由非平面光斑而具特徵之三維結構係適用⑨機械加工 中較為困難之10 ’以下之微細的凹凸結構之形成。特別 是使用非平面光斑形成凹凸之方法係在對應於擴散片材上 之區域而改變擴散角度時較為適合的方法。又,亦可容易 地形成如微透鏡般之各向同性之形狀、如扁豆狀透鏡般之 0 各:異性之形狀。自抑制疊紋等之觀點而言,該凹凸結構 之高度及間距宜為不規則。 本發明之擴散片材中’只要面内之某處存在排列有如上 所述之凹凸形狀而顯示使光擴散之功能的部分即可,亦可 存在片材表面變平滑之部分。 本發明之擴散片材中’該凹凸結構之縱橫比與抑制亮产 不均有較大關係。此處,所謂縱橫比,係指將凹凸結構: 高度除以間距所得之值。又,所謂間距,係指自某凹凸社 構之頂部至其相鄰之凹凸結構之頂部為止的距離。亦即,。 146177.doc -19- 201044022 该凹凸結構之高度及間距與抑制亮度不均有較大關係。 本發明之特徵在於:在將片材面内之特定之方向上之上 达片材面内之相對位置描繪於橫轴、將上述片材面内之相 對位置上之縱橫比描繪於縱軸的縱橫比分布圖中,存在有 複數個的上述縱橫比之峰值與複數個的上述縱橫比之谷 值,且相鄰之上述峰值與上述谷值之間的擴散角度之算術 平均值係大於上述相鄰之上述峰值與上述谷值之間所分布 之所有點處的|橫比之算術平均值。此處所述之「所有 點」,係指所有的測定點。 只要相鄰之峰值與谷值之算術平均值係大於相鄰之峰值 與谷值之間所分布之縱橫比之算術平均值,則縱橫比之變 化既可為並非嚴密的直線狀、曲線狀、階梯狀,亦可為因 縱橫比之測定不均等而自直線狀、曲餘、階梯狀稱偏離 之形狀、或直線與曲線之混合形狀。圖4(a)〜圖4(f)中例 示出縱橫比以直線狀、曲線狀、直線與曲線之混合形狀而 變化之擴散片材。 關於片材内之各區域之縱橫比,可將縱橫比相對較高之 區域配置於光源正上方,亦可將縱橫比相對較低之區域配 置於光源正上方。又,各區域間之凹凸高度宜平滑地變 化尤其S形狀為於面縱橫比區域包含連續之複數個峰值 時,自降低党度不均之觀點而言為佳,上述形狀宜為直線 狀或向下凸出之曲線狀、或者直線與向下凸出之曲線之混 合形狀(圖4(d)、(f))。於光源為線光源時此種圖案特別有 效。又,當存在有縱橫比之谷值,並且包含上述谷值之低 146177.doc -20- 201044022 縱橫比區域内之縱橫比分布係以上述谷值作為極小值之向 下凸出的曲線狀者(圖4(a)〜(e))時,自降低亮度不均之觀點 而言亦較佳。圖4(c)中,含有:縱橫比之分布包含上述峰 值且具有向上凸出之曲線形狀之第一區間、及縱橫比之分 布包含上述谷值且具有向下凸出之曲線形狀之第二區間, 於光源為點光源時此種圖案特別有效。 此處,所言胃高縱橫比區域,係I示峰值之最大值與谷值'It should be 40. Above, 80. the following. By making the difference in the diffusion angle "up", it is possible to obtain a difference in sufficient diffusion characteristics, and it is possible to cope with the requirement of a high luminance unevenness $ when the light amount is thin or the number of light sources is reduced. The difference in the diffusion angle is set to be 8 Å. Hereinafter, the diffusion angle distribution is finely controlled by d in order to suppress the change in the diffusion characteristics of the positional change in the sheet surface, thereby eliminating the second unevenness in luminance. The difference between the diffusion characteristics can be set within a preferred range, and the name can be obtained as a light source with less uneven brightness. Especially when the liquid crystal display is used for the purpose of reduction or the number of light sources is reduced, High; 146177.doc -18- 201044022 Non-uniform elimination performance, so it is suitable to use β. This diffusion angle can be achieved by having many irregularities on the surface of the diffusion sheet. The so-called concave and convex structure, for example, is designed on the surface. There are a plurality of protrusions. The structure of the protrusions may be any of a substantially conical shape, a substantially spherical shape, a substantially ellipsoidal shape, a substantially bean-like lens shape, and a substantially parabolic shape, and the protrusions may be regularly row The columns may also be arranged irregularly. The protrusions may also be connected by continuous curved surfaces. Moreover, it is also preferable to use a simulated random structure in which irregular surfaces are connected by irregular surfaces. The structure 'is preferably a fine three-dimensional structure characterized by a non-planar spot. The three-dimensional structure characterized by a non-planar spot is suitable for the formation of a fine uneven structure of 10 ' or less which is difficult in machining. In particular, a method of forming irregularities using a non-planar spot is a method suitable for changing a diffusion angle corresponding to a region on a diffusion sheet. Further, an isotropic shape such as a lenticule, such as a lentils, can be easily formed. The shape of the lens is 0. The shape of the opposite sex. The height and the pitch of the uneven structure are preferably irregular from the viewpoint of suppressing the embossing, etc. In the diffusion sheet of the present invention, as long as there is a certain arrangement in the surface The portion which exhibits the function of diffusing light as described above may be used, and the surface of the sheet may be smoothed. In the diffusion sheet of the present invention, the concave-convex junction The aspect ratio of the structure is not related to the suppression of bright production. Here, the aspect ratio refers to the value obtained by dividing the height of the concave and convex structure by the height. The so-called spacing refers to the top of a certain concave and convex structure. The distance to the top of the adjacent concave-convex structure, that is, 146177.doc -19- 201044022 The height and pitch of the concave-convex structure are not greatly related to the suppression of brightness. The present invention is characterized in that the sheet is The relative position in the specific direction of the material surface in the plane of the sheet is plotted on the horizontal axis, and the aspect ratio in the relative position in the sheet surface is plotted on the vertical axis in the aspect ratio distribution map. The peak value of the aspect ratio and the plurality of the aspect ratios, and the arithmetic mean value of the diffusion angle between the adjacent peak value and the valley value is greater than the adjacent peak value and the valley value The arithmetic mean of the |ratio at all points distributed between. “All points” as used herein refers to all measurement points. As long as the arithmetic mean of the adjacent peaks and valleys is greater than the arithmetic mean of the aspect ratios between the adjacent peaks and valleys, the aspect ratio can be changed not to be strictly linear, curved, The stepped shape may be a shape in which a linear shape, a curved shape, a stepped shape is deviated, or a mixed shape of a straight line and a curved line due to measurement unevenness of the aspect ratio. 4(a) to 4(f) show a diffusion sheet in which the aspect ratio changes in a linear shape, a curved shape, a mixed shape of a straight line and a curved line. Regarding the aspect ratio of each region in the sheet, a region having a relatively high aspect ratio may be disposed directly above the light source, or a region having a relatively low aspect ratio may be disposed directly above the light source. Further, the height of the concavities and convexities between the regions should be smoothly changed. In particular, when the S-shape is such that a plurality of peaks are continuous in the aspect ratio region, it is preferable from the viewpoint of reducing the degree of party disparity, and the shape is preferably linear or The curved shape of the lower convex shape, or the mixed shape of the straight line and the downward convex curve (Fig. 4 (d), (f)). This pattern is particularly effective when the source is a line source. Moreover, when there is a valley value of the aspect ratio, and the low value of the above-mentioned valley value is included, the aspect ratio distribution in the aspect ratio region is a downward convex curve with the above-mentioned valley value as a minimum value. (Fig. 4 (a) to (e)) are also preferable from the viewpoint of reducing uneven brightness. 4(c), comprising: a first interval in which the distribution of the aspect ratio includes the peak and has a curved shape that is convex upward, and a second aspect in which the distribution of the aspect ratio includes the above-described valley value and has a downwardly convex curve shape. In the interval, this pattern is particularly effective when the light source is a point source. Here, in the region of the high aspect ratio of the stomach, the maximum and valley values of the peak are shown.

之最小值之算術平均值以上的縱橫比之區域,所謂低縱橫 比區域,係表示夺值之最大值與谷值之最小值之算術平均 值以下的縱橫比之區域。本發明中之峰值與谷值之間所分 布之縱橫比之算術平均值,_用基於上述定義之縱橫比 之分布而計算者。例如’於圖艸,在一個高縱橫比區域 存在有複數個(兩個)峰值。 又’所謂相鄰之峰值與谷值之間所分布之縱橫比,係指 圖1之虛線區間部分所存在之縱橫比。即,係指當存在有 複數個峰值時,與㈣之谷值對應之位置、及與=對應 之位置之間的區間内所存在之縱橫比。 本發明巾,可不改變光m地製作心轉持縱橫比 之,又能使凹凸結構之高度發生變化的形狀,因此自廉價 且谷易之觀點而言,對製造擴散片材較佳。 又,於本發明中,製作出既能維持縱橫比之值又能使凹 凸結構之間距發生變化之形狀,自 ^ L ^ 币阿精細液晶時難以 產生疊紋之觀點而言為佳。 ' 圖9表示以相對於本發明之擴散片材之水平面而垂直、 146177.doc -21 - 201044022 之某方向平行之剖面進行切斷時之形狀之一例的 概略圖。將各個凹部或 之端部至端部間的水 2㈣W作為該凹部或凸部之該方向上之間距,將上述水 :離圍内之最大深度或高度丨作為該凹部或凸部之 深度或高度、縱橫比可藉由將深度或高度1除 以寬度W而求出。 本案發明中所使用之縱橫比之值,分別係指包含測定點 、、擴散片材面垂直且與特定之方向平行之剖面上的 以測定點為中心的〜範圍内所存在之凹部或凸部之間 距/度或兩度及縱橫比之平均值。再者,平均值亦可自 適當區域柄出最低15個凹部或凸部而求出。該表面之凹凸 結構可藉由例如擴散片材剖面之掃描型電子顯微鏡像、雷 射共焦顯微鏡而觀察。 本發明之擴散片材中,只要面内之某處存在排列有凹凸 形狀而顯示使光擴散之功能的部分即可亦可存在片材表 面變平滑之部分。於此情形時縱橫比為0。 此處’自亮度不均之降低效果之觀點而言,整個區域内 之縱橫比宜在0〜4之範圍内。進而,自發揮控制光之擴散 之效果的觀點而言’較佳者為〇〜3,更佳者為。〜2。但是, 在不會對光學特性造成影響之部分,例如在形為製品時盈 需光學功能之最端部’或者在不會對光學特性造成影響: 程度之微小的區域内’凹凸之縱橫比亦可為該範圍之外。 又,本發明中,關於被重複之複數個峰值之縱橫比,測 定後之所有峰值之縱橫比值之差宜為〇·2以内,較佳者為 146177.doc -22- 201044022 0.15以内’最佳者為Q」以内。對於谷值亦相同。 縱&比之週期性變化之定義係依據上述之擴散角度之週 . 期性變化的定義。 -· 具體而言’表面具有該凹凸結構、且擴散角度對應於擴 片材上之區域而變化之擴散片材係可以如下方式製造。 、 #先,預先進行干涉曝光,藉此經由透鏡、光罩來對感光 性材料《阻劑照射雷射光,並以擴散角度隨位置而改變 之方式製作形成有光斑圖案之副母模(sub-master m〇ld)。 成f射照㈣統之構件間之距離、尺寸而調節光斑 圖案之尺寸、形狀及方向,從而可控制擴散角度之範圍, 記錄具有不同的擴散角度之凹凸結構。 • 通常,擴散角度之範圍係依存於光斑之平均尺寸及形 . 肖犬。在光斑較小時’角度範圍較廣。又,上述凹凸之單位 結構並不限於各向同性者,亦可形成各向異性者,還可形 成為兩者複合而成之凹凸結構。若光斑為橫向之長圓形, 〇 %角度分布之形狀為縱向之長圓形。以此製作擴散角度隨 位置而變化之副母模。利用電鑄等方法於該副母模上黏附 金屬,並將光斑圖案轉印至該金屬而製作光罩模具。在透 光性樹月曰層上,利用上述光罩模具藉由紫外線進行賦形, 將光斑圖案轉印至透光性樹脂層之光出射面。關於擴散角 度隨位置而改變之該擴散片材之詳細的製造方法,已揭示 於曰本專利特表2003-525472號公報(國際公開第〇 1/〇65469 號)。具體而言’其係以如下方式製作:冑用光源、包含 設置於自光源投射之光之光路上之可改變尺寸及形狀之開 146177.doc -23- 201044022 口的光罩、用以記錄自光源投射之光所生成之擴散圖案的 平板、配置於光罩與平板之間的使光擴散之擴散板、及為 了阻斷一部分光而設置於擴散板與板之間的阻斷器 (blocker) ’來改變光罩之開口與阻斷器之尺寸及形狀 '擴 政板之擴散程度及各構成構件間之距離。 例如: 1.將光罩之開口形狀製作成縱長形,藉此形成使記錄於 平板上之凸部之底面形狀為橫長之橢圓、且顯示縱長之橢 圓擴散功能(正交之兩方向之擴散角度不同)之區域。 2.將光罩之開口形狀製作成正方形’藉此形成使記錄於 平板上之凸部之底面形狀為各向同性、且顯示各向同性擴 散功能(於所有方向上擴散角度均為相同)之區域。 要、.且σ上述1及2之圖案而形成週期性圖案便可製造 本电明之擴散片材、即於面内擴散角度或者表面之凹凸形 狀之縱橫比進行週期性變化之擴散片材。 表面結構之凹凸高度例如可根據由掃描型電子顯微鏡觀 ㈣之擴散片材剖面形狀之間距、縱橫比、表面粗糙度等 來判斷。X,從由雷射共焦顯微鏡對擴散片材表面之觀察 中亦可凟取上述間距、縱橫比、表面粗糙度等。例 彳於間距越短、或縱橫比越大、或者表面粗Μ度越大 者,可認為其凹Λ高度越高。 面I:t發明之擴散片材中之凹凸結構可位於片材之出光 度内且可Γ⑽人光面側。自可將亮度下降抑制於最小限 " 低亮度不均之觀點而言,凹凸結構宜位於出光 146177.doc -24- 201044022 面側。又,自可容易地進行光源與擴散片材之面内之位置 對準的觀點而言,凹凸結構宜位於入光面。 • 與具有凹凸結構之面為相反側之面可為平滑面、凹凸 • 面、無光澤面專。自提高党度及減輕亮度不均之觀點而 言’與具有凹凸結構之面為相反側之面宜為平滑面。再 者’通常於積層擴散片材之情形等時,為了防止劃傷,有 時會在不損失平滑性之範圍内,在與具有凹凸結構之面為 相反側之面上塗布極微量之珠粒。此種情況亦包含於平、、典 〇 面。 … (實施形態2) 於實施形態2中,說明本發明之光線控制單元之一例。 • 於實施形態2所揭示之光線控制單元中,形成為配設有 .在片材面内使擴散角度進行週期性變化之擴散片材、及表 面形成有透鏡之光學片材的構成,藉此可應對光源單元之 薄型化或光源數削減等情形時的較高的亮度不均消除之要 0 求。特別是在以液晶顯示裝置之薄型化或光源數之削減為 目的時,在上述光學片材之透鏡形成面側配置有上述擴散 片材之構成之光線控制單元會顯示較高的亮度不均消除性 能’因此可較佳地使用。 作為構成貫施形態2所揭示之光線控制單元之擴散片 材可製作成如下構成··高擴散角度(高縱橫比)區域2〇1與 低擴散角度(低縱橫比)區域2()2在上述擴散片材面内之冰 方向上週期性地存在,即,擴散角度(縱橫比)進行週期性 變化(參照圖5、6)。又,亦可制你r # 1 丁 4*』、> )入亦可製作成如下構成··高擴散角 146I77.doc -25- 201044022 又(回縱橫比)區域203與低擴散角度(低縱橫比)區域2〇4在 上述片材面内之x軸方向及y軸方向上週期性地存在,即, 擴政角度(縱%?比)進行週期性變化(參照圖乃。作為構成光 Λ控制單兀之擴散片材之一例,亦可應用上述實施形態1 中所揭示之擴散片材。 實施形態2所揭示之光線控制單元對於冷陰極管 (CCFL)、外部電極螢光燈(eefl,以…—Electr〇de F1U〇reSCent Lamp)、熱陰極管(HCFL,Hot Cathode 叫0⑽咖Lamp)等之線光源、或對於發光二極體(LED) ^之點光源可較佳地用。關於構成上述光線控制單元之擴 月^片材,於光源為線光源之情形時,在與線光源之長度方 °父之方向上,上述擴散片材之擴散角度宜進行週期性 變化。又,關於上述擴散片材,於光源為點光源之情形 時,在片材面内之正交之兩方向上,上述擴散角度宜進行 週期性變化。 圖12係自斜上方俯視實施形態2所揭示之光線控制單元 時之示意圖,在表面形成有由複數之透鏡所構成之透鏡部 之透鏡賦形光學片材14的透鏡形成面側,配置有上述擴散 片材15。圖13係圖12之切斷面上之光線控制單元之剖面1 構=示意圖。於用作光線控制單元時,自消除亮度不均^ 提兩亮度之觀點而言,宜將上述透鏡形成面側作為出光 面。 又,形成有上述透鏡部之光學片材含有使來自光源之光 進打入光之入光面、及使自上述入光面所入射之光進行出 146177.doc -26- 201044022 光^出光面。於該光學片材中,未形成透鏡部之面側亦可 、'月®凹凸面、無光澤面等。自提高亮度及減輕亮度 句之觀點而5 ’較佳為出光面側成為透鏡形成面進 ·. 巾’更佳為人光面側成為平滑面或無光澤面。上述無光澤 #交#的疋藉由塗布無機微粒子或具有凹凸結構之賦形棍 所形成之凹凸。 ^成有上述透鏡部之光學片材可作為將藉由紫外線硬化 肖月曰所形成之微細的凹凸結構轉印至聚酯系樹脂、三乙醯 纖維素或聚碳酸醋等之基材片材上的形態而使用。又,上 逃光學片材只要係表面形成有透鏡部者,則各種形態皆可 ,用’例如,亦可較佳地使用在聚苯乙烯、丙烯酸系樹 .脂、聚碳酸酯、環烯烴聚合物等之樹脂板上藉由壓製成 形射出成形或擠壓成形而形成有透鏡之形態。特別是於 上述光線控制單元中,為了支持上述擴散片材,宜壓製成 形、射出成形或擠壓成形為厚度i mm以上、2 mm以下之 〇 狀的形態,為了提高亮度不均消除之性能,可較佳地使 用在树脂板内部添加有具有使光擴散之效果的有機聚合物 或無機微粒子者。作為此種光學片材,可列舉例如旭化成 擴政板MDL/DH系列(旭化成電子材料(Asahi Kasei E_The area of the aspect ratio above the arithmetic mean of the minimum value, the low aspect ratio area is an area indicating the aspect ratio of the maximum value of the value of the value and the arithmetic mean value of the minimum value of the bottom value. The arithmetic mean of the aspect ratios distributed between the peak and the valley in the present invention is calculated using the distribution based on the aspect ratio defined above. For example, in Figure 艸, there are multiple (two) peaks in a high aspect ratio region. Further, the aspect ratio between the adjacent peak and the valley value refers to the aspect ratio existing in the dotted line portion of Fig. 1. That is, the aspect ratio existing in the interval between the position corresponding to the valley value of (4) and the position corresponding to = when there are a plurality of peaks. In the towel of the present invention, the shape of the core can be changed without changing the light m, and the height of the uneven structure can be changed. Therefore, it is preferable to manufacture the diffusion sheet from the viewpoint of inexpensiveness and easy use. Further, in the present invention, it is preferable to produce a shape which can maintain the aspect ratio and change the distance between the concave and convex structures, and it is preferable from the viewpoint that it is difficult to generate the ridges in the case of a fine liquid crystal. Fig. 9 is a schematic view showing an example of a shape when the cross section is perpendicular to the horizontal plane of the diffusing sheet of the present invention and is parallel to a certain direction of 146177.doc -21 - 201044022. Taking the water 2 (four) W between the end portions or the end portions to the end portions as the distance between the concave portions or the convex portions in the direction, the maximum depth or height 上述 in the water: the depth or height of the concave portion or the convex portion The aspect ratio can be obtained by dividing the depth or height 1 by the width W. The value of the aspect ratio used in the present invention refers to a concave portion or a convex portion which is included in the range of the measuring point, the measuring sheet, and the surface of the diffusing sheet which is perpendicular to the specific direction and which is centered on the measuring point. The average between the distance / degree or two degrees and the aspect ratio. Further, the average value can be obtained by taking the lowest 15 concave portions or convex portions from the appropriate regions. The uneven structure of the surface can be observed by, for example, a scanning electron microscope image of a diffusion sheet cross section or a laser confocal microscope. In the diffusion sheet of the present invention, a portion where the surface of the sheet is smoothed may be present as long as the portion having the uneven shape and the function of diffusing light is arranged in somewhere in the plane. In this case, the aspect ratio is zero. Here, the aspect ratio in the entire region is preferably in the range of 0 to 4 from the viewpoint of the effect of reducing the luminance unevenness. Further, from the viewpoint of exerting the effect of controlling the diffusion of light, it is preferably 〇3, and more preferably. ~2. However, in the part that does not affect the optical characteristics, such as the end of the optical function in the form of a product, or does not affect the optical characteristics: the aspect ratio is also small Can be outside this range. Further, in the present invention, the aspect ratio of the plurality of peaks to be repeated, the difference between the aspect ratio values of all the peaks after the measurement is preferably 〇·2 or less, preferably 146177.doc -22-201044022 0.15 or less. Those are below Q". The same is true for the valley. The definition of vertical & periodic variation is based on the definition of the period of diffusion above. Specifically, the diffusion sheet having the uneven structure on the surface and having a diffusion angle corresponding to the area on the expanded sheet can be produced as follows. #, first, the interference exposure is performed in advance, whereby the photosensitive material "resisting agent is irradiated with the laser light through the lens and the photomask, and the sub-master mold formed with the spot pattern is formed in such a manner that the diffusion angle changes with the position (sub- Master m〇ld). The size, shape and direction of the spot pattern are adjusted by the distance and size of the components of the f-ray (4), so that the range of the diffusion angle can be controlled, and the uneven structure having different diffusion angles can be recorded. • Generally, the range of diffusion angles depends on the average size and shape of the spot. When the spot is small, the angle range is wider. Further, the unit structure of the above-mentioned unevenness is not limited to isotropic, and an anisotropic structure may be formed, and a concave-convex structure in which the two are combined may be formed. If the spot is a long circle in the horizontal direction, the shape of the 〇% angle distribution is a long oval in the longitudinal direction. In this way, a sub master mold whose diffusion angle changes with position is created. A metal mold is adhered to the sub master by electroforming or the like, and the spot pattern is transferred to the metal to form a mask mold. On the light-transmitting tree layer, the pattern is transferred by ultraviolet rays using the mask mold, and the spot pattern is transferred to the light-emitting surface of the light-transmitting resin layer. A detailed manufacturing method of the diffusion sheet in which the diffusion angle is changed with the position is disclosed in Japanese Laid-Open Patent Publication No. 2003-525472 (International Publication No. Hei. Specifically, it is produced in the following manner: a light source, a photomask including a changeable size and shape disposed on an optical path of light projected from the light source, for recording from the 146177.doc -23-201044022 port a flat plate of a diffusion pattern generated by the light projected by the light source, a diffuser plate disposed between the photomask and the flat plate to diffuse light, and a blocker disposed between the diffuser plate and the plate for blocking a part of the light 'To change the size and shape of the opening of the reticle and the blocker', the degree of diffusion of the expansion board and the distance between the constituent members. For example: 1. The opening shape of the mask is formed into a vertically long shape, thereby forming an ellipse having a shape in which the bottom surface of the convex portion recorded on the flat plate is horizontally long and exhibiting a longitudinal length (two directions of orthogonal directions) The area where the diffusion angle is different). 2. The opening shape of the mask is made into a square shape, whereby the shape of the bottom surface of the convex portion recorded on the flat plate is made isotropic, and the isotropic diffusion function is displayed (the diffusion angles are the same in all directions). region. It is preferable to form a periodic pattern by the pattern of the above 1 and 2 to produce a diffusion sheet of the present invention, that is, a diffusion sheet which periodically changes in the in-plane diffusion angle or the aspect ratio of the surface concavo-convex shape. The height of the concavities and convexities of the surface structure can be judged, for example, from the distance between the cross-sectional shapes of the diffusion sheets of the scanning electron microscope (4), the aspect ratio, the surface roughness, and the like. X, the above-mentioned pitch, aspect ratio, surface roughness, and the like can also be obtained from the observation of the surface of the diffusion sheet by a laser confocal microscope. For example, the shorter the pitch, or the larger the aspect ratio, or the greater the surface roughness, the higher the height of the concavity. The concave-convex structure in the diffusing sheet of the surface I: t may be located within the illuminance of the sheet and may be on the side of the smooth side of the human (10). Since the brightness reduction can be suppressed to the minimum limit, the uneven structure should be located on the side of the light 146177.doc -24- 201044022. Further, from the viewpoint of easily aligning the position of the light source and the surface of the diffusion sheet, the uneven structure is preferably located on the light incident surface. • The surface opposite to the surface with the uneven structure can be smooth, uneven, or matte. From the viewpoint of improving party membership and reducing uneven brightness, it is preferable that the surface opposite to the surface having the uneven structure is a smooth surface. In addition, when the sheet is diffused in a layer or the like, in order to prevent scratching, a very small amount of beads may be applied to the surface opposite to the surface having the uneven structure insofar as the smoothness is not lost. . This situation is also included in Ping and Dian. (Embodiment 2) In Embodiment 2, an example of a light control unit of the present invention will be described. The light control unit disclosed in the second embodiment is configured such that a diffusion sheet that periodically changes a diffusion angle in a sheet surface and an optical sheet on which a lens is formed are formed. It is possible to cope with the problem of high brightness unevenness elimination when the light source unit is thinned or the number of light sources is reduced. In particular, when the liquid crystal display device is reduced in thickness or the number of light sources is reduced, the light control unit having the configuration in which the diffusion sheet is disposed on the lens forming surface side of the optical sheet exhibits high brightness unevenness elimination. The performance 'is therefore preferably used. The diffusion sheet constituting the light control unit disclosed in the second aspect can be formed as follows: a high diffusion angle (high aspect ratio) region 2〇1 and a low diffusion angle (low aspect ratio) region 2()2 The diffusion sheet periodically exists in the ice direction in the plane, that is, the diffusion angle (aspect ratio) periodically changes (see FIGS. 5 and 6). In addition, you can also make your r # 1 丁4*』, >) into the following composition. · High diffusion angle 146I77.doc -25- 201044022 Again (retrospective aspect ratio) area 203 and low diffusion angle (low The aspect ratio region 2〇4 periodically exists in the x-axis direction and the y-axis direction in the sheet surface, that is, the expansion angle (vertical % ratio) periodically changes (see FIG. The diffusion sheet disclosed in the first embodiment can also be applied to an example of the diffusion sheet of the control unit. The light control unit disclosed in the second embodiment is a cold cathode tube (CCFL) and an external electrode fluorescent lamp (eefl). A line source such as -Electr〇de F1U〇reSCent Lamp), a hot cathode tube (HCFL, Hot Cathode called 0(10) Coffee Lamp), or a point source for a light emitting diode (LED) can be preferably used. Regarding the moon-forming sheet constituting the light control unit, when the light source is a line light source, the diffusion angle of the diffusion sheet should be periodically changed in the direction of the length of the line source and the parent. Regarding the above-mentioned diffusion sheet, in the case where the light source is a point light source In the two orthogonal directions of the sheet surface, the diffusion angle is preferably changed periodically. FIG. 12 is a schematic view of the light control unit disclosed in Embodiment 2 when viewed from obliquely above, and is formed on the surface by a plurality of The diffusing sheet 15 is disposed on the lens forming surface side of the lens-formed optical sheet 14 of the lens portion formed by the lens. Fig. 13 is a cross-sectional view of the light control unit on the cut surface of Fig. 12. When the light control unit is used as the light control unit, it is preferable to use the lens forming surface side as the light emitting surface from the viewpoint of eliminating the brightness unevenness. Further, the optical sheet on which the lens portion is formed contains light from the light source. The light entering the light entering surface and the light incident from the light incident surface are emitted by the light surface of the 146177.doc -26-201044022. In the optical sheet, the surface side of the lens portion is not formed, Month® uneven surface, matte surface, etc. From the viewpoint of improving brightness and reducing the brightness sentence, 5' is preferably the side of the light-emitting surface becomes the lens forming surface. The towel is better for the smooth side or the matte side. Nothing交 疋 疋 疋 疋 疋 疋 疋 涂布 涂布 涂布 涂布 涂布 涂布 涂布 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ It is used in the form of a substrate sheet such as a polyester resin, triethyl fluorene cellulose or polycarbonate, and the optical sheet can be used in any form as long as the lens portion is formed on the surface. For example, it can also be preferably used to form a lens by press forming injection molding or extrusion molding on a resin plate of polystyrene, acrylic resin, polycarbonate, cycloolefin polymer or the like. form. In particular, in the above-described light control unit, in order to support the above-mentioned diffusion sheet, it is preferable to press-form, injection-mold, or extrude into a shape having a thickness of i mm or more and 2 mm or less, in order to improve the performance of brightness unevenness elimination. It is preferable to use an organic polymer or inorganic fine particles having an effect of diffusing light added inside the resin sheet. As such an optical sheet, for example, Asahi Kasei expansion board MDL/DH series (Asahi Kasei E_)

Materials)股份有限公司製)、ze〇n〇r系列(日本ze⑽股 份有限公司製)等。 . 較好的疋’構成實施形態2所揭示之光線控制單元、且 表面形成有透鏡部之上述光學片材可用於光源為線光源之 戈者了用於光源為點光源且上述點光源之配置間隔 146177.doc -27- 201044022 在正交之兩方向上不同之情形,並且上述光學片材之透鏡 部係由複數之單位透鏡排列所構成,且上述單位透鏡之底 面形狀係具有各向異性之形狀。 圖14(a)〜(f)係例示上述單位透鏡之底面形狀之圖。於光 源為點光源、且上述光源之配置間隔在正交之兩方向上不 同之情形時’宜為如圖14⑷〜⑷所示之上述單位透鏡之底 面形狀,較佳者為上述單位透鏡之底面形狀中各向異性較 強之方向、與上述點光源之配置間隔較窄之方向為平行。 又’於光源為線光源之情形時,宜為如圖14⑷、⑴所示 之上述單位錢之底面形狀,較佳者為上述單位透鏡之底 面形狀中各向異性較強之方向’即底面形狀為橢圓時之長 徑方向、底面形狀為長方形時之長邊方向,與線光源之長 構成上述光線控制單元、且表面形成有稜鏡條列或扁豆 狀透鏡之上述光學片㈣於線光料較佳地使用,更宜將 Λ光源之長度方向與上述透鏡部之長度方向平行地配置j •㈠⑻中例不出上述單位透鏡係棱鏡條列,又 =中例示出上述單位透鏡係扁豆狀透鏡。自防止與μ 光學片材發生摩捧之顴 ,、他 前端蜷曲而A '、 而§,亦可較佳地使用將棱鏡之 而成之結構者。又,自防止疊紋之觀點而言,如 =結ΓΓ,村較佳地使”稜鏡前端之棱線彎曲而成 較好的是,構成光線 上述光學片材可田、, 且表面形成有透鏡部之 °於光源為點光源且上述點光源之配置間 146177.doc -28- 201044022 隔在正交之兩方向上相等之情形,並且上述光學片材之透 鏡部係由複數之單位透鏡排列而構成,上述單位透鏡之底 面形狀係為具有各向同性之形狀。 圖1 6(a)〜(e)令例示出具有各向同性之上述單位透鏡的底 面形狀。自ί肖除亮度不肖之觀點而t,較#的是上述單位 透鏡係稠密地形成於片材表面,且上述底面形狀係如圖 ()(d) (e)所示之形狀。特別好的是,上述單位透鏡Materials), ze〇n〇r series (made by Japan ze(10) Co., Ltd.), etc. Preferably, the optical sheet constituting the light control unit disclosed in Embodiment 2 and having the lens portion formed on the surface thereof can be used for a light source as a line light source, and the light source is a point light source and the point light source is disposed. The interval 146177.doc -27- 201044022 is different in the two orthogonal directions, and the lens portion of the optical sheet is composed of a plurality of unit lens arrays, and the bottom surface shape of the unit lens is anisotropic. shape. 14(a) to 14(f) are diagrams showing the shape of the bottom surface of the unit lens. When the light source is a point light source and the arrangement interval of the light sources is different in two orthogonal directions, the shape of the bottom surface of the unit lens shown in FIGS. 14(4) to (4) is preferable, and the bottom surface of the unit lens is preferable. The direction in which the anisotropy is strong in the shape and the direction in which the arrangement of the point light sources are narrow are parallel. Further, when the light source is a line light source, it is preferably a bottom surface shape of the unit money as shown in Figs. 14(4) and (1), and preferably a direction in which the anisotropy is strong in the shape of the bottom surface of the unit lens. The optical sheet (four) which is the long-diameter direction of the ellipse and the long-side direction of the bottom-surface shape, and which is the length of the line light source and which constitutes the light control unit and has a string line or a lenticular lens formed on the surface thereof Preferably, it is preferable to arrange the longitudinal direction of the xenon light source in parallel with the longitudinal direction of the lens portion. (1) (8), the unit lens prism column is not illustrated, and the unit lens lentil lens is shown in the middle example. . Since it is prevented from happening with the μ optical sheet, the front end is distorted and A', and §, the structure of the prism can also be preferably used. Further, from the viewpoint of preventing the rubbing, for example, the village preferably bends the ridge line of the front end of the crucible, and it is preferable that the optical sheet is formed in the light, and the surface is formed. The lens portion is arranged such that the light source is a point light source and the arrangement of the point light sources is 146177.doc -28- 201044022, and the lens portions of the optical sheet are arranged by a plurality of unit lenses. Further, the shape of the bottom surface of the unit lens is an isotropic shape. Fig. 16 (a) to (e) illustrate the shape of the bottom surface of the unit lens having isotropic properties. The viewpoint is that the unit lens is densely formed on the surface of the sheet, and the shape of the bottom surface is a shape as shown in (d) and (e). Particularly preferably, the unit lens is

之底面形狀係圓形、正方形、正六角形。 構成上述光線控制單元、且表面形成有微透鏡或微棱鏡 之上述光學片材對於點光源可較佳地使用。圖17⑷、⑻ 中例不出上述單位透鏡係微透鏡,又,圖i 7⑷〜⑷中例示 出上述單位透鏡係微稜鏡。自防止與其他光學片材發生摩 擦之觀點而言,亦可較佳地使用將稜鏡之前料曲而成之 構者又上述彳政透鏡或微稜鏡可為凹形狀,亦可為& 形狀。 ” 〇 &好的疋’構成光線控制單元、且表面形成有透鏡部之 上述光學片材,可用於光源為線光源與點光源混合存在之 情形,或者可用於光源為點光源、且上述點光源之配置間 隔在正交之兩方向上為等間隔之區域、與在正交之兩方向 上為間隔不同之區域混合存在之情形,並且上述光學片材 之透,部係由複數之單位透鏡排列而構成,且複合排列有 上述單位透鏡之底面形狀為具有各向異性之形狀的透鏡、 及為,有各向同性之形狀的透鏡。形成於此種光學片材表 面之單位透鏡之底面形狀之示例顯示於圖18⑷〜⑷中。 146177.doc -29- 201044022 於實施形態2所揭示之光線控制單元中,以讓亮度一定 之方式使擴散角度最佳化,藉此謀求減輕亮度不均^構成 實施形態2所揭示之光線控制單元的擴散片材中,將片材 面内之相對位置描繪於橫軸、將上述片材面内之位置處之 擴散角度描繪於縱軸之情形時的擴散角度分布圖可設為上 述圖10所示之構成。圖10⑷至圖1〇⑴中,例示出擴散角 度以直線狀、曲線狀、直線與曲線之混合形狀或者階梯狀 而變化之擴散片材。擴散角度之變化既可為並非嚴密的直 線狀、曲線狀、階梯狀,亦可為因擴散角度之測定不均等 而自直線狀、曲線狀、階梯狀稍偏離之形狀、或直線與曲 線之混合形狀。特別好的是,擴散角度在上述擴散片材之 面内平滑地變化。 又,將片材面内之相對位置描繪於橫軸、將上述片材面 内之位置上之縱橫比描繪於縱軸之情形時的縱橫比分布圖 可設為上述圖1丨所示之構成。圖u(a)至圖11(〇中,例示出 縱橫比以直線狀、曲線狀、直線與曲線之混合形狀或者階 梯狀而變化之擴散片材。縱橫比之變化既可為並非嚴密的 直線狀、曲線狀、階梯狀,亦可為因縱橫比之測定不均等 而自直線狀、曲線狀、階梯狀稍偏離之形狀、或直線與曲 線之混合形狀。較好的是,縱橫比在上述擴散片材之面内 平滑地變化。 又’此處亦可使用實施形態1之擴散片材。列舉—例: 如圖3(a)〜(f)所示於面内擴散角度發生變化者或者如圖 4(a)〜(f)所示縱橫比發生變化者。 146177.doc -30- 201044022 構成光線控制單元之擴散片材之擴散角度被控制在〇 1〇 以上、120。以下之範圍内為佳。此處,為了進一步提高亮 度之均勻性,可調整擴散角度之差及擴散角度之分布狀 態。特別是為了薄型化而使光源與光學片材之距離接近時 (圖27(a))、或者擴大光源彼此之間隔時(圖27(b)),亮度不 均會增大,故擴散角度之差越大越好。又,為了獲得較高 之正面免度,上述擴散角度適宜被控制在〇1。以上、1〇〇〇 、下之範圍内,更適宜被控制在0.1。以上、8〇。以下之範圍 又,構成光線控制單元之擴散片材之縱橫比在〇〜4之範 圍内時自降低亮度不均之效果的觀點而言為較佳。進 而,自發揮控制光擴散之效果的觀點而言,較佳者為 0〜3 ’更佳者為〇〜2。 仁疋’在不會對光學特性造成 為U時無需光學功能之最端部’或者在不會對光學特性The shape of the bottom surface is a circle, a square, and a regular hexagon. The above optical sheet constituting the above-described light control unit and having microlenses or microprisms formed on its surface can be preferably used for a point light source. The unit lens-based microlenses are not illustrated in Figs. 17 (4) and (8), and the unit lens system micro-turns are illustrated in Figs. 7 (4) to (4). From the viewpoint of preventing friction with other optical sheets, it is also preferable to use a structure in which the enamel is made before, and the above-mentioned ruthenium lens or micro cymbal may be a concave shape, and may also be & shape. 〇 amp amp amp 疋 构成 构成 构成 构成 构成 构成 构成 构成 构成 构成 构成 构成 构成 构成 构成 构成 构成 构成 构成 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线 光线The arrangement interval of the light sources is a case where the regions are equally spaced in the two orthogonal directions, and the regions which are different in the orthogonal directions are mixed, and the optical sheet is transparent, and the unit is composed of a plurality of unit lenses. The lens is arranged in a line, and the bottom surface of the unit lens has a shape having an anisotropic shape and a lens having an isotropic shape. The bottom surface of the unit lens formed on the surface of the optical sheet An example of this is shown in Fig. 18 (4) to (4). 146177.doc -29- 201044022 In the light control unit disclosed in the second embodiment, the diffusion angle is optimized so that the brightness is constant, thereby reducing the uneven brightness ^ In the diffusion sheet constituting the light control unit disclosed in the second embodiment, the relative position in the sheet surface is plotted on the horizontal axis and the position in the sheet is in-plane. The diffusion angle distribution map when the diffusion angle is plotted on the vertical axis can be set as shown in Fig. 10. In Fig. 10 (4) to Fig. 1 (1), the diffusion angle is linear, curved, straight, and curved. The diffusing sheet may have a mixed shape or a stepped shape, and the change in the diffusion angle may be a straight line, a curved shape, or a stepped shape, or may be a straight line or a curved shape due to uneven measurement of the diffusion angle. The stepped shape slightly deviates from the shape or the mixed shape of the straight line and the curved line. Particularly preferably, the diffusion angle changes smoothly in the plane of the diffusion sheet. Further, the relative position in the sheet surface is plotted on the horizontal axis, The aspect ratio distribution map in the case where the aspect ratio at the position in the plane of the sheet is plotted on the vertical axis can be set as shown in Fig. 1A. Fig. u(a) to Fig. 11 (in the middle, the aspect is illustrated A diffusing sheet that changes in a linear shape, a curved shape, a mixed shape of a straight line and a curved line, or a stepped shape. The aspect ratio may be changed not in a straight line, a curved line, or a stepped shape, or may be an aspect ratio Measurement It is a shape in which a straight line, a curved shape, a stepped shape slightly deviates, or a mixed shape of a straight line and a curved line, and it is preferable that the aspect ratio changes smoothly in the plane of the above-mentioned diffusion sheet. The diffusion sheet of the first embodiment can be used. For example, as shown in Figs. 3(a) to (f), the in-plane diffusion angle is changed or the aspect ratio is as shown in Figs. 4(a) to (f). 146177.doc -30- 201044022 The diffusion angle of the diffusion sheet constituting the light control unit is controlled to be in the range of 〇1〇 or more and 120% or less. Here, in order to further improve the uniformity of brightness, Adjust the difference between the diffusion angle and the distribution state of the diffusion angle, especially when the distance between the light source and the optical sheet is close to the thickness (Fig. 27 (a)), or when the distance between the light sources is increased (Fig. 27 (b)) The uneven brightness will increase, so the larger the difference in the diffusion angle, the better. Further, in order to obtain a high degree of frontal freedom, the above-mentioned diffusion angle is suitably controlled to 〇1. In the above range, 1〇〇〇 and below, it is more suitable to be controlled at 0.1. Above, 8〇. In the range below, the aspect ratio of the diffusing sheet constituting the light control unit is preferably in the range of 〇 to 4 from the viewpoint of reducing the effect of uneven brightness. Further, from the viewpoint of exerting the effect of controlling the light diffusion, it is preferably 0 to 3 Å and more preferably 〇 2 to 2.仁疋' does not need the optical end of the optical function when it is U, or does not require optical properties.

造成影響之程度之微小的區域内,擴散角度、凹凸之縱橫 比亦可為該範圍之外。 、 如上述實施形態所揭示,上十 在擴散片姑夕主 擴政角度或縱橫比可藉由 在擴散片材之表面具有許多的凹凸結構而實現。 又,在光線控制單元中,在擴散 之任—#丨κ > 仍心出先面或入光面 側了4❹的凹凸結構,未 可為平滑面、凹凸而^ 凸、、‘》構之面側 凹凸面、無光澤面等。自接古古—… 度不均之觀點而言,較佳 ㈤冗又及減輕亮 平乂住馬出先面側成為凹 更佳為入光面側成為平滑面或無光澤 :而, 冉者,通常於積 146177.doc **31- 201044022 層擴散片材之情形等時,為了防止劃傷,有時會在不損及 光學特性之範圍内,在入光面塗布極微量之珠粒。此種情 況亦包含於平滑面。 表面具有該凹凸形狀、且擴散片材面内之區域内擴散角 度發生變化之擴散片材係可藉由上述實施形態1中所揭示 之方法而製造。 (實施形態3) 於本實施形態中,說明應用有上述實施形態1所揭示之 擴散片材、實施形態2所揭示之光線控制單元的光源單 元。 圖19、圖20中表示本實施形態所揭示之光源單元之概略 構成。圖19係表示使用冷陰極管(CCFL)作為光源之情形, 圖20係表示使用LED(發光二極體)作為光源之情形。 光源單元基本上可採用具備光源(光源u或光源12)、及 配設於光源11、12上方之擴散片材15的構成(參照圖 19(a)、圖20(a))。又,於光源丨丨、12之下方,較好的是使 用一用以使光發生反射之反射片材13。於此情形時,可應 用上述實施形態1所揭示之擴散片材來作為擴散片材丄5。 又,光學單凡只要具有上述構成,則可進一步配設光學 片材、擴散片材等’例如,可形成為在光源u、12與擴散 片材15之間設置有光學片材14之構成(參照_⑻、圖 20(b))。 又’於圖19、20所示之構成中,可應用上述實施形態2 所揭示之光線控制單元來作為具備擴散片材15及光學片材 146177.doc -32- 201044022 14之光線控制單元。於此情料,於上述光線控 中,較好的是將上述光學片材之透鏡面側作為出Μ 好的是將上述擴散片材之凹凸形成面側作為 ❹ ^射片材13只要係可使光發生反射者,則各種反射片材 a可使用。例如可使用:使聚酯、聚碳酸酯等之樹脂發泡 而於内部進入有微細之空氣顆粒並形成為片材狀者:兩 種成分以上之樹脂混合並形成為片材狀者;將屈 之樹脂層積層而成之片料。又,上述反射片材亦可於表 面形成有凹凸形狀。作為該等反射片#,可視需要而使用 於表面添加有無機微粒子等者。 光源單元中使用有複數個光^作為光源,可使用如圖 19所示之冷陰極管(CCFL川等之線光源或如圖2崎示之 LED(發光二極體)12、雷射等之點光源。於此情形時,上 述光源U、U係相對於擴散片材15之入光面及出光面而排 列於正下方。 〇 、又,作為可應用於光源單元之擴散片材,可使用不受測 疋方向影響而能獲得大致相同之擴散角度的各向同性擴散 片材、及受測定方向影響而會導致擴散角度不同之各向異 f擴散片材之雙方。所謂各向異性擴散片材,例如係在正 交之兩個方向上測定擴散角度時擴散角度不同之擴散片 材。 本實施形態中揭示之光源單元之特徵在於:使上述擴散 片材之擴散角度分布的週期、與上述擴散片材之入光面上 之照度分布的週期相等。擴散片材之入光面上之照度分布 146177.doc -33- 201044022 Τ ELDIM^ 5] ^EZC〇ntrastXL88^ ^ 〇 而言’在下述的面内測定對象範圍内重複如下操作來測 疋在°又有擴散片材之光源單元中’除上述擴散片材以 外’在擴散片材之人光面所配置的部位確定裝置之焦點並 /貝J疋王方位冗度分布,根據該結果而獲得累計光通量 (Integrated Intensity) 〇 圖2 1係自斜上方俯視上述光源單元之示例之情形時的示 思圖。於圖21所示之光源單元中,擴散片材15被配置成使 上述擴政角度呈週期性分布,進而被配置成使上述擴散角 度呈週期性分布之方向、及與CCFL光源11之長度方向正 交之方向一致。再者,於圖21中,圖21(b)之構成係在圖 2 1(a)之構成中追加有光學片材14者。 圖22係表示光源單元中,光源之間隔與上述擴散片材之 擴散角度分布週期的圖。於圖21中,上述擴散片材之入光 面上之照度分布的週期係與光源彼此之間隔相等,因此較 好的是使擴散片材面内之擴散角度(縱橫比)分布週期與光 源間隔大致相等。在上述擴散片材之入光面之照度分布 中,當光源正上方區域之照度較高時,自消除亮度不均之 觀點而g ’宜配置上述擴散片材之高擴散角度(高縱橫比) 區域。圖22中’例示出以與上述擴散片材之入光面上之照 度分布對應之方式而設有的上述擴散角度分布。 關於擴散片材15之擴散角度’較好的是被控制在〇 · 1。以 上〜120。以下之範圍内。又’特別是為了進一步提高亮度 之均勻化而在光源11、12與擴散片材1 5之間配設有其他的 146177.doc •34- 201044022 擴散板、例如配設有含有擴散劑之擴散板時,較好的是被 控制在0.1。以上〜100。以下之範圍内,更好的是被控制在 _〇· 1。以上、80。以下之範圍内。此外,在與具有陣列狀之稜 鏡排列結構之光學片材組合使用時’例如,在擴散片材i 5 之上方配設有具有陣列狀之棱鏡排列結構的光學片材時, 較好的是被控制在0 · 1。以上〜8〇。以下之範圍内。 關於凹凸高度,例如在將凹凸結構之間距設為5 μιη時, 自即便使液晶高精細化(像素狹小化)亦不會出現疊紋之觀 ❹ 點而言,宜被控制在〇 μ®至20 μιη(縱橫比〇〜4)之範圍内。 又,特別是為了進-步提高亮度之均句化而在光源u、12 與擴散片材15之間配設有其他的擴散板、例如配設有含有 .擴散劑之擴散板時,較好的是被控制在〇 0〇1至15 μηι(縱橫 比〇〜3)之範圍内,更好的是被控制在〇 0111至1〇 縱橫比 〇〜2)之祀圍内。此外,在與具有陣列狀之稜鏡排列結構之 光學片材組合使用時,例如,在擴散片材15之上方配設有 〇 I料列狀之稜鏡排列結構之光學片材時,較好的是被控 制在0 μηι至1〇 μπι(縱橫比〇〜2)之範圍内。 又對於自光源11、12之投影區域至光源ji 2間的投In the small area where the degree of influence is small, the aspect ratio of the diffusion angle and the unevenness may be outside the range. As disclosed in the above embodiment, the upper ten aspect of the diffusion sheet or the aspect ratio can be realized by having a plurality of uneven structures on the surface of the diffusion sheet. In addition, in the light control unit, the diffusion--#丨κ > still has a concave-convex structure of 4 ❹ on the front surface or the light-incident side, and is not a smooth surface, a concave-convex surface, or a convex surface. Side uneven surface, matte surface, etc. From the point of view of the ancient and the ancient - ... unevenness, it is better (5) to be more cumbersome and to reduce the lightness of the flat surface of the horse to become the concave side is better for the smooth side to become smooth or dull: and, usually, usually Yuji 146177.doc **31- 201044022 In the case of a layer-diffused sheet, in order to prevent scratching, a very small amount of beads may be applied to the light-incident surface without damaging the optical characteristics. This situation is also included in the smooth surface. The diffusion sheet having the uneven shape on the surface and varying the diffusion angle in the region in the plane of the diffusion sheet can be produced by the method disclosed in the first embodiment. (Embodiment 3) In the present embodiment, a light source unit to which the diffusion sheet disclosed in the first embodiment and the light control unit disclosed in the second embodiment are applied will be described. Fig. 19 and Fig. 20 show the schematic configuration of the light source unit disclosed in the embodiment. Fig. 19 shows a case where a cold cathode tube (CCFL) is used as a light source, and Fig. 20 shows a case where an LED (Light Emitting Diode) is used as a light source. The light source unit basically has a configuration including a light source (light source u or light source 12) and a diffusion sheet 15 disposed above the light sources 11 and 12 (see Figs. 19(a) and 20(a)). Further, below the light source 丨丨, 12, it is preferable to use a reflection sheet 13 for reflecting light. In this case, the diffusion sheet disclosed in the above first embodiment can be used as the diffusion sheet bundle 5. In addition, as long as the optical unit has the above configuration, an optical sheet, a diffusion sheet, or the like can be further disposed. For example, the optical sheet 14 can be formed between the light sources u and 12 and the diffusion sheet 15 ( Refer to _(8), Figure 20(b)). Further, in the configuration shown in Figs. 19 and 20, the light control unit disclosed in the second embodiment can be applied as the light control unit including the diffusion sheet 15 and the optical sheets 146177.doc - 32 - 201044022. In the above light control, it is preferable that the lens surface side of the optical sheet is used as the exit surface of the diffusing sheet as the embossing sheet 13 as long as it is When the light is reflected, various reflective sheets a can be used. For example, a resin obtained by foaming a polyester or a polycarbonate and having fine air particles therein and formed into a sheet shape may be used: a resin having two or more components mixed and formed into a sheet shape; The resin is laminated to form a sheet. Further, the reflective sheet may have an uneven shape formed on the surface. As the reflection sheet #, inorganic fine particles or the like may be added to the surface as needed. A plurality of light sources are used as the light source in the light source unit, and a cold cathode tube (a line source such as CCFL or the like or an LED (light emitting diode) 12 as shown in FIG. 2, a laser, etc. can be used as shown in FIG. In this case, the light sources U and U are arranged directly below the light incident surface and the light exit surface of the diffusion sheet 15. Further, as a diffusion sheet which can be applied to the light source unit, it can be used. An isotropic diffusion sheet which can obtain substantially the same diffusion angle without being affected by the direction of the measurement, and an anisotropic diffusion sheet which is affected by the measurement direction and which causes a different diffusion angle. The material is, for example, a diffusion sheet having a different diffusion angle when the diffusion angle is measured in two orthogonal directions. The light source unit disclosed in the embodiment is characterized in that the period of the diffusion angle distribution of the diffusion sheet is the same as described above. The period of illuminance distribution on the light-incident surface of the diffusion sheet is equal. The illuminance distribution on the light-incident surface of the diffusion sheet is 146177.doc -33- 201044022 Τ ELDIM^ 5] ^EZC〇ntrastXL88^ ^ 〇为' Face The following operations are repeated in the measurement target range to measure the focus of the position determining device disposed on the human light surface of the diffusion sheet in the light source unit having the diffusion sheet in addition to the above-mentioned diffusion sheet. The azimuth redundancy distribution is obtained based on the result, and the integrated luminous flux (Integrated Intensity) is shown in Fig. 21 as a case where the light source unit is viewed from an obliquely upward view. In the light source unit shown in Fig. 21, diffusion is performed. The sheet 15 is disposed such that the above-described expansion angle is periodically distributed, and is further arranged such that the diffusion angle is periodically distributed and the direction orthogonal to the longitudinal direction of the CCFL source 11 is coincident. In Fig. 21, the configuration of Fig. 21(b) is the addition of the optical sheet 14 to the configuration of Fig. 21(a). Fig. 22 shows the interval between the light sources and the diffusion angle distribution period of the diffusion sheet in the light source unit. In Fig. 21, the period of the illuminance distribution on the light incident surface of the diffusing sheet is equal to the distance between the light sources, so it is preferable to distribute the diffusion angle (aspect ratio) in the plane of the diffusing sheet. The distance between the light source and the light source is substantially equal. In the illuminance distribution of the light incident surface of the diffusion sheet, when the illuminance in the region directly above the light source is high, the high diffusion of the diffusion sheet is preferably disposed from the viewpoint of eliminating uneven brightness. An angle (high aspect ratio) region. The above-described diffusion angle distribution is provided in a manner corresponding to the illuminance distribution on the light incident surface of the diffusion sheet in Fig. 22. Regarding the diffusion angle of the diffusion sheet 15 Preferably, it is controlled to be in the range of 〇·1 to above 120. In the following, in particular, in order to further improve the uniformity of brightness, another 146177 is disposed between the light sources 11, 12 and the diffusion sheet 15. .doc •34- 201044022 When a diffuser, for example, a diffuser containing a diffusing agent, is provided, it is preferably controlled to 0.1. Above ~100. In the following range, it is better to be controlled at _〇·1. Above, 80. Within the scope below. Further, when used in combination with an optical sheet having an array structure of the array, for example, when an optical sheet having an array-like prism array structure is disposed above the diffusion sheet i 5 , it is preferable It is controlled at 0 · 1. Above ~8〇. Within the scope below. Regarding the height of the concavities and convexities, for example, when the distance between the concavo-convex structures is set to 5 μm, it is preferable to control the 液晶μ® to the point where the liquid crystal is not refined (pixels are narrow). 20 μιη (aspect ratio 〇 ~ 4). Further, in particular, in order to further improve the uniformity of brightness, it is preferable to arrange another diffusion plate between the light sources u and 12 and the diffusion sheet 15, for example, when a diffusion plate containing a diffusing agent is disposed. It is controlled within the range of 〇0〇1 to 15 μηι (aspect ratio 〇~3), and more preferably within the range of 〇0111 to 1〇 aspect ratio 〇~2). Further, in the case of being used in combination with an optical sheet having an array-like arrangement structure, for example, when an optical sheet having a 〇I-array-arranged structure is disposed above the diffusion sheet 15, it is preferably It is controlled within the range of 0 μηι to 1〇μπι (aspect ratio 〇~2). Also for the projection from the projection area of the light sources 11, 12 to the light source ji 2

使亮度均勻化。 擴散板14只I接ότ姑止an .Make the brightness uniform. The diffuser plate 14 is only connected to the ότ abut an.

I46177.doc •35- 201044022 合物或無機微粒子者。該等擴散板具有使光擴散從而使下 π光源之光均勻化之效果。χ ’上述擴散板14亦可於表面 I成有凹凸形狀。作為該等擴散板,可視需要而使用添加 有上述有機聚合物或無機微粒子者。X,亦可使用將兩種 成分以上之樹脂混合並延伸而形成為片材狀之擴散板。 以下,舉例說明本實施形態中所揭示之光源單元之具體 的構成。 例如可知用圖23(a)至圖23(c)所示之配設構成來作為 光源單元之構成。 圖⑷係表不於圖i 9(b)所示之構成中,在酉己置於光源 正上方之擴散板14與擴散片材15之間配置有表面形成有微 細的凹凸結構之表面職形型擴散片材16、進而在擴散片材 15之正上方配置有上述表面賦形㈣散片材μ而構成之光 線控制單元。 此處’作為表面賦形型擴散片材16,可使用將丙烯酸系 樹月曰之球狀珠粒塗布於聚酯系樹脂、三乙醯纖維素或聚碳 夂S曰等之片材上而成之片材。又,作為表面賦形型擴散片 材16’可使用將藉由紫外線硬化樹脂所形成之微細的凹凸 構轉P至聚gB系樹脂、三乙醯纖維素或聚碳酸醋等之片 材上而成的片# °此種表面_型擴散片材16具有使光擴 散並均勻化之效果,且具有使藉由擴散心4而擴散之光聚 光之功能。將該等表面賦形型擴散片㈣與擴散片材仙 —:吏用藉此可減輕売度不均,從而可實現光線控制單 元之薄型化或光源數之削減。 146177.doc -36- 201044022 圖23(b)係表示於圖19(b)所示之構成中,在配置於光源 正上方之擴散板丨4及擴散片材15之上方,依序配置有具有 _ #列狀之稜鏡排列結構之光學片材17、表面形成有微細的 ; 凹凸結構之表面賦形型擴散片材16而成之光線控制單元。 又,圖23(c)係表示於圖19(b)所示之構成中,在配置於光 源正上方之擴政板14及擴散片材15之上方,配置有表面形 成有微細的凹凸結構之表面賦形型擴散片材16、及具有陣 列狀之馱鏡排列結構之光學片材1 7而成之光線控制單元。 作為稜鏡片材17,可使用於表面陣列狀地排列有剖面形 狀為大致二角形狀、大致梯形狀、大致橢圓狀之稜鏡條列 的光學片材。自提高耐擦傷性等之觀點而言,亦可較佳地 使用將上述剖面形狀之頂點修圓而成形狀者。作為該等稜 鏡片材,可用作將藉由紫外線硬化樹脂所構成之稜鏡條列 轉印至聚酯系樹脂、三乙醯纖維素或聚碳酸酯等之基材片 材上之形態。此種稜鏡片材17顯示回復反射性 q (retroreflectlve ablhty),因此具有使入射光向正面聚光之 功能。將該稜鏡片材與本發明之擴散片材組合使用,藉此 可減輕亮度不均,從而可實現光源單元之薄型化或光源數 之削減。 圖24係表示於圖2〇(b)所示之構成中,在配置於光源正 . 上方之擴散板14及擴散片材15之上方,配置有表面形成有 •微細的凹凸結構之表面賦形型擴散片材16、並依序配置有 具有障列狀之稜鏡條列之光學片材17及反射型偏光片材18 而成之光線控制單元。 146177.doc -37- 201044022 作為反射型偏光片材18,可使用具有從自然光或偏光中 分離出直線偏光之功能的片#。作為分離出上述直線偏光 之片材,可列舉例如使在軸方向上正交之直線偏光之一方 穿透、另-方反射之薄膜等。作為上述反射型偏光片材, 具體而言’可使用將雙折射相位差較大之樹脂(聚碳酸 酯、丙烯酸系樹脂、聚酯樹脂等)與雙折射相位差較小之 樹脂(環烯聚合物等)交替積層多層並單軸延伸所獲得之片 材、及包含將雙折射性聚酯樹脂積層數百層而成之結構的 片材(DBEF、3M股份有限公司製)等。 此外,作為光源單元之構成,亦可採用例如圖25、圖% 所示之配設構成。 圖25(a)係表示於圖19(a)所示之構成中,在光源丨丨與擴 散片材15之間配置有擴散板14、進而在擴散片材15之正上 方配置有透鏡片材16而成之光源單元。又,圖25(b)係表示 於圖19(a)所示之構成中,在擴散片材15之上方依序配置有 擴散板14、透鏡片材16而成之光源單元。 圖25(c)係表示於圖19(a)所示之構成中,在光源^與擴 散片材15之間配置有擴散板14、進而在擴散片材15之上方 依序配置有具有陣列狀之稜鏡排列結構之光學片材(以下 簡記為稜鏡片材)17、反射型偏光片材18而成之光源單 元。又,圖25(d)係表示於圖19(a)所示之構成中,在光源 Η與擴散片材15之間配置有擴散板14、進而在擴散片材15 之上方使稜鏡片材17之棱鏡排列方向正交而配置兩張、更 進一步在其上方配置有透鏡片材16而成之光源單元。 146177.doc -38- 201044022 圖26(a)係表示於圖19(a)所示之構成中,在光源丨丨與擴 政片材15之間配置有擴散板14、進而在擴散片材η之上方 依序配置有透鏡片材16、稜鏡片材17及反射型偏光片材18 而成之光源單元。又,圖26(b)係表示於圖19(a)所示之構 成中,在擴散片材15之上方依序配置有擴散板14、透鏡片 材16、稜鏡片材17及反射型偏光片材18而成之光源單元。 其次,說明為了明確本發明之效果而進行之實施例,但 本發明並不限定於該等。 [實施例1] 實施例1係對應於上述貫施形態1所揭示之内容。再者, 實施例1所示之擴散角度係表示使光自具有微細的凹凸結 構之面進行入光’並藉由Photon所測定之角度。例如,5。 係表示所有方向之FWHM均為5。。關於擴散角度分布,對 擴散片材之X軸方向及/或y軸方向以2 mrn間隔測定 F WHM ’製作分布圖。關於以下實施例2、3之擴散角度分 布亦同樣地進行測定。關於縱橫比,係使用基恩斯 (KEYENCE)股伤有限公司製造之超深度彩色3d形狀測定 顯微鏡(VK-9500) ’對擴散片材之X軸方向及/或y軸方向以 4 mm間隔進行測定,求出縱橫比分布。 在實施例1-1、實施例1-2中,關於實施例中未記載之光 學片材’即’關於反射片材、擴散板、表面賦形型擴散片 材、具有陣列狀之稜鏡排列結構之光學片材、及反射型偏 光片材,係分別使用:包含聚酯樹脂之白色反射片材(以 下簡記為RS);包含聚笨乙烯、厚度為1.5 mm、擴散劑濃 146177.doc -39- 201044022 度為13000 ppm之擴散板(以下簡記為DP);在厚度為25〇 μιη 之 PET(polyethylene terephthalate,聚對苯二曱酸乙二 醇酯)基材上塗布有樹脂珠粒及黏合劑之擴散片材(以下簡 記為DS);在厚度為250 μιη之PET基材上對頂角90。、間距 5 0 μιη之稜鏡條列藉由UV(Ultraviolet,紫外線)硬化性樹脂 而賦形之光學片材(以下簡記為稜鏡片材);及反射型偏光 片材(以下簡記為DBEF,3M公司製)。 關於實施例1 -1,使用直徑為3.0 ππηφ、長度為710 mm之 CCFL光源作為光線控制單元之光源。配置16根上述CCFL 光源,使其長度方向並列地排列,使RS與上述光源之直徑 之中心間的距離為3.8 mm,且使上述光源彼此之間隔p為 23.7 mm,製作亮度評估用之光線控制單元。關於亮度及 亮度不均,係使用Konica Minolta製造之二維色彩亮度計 (CA2000),自光線控制單元起相距75 cm而設置,將在光 線控制單元之中心部20 mmx 190 mm之範圍内所測定之平 均亮度值作為亮度。關於亮度不均,係求出X軸(20 mm)方 向之平均亮度值,對於y軸方向,則作為由各個點之亮度 值減去距各個點±11.8 mm之亮度平均值後所得之值的標準 偏差(以下記作S.D·)而求出亮度不均。 此處,將亮度不均之判定基準分類成如下之兩個階段 (〇、X) ° 〇 : S.D.S 0.004 X : 0.004<S.D. (實施例1-1) 146177.doc -40- 201044022 如圖26(a)所示,在光源上方依序配置Dp、本發明之擴 月欠片材' DS、稜鏡片材、及DBEF,構成實施例1β1之光線 才工制單το。本發明之擴散片材係以使凹凸面成為出光面之 方式,使用光源之投影區域之擴散角度為7〇。、光源與光 源之中間點之投影區域之擴散角度為丨。、且擴散角度如圖 28(b)所不而變化的擴散片材。此處,使cCFL光源與dP之 入光面間的距離z為4.5 mm。利用上述方法計算實施例^I46177.doc •35- 201044022 Compound or inorganic microparticles. The diffusing plates have an effect of diffusing light to homogenize the light of the lower π light source. The diffusion plate 14 may have a concave-convex shape on the surface I. As the diffusion plate, those in which the above organic polymer or inorganic fine particles are added may be used as needed. Further, X may be a diffusion plate in which a resin of two or more components is mixed and stretched to form a sheet. Hereinafter, a specific configuration of the light source unit disclosed in the embodiment will be described by way of example. For example, it is understood that the configuration shown in Figs. 23(a) to 23(c) is used as the configuration of the light source unit. In the configuration shown in Fig. 9 (b), the surface shape in which the fine uneven structure is formed on the surface between the diffusion plate 14 and the diffusion sheet 15 which are placed directly above the light source is disposed. The type of diffusion sheet 16 and the light control unit formed by disposing the surface forming (four) loose sheet μ directly above the diffusion sheet 15 are further disposed. Here, as the surface-formed type diffusion sheet 16, the spherical beads of the acrylic tree can be applied to a sheet of a polyester resin, triethyl cellulose or a polycarbene. Into the sheet. Further, as the surface-formed type diffusion sheet 16', it is possible to use a fine concavity and convexity formed by an ultraviolet curable resin to transfer P onto a sheet of polygB resin, triacetyl cellulose or polycarbonate. The sheet-type diffusion sheet 16 has an effect of diffusing and homogenizing light, and has a function of condensing light diffused by the diffusion core 4. The surface-forming diffusing sheet (4) and the diffusing sheet can be used to reduce the unevenness of the twist, thereby reducing the thickness of the light control unit or reducing the number of light sources. 146177.doc -36- 201044022 Fig. 23(b) shows the configuration shown in Fig. 19(b), which is arranged in order above the diffuser plate 4 and the diffusion sheet 15 disposed directly above the light source. _# The optical sheet 17 having an array structure of a columnar shape, and a light control unit formed by a surface-formed diffusion sheet 16 having a fine surface and a concave-convex structure. Further, Fig. 23(c) shows a configuration in which the fine concavo-convex structure is formed on the surface of the expansion board 14 and the diffusion sheet 15 disposed directly above the light source in the configuration shown in Fig. 19(b). A surface-forming diffusion sheet 16 and a light control unit having an array of optical sheets 17 in an arrayed frog mirror arrangement. As the enamel sheet 17, an optical sheet in which a cross-sectional shape is a substantially rectangular shape, a substantially trapezoidal shape, or a substantially elliptical ridge line array can be arranged in a line array. From the viewpoint of improving the scratch resistance and the like, it is also preferable to use a shape obtained by rounding the apex of the cross-sectional shape. The lenticular lens material can be used as a form in which a string of the ultraviolet curable resin is transferred onto a base material sheet such as a polyester resin, triethylene cellulose or polycarbonate. Such a ruthenium sheet 17 exhibits retroreflectiveness q (retroreflectlve ablhty), and therefore has a function of condensing incident light toward the front side. By using the tantalum sheet in combination with the diffusion sheet of the present invention, unevenness in brightness can be reduced, and the light source unit can be made thinner or the number of light sources can be reduced. Fig. 24 is a view showing the configuration shown in Fig. 2(b), in which the surface of the diffusing plate 14 and the diffusing sheet 15 disposed above the light source are arranged with a surface having a fine uneven structure. The type of diffusion sheet 16 is provided with a light control unit having an optical sheet 17 having a barrier array and a reflective polarizing sheet 18 in this order. 146177.doc -37- 201044022 As the reflective polarizing sheet 18, a sheet # having a function of separating linear polarized light from natural light or polarized light can be used. The sheet in which the linearly polarized light is separated may be, for example, a film which penetrates one of the linearly polarized lights orthogonal to the axial direction and reflects the other side. Specifically, as the above-mentioned reflective polarizing sheet, a resin having a large difference in phase difference between birefringence (polycarbonate, acrylic resin, polyester resin, etc.) and a birefringence phase difference (cycloolefin polymerization) can be used. A sheet obtained by alternately laminating a plurality of layers and uniaxially extending, and a sheet comprising a structure in which a plurality of layers of a birefringent polyester resin are laminated (DBEF, manufactured by 3M Co., Ltd.). Further, as a configuration of the light source unit, for example, the arrangement shown in Fig. 25 and Fig. 1 may be employed. 25(a) shows a configuration shown in FIG. 19(a) in which a diffusing plate 14 is disposed between the light source 丨丨 and the diffusion sheet 15, and a lens sheet is disposed directly above the diffusion sheet 15. 16 made of light source unit. Further, Fig. 25(b) shows a light source unit in which the diffusing plate 14 and the lens sheet 16 are arranged in order above the diffusion sheet 15 in the configuration shown in Fig. 19(a). 25(c) shows a configuration shown in FIG. 19(a), in which a diffusion plate 14 is disposed between the light source and the diffusion sheet 15, and an array is arranged in order above the diffusion sheet 15. Then, an optical sheet (hereinafter, simply referred to as a tantalum sheet) 17 and a reflective polarizing sheet 18 are arranged as a light source unit. Further, in Fig. 25(d), in the configuration shown in Fig. 19(a), the diffusion plate 14 is disposed between the light source Η and the diffusion sheet 15, and the enamel sheet 17 is placed above the diffusion sheet 15. The light source unit in which the prism sheets 16 are arranged in a direction in which the prism array directions are orthogonal to each other is further disposed. 146177.doc -38- 201044022 Fig. 26(a) shows a configuration shown in Fig. 19(a), in which a diffusion plate 14 is disposed between the light source 丨丨 and the expansion sheet 15, and further, a diffusion sheet η is disposed. A light source unit in which the lens sheet 16, the cymbal sheet 17, and the reflective polarizing sheet 18 are disposed is disposed in this order. 26(b) shows a configuration shown in FIG. 19(a), in which a diffusion plate 14, a lens sheet 16, a cymbal sheet 17, and a reflection type polarizer are sequentially disposed above the diffusion sheet 15. The light source unit made of material 18. Next, an embodiment will be described in order to clarify the effects of the present invention, but the present invention is not limited to these. [Embodiment 1] Embodiment 1 corresponds to the content disclosed in the above-described Embodiment 1. Further, the diffusion angle shown in the first embodiment means an angle at which light is incident on the light having a fine uneven structure and measured by Photon. For example, 5. It means that the FWHM is 5 in all directions. . Regarding the diffusion angle distribution, the distribution map of F WHM ' was measured at intervals of 2 mrn in the X-axis direction and/or the y-axis direction of the diffusion sheet. The diffusion angle distributions of the following Examples 2 and 3 were also measured in the same manner. For the aspect ratio, an ultra-deep color 3d shape measuring microscope (VK-9500) manufactured by KEYENCE Co., Ltd. was used to measure the X-axis direction and/or the y-axis direction of the diffusion sheet at intervals of 4 mm. Find the aspect ratio distribution. In the embodiment 1-1 and the embodiment 1-2, the optical sheet which is not described in the embodiment, that is, the reflection sheet, the diffusion sheet, the surface-forming diffusion sheet, and the array having the array shape are arranged. The optical sheet of the structure and the reflective polarizing sheet are respectively used: a white reflective sheet containing a polyester resin (hereinafter abbreviated as RS); a polystyrene having a thickness of 1.5 mm and a diffusing agent concentration of 146177.doc - 39- 201044022 is a 13,000 ppm diffusion plate (hereinafter abbreviated as DP); coated with resin beads and bonded on a PET (polyethylene terephthalate) substrate having a thickness of 25 μm The diffusion sheet of the agent (hereinafter abbreviated as DS); the apex angle 90 on a PET substrate having a thickness of 250 μm. An optical sheet (hereinafter abbreviated as a sheet of enamel) shaped by a UV (Ultraviolet) curable resin; and a reflective polarizing sheet (hereinafter abbreviated as DBEF, 3M) Company system). Regarding Embodiment 1-1, a CCFL light source having a diameter of 3.0 ππηφ and a length of 710 mm was used as a light source of the light control unit. Sixteen CCFL light sources are arranged such that their length directions are juxtaposed so that the distance between the RS and the center of the diameter of the light source is 3.8 mm, and the distance between the light sources is 23.7 mm, and the light control for brightness evaluation is made. unit. For uneven brightness and brightness, a two-dimensional color luminance meter (CA2000) manufactured by Konica Minolta is used, which is set at a distance of 75 cm from the light control unit and is measured in the range of 20 mm x 190 mm at the center of the light control unit. The average brightness value is used as the brightness. Regarding the uneven brightness, the average luminance value in the X-axis (20 mm) direction is obtained, and for the y-axis direction, the value obtained by subtracting the luminance average value of ±11.8 mm from each point from the luminance value of each point is obtained. The standard deviation (hereinafter referred to as SD·) was used to determine the luminance unevenness. Here, the criterion for determining the uneven brightness is classified into the following two stages (〇, X) ° 〇: SDS 0.004 X : 0.004 < SD (Example 1-1) 146177.doc -40- 201044022 As shown in (a), Dp, the moon-expanding sheet "DS", the enamel sheet, and the DBEF of the present invention are sequentially disposed above the light source, and the light constituting the film of Example 1 is formed. The diffusing sheet of the present invention has a diffusing angle of 7 Å in a projection region using a light source so that the uneven surface is a light-emitting surface. The diffusion angle of the projection area between the light source and the light source is 丨. And the diffusion sheet whose diffusion angle does not change as shown in Fig. 28(b). Here, the distance z between the cCFL source and the entrance surface of the dP is 4.5 mm. Calculate the example using the above method^

之光線控制單元中之亮度不均。將其結果示於下表卜 又關於本發明之擴散片材,將擴散角度峰值與擴散角度 谷值之算術平均值(Avl)、及分布於連續的擴散角度峰值 與擴散角度谷值之間的所有測定點的擴散角度之算術平均 值(Av2)—併記於下表1。 又’該擴散片材之縱橫比分布係表示與圖耶)之曲線 形狀相同之分布者,在光源之投影區域為〇8,在光源與 光源之中間點之投影區域為〇·14,縱橫比之峰值與縱橫比 之谷值之算術平均值(Αν1_.47,分布於連續的縱橫比之 峰值與縱橫比之谷值之間的所有測定點的縱橫比之算術平 均值(Av2)為 0.32。 關於實施例i-2,係使用直徑3·〇醜卜長度71〇麵之 咖光源來作為光線控制單元之光源。配置8根上述 CCFL光源’使其長度方向並列地排列,使rs與上述光源 之直徑之中心間的距離為3.8職,且使上述光源彼此之間 隔P為47·6 mm ’製作亮度評估用之光線控制單元。關於真 度及亮度不均,係使用KGniea Min()lta製造之二維色^ 146177.doc •41 - 201044022 度計(CA2000),自光線控制單元起相距75 cm而設置,將 在光線控制單元之中心部20 mmx190 mm之範圍内所測定 之平均亮度值作為亮度。關於亮度不均,係求出乂軸(2〇 mm)方向之平均亮度值,對於乂軸方向,則作為由各個點 之凴度值減去距各個點±23.8 mm之亮度平均值後所得之值 的標準偏差而求出亮度不均。 此處,將亮度不均之判定基準分類成如下之兩個階段 (Ο、X) 〇 〇 : S.D.S 0.004 X : 0.004<S.D. (實施例1-2) 如圖26(a)所示,在光源上方依序配置Dp、本發明之擴 散片材'DS、稜鏡片材、及D卿,構成實施例U之光= 控制單元。本發明之擴散月材係以凹凸面成為出光面之方 式,使用光源之投影區域之擴散角度為3〇。、光源與光源 之中間點之投影區域之擴散角度為!。、擴散角度如圖28(〇 所示而變化之擴散片材。此處,使CCFL光源與Dp之入光 面間的距離2為4·5 mm。利用上述方法計算實施例1-2之光 線控制單元中之亮度不均。將其結果示於下表丨。又關 =本發明之擴散諸’將擴散角度峰值與擴散角度谷值之 算術平均值(Avl)、及分布於連續的擴散角度峰值與擴散 角度谷值之間的所有測定點的擴散角度之算術平均值 (Av2)一併記於下表1。 146177.doc -42· 201044022 [表i] z/mm 標準偏差 Avl Av2 實施例1-1 4.5 〇 35.5 23.9 實施例1-2 4.5 〇 15.5 10.3 在實施例1-3中’關於實施例中未記載之光學片材, 即,關於反射片材、擴散板、表面賦形型擴散片材、具有 陣列狀之稜鏡排列結構之光學片材、及反射型偏光片材,The brightness in the light control unit is uneven. The results are shown in the following table. Further, regarding the diffusion sheet of the present invention, the arithmetic mean value (Avl) of the diffusion angle peak and the diffusion angle valley value, and the distribution between the continuous diffusion angle peak value and the diffusion angle valley value are shown. The arithmetic mean (Av2) of the diffusion angles of all measured points - and is shown in Table 1 below. Further, the aspect ratio distribution of the diffusion sheet is the same as that of the graph of Fig., and the projection area of the light source is 〇8, and the projection area at the intermediate point between the light source and the light source is 〇·14, the aspect ratio The arithmetic mean (Av2) of the aspect ratio of all the measured points between the peak value of the continuous aspect ratio and the valley of the aspect ratio is 0.32. Regarding the embodiment i-2, a coffee source having a diameter of 3 〇 长度 长度 length 71 is used as a light source of the light control unit. Eight of the above-mentioned CCFL light sources are arranged to have their longitudinal directions arranged side by side so that rs and the above light source are arranged. The distance between the centers of the diameters is 3.8, and the distance between the light sources is P·47·6 mm. The light control unit for brightness evaluation is made. The difference between the trueness and the brightness is made by KGniea Min() lta. 2D color ^ 146177.doc • 41 - 201044022 (CA2000), set from the light control unit at a distance of 75 cm, the average brightness value measured in the range of 20 mm x 190 mm in the center of the light control unit is used as bright Regarding the uneven brightness, the average brightness value in the direction of the 乂 axis (2〇mm) is obtained, and for the 乂 axis direction, the brightness average value of ±23.8 mm from each point is subtracted from the 凴 degree value of each point. The standard deviation of the values is used to determine the luminance unevenness. Here, the criterion for determining the luminance unevenness is classified into the following two phases (Ο, X) 〇〇: SDS 0.004 X : 0.004 < SD (Example 1 2) As shown in Fig. 26 (a), Dp, the diffusion sheet 'DS, the enamel sheet, and the D qing of the present invention are sequentially disposed above the light source to constitute the light of the embodiment U = control unit. The diffusion of the present invention The lunar surface is such that the concave-convex surface becomes the light-emitting surface, and the diffusion angle of the projection area using the light source is 3 〇. The diffusion angle of the projection area between the light source and the light source is !, and the diffusion angle is as shown in FIG. And a varying diffusion sheet. Here, the distance 2 between the CCFL source and the incident surface of Dp is 4·5 mm. The brightness unevenness in the light control unit of Example 1-2 was calculated by the above method. The results are shown in the following table. Further, the diffusion of the present invention will be the peak of the diffusion angle. The arithmetic mean (Avl) of the scattered angle valley and the arithmetic mean (Av2) of the diffusion angles of all the measured points distributed between the continuous diffusion angle peak and the diffusion angle valley are shown in Table 1 below. Doc -42· 201044022 [Table i] z/mm Standard deviation Avl Av2 Example 1-1 4.5 〇35.5 23.9 Example 1-2 4.5 〇15.5 10.3 In Example 1-3 'About the opticals not described in the examples a sheet, that is, a reflective sheet, a diffusing sheet, a surface-forming diffusing sheet, an optical sheet having an array of tantalum-arranged structures, and a reflective polarizing sheet,

Ο 係分別使用:包含聚酯樹脂之白色反射片材(以下簡記為 RS);包含聚苯乙烯、厚度為2.0 mm、擴散劑濃度為20000 ppm之擴散板(以下簡記為DP);在厚度為250 μιη之PET基 材上塗布有樹脂珠粒及黏合劑之擴散片材(以下簡記為 DS);在厚度為250 μιη之PET基材上對頂角90。、間距50 μιη之稜鏡條列藉由UV硬化性樹脂而賦形之光學片材(以下 簡記為棱鏡片材);及反射型偏光片材(以下簡記為DBEF, 3Μ公司製)。 關於實施例1-3,係使用CREE公司製造之3 5 mm見方、 尚度2.0 mm之白色LED光源來作為光線控制單元之光源。 使上述光源之中心間距離在χ軸方向、y軸方向上為3〇〇 mm 而格子狀地排列配置各1〇行,製作光線控制單元。關於亮 度及亮度不均,係使用Konica Minolta製造之 度汁(CA2000) ’自光線控制單元起相距7〇 cm而設置 在光線控制單元之中心部12〇 _12〇 _之範圍内所須 之平均亮度值作為亮度。 度不均係》又為對乂軸方向及y軸方向之兩方向所計算 146177.doc -43- 201044022 值的平均值。首先’求出X軸(120 mm)方向之平均亮度 值’對於y轴方向,則作為由各個點之亮度值減去距各個 點土12咖之亮纟平均值後所得之值的標準偏I而求出亮 度不均。同樣地’求出丫軸⑽_)方向之平均亮度值對 於X軸方向,則作為由各個點之亮度值減去距各個點±15麵 之亮度平均值後所得之值的標準偏差而求出冑度不均。最 後,將X軸方向之標準偏差與y軸方向之標準偏差平均後的 值作為光線控制單元之亮度不均。再者,由於LED光源係 點光源,因此如圖2(b)所示,考慮在相鄰之光源之直線距 離為最大之線(圖2(b)中之虛線)上的擴散角度之分布。 此處’將亮度不均之判定基準分類成如下之兩個階段 (〇、X) 〇 ° : S.D. ^ 0.005 x : 〇-〇〇5<S.D. (實施例1-3) 如圖24(a)所示,在光源上方依序配置dP、本發明之擴 散片材、DS、稜鏡片材、及dbEF,構成實施例1-3之光線 控制單元。本發明之擴散片材係以凹凸面成為出光面之方 式’使用光源之投影區域之擴散角度為6〇。、光源與光源 之中間點之投影區域之擴散角度為20。、且擴散角度如圖 280)所示而變化的擴散片材。此處,使1^與〇1>之入光面 間的距離h為16.0 mm。利用上述方法計算實施例1 -3之光 線控制單元中之亮度不均。將其結果示於下表2。又,關 於本發明之擴散片材,將擴散角度峰值與擴散角度谷值之 146177.doc -44 - 201044022 算術平均值(Avl)、及分布於連續的擴散角度峰值與擴散 角度谷值之間的所有測定點的擴散角度之算術平均值 (Av2)—併記於下表2。 [表2] 實施例1-3 h/mm 16 亮度不均Ο is used separately: white reflective sheet containing polyester resin (hereinafter abbreviated as RS); diffuser plate containing polystyrene, thickness of 2.0 mm and diffusing agent concentration of 20,000 ppm (hereinafter abbreviated as DP); A 250 μm PET substrate was coated with a diffusion sheet of resin beads and a binder (hereinafter abbreviated as DS); and a apex angle of 90 on a PET substrate having a thickness of 250 μm. An optical sheet (hereinafter abbreviated as a prism sheet) shaped by a UV curable resin and a reflective polarizing sheet (hereinafter abbreviated as DBEF, manufactured by San Francisco). Regarding Examples 1-3, a white LED light source of 35 mm square and 2.0 mm square manufactured by CREE Corporation was used as a light source of the light control unit. The distance between the centers of the light sources was set to 3 〇〇 mm in the y-axis direction and the y-axis direction, and each line was arranged in a lattice shape to fabricate a light control unit. Regarding the unevenness of brightness and brightness, the average of the temperature required by Konica Minolta (CA2000) 'from the light control unit is 7 〇cm and is set in the center of the light control unit 12〇_12〇_ The brightness value is used as the brightness. The degree of unevenness is the average of the values of 146177.doc -43- 201044022 calculated for both the x-axis direction and the y-axis direction. First, 'finalize the average luminance value in the X-axis (120 mm) direction'. For the y-axis direction, the standard deviation I is obtained as the value obtained by subtracting the average value of the luminance from each point. And the brightness is uneven. Similarly, the average luminance value in the direction of the 丫 axis (10)_) is obtained as the standard deviation of the value obtained by subtracting the luminance average value of ±15 planes from each point from the luminance value of each point in the X-axis direction. Uneven. Finally, the average value of the standard deviation in the X-axis direction and the standard deviation in the y-axis direction is used as the brightness unevenness of the light control unit. Further, since the LED light source is a point light source, as shown in Fig. 2(b), the distribution of the diffusion angle on the line where the straight line distance of the adjacent light source is the largest (the broken line in Fig. 2(b)) is considered. Here, the criterion for determining the uneven brightness is classified into the following two stages (〇, X) 〇 ° : SD ^ 0.005 x : 〇 - 〇〇 5 < SD (Example 1-3) as shown in Fig. 24 (a) As shown, the dP, the diffusion sheet of the present invention, the DS, the enamel sheet, and the dbEF are sequentially disposed above the light source to constitute the light control unit of Embodiment 1-3. In the diffusing sheet of the present invention, the uneven surface is a light-emitting surface. The diffusion angle of the projection region using the light source is 6 Å. The projection angle of the projection point between the light source and the light source is 20 degrees. And the diffusion sheet whose diffusion angle is changed as shown in Fig. 280). Here, the distance h between the light incident surfaces of 1^ and 〇1> is 16.0 mm. The luminance unevenness in the light control unit of the embodiment 1-3 was calculated by the above method. The results are shown in Table 2 below. Further, regarding the diffusion sheet of the present invention, the diffusion angle peak and the diffusion angle valley value are 146177.doc -44 - 201044022 arithmetic mean value (Avl), and the distribution is between the continuous diffusion angle peak value and the diffusion angle valley value. The arithmetic mean (Av2) of the diffusion angles of all measurement points - and is shown in Table 2 below. [Table 2] Example 1-3 h/mm 16 uneven brightness

Avl ~40~Avl ~40~

Av2 在實施例1-4、實施例1-5中,關於實施例中未記載之光 學片材,即,關於反射片材、擴散板、表面賦形型擴散片 〇 材、具有陣列狀之稜鏡排列結構之光學片材、及反射型偏 光片材’係分別使用:包含聚酯樹脂之白色反射片材(以 下簡記為RS);包含聚苯乙烯、厚度為丨5 mm、且擴散劑 濃度為13000 ppm之擴散板(以下簡記為Dp);在厚度為25〇 μπι之PET基材上塗布有樹脂珠粒與黏合劑之擴散片材(以 下簡記為DS);在厚度為250 μιη之PET基材上對半球狀之 透鏡藉由UV硬化性樹脂而賦形之光學片材(以下簡記為 MLF);在厚度為250 μιη之PET基材上對頂角90。、間距50 〇 μπι之稜鏡條列藉由UV硬化性樹脂而賦形之光學片材(以下 簡記為稜鏡片材);及反射型偏光片材(以下簡記為Dbef, 3Μ公司製)。 關於貫施例1 -4,係使用直徑3.0 πιηιφ、長度71 0 mm之 CCFL光源來作為光線控制單元之光源。配置16根上述 CCFL·光源,使其長度方向並列地排列,使rs與上遗光源 之直徑之中心間的距離為3.8 mm,且使上述光源彼此之間 隔p為23_7 mm ’製作亮度評估用之光線控制單元。關於亮 146177.doc -45· 201044022 度及亮度不均,係使用Konica Minolta製造之二維色彩亮 度计(CA2000),自光線控制單元起相距75 而設置,將 在光線控制單元之中心部20 mmx 190 mm之範圍内所測定 之平均亮度值作為亮度。關於亮度不均,係求出乂軸(2() mm) 方向之平均亮度值,對於y軸方向,則作為由各個點之亮 度值減去距各個點± 1丨.8 m m之亮度平均值後所得之值的標 準偏差(以下記作S _D.)而求出亮度不均。 此處,將亮度不均之判定基準分類成如下之兩個階段 ° · S.D. ^ 0.004 x ·· 0.004<S.D. (實施例1-4) 如圖26⑷所示,在光源上方依序配置Dp'本發明之擴 散片材、DS、棱鏡片材、及DBEF,構成實施例^之光線 控制單元。本發明之擴散片材係以凹凸面成為出光面之方 式,使用光源之投影區域之擴散角度為7〇。、光源與光源 之中間點之投影區域之擴散角度為i。、且擴散角度如圖 29⑷所示而變化的擴散片材。此處,使CCFL光源與DP之 入先面間的距離2為4.5 _。卩用上述方法計算實施例Η 之光線控料元巾之亮度m其結果示於下表卜 ^關:本發明之擴散片材,將擴散角度峰值與擴散角度 -擴二Γ均值(Avl)、及分布於連續的擴散角度峰值 信、角度谷值之間的所有測定點的擴散角度之算術平均 值(Av2)一併記於下表1中。 一 146177.doc * 46 - 201044022 關於广知例1-5 ’係使用直徑3 〇 _φ、長度71〇 _之 光源來作為光線控制單元之光源。配置8根上述 , CCFI^光源’使其長度方向並列地排列,使RS與上述光源 ; ^直仏之中心間的距離為3·8 mm ’且使上述光源彼此之間 隔P為47.6 mm ’製作亮度評估用之光線控制單元。關於亮 . 度及亮度不均,係使用K〇nica Minolta製造之二維色彩亮 度計(CA2000),配置在距光線控制單元乃⑽處,將在光 、線控制單元之中心部2G酿xl9G mm之範圍内所測定之平 均党度值作為亮度。關於亮度不均m轴(2Q叫方 °平句&度值,對於y軸方向,則作為由各個點之亮度 值減去距各個點± 2爻8 m m之亮度平均值後所得之值的標準 偏差而求出亮度不均。 此處,將允度不均之判定基準分類成如下之兩個階段 (〇、X) 〇 ° : S.D.^ 0.004 x : 〇.〇04<S.D. ❹ (實施例1-5) 在光源上方依序配置DP、本發明之擴散片材、MLF、及 • MLF ’構成實施例1-5之光線控制單元。本發明之擴散片 材係以凹凸面成為出光面之方式,使用光源之投影區域之 . 擴散角度為59。、光源與光源之中間點之投影區域之擴散 • 角度為25。、且擴散角度如圖29(b)所示而變化的擴散片 材。此處,使CCFL光源與DP之入光面間的距離2為4 5 mm。 利用上述方法計算實施例1 _5之光線控制單元中之亮度不 146177.doc -47- 201044022 均。將其結果示於下s 1。X,關於本發明之擴散月材 將擴散角度峰值與擴散角度谷值之算術平均值(Avl)、 分布於連續的擴散角度峰值與擴散角度谷值之間的所有2 定點的擴散角度之算術平均值(Αν2) 一併記於下表3。 Ί [表3] 實施例1-4 Ϋ施例Π z/mm 標準偏差 Avl 4.5 〇 35.5 4.5 〇 42Av2 In the examples 1-4 and 1-5, the optical sheets not described in the examples, that is, the reflective sheet, the diffusion sheet, the surface-formed diffusion sheet coffin, and the array-like ribs The optical sheet of the mirror array structure and the reflective polarizing sheet are used separately: a white reflective sheet containing a polyester resin (hereinafter abbreviated as RS); a polystyrene, a thickness of 丨5 mm, and a diffusing agent concentration a diffusion plate of 13000 ppm (hereinafter abbreviated as Dp); a diffusion sheet coated with a resin bead and a binder on a PET substrate having a thickness of 25 μm (hereinafter abbreviated as DS); and a PET having a thickness of 250 μm An optical sheet (hereinafter abbreviated as MLF) formed by a UV curable resin on a hemispherical lens on a substrate; a vertex angle of 90 on a PET substrate having a thickness of 250 μm. An optical sheet (hereinafter, abbreviated as a sheet of enamel) which is shaped by a UV curable resin, and a reflective polarizing sheet (hereinafter abbreviated as Dbef, manufactured by Dippon Co., Ltd.) at a pitch of 50 〇 μπι. Regarding the examples 1 to 4, a CCFL light source having a diameter of 3.0 πιηιφ and a length of 71 mm was used as a light source of the light control unit. Sixteen CCFL light sources are arranged such that their longitudinal directions are arranged side by side such that the distance between rs and the center of the diameter of the upper source is 3.8 mm, and the distance between the light sources is 23_7 mm. Light control unit. About Bright 146177.doc -45· 201044022 Degrees and uneven brightness, using a two-dimensional color luminance meter (CA2000) made by Konica Minolta, set at a distance of 75 from the light control unit, will be 20 mmx in the center of the light control unit The average brightness value measured in the range of 190 mm is taken as the brightness. For the uneven brightness, the average brightness value in the direction of the 乂 axis (2 () mm) is obtained, and for the y-axis direction, the brightness average value of ± 1 丨.8 mm from each point is subtracted from the brightness value of each point. The standard deviation of the value obtained (hereinafter referred to as S_D.) was used to determine the luminance unevenness. Here, the criterion for determining the luminance unevenness is classified into the following two stages: · SD ^ 0.004 x ·· 0.004 < SD (Embodiment 1-4) As shown in Fig. 26 (4), Dp' is sequentially arranged above the light source. The diffusion sheet, DS, prism sheet, and DBEF of the present invention constitute the light control unit of the embodiment. In the diffusing sheet of the present invention, the uneven surface is a light-emitting surface, and the diffusion angle of the projection region using the light source is 7 Å. The diffusion angle of the projection area of the intermediate point between the light source and the light source is i. And the diffusion sheet whose diffusion angle changes as shown in Fig. 29 (4). Here, the distance 2 between the CCFL source and the leading surface of the DP is 4.5 _.计算 Calculate the brightness m of the light-controlling material towel of the embodiment 卩 by the above method. The result is shown in the following table: The diffusion sheet of the present invention has a diffusion angle peak and a diffusion angle-expansion mean value (Avl), The arithmetic mean (Av2) of the diffusion angles of all the measurement points distributed between the continuous diffusion angle peak signal and the angle valley value is also shown in Table 1 below. A 146177.doc * 46 - 201044022 For the well-known example 1-5 ′, a light source having a diameter of 3 〇 _φ and a length of 71 〇 is used as a light source of the light control unit. Arrange 8 of the above, CCFI^ light source 'arrange the length direction side by side so that the RS and the above light source; ^ the distance between the centers of the straight lines is 3·8 mm ' and the distance between the light sources is P7.64. Light control unit for brightness evaluation. Regarding the brightness and unevenness of brightness, a two-dimensional color luminance meter (CA2000) manufactured by K〇nica Minolta is used, which is disposed at the distance from the light control unit (10), and will be filled with xl9G mm at the center of the light and line control unit. The average party value measured within the range is taken as the brightness. Regarding the luminance unevenness m-axis (2Q is called square-squared & degree value, for the y-axis direction, as a value obtained by subtracting the luminance average value of each point by ± 2 爻 8 mm from the luminance value of each point The standard deviation is used to determine the brightness unevenness. Here, the criterion for the unevenness of the degree of unevenness is classified into the following two stages (〇, X) 〇 ° : SD^ 0.004 x : 〇.〇04<SD ❹ (Example 1-5) DP, the diffusion sheet of the present invention, MLF, and MLF' are arranged in order above the light source to constitute the light control unit of Embodiment 1-5. The diffusion sheet of the present invention has a concave-convex surface as a light-emitting surface. In the mode, the projection area of the light source is used. The diffusion angle is 59. The diffusion of the projection area between the light source and the light source is the diffusion sheet having an angle of 25 and the diffusion angle is changed as shown in Fig. 29(b). Here, the distance 2 between the CCFL light source and the light entrance surface of the DP is 4 5 mm. The brightness in the light control unit of the embodiment 1 _5 is calculated by the above method, and the result is shown as 146177.doc -47 - 201044022. s 1. X, regarding the diffusion moon of the present invention, the diffusion angle peak and the diffusion angle The arithmetic mean of the valleys (Avl), the arithmetic mean (Αν2) of the diffusion angles of all 2 fixed points between the continuous diffusion angle peak and the diffusion angle valley are shown in Table 3 below. Ί [Table 3] Example 1-4 Example Π z/mm Standard deviation Avl 4.5 〇35.5 4.5 〇42

在實施例1-6、1-7、1-8中,關於實施例中未記載之光學 片材,即,關於反射片材、擴散板、表面賦形型擴散片 材、微透鏡片材、具有陣列狀之棱鏡排列結構之光學片 材、及反射型偏光片材,係分別使用:包含聚酯樹脂之白 色反射片材(以下簡記為RS);包含聚苯乙烯、厚度為2 〇瓜瓜、 擴散劑濃度為20000 ppm之擴散板(以下簡記為Dp);在厚 度為250 μηι之PET基材上塗布有樹脂珠粒與黏合劑之擴散 片材(以下簡記為DS);在厚度為250 μιη之PET基材上對半 球狀之透鏡藉由UV硬化性樹脂而賦形之光學片材(以下簡 s己為MLF),在厚度為250 μηι之PET基材上對頂角90。、間 距5 0 μιη之稜鏡條列藉由uv硬化性樹脂而賦形之光學片材 (以下簡記為稜鏡片材);及反射型偏光片材(以下簡記為 DBEF,3Μ公司製)。 關於實施例1-6,係使用CREE公司製造之3.5 mm見方、 高度2.0 mm之白色LED光源來作為光線控制單元之光源。 將該LED排列成如圖30(a)所示之鋸齒格子狀(a&b為光源 146177.doc •48- 201044022 之中心間距離)。LED係在x方向、γ方向上並列地配置各 10個’製作光線控制單元。關於亮度及亮度不均,係使用 • Konica Minolta製造之二維色彩亮度計(cA2〇〇〇),設置在 ; ⑬離m制單元7G em處’將在光線控制單it之令心部In Examples 1-6, 1-7, and 1-8, regarding the optical sheets not described in the examples, that is, with respect to the reflective sheet, the diffusion sheet, the surface-forming diffusion sheet, the microlens sheet, An optical sheet having an array-like prism array structure and a reflective polarizing sheet are respectively used: a white reflective sheet containing a polyester resin (hereinafter abbreviated as RS); and a polystyrene having a thickness of 2 cucurbits a diffusion plate having a diffusing agent concentration of 20,000 ppm (hereinafter abbreviated as Dp); a diffusion sheet coated with a resin bead and a binder (hereinafter abbreviated as DS) on a PET substrate having a thickness of 250 μm; at a thickness of 250 On a PET substrate of μιη, an optical sheet (hereinafter referred to as MLF) shaped by a UV curable resin on a hemispherical lens has a vertex angle of 90 on a PET substrate having a thickness of 250 μm. An optical sheet (hereinafter simply referred to as a tantalum sheet) shaped by a uv curable resin, and a reflective polarizing sheet (hereinafter abbreviated as DBEF, manufactured by Sanken Co., Ltd.). Regarding Examples 1-6, a white LED light source of 3.5 mm square and 2.0 mm height manufactured by CREE Corporation was used as a light source of the light control unit. The LEDs are arranged in a zigzag lattice shape as shown in Fig. 30 (a) (a & b is the distance between the centers of the light sources 146177.doc • 48 - 201044022). The LEDs are arranged in parallel in the x direction and the γ direction. For uneven brightness and brightness, use a two-dimensional color luminance meter (cA2〇〇〇) made by Konica Minolta, set at 13g from the m unit of the m unit, which will be in the heart of the light control unit.

Lxnx12〇 mm之範圍内所測定之平均亮度㈣μ ^ • *度不均係設為對_方向及y軸方向之兩方向所計算之 值的平均值。首先,求出,軸(12〇 _)方向之平均亮度 值,對於7轴方向,則作為由各個點之亮度值減去距各個 〇 點士20.8 mm之亮度平均值後所得之值的標準偏差而求出亮 度不均。同樣地’求出y軸(12()咖)方向之平均亮度值, 對於X軸方向,則作為由各個點之亮度值減去距各個點 ±15.2 mm之亮度平均值後所得之值的標準偏差而求出亮度 不均。最後,將X軸方向之標準偏差與y軸方向之標準偏差 平均後所得之值作為光線控制單元之亮度不均。再者,由 於LED光源係點光源,因此如圖2(b)所示考慮在相鄰之 光源之直線距離為最大之線(圖2 (b)中之虛線)上的擴散角 度之分布。 關於實施例1-7,係使用CREE公司製造之35 mm見方、 兩度2‘0 mm之白色LED光源來作為光線控制單元之光源。 將該LED排列成如圖3〇(b)所示之鑛齒格子狀(&及b為光源 之中心間距離)。LED係在X方向、γ方向上並列地配置各 10個,製作光線控制單元。關於亮度及亮度不均,係使用 Konica Minolta製造之二維色彩亮度計(CA2〇〇〇),設置在 距離光線控制單元70 cm處,將在光線控制單元之中心部 146177.doc -49· 201044022 mxl20mm之範圍内所測定之平均亮度值作為亮度。 党度不均係設為對x軸方向及乂軸方向之兩方向所計算之 值的平均值。#先,求出X軸(120 mm)方向之平均亮度 值,對於y軸方向,則作為由各個點之亮度值減去距各個 點士 25.2 mm之亮度平均值後所得之值的標準偏差而求出亮 度不均同樣地,求出y軸(12〇咖)方向之平均亮度值, 對於X軸方向,則作為由各個點之亮度值減去距各個點 17.2 mm之冗度平均值後所得之值之標準偏差而求出亮度 不均。最後,將X軸方向之標準偏差與y軸方向之標準偏差 平均後所得之值作為光線控制單元之亮度不均。再者,由 於led光源係點光源,因此如圖2(b)所示,考慮在相鄰之 光源之直線距離為最大之線(圖2 (b)中之虛線)上的擴散角 度之分布。 關於實施例1-8,係使用CREE公司製造之3.5 mm見方、 高度2·0 mm之白色LED光源來作為光線控制單元之光源。 將該LED排列成如圖3〇⑷所示之正方格子狀(认b為光源 之中心間距離)’ LED係在X方向、γ方向上並列地配置各 1 0個,製作光線控制單元。關於亮度及亮度不均,係使用 Konica Minolta製造之二維色彩亮度計(CA2〇〇〇),配置在 距光線控制單元70 cm處,將在光線控制單元之中心部〗2〇 mmxl20 mm之範圍内所測定之平均亮度值作為亮度。 壳度不均係設為對X軸方向及y軸方向之兩方向所計算之 值的平均值。首先,求出乂軸(12〇 mm)方向之平均亮度 值’對於y軸方向,則作為由各個點之亮度值減去距各個 146177.doc -50- 201044022 點土24·75 mm之亮度平均值後所得之值的標準偏差而 亮度不均。同樣地,求出y軸⑽叫方向之平均 值,對於X軸方向’則作為由各個點之亮度值減去距:: 點土27.5 mm之亮度平均值後所得之值的標準偏差而求出真 度不均。最後’將X軸方向之標準偏差與y軸方向之標準: 差平均後所得之值作為光線控制單元之亮度不均。再者, 由於LED光源係點光源,因此如圖冲)所*,考慮在相鄰 ΟThe average luminance measured in the range of Lxnx12 〇 mm (4) μ ^ • * Degree unevenness is set as the average value of the values calculated in both the _ direction and the y-axis direction. First, the average luminance value in the direction of the axis (12 〇 _) is obtained, and for the 7-axis direction, the standard deviation of the value obtained by subtracting the luminance average value of 20.8 mm from each point is obtained as the luminance value of each point. And the brightness is uneven. Similarly, 'the average luminance value in the y-axis (12 () coffee) direction is obtained, and in the X-axis direction, the value obtained by subtracting the luminance average value of ±15.2 mm from each point from the luminance value of each point is obtained. The brightness is uneven by the deviation. Finally, the value obtained by averaging the standard deviation of the X-axis direction from the standard deviation of the y-axis direction is used as the brightness unevenness of the light control unit. Further, since the LED light source is a point light source, the distribution of the diffusion angle on the line where the straight line distance of the adjacent light source is the largest (the broken line in Fig. 2(b)) is considered as shown in Fig. 2(b). For Examples 1-7, a 35 mm square, two degree 2 '0 mm white LED light source manufactured by CREE Corporation was used as a light source for the light control unit. The LEDs are arranged in a lattice pattern as shown in Fig. 3(b) (& and b is the distance between the centers of the light sources). Each of the LEDs was arranged in parallel in the X direction and the γ direction to form a light control unit. For uneven brightness and brightness, use a two-dimensional color luminance meter (CA2〇〇〇) made by Konica Minolta, set at 70 cm from the light control unit, and will be in the center of the light control unit 146177.doc -49· 201044022 The average brightness value measured within the range of mxl20mm is taken as the brightness. The degree of disparity is set as the average of the values calculated for both the x-axis direction and the z-axis direction. #1, the average brightness value in the X-axis (120 mm) direction is obtained, and for the y-axis direction, the standard deviation of the value obtained by subtracting the brightness average value of 25.2 mm from each point is obtained as the brightness value of each point. In the same manner, the average luminance value in the y-axis direction is obtained, and in the X-axis direction, the average value of the redundancy value of 17.2 mm from each point is obtained as the luminance value of each point. The standard deviation of the values is used to determine the brightness unevenness. Finally, the value obtained by averaging the standard deviation of the X-axis direction from the standard deviation of the y-axis direction is used as the brightness unevenness of the light control unit. Further, since the led light source is a point light source, as shown in Fig. 2(b), the distribution of the diffusion angle on the line where the straight line distance of the adjacent light source is the largest (the broken line in Fig. 2(b)) is considered. Regarding Examples 1-8, a white LED light source of 3.5 mm square and height of 2.0 mm manufactured by CREE Corporation was used as a light source of the light control unit. The LEDs are arranged in a square lattice shape as shown in Fig. 3 (4) (b, b is the distance between the centers of the light sources). The LEDs are arranged in parallel in the X direction and the γ direction, and a light control unit is produced. For uneven brightness and brightness, use a two-dimensional color luminance meter (CA2〇〇〇) made by Konica Minolta, which is placed 70 cm from the light control unit and will be in the range of 2〇mmxl20 mm at the center of the light control unit. The average brightness value measured within is used as the brightness. The shell unevenness is an average value calculated for both the X-axis direction and the y-axis direction. First, the average brightness value in the direction of the 乂 axis (12〇mm) is obtained. For the y-axis direction, the brightness average value of each point is subtracted from the brightness value of each point by 146177.doc -50- 201044022. The standard deviation of the values obtained after the value is uneven. Similarly, the average value of the y-axis (10) direction is obtained, and the X-axis direction is obtained as the standard deviation of the value obtained by subtracting the luminance value of each point from the luminance value of each point: 27.5 mm. The degree of truth is uneven. Finally, the standard deviation of the X-axis direction and the standard of the y-axis direction: the value obtained by the difference averaging is used as the brightness unevenness of the light control unit. Furthermore, since the LED light source is a point light source, it is considered to be adjacent to

之光源之直線距離為最大之線(圖2(b)中之虛線)上的擴 角度之分布。 ' 此處,將亮度不均之判定基準分類成如下之兩個階段 (Ο、X) 0 〇 : S.D. $ 0.005 x : 0.005<S.D. (實施例1-6) 在光源上方依序配置DP、本發明之擴散片材、ds、 DS '及DBEF,構成實施例ι_6之光線控制單元。本發明之 擴散片材係以凹凸面成為出光面之方式,使用光源之投影 區域之擴散角度為82。、光源與光源之中間點之投影區域 之擴散角度為19。、且擴散角度如圖3 1(a)所示而變化的擴 散片材。此處,使RS與DP之入光面間的距離h*17〇 mm。 利用上述方法計算實施例丨_6之光線控制單元中之亮度不 均。將其結果示於下表2。又,關於本發明之擴散片材, 將擴散角度峰值與擴散角度谷值之算術平均值(Avl)、及 分布於連續的擴散角度峰值與擴散角度谷值之間的所有測 146177.doc •51 - 201044022 定點的擴散角度之算術平均值(Av2)示於下表4。 (實施例1-7) 在光源上方依序配置DP、本發明之擴散片材、mlf、 MLF、及DBEF,構成實施例i _7之光線控制單元。本發明 之擴散片材係以凹凸面成為出光面之方式,使用光源之投 ’V區域之擴散角度為。、光源與光源之中間點之投影區 域之擴散角度為8。、且擴散角度如圖31(b)所示而變化的擴 散片材。此處,使RS與DP之入光面間的距離]1為2〇 〇 mm。 利用上述方法計算實施例1-7之光線控制單元中之亮度不 均。將其結果示於下表4。又,關於本發明之擴散片材, 將擴散角度峰值與擴散角度谷值之算術平均值(Avl)、及 分布於連續的擴散角度峰值與擴散角度谷值之間的所有測 定點的擴散角度之算術平均值(Av2)一併記於下表4。 (實施例1-8) 於圖24所示光源上方依序配置〇ρ、本發明之擴散片 材、MLF、稜鏡片材、及dBEF,構成實施例1-8之光線控 制單元。本發明之擴散片材係以凹凸面成為出光面之方 式’使用光源之投影區域之擴散角度為62。、光源與光源 之中間點之投影區域之擴散角度為12。、且擴散角度如圖 3 1(c)所示而變化的擴散片材。此處,使rs與dp之入光面 間的距離h為40.0 mm。利用上述方法計算實施例1-8之光 線控制單元中之亮度不均。將其結果示於下表2。又,關 於本發明之擴散片材,將擴散角度峰值與擴散角度谷值之 算術平均值(Avl)、及分布於連續的擴散角度峰值與擴散 146177.doc •52· 201044022 角度谷值之間的所有測定點的擴散角度之算術平均值 (Av2)—併記於下表4。 [表4] h/mm 亮度不均 實施例1-6 17 〇 實施例1-7 20 〇 實施例1-8 40 〇The linear distance of the light source is the distribution of the angle of expansion on the largest line (the dotted line in Figure 2(b)). ' Here, the criteria for determining the uneven brightness are classified into the following two stages (Ο, X). 0 〇: SD $ 0.005 x : 0.005 < SD (Example 1-6) DP is sequentially arranged above the light source, The diffusion sheet, ds, DS' and DBEF of the present invention constitute the light control unit of Example ι_6. In the diffusing sheet of the present invention, the projection surface of the light source is used as a light-emitting surface, and the diffusion angle of the projection region using the light source is 82. The projection angle of the projection point between the light source and the light source is 19. And the diffusion sheet whose diffusion angle is changed as shown in Fig. 31 (a). Here, the distance between the RS and the entrance surface of the DP is h*17 〇 mm. The luminance unevenness in the light control unit of the embodiment 丨_6 was calculated by the above method. The results are shown in Table 2 below. Further, regarding the diffusion sheet of the present invention, the arithmetic mean value (Avl) of the diffusion angle peak and the diffusion angle valley value, and the distribution between the continuous diffusion angle peak value and the diffusion angle valley value are all measured 146177.doc • 51 - 201044022 The arithmetic mean (Av2) of the spread angle of the fixed point is shown in Table 4 below. (Example 1-7) The DP, the diffusion sheet of the present invention, mlf, MLF, and DBEF were sequentially disposed above the light source to constitute the light control unit of Example i_7. In the diffusing sheet of the present invention, the diffusing surface is a light-emitting surface, and the diffusion angle of the light-emitting region of the light source is used. The diffusion angle of the projection area between the light source and the light source is 8. And the diffusion sheet whose diffusion angle changes as shown in Fig. 31 (b). Here, the distance between the RS and the entrance surface of the DP is 1 为 〇 mm. The luminance unevenness in the light control unit of Example 1-7 was calculated by the above method. The results are shown in Table 4 below. Further, in the diffusion sheet of the present invention, the arithmetic mean value (Avl) of the diffusion angle peak and the diffusion angle valley value, and the diffusion angle of all the measurement points distributed between the continuous diffusion angle peak and the diffusion angle valley value are The arithmetic mean (Av2) is also shown in Table 4 below. (Embodiment 1-8) 〇ρ, the diffusion sheet of the present invention, MLF, tantalum sheet, and dBEF were sequentially disposed above the light source shown in Fig. 24 to constitute the light control unit of Example 1-8. The diffusing sheet of the present invention has a diffusing angle of 62 as a projection surface in which the concave-convex surface is a light-emitting surface. The projection angle of the projection area at the intermediate point between the light source and the light source is 12. And the diffusion sheet whose diffusion angle is changed as shown in Fig. 31 (c). Here, the distance h between the light incident surfaces of rs and dp is 40.0 mm. The luminance unevenness in the light control unit of the embodiment 1-8 was calculated by the above method. The results are shown in Table 2 below. Further, regarding the diffusion sheet of the present invention, the arithmetic mean value (Avl) of the diffusion angle peak and the diffusion angle valley value, and the distribution between the continuous diffusion angle peak value and the diffusion 146177.doc • 52· 201044022 angle valley value are used. The arithmetic mean (Av2) of the diffusion angles of all measured points - and is shown in Table 4 below. [Table 4] h/mm unevenness in brightness Example 1-6 17 实施 Example 1-7 20 实施 Example 1-8 40 〇

Avl Av2 50.5 36 一 30.3 — 圓-- 20 37 Γ 18 — 由表4可知,本發明之擴散片材係由於分布於連續的擴 〇Avl Av2 50.5 36 - 30.3 - circle - 20 37 Γ 18 - As can be seen from Table 4, the diffusion sheet of the present invention is distributed due to continuous expansion.

政角度蜂值與擴散角度谷值之間的所有測定點的擴散角度 之算術平均值(AV2)低於擴散角度峰值與擴散角度谷值2 算術平均值(AV1)而可抑制亮度不均,並且可使光源單元 薄型化。 [實施例2] 實施例2所揭示之擴散角度係根據利用變角光度計來測 定以擴散月材凹凸面作為入射面而沿上述凹凸面之法線方 =所入射之光之穿透光強度的角度分布後所得之結果而計 算。例如,5。係表示所有方向之擴散角度均為5。。 實施例及比較例所記載之具有片材面内之擴散角度分布 之擴散片材中’於上述片材面内之—方向上擴散角度呈週 期性變化’進而於包含上述擴散片材之光源單元中,使與 CCFL光源之長度方命$ # > + 白正乂之方向、及上述擴散角度呈週 期性I化之方向一致。χ,以與來自光源之照度分布相對 應之方式設計上述擴散片材面内之擴散角度分布,在照度 較高之區域,配置上沭撼勒_ ϋ 上这擴散片材之擴散角度較高之區域而 使用。 146177.doc -53· 201044022 在實施例2-1至實施例2-2、比較例2-1中,關於實施例中 未記載之光學片材’即,關於反射片材、擴散板、透鏡片 材、稜鏡片材、及反射型偏光片材,係分別使用:包含聚 酯樹脂之白色反射片材(以下簡記為rS);包含聚苯乙烯、 含有 13000 ppm之粒徑2 μηι、真比重(true specific gravity) 1 · 3 5之石夕微粒子作為擴散劑、且厚度為1 5 mm之擴散板(以 下簡記為DP);在厚度為250 μιη之PET基材上塗布有樹脂 珠粒與黏合劑之透鏡片材(以下簡記為DS);在厚度為250 μηι之PET基材上對頂角90。、間距50 μιη之稜鏡條列藉由 UV硬化性樹脂而賦形之稜鏡片材(以下簡記為稜鏡片材); 及反射型偏光片材(以下簡記為DBEF,3Μ公司製)。 關於實施例2-1至實施例2-3、比較例2-2,係使用直徑 3.0 ηιηιφ、長度710 mm之CCFL光源來作為光源單元之光 源。配置16根上述CCFL光源,使其長度方向並列地排 列,使RS與上述光源之直徑之中心間的距離為3 8 mm,且 使上述光源彼此之間隔p為23 · 7 mm ,製作亮度評估用之光 源單元。關於亮度及亮度不均,係使用K〇nica Min〇Ua製 造之二維色彩亮度計(CA2〇〇〇),自光源單元起相距75 而設置,將在光源單元之中心部2〇 mmxl9〇 mm之範圍内 所測定之平均亮度值作為亮度。關於亮度不均,係求出乂 轴(20 mm)方向之平均亮度值,對於y抽方向,則作為由各 個點之亮度值減去距各個點±1丨·8 mm之亮度平均值後所得 之值的標準偏差而求出亮度不均。 此處,將亮度不均之判定基準分類成如下之三個階段 146177.doc •54- 201044022 (◎、Q、χ) 0 ◎ : S_D.各 0.002 . 〇 : 〇 〇〇2<S.D. ^ 0.004 x : 0.004<S.D. 關於實施例2-1及實施例2-2、比較例2-丨,係對採用如圖 ' 25(a)所示之基本構成之光源單元進行評估。 (實施例2-1) 如圖26(a)所示,在光源上方依序配置DP、本發明之擴 〇 散片材、DS、稜鏡片材、及DBEF,構成實施例2—丨之光源 單元。關於本發明之擴散片材,係將擴散角度之最大值為 、最小值為丨。、擴散角度差為69。、且上述擴散片材面 • 内之擴散角度如圖10(b)所示而分布的擴散片材,以凹凸面 成為出光面之方式進行配置。此處,使CCFL光源與DP之 入光面間的距離h為4.5 mm ^測定實施例2-1之光源單元中 之亮度,利用上述方法計算亮度不均。將其結果示於下表 5 ° (實施例2-2) 如圖25(c)所示,在光源上方依序配置對扁豆狀透鏡賦形 • 而成之擴散板、本發明之擴散片材、稜鏡片材、及 ΒΒΕΙ?,構成實施例2-2之光源單元。實施例2_2中所使用之 - 擴散板係由厚度丨·5 mm之聚苯乙烯製成,其内部含有2〇〇〇 ppm之擴散劑,且於出光面上,在與。肌光源之長度方向 平行之方向上形成有許多的高度為13〇 、間距為32〇 之扁丑狀透鏡。本發明之擴散片材係將擴散角度之最大值 146I77.doc -55- 201044022 為8〇。、擴散角度之最小值為4〇。、擴散角度差為4〇。、且 上述擴散片材面内之擴散角度如圖1〇(b)所示而分布的擴散 片材’以凹凸面成為出光面之方式進行配置。此處,使 CCFL光源與擴散板之人光面間的距離Μ。咖。測定實 施例2-2之光源單元中之亮度,制上述方法計算亮度不 均。將其結果一併記於下表5。 (比較例2-1) 如圖26(a)所示,在光源上方依序酉己置Dp、表面具有使 用由干涉曝光產生之光斑圖案所形成之凹凸結構的擴散片 材DS稜鏡片材、及DBEF ,構成(比較例2_ 1)之光源單 几。比較例2-1中所使用之上述擴散片材之擴散角度在上 述片材面内之整個區域内為71。。再者,上述擴散片材係 以凹凸面成為出光面之方式而配置。此處,使CCFL光源 與上述擴散片材之入光面間的距離4 5 mm。測定比較 例2-1之光源單元中之亮度,利用上述方法計算亮度不 均。將其結果示於下表5。 [表5]The arithmetic mean value (AV2) of the diffusion angles of all the measurement points between the government angle bee value and the diffusion angle valley value is lower than the diffusion angle peak value and the diffusion angle valley value 2 arithmetic mean value (AV1) to suppress uneven brightness, and The light source unit can be made thinner. [Embodiment 2] The diffusion angle disclosed in the second embodiment is measured by using a variable angle photometer to measure the transmitted light intensity of the incident light along the normal line of the uneven surface as the incident surface of the diffused moon. The result of the angular distribution is calculated. For example, 5. It means that the diffusion angle is 5 in all directions. . In the diffusion sheet having the diffusion angle distribution in the sheet surface described in the examples and the comparative examples, the diffusion angle in the direction of the sheet surface is periodically changed, and the light source unit including the diffusion sheet is further included. In the middle, the direction of the length of the CCFL light source is ## > + the direction of the white positive and the direction of the diffusion is the same as the direction of the periodicization.设计, the diffusion angle distribution in the plane of the diffusion sheet is designed in a manner corresponding to the illuminance distribution from the light source, and the diffusion angle of the diffusion sheet on the top _ ϋ is higher in the region where the illuminance is higher. Use for the area. 146177.doc -53· 201044022 In the embodiment 2-1 to the embodiment 2-2 and the comparative example 2-1, the optical sheet which is not described in the embodiment, that is, the reflective sheet, the diffusion plate, and the lens sheet Materials, tantalum sheets, and reflective polarizing sheets are used separately: white reflective sheets containing polyester resin (hereinafter abbreviated as rS); containing polystyrene, containing 13,000 ppm of particle size 2 μηι, true specific gravity ( True specific gravity) 1 · 3 5 Shishi granules as a diffusing agent and a diffusion plate with a thickness of 15 mm (hereinafter abbreviated as DP); coated with resin beads and binder on a PET substrate having a thickness of 250 μm The lens sheet (hereinafter abbreviated as DS); the apex angle 90 on a PET substrate having a thickness of 250 μm. A tantalum sheet (hereinafter, simply referred to as a tantalum sheet) which is shaped by a UV curable resin, and a reflective polarizing sheet (hereinafter abbreviated as DBEF, manufactured by Sanken Co., Ltd.). For Example 2-1 to Example 2-3 and Comparative Example 2-2, a CCFL light source having a diameter of 3.0 ηιηιφ and a length of 710 mm was used as a light source of the light source unit. Sixteen CCFL light sources are arranged such that their longitudinal directions are arranged side by side such that the distance between the RS and the center of the diameter of the light source is 38 mm, and the distance between the light sources is 23 · 7 mm. Light source unit. For the uneven brightness and brightness, a two-dimensional color luminance meter (CA2〇〇〇) manufactured by K〇nica Min〇Ua is used, which is set at a distance of 75 from the light source unit, and will be 2 mm×l9〇mm in the center of the light source unit. The average brightness value measured within the range is taken as the brightness. For the uneven brightness, the average brightness value in the direction of the 乂 axis (20 mm) is obtained, and for the y pumping direction, the brightness average value of each point is subtracted by the average value of ±1 丨·8 mm from each point. The standard deviation of the values is used to determine the brightness unevenness. Here, the criterion for determining uneven brightness is classified into the following three stages: 146177.doc • 54- 201044022 (◎, Q, χ) 0 ◎ : S_D. Each 0.002. 〇: 〇〇〇2<SD ^ 0.004 x : 0.004 < SD With respect to Example 2-1, Example 2-2, and Comparative Example 2-丨, the light source unit having the basic configuration shown in Fig. 25(a) was evaluated. (Example 2-1) As shown in Fig. 26 (a), DP, the expanded sheet of the present invention, DS, tantalum sheet, and DBEF are sequentially disposed above the light source, and the light source of Example 2 is formed. unit. Regarding the diffusion sheet of the present invention, the maximum value of the diffusion angle is 、. The diffusion angle difference is 69. Further, the diffusion sheet having the diffusion angle in the surface of the diffusion sheet as shown in Fig. 10(b) is arranged such that the uneven surface becomes the light-emitting surface. Here, the distance h between the CCFL light source and the light entrance surface of the DP was 4.5 mm. The luminance in the light source unit of Example 2-1 was measured, and luminance unevenness was calculated by the above method. The results are shown in the following table 5 ° (Example 2-2) As shown in Fig. 25 (c), a diffusion plate formed by shaping a lentil lens is disposed in order above the light source, and the diffusion sheet of the present invention The sheet material and the crucible sheet constitute the light source unit of Example 2-2. For use in Example 2-2 - the diffusion plate is made of polystyrene having a thickness of 丨·5 mm, and contains 2 〇〇〇 ppm of a diffusing agent inside, and is on the light-emitting surface. The length direction of the muscle source is formed in a parallel direction with a plurality of flat ugly lenses having a height of 13 、 and a spacing of 32 。. The diffusion sheet of the present invention has a maximum diffusion angle of 146I77.doc -55 - 201044022 of 8 〇. The minimum value of the diffusion angle is 4〇. The difference in diffusion angle is 4〇. The diffusion sheet in the plane of the diffusion sheet as shown in Fig. 1(b) is disposed such that the uneven surface becomes the light-emitting surface. Here, the distance between the CCFL light source and the person's glossy surface of the diffuser is made Μ. coffee. The luminance in the light source unit of Example 2-2 was measured, and the above method was used to calculate luminance unevenness. The results are shown in Table 5 below. (Comparative Example 2-1) As shown in Fig. 26 (a), a diffusion sheet DS sheet having a concave-convex structure formed by using a spot pattern generated by interference exposure was placed on the surface of the light source in order, And DBEF, which constitutes a single source of light source (Comparative Example 2_1). The diffusion angle of the above-mentioned diffusion sheet used in Comparative Example 2-1 was 71 in the entire region in the above-mentioned sheet surface. . Further, the diffusion sheet is disposed such that the uneven surface is a light-emitting surface. Here, the distance between the CCFL light source and the light incident surface of the above-mentioned diffusion sheet was made 4 5 mm. The luminance in the light source unit of Comparative Example 2-1 was measured, and the luminance unevenness was calculated by the above method. The results are shown in Table 5 below. [table 5]

h/mm 擴散角度差/度 亮度不均 實施例2-1 4.5 69 ◎ 實施例2-2 4.5 40 〇 比-較例2-1 4.5 0 X 由表5可知,對於具有圖25(c;)所示之DP/擴散片材/稜鏡 片材/DBEF之構成、或者圖26(a)所示之擴散板/擴散片材 /DS/稜鏡片材/DBEF之構成的光源單元,本發明之擴散片 材與上述擴散角度差未在40。以上80。以下之範圍内之情形 146177.doc -56· 201044022 (比較例2_1)相比,可減輕亮度不均。此外,在比較例2-1 之構成令’若使自CCFL光源之直徑之中心至DP之入光面 為止的距離h發生變化,則在h=12.5之處,成為與實施例2_ 1、2-2同等之亮度不均。在實施例2_ι、2_2中,若考慮使 h-4.5,則與比較例24相比,可使自(:(:1^光源之直徑之中 心至DP之入光面為止的距離h縮短8 mm(圖27(a)),從而可 實現光源單元薄型化。 關於實施例2-3、比較例2-2 ,係對採用如圖26(b)所示之 基本構成這光源單元進行評估。 (實施例2-3) 如圖26(b)所示,在光源上方依序配置本發明之擴散片 材、DP、DS、稜鏡片材、及DBEF,構成實施例2_3之光 源單元。本發明之擴散片材係將擴散角度之最大值為 7〇°、最小值為1。、擴散角度差為69。、且上述擴散片材面 内之擴散角度如圖10(b)所示而分布的擴散片材,以凹凸面 成為出光面之方式進行配置。此處,使CCFL光源與上述 擴政片材之入光面間的距離h為9.1 mni。測定實施例2_3之 光源單元中之亮度,利用上述方法計算亮度不均。將其結 果不於下表6。 (比較例2-2) 如圖26(b)所示,在光源上方依序配置表面具有使用由 干涉曝光產生之光斑圖案所形成之凹凸結構的擴散片材、 DP、DS、稜鏡片材、及DBEF,構成比較例2_2之光源單 元。比較例2-2所使用之上述擴散片材之擴散角度在整個 146177.doc -57- 201044022 區域内為71°。再者,上述擴散片材係以凹凸面成為出光 面之方式而配置。此處,使CCFL光源與上述擴散片材之 入光面間的距離h為9· 1 mm。測定比較例2-2之光源單元中之 亮度’利用上述方法計算亮度不均。將其結果示於下表6。 [表6]h/mm Diffusion angle difference/degree of brightness unevenness Example 2-1 4.5 69 ◎ Example 2-2 4.5 40 〇 ratio - Comparative Example 2-1 4.5 0 X As can be seen from Table 5, for having Figure 25 (c;) The light source unit of the DP/diffusion sheet/稜鏡 sheet/DBEF shown or the diffusing plate/diffusion sheet/DS/稜鏡 sheet/DBEF shown in Fig. 26(a), the diffusion of the present invention The difference in diffusion angle between the sheet and the above is not 40. Above 80. In the following range, 146177.doc -56· 201044022 (Comparative Example 2_1) can reduce unevenness in brightness. Further, in the configuration of Comparative Example 2-1, if the distance h from the center of the diameter of the CCFL light source to the light incident surface of the DP is changed, the position of h=12.5 is the same as that of the embodiment 2_1 and -2 The same brightness is uneven. In the examples 2_ι and 2_2, when h-4.5 is considered, the distance h from the center of the diameter of the light source to the light entrance surface of the DP can be shortened by 8 mm as compared with the comparative example 24. (Fig. 27 (a)), the light source unit can be made thinner. With respect to Example 2-3 and Comparative Example 2-2, the light source unit having the basic configuration shown in Fig. 26 (b) was evaluated. Embodiment 2-3) As shown in FIG. 26(b), the diffusion sheet, DP, DS, bismuth sheet, and DBEF of the present invention are sequentially disposed above the light source to constitute the light source unit of Embodiment 2-3. The diffusion sheet has a maximum diffusion angle of 7 〇 and a minimum of 1. The diffusion angle difference is 69. The diffusion angle in the plane of the diffusion sheet is as shown in Fig. 10(b). The sheet was placed so that the uneven surface became the light-emitting surface. Here, the distance h between the CCFL light source and the light-incident surface of the spread sheet was 9.1 mni. The brightness in the light source unit of Example 2_3 was measured and used. The above method calculates uneven brightness. The result is not shown in Table 6. (Comparative Example 2-2) As shown in Fig. 26(b), sequentially above the light source The diffusion sheet, the DP, the DS, the ruthenium sheet, and the DBEF having the uneven structure formed by the spot pattern generated by the interference exposure were used to constitute the light source unit of Comparative Example 2-2. The above diffusion used in Comparative Example 2-2 The diffusion angle of the sheet is 71° in the entire region of 146177.doc -57- 201044022. Further, the diffusion sheet is disposed such that the uneven surface becomes a light-emitting surface. Here, the CCFL light source and the diffusion sheet are provided. The distance h between the light incident surfaces was 9·1 mm. The luminance in the light source unit of Comparative Example 2-2 was measured. The luminance unevenness was calculated by the above method. The results are shown in Table 6 below. [Table 6]

h/mm 擴散角度差/度 亮度不均 實施例2-3 9.1 69 ◎ 比較例2·2 9.1 0 X 由表6可知,對於具有圖26(b)所示之擴散片材 /DP/DS/BEF/DBEF之構成的光源單元,本發明之擴散片材 與上述擴散角度差未在40。以上80。以下之範圍内之情形(比 較例2-2)相比’可減輕亮度不均。此外,在比較例2_2之構 成中,若使自CCFL光源之直徑之中心至上述擴散片材入 光面為止的距離h發生變化,則在h= 12.5之處,成為與實 施例2-3同等之亮度不均。在實施例2_3中,若考慮使 h=9.5 ’則與比較例2_2相比,可將自ccFL光源之直徑之中 心至上述擴散片材之入光面為止的距離h縮短3 mm(圖 27(a)),從而可實現光源單元薄型化。 關於實施例2-4 ’係使用直徑3.4 ιηιηφ、長度710 mm之 CCFL光源來作為光源單元之光源。配置8根上述CCFL光 源’使其長度方向並列地排列,使RS與上述光源之直徑之 中心間的距離為3 ·8 mm ’且使上述光源彼此之間隔p為 47·6 mm ’製作亮度評估用之光源單元。關於亮度及亮度 不均,係使用Konica Minolta製造之二維色彩亮度計 146177.doc -58- 201044022 似2_),自光源單元起相距75em而設置,將在光源單 凡之中心部20 mmxi9〇 _之範圍内戶斤測定之平均亮度值 作為亮度。關於亮度不均’係求出_(2() _)方向之平均 亮度值,對於y軸方向,則作為由各個點之亮度值減去距 各個點±23.8随之亮度平均值後所得之值的標準偏差而求 出亮度不均。 此處,將亮度不均之判定基準分類成如下之三個階段 (◎、Ο、X) 〇 ❹ ◎ : S.D.S 0.002 〇 : 0.002<S.D.^ 0.004 X : 0.004<S.D. 關於實施例2-4,係對採用如圖26⑷所示之基本構成之 光源單元進行評估。 (實施例2-4) 如圖26(a)所不,在光源上方依序配置Dp、本發明之擴 散片材' DS、镜鏡片材、及DMF,構成實施例2_4之光源 單兀。本發明之擴散片材係以凹凸面成為出光面之方式, 使用擴散角度之最大值為5〇。、擴散角度之最小值為1〇、 擴政角度差為49。、且上述擴散片材面内之擴散角度如圖 10(c)所不而分布的擴散片材。此處’使ccfl光源與之 入光面間的距離h為14.5 mm。測定實施例2_4之光源單元中之 党度’利用上述方法計算亮度不肖。將其結果示於下表7。 (比較例2-3) 如圖26(a)所示,在光源上方依序配置Dp、表面具有藉 I46177.doc -59· 201044022 由非平面光斑而具特徵之凹凸結構且擴散角度在整個區域 句為41之擴政片材、Ds、稜鏡片材、及加抑,構成比較 例2-3之光源單元 再者,上述擴散片材係以凹凸面成為 出光面之方式而使用H使CCFL光源與DP之人光面 間的距離h為14.5 mm 利用上述方法測定比較例2-3之光 源單元中之亮度、亮度不均。將其結果-併記於下表7。 [表7]h/mm Diffusion angle difference/degree of brightness unevenness Example 2-3 9.1 69 ◎ Comparative Example 2·2 9.1 0 X As can be seen from Table 6, for the diffusion sheet/DP/DS/ shown in Fig. 26(b) In the light source unit constituted by BEF/DBEF, the diffusion sheet of the present invention does not have a difference in diffusion angle of 40. Above 80. In the case of the following range (compared to Comparative Example 2-2), brightness unevenness can be alleviated. Further, in the configuration of Comparative Example 2-2, when the distance h from the center of the diameter of the CCFL light source to the light-incident surface of the diffusion sheet was changed, it was equivalent to Example 2-3 at h = 12.5. The brightness is uneven. In the embodiment 2_3, when h=9.5' is considered, the distance h from the center of the diameter of the ccFL light source to the light incident surface of the diffusion sheet can be shortened by 3 mm as compared with the comparative example 2_2 (Fig. 27 (Fig. 27). a)), thereby making it possible to achieve a thinner light source unit. Regarding Example 2-4, a CCFL light source having a diameter of 3.4 ιηιηφ and a length of 710 mm was used as a light source of the light source unit. Arranging 8 of the above-mentioned CCFL light sources 'arranged in the longitudinal direction so that the distance between the RS and the center of the diameter of the light source is 3 · 8 mm ' and the distance between the light sources is 47·6 mm. The light source unit used. Regarding the uneven brightness and brightness, the two-dimensional color luminance meter 146177.doc -58- 201044022, which is made by Konica Minolta, is similar to 2_). It is set at a distance of 75em from the light source unit and will be 20 mmxi9〇 at the center of the light source. The average brightness value measured by the household is taken as the brightness. Regarding the luminance unevenness, the average luminance value in the _(2() _) direction is obtained, and for the y-axis direction, the luminance value from each point is subtracted from the luminance value of each point by ±23.8. The standard deviation is used to determine the brightness unevenness. Here, the criterion for determining the luminance unevenness is classified into the following three stages (◎, Ο, X) ◎ ◎ : SDS 0.002 〇: 0.002 < SD^ 0.004 X : 0.004 < SD About Embodiment 2-4 A light source unit having a basic configuration as shown in Fig. 26 (4) is evaluated. (Example 2-4) As shown in Fig. 26 (a), Dp, the expanded sheet 'DS, the lens material, and the DMF of the present invention were placed in order above the light source to constitute the light source unit of Example 2_4. In the diffusion sheet of the present invention, the maximum value of the diffusion angle is 5 Å so that the uneven surface becomes the light-emitting surface. The minimum diffusion angle is 1〇, and the expansion angle difference is 49. And a diffusion sheet in which the diffusion angle in the plane of the diffusion sheet is not as shown in Fig. 10(c). Here, the distance h between the ccfl source and the incident surface is 14.5 mm. The degree of the party in the light source unit of Example 2_4 was measured. The brightness was calculated by the above method. The results are shown in Table 7 below. (Comparative Example 2-3) As shown in Fig. 26(a), Dp is arranged in order above the light source, and the surface has a concave-convex structure characterized by a non-planar spot by the I46177.doc -59· 201044022 and the diffusion angle is over the entire area. The expansion sheet, the Ds, the enamel sheet, and the addition of 41, constitute the light source unit of Comparative Example 2-3, and the diffusion sheet is made of H to make the CCFL light source so that the uneven surface becomes the light-emitting surface. The distance h between the light surface of the person and the DP was 14.5 mm. The luminance and luminance unevenness in the light source unit of Comparative Example 2-3 were measured by the above method. The results are - and are recorded in Table 7 below. [Table 7]

- .— p/mm 擴散角度差/度 亮度不均 實施例2-4 1 47.6 49 ~ ◎ 比季父例2·3 47.6 0 X 由表7可知,對於具有圖26(a)所示之Dp/擴散片材稜 鏡片材/DBEF之構成的光源單元,本發明之擴散片材與上 述擴散角度差未在40。以上80。以下範圍内之情形(比較例2· 3)相比,可減小亮度不均。此外,在比較例2_3之構成中, 若使CCFL光源之直徑之中心間的距離p發生變化則在 P=23.7之處’成為與實施例2_4同等之亮度不均。於實施例 2-4中’若考慮使p=47.6,則與比較例2-3相比,可使CCFL 光源之直徑之中心間的距離p擴大約2倍(圖27(b)),其結果 可削減CCFL光源數。 在實施例2-5及實施例2_6、比較例2_4及比較例2_5中, 關於未特別記載之光學片材,即,關於反射片材、擴散 板、透鏡片材、稜鏡片材、及反射型偏光片材,係分別使 用:包含聚酯樹脂之白色反射片材(以下簡記為rS);包含 聚苯乙稀、含有20000 ppm之粒徑2 μηι、真比重為^ 3 5之 146177.doc •60- 201044022 矽微粒子作為擴散劑、且厚度為2 〇 mm之擴散板(以下簡 記為DP);在厚度為250 μιη之PET基材上塗布有樹脂珠粒 . 與黏合劑之擴散片材(以下簡記為DS);在厚度為250 μηι之 • ΡΕΤ基材上對頂角90。、間距5〇 μπι之稜鏡條列藉由UV硬化 性樹脂而賦形之稜鏡片材(以下簡記為稜鏡片材);及反射 型偏光片材(以下簡記為DBEF,3Μ公司製)。 又,關於實施例2-5及實施例2-0、比較例2-4及比較例2-5 ’係使用CREE公司製造之3·5 mm見方、高度2 〇 mm之白 〇 色led光源來作為光源單元之光源。使上述光源之中心間 距離在X軸方向、y軸方向上為24.0 mm而格子狀地排列配 置各1〇行,製作光源單元。關於亮度及亮度不均,係使用 Konica Minolta製造之二維色彩亮度計(CA2〇〇〇),自光源 單元起相距70 cm而設置,將在光源單元之中心部ι2〇 mmX 120 mm之範圍内所測定之平均亮度值作為亮度。 冗度不均係設為對X軸方向及y軸方向之兩方向所計算之 〇 值的平均值。首先,求出X軸(120 mm)方向之平均亮度 值,對於y軸方向,則作為由各個點之亮度值減去距各個 點±12 mm之亮度平均值後所得之值的標準偏差而求出亮 度不均。同樣地,求出y軸(1 〇〇 mm)方向之平均亮度值, 對於X轴方向,則作為由各個點之亮度值減去距各個點±12 . mm之亮度平均值後所得之值的標準偏差而求出亮度不 .均。最後,將X轴方向之標準偏差與y軸方向之標準偏差平 均後所得之值作為光源單元之亮度不均。再者,由於led 光源係點光源,因此如圖6所示,考慮在x轴及7軸上各自 146177.doc -61 - 201044022 的擴散角度之分布。 此處,將亮度不均之判定基準分類成如下之三個階^ (◎、Ο、X)。 ◎ : S.D.S 0.002 ° : 0.002<S.D.^ 0.004 x : 0.004<S.D. (實施例2-5) 如圖24所示’在光源上方依序配置DP、本發明之擴散 片材、DS、稜鏡片材、及DBEF,構成實施例2_5之光源單 元。本發明之擴散片材係以凹凸面成為出光面之方式,使 用擴散角度之最大值為70。、擴散角度之最小值為1〇。、擴 散角度差為60。、且擴散角度如圖10(b)所示而變化的擴散 片材。此處,使RS與DP之入光面間的距離hg16 〇 mm。 測定實施例2·5之光源單元中之亮度,利用上述方法計算 免度不均。將其結果示於下表8。 (實施例2 - 6 ) 、本發明之擴散- .- p/mm Diffusion angle difference / degree of brightness unevenness Example 2-4 1 47.6 49 ~ ◎ Comparative father example 2·3 47.6 0 X As can be seen from Table 7, for the Dp shown in Fig. 26(a) The light source unit of the diffusing sheet 稜鏡 sheet/DBEF, the diffusing sheet of the present invention and the above-described diffusion angle difference are not 40. Above 80. In the following range (comparative example 2·3), brightness unevenness can be reduced. Further, in the configuration of Comparative Example 2_3, when the distance p between the centers of the diameters of the CCFL light sources is changed, the position where P = 23.7' becomes the brightness unevenness equivalent to that of the embodiment 2_4. In Example 2-4, 'when p=47.6 is considered, the distance p between the centers of the diameters of the CCFL light sources can be increased by about 2 times as compared with Comparative Example 2-3 (Fig. 27(b)). As a result, the number of CCFL sources can be reduced. In the examples 2-5 and 2_6, the comparative example 2_4, and the comparative example 2_5, the optical sheet not specifically described, ie, a reflective sheet, a diffusing plate, a lens sheet, a bismuth sheet, and a reflection type The polarizing sheet is used separately: a white reflective sheet containing a polyester resin (hereinafter abbreviated as rS); a polystyrene containing 20,000 ppm of a particle size of 2 μηι, and a true specific gravity of 135177.doc • 60- 201044022 A diffusion plate with a particle size of 2 〇mm as a diffusing agent (hereinafter abbreviated as DP); a resin bead coated on a PET substrate having a thickness of 250 μm. A diffusion sheet with a binder (below) Abridged as DS); apex angle 90 on a substrate of thickness 250 μηι. A sheet of a crucible having a pitch of 5 〇 μπι which is shaped by a UV curable resin (hereinafter abbreviated as a sheet of enamel) and a reflective polarizing sheet (hereinafter abbreviated as DBEF, manufactured by San Francisco). Further, in Example 2-5 and Example 2-0, Comparative Example 2-4, and Comparative Example 2-5', a white light-emitting LED light source of 3·5 mm square and height 2 〇mm manufactured by CREE Co., Ltd. was used. As a light source of the light source unit. The distance between the centers of the light sources was 24.0 mm in the X-axis direction and the y-axis direction, and each line was arranged in a lattice shape to fabricate a light source unit. For uneven brightness and brightness, use a two-dimensional color luminance meter (CA2〇〇〇) made by Konica Minolta, which is set at a distance of 70 cm from the light source unit, and will be within the range of ι2〇mmX 120 mm from the center of the light source unit. The measured average brightness value is taken as the brightness. The degree of redundancy is an average value of the 〇 values calculated for both the X-axis direction and the y-axis direction. First, the average luminance value in the X-axis (120 mm) direction is obtained, and for the y-axis direction, the standard deviation of the value obtained by subtracting the luminance average value of ±12 mm from each point from the luminance value of each point is obtained. Uneven brightness. Similarly, the average luminance value in the y-axis (1 〇〇mm) direction is obtained, and in the X-axis direction, the value obtained by subtracting the luminance average value of ±12 mm from each point is obtained as the luminance value of each point. The standard deviation is used to determine the brightness. Finally, the value obtained by averaging the standard deviation of the X-axis direction from the standard deviation of the y-axis direction is used as the brightness unevenness of the light source unit. Furthermore, since the led light source is a point light source, as shown in Fig. 6, the distribution of the diffusion angles of the respective 146177.doc -61 - 201044022 on the x-axis and the 7-axis is considered. Here, the criterion for determining the luminance unevenness is classified into the following three steps (◎, Ο, X). ◎ : SDS 0.002 ° : 0.002 < SD ^ 0.004 x : 0.004 < SD (Example 2-5) As shown in Fig. 24, DP, the diffusion sheet of the present invention, DS, and ruthenium were sequentially disposed above the light source. The material and the DBEF constitute the light source unit of the embodiment 2-5. In the diffusion sheet of the present invention, the maximum value of the diffusion angle is 70 so that the uneven surface becomes the light-emitting surface. The minimum value of the diffusion angle is 1〇. The spread angle difference is 60. And the diffusion sheet whose diffusion angle changes as shown in Fig. 10(b). Here, the distance hg16 〇 mm between the RS and the light entrance surface of the DP is made. The luminance in the light source unit of Example 2·5 was measured, and the degree of freedom of the allowance was calculated by the above method. The results are shown in Table 8 below. (Embodiment 2 - 6), the diffusion of the present invention

度不均。將其結果一併記於下表8。 如圖24所示,在光源上方依序配置Dp、 片材、DS、稜鏡片材、及DBEF,構成實施 (比較例2-4) 146l77.doc -62- 201044022 如圖24所示,在光源上方依序配置Dp、表面具有使用 由干涉曝光產生之光斑圖案所形成之凹凸結構且擴散角度 , 在整個區域均為7〇。之擴散片材、DS、稜鏡片材、及 • D卿,構成比較例2_4之光源單元。再者,上述擴散片材 係以凹凸面成為出光面之方式而使用。此處,使118與〇1) 之入光面間的距離h為16.0 mm。測定比較例2_4之光源單 兀中之壳度,利用上述方法計算亮度不均。將其結果一併 記於下表8。 Ο (比較例2-5) 如圖24所示,在光源上方依序配置、表面具有使用 由干涉曝光產生之光斑圖案所形成之凹凸結構且擴散角度 在整個區域均為5〇。之擴散片材、DS、稜鏡片材、及 DBEF,構成比較例2_5之光源單元。再者,上述擴散片材 係以凹凸面成為入光面之方式而使用。此處,使Μ與Dp 之入光面間的距離h為16.0 mm。測定比較例2_5之光源單 兀中之壳度,利用上述方法計算亮度不均。將其結果一併 記於下表8。 [表8]Uneven. The results are recorded together in Table 8 below. As shown in FIG. 24, Dp, sheet, DS, enamel sheet, and DBEF are sequentially disposed above the light source to constitute an implementation (Comparative Example 2-4) 146l77.doc -62- 201044022 as shown in FIG. The upper side is arranged with Dp in order, and the surface has a concave-convex structure formed by using a spot pattern generated by interference exposure, and the diffusion angle is 7 整个 in the entire area. The diffusion sheet, DS, enamel sheet, and D qing constitute the light source unit of Comparative Example 2_4. Further, the above-mentioned diffusion sheet is used in such a manner that the uneven surface becomes a light-emitting surface. Here, the distance h between the entrance faces of 118 and 〇1) is 16.0 mm. The shellness in the light source of the comparative example 2_4 was measured, and the unevenness in brightness was calculated by the above method. The results are shown in Table 8 below. Ο (Comparative Example 2-5) As shown in Fig. 24, the surface was provided with a concave-convex structure formed by using a spot pattern generated by interference exposure, and the diffusion angle was 5 Å over the entire area. The diffusion sheet, the DS, the enamel sheet, and the DBEF constitute the light source unit of Comparative Example 2-5. Further, the above-mentioned diffusion sheet is used in such a manner that the uneven surface becomes a light incident surface. Here, the distance h between the entrance pupils and the light entrance surface of Dp is 16.0 mm. The shellness in the light source of the comparative example 2_5 was measured, and the unevenness in brightness was calculated by the above method. The results are shown in Table 8 below. [Table 8]

h/mm 擴散角度差/度 亮度不均 實施例2-5 16.0 60 〇 實施例2-6 "~ι 16.0 45 〇 比較例2-4 16.0 0 X 比較例2-5 16.0 0 X 由表8可知,對於具有圖24所示之Dp/擴散片材/DS/棱鏡 片材/DBEF之構成的光源單元,本發明之擴散片材與使用 146177.doc -63- 201044022 有擴散角度在整個區域均勻之擴散片材(比較例2_4、2_5) 的構成相比,可減小亮度不均。此外,在比較例2 4、2_5 之構成中,若使RS與DP之距離h發生變化,則在h=32.〇之 處,成為與實施例2_5、2_6同等之亮度不均。在實施例2_ 5、2-6中,若考慮使h=16 〇,則與比較例2_4、2_5相比, 使自RS至DP之入光面為止的距離h為16 mm,縮短約一 半’從而可實現光源單元薄型化。 [實施例3 ] 實施例3係對應於上述實施形態2所揭示之内容。再者, 實施例3所揭示之擴散角度係根據利用變角光度計來測定 以擴散片材凹凸面作為入射面而沿上述凹凸面之法線方向 所入射之光之穿透光強度的角度分布後所得之結果而計 算。例如,5。係表示對於各向同性之擴散片材,片材面内 之所有方向之擴散角度均為5。。又,另一方面,1〇。X 5。係 表不對於各向異性之擴散片材,片材面内之正交之兩方向 上的擴散角度為1〇。與5。。 把载於實施例及比較例中之具有片材面内之擴散角度分 布的擴散片材中,於上述片材面内之一方向上擴散角度呈 週期性變化’進而,於包含上述擴散片材之光源單元中, 使與CCFL光源之長度方向正交之方向、及上述擴散角度 呈週期性變化之方向一致。又,以與來自光源之照度分布 相對應之方式設計上述擴散片材面内之擴散角度分布在 照度較向之區域’配置上述擴散片材之擴散角度較高之區 域而使用。 146177.doc •64- 201044022 關於實施例3-1及實施例3-2、比較例3-1至比較例3-3, 係將由厚度1_5 mm之聚苯乙烯製成、内部含有3〇〇〇 ppm之 真比重1.35、平均粒徑2 μηι之石夕微粒子、於出光面形成有 高度130 μηι、間距320 μηι之扁豆狀透鏡者(旭化成電子材 料(Asahi Kasei E-Materials)股份有限公司製)作為本發明 之光線控制單元之光學片材’對將上述透鏡之長度方向配 置成與CCFL光源之長度方向平行之光源單元進行評估。 再者’將上述形成有扁豆狀透鏡之面作為出光面。 在實施例3-1及實施例3-2、比較例3-1至比較例3-3中, 關於實施例中未記載之光學片材,即,關於反射片材、透 鏡片材、稜鏡片材、反射型偏光片材,係使用索尼公司製 造之BRAVIA KDL32-F1中所使用之反射片材(以下簡記為 RS)、透鏡片材(以下簡記為DS)、稜鏡片材(3即111(31^股 份有限公司製))、及反射型偏光片材(DBEF(3M股份有限公 司製))。 關於實施例3-1及實施例3-2、比較例3-1至比較例3-3, 係使用直徑3.0 ιηηιφ、長度710 mm之CCFL光源來作為光源 單元之光源。配置16根上述CCFL光源,使其長度方向並 列地排列’使RS與上述光源之直徑之中心間的距離為3 8 mm ’且使上述光源彼此之間隔p為23.7 mnl,製作亮度評 估用之光源單元。關於亮度及亮度不均,係使用K〇nica Minolta製造之二維色彩亮度計(CA2〇〇〇),自光源單元起 相距75 cm而設置’將在光源單元之中心部2〇 mmx 190 mm 之範圍内所測定之平均亮度值作為亮度。關於亮度不均, 146177.doc •65- 201044022 係求出χ軸(20 mm)方向之平均亮度值,對於y軸方向,則 作為由各個點之亮度值減去距各個點±118 mm之亮度平均 值後所得之值的標準偏差而求出亮度不均。 此處,於上述光源單元中,以能夠容許肉眼觀察到的亮 度不均之標準偏差之最大值0.004為界,將亮度不均之判 定基準分類成如下之兩個階段(〇、χ)。 ° : S.D. ^ 0.004 x : 0.004<S.D. (實施例3 -1) —如圖25(e)所示,自光源起朝上方依序配置表面形成有扁 讀透鏡之光學片材、及本發明之擴散片材來作為本發明 之光線控制單元,進而,於其上方依序配置稜鏡片材 (BEFIII)、及反射型偏光片材(dbef),構成實施例3心之光 源單元。此處,本發明之擴散片材係將擴散角度之最大值 ^ 70°、最小值為50。、且擴散角度如圖1〇⑴所示在上述擴 散片材面内平滑地分布的擴散片材,以凹凸面成為出光面 之方式進行配置。此處,使CCFL光源之直徑之中心、與 上述形成有扁五狀透鏡之光學片材之入光面間的距離匕為 4.6、咖:測定實施例3]之光源單元中之亮度,利用上述 方法叶算亮度不均。將其結果示於下表7。 (實施例3-2) 一如圖26(a)所示,自光源起朝上方依序配置表面形成有扁 丑狀透鏡之光學片材、及本發明之擴散片材作為本發明之 先線控制單元’進而,^其上方依序配置DS、稜鏡片材 146177.doc •66- 201044022 (BEFIII)、及反射型偏光片材(DBEF),構成實施例3_2之光 源單元。此處’本發明之擴散片材係將擴散角度之最大值 • 為30。、擴散角度之最小值為0.1。、且擴散角度如圖10(f)所 示在上述擴散片材面内平滑地分布之擴散片材,以凹凸面 成為出光面之方式進行配置。此處,使CCFL光源之直徑 之中心、與上述形成有扁豆狀透鏡之光學片材之入光面間 的距離h為4.6 mm。測定實施例之光源單元中之亮度, 利用上述方法計算亮度不均。將其結果一併記於下表7。 〇 (比較例3-1) 在光源之下方配置RS ’自光源起朝上方依序配置表面形 成有扁豆狀透鏡之光學片材、DS、及稜鏡片材(BEFIII)、 .反射型偏光片材(DBEF),構成比較例3-1之光源單元。再 .者’上述形成有扁豆狀透鏡之光學片材係以透鏡形成面成 為出光面之方式而配置。此處’使CCFL光源之直徑之中 心、與上述形成有扁豆狀透鏡之光學片材之入光面間的距 φ 離11為4.6 mm。測定比較例3-1之光源單元中之亮度,利用 上述方法計算亮度不均。將其結果一併記於下表7。 (比較例3-2) 在光源之下方配置RS,自光源起朝上方依序配置表面形 成有扁豆狀透鏡之光學片材、表面具有使用由干涉曝光產 . 生之光斑圖案所形成之凹凸結構的擴散片材、DS、稜鏡片 材、及DBEF,構成比較例3-2之光源單元。比較例3_2所使 用之上述擴散片材中,擴散角度在上述片材面内之整個區 域内為70。。再者,上述具有凹凸結構之擴散片材係以凹 146177.doc -67- 201044022 凸面成為出光面之方式而配置,此處,使CCFL光源之直 位之中心、與上述形成有扁豆狀透鏡之光學片材之入光面 間的距離h為4·6 mm。測定比較例3_2之光源單元中之亮 度’利用上述方法計算亮度不均。將其結果一併記於下表 (比較例3-3) 光源起朝上方依序配置表h/mm Diffusion angle difference/degree of brightness unevenness Example 2-5 16.0 60 〇 Example 2-6 "~ι 16.0 45 〇Comparative Example 2-4 16.0 0 X Comparative Example 2-5 16.0 0 X From Table 8 It can be seen that for the light source unit having the configuration of Dp/diffusion sheet/DS/prism sheet/DBEF shown in Fig. 24, the diffusion sheet of the present invention has a diffusion angle uniform throughout the entire area using 146177.doc -63- 201044022. In comparison with the configuration of the diffusion sheet (Comparative Examples 2_4 and 2_5), unevenness in brightness can be reduced. Further, in the configuration of the comparative examples 24 and 2_5, when the distance h between the RS and the DP is changed, the brightness unevenness equivalent to the examples 2_5 and 2_6 is obtained at h = 32. In the examples 2-5 and 2-6, when h=16 考虑 is considered, the distance h from the RS to the light entrance surface of the DP is 16 mm, which is shortened by about half compared with the comparative examples 2_4 and 2_5. Thereby, the light source unit can be made thinner. [Embodiment 3] Embodiment 3 corresponds to the content disclosed in the second embodiment. Further, the diffusion angle disclosed in the third embodiment is based on an angular distribution of the transmitted light intensity of the light incident along the normal direction of the concave-convex surface by using the variable-angle photometer as the incident surface by the variable angle photometer. Calculated based on the results obtained. For example, 5. It is shown that for an isotropic diffusion sheet, the diffusion angle is 5 in all directions in the sheet surface. . Also, on the other hand, 1〇. X 5. The diffusion sheet of the anisotropic sheet is not perpendicular to the diffusion angle of the two directions in the plane of the sheet. With 5. . In the diffusion sheet having the diffusion angle distribution in the sheet surface of the examples and the comparative examples, the diffusion angle is periodically changed in one direction in the plane of the sheet, and further, the diffusion sheet is contained. The light source unit has a direction orthogonal to the longitudinal direction of the CCFL light source and a direction in which the diffusion angle changes periodically. Further, the diffusion angle distribution in the plane of the diffusion sheet is designed so as to correspond to the illuminance distribution from the light source, and is used in a region where the diffusion angle of the diffusion sheet is higher in the region where the illuminance is smaller. 146177.doc •64- 201044022 With respect to Example 3-1 and Example 3-2, Comparative Example 3-1 to Comparative Example 3-3, it is made of polystyrene having a thickness of 1 to 5 mm and containing 3 内部 inside. As a lenticular lens having a true specific gravity of 1.35 and an average particle diameter of 2 μηι, a lentil lens having a height of 130 μm and a pitch of 320 μηι is formed on the light-emitting surface (made by Asahi Kasei E-Materials Co., Ltd.). The optical sheet of the light control unit of the present invention is evaluated for a light source unit in which the longitudinal direction of the lens is arranged in parallel with the longitudinal direction of the CCFL light source. Further, the surface on which the lentil lens is formed is referred to as a light-emitting surface. In Example 3-1, Example 3-1, Comparative Example 3-1 to Comparative Example 3-3, the optical sheet not described in the examples, that is, the reflective sheet, the lens sheet, and the cymbal sheet The reflective sheet used in the BRAVIA KDL32-F1 manufactured by Sony Corporation (hereinafter abbreviated as RS), the lens sheet (hereinafter abbreviated as DS), and the sheet (3 is 111). 31^), and a reflective polarizing sheet (DBEF (made by 3M Co., Ltd.)). For Example 3-1 and Example 3-2, Comparative Example 3-1 to Comparative Example 3-3, a CCFL light source having a diameter of 3.0 ηηηιφ and a length of 710 mm was used as a light source of the light source unit. Sixteen CCFL light sources are arranged such that their longitudinal directions are arranged side by side 'the distance between the RS and the center of the diameter of the light source is 38 mm' and the distance between the light sources is 23.7 mnl, and a light source for brightness evaluation is prepared. unit. For the uneven brightness and brightness, a two-dimensional color luminance meter (CA2〇〇〇) manufactured by K〇nica Minolta is used, which is set at a distance of 75 cm from the light source unit and will be set at the center of the light source unit by 2 mm×190 mm. The average brightness value measured within the range is taken as the brightness. Regarding uneven brightness, 146177.doc •65- 201044022 is the average brightness value in the direction of the χ axis (20 mm). For the y-axis direction, the brightness from each point is subtracted from the brightness of each point by ±118 mm. The standard deviation of the values obtained after the average value was used to determine the luminance unevenness. Here, in the light source unit, the criterion for determining the luminance unevenness is classified into the following two stages (〇, χ), based on the maximum value of 0.004 of the standard deviation of the luminance unevenness that can be observed by the naked eye. ° : SD ^ 0.004 x : 0.004 < SD (Embodiment 3-1) - As shown in Fig. 25 (e), an optical sheet in which a flat reading lens is formed on the surface from the light source, and the present invention are sequentially arranged The diffusing sheet is used as the light control unit of the present invention, and further, a tantalum sheet (BEFIII) and a reflective polarizing sheet (dbef) are disposed in this order to constitute the light source unit of the center of the third embodiment. Here, the diffusion sheet of the present invention has a maximum diffusion angle of ?70 and a minimum of 50. Further, the diffusion sheet having a diffusion angle which is smoothly distributed in the surface of the above-mentioned diffusion sheet as shown in Fig. 1 (1) is disposed such that the uneven surface becomes a light-emitting surface. Here, the distance 中心 between the center of the diameter of the CCFL light source and the light incident surface of the optical sheet on which the lenticular lens is formed is 4.6, and the brightness of the light source unit of the third embodiment is measured. The method leaves uneven brightness. The results are shown in Table 7 below. (Embodiment 3-2) As shown in Fig. 26 (a), an optical sheet in which a flat ugly lens is formed on the surface from the light source, and a diffusion sheet of the present invention are used as a precursor of the present invention. The control unit 'further, the DS, the 146 sheet 146177.doc • 66- 201044022 (BEFIII), and the reflective polarizing sheet (DBEF) are arranged in order, and constitute the light source unit of the embodiment 3_2. Here, the diffusion sheet of the present invention has a maximum diffusion angle of 30. The minimum value of the diffusion angle is 0.1. Further, the diffusion sheet having a diffusion angle which is smoothly distributed in the surface of the diffusion sheet as shown in Fig. 10 (f) is disposed such that the uneven surface becomes a light-emitting surface. Here, the distance h between the center of the diameter of the CCFL light source and the light incident surface of the optical sheet on which the lenticular lens was formed was 4.6 mm. The luminance in the light source unit of the embodiment was measured, and luminance unevenness was calculated by the above method. The results are recorded together in Table 7 below. 〇 (Comparative Example 3-1) RS is placed under the light source. Optical sheets, DS, and enamel sheets (BEFIII), which are formed with lenticular lenses, are arranged in order from the light source. Reflective polarizing sheets (DBEF), which constitutes the light source unit of Comparative Example 3-1. Further, the optical sheet on which the lentil lens is formed is disposed such that the lens forming surface is a light-emitting surface. Here, the distance φ between the center of the diameter of the CCFL light source and the light incident surface of the optical sheet on which the lenticular lens is formed is 4.6 mm. The luminance in the light source unit of Comparative Example 3-1 was measured, and luminance unevenness was calculated by the above method. The results are recorded together in Table 7 below. (Comparative Example 3-2) The RS was placed under the light source, and an optical sheet having a lenticular lens formed on the surface from the light source was arranged in order from the light source, and the surface was formed with a concave-convex structure formed by using a spot pattern produced by interference exposure. The diffusion sheet, DS, tantalum sheet, and DBEF constitute the light source unit of Comparative Example 3-2. In the above-mentioned diffusion sheet used in Comparative Example 3-2, the diffusion angle was 70 in the entire region of the sheet surface. . Further, the diffusion sheet having the uneven structure is disposed such that the convex surface of the concave surface is 146177.doc -67 - 201044022, and the center of the straight position of the CCFL light source and the lenticular lens are formed. The distance h between the light entrance faces of the optical sheets is 4·6 mm. The luminance in the light source unit of Comparative Example 3-2 was measured. The luminance unevenness was calculated by the above method. The results are shown in the following table (Comparative Example 3-3).

在光源之下方配置RS ia/ 成有扁豆狀透鏡之光學片材、表面具有使用由干涉曝光產 生之光斑圖案所形成之凹凸結構的擴散片材、DS、稜鏡片 材、及DBEF,才奏成比較例3_3之光源單元。比較例W所使 用之上述擴散片材中,擴散角度在上述片材面内之整個區 域内為30。。再者,I*诂目士 上攻具有凹凸結構之擴散片材係以凹 凸面成為出光面之方式而配χ ’此處,使。咖光源之直 徑之中心、與上述形成有扁豆狀透鏡之光學片材之入光面 間的距離h為4.6 mm。測定比較例3_3之光源單元中之亮 度’利用上述方法計算亮度不均。將其結果一併記於下: [表9]An optical sheet having a lenticular lens and a diffusion sheet having a concave-convex structure formed by a pattern of interference generated by interference exposure, a DS, a enamel sheet, and a DBEF are disposed under the light source. The light source unit of Comparative Example 3_3. In the above-mentioned diffusion sheet used in Comparative Example W, the diffusion angle was 30 in the entire area of the sheet surface. . Further, the I* 诂 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上The distance h between the center of the diameter of the coffee source and the light incident surface of the optical sheet on which the lenticular lens was formed was 4.6 mm. The luminance in the light source unit of Comparative Example 3-3 was measured. The luminance unevenness was calculated by the above method. The results are recorded together: [Table 9]

hAirni 實施例3-1 46 - 亮度不均 實施例3-2 — 〇 比較例3-1 4.6 '— 〇 比較例3-2 46^''''— X 比較例3-3 ~~ίτ—-— XhAirni Example 3-1 46 - Uneven brightness Example 3-2 - 〇 Comparative Example 3-1 4.6 '- 〇 Comparative Example 3-2 46^''''- X Comparative Example 3-3 ~~ίτ-- — X

X 由表9可知,對於具有圖25(、 (c)所不之本發明之光後# 單元/稜鏡片材/DBEF之構成、或去1@ 先線拴制 —者,、有圖26(a)所示之本 146177.doc -68- 201044022 叙明之光線控制單元/DS/棱鏡片材/〇卿之構成的光源單 凡’本發明之光線控制單元與未使用在片材面内上述擴散 • 角度呈週期性變化之擴散片材之情形(比較例、3_2、3_ 3)相比’可減輕亮度不均。 ,進而可知,在比較例3]之構成中,若使自咖光源之 ’ i徑之中心至上述形成有扁豆狀透鏡之光學片材之入光面 為止的距離h發生變化,則在h飛6之處,成為與實施例3_ 1、3-2同等之亮度不均。在實施们]、“中,若考慮使 h-4.6 ’則與比較例比,可使自⑽匕光源之直徑之中 心至上述形成有扁豆狀透鏡之光學片材之人光面為止的距 離h縮短6mm(圖27⑷),從而可實現光源單元薄型化。 .關於實施例3-3、實施例3_4及比較例3_5,係將由厚度 1.5 mm之聚苯乙稀製成、内部未含有擴散劑、於出光面形 成有高度100卿、間距300 μπι、且頂點被修圓之複鏡條列 (R棱鏡)者(旭化成電子材料(Asahi Kasei E_MateHals)股份 〇 有限公司製)作為本發明之光線控制單元之光學片材,對 將上述R稜鏡之長度方向配置成與CCFL光源之長度方向平 订之光源單元進行評估。再者,將上述形成有尺稜鏡之面 作為出光面。 在實施例3-3、實施例3_4及比較例3_5中,關於實施例中 未§己載之光學片材,即,關於反射片材、透鏡片材、稜鏡 片材、及反射型偏光片材,係使用索尼公司製造之 BRAVIA KDL32-JE1中所使用之反射片材(以下簡記為 RS)、透鏡片材(以下簡記為ds)、稜鏡片材(befiii(3]v^ 146177.doc -69· 201044022 份有限公司製))' 及反射型偏光片材(DBEF(3M股份有限公 司製))。 關於實施例3-3、實施例3-4及比較例3-5,係使用直徑 3·4 ηιιηφ、長度710 mm之CCFL光源來作為光源單元之光 源。配置8根上述CCFL光源,使其長度方向並列地排列, 使RS與上述光源之直徑之中心間的距離為3.7 mm,且使上 述光源彼此之間隔p為47.6 mm,製作亮度評估用之光源單 元。關於免度及免度不均’係使用Konica Minolta製造之 二維色彩亮度計(CA2000),自光源單元起相距75 cm而設 置’將在光源单元之中心部20 mmx 190 mm之範圍内所測 定之平均亮度值作為亮度。關於亮度不均,係求出X軸(2〇 mm)方向之平均亮度值,對於y軸方向,則作為由各個點 之免度值減去距各個點±1丨.8 mm之亮度平均值後所得之值 的標準偏差而求出亮度不均。 此處,在上述光源單元中,以能夠容許肉眼觀察到的亮 度不均之標準偏差之最大值〇 〇〇4為界,將亮度不均之判 定基準分類成如下之兩個階段(〇、χ)。 〇 : S.D.S 0.004 χ : 0.004<S.D. (實施例3-3) 如圖26⑷所示,自光源起朝上方依序配置表面形成有複 鏡條列之光學片材、及本發明之擴散片材來作為本發明之 光線控制單元,進而,於其上方依序配置仍、稜鏡片材 (BEFIII)、及反射型偏光片材⑽EF),構成實施例3-3之光 146177. doc 201044022 源單兀。於上述光學片材中,表面形成有間距3〇〇 、高 度100 μιη且前端部被修圓之形狀之棱鏡條列(R稜鏡),將 • 上述尺稜鏡形成面用作出光面。又,本發明之光線控制單 • 兀之擴散片材係將擴散角度之最大值為60。、最小值為 〇.1。、且擴散角度如圖lG(b)所示在上述擴散片材面内平滑 地分布之擴散片材,以凹凸面成為出光面之方式進行配 置。此處’使CCFL光源之直徑之中心、與上述形成有城 鏡之光學片材之入光面間的距離11為8 6 mm。測定實施例 〇 3·3之光源單元中之亮度,利用上述方法計算亮度不均。 將其結果示於下表10。 (實施例3-4) .如圖26(a)所示,自光源起朝上方依序配置表面形成有稜 鏡條列之光學片材、及本發明之擴散片材來作為本發明之 光線控制單元,進而,於其上方依序配置使稜鏡之延伸方 向正交之兩張稜鏡片材(BEFIII)、及表面具有利用由干涉 〇 曝光產生之光斑圖案所形成之凹凸結構的擴散片材,構成 實施例3-4之光源單元。在上述光學片材中,表面形成有 間距300 μηι、高度100 μιη且前端部被修圓之形狀之稜鏡條 列(R稜鏡)’將上述R稜鏡形成面用作出光面。再者,兩張 稜鏡片材之配置為,自靠近光源之侧起,使稜鏡之延伸方 向與CCFL光源之長度方向平行,且使稜鏡之延伸方向與 CCFL光源之長度方向正交。 此處,本發明之光線控制單元之擴散片材係將擴散角度 之最大值為60。、最小值為0.1。、擴散角度如圖i〇(b)所示 146177.doc -71 - 201044022 在上述擴散片材面内平滑地分布之擴散片材,以凹凸面成 為出光面之方式而配置。又,上述具有凹凸結構之擴散片 材係將擴散角度為20。xlO。之具有各向異性者配置成使2〇。 之擴散方向與CCFL光源之長度方向平行置。此處,使 CCFL光源之直徑之中心、與上述形成有尺稜鏡之光學片材 之入光面間的距離h為6.3 mm。測定實施例3,4之光源單元 中之亮度,利用上述方法計算亮度不均。將其結果一併記 於下表10。 (比較例3-5) 在實施例3 - 3之光源單元中,未使用本發明之光線控制 單tl之擴散片材,除此之外’全部設為相同構成,構成比 較例3-5之光源單元。測定比較例3_5之光源單元中之亮 度,利用上述方法計算亮度不均。將其結果一併記於下表 10 ° [表 10]X It can be seen from Table 9 that for the configuration of the light unit #稜鏡/稜鏡片/DBEF of the present invention which is not shown in Fig. 25 ((c), or to go to 1@先线拴, there is Figure 26 ( a) shown in 146177.doc -68- 201044022 The light source of the light control unit / DS / prism sheet / 〇 之 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 • In the case where the angle is a periodically changing diffusion sheet (Comparative Example, 3_2, 3_3), the brightness unevenness can be reduced. Further, in the configuration of Comparative Example 3, if the self-contained light source is used When the distance h from the center of the i-diameter to the light-incident surface of the optical sheet on which the lentil lens is formed changes, the luminance unevenness equivalent to that of the examples 3_1 and 3-2 is obtained at the position of the h-flying 6. In the embodiment, "when considering h-4.6', compared with the comparative example, the distance from the center of the diameter of the (10) xenon light source to the human light surface of the optical sheet on which the lenticular lens is formed can be made h. The light source unit is made thinner by shortening by 6 mm (Fig. 27 (4)). About Example 3-3, Example 3_4, and Comparative Example 3_5 It is made of polystyrene with a thickness of 1.5 mm, does not contain a diffusing agent inside, and forms a multi-mirror strip (R prism) with a height of 100 qing, a pitch of 300 μπι, and a vertex rounded on the light-emitting surface (Asahi Kasei Electronics) Material (Asahi Kasei E_MateHals) Co., Ltd.) As an optical sheet of the light control unit of the present invention, the light source unit in which the longitudinal direction of the R 配置 is arranged to be aligned with the longitudinal direction of the CCFL light source is evaluated. The surface on which the ruler is formed is used as the light-emitting surface. In the embodiment 3-3, the embodiment 3_4, and the comparative example 3_5, the optical sheet which is not contained in the embodiment, that is, the reflective sheet The lens sheet, the enamel sheet, and the reflective polarizing sheet are made of a reflective sheet (hereinafter abbreviated as RS) and a lens sheet (hereinafter abbreviated as ds) used in BRAVIA KDL32-JE1 manufactured by Sony Corporation.稜鏡 Sheet (befiii (3] v^ 146177.doc -69·201044022 Co., Ltd.)) and a reflective polarizing sheet (DBEF (manufactured by 3M Co., Ltd.)). Example 3-3, Example 3-4 and Comparative Example 3-5, A CCFL light source having a diameter of 3·4 ηιιηφ and a length of 710 mm is used as a light source of the light source unit. Eight CCFL light sources are arranged such that their length directions are juxtaposed so that the distance between the RS and the center of the diameter of the light source is 3.7 mm. And the distance between the above-mentioned light sources is 47.6 mm, and a light source unit for brightness evaluation is produced. The degree of freedom and freedom of use is based on a two-dimensional color luminance meter (CA2000) manufactured by Konica Minolta, which is spaced apart from the light source unit. At 75 cm, the average brightness value measured in the range of 20 mm x 190 mm at the center of the light source unit was set as the brightness. For the uneven brightness, the average brightness value in the X-axis (2〇mm) direction is obtained, and for the y-axis direction, the brightness average value of ±1丨.8 mm from each point is subtracted as the exemption value of each point. The standard deviation of the values obtained after that was used to determine the luminance unevenness. Here, in the light source unit, the criterion for determining the luminance unevenness is classified into the following two stages (the 如下, χ, 为, based on the maximum value 〇〇〇4 of the standard deviation of the luminance unevenness that can be observed by the naked eye. ). DS: SDS 0.004 χ : 0.004 < SD (Example 3-3) As shown in Fig. 26 (4), an optical sheet in which a multi-mirror row is formed on the surface from the light source, and a diffusion sheet of the present invention are sequentially disposed. As the light control unit of the present invention, the 稜鏡 sheet (BEFIII) and the reflective polarizing sheet (10) EF are sequentially disposed above the TEM 146177. doc 201044022 Source 兀. In the above optical sheet, a prism strip array (R稜鏡) having a pitch of 3 、, a height of 100 μm, and a rounded front end portion is formed on the surface, and the above-mentioned ruler forming surface is used as a smooth surface. Further, the diffusing sheet of the light control unit of the present invention has a maximum diffusion angle of 60. The minimum value is 〇.1. Further, the diffusion sheet having a diffusion angle which is smoothly distributed in the surface of the diffusion sheet as shown in Fig. 1G(b) is disposed such that the uneven surface becomes a light-emitting surface. Here, the distance 11 between the center of the diameter of the CCFL light source and the light incident surface of the optical sheet on which the mirror is formed is 8 6 mm. The luminance in the light source unit of Example ·3·3 was measured, and luminance unevenness was calculated by the above method. The results are shown in Table 10 below. (Example 3-4) As shown in Fig. 26 (a), an optical sheet having a string line formed on the surface and a diffusion sheet of the present invention are arranged in order from the light source as the light of the present invention. The control unit further has two sheet materials (BEFIII) orthogonal to the extending direction of the crucible and a diffusion sheet having a concavo-convex structure formed by the pattern of the spot generated by the interference〇 exposure. The light source unit of Embodiment 3-4 is constructed. In the above optical sheet, a ruthenium column (R 稜鏡) having a pitch of 300 μm and a height of 100 μm and having a rounded front end portion is formed on the surface, and the R 稜鏡 forming surface is used as a smooth surface. Further, the two sheets are arranged such that the direction of extension of the crucible is parallel to the longitudinal direction of the CCFL source from the side close to the light source, and the direction in which the crucible extends is orthogonal to the longitudinal direction of the CCFL source. Here, the diffusion sheet of the light control unit of the present invention has a maximum diffusion angle of 60. The minimum value is 0.1. The diffusion angle is as shown in Fig. 1(b). 146177.doc -71 - 201044022 The diffusion sheet which is smoothly distributed in the surface of the above-mentioned diffusion sheet is disposed such that the uneven surface is a light-emitting surface. Further, the above-mentioned diffusing sheet having a concavo-convex structure has a diffusion angle of 20. xlO. Those having anisotropy are configured to make 2 turns. The direction of diffusion is parallel to the length direction of the CCFL source. Here, the distance h between the center of the diameter of the CCFL light source and the light incident surface of the optical sheet on which the ruler is formed is 6.3 mm. The luminances in the light source units of Examples 3 and 4 were measured, and luminance unevenness was calculated by the above method. The results are recorded together in Table 10 below. (Comparative Example 3-5) In the light source unit of Example 3-4, the diffusion sheet of the light control unit of the present invention was not used, and all of the same were used to constitute the same configuration, and Comparative Example 3-5 was constructed. Light source unit. The luminance in the light source unit of Comparative Example 3-5 was measured, and luminance unevenness was calculated by the above method. Record the results together in the table below 10 ° [Table 10]

h/mm 亮度不均 實施例3-3 8.6 〇 實施例3-4 6.3 〇 比較例3-5 8.6 X 由表10可知,對於具有圖26(a)所示之本發明之光線控制 單元/DS/稜鏡片材/DBEF之構成的光源單元、及具有圖 25(d)所示之本發明之光線控制單元/稜鏡片材/稜鏡片材/擴 散片材之構成的光源單元,本發明之光線控制單元與未使 用片材面内之上述擴散角度呈週期性變化之擴散片材之情 形(比較例3-5)相比,可減輕亮度不均。 146177.doc -72- 201044022 進而可知,在比較例3-5之構成中,若使自CCFL光源之 直徑之中心至上述形成有R稜鏡之光學片材之入光面為止 的距離h發生變化,則在h=l 4.6之處,成為與實施例3-3、 3-4同等之亮度不均。於實施例3-3中若考慮使h=8.6,且於 實施例3-4中若考慮使h=6.3,則與比較例3-5相比,可使自 CCFL·光源之直徑之中心至光學構件之入光面為止的距離h 縮短6 mm以上(圖27(a)),從而可使光源單元薄型化。 在實施例3-5及實施例3-6、比較例3-7及比較例3-8中, 關於實施例中未記載之光學片材,即,關於反射片材、透 鏡片材、稜鏡片材、及反射型偏光片材,係使用索尼公司 製造之BRAVIA KDL32_JE1中所使用之反射片材(以下簡記 為RS)、透鏡片材(以下簡記為DS)、稜鏡片材(BEFIII(3M 股份有限公司製))、及反射型偏光片材(DBEF(3M股份有限 公司製))。 關於實施例3_5及實施例3-6、比較例3-7及比較例3-8, 係使用直徑3.4 ιηπιφ、長度710 mm之CCFL光源來作為光源 單元之光源。配置6根上述CCFL光源,使其長度方向並列 地排列,使RS與上述光源之直徑之中心間的距離為3.7 mm, 且使上述光源彼此之間隔p為63.0 mm,製作亮度評估用之 光源單元。關於亮度及亮度不均,係使用Konica Minolta 製造之二維色彩亮度計(CA2000),自光源單元起相距75 cm 而設置,將在光源單元之中心部20 mmx 190 mm之範圍内 所測定之平均亮度值作為亮度。關於亮度不均,係求出x 軸(20 mm)方向之平均亮度值,對於y軸方向,則作為由各 146177.doc -73- 201044022 mm之亮度平均值後所得 個點之亮度值減去距各個點± i l. 8 之值的標準偏差而求出亮度不均。 此處’在上述光源單元中, t 乂月匕夠容許肉眼觀察到的亮 度不均之標準偏差之最 值005為界,將亮度不均之判 疋基準勿類成如下之兩個階段(〇、χ)。 〇 : S.D.S 0.005 x : 0.005<S.D. (實施例3 - 5 ) 如圖26⑷所示,自光源起朝上方依序配置表面形成有棱 鏡條列之光學片材、及本發明之㈣#材來作為本發明之 光線控制單元,進而,於其上方依序配置DS、稜鏡片材 (BEFIII)、及反射型偏光片材(DBEF),構成實施例之光 源單元將由厚度1·5 mm之聚苯乙稀製成、内部含有5〇〇 之真比重1.3 5、粒徑2 μπι之石夕微粒子、且於出光面形成有 間距300 μιη、高度1〇〇 μιη且頂點被修圓之稜鏡條列(尺稜 鏡)者(旭化成電子材料(Asahi Kasei E-Materials)股份有限 公司製)作為上述光學片材,對將上述R稜鏡之長度方向配 置成與CCFL光源之長度方向平行之光源單元進行評估。 再者’上述光學片材係以形成有稜鏡條列之面作為出光 面。 又’本發明之擴散片材係將擴散角度之最大值為45。、 最小值為7。、擴散角度如圖i〇(c)所示在上述擴散片材面内 平滑地分布之擴散片材,以凹凸面成為出光面之方式而配 置。此處,使CCFL光源之直徑之中心、與上述形成有R棱 -74- 146177.doc 201044022 鏡之光學片材之入光面間的距離^6.3 _。測定實施例 3-5之光源單疋中之亮度,利用上述方法計算亮度不均。 將其結果示於下表1 1。 (實施例3-6) 如圖26(a)所示,自光源起朝上方依序配置表面形成有扁 • 纟狀透鏡之光學片材、及本發明之擴散片材來作為本發明 之光線控制單元,進而,於其上方依序配置Ds、稜鏡片材 (BEFIII)、及反射型偏光片材(DBEF),構成實施例η之光 〇 源單元。將由厚度丨·5 _之聚苯乙稀製成、内部含有1000 ppm之真比重1_35、且粒徑2 μιη之矽微粒子、且於出光面 形成有高度130 μηι、間距320叫之扁豆狀透鏡者(旭化成 • 電子材料(Asahi Kasei E-Materials)股份有限公司製)作為 上述光學片材,對將上述透鏡之長度方向配置成與CCFL 光源之長度方向平行之光源單元進行評估。 又,本發明之擴散片材係將擴散角度之最大值為%。、 ❹最小值為0.5。、擴散角度如圖28(c)所示在上述擴散片材面 内平滑地分布之擴散片材,以凹凸面成為出光面之方式而 配置。該擴散片材之擴散角度峰值與擴散角度谷值之算術 平均值(Avl)為15。,分布於連續的擴散角度峰值與擴散角 度谷值之間的所有測定點的擴散角纟之算術平均值(Av2) 為11. 一7。。此處,使CCFL光源之直徑之令心、與上述形成 有扁丑狀透鏡之光學片材之入光面間的距離11為183爪爪。 測定實施例3-6之光源單元中之亮度,利用上述方法計算 亮度不均。將其結果一併記於下表丨工。 146I77.doc -75- 201044022 (比較例3-7) 在實施例3-5之光源單元中,未使用本發明之光線控制 單元之擴散片材,除此之外,全部設為相同構成,構成比 較例3-7之光源單元。測定比較例3_7之光源單元中之哀 度’利用上述方法計算亮度不均。將其結果—併記於下表 11 ° (比較例3-8) 在實施例3-6之光源單元中,未使用本發明之光線控制 單元之擴散片材’除此之外’全部設為相同構成,構成比 較例3 - 8之光源單元。測定比較例3 - 8之光源單元中之真 度’利用上述方法計算壳度不均。將其結果一併記於下表 11。 [表 11]h/mm luminance unevenness Example 3-3 8.6 〇 Example 3-4 6.3 〇 Comparative Example 3-5 8.6 X As seen from Table 10, for the light control unit/DS having the present invention shown in Fig. 26 (a) a light source unit composed of a sheet/DBEF and a light source unit having the light control unit/稜鏡 sheet/稜鏡 sheet/diffusion sheet of the present invention shown in FIG. 25(d), the light of the present invention The control unit can reduce unevenness in brightness as compared with the case where the diffusion sheet having the above-described diffusion angle in the sheet surface is not periodically changed (Comparative Example 3-5). Further, in the configuration of Comparative Example 3-5, the distance h from the center of the diameter of the CCFL light source to the light incident surface of the optical sheet on which R稜鏡 is formed is changed. In the case where h = l 4.6, the luminance unevenness equivalent to that of the examples 3-3 and 3-4 is obtained. Considering that h=8.6 in Example 3-3 and h=6.3 in Example 3-4, compared with Comparative Example 3-5, the center of the diameter of the CCFL·light source can be The distance h from the light incident surface of the optical member is shortened by 6 mm or more (Fig. 27 (a)), and the light source unit can be made thinner. In Example 3-5 and Example 3-6, Comparative Example 3-7, and Comparative Example 3-8, the optical sheet not described in the examples, that is, the reflective sheet, the lens sheet, and the cymbal sheet The reflective sheet (hereinafter abbreviated as RS), the lens sheet (hereinafter abbreviated as DS), and the enamel sheet (BEFIII (3M shares limited) used in BRAVIA KDL32_JE1 manufactured by Sony Corporation. Company made)) and reflective polarizing sheet (DBEF (made by 3M Co., Ltd.)). For Example 3_5 and Example 3-6, Comparative Example 3-7, and Comparative Example 3-8, a CCFL light source having a diameter of 3.4 ηηπιφ and a length of 710 mm was used as a light source of the light source unit. The six CCFL light sources are arranged such that the lengthwise direction thereof is arranged side by side so that the distance between the RS and the center of the diameter of the light source is 3.7 mm, and the distance between the light sources is 63.0 mm, and the light source unit for brightness evaluation is prepared. . For the uneven brightness and brightness, the two-dimensional color luminance meter (CA2000) manufactured by Konica Minolta is used, which is set at a distance of 75 cm from the light source unit and averaged in the range of 20 mm x 190 mm at the center of the light source unit. The brightness value is used as the brightness. For the uneven brightness, the average brightness value in the x-axis (20 mm) direction is obtained, and for the y-axis direction, the brightness value obtained from the brightness average of each of 146177.doc -73- 201044022 mm is subtracted. The brightness is uneven from the standard deviation of the values of ± i l. 8 at each point. Here, in the above-mentioned light source unit, t 乂 匕 匕 容许 容许 容许 容许 容许 容许 容许 容许 容许 容许 容许 容许 容许 容许 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 , χ). DS: SDS 0.005 x : 0.005 < SD (Examples 3 - 5) As shown in Fig. 26 (4), an optical sheet in which prism rows are formed on the surface from the light source and the (4) material of the present invention are arranged in order from the light source. As the light control unit of the present invention, DS, a bismuth sheet (BEFIII), and a reflective polarizing sheet (DBEF) are sequentially disposed above the light ray unit of the embodiment, and the light source unit constituting the embodiment is made of polyphenylene having a thickness of 1·5 mm. It is made of ethylene, contains 5 真 of the true specific gravity of 1.5 5, and has a particle size of 2 μπι, and forms a ridge with a pitch of 300 μm, a height of 1〇〇μιη, and a vertex that is rounded on the light-emitting surface. (Asahi Kasei E-Materials Co., Ltd.) as the optical sheet, the light source unit in which the longitudinal direction of the R 配置 is arranged in parallel with the longitudinal direction of the CCFL light source is performed. Evaluation. Further, the optical sheet described above has a surface on which a string is formed as a light-emitting surface. Further, the diffusion sheet of the present invention has a maximum diffusion angle of 45. The minimum value is 7. The diffusion sheet which is smoothly distributed in the surface of the diffusion sheet as shown in Fig. 1(c) is arranged such that the uneven surface becomes the light-emitting surface. Here, the distance between the center of the diameter of the CCFL light source and the light incident surface of the optical sheet on which the R edge is formed is 6.3 _. The brightness in the light source unit of Examples 3-5 was measured, and the unevenness in brightness was calculated by the above method. The results are shown in Table 1 1 below. (Example 3-6) As shown in Fig. 26 (a), an optical sheet having a flat lens formed on the surface and a diffusion sheet of the present invention are arranged in order from the light source as the light of the present invention. The control unit further has Ds, a bismuth sheet (BEFIII), and a reflective polarizing sheet (DBEF) arranged in this order to constitute the pupil unit of the embodiment η. It is made of polystyrene having a thickness of 丨·5 _, containing 1000 ppm of ruthenium particles having a true specific gravity of 1 to 35 and a particle diameter of 2 μm, and having a height of 130 μm and a pitch of 320 called a lenticular lens on the light-emitting surface. (Asahi Kasei E-Materials Co., Ltd.) As the optical sheet, the light source unit in which the longitudinal direction of the lens is arranged in parallel with the longitudinal direction of the CCFL light source is evaluated. Further, the diffusion sheet of the present invention has a maximum value of the diffusion angle of %. The minimum value of ❹ is 0.5. The diffusion sheet which is smoothly distributed in the plane of the above-mentioned diffusion sheet as shown in Fig. 28(c) is disposed such that the uneven surface becomes the light-emitting surface. The arithmetic mean value (Avl) of the diffusion angle peak and the diffusion angle valley of the diffusion sheet was 15. The arithmetic mean (Av2) of the diffusion angle 所有 of all the measured points between the continuous diffusion angle peak and the diffusion angle valley is 11. . Here, the distance 11 between the center of the diameter of the CCFL light source and the light incident surface of the optical sheet on which the flat ugly lens is formed is 183 claws. The luminance in the light source unit of Example 3-6 was measured, and luminance unevenness was calculated by the above method. The results are recorded in the table below. 146I77.doc -75- 201044022 (Comparative Example 3-7) In the light source unit of Example 3-5, the diffusion sheet of the light control unit of the present invention is not used, and all of them are configured in the same configuration. The light source unit of Comparative Example 3-7. The degree of sorrow in the light source unit of Comparative Example 3-7 was measured. The luminance unevenness was calculated by the above method. The results were recorded in the following table 11 ° (Comparative Example 3-8) In the light source unit of Example 3-6, the diffusion sheets of the light control unit of the present invention were not used except that The light source unit of Comparative Example 3-8 was constructed. The degree of truth in the light source unit of Comparative Example 3 - 8 was measured. The shell degree unevenness was calculated by the above method. The results are recorded together in Table 11 below. [Table 11]

h/mm __女施例3-5_ 16.3 〇 實施例3-6 18.3 〇 比較例3-7_ 16.3 X 比較例3-8 18.3 X 由表11可知,對於具有圖26(a)所示之本發明之光線控制 單元/DS/稜鏡片材/DBEF之構成的光源單元,可減輕亮度 不均。 進而可知,在比較例3-7、3-8之構成中,若使CCFL光源 之間隔P發生變化,則在p=47_6之處,成為與實施例3_5、 3-6同等之亮度不均。在實施例3-5、3-6中,若考慮使 P=63.〇,則與比較例3-7、3_8相比,可使CCFL光源之間隔 146177.doc -76· 201044022 P擴大15.4 mm(圖27(b)),從而可削減光源單元之光源數。 本發明並不限定於上述實施形態,其可進行各種變更而 • f施。例如,上述實施形態中之構件之材質、配置、形狀 . U例示者’可進行適t變更而實施n將上述實施 形態1、2中所揭示之構成適當組合而構成光源單元。此 卜於不脫離本發明之範圍之限度内可進行適當變更而實 施。 [產業上之可利用性]. 〇 本發明對於液晶顯示裝置之類的顯示裝置之擴散片材、 光線控制單元、光源單元為有效。 【圖式簡單說明】 .圖1係表示本發明實施形態1之擴散片材中之擴散角度 (縱橫比)之分布的圖; 圖2(a)、(b)係表示本發明實施形態1之光源的投影區域 與光源之間的投影區域的圖; 〇 圖3(a)〜(f)係表示本發明實施形態1之擴散片材之擴散角 度之相對於片材面内之相對位置的分布的圖; 圖4(a)〜(f)係表示本發明實施形態1之擴散片材之縱橫比 t相對於片材面内之相對位置的分布的圖; 圖5係自正面觀察本發明實施形態1、2之擴散片材之情 • 形時的示意圖; • 圖6係自正面觀察本發明實施形態1、2之擴散片材之情 形時的示意圖; 圖7係表示自正面觀察本發明實施形態1、2之擴散片材 146177.doc -77- 201044022 之情形時的示意圖; 圖8(a)、(b)係表示本發明實施形態1之擴散片材中之擴 散角度之定義的圖; 圖9係表示本發明實施形態1之擴散片材中之縱橫比之定 義的圖; 圖10(a)〜(f)係表示實施形態2中所揭示之光線控制單元 中使用之擴散片材中之擴散角度的相對於片材面内之相對 位置的分布的圖; 圖11(a)〜(f)係表示實施形態2中所揭示之光線控制單元 中使用之擴散片材中之縱橫比的相對於片材面内之相對位 置的分布的圖; 圖12係表示本發明實施形態2之光線控制單元之構成的 圖; 圖13係表示本發明實施形態2之光線控制單元之剖面結 構的圖; 圖14(a)〜(f)係自正面觀察本發明實施形態2之光線控制 單元中所使用之光學片材之情形時的示意圖; 圖15(a)〜(c)係自斜上方觀察本發明實施形態2之光線控 制單元中所使用之光學片材之情形時的示意圖; 圖16(a)〜(e)係自正面觀察本發明實施形態2之光線控制 單元中所使用之光學片材之情形時的示意圖; 圖17(a)〜(e)係自斜上方觀察本發明實施形態2之光線控 制單元中所使用之光學片材之情形時的示意圖; 圖18(a)~(e)係自正面觀察本發明實施形態2之光線控制 146177.doc -78- 201044022 單元中所使用之光學片材之情形時的示意圖; 圖19⑷、(b)係表#本發明實施形態3之光源單元之構成 • 的圖; _ ® 20(a)、(b)係表示本發明實施形態3之光源單元之構成 的圖; 圖21(a)、(b)係表示本發明實施形態3之光源單元之構成 的圖; 圖22係表示本發明實施形態3之擴散片材中的 ❹之相對於片材面内之相對位置的分布的圖; 圖23(a)〜(c)係表示本發明實施形態3之光源單元之構成 之另一例的圖; • 圖24係表示本發明實施形態3之光源單元之構成之另一 例的圖; 圖25(a)〜(d)係表示本發明實施形態3之光源單元之構成 之另一例的圖; Q 圖26(a)、(b)係表示本發明實施形態3之光源單元之構成 之另一例的圖; 圖27(a)、(b)係表示本發明實施形態3之光源單元之剖面 結構的圖; 圖28(a)、(b)、(c)係表示本發明之實施例中擴散片材之 ‘ 擴散角度與光源距離之關係的圖; 圖29(a)、(b)係表示本發明之實施例中擴散片材之擴散 角度與光源距離之關係的圖; 圖30(a)、(b)、(c)係表示本發明之實施例中所使用之 146177.doc •79- 201044022 LED光源之配置的圖;及 圖3 1 (a)、(b)、(c)係表示本發明之實施例中擴散片材之 擴散角度與光源距離之關係的圖。 【主要元件符號說明】 11 ' 12 光源 13 反射片材 14 光學片材(擴散板) 15 擴散片材 16 表面賦形型擴散片材(透鏡片材) 17 光學片材(棱鏡片材) 18 反射型偏光片材 101 冷陰極管h/mm __Female Example 3-5_ 16.3 〇Example 3-6 18.3 〇Comparative Example 3-7_ 16.3 X Comparative Example 3-8 18.3 X As can be seen from Table 11, for the one shown in Fig. 26(a) The light source unit of the light control unit/DS/稜鏡 sheet/DBEF of the invention can reduce uneven brightness. Further, in the configurations of Comparative Examples 3-7 and 3-8, when the interval P of the CCFL light source is changed, the luminance unevenness equivalent to that of the examples 3_5 and 3-6 is obtained at p=47_6. In Examples 3-5 and 3-6, if P=63.〇 is considered, the interval of the CCFL light source can be expanded by 5.4177.doc -76· 201044022 P by 15.4 mm compared with Comparative Examples 3-7 and 3_8. (Fig. 27(b)), the number of light sources of the light source unit can be reduced. The present invention is not limited to the above embodiment, and various modifications can be made. For example, the material, the arrangement, and the shape of the member in the above-described embodiment can be changed by n, and the configuration disclosed in the above-described first and second embodiments can be appropriately combined to constitute a light source unit. The present invention can be carried out with appropriate modifications without departing from the scope of the invention. [Industrial Applicability] 〇 The present invention is effective for a diffusion sheet, a light control unit, and a light source unit of a display device such as a liquid crystal display device. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a distribution of a diffusion angle (aspect ratio) in a diffusion sheet according to a first embodiment of the present invention; and Figs. 2(a) and (b) are views showing a first embodiment of the present invention. FIG. 3(a) to FIG. 3(f) show the distribution of the diffusion angle of the diffusion sheet according to the first embodiment of the present invention with respect to the relative position in the sheet surface. 4(a) to 4(f) are diagrams showing the distribution of the aspect ratio t of the diffusion sheet according to the first embodiment of the present invention with respect to the relative position in the sheet surface; Fig. 5 is a front view of the present invention. Fig. 6 is a schematic view showing a case where the diffusion sheet of the first and second embodiments of the present invention is viewed from the front; and Fig. 7 is a view showing the implementation of the present invention from the front. Fig. 8(a) and Fig. 8(b) are views showing the definition of the diffusion angle in the diffusion sheet according to the first embodiment of the present invention; Fig. 9 is a view showing the definition of the aspect ratio in the diffusion sheet according to the first embodiment of the present invention. Figs. 10(a) through 10(f) are diagrams showing the distribution of the diffusion angle in the diffusion sheet used in the light control unit disclosed in the second embodiment with respect to the relative position in the sheet surface; Fig. 11 (a) And (f) is a view showing a distribution of the aspect ratio of the aspect ratio in the plane of the sheet used in the light control unit disclosed in the second embodiment, and FIG. 12 is an embodiment of the present invention. FIG. 13 is a view showing a cross-sectional structure of a light control unit according to Embodiment 2 of the present invention; and FIGS. 14(a) to (f) are views showing light control according to Embodiment 2 of the present invention from the front. Fig. 15 (a) to (c) are schematic views showing a state in which an optical sheet used in the light control unit of the second embodiment of the present invention is viewed obliquely from above; Fig. 16 (a) to (e) are views showing a state in which an optical sheet used in the light control unit of the second embodiment of the present invention is viewed from the front; Fig. 17 (a) to (e) are viewed from obliquely above. Optical used in the light control unit of the second embodiment of the invention Fig. 18 (a) to (e) are schematic views of the optical sheet used in the unit of the light control 146177.doc -78- 201044022 of the second embodiment of the present invention as seen from the front; 19(4) and (b) are diagrams showing the configuration of the light source unit according to the third embodiment of the present invention; _ 20 (a) and (b) are diagrams showing the configuration of the light source unit according to the third embodiment of the present invention; (a) and (b) are diagrams showing the configuration of the light source unit according to the third embodiment of the present invention. Fig. 22 is a view showing the distribution of the relative position of the crucible in the plane of the sheet in the diffusion sheet according to the third embodiment of the present invention. Fig. 23 (a) to (c) are views showing another example of the configuration of the light source unit according to the third embodiment of the present invention; Fig. 24 is a view showing another example of the configuration of the light source unit according to the third embodiment of the present invention; 25 (a) to (d) are views showing another example of the configuration of the light source unit according to the third embodiment of the present invention; and Figs. 26(a) and 26(b) are diagrams showing the configuration of the light source unit according to the third embodiment of the present invention. Figure 27 (a) and (b) show the cross-sectional structure of a light source unit according to Embodiment 3 of the present invention. 28(a), (b), and (c) are views showing the relationship between the diffusion angle of the diffusion sheet and the light source distance in the embodiment of the present invention; and Figs. 29(a) and (b) show the present invention. Figure 34 (a), (b), (c) shows the 146177.doc used in the embodiment of the present invention; 79 - 201044022 A diagram of the arrangement of the LED light sources; and Figs. 3 1 (a), (b), and (c) are diagrams showing the relationship between the diffusion angle of the diffusion sheet and the light source distance in the embodiment of the present invention. [Description of main component symbols] 11 ' 12 Light source 13 Reflective sheet 14 Optical sheet (diffusion sheet) 15 Diffusion sheet 16 Surface-formed diffusion sheet (lens sheet) 17 Optical sheet (prism sheet) 18 Reflection Type polarizing sheet 101 cold cathode tube

102 LED 103 光源正上方之投影區域 104 光源間之投影區域 201、 203 高擴散角度(高縱橫比)區域 202、 204 低擴散角度(低縱橫比)區域 h、h' 光源-光學片材間之距離 1 範圍w内之最大深度或高度 P ' P' 光源之間距 W 凹部或凸部之剖面上之端部至端部間的水 平距離 146177.doc - 80 -102 LED 103 Projection area 104 directly above the light source Projection area 201, 203 between light sources High diffusion angle (high aspect ratio) area 202, 204 Low diffusion angle (low aspect ratio) area h, h' Light source - between optical sheets Distance 1 The maximum depth or height within the range w P ' P' The distance between the ends of the light source from the end of the W concave or convex section to the end 146177.doc - 80 -

Claims (1)

201044022 七、申請專利範園·· 一種擴散片材,其特徵在於: ^輕光線垂直人射至片材面時之出射光之㈣角度 -者4片材面内之特定之方向進行週期性變化者,且 在,上述料之方向上之上述片材面内之相對位置描繪 於棱軸、將上述片材面内之相對位置處之擴散角度描繪 於縱轴的擴散角度分布圖中’存在有複數個的上述擴散 角度之峰值與複數個的上述擴散角度之谷值,並且相鄰 之上述峰值與上述谷值之間的擴散角度之算術平均值係 大於上述相鄰之上述蜂值與上述谷值之間所分布之所有 點處的擴散角度之算術平均值。 一種擴散片材,其特徵在於: ❹ 2. 其係使光線垂直入射至片材面時之出射光之擴散角度 沿著上述片材面内之特定之方向進行週期性變化者,且 在將上述特疋之方向上之上述片材面内之相對位置描繪 於橫轴、將上述片材面内之相對位置處之擴散角度描繪 於縱轴的擴散角度分布圖中,於一個高擴散角度區域包 含複數個峰值。 3.如請求項2之擴散片材,其中上述高擴散角度區域内的 相鄰之峰值間之擴散角度分布為直線狀。 4·如請求項2之擴散片材,其中上述高擴散角度區域内的 相鄰之峰值間之擴散角度分布為向下凸出之曲線狀、或 曲線與直線之混合形狀。 5. —種擴散片材,其特徵在於: 146177.doc 201044022 其係使光線垂直入射至片材面時之出射光之擴散角度 沿著上述片材面内之特定之方向進行週期性變化者,且 在將上述特疋之方向上之上述片材面内之相對位置描繪 於橫軸、將上述片材面内之相對位置處之擴散角度描繪 於縱軸的擴散角度分布圖中,存在有上述擴散角度之谷 值並且包含上述谷值之低擴散角度區域内之擴散角度 刀布為以上述谷值作為極小值之向下凸出的曲線狀。 «月求項1、2、5中任一項之擴散片材,其中週期性地 又#存在有上述擴散角度之峰值與上述擴散角度之谷 ◎ 值丄且相鄰之上述峰值與上述谷值之兩點處的擴散角度 之算術平均值係大於上述相鄰之上述峰值與上述谷值之 間所刀布之所有點處的擴散角度之算術平均值,並且含 有.擴散角度之分布包含上述峰值且具有向上凸出之曲· $形狀的第一區間、及擴散角度之分布包含上述谷值且. 具有向下凸出之曲線形狀的第二區間。 Λ ^求項1至5中任—項之擴散片材,其中於上述擴散角 “布圖中,整個區域内之擴散角度係在〇1〇以上、〇 12〇°以下之範圍内。 如請求項1至5中任一項 分布圖中之擴散角度之 如請或tS 1 π _ I201044022 VII. Application for Patent Fan Park·· A kind of diffusing sheet, which is characterized by: ^Light ray vertical shot when the person shoots the sheet surface (4) Angle - the specific direction of the 4 sheet surface changes periodically The relative position in the plane of the sheet in the direction of the material is plotted on the ridge axis, and the diffusion angle at the relative position in the sheet surface is plotted on the vertical axis. a plurality of peak values of the diffusion angle and a plurality of valley values of the diffusion angle, and an arithmetic mean value of a diffusion angle between the adjacent peak value and the valley value is greater than the adjacent one of the above-mentioned bee values and the valley The arithmetic mean of the diffusion angles at all points distributed between values. A diffusion sheet characterized by: ❹ 2. a method for causing a radiation angle of an outgoing light when the light is incident perpendicularly to the sheet surface to periodically change along a specific direction in the plane of the sheet, and The relative position in the plane of the sheet in the direction of the feature is plotted on the horizontal axis, and the diffusion angle at the relative position in the sheet surface is plotted on the vertical axis of the diffusion angle distribution map, and is included in a high diffusion angle region. Multiple peaks. 3. The diffusion sheet of claim 2, wherein the diffusion angle distribution between adjacent peaks in the high diffusion angle region is linear. 4. The diffusion sheet of claim 2, wherein the diffusion angle distribution between adjacent peaks in the high diffusion angle region is a downwardly convex curve or a mixed shape of a curve and a straight line. 5. A diffusion sheet characterized by: 146177.doc 201044022 which is such that the diffusion angle of the emitted light when the light is incident perpendicularly to the sheet surface periodically changes along a specific direction in the plane of the sheet, Further, in the diffusion angle distribution map in which the relative position in the sheet surface in the direction of the above-described feature is plotted on the horizontal axis and the diffusion angle at the relative position in the sheet surface is plotted on the vertical axis, The valley angle of the diffusion angle and the diffusion angle knives in the low diffusion angle region including the above-described valley value are curved downwards with the above-described bottom value as a minimum value. The diffusion sheet of any one of the items of the present invention, wherein the peak of the diffusion angle and the valley value of the diffusion angle are adjacent to the peak value and the valley value The arithmetic mean of the diffusion angles at the two points is greater than the arithmetic mean of the diffusion angles at all points of the knife between the adjacent peaks and the valleys, and the distribution of the diffusion angles includes the peaks And having a first section of the upwardly convex curved shape, and a distribution of the diffusion angle including the above-described valley value and having a second section of a downwardly convex curved shape. Λ ^ The diffusion sheet of any one of items 1 to 5, wherein in the above-mentioned diffusion angle "layout, the diffusion angle in the entire region is in the range of 〇1〇 or more and 〇12〇° or less. The diffusion angle in the distribution map of any one of items 1 to 5, or tS 1 π _ I 由形成於上述擴散片 146177.doc 一項之擴散片材,其中上述擴散角度 度之最小值為0.1。以上、40。以下。 一項之擴散片材,其中上述擴散角度 之差為40。以上、8〇。以下。 一項之擴散片材,其中上述擴散角度 廣散片材面之凹凸結構而產生。 -2 - 201044022 H·如請求項1至5中任-項之擴散片材,其中上述凹巧結構 為使用由干涉曝光產生之光斑圖案所形成者。 ° . 12. 一種擴散片材,其特徵在於: .其係使設於片材面之凹凸結構之縱橫比沿著上述片材 面内之特定之方向進行週期性變化者,且在將上述特定 之方向上之上述片材面内之相對位置描繪於橫軸、將上 述片材面内之相對位置上之縱橫比描繪於縱軸的縱橫比 刀布圖中,存在有複數個的上述縱橫比之峰值與複數個 的上述縱橫比之谷值,且相鄰之上述峰值與上述谷值之 間的縱橫比之算術平均值係大於上述相鄰之上述峰值與 上述谷值之間所分布之所有點處的縱橫比之算術平均 值。 13· 一種擴散片材,其特徵在於: 其係使設於片材面之凹凸結構之縱橫比沿著上述片材 面内之特定之方向進行週期性變化者,且在將上述特定 Q 之方向上之上述片材面内之相對位置描繪於橫軸、將上 述片材面内之相對位置上之縱橫比描繪於縱軸的縱橫比 分布圖中,於一個高縱橫比區域包含複數個峰值。 14.如凊求項13之擴散片材,其中上述高縱橫比區域内的相 鄰之峰值間之縱橫比分布為直線狀。 • 15.如睛求項13之擴散片材,其中上述高縱橫比區域内的相 鄰之峰值間之縱橫比分布為向下凸出之曲線狀、或曲線 與直線之混合形狀。 16· —種擴散片材,其特徵在於: 146177.doc 201044022 其係使設於片材面之凹凸結構之縱橫比沿著上述片材 面内之特定之方向進行週期性變化者,且在將上述特定 之方向上之上述片材面内之相對位置描繪於橫軸、將上 述片材面内之相對位置上之縱橫比描繪於縱軸的縱橫比 分布圖+,存在有丨述縱橫比之谷值,並且包含上述谷 值之低縱橫比區域内之縱橫比分布為以上述谷值作為極 小值之向下凸出的曲線狀。 17.如明求項12、13、16中任一項之擴散片材,其中週期性 地乂替存在有上述縱橫比分布之峰值與上述縱橫比分布 之合值,且相鄰之上述峰值與上述谷值之兩點處的縱橫 比分布之算術平均值係大於上述相鄰之上述峰值與上述 谷值之間所分布之所有點處的縱橫比分布之算術平均 值,並且含有:縱橫比分布包含上述峰值且具有向上凸 出之曲線形狀的第一區間、及縱橫比分布包含上述谷值 且具有向下凸出之曲線形狀的第二區間。 18·如請求項12至16中任一項之擴散片材,其係具有如下形 狀:隨著上述凹凸結構之高度之變化,上述縱橫比會發 生變化。 曰天 19. 如請求項12至16中任一項之擴散片材,其係具有如下形 狀:隨著上述凹凸結構之間距之變化,上述縱橫比會發 生變化。 20. 如請求項12至16中任一項之擴散片材,其中上述凹凸結 構為使用由干涉曝光產生之光斑圖案所形成者。 21· —種光源單元,其特徵在於: 146177.doc -4 - 201044022 其係包含兩個以上之光源、及配設於上述光源上方之 如請求項1至20中任一項之擴散片材。 22. 如請求項21之光源單元,其中上述光源為線狀光源。 23. 如請求項21之光源單元,其中上述光源為點狀光源。 24. 如請求項21之光源單元,其中上述擴散片材之擴散角度 分布之週期、與上述擴散片材之入光面上之照度分布之 週期係大致相等。 25. 如凊求項21之光源單元,其係包含:配置於上述擴散片 材與光源之間、且内部含有擴散劑之擴散板;及配置於 上述光源下方之反射片材。 26. 如請求項21之光源單元,其係包含配置於上述擴散片材 上方之透鏡片材。 27. 如凊求項21之光源單元,其係包含配置於上述擴散片材 上方之稜鏡片材。 28. 如請求項21之光源單元,其係包含配置於上述擴散片材 上方之反射型偏光片材。 29. 如請求項21之光源單元,其係包含表面形成有由複數之 透鏡所構成之透鏡部之光學片材,且於上述光學片材之 表面侧配置有上述擴散片材。 3〇_如請求項29之光源單元,其中上述光學片材之上述透鏡 部係由複數之單位透鏡排列所構成,且上述單位透鏡之 底面形狀為具有各向異性之形狀。 31·如請求項30之光源單元,其中上述單位透鏡之底面形狀 為橢圓形或長方形。 146177.doc 201044022 32. 如請求項30之光源單元,其中上述單位透鏡為扁豆狀透 鏡或棱鏡條列。 33. 如請求項29之光源單元,其中上述光學片材之上述透鏡 部係由複數之單位透鏡排列所構成,且上述單位透鏡之 底面形狀為具有各向同性之形狀。 34. 如請求項33之光源單元,其中上述單位透鏡之底面形狀 為圓形、正方形、正六角形。 35. 如請求項30、31、33或34之光源單元,其中上述單位透 鏡為微透鏡或微稜鏡。 36. 如請求項29之光源單元,其中上述光學片材之上述透鏡 邛係由底面形狀為具有各向異性之形狀之透鏡、及底面 形狀為具有各向同性之形狀之透鏡排列所構成。 37’種液晶顯示裝置’其特徵在於: 其係包含液晶顯示面板、及將光供給至上述液晶顯示 面板之如請求項21至36中任一項之光源單元。 38. 一種光線控制單元,其特徵在於: 其係包含.光學片材,該光學片材含有使來自光源之 光進行入光之入光面、及使自上述入光面所入射之光進 行出光之出光面,且於表面形成有由複數之透鏡所構成 之透鏡部,以及擴散片材,該擴散片材係在將光線垂直 入射至上述光學片材之片材面時,可使擴散角度沿著上 述片材面内之特定之方向進行週期性變化。 3 9 ·種光線控制單元,其特徵在於: 其係包含:光學片材,該光學片材含有使來自光源之 146177.doc 201044022 光進仃入光之入光面、及使自上述入光面所入射之光進 行出光之出光面,且於表面形成有由複數之透鏡所構成 • 之透鏡部;以及擴散片材,該擴散片材係在將光線垂直 . 人射至上述光學片材之片材面時,可使設計於片材面之 凹&結構之縱橫比沿著上述片材面内之特定之方向進行 週期性變化。 月求項38或39之光線控制單元,其中於上述光學片材 <上述表面側,配置有上述擴散片材。 胃求項38或39之光線控制單元,其中上述光學片材之 上述透鏡部係由複數之單位透鏡排列所構成,且上述單 位透鏡之底面形狀為具有各向異性之形狀。 .42.如叫求項41之光線控制單元,其中上述單位透鏡之底面 形狀為擴圓形或長方形。 43.如請求項41之光線控制單元,其中上述單位透鏡為扁豆 狀透鏡或稜鏡條列。 44. ❹ 如哨求項38或39之光線控制單元,其中上述光學片材之 上述透鏡部係由複數之單位透鏡排列所誠,且上述單 位透鏡之底面形狀為具有各向同性之形狀。 45. 如請求項44之光線控制單元,其中上述單位透鏡之底面 形狀為圓形、正方形、正六角形。 46. ㈣求項38或39之光線控制單元,其中上述單位透鏡為 微透鏡或微稜鏡。 47·如請求項38或39之光線控制單元,其中上述光學片材之 上述透鏡部係由底面形狀為具有各向異性之形狀之透 146177.doc 201044022 鏡、及底面形狀為具有各向同性之形狀之透鏡排列所構 成。 48. 49. 50. 51. 52. 53. 54. 55. 56. 如請求項38或39之光線控制單元,其中上述擴散片材之 擴散角度係在0· 1。以上、丨2〇0以下之範圍内。 如請求項38或39之光線控制單it,其中上述擴散角度係 藉由形成於上述擴散片材表面之凹凸結構而產生。 如明求項49之光線控制單元,其中上述凹凸結構係使用 由干涉曝光產生之光斑圖案所形成。 一種光源單元,其特徵在於: 其係包含兩個以上之光源、及配設於上述光源上方之 如請求項38至50中任一項之光線控制單元。 如請求項51之光源單元,其中使上述擴散片材之擴散角 度刀布之週期、與上述擴散片材之入光面上之照度分布 之週期大致相等。 如請求項5 1之光源單元,其係包含配置於上述光源下方 之反射片材。 如請求項5 1之光源單元,其係包含配置於上述擴散片材 上方之稜鏡片材。 如請求項51至54中任一項之光源單元,其係包含配置於 上述擴散片材上方之反射型偏光片材。 一種液晶顯示裝置,其特徵在於: 係包含液晶顯示面板、及將光供給至上述液晶顯示 面板之如請求項5 1至5 5中任一項之光源單元。 146177.docA diffusion sheet formed from the above-mentioned diffusion sheet 146177.doc, wherein the minimum value of the diffusion angle is 0.1. Above, 40. the following. A diffusion sheet in which the difference in diffusion angle is 40. Above, 8〇. the following. A diffusion sheet in which the above diffusion angle is generated by the uneven structure of the sheet surface. The diffusion sheet according to any one of claims 1 to 5, wherein the concave structure is formed by using a spot pattern produced by interference exposure. 12. A diffusion sheet characterized in that: the aspect ratio of the uneven structure provided on the sheet surface is periodically changed along a specific direction in the plane of the sheet, and the specific The relative position in the plane of the sheet in the direction is plotted on the horizontal axis, and the aspect ratio in the relative position in the sheet surface is plotted on the vertical axis in the aspect ratio, and the plurality of the aspect ratios are present. a peak value of the peak value and the plurality of the aspect ratios, and an arithmetic mean value of the aspect ratio between the adjacent peak value and the valley value is greater than all of the distribution between the adjacent peak value and the valley value The arithmetic mean of the aspect ratio at the point. A diffusing sheet characterized in that the aspect ratio of the uneven structure provided on the sheet surface is periodically changed along a specific direction in the plane of the sheet, and the direction of the specific Q is The relative position in the plane of the above-mentioned sheet is plotted on the horizontal axis, and the aspect ratio in the relative position in the sheet surface is plotted on the vertical axis in the aspect ratio distribution map, and includes a plurality of peaks in one high aspect ratio region. 14. The diffusing sheet of claim 13, wherein the aspect ratio distribution between adjacent peaks in the high aspect ratio region is linear. 15. The diffusing sheet of claim 13, wherein the aspect ratio distribution between adjacent peaks in the high aspect ratio region is a downwardly convex curve or a mixed shape of a curve and a straight line. a diffusing sheet characterized by: 146177.doc 201044022 which is characterized in that the aspect ratio of the uneven structure provided on the sheet surface is periodically changed along a specific direction in the plane of the sheet, and The relative position in the plane of the sheet in the specific direction is plotted on the horizontal axis, and the aspect ratio distribution on the vertical axis in the relative position in the sheet surface is +, and there is a description of the aspect ratio. The valley value, and the aspect ratio distribution in the low aspect ratio region including the above-described bottom value is a downward convex curve having the above-described bottom value as a minimum value. The diffusion sheet according to any one of the items 12, 13, or 16, wherein the peak of the aspect ratio distribution and the aspect ratio distribution are periodically replaced, and the adjacent peaks and The arithmetic mean of the aspect ratio distribution at two points of the above-mentioned valley value is greater than the arithmetic mean of the aspect ratio distribution at all points distributed between the adjacent peak and the above-mentioned valley value, and includes: aspect ratio distribution A first section including the above-described peak shape and having a curved shape that is convex upward, and a second section in which the aspect ratio distribution includes the above-described valley value and has a downwardly convex curved shape. The diffusion sheet according to any one of claims 12 to 16, which has a shape in which the aspect ratio changes depending on the height of the uneven structure. The diffusing sheet according to any one of claims 12 to 16, which has a shape in which the aspect ratio changes depending on the distance between the above-mentioned uneven structures. The diffusion sheet according to any one of claims 12 to 16, wherein the uneven structure is formed using a spot pattern produced by interference exposure. A light source unit, characterized in that: 146177.doc -4 - 201044022, comprising two or more light sources, and a diffusion sheet according to any one of claims 1 to 20, disposed above the light source. 22. The light source unit of claim 21, wherein the light source is a linear light source. 23. The light source unit of claim 21, wherein the light source is a point light source. 24. The light source unit of claim 21, wherein the period of the diffusion angle distribution of the diffusion sheet is substantially equal to the period of the illuminance distribution on the light incident surface of the diffusion sheet. 25. The light source unit of claim 21, comprising: a diffusing plate disposed between the diffusing sheet and the light source and containing a diffusing agent therein; and a reflective sheet disposed under the light source. 26. The light source unit of claim 21, comprising a lens sheet disposed above said diffusion sheet. 27. The light source unit of claim 21, comprising a enamel sheet disposed above said diffusion sheet. 28. The light source unit of claim 21, comprising a reflective polarizing sheet disposed above said diffusion sheet. 29. The light source unit of claim 21, comprising an optical sheet having a lens portion formed of a plurality of lenses formed on a surface thereof, wherein the diffusion sheet is disposed on a surface side of the optical sheet. The light source unit of claim 29, wherein the lens portion of the optical sheet is composed of a plurality of unit lens arrays, and a shape of a bottom surface of the unit lens has an anisotropic shape. 31. The light source unit of claim 30, wherein the bottom surface of the unit lens has an elliptical shape or a rectangular shape. 146177.doc 201044022 32. The light source unit of claim 30, wherein the unit lens is a lenticular lens or a prism strip. 33. The light source unit of claim 29, wherein the lens portion of the optical sheet is composed of a plurality of unit lens arrays, and a shape of a bottom surface of the unit lens is an isotropic shape. 34. The light source unit of claim 33, wherein the bottom surface of the unit lens has a circular shape, a square shape, and a regular hexagon shape. 35. The light source unit of claim 30, 31, 33 or 34, wherein said unit lens is a microlens or a microlens. 36. The light source unit of claim 29, wherein the lens unit of the optical sheet is formed by a lens having a shape having an anisotropic shape on a bottom surface and a lens arrangement having an isotropic shape on a bottom surface. The liquid crystal display device of the present invention is characterized in that it comprises a liquid crystal display panel and a light source unit according to any one of claims 21 to 36 for supplying light to the liquid crystal display panel. 38. A light control unit, comprising: an optical sheet comprising a light incident surface for allowing light from a light source to enter light, and light emitted from said light incident surface to emit light a light-emitting surface on which a lens portion composed of a plurality of lenses and a diffusion sheet are formed on the surface of the sheet of the optical sheet when the light is incident perpendicularly to the diffusion angle The specific direction in the plane of the sheet is periodically changed. The light control unit is characterized in that: the optical sheet comprises: an optical sheet containing 146177.doc 201044022 light from the light source into the light incident surface, and from the light entrance surface The incident light emits a light exiting surface, and a lens portion composed of a plurality of lenses is formed on the surface; and a diffusion sheet is used to vertically illuminate the sheet of the optical sheet. In the case of the surface, the aspect ratio of the concave & structure designed on the sheet surface can be periodically changed along a specific direction in the plane of the sheet. The light control unit of the item 38 or 39, wherein the diffusion sheet is disposed on the optical sheet < The light control unit of claim 38 or 39, wherein said lens portion of said optical sheet is constituted by a plurality of unit lens arrays, and said unit lens has a bottom surface shape having an anisotropic shape. The light control unit of claim 41, wherein the bottom surface of the unit lens has an enlarged circular shape or a rectangular shape. 43. The light control unit of claim 41, wherein said unit lens is a lentil lens or a string of beams. 44. The light control unit of claim 38 or 39, wherein said lens portion of said optical sheet is arranged by a plurality of unit lenses, and said bottom surface of said unit lens has an isotropic shape. 45. The light control unit of claim 44, wherein the bottom surface of the unit lens has a circular, square, or regular hexagonal shape. 46. (4) The light control unit of claim 38 or 39, wherein the unit lens is a microlens or a microlens. 47. The light control unit of claim 38 or 39, wherein said lens portion of said optical sheet has a shape of an anisotropic shape from a bottom surface, 146177.doc 201044022, and the bottom surface is isotropic. The shape of the lens is arranged. 48. 50. 51. The commencement of the light control unit of claim 38 or 39, wherein the diffusing angle of the diffusing sheet is at 0.1. Above, 丨2〇0 or less. A light control unit IT of claim 38 or 39, wherein said diffusion angle is produced by a concave-convex structure formed on a surface of said diffusion sheet. The light control unit of claim 49, wherein said concave-convex structure is formed using a pattern of spots generated by interference exposure. A light source unit comprising: two or more light sources; and a light control unit according to any one of claims 38 to 50 disposed above the light source. The light source unit of claim 51, wherein a period of the diffusion angle of the diffusion sheet is substantially equal to a period of the illuminance distribution on the light incident surface of the diffusion sheet. The light source unit of claim 5, comprising a reflective sheet disposed under the light source. The light source unit of claim 5, which comprises a enamel sheet disposed above the diffusion sheet. The light source unit according to any one of claims 51 to 54, comprising a reflective polarizing sheet disposed above the diffusion sheet. A liquid crystal display device comprising: a liquid crystal display panel; and a light source unit according to any one of claims 5 to 5, which supplies light to the liquid crystal display panel. 146177.doc
TW099106677A 2009-03-09 2010-03-08 Diffusion sheet, light control unit, and light source unit TW201044022A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009055520 2009-03-09
JP2009055635A JP2010210828A (en) 2009-03-09 2009-03-09 Diffusion sheet
JP2009082736 2009-03-30

Publications (1)

Publication Number Publication Date
TW201044022A true TW201044022A (en) 2010-12-16

Family

ID=42728340

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099106677A TW201044022A (en) 2009-03-09 2010-03-08 Diffusion sheet, light control unit, and light source unit

Country Status (2)

Country Link
TW (1) TW201044022A (en)
WO (1) WO2010104051A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024931A (en) * 2011-12-27 2014-09-03 夏普株式会社 Liquid Crystal Display Device, Light Control Film, And Display Device
US9857604B2 (en) 2016-02-01 2018-01-02 Cheray Co. Ltd. Stereoscopic display
CN111239869A (en) * 2020-03-19 2020-06-05 宁波舜宇车载光学技术有限公司 Diffusion plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI235270B (en) * 1999-07-02 2005-07-01 Keun-Chang Yang Plane light source unit and method for manufacturing holographic light-guide plate used for flat panel display
JP2006106562A (en) * 2004-10-08 2006-04-20 Radiant Opt-Electronics Corp Diffuser plate, direct back light module and manufacturing method of the diffuser plate
JP4097655B2 (en) * 2005-02-09 2008-06-11 シャープ株式会社 Backlight device and display device having the same
JP2007003852A (en) * 2005-06-24 2007-01-11 Sony Corp Diffusion sheet, method for manufacturing diffusion sheet, backlight device and liquid crystal display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024931A (en) * 2011-12-27 2014-09-03 夏普株式会社 Liquid Crystal Display Device, Light Control Film, And Display Device
CN104024931B (en) * 2011-12-27 2017-04-05 夏普株式会社 Liquid crystal indicator, light control film, display device
US9857604B2 (en) 2016-02-01 2018-01-02 Cheray Co. Ltd. Stereoscopic display
TWI614533B (en) * 2016-02-01 2018-02-11 群睿股份有限公司 Three-dimensional display device
CN111239869A (en) * 2020-03-19 2020-06-05 宁波舜宇车载光学技术有限公司 Diffusion plate
CN111239869B (en) * 2020-03-19 2022-02-22 宁波舜宇车载光学技术有限公司 Diffusion plate

Also Published As

Publication number Publication date
WO2010104051A1 (en) 2010-09-16

Similar Documents

Publication Publication Date Title
TWI364600B (en) An illumination device an image display device using the illumination device and a light diffusing board used by the devices
JP5338319B2 (en) Optical sheet, surface light source device, display device, and optical sheet manufacturing method
TW201142366A (en) Optical substrates having light collimating and diffusion structures
TW200907420A (en) Diffuser prism sheet comprising light diffuser in the valley of prism and LCD back light unit thereby
TW200817780A (en) Backlight suitable for display devices
TW200925730A (en) Diffusion sheet
TW201604602A (en) Light guide plate, method for fabricating the same, backlight unit, and liquid crystal display
JP2008033328A (en) Light-redirecting film containing optical modification layer
TW201013116A (en) Illuminating device and display
JP2013225058A (en) Optical plate and direct point light source backlight device
JP2010210882A (en) Optical sheet and display using the same
JP5330457B2 (en) Surface light source device and liquid crystal display device
JP5295721B2 (en) Backlight unit
TW201044022A (en) Diffusion sheet, light control unit, and light source unit
JP6974004B2 (en) Optical sheet for backlight unit and backlight unit
JP2011227231A (en) Optical sheet, optical sheet combined body, backlight unit and display device
JP2010054995A (en) Lens sheet, backlight unit and display apparatus
JP2010256869A (en) Diffusion sheet, light control unit, and light source unit
JP5482114B2 (en) Optical sheet, backlight unit and display device
JP5267098B2 (en) Lens sheet and display device
JP2014086245A (en) Light guide plate, backlight unit and display device
JP2011133556A (en) Optical sheet, backlight unit, display device, and die
JP2012103290A (en) Optical sheet, backlight unit and liquid crystal display device
JP5810481B2 (en) Optical sheet, backlight unit, display device, and optical sheet manufacturing mold
JP2009244846A (en) Diffusion sheet