TW201043947A - Inspection method, inspection device and mobile phone having the inspection device - Google Patents

Inspection method, inspection device and mobile phone having the inspection device Download PDF

Info

Publication number
TW201043947A
TW201043947A TW098119531A TW98119531A TW201043947A TW 201043947 A TW201043947 A TW 201043947A TW 098119531 A TW098119531 A TW 098119531A TW 98119531 A TW98119531 A TW 98119531A TW 201043947 A TW201043947 A TW 201043947A
Authority
TW
Taiwan
Prior art keywords
image
edge
solar cell
radius
unit
Prior art date
Application number
TW098119531A
Other languages
Chinese (zh)
Other versions
TWI399535B (en
Inventor
Zhi-Bin Sun
Original Assignee
Zhi-Bin Sun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhi-Bin Sun filed Critical Zhi-Bin Sun
Priority to TW098119531A priority Critical patent/TW201043947A/en
Publication of TW201043947A publication Critical patent/TW201043947A/en
Application granted granted Critical
Publication of TWI399535B publication Critical patent/TWI399535B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

An inspection method suitable for conducting analysis on a sample image of solar cell surface, including the following steps: carrying out coordinate transformation on a sample image arranged as rectangular grids to obtain a transformed image of hexagonal array; highlighting image edge information of four edges and surface pattern edges of the transformed image to obtain an edge-enhanced image; and subtracting the sample mage from the edge-enhanced image to obtain a first difference image, then according to the first difference image to determine whether the solar cell surface is defective.

Description

201043947 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種檢測方法、檢測裝置和具有該檢 測裝置的手機,特別是指一種分析太陽能電池表面有無瑕 疵的檢測方法、檢測裝置和具有該檢測裝置的手機。 【先前技術】 如圖1所示,為太陽能電池表面的四種瑕症情況:一 ❹201043947 6. Technical Field of the Invention The present invention relates to a detection method, a detection device, and a mobile phone having the same, and more particularly to a detection method, a detection device, and a method for analyzing the presence or absence of defects on a surface of a solar cell. The detection device of the mobile phone. [Prior Art] As shown in Figure 1, there are four types of hysteria cases on the surface of solar cells:

、邊緣破裂:因機器搬運等製程問題導致太陽能電池的四 邊邊緣破裂,造成轉換效率下降。二、電路斷線:在網印 過程中失誤而造成原本為連續之表面電路中間出現斷線之 問題,會使太陽能電池無法與外部電路接通。三、佈線不 良’原本應該是固定寬度之表面電路出現寬度不均勻問題 使轉換效率變差。四、孔洞:纟面電路中因孔洞出現所 形成之黑點,使電路產生問題。 J叫嗖乃囟,是以人工作業 =式,以肉眼逐一檢查太陽能表面的瑕疮,而導致耗費 例如*增加成本’且長時工作造成眼睛疲勞和環境的影響( 幻如光線變化)’將使辨視瑕疵的準確度下降。 【發明内容】 y凡,尽發明之目的,即在提供一種避备H + 增加效率的檢測方法、檢測裝 a、和 。 罝和具有該檢測裝置的手機 太fw能電池表面之—樣本 種檢測方法,適用於對— 衫像進行分析,包含以下步驟: 3 201043947 (A)將以矩形方格排列的該樣本影像,進行座標轉換 ,以得到六角型排列的一轉換影像; ,(B )犬顯4轉換影像的四邊邊緣和表面圖樣之邊緣的 影像資訊’以得到一邊緣強化影像;及 (C)將該樣本料與該邊㈣化影像相減 以得到一第 差異如像,進而根據該第一差異影像判斷該太陽能電池 表面是否有瑕疵。 -種檢測裝置,適用於對—太陽能電池表面之一樣本 影像進行分析,且包含: 邊緣強化單元,該邊緣強化單元包括—座標轉換器 了/像大·顯模組,該座標轉換單元將以矩形方格排列的 該樣本影像,進行座標轉換,以得到六角型排列的一轉換 &像,進而該影像突顯模組突顯該轉換影像的四邊邊緣和 表面圖樣之邊緣的影像資訊,以得到—邊緣強化影像; 一瑕疵偵測單元,該瑕疵偵測單元將該樣本影像與該 邊緣強化影像相減以得到-第—差異影像,進而根據該第 一差異影像判斷該太陽能電池表面是否有瑕疵。 一種手機’適用於對一太陽能電池表面之一樣本影像 進行分析,且包含: 一照相模組’該照相模組可拍攝到該樣本影像;及 一檢測裝置,該檢測裝置接收來自該照相模組所輪出 的該樣本影像,並進行分析,且包括一邊緣強化單元和— 瑕疵偵測單元; 該邊緣強化單元具有一座標轉換器和一影像突顯模組 201043947 ,該座標轉換翠元將以矩形方格排列 座標轉換,以得到六角型;像:象,進行 突顯模組錢該轉㈣像的心進而該影像 … w秧和像的四邊邊緣和表面圖樣之邊 影像貨訊,以得到一邊緣強化影像; 該瑕巍偵測單元將該樣本影 , 不〜像與該邊緣強化影像相減 于 /、影像,進而根據該第一差異影像判斷該 太陽能電池表面是否有瑕疵。 【實施方式】Edge rupture: The four edges of the solar cell are broken due to process problems such as machine handling, resulting in a decrease in conversion efficiency. Second, the circuit is broken: the problem of disconnection in the middle of the continuous surface circuit caused by the mistake in the screen printing process will make the solar battery unable to connect with the external circuit. Third, the wiring is not good 'The original surface should be a fixed width width unevenness problem to make the conversion efficiency worse. 4. Hole: The black point formed by the hole in the surface circuit causes problems in the circuit. J is called 嗖乃囟, which is a manual operation to check the acne on the surface of the solar energy one by one, resulting in the cost of, for example, *increasing the cost and long-term work causing eye fatigue and environmental effects (illusion of light changes). Reduce the accuracy of the recognition. SUMMARY OF THE INVENTION In order to achieve the object of the invention, it is to provide a detection method for avoiding H + increase efficiency, and to detect a and .罝 手机 手机 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 样本 样本 样本 样本 样本 样本 样本 样本 样本 样本 样本 样本 样本 样本 样本 样本Coordinate conversion to obtain a converted image of a hexagonal arrangement; , (B) image information of the edges of the four edges of the canine image and the edge of the surface pattern to obtain an edge-enhanced image; and (C) the sample material The edge (four) image is subtracted to obtain a first difference image, and the surface of the solar cell is determined to be flawed according to the first difference image. a detection device for analyzing a sample image of a surface of a solar cell, and comprising: an edge enhancement unit comprising a coordinate converter/image display module, the coordinate conversion unit The image of the sample arranged in a rectangular grid is coordinate-converted to obtain a conversion & image of the hexagonal arrangement, and the image highlighting module highlights the image information of the four edges of the converted image and the edge of the surface pattern to obtain - An edge-enhanced image; a detection unit that subtracts the sample image from the edge-enhanced image to obtain a first-difference image, and determines whether the surface of the solar cell is defective according to the first difference image. A mobile phone is adapted to analyze a sample image of a solar cell surface, and comprises: a camera module that can capture the sample image; and a detecting device that receives the camera module from the camera module The image of the sample taken out and analyzed, and includes an edge enhancement unit and a detection unit; the edge enhancement unit has a standard conversion converter and an image highlighting module 201043947, and the coordinates of the coordinate conversion will be rectangular The squares are arranged to convert the coordinates to obtain a hexagonal shape; like: image, to highlight the module money, turn the (four) image like the heart and then the image... w秧 and the image of the edge of the image and the surface of the image to get an edge The image detecting unit is configured to subtract the image from the edge-enhanced image to the / image, and determine whether the surface of the solar cell is defective according to the first difference image. [Embodiment]

有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之二個較佳實施例的詳細說明中將可 清楚的呈現。 如圖2所示,本發明之較佳實施例的檢測裝置,適用 於分析一太陽能電池表面的一樣本影像,以判斷該太陽能 電池表面是否有瑕疵或瑕疵的類型為何。 該檢測裝置包含一邊緣強化單元51、一直線偵測單元 52、一瑕蔽偵測單元53、一瑕疵資料表531,和一瑕疵分 類單元54。 如圖3所示’該邊緣強化單元51包括一座標轉換器 511和一影像突顯模組55。該影像突顯模組55具有一傅立 葉轉換器512、一高通濾波器513和一反傅立葉轉換器514 如圖4所示,該直線偵測單元52包括一邊緣提取器 521 和一霍氏轉換(Hough transform)器 522。 該檢測裝置所執行的檢測方法如圖5所示,且包含以 201043947 下步驟: 步驟1:邊緣強化單元箱止士 干7^ ^1預先處理樣本影像以突顯分 別位於四邊邊緣和表面圖檨f 固樣(如.電路)之邊緣的影像資訊, 且包括以下子步驟’如圖6所示: v驟11⑹圖7所不’座標轉換器5丄)將以矩形方格 排列的樣本影像,進行座標轉換,以得到排列方式由矩形 方格排列轉換成六角型排列的一轉換影像。 因為呈矩形方格排列的樣本影像經連通處理後,可能 產生邊界不連通或邊界與#景連通的一連通矛盾 (connectivity Paradox) ° 而八角型排列方式無連通矛盾的問題,且具有優良的 表面覆蓋率與穩定結構特性。因此六㈣排列與矩形方格 比較將具有如下優點: 1.六角型格密度只要矩形方格的87%即可表達同樣訊息 ’且可表示點也增至方格1 ·丨6倍。 2_將/、角型排列的像素進行傅立葉轉換時,速度快且 處理量較少。 3 ./、角型排列的像素的直線平滑性較佳,且邊緣覆蓋 选度也較好。 4·六角型排列的像素與其鄰域像素只有一種相鄰關係 ,使其在空間域與頻域中處理皆具有快速處理的優勢尤 其在二間域更具有尚解析度和更明確的像素之鄰域解釋能 力。 如圖8所示,參數x、y分別表示矩形排列的二維座標 201043947 ,參數u、v分別表示六角形排列的二維座標,且U、V夾 角60可推得兩座標的轉換關係如下式所示:The foregoing and other objects, features, and advantages of the invention will be apparent from the Detailed Description As shown in Fig. 2, the detecting device of the preferred embodiment of the present invention is adapted to analyze the same image on the surface of a solar cell to determine whether the surface of the solar cell has a type of flaw or flaw. The detecting device comprises an edge strengthening unit 51, a straight line detecting unit 52, a mask detecting unit 53, a data table 531, and a classifying unit 54. As shown in FIG. 3, the edge enhancement unit 51 includes a landmark converter 511 and an image highlighting module 55. The image highlighting module 55 has a Fourier transformer 512, a high pass filter 513 and an inverse Fourier transformer 514. As shown in FIG. 4, the line detecting unit 52 includes an edge extractor 521 and a Hollock transform (Hough). Transform) 522. The detection method performed by the detecting device is as shown in FIG. 5, and includes the following steps: 201043947: Step 1: Edge-enhanced cell box stopper 7^^1 pre-processes the sample image to highlight the four edges and the surface map respectively. The image information at the edge of the solid sample (such as the circuit), and includes the following sub-steps as shown in Figure 6: v11 (6) Figure 7 does not 'coordinate converter 5丄) will be sample images arranged in a rectangular grid The coordinate conversion is converted into a converted image in a hexagonal arrangement by a rectangular grid arrangement. Because the sample images arranged in a rectangular grid are connected and processed, there may be a connectivity paradox that is not connected to the boundary or connected to the boundary. The octagonal arrangement has no connectivity contradiction and has an excellent surface. Coverage and stable structural characteristics. Therefore, the comparison of the six (four) arrangement with the rectangular square will have the following advantages: 1. The hexagonal lattice density can express the same message as long as 87% of the rectangular squares and can also increase the square to 1 · 6 times. 2_ When the Fourier-arranged pixels are subjected to Fourier transform, the speed is fast and the amount of processing is small. 3 ./, the angular arrangement of the pixels has better linear smoothness, and the edge coverage is also better. 4·Hexagon-arranged pixels have only one adjacent relationship with their neighboring pixels, so that they have the advantage of fast processing in both spatial and frequency domain processing, especially in the two-domain domain, which has better resolution and clearer pixel neighbors. Domain interpretation ability. As shown in Fig. 8, the parameters x and y respectively represent the two-dimensional coordinates of the rectangular arrangement 201043947. The parameters u and v respectively represent the two-dimensional coordinates of the hexagonal arrangement, and the U and V angles 60 can be used to derive the conversion relationship of the two coordinates as follows. Shown as follows:

λ/Sv ~ ο yT3 2yV3 步驟12.傅立葉轉換器512將六角型排列的轉換影像 進仃傅立葉轉換成依據頻域分佈的頻譜影像,如圖9所示λ/Sv ~ ο yT3 2yV3 Step 12. The Fourier Transformer 512 converts the converted image of the hexagonal arrangement into a spectral image distributed according to the frequency domain, as shown in FIG.

其中,分佈於高頻域的影像顯示四邊邊緣和表面圖樣的 資訊。 4 13 :為了突顯高頻的部分’高通濾波器513將步 =1 ^所㈣的頻4影像進行高喊波且設定—最佳化的渡 ;、、以得到一濾波影像,如圖ι〇所示其中黑色部分代 =使位:低頻帶的影像$。,且該濾波半徑的範圍為 半:=位”而在本步驟中高通濾波器513更是設定濾波 t 和以分別得到—低半徑濾波影像和高半㈣ 池表面心μ料輯μ太陽能電 池表面的尺寸進行正規化處理所得。 影像步::反葉轉換器514將步驟13所得到的遽波 ^ 灯 葉轉換成依據空間域分佈的一邊綾強化 影像,如圖U所示。且在本步驟中反傅立葉 5 將低半徑Μ波影像和高半㈣波影像,進行反傅° 成低半徑邊緣強化影像和高半徑邊緣強化影像i葉轉換 步驟2:直線偵測單元52對邊緣 測並料彳OI錢⑼,其Μ “订邊緣摘 示·· 4㈣’如圖12所 7 201043947 步·因為邊緣強化影像的部份邊緣與影像的背景 仍然有分離不明確的情況,將造成之後職偵測錯誤,因 此’該邊緣提取器切(如sobel邊緣運算子)對步驟Μ 所得到的邊緣強化料騎處理,使f彡像的邊緣 更準確的分界,以得到一邊緣提取影像。 貧景八 步驟22:霍氏轉換器522以霍氏轉換(H〇Ughtransf〇rm) 對步驟21巾所得到㈣緣提取影料行直㈣測以得到 直線資訊。 步驟3 :該瑕疵摘測單元53將樣本影像與步驟14中所 得到的邊緣強化影像相減以得到—第一差異影像,並基於 該第-差異影像判斷太陽能電池是否有瑕疵。若判定:有 瑕疲,則表示太陽能電池為良品,若有瑕疫,則跳到步驟4 以進一步判斷瑕疵的種類。 其中判斷太陽能電池是否有瑕症匕的作法為:該瑕疫伯 測單元53將第一差異影像的灰階值與瑕疫資料表531中的 -預設門檻值進行比較,若灰階值小於該預設門檻值則視 為沒有瑕疲’ ^㈣值大於或等於該預設門檻值視為有瑕 疵,且該預設門檻值為分析太陽能電池表面瑕疵之累積經 驗所得到的數值。 步驟4:如圖13所示,包含以下子步驟: 步驟41 :該瑕疵分類單元54根據步驟22所得到的直 線資訊,以判斷太陽能電池的四邊邊緣位置是否有非直線 區域,當非直線區域出現時,則判斷該太陽能電池具有邊 緣破裂的瑕疵,且非直線的區域為破裂位置,且紀錄破裂 201043947 面積。 步驟42 :該瑕疵分類單元54以步驟22所得到的直線 資訊判斷表面圖樣是否具有不連續區域,進而判斷不連續 區是否與四邊邊緣破裂位置的面積交集,若無交集,則判 定為具有斷線的瑕疵(如:電路斷線),若有交集,則判定無 斷線類型的瑕範。 步驟43 :如圖14和15所示,該瑕疵分類單元M以步 驟14所付到的低半徑邊緣強化影像和高半徑邊緣強化影像 進行影像相減以得到一第二差異影像,進而以型態學閉合 過濾第二差異影像上的雜訊以得到一類別區分影像,若類 別區分影像上仍然有雜訊出現於表面圖樣的連續區域内即 判定具有孔洞型瑕庇。且值得注意的是,以型態學閉合過 濾的方式為此領域中通常知識者所熟知,因此在此不再贅 述0 步驟44:該瑕疵分類單元54分析表面圖樣的連續區域 内的寬度’若寬度出現粗細差異’則判斷具有佈線不良的 瑕疫。 _本發明之較佳實施例的步驟4,也可改成該喊分類單 兀54直接將步驟14中所得到的邊緣強化影像以類神經網 路方式進行瑕疫分類,而以類神經網路進行分類的方式為 此領域中通;ϋ知識者所熟知,因此在此不再賛述。 參圖16而本發明之手機的較佳實施例包含上述的 檢測裝置5及—照相模組6,該照相触6可拍攝太陽能電 池之表面以得到—樣本影像,並將該樣本影像送至該檢測 9 201043947 裝置5進行如上述的檢測。 示上所述,將本發明之較佳實施例應用於太陽能電池 藉由自動化地偵測和分類太陽能電池表面的瑕 疲X增加產l的效率’而達到解決人工判斷瑕巍耗時的 問題:且提高檢測瑕㈣準確度除了應用在生產線上, 也可女裝在智慧型手機上’配合手機的攝影功能以取樣抽 驗太陽能電池的表面是否有瑕疵。 准以上所述者’僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利@ 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 . 【圖式簡單說明】 圖1是一示意圖’說明瑕疲的種類; - 圖2是-方塊圖,說明本發明之檢測裝置的較佳實施 例; 圖3是一方塊圖,說明邊緣強化單元的元件; 圖4是一方塊圖,說明直線偵測單元的元件; 說明本發明之檢測方法的較佳實施 圖5是一流程圖, 例的步驟; 圖6是一流程圖’說明突顯樣本影像的步驟; 圖7是一示意圖,說明樣本影像的排列方式. 圖8是一示意圖,說明座標轉換; 圖9 是一示意圖 ,說明轉換影像由 空間域轉換成頻域 10 201043947 圖ίο是一示意圖,說明一濾波影像; 圖11是一示意圖,說明一邊緣強化影像; 圖12是一流程圖,說明直線偵測的步驟; 圖13是一流程圖,說明瑕疵分類的步驟; 圖14是一示意圖,說明一低半徑邊緣強化影像和一高 半徑邊緣強化影像; 圖15是一示意圖,說明以型態學閉合過濾影像;及 圖16是一方塊圖,說明本發明之手機的較佳實施例。 ❹Among them, the images distributed in the high frequency domain show the information of the four edges and the surface pattern. 4 13 : In order to highlight the high-frequency part of the 'high-pass filter 513, the frequency 4 image of step = 4 ^ (4) is high-shocked and set-optimized; to obtain a filtered image, as shown in Fig. The black part generation = position is shown: the image of the low frequency band $. And the range of the filter radius is half: = bit" and in this step, the high-pass filter 513 sets the filter t and respectively to obtain - low radius filtered image and high half (four) cell surface core μ material μ μ solar cell surface The size is normalized. Image Step: The inverse leaf converter 514 converts the chopping light bulb obtained in step 13 into a side-enhanced image according to the spatial domain distribution, as shown in Figure U. The middle anti-Fourier 5 converts the low-radius chopping image and the high-half (four) wave image into a low-radius edge-enhanced image and a high-radius edge-enhanced image i-leaf conversion step 2: the line detecting unit 52 measures the edge of the edge OI money (9), the other is "order edge excerpt · 4 (four)' as shown in Figure 12, 201043947 step · Because the edge of the edge-enhanced image and the background of the image are still unclear, it will cause post-detection errors, Therefore, the edge extractor cut (such as the sobel edge operator) handles the edge enhancement of the step Μ, so that the edge of the image is more accurately demarcated to obtain an edge-extracted image. Poor Scene Eight Step 22: The Hertz converter 522 uses the Holstein conversion (H〇Ughtransf〇rm) to obtain the (four) edge of the film obtained in step 21 (4) to obtain a straight line information. Step 3: The sputum extraction unit 53 subtracts the sample image from the edge enhancement image obtained in step 14 to obtain a first difference image, and determines whether the solar cell has flaws based on the first difference image. If it is judged that there is fatigue, it means that the solar cell is a good product. If there is a plague, skip to step 4 to further judge the type of cockroach. The method for determining whether the solar cell has sputum sputum is: the plague test unit 53 compares the grayscale value of the first difference image with the preset threshold value in the plague data table 531, if the grayscale value is less than The preset threshold value is regarded as no fatigue. The value of the (^) value is greater than or equal to the preset threshold value, and the preset threshold value is the value obtained by analyzing the accumulated experience of the surface of the solar cell. Step 4: As shown in FIG. 13, the following sub-steps are included: Step 41: The 瑕疵 classification unit 54 determines whether there is a non-linear area of the four-edge edge position of the solar cell according to the straight line information obtained in step 22, when the non-linear area appears At this time, it is judged that the solar cell has a rupture of the edge, and the non-linear region is the rupture position, and the area of the fracture is recorded at 201043947. Step 42: The 瑕疵 classification unit 54 determines whether the surface pattern has a discontinuous area by using the straight line information obtained in step 22, and further determines whether the discontinuous area intersects with the area of the four-edge edge rupture position, and if there is no intersection, it is determined to have a broken line. The 瑕疵 (such as: circuit broken), if there is an intersection, it is determined that there is no type of disconnection. Step 43: As shown in FIGS. 14 and 15, the 瑕疵 classification unit M performs image subtraction by using the low-radius edge enhancement image and the high-radius edge enhancement image added in step 14 to obtain a second difference image, and further The closed filter filters the noise on the second difference image to obtain a class of distinguishing images. If there is still noise in the category distinguishing image, the hole is found in the continuous area of the surface pattern. It is also worth noting that the manner of closed filtering by the type is well known to those skilled in the art, so no further description is given here. Step 44: The 瑕疵 classification unit 54 analyzes the width in the continuous region of the surface pattern. If there is a difference in thickness, it is judged that there is a plague with poor wiring. Step 4 of the preferred embodiment of the present invention may also be changed to the shuffle classification unit 54 to directly classify the edge-enhanced image obtained in step 14 into a genital network based on a neural network. The way to classify is in this field; it is well known to the knowledge-holders and is therefore not mentioned here. Referring to FIG. 16, a preferred embodiment of the mobile phone of the present invention comprises the above-mentioned detecting device 5 and a camera module 6, which can take a surface of a solar cell to obtain a sample image, and send the sample image to the Detection 9 201043947 Apparatus 5 performs the detection as described above. As described above, the preferred embodiment of the present invention is applied to a solar cell to solve the problem of artificially judging the loss by automatically detecting and classifying the fatigue of the solar cell surface to increase the efficiency of production. And improve the detection 四 (four) accuracy in addition to the application in the production line, but also women's clothing on the smart phone 'with the phone's photographic function to sample and test the surface of the solar cell is flawed. The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent changes and modifications made by the present invention in the scope of the invention and the scope of the invention. All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the type of fatigue; - Fig. 2 is a block diagram showing a preferred embodiment of the detecting device of the present invention; Fig. 3 is a block diagram showing the edge strengthening unit 4 is a block diagram illustrating elements of a line detecting unit; FIG. 5 is a flow chart showing a preferred embodiment of the detecting method of the present invention; FIG. 6 is a flow chart illustrating the highlighting of a sample image Figure 7 is a schematic diagram showing the arrangement of sample images. Figure 8 is a schematic diagram illustrating coordinate conversion; Figure 9 is a schematic diagram illustrating conversion of a converted image from a spatial domain to a frequency domain 10 201043947 Figure 11 is a schematic diagram illustrating an edge-enhanced image; Figure 12 is a flow chart illustrating the steps of line detection; Figure 13 is a flow chart illustrating the steps of 瑕疵 classification; Figure 14 is a schematic view, A low-radius edge-enhanced image and a high-radius edge-enhanced image are illustrated; FIG. 15 is a schematic diagram illustrating closed-loop filtering of images; and FIG. 16 is a block diagram illustrating A preferred embodiment of the handset of the present invention. ❹

11 201043947 【主要元件符號說明】 夏 V Ψ y ·#· S Ψ : Ψ :· 突顯樣本影像的 步驟 高頻部分的步驟 判斷孔洞型瑕 2 進行邊緣偵測的 的步驟 步驟 44……… '判斷佈線不良 3 "" '進行瑕疵檢測的 步驟 步驟 5… 檢測裝置 4……… 判斷瑕疵的種類 6……… •照相模組 的步驟 -邊緣強化單元 11 座標轉換的步驟 52'…… 直線偵測單元 12……… 傅立葉轉換的步 瑕疵偵測單元 驟 5 31 ^ 瑕疵資料表 高通濾波的步驟 5 ν φ ·ί <· « 瑕疵分類單元 14 -反傅立葉轉換的 55……… 影像突顯模組 步驟 5 11… 座標轉換器 21……… •邊緣提取的步驟 512-··- 傅立葉轉換器 22···· — · 。直線偵測的步驟 5 13… 高通渡波器 4 1……… 、判斷邊緣破裂的 514 反傅立葉轉換器 步驟 5 2 1 .… -邊緣提取器 42·*-··-' '判斷電路斷線的 5 2 2……。 霍氏轉換器 1211 201043947 [Description of main component symbols] Xia V Ψ y ·#· S Ψ : Ψ :· Steps to highlight the sample image Steps for determining the hole type 瑕 2 Steps for edge detection Step 44......... Wiring failure 3 "" 'Step 5 of performing flaw detection... Detection device 4...... Judging the type of 66......... Procedure for camera module-Edge enhancement unit Step 52 of coordinate conversion 52'... Straight line Detection unit 12......... Fourier transform step detection unit Step 5 31 ^ 瑕疵 Data table high-pass filtering step 5 ν φ · ί <· « 瑕疵 classification unit 14 - inverse Fourier transform 55......... Image highlighting Module Step 5 11... Coordinate Converter 21......... • Edge Extraction Step 512-··- Fourier Transformer 22····. Step 5 of the line detection... 13... High-pass waver 4 1......, 514 anti-Fourier converter for edge cracking Step 5 2 1 .... - Edge extractor 42·*-··-' 'Just the circuit is broken 5 2 2... Honeywell Converter 12

Claims (1)

201043947 七 、申請專利範圍: 1. 一種檢測方法态 像進行分析,^ 陽能電池表面之—樣本影 析包含以下步驟: 棘 冬Χ矩形方格排列的該樣本影像,進行座標 、’以得:六角型排列的一轉換影像; ()χ顯該轉換影像的四邊邊緣和表面圖樣之邊 緣的影像資訊,以理μ * 乂传到一邊緣強化影像;及 Ο 一 )將忒樣本影像與該邊緣強化影像相減以得到 差&quot;〜像,進而根據該第一差異影像判斷該太陽 月b電池表面是否有瑕疵。 2·依據中請專利範圍第丨項所述之檢财法,其中,在步 驟(B)中包括以下子步驟: 將該轉換影像進行傅立葉轉換成依據頻域分佈的一 頻譜影像; 將該頻谱影像進行高通濾波以得到一遽波影像;及 〇 將該;慮波影像進行反傅立葉轉換成依據空間域分佈 的該邊緣強化影像。 3·依據申請專利範圍冑1項所述之檢測方法,其中,在步 驟(c)之後,更包含一步驟:若判斷該太陽能電池表 面有瑕疲’則進一步判斷該太陽能電池表面具有的瑕疵 種類。 依據申明專利範圍第3項所述之檢測方法,更包含對該 邊緣強化影像進行邊緣偵測以得到直線資訊,並利用該 直線資訊判斷該太陽能電池表面具有的瑕疵種類。 13 201043947 5·依據申請專利範圍第4項所述之檢測方法,其中r 緣债測運算子對該邊緣強化影像進行處理,’使影像= 緣與背景具更準確的分界,以得到— ft m e u 邊緣k取影像,進 而以霍氏轉換對該邊緣提取影像進 該直線資1 了直線彳貞測,以得到 6_:Γ二專利範圍第4項所述之檢測方法,其中,根據 訊,判斷該太陽能電池表面的四邊邊緣位置是 否有非直㈣域,當非直線區域出料 緣破裂的瑕疵。 研/、有透 7·依據申請專利範圍第6項所述之檢測方法,以該直線資 :判斷該表面圖樣是否具有不連續區域,進而判斷不連 2=四邊邊緣破裂位置交集’若無交集,則判定 為八有斷線的瑕疵,若有交集’ 的瑕疫。 j疋為不具斷線類型 8. 依據申請專利範圍第3項所述之檢測方法其作 定濾'波半徑以分別得到—低半徑瀘波影像和―高半^ 波影像’進而更將該低半㈣波影像和該高半#據= !:別:行反傅立葉轉換成-低半徑邊緣強化影像二 同半徑邊緣強化影像。 9. 依據申請專利範圍第8項所述之檢測方法其 低半位邊緣強化影像和該高半徑邊緣強化影像進行产 :減以得到一第二差異影像,進而以型態學閉合過:該 -差異影像上的雜訊以得到—類別區分影像:… 別區刀t像上減有雜訊出現於該表面圖樣 /以 、’'焉區域 14 201043947 内即判定具有孔洞型瑕疵。 ίο.依據申請專利範圍第3項所述之檢測方法,其中,分析 該表面圖樣連續區域内的寬度,若寬度出現粗細差異, 則判斷具有佈線不良的瑕疵。 11. 依據申請專利範圍第3項所述之檢測方法,其中,是以 類神經網路方式判斷該太陽能電池表面具有的瑕疵種類 〇 12. —種檢測裝置,適用於對一太陽能電池表面之一樣本影 像進行分析’且包含: 邊緣強化單元’該邊緣強化單元包括一座標轉換 器和景^像突顯模組’該座標轉換單元將以矩形方格排 列的該樣本影像,進行座標轉換,以得到六角型排列的 一轉換影像,進而該影像突顯模組突顯該轉換影像的四 邊邊緣和表面圖樣之邊緣的影像資訊,以得到一邊緣強 化影像; ' 一瑕疵偵測單元,該瑕疵偵測單元將該樣本影像與 該邊緣強化影像相減以得到一第一差異影像,進而根據 该第一差異影像判斷該太陽能電池表面是否有瑕蔽。 13. 依據申請專利範圍第12項所述之檢測裝置,其中,該影 像突顯模組具有: 傅立葉轉換器’該傅立葉轉換器將該轉換影像進 灯傅立葉轉換成依據頻域分佈的一頻譜影像; 一南通濾波器,該高通濾波器將該頻譜影像進行高 通濾波以得到—濾波影像;及 15 201043947 一反傅立葉轉換器,該反傅立葉轉換器將該濾波影 像進行反傅立葉轉換成依據空間域分佈的該邊緣強化影 像。 14.依據申凊專利範圍第13項所述之檢測裝置,更包含一瑕 疵分類單元,若該瑕疵偵測單元判斷該太陽能電池表面 有瑕疵,則該瑕疵分類單元進一步判斷該太陽能電池表 面具有的瑕疲種類。 15 依據申清專利範圍第丨4項所述之檢測裝置,更包含一直 線偵測單元,該直線偵測單元對該邊緣強化影像進行邊 緣偵測以得到直線資訊,進而該瑕疵分類單元利用該直 線資訊判斷該太陽能電池表面具有的瑕疵種類。 16.依據申請專利範圍第15項所述之檢測裝置其中,該直 ,偵測單70包括-邊緣提取器和-霍氏轉換器,該邊緣 提取益對該邊緣強化影像進行處理,使影像的邊緣與背 景八更準確的分界,以得到一邊緣提取影像,進而該霍 氏轉換器以霍氏轉換對該邊緣提取影像進行直線偵測, 以得到該直線資訊。 17·依據申請專利範圍第15項所述之檢測裝置,其中,該瑕 疵分類單元根據該直線資訊,判斷該太陽能電池表面的 四邊邊緣位置是否有非直線區@,當非直線區域出現時 ,則判斷具有邊緣破裂的瑕疵。 18·,據,請專利範圍第17項所述之檢測裝置,該瑕疵分類 早元以該直線資訊判斷該表面圖樣是否具有不連續區域 ,進而判斷不連續區是否與四邊邊緣破裂位置交集若 16 201043947 無交集’則判定為具有斷線的瑕疵,若有交集則判定 為不具斷線類型的瑕疵。 19. 依射請專利範圍第14項所述之檢測裝置,其中,該高 通m更設定遽波半徑以分別得到_低半徑滤波影像 和:高半徑遽波影像’進而該反傅立葉轉換器更將該低 + m皮景彡像和該高半徑渡波影像分別進行反傅立葉轉 換成一低半徑邊緣強化影像和一高半徑邊緣強化影像。201043947 VII. Patent application scope: 1. A method for detecting the state of the detection method, ^ The surface of the solar cell - the sample analysis includes the following steps: The image of the sample arranged in the rectangular grid of the thorny winter, coordinates, 'derived: a converted image of a hexagonal arrangement; () aiming the image information of the four edges of the converted image and the edge of the surface pattern, and transmitting the image to the edge enhancement image; and Ο a) imaging the sample image with the edge The image subtraction is enhanced to obtain a difference &quot;~ image, and then the surface of the solar cell b is judged to be flawed based on the first difference image. 2. The method of claim 1, wherein the step (B) includes the following substeps: converting the converted image into a spectrum image according to a frequency domain distribution; The spectral image is high-pass filtered to obtain a chopped image; and the image is inversely Fourier transformed into the edge-enhanced image according to the spatial domain distribution. 3. The detection method according to claim 1, wherein after step (c), there is further included a step of: judging the type of germanium on the surface of the solar cell if it is judged that the surface of the solar cell is fatigued . According to the detection method of claim 3, the edge detection image is edge-detected to obtain linear information, and the line information is used to determine the type of germanium on the surface of the solar cell. 13 201043947 5. According to the detection method described in claim 4, wherein the r-edge debt calculation operator processes the edge-enhanced image, 'make the image=edge and the background have a more accurate boundary to obtain - ft meu The edge k takes an image, and then the Holman transform is used to extract the image into the straight line 1 to obtain a detection method according to item 4 of the 6th: 2nd patent range, wherein Whether the position of the four edges of the surface of the solar cell has a non-straight (four) domain, when the non-linear region of the discharge edge breaks. Research /, through 7 · According to the detection method described in item 6 of the patent application scope, the linear capital: determine whether the surface pattern has a discontinuous area, and then determine the intersection of 2 = four edge edge rupture position 'if there is no intersection Then, it is judged that there are eight broken lines, and if there is an intersection, the plague. J疋 is a type without a disconnection. 8. According to the detection method described in the third paragraph of the patent application, the filter 'wave radius is determined to obtain a low-radius chopping image and a high-half wave image, respectively. The semi-fourth wave image and the upper half of the data = !: No: the line inverse Fourier transform is converted into a low-radius edge-enhanced image with the same radius edge enhanced image. 9. According to the detection method described in claim 8 of the patent application, the lower half edge enhancement image and the high radius edge enhancement image are produced: subtracted to obtain a second difference image, and then closed by the morphology: The noise on the difference image is obtained by - classifying the image:... The noise of the other area is reduced on the surface of the image, and the hole pattern is found in the surface pattern / 2010. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; 11. The detection method according to claim 3, wherein the type of the solar cell has a 瑕疵 type of detection device on the surface of the solar cell, and is suitable for the same surface of a solar cell. The image is analyzed and includes: an edge enhancement unit, the edge enhancement unit includes a label converter and a scene highlighting module. The coordinate conversion unit converts the sample image arranged in a rectangular grid to coordinate conversion to obtain a converted image of the hexagonal arrangement, and the image highlighting module highlights the image information of the four edges of the converted image and the edge of the surface pattern to obtain an edge enhanced image; 'a detection unit, the detection unit will The sample image is subtracted from the edge-enhanced image to obtain a first difference image, and then the surface of the solar cell is determined to be masked according to the first difference image. The detecting device according to claim 12, wherein the image highlighting module has: a Fourier converter that converts the converted image into a Fourier transform into a spectrum image according to a frequency domain distribution; a south pass filter, the high pass filter high pass filtering the spectral image to obtain a filtered image; and 15 201043947 an inverse Fourier converter, the inverse Fourier transform converts the filtered image into a spatial domain based This edge enhances the image. 14. The detecting device according to claim 13 , further comprising a unit of classification, wherein if the detecting unit determines that the surface of the solar cell has flaws, the unit further determines that the surface of the solar cell has The type of fatigue. The detection device according to the fourth aspect of the patent application scope includes a line detection unit that performs edge detection on the edge enhancement image to obtain linear information, and the 瑕疵 classification unit utilizes the line The information determines the type of enamel that the solar cell surface has. 16. The detecting device according to claim 15, wherein the detecting unit 70 comprises an edge extractor and a -Hawsch converter, and the edge extracting process processes the edge enhanced image to make the image The edge and the background eight are more accurately demarcated to obtain an edge-extracted image, and the Holker converter performs a straight line detection on the edge-extracted image by Hobex transform to obtain the line information. The detecting device according to claim 15, wherein the 瑕疵 classifying unit determines, according to the line information, whether there is a non-linear area @ on a four-edge edge of the surface of the solar cell, and when a non-linear area appears, Determine the flaw with edge rupture. 18. According to the detection device described in claim 17, the 瑕疵 classification early element determines whether the surface pattern has a discontinuous area by using the line information, and further determines whether the discontinuous area intersects with the four-edge edge rupture position. 201043947 No intersection ' is judged as a flaw with a broken line, and if there is an intersection, it is determined to be a flaw without a broken type. 19. The detection device according to claim 14, wherein the high-pass m further sets a chopping radius to obtain a _low-radius filtered image and a high-radius chopping image respectively, and the inverse Fourier converter is further The low + m skin image and the high radius wave image are respectively inversely Fourier transformed into a low radius edge enhanced image and a high radius edge enhanced image. 20. 依射請專利範圍第19項所述之檢測裝置,其中,該瑕 疵刀類單7L將該低半徑邊緣強化影像和該高半徑邊緣強 化影像進行影像相減以得到一第二差異影像,進而以型 。學閉合過濾該第二差異影像上的雜訊以得到一類別區 分影像’若該類別區分影像上仍然有雜訊出現於該表面 圖樣的連續區域内即判定具有孔洞型瑕疵。 21. 依據巾請專圍第14項所述之㈣裝置,其中,該瑕 疵分類單元分析該表面圖樣連續區域内的寬度,若寬度 出現粗細差異,則判斷具有佈線不良的瑕疵。 22. 依據中請專利範圍第14項所述之檢測裝置,其中,該瑕 疵分類單元是以類神經網路方式判斷該太陽能電池表面 具有的瑕疲種類。 23. —種手機,包含: 一照相模組,該照相模組拍攝一太陽能電池之表面 以得到一樣本影像;及 —檢測裝置,該檢測裝置接收來自該照相模組所輸 的亥樣本影像,並進行分析,且包括一邊緣強化單元 17 201043947 和一瑕疵偵測單元;The detection device of claim 19, wherein the squeegee type 7L subtracts the low-radius edge-enhanced image from the high-radius edge-enhanced image to obtain a second difference image. Further type. The closed filter filters the noise on the second difference image to obtain a category image. If there is still noise in the category discrimination image, it is determined to have a hole type in the continuous area of the surface pattern. 21. According to the (4) device mentioned in Item 14, the 瑕 疵 classification unit analyzes the width in the continuous area of the surface pattern, and if there is a difference in thickness between the widths, it is judged that there is a defect in wiring. The detecting device according to claim 14, wherein the 疵 疵 classification unit judges the type of fatigue on the surface of the solar cell by a neural network. 23. A mobile phone comprising: a camera module that captures a surface of a solar cell to obtain the same image; and - a detecting device that receives the image of the sample from the camera module, And performing analysis, and including an edge enhancement unit 17 201043947 and a detection unit; 一影像突顯模 之邊緣的影像資訊, 以得到一邊緣強化影像; 排列的該樣本影像, 的—轉換影像,進而 四邊邊緣和表面圖樣 該瑕庇制單元將該樣本影像與該邊緣強化影像相 減以得到一第一差異影像,進而根據該第一差異影像判 斷該太陽能電池表面是否有瑕疵。 24.依射請專利範圍第23項所述之手機,其中,該影像突 顯模組具有: 尺 一傅立葉轉換器,該傅立葉轉換器將該轉換影像進 行傅立葉轉換成依據頻域分佈的一頻譜影像; 一高通濾波器,該高通濾波器將該頻譜影像進行高 通濾波以得到一濾波影像;及 一反傅立葉轉換器,該反傅立葉轉換器將該遽波影 像進行反傅立葉轉換成依據空間域分佈的該邊緣強化影 像。 25·依據申請專利範圍第24項所述之手機,其中該檢測裝置 更包含一瑕疫分類單元,若該瑕疲偵測單元判斷該太陽 能電池表面有瑕疵,則該瑕疵分類單元進一步判斷該太 陽能電池表面具有的瑕疵種類。 26·依據申請專利範圍第25項所述之手機,其中,該檢測繁 置更包含一直線偵測單元’該直線偵别單元對該邊緣強 18 201043947 ,影像進行邊緣偵測以得到直線資訊,進而該瑕疫分類 早兀利用該直線資訊判斷該太陽能電池表面具有的瑕疵 種類。 27.依!申請專利範圍第%項所述之手機,#中該直線横 测早疋包括-邊緣提取器和—霍氏轉換器,該邊緣提取 器對該邊緣強化影像進行處理,使影像的邊緣與背景具 更準確的分界,以得到一邊緣提取影像,進而該霍氏轉 換器以霍氏轉換對該邊緣提取影像進行直線摘測,以得 到該直線資訊。 Μ.依據申請專利範㈣26項所述之手機,其中,該瑕疯分 類單元根據該直線資訊,判斷該太陽能電池表面的四邊 邊緣位置是否有非直線區域’當非直線區域出現時,則 判斷具有邊緣破裂的瑕疵。 29.依據巾請專利範圍第28項所述之手機,該瑕㈣類單元 以該直線資訊判斷該表面圖樣是否具有不連續區域,進 而判斷不連續區是否與四邊邊緣破裂位置交集,若無交 集,則判定為具有斷線的瑕疯,若有交集,則判定為不 具斷線類型的瑕疵。 30 依據申請專利範圍帛25項所述之手機,其中,該高通滤 波器更設定濾、波半徑以分㈣到—低半徑濾波影像和一 局半徑濾、波影像’進而該反傅立葉轉換器更將該低半徑 滤波影像㈣高半彳㈣波影像分料行反傅立葉轉換成 一低半徑邊緣強化影像和一高半徑邊緣強化影像。 31.依據申請專利範圍第 30項所述之手機,其中,該瑕疵分 19 201043947 類早元將該低半徑邊緣強化影像和該高半徑邊緣強化影 像進行影像相減以得到一第二差異影像,進而以型態學 閉合:濾該第二差異影像上的雜訊以得到一類別區分影 象若該類別區为影像上仍然有雜訊出現於該表面圖樣 的連續區域内即判定具有孔洞型瑕疵。 32. 依據申請專利範圍第25項所述之手機,其中,該瑕疵分 類單元分析該表面圖樣連續區域内的寬度,若寬度出現 粗細差異,則判斷具有佈線不良的瑕疵。 33. 依據申請專利範圍第25項所述之手機,其中,該瑕疵分 類單元是以類神經網路方式判斷該太陽能電池表面具有 的瑕疵種類。 20An image highlighting image information at the edge of the mode to obtain an edge-enhanced image; the sampled image of the array, the converted image, and the four-sided edge and surface pattern, the sheltering unit subtracts the sample image from the edge-enhanced image And obtaining a first difference image, and determining whether the surface of the solar cell has flaws according to the first difference image. The mobile phone of claim 23, wherein the image highlighting module has: a ruler-Fourier converter, the Fourier transforms the converted image into a spectrum image according to a frequency domain distribution a high-pass filter that high-pass filters the spectral image to obtain a filtered image; and an inverse Fourier transformer that inverse-Fourier transforms the chopped image into spatial domain-distributed This edge enhances the image. The mobile phone according to claim 24, wherein the detecting device further comprises a quarantine classification unit, and if the fatigue detecting unit determines that the surface of the solar cell has flaws, the 瑕疵 classification unit further determines the solar energy The type of enamel on the surface of the battery. The mobile phone according to claim 25, wherein the detection further comprises a straight line detecting unit, wherein the line detecting unit performs edge detection on the edge to obtain linear information, and further The plague classification uses the line information to determine the type of cockroaches on the surface of the solar cell. 27. According to! In the mobile phone described in claim 100, the line cross-tracking detection includes an edge extractor and a Hough converter, and the edge extractor processes the edge-enhanced image to make the edge and background of the image A more accurate demarcation is performed to obtain an edge-extracted image, and the Hoech converter performs a straight line-sampling on the edge-extracted image by Hawker transformation to obtain the line information. According to the mobile phone described in claim 46, wherein the madness classification unit determines whether there is a non-linear area on the four-edge edge of the surface of the solar cell according to the linear information, and when the non-linear region appears, it is judged to have The rupture of the edge. 29. According to the mobile phone of claim 28, the 瑕(4) unit determines whether the surface pattern has a discontinuous area by using the line information, and further determines whether the discontinuous area intersects with the rupture position of the four edges, if there is no intersection. Then, it is judged to be a madness with a broken line, and if there is an intersection, it is determined to be a 不 without a broken type. 30 According to the invention of claim 25, wherein the high-pass filter further sets the filter, the wave radius is divided into (four) to - low radius filtered image and a radius filter, wave image 'and the inverse Fourier converter is further The low radius filtered image (4) high half (four) wave image line is inversely Fourier transformed into a low radius edge enhanced image and a high radius edge enhanced image. 31. The mobile phone according to claim 30, wherein the 2010分19 201043947 早元 subtracts the low-radius edge-enhanced image from the high-radius edge-enhanced image to obtain a second difference image, Further, the pattern is closed: the noise on the second difference image is filtered to obtain a type of discrimination image. If the category area is still in the image, the noise is still present in the continuous area of the surface pattern, and the hole type is determined. . The mobile phone according to claim 25, wherein the 瑕疵 classification unit analyzes the width in the continuous area of the surface pattern, and if there is a difference in thickness between the widths, it is judged that the wiring has poor defects. 33. The mobile phone according to claim 25, wherein the 瑕疵 classifying unit determines the 瑕疵 type of the solar cell surface in a neural network-like manner. 20
TW098119531A 2009-06-11 2009-06-11 Inspection method, inspection device and mobile phone having the inspection device TW201043947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098119531A TW201043947A (en) 2009-06-11 2009-06-11 Inspection method, inspection device and mobile phone having the inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098119531A TW201043947A (en) 2009-06-11 2009-06-11 Inspection method, inspection device and mobile phone having the inspection device

Publications (2)

Publication Number Publication Date
TW201043947A true TW201043947A (en) 2010-12-16
TWI399535B TWI399535B (en) 2013-06-21

Family

ID=45001152

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098119531A TW201043947A (en) 2009-06-11 2009-06-11 Inspection method, inspection device and mobile phone having the inspection device

Country Status (1)

Country Link
TW (1) TW201043947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983207A (en) * 2011-09-05 2013-03-20 惠特科技股份有限公司 Defect inspection method of solar energy module
WO2013093153A1 (en) * 2011-12-21 2013-06-27 Abengoa Solar New Technologies, S.A. Method for the automated inspection of photovoltaic solar collectors installed in plants
TWI840620B (en) * 2019-10-02 2024-05-01 美商科磊股份有限公司 Inspection systems and inspection methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI787296B (en) * 2018-06-29 2022-12-21 由田新技股份有限公司 Optical inspection method, optical inspection device and optical inspection system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334844A (en) * 1993-04-05 1994-08-02 Space Systems/Loral, Inc. Optical illumination and inspection system for wafer and solar cell defects
JP4707605B2 (en) * 2006-05-16 2011-06-22 三菱電機株式会社 Image inspection method and image inspection apparatus using the method
TWI333551B (en) * 2007-08-16 2010-11-21 Gintech Energy Corp System and method for recognizing defects on solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983207A (en) * 2011-09-05 2013-03-20 惠特科技股份有限公司 Defect inspection method of solar energy module
WO2013093153A1 (en) * 2011-12-21 2013-06-27 Abengoa Solar New Technologies, S.A. Method for the automated inspection of photovoltaic solar collectors installed in plants
TWI840620B (en) * 2019-10-02 2024-05-01 美商科磊股份有限公司 Inspection systems and inspection methods

Also Published As

Publication number Publication date
TWI399535B (en) 2013-06-21

Similar Documents

Publication Publication Date Title
CN105976352B (en) One kind being based on the morphologic face of weld defect characteristic extracting method of gray level image
CN105092598B (en) A kind of large format pcb board defect method for quickly identifying and system based on connected domain
WO2018122810A1 (en) Method for detecting leakage of underground pipe rack based on dynamic infrared thermogram processing
Bu et al. Crack detection using a texture analysis-based technique for visual bridge inspection
CN108009591A (en) A kind of contact network key component identification method based on deep learning
CN107506768A (en) A kind of stranded recognition methods of transmission line wire based on full convolutional neural networks
CN110210448B (en) Intelligent face skin aging degree identification and evaluation method
WO2023221801A9 (en) Image processing method and apparatus, computer-readable storage medium, and electronic device
CN102495078B (en) Method for detecting welding seam on basis of quantum dot infrared fluorescence display technology
CN108982512A (en) A kind of circuit board detecting system and method based on machine vision
CN106296670B (en) A kind of Edge detection of infrared image based on the watershed Retinex--Canny operator
CN110346699B (en) Insulator discharge information extraction method and device based on ultraviolet image processing technology
CN112862744B (en) Intelligent detection method for internal defects of capacitor based on ultrasonic image
Hati et al. Plant recognition from leaf image through artificial neural network
KR102355997B1 (en) method for monitoring the soundness of concrete structure based on smart glass
CN104853151A (en) Large-space fire monitoring system based on video image
CN112365475A (en) Power transmission line icing monitoring method and system based on image processing mode
CN106934829A (en) The detection method and system of a kind of surface crack
CN109345586A (en) Electrical equipment discharge characteristic extracting method based on ultraviolet imagery technology
WO2023168984A1 (en) Area-array camera-based quality inspection method and system for cathode copper
CN106228541A (en) Screen positioning method and device in visual inspection
TW201043947A (en) Inspection method, inspection device and mobile phone having the inspection device
Monicka et al. Detection of microcracks in silicon solar cells using Otsu-Canny edge detection algorithm
CN112837308A (en) Building crack detection method, device, equipment and storage medium
CN111257329A (en) Smartphone camera defect detection method and detection system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees