TW201043778A - Fluid energy converter and rotor therefor - Google Patents

Fluid energy converter and rotor therefor Download PDF

Info

Publication number
TW201043778A
TW201043778A TW099111950A TW99111950A TW201043778A TW 201043778 A TW201043778 A TW 201043778A TW 099111950 A TW099111950 A TW 099111950A TW 99111950 A TW99111950 A TW 99111950A TW 201043778 A TW201043778 A TW 201043778A
Authority
TW
Taiwan
Prior art keywords
fluid
section
rotor
blade
longitudinal axis
Prior art date
Application number
TW099111950A
Other languages
Chinese (zh)
Inventor
Donald C Miller
Michael C Ross
Original Assignee
Viryd Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viryd Technologies Inc filed Critical Viryd Technologies Inc
Publication of TW201043778A publication Critical patent/TW201043778A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0658Arrangements for fixing wind-engaging parts to a hub
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

A fluid energy converter, such as windmill or a wind turbine, includes a rotor having a front rotatable hub and a back rotatable hub. In some embodiments, a plurality of blades extends from the front hub to the back hub. A suitable blade includes a front section, a tip, and a back section. In one embodiment, the chord of the tip cross section is at an angle relative to the tangent of the rotor radius. The tip chord can be perpendicular to the direction of movement of the fluid. In some cases, the profile of a blade front section, from its root to the tip, forms a concave curve. In one case, the profile of the blade tip, from a junction root to the tip, forms a convex curve. A front section, an apex, and a back section of a blade form a generally parabolic shape.

Description

201043778 六、發明說明: 【相關申請案】 本申請案主張於2〇〇9年4月20曰申清之美國臨時申 請案第61/171,033號的優先權,該案之揭露内容特此以全 文引用之方式併入本文中。2006年8月18曰申請之美國 專利申請案第11/506,762號及2007年5月9日申請之美 國專利申請案第11/746,482號亦以全文引用之方式併入本 申請案中。 【發明所屬之技術領域】 本發明之領域大體上是有關於流體能量轉換器(fluid energy converter)’且更明確而言,本發明是有關於風車 (windmill)及風力渦輪機(wind turbine )。 【先前技術】 流體能量轉換器通常使用葉片(blade)'螺旋槳 (propeller)或葉輪(impeller)而將移動的流體之動能 (kinetic energy)轉換為機械能(mechanicaienergy),或將 機械能轉換為移動的流體流之動能。舉例而言,風車及水 車將來自風或水的動能轉換為旋轉機械能(r〇tating mechanical energy )’且風力渦輪機及水力渦輪機進一步使 用發電機職轉機械能轉換為電能。在逆過程巾,風扇、 螺旋槳、雜機及泵可馳態以絲自旋轉麵能的動能 賦予流體。 對氣體而5,自動能至機械能之能量轉換可能效率較 低’特別是對於風車及風力渦輪機。世人t遍承認,轉換 201043778 來自風之動能的裝置可實現的最高效率約為 59.3%。麸 ==數字忽視了(例如)_力及渦流而導致的損失。、 二、用型二葉片風力雜機可達成超過%%的峰值效 : 車之峰值效率要低得多。因此,需要用於風力應 用之更鬲效率的流體能量轉換器。 一雖然-些用於液悲流體之流體能量轉㈣可達成較 磁率,但此等機器頗為昂貴。舉例而言,儘管弗朗西斯 ◎ 水力渴輪機(Francis water turbine)可達成超過9〇%的效 率’但此等渦輪機極其昂貴。在有些應用中,成本是比效 f最大化更重要之时’且因此需要—種成本較低但仍維 寺所品效率的用於液流之流體能量轉換器。 【發明内容】 ° 本文中所說明及描述之系統及方法具有若干特徵,前 述特徵中沒有哪個單一特徵單獨負責其所需屬性。在不限 制以下描述所表達之範疇的情況下,現在將簡要論述其更 f著特徵。在考慮此論述之後,且尤其是在閱讀標題為「實 〇 施方式」的部分之後,將理解前述系統及方法之特徵如何 提供優於傳統系統及方法的若干優點。 在一態樣中,本發明是有關於一種用於流體能量轉換 益的轉子(rotor)。所述轉子具有縱軸、與所述縱軸同軸的 可旋轉的前輪轂(front rotatable hub)。在一實施例中,所 述轉子具有與所述縱軸同軸的可旋轉的後輪轂(back rotatable hub)。所述轉子具有若干葉片(blade),每一葉片 包括前部區段、頂部(tip)及後部區段。所述葉片圍繞所述 5 201043778 j^tjuopu 縱軸成角度地設置著。每一葉片在前根部附接部分(front root attachment)處附接至所述前輪轂,且在後根部附接端 處附接至所述後輪轂。所述前部區段之縱搖(pitch)高於 所述後部區段之縱搖。 在另一態樣中,本發明是有關於一種用於流體能量轉 換器的轉子。所述轉子具有縱軸、與所述縱軸同軸的可旋 轉的前輪轂’以及與所述縱轴同軸的可旋轉的後輪轂。在 一實施例中’所述轉子具有至少九個葉片。每一葉片在前 部區段處附接至所述前輪轂’且在後部區段處附接至所述 後輪較。所述葉片圍繞所述縱軸而徑向地定位。所述葉片 中至少一些葉片中之每一者包括前部區段、頂部及後部區 段。所述前部區段、頂部及後部區段使用流體箔片。頂部 與弦之間的角度在4度與_15度之間。 在又一態樣中,本發明是有關於一種流體能量轉換 器:其具有縱軸。在一實施例中,所述流體能量轉換器具 有同軸地圍,所述縱轴的可旋轉的轉子。所述可旋轉的轉 =包含=干葉片。每一葉片具有前部區段、頂部及後部區 #又頂玄(tip ch〇rcj)產生切向抬升(tangentiai 1出)。 田熟S此項技術者閱讀以下詳細描述内容且觀看附 圖時’他們將明白此等及其他改良。 【實施方式】 。現在將參看附圖來描述本發明之實施例,其中相同標 號=,·、;代表相同元件。本文中呈現之描述中所使用的術語 無心僅因其疋結合對本發明之特定具體實施例之詳細說明 201043778 利用而以任何纽或約纽 實施例可包含若干新賴特徵,所=中;^ 言是不可或缺。 饮實踐本文所描述之本發明而 Μ現其是㈣流體能量轉換⑽的 把例。肌體成篁轉換器10〇包含 町實 塔架一…〇。轉子 Ο Ο 圍繞縱軸8而設置。在一由” 所述葉片 mr) y ^ 例中,轉子1具有至少九個 葉片H)。在-些實施财,轉子^ 片10。葉片10可大體上為蠻曲社错甘士 U飞更夕的葉 ^ * 為%曲、、、。構,其中—或多個流體 /片成其表面中。依據尺寸及所要之強度重量比 葉片1G可由諸如金屬片、複合 材料(匕3碳纖維、玻璃纖維及聚酯樹脂)、塑膠等材料或 任何其他合適材料來製造。流體能量轉換器100大致類似 於第11/746,482號美國專利申請案中所描述的流體能量轉 換器,所述專利申請案特此以全文引用之方式併入本文中。 舉例而言,在第一態樣中,流體渦輪機可具有可旋轉 之轉子以及支架或塔架。所述轉子包含一縱軸、多個與所 述縱轴同心的可旋轉葉片、一與所述縱軸同心的可旋轉前 輪較 與所述縱軸同心的導流罩(nacelle)、一與所述縱 軸同心的可旋轉後輪轂以及一與所述縱軸同心的軸桿 (shaft)。在一實施例中,每一葉片併入有前部區段、頂部 及後部區段。 對於每一葉片,前部區段之根部附接至前輪轂,且後 7 201043778201043778 VI. INSTRUCTIONS: [RELATED APPLICATIONS] This application claims priority to U.S. Provisional Application No. 61/171,033, the entire disclosure of which is hereby incorporated by reference. The manner is incorporated herein. U.S. Patent Application Serial No. 11/506,762, filed on Aug. TECHNICAL FIELD OF THE INVENTION The field of the invention relates generally to fluid energy converters and, more specifically, to windmills and wind turbines. [Prior Art] Fluid energy converters typically use a blade 'propeller' or impeller to convert the kinetic energy of a moving fluid into mechanical energy (mechanicaienergy) or convert mechanical energy into movement. The kinetic energy of the fluid flow. For example, windmills and waterwheels convert kinetic energy from wind or water into rotational mechanical energy' and wind turbines and hydro turbines further convert electrical energy from generator to electrical energy. In the reverse process towel, the fan, the propeller, the miscellaneous machine, and the pump are in a state where the kinetic energy of the self-rotating surface energy of the wire is imparted to the fluid. For gas 5, energy conversion from automatic to mechanical energy may be less efficient, especially for windmills and wind turbines. The world has acknowledged that the highest efficiency achievable with the conversion of 201043778 from the kinetic energy of the wind is about 59.3%. Bran == The number ignores losses caused by (for example) _ forces and eddy currents. Second, the use of two-blade wind turbines can achieve more than %% peak efficiency: the peak efficiency of the car is much lower. Therefore, there is a need for a more efficient fluid energy converter for wind applications. Although these fluids can be used to achieve a higher magnetic permeability, the machines are quite expensive. For example, although the Francis water turbine can achieve an efficiency of more than 9〇%, these turbines are extremely expensive. In some applications, the cost is more important than the effect f is maximized' and therefore requires a fluid energy converter for liquid flow that is less costly but still efficient. SUMMARY OF THE INVENTION The systems and methods illustrated and described herein have several features, none of which is solely responsible for its desired attributes. In the case where the scope of the description is not limited, the features will now be briefly discussed. After considering this discussion, and particularly after reading the section entitled "Implementation", it will be appreciated that the features of the foregoing systems and methods provide several advantages over conventional systems and methods. In one aspect, the invention is directed to a rotor for fluid energy conversion benefits. The rotor has a longitudinal axis, a rotatable front rotatable hub coaxial with the longitudinal axis. In an embodiment, the rotor has a rotatable rear rotatable hub that is coaxial with the longitudinal axis. The rotor has a plurality of blades, each blade including a front section, a tip and a rear section. The vanes are disposed at an angle around the longitudinal axis of the 5 201043778 j^tjuopu. Each blade is attached to the front hub at a front root attachment and to the rear hub at a rear root attachment end. The pitch of the front section is higher than the pitch of the rear section. In another aspect, the invention is directed to a rotor for a fluid energy converter. The rotor has a longitudinal axis, a rotatable front hub' that is coaxial with the longitudinal axis, and a rotatable rear hub that is coaxial with the longitudinal axis. In an embodiment the rotor has at least nine blades. Each blade is attached to the front hub ' at the front section and to the rear wheel comparison at the rear section. The vanes are positioned radially about the longitudinal axis. Each of the at least some of the blades includes a front section, a top section, and a rear section. The front section, the top section and the rear section use a fluid foil. The angle between the top and the chord is between 4 degrees and _15 degrees. In yet another aspect, the invention is directed to a fluid energy converter having a longitudinal axis. In an embodiment, the fluid energy converter has a rotatable rotor coaxially surrounding the longitudinal axis. The rotatable turn = contains = dry blades. Each blade has a front section, a top section and a rear section. The tip ch〇rcj produces a tangential elevation (tangentiai 1 out). The technicians of Tianshu S read the following detailed description and watch the attached drawings. They will understand these and other improvements. [Embodiment] Embodiments of the present invention will now be described with reference to the drawings, in which like reference numerals The terminology used in the description herein is for the sole purpose of the description of the specific embodiments of the present invention. The use of any of the new or similar embodiments may include a number of new features. It is indispensable. The present invention is practiced by the present invention and is a (4) example of fluid energy conversion (10). The body into a sputum converter 10 〇 contains the town of the tower a ... 〇. The rotor Ο 设置 is placed around the longitudinal axis 8. In the example of "the blade mr" y ^, the rotor 1 has at least nine blades H). In some implementations, the rotor is 10; the blade 10 can be substantially abbreviated. The leaves of the eve are *%, ,, and, in which - or a plurality of fluids/sheets are formed in the surface thereof. The blade 1G may be composed of, for example, a metal sheet, a composite material (匕3 carbon fiber, glass, depending on the size and the desired strength-to-weight ratio). Manufactured from materials such as fibers and polyester resins, plastics, or any other suitable material. The fluid energy converter 100 is substantially similar to the fluid energy converter described in U.S. Patent Application Serial No. 11/746,482, the disclosure of which is hereby incorporated herein For example, in a first aspect, a fluid turbine can have a rotatable rotor and a bracket or tower. The rotor includes a longitudinal axis, a plurality of and the longitudinal axis a concentric rotatable blade, a rotatable front wheel concentric with the longitudinal axis, a nacelle concentric with the longitudinal axis, a rotatable rear hub concentric with the longitudinal axis, and a longitudinal Shaft concentric shaft In an embodiment, each blade incorporates a front section, a top section and a rear section. For each blade, the root of the front section is attached to the front hub, and thereafter 7 201043778

OHJSJOpiL 部區段之根部附接至後輪穀。在一些實施例中, ,輪轂依靠軸承而在軸桿上旋轉, 及 導流罩可牢固地附接至軸桿,且:力減至取小。 螺旋翼以helicd vane )。轴桿㈣,面上具有多個 附接至塔m支㈣且 動力傳動系(drive-train)’所述動罩收容 ^電機以產生%力。在—些實施例中,尾部位於轉子 4面且附接至轉子’此尾部受流體 : 體流中。所述尾部可兼有垂直平面組件與水平 所述組制財縱難兩者上枝轉子件 在-些實施例中,當-些流體穿過轉子時,會形 壓區,低壓區域。流體在接近轉子並自縱軸徑向射J 抵抗者葉4之頂部以及前部區段及後輕段之外部部分而 被壓縮時,接觸葉片之前部區段的根部,從而相對於周圍 流體壓力而形成高壓區域。低壓區域在縱軸附近及周圍形 成’且因此將流體汲取至轉子中。以此方式,低壓區域使 流體加速越過及穿過轉子。此外,與進入轉子之流體相切 的流體對準葉片之頂部的外側表面以及前部區段及後部區 段之外部部分’從而在葉片之頂部之内外兩個表面以及前 部區段及後部區段之外部部分上形成高壓區域。 在一些條件下,轉子可被縱搖(亦即,在垂直平面内 上下搖晃)及/或橫搖(亦即,在水平平面上自一側向另一 側旋轉)’以利用提高動力生產的有利效果。導流罩可併入 有螺疑翼片,螺方疋翼片引導流體在與轉子之旋轉方向相同 201043778 的方向上旋轉,從而形成渦旋,並提高動力生產。在另一 態樣中,葉片頂部摺疊,以增加其表面積及動力生產能力。 在一些實施例中,流體能量轉換器經組態以使得葉片 • 之前部區段的縱搖大於後部區段的縱搖。以此方式,所述 刚部區後面之渦旋(swirl)以適當角度接近後部區段以用 ' 於動力提取。在一些實施例中,導流罩可用以在有益的方 向上重新引導流體,在此情況下,葉片之後部區段的縱搖 可較大。在-些實施例中’葉片之後部區段經設計以在流 體自轉子後部退出時,引導流體在徑向中離開縱轴。此舉 使縱轴附近及轉子正後方之低壓增加,從而增加進入轉子 中之流體汲取(draw)。在其他實施例巾,葉片之後部區段 經組態以拉直(stmighten)自轉子退出並重新進入流體流的 流體。此舉使因周圍流體與已穿過轉子或鄰近於轉子之流 體混合而形成的渦動(turbulence)減至最小。在一些實施例 中’導流罩向前而朝轉子前方移動,以使渦旋在動力減小 方向上旋轉的時間減至最小。在另外其他實施例中,不使 〇 用導流罩之用來引導或重新引導流體之螺旋翼片。 在又-態樣中,尾部可自縱軸偏移,以相對於流體流 而設定最佳縱搖及橫搖。因此,尾部車由無需與縱轴平行。 在-些實施例中’變化的流體速度使尾部上的壓力增加或 減少,從而以改變的流體速度引起縱搖及橫搖之變化。 在又-實施例中,轉子之葉片被設計為撓曲的,使得 葉片之縱搖將隨流體速度之變化而變化。在一瞋樣中,動 力系_η)附接至後輪轂,且轉子之前輪較經=態以自由 9 201043778 j^j^/Dpu 旋轉。在此類實施例中’葉片之縱搖可經設置以在流體向 葉片施加之壓力隨流體速度之變化而變化時改變。The root of the OHJSJOpiL section is attached to the rear trough. In some embodiments, the hub rotates on the shaft by virtue of the bearing, and the shroud can be securely attached to the shaft, and the force is reduced to a small extent. The spiral wing is helicd vane). A shaft (four) having a plurality of faces attached to the tower m (four) and a drive-train of the drive housing the motor to generate a % force. In some embodiments, the tail is located on the face of the rotor 4 and attached to the rotor 'this tail is subjected to fluid: body flow. The tail portion may have both a vertical plane assembly and a horizontal unit. The upper portion of the rotor member is in the embodiment, and when some of the fluid passes through the rotor, the nip area and the low pressure region are formed. The fluid contacts the root of the front section of the blade as it is compressed near the rotor and radially from the top of the J resister blade 4 and the outer portions of the front and rear light sections, thereby opposing the surrounding fluid pressure And form a high pressure area. The low pressure region forms 'and around the longitudinal axis' and thus draws fluid into the rotor. In this way, the low pressure region accelerates the fluid across and through the rotor. In addition, the fluid tangential to the fluid entering the rotor aligns with the outer surface of the top of the blade and the outer portion of the front and rear sections, thereby inner and outer surfaces at the top of the blade, as well as the front and rear sections. A high pressure region is formed on the outer portion of the segment. Under some conditions, the rotor can be pitched (ie, rocked up and down in a vertical plane) and/or panned (ie, rotated from side to side on a horizontal plane) to take advantage of increased power production. Favorable effect. The shroud can incorporate a suspected flap that directs the fluid to rotate in the same direction as the rotor's direction of rotation, 201043778, creating a vortex and increasing power production. In another aspect, the top of the blade is folded to increase its surface area and power production capacity. In some embodiments, the fluid energy converter is configured such that the pitch of the blade front section is greater than the pitch of the rear section. In this way, the swirl behind the rigid section approaches the rear section at an appropriate angle for 'power extraction. In some embodiments, the shroud can be used to redirect fluid in a beneficial direction, in which case the pitch of the rear section of the blade can be greater. In some embodiments, the trailing section of the blade is designed to direct fluid away from the longitudinal axis in the radial direction as the fluid exits from the rear of the rotor. This increases the low pressure near the longitudinal axis and directly behind the rotor, thereby increasing the fluid draw into the rotor. In other embodiments, the trailing section of the blade is configured to stmigh the fluid exiting the rotor and re-entering the fluid stream. This minimizes the turbulence formed by the surrounding fluid mixing with the fluid that has passed through the rotor or adjacent to the rotor. In some embodiments, the shroud moves forward toward the front of the rotor to minimize the time during which the vortex rotates in the direction of power reduction. In still other embodiments, the spiral flaps of the fluid are not used to guide or redirect the fluid. In the re-slope, the tail can be offset from the longitudinal axis to set the optimum pitch and roll relative to the fluid flow. Therefore, the tail car does not need to be parallel to the longitudinal axis. In some embodiments, the varying fluid velocity increases or decreases the pressure on the tail to cause changes in pitch and roll at varying fluid velocities. In a further embodiment, the blades of the rotor are designed to flex so that the pitch of the blades will vary as a function of fluid velocity. In one example, the powertrain _η) is attached to the rear hub, and the front wheel of the rotor rotates with a free state of 9 201043778 j^j^/Dpu. In such embodiments, the pitch of the blade can be set to change as the pressure applied by the fluid to the blade changes as a function of fluid velocity.

現在參看圖1、圖2及圖3,繪示流體能量轉換器1〇〇 的一實施例。流體能量轉換器100包含轉子1、動力系80、 尾部60及塔架70。在一實施例中,轉子丨可具有多個葉 片1、一前輪較34、一後輪較44、一導流罩50及一轴桿 28。在一些實施例中,葉片1〇可大體上為彎曲結構,其中 一個或多個流體ϋ片形成至其表面内。依據尺寸及所要之 強度重量比,葉片10可由諸如金屬片、複合材料(包含碳 纖維、玻璃纖維及聚酯樹脂)、塑膠等材料或任何其他合適 材料來製造。 在一些實施例中’轉子1之長度直徑比 Oength-to-diameterratio)約為〇.8:1,但此比率可根據應用 而變化,且可在'約1:1〇至、約10:1之範圍内變化。故體 能量轉換器100產生能量的實施例中,葉片1〇較佳是妳组 態以捕捉轉喊體(諸如錢或水)㈣能,並將=极Referring now to Figures 1, 2 and 3, an embodiment of a fluid energy converter 1A is illustrated. The fluid energy converter 100 includes a rotor 1, a powertrain 80, a tail 60, and a tower 70. In one embodiment, the rotor cymbal may have a plurality of blades 1, a front wheel 34, a rear wheel 44, a shroud 50, and a shaft 28. In some embodiments, the blade 1 can be generally a curved structure in which one or more fluid rafts are formed into its surface. The blade 10 may be fabricated from materials such as metal sheets, composite materials (including carbon fibers, glass fibers, and polyester resins), plastics, or any other suitable material, depending on the size and desired strength to weight ratio. In some embodiments, 'the rotor 1 has a length to diameter ratio Oength-to-diameter ratio' of about 〇.8:1, but this ratio may vary depending on the application, and may be at about 1:1 〇 to about 10:1. Changes within the scope. In the embodiment in which the body energy converter 100 generates energy, the blade 1 is preferably configured to capture a shunt (such as money or water) (four) energy, and will be =

到的動能轉換級轉機械能。在流體能量轉絲漏 體移動的實施例中,諸如在壓縮機或iφ ° ;u 用以在所要方向上引導流體。在^ 、片1◦較佳是 二貝她例中,鸯g Η 可經組態以壓縮流體且/或使流體之移動 太 用,在提及流體或流體流與葉片10 (或轉子The kinetic energy conversion stage to mechanical energy. In embodiments where the fluid energy transfer wire is moved, such as at a compressor or iφ °; u is used to direct the fluid in a desired direction. In the case of ^, 片, 二, preferably, 鸯g Η can be configured to compress the fluid and/or to make the fluid move too much, in reference to the fluid or fluid flow with the blade 10 (or rotor)

互作用時,術語「捕捉」是指由葉片i 之間的X ^(resistance) ^ 的體積且/或增加自流體向轉子1的動能傳送 "IL儀 10 201043778 =參看圖i至圖5C,描述葉片i〇之一實施例。葉 =大一體上為長的、纖細的腎曲形狀,其前端及後1 附接至W餘34及後締44。葉片1()可彎曲 中將流體中之動能轉換為旋轉機械能: 轉換為流财之動糾,騎趙之引導最佳化。In the case of interaction, the term "capture" means the volume of X ^(resistance) ^ between the blades i and/or the kinetic energy transfer from the fluid to the rotor 1 "IL instrument 10 201043778 = see Figures i to 5C, One embodiment of the blade i is described. Leaf = large one is a long, slender kidney shape with its front and back 1 attached to W and 34 and then to 44. The blade 1() is bendable to convert the kinetic energy in the fluid into rotational mechanical energy: It is converted into a dynamic correction, and the guidance of riding Zhao is optimized.

O 實施=’每-葉片10之前部區段12具有前; Π ’其中前彎曲部分17之平均中心(未圖示)朝葉片^刀 j刖方定位,且在徑向中離開縱軸8。在一些實施 前料部分17並非單個半徑,而是由多個半徑形成 實施例中’前彎曲部分17之凸面朝向縱轴8及轉子: 部,而前彎曲部们7之凹面朝向平均中心。在一些實' 中,前部區段12之縱搖自前根部附接部分13至靠近二 18之前過渡部分16而變化,以造成葉片1〇之角速二 (angularveiodty)的變化。在一些實施例中,前過渡 16之縱搖可為30度’而前根部附接部分13之縱搖可為刈 度。在其他實施例中,前部區段12之縱搖及扭轉(twi呦將 根據應用而變化。在一些實施例中,後部區段22可包含縱 搖為20度的後過渡部分26,而後根部附接部分23之縱搖 可為40度。在一些實施例中,扭轉或縱搖之變化自前過渡 部分16至前根部附接部分π及自後過渡部分26至後根部 附接σ卩分23疋線性的。在其他實施例中,扭轉為非線性 的,且朝前根部附接部分13及後根部附接部分23而增加。 在具有較高角速度的應用中,葉片10之縱搖通常將較少, 11 201043778 可接近零度,且在一些情況下可為負。舉例而言,在具有 較高角速度之風力渦輪機中’前過渡部分W之縱搖可為零 度,且後過渡部分26之縱搖可為負10度。在具有較低角 速度及/或不同流體的實施例中,葉片1〇之縱搖可大於60 度。在一些實施例中’前部區段12及後部區段22具有相 同的縱搖,而在其他應用中’後部區段22之縱搖大於前部 區段12之縱搖。在一些實施例中,諸如在風力渦輪機中, 後部區段22之縱搖可比前部區段12之縱搖小10度。 仍參看圖1至圖5C ’每一葉片1〇由前根部附接部分 13、前部區段12、頂部18、後部區段22及後根部附接部 分23組成。前根部附接部分13用於將每一葉片1〇附接至 前輪穀34,且包含一個或多個前調整片(front tab) 14。 在一些實施例中,前調整片14可具有一個或多個前孔15, 標準扣件(未圖示)穿過所述前孔而插入,以將葉片1〇 附接至前輪轂34。在一些實施例中,使用兩個前調整片 14,一個用以將葉片10附接至前輪轂34之前部,另—個 用以將葉片10附接至前輪轂34之後部。在一些實施例中, 前輪轂34及後輪轂44是相似的,但在一些應用中,導流 罩50位於轉子1前方,從而使前輪轂34的不同組態成為 必要。在一些實施例中,後根部附接部分23使用相同方法 將後部區段22附接至後輪轂44。兩個後調整片24 (其每 一者具有一個或多個後孔25)經組態以提供至後輪轂44 的附接。 前輪轂34及後輪轂44大體上為圓柱形管,其每—者 12 201043778 在中心具有一鑽孔(bore),以允許前軸承38插入至前輪 轂34中,且允許後軸承48插入至後輪轂44中。前輪轂 =及後輪穀44是堅硬的承載貞載的組件,且視應用而定 .可由金屬(諸如鋁及鋼)、塑膠(包含可被模製的塑膠)、 ^合材料(諸如碳纖維)或任何其他合適材料製成。前輪 轂34及後輪數44可具有多個前狹槽(sl〇t) 3〇及後狹槽 40,可以與前根部附接部分13及後根部附接部分23相同 0 的角度將所述狹槽切入至(cut into)輪轂34、44中。根部附 接部分13、23可插入至狹槽3〇、4〇中,並用旋擰至輪轂 孔(hub hole) 32、42 中之標準扣件(standard fastener;) 來緊固。在一些實施例中,輪轂孔32、42不帶螺紋,而是 為螺栓(bolt)(未圖示)提供間隙,所述螺栓自前調整片 14及後調整片24中之第一者延伸穿過輪轂孔32、42,並 最終穿過前調整片14及後調整片24中之第二者。在一些 實施例中’使用螺帽(nut)及鎖緊墊圈(iockwasher)(未 圖示)來收緊及緊固螺栓。 Ο 仍參看圖1至圖5C ’前過渡部分16表示自前部區段 12至頂部18之過渡。縱搖之扭轉延續至頂部18之最外部 分,在一些實施例中,縱搖在此處為零度。在一些實施例 中,頂部18之最外部分(界定轉子1之外徑的部分)處的 弦並不與界定轉子1之外徑的圓相切,而是相對於此切線 以一角度而偏移。如本文所使用’術語「切向的縱搖」是 指相對於由頂部18之最外部分所定義之圓之切線的弦角 (chord angle)。切向的縱搖在相對於縱搖所產生之抬升(lift) 13 201043778 j^fjuopn 的平面成9G朗平面上產生抬升。具有負角度之切向的縱 搖表不-種弦’其輪廊(prGfile)在圓之内侧徑向中具有前緣 且在圓之外侧具有後緣。在—些實施例巾,頂部18呈 度的切向的龍,其表示略指_子丨之中心的弦^ 角度在控向中離開中心且與旋轉方向正切的方向上形成抬 升。所述抬升之切向分量在旋轉方向上拉動轉子卜從❿ 在流體能量轉換器100經組態以將流體中之動能轉換為旋 轉機械能時向轉子1添加動力。 仍參看圖1至圖5C,描述葉片1〇之流體络片。在—〇 些實轭例中,如部區段12、頂部18及後部區段22之箔片 可不同’以解決自根部附接部分13、23至頂部18之角速 度的差異’且亦增加流體能量轉換器觸在重要區域(諸 如頂部18)中的動力提取。在一些實施例中,可在根部附 接部分13/ 23處使用與前過渡部分16及後過渡部分% 處不同的f自片。在一些實施例中,靠近前根部附接部分13 之前部區段12使用平坦的板型箔片17〇,其具有圓形邊 緣,如圖5B中所示之輪廓。在前過渡部分16、頂部丨8 ❹ 及後過渡部分26處,所述箔片可變為典型的流體箔片172 (如圖5A所不)’以造成角速度之提高。在後根部附接部 分23附近,流體箔片可再次變為圖5(:所示之彎曲箔片 174。 流體绪片Π〇、172、174之輪廓可依據流體能量轉換 器100之角速度、流體、尺寸及應用而變化。為了將製造 成本降炱最低,在一些實施例中,流體能量轉換器1〇〇在 14 201043778 -- 葉片10之整個長度上使用平坦箔片170。在其他應用中, 諸如在大型風力渦輪機中,流體能量轉換器1〇〇在葉片1〇 之整個長度上使用流體箔片172。在涉及風力渦輪機之其 他應用中,流體能量轉換器100可在葉片1〇之長度上使用 兩個、三個、四個或更多翼面(airf〇ils),以造成葉片之 不同區域處的角速度的變化。前部區段12及後部區段22 所執行之不同功能可能需要箔片17〇、172、174之不同組 q 態。對於許多風力渦輪機而言,(例如)SG 6040、NACA 4412 或NACA 4415是可接受的翼面,但可使用許多不同的葉 片。對於小型風力渦輪機而言,SD 2030為較佳選擇。 仍參看圖1至圖5C,在一些實施例中,葉片之弦 長度約為轉子1之直徑的6%。最佳弦長度將隨雷諾數 (Reynoldsrmmber)、轉子1之直徑、流體之速度、流體類 型、角速度之變化,以及流體能量轉換器1〇〇是將動能轉 換為旋轉能抑或相反地使用機械旋轉能將動能賦予流體而 變化。在一些實施例中,弦長度在後部區段22上將比在前 〇 部區段12上短,而在其他實施例中,弦長度在後部區段 22上將比在前部區段12上長。在一些實施例中,前部區 ί又12及後部區段22之弦長度自輪轂34、44向頂部18在 長度上減小或漸縮1 〇度。在其他實施例中,所述弦長度在 輪轂34、44處較長’且朝頂部18遵循非線性漸縮(taper)。 一般而言,當使用非線性漸縮時,弦長度隨著自頂部18 朝前部區段12與後部區段22之中間移動而逐漸増加,且 自區段12、22之中間分別至輪轂34、44迅速增加。 15 201043778 ^^tjuopu 在一些實施例中,流體能量轉換器100很少遭受頂邹 損失,甚至不遭受頂部損失,因為頂部18之切向縱搖不僅 產生動力,而且防止流體在頂部18周圍逃逸。轉子1之— 些實施例藉由利用弦長度在頂部18處最長且分別朝輪輕: 34、44減小之倒錐形(reverse taper)來利用此現象。视應用 而定,前部區段12及後部區段22可不具有相同錐形,且 後部區段22可具有錐形,而前部區段12具有倒錐形。在 前部區段12及後部區段22在相同方向上漸縮的實施例 中’錐形之最佳角度可不同。在另外其他實施例中,前部 區段12及後部區段22均不使弦長度漸縮。此情形可能是 出於製造原因(諸如葉片10上之應力),而非空氣動力學 或流體動力學效率。成本亦可能為一因素,因為在—些應 用中’在不使弦長度漸縮的情況下製造葉片1〇是較朽 的。 a 仍參看圖1、圖2及圖3,在一些實施例中,諸如在 風力渦輪機或風車中,流體能量轉換器100包含尾部6〇, 尾部60經組態以在風之方向變化期間,使轉子丨保持指向 風中。在一些實施例中,尾部6〇具有四個尾部翼片Μ, 而在其他實施例中,可使用1個、2個、3個、4個、$個 或更多尾部翼片62。尾部軸桿64大體上為圓桎形桿,其 將尾60連接至尾部主體66。較佳的是,使用具有較高 的強度重量比的材料來構造尾部6〇之組件;此材料 鋁、鈦、碳纖維、破璃纖維及聚酯樹脂或環氧樹脂,或塑 膠。在一些實施例中,尾部翼片62、尾部軸桿64及尾二 16 201043778O. Implementation = 'every-blade 10 front section 12 has a front; Π' wherein the average center (not shown) of the front curved portion 17 is positioned toward the blade and away from the longitudinal axis 8 in the radial direction. In some embodiments, the feed portion 17 is not a single radius, but is formed by a plurality of radii. The convex portion of the front curved portion 17 in the embodiment faces the longitudinal axis 8 and the rotor: portion, while the concave portion of the front curved portion 7 faces the average center. In some real terms, the pitch of the front section 12 varies from the front root attachment portion 13 to the transition portion 16 prior to the second 18 to cause a change in the angular velocity of the blade. In some embodiments, the pitch of the front transition 16 can be 30 degrees' and the pitch of the front root attachment portion 13 can be a twist. In other embodiments, the pitch and twist of the front section 12 (twi呦 will vary depending on the application. In some embodiments, the rear section 22 may include a rear transition portion 26 that is pitched at 20 degrees, and the rear root portion The pitch of the attachment portion 23 can be 40 degrees. In some embodiments, the twist or pitch changes from the front transition portion 16 to the front root attachment portion π and from the rear transition portion 26 to the rear root attachment σ 卩 23疋 Linear. In other embodiments, the twist is non-linear and increases toward the front root attachment portion 13 and the rear root attachment portion 23. In applications with higher angular velocities, the pitch of the blade 10 will typically Fewer, 11 201043778 may be close to zero, and in some cases may be negative. For example, in a wind turbine with a higher angular velocity, the pitch of the 'front transition portion W may be zero degrees, and the longitudinal portion of the rear transition portion 26 The shake may be minus 10 degrees. In embodiments having lower angular velocities and/or different fluids, the pitch of the blade 1 may be greater than 60 degrees. In some embodiments, the 'front section 12 and the rear section 22 have The same pitch, but in other applications' The pitch of the section 22 is greater than the pitch of the front section 12. In some embodiments, such as in a wind turbine, the pitch of the rear section 22 can be 10 degrees smaller than the pitch of the front section 12. Referring to Figures 1 to 5C, 'each blade 1' is composed of a front root attachment portion 13, a front portion 12, a top portion 18, a rear portion 22, and a rear root attachment portion 23. The front root attachment portion 13 is used for Each blade 1〇 is attached to the front wheel valley 34 and includes one or more front tabs 14. In some embodiments, the front tab 14 may have one or more front holes 15, standard buckle A member (not shown) is inserted through the front aperture to attach the blade 1〇 to the front hub 34. In some embodiments, two front tabs 14 are used, one for attaching the blade 10 to The front hub 34 is front and the other is used to attach the blade 10 to the rear of the front hub 34. In some embodiments, the front hub 34 and the rear hub 44 are similar, but in some applications, the shroud 50 Located in front of the rotor 1 to make different configurations of the front hub 34 necessary. In some embodiments, the rear root is attached The portion 23 attaches the rear section 22 to the rear hub 44 using the same method. The two rear tabs 24, each having one or more rear apertures 25, are configured to provide attachment to the rear hub 44. The front hub 34 and the rear hub 44 are generally cylindrical tubes each having a bore at the center 12 to allow the front bearing 38 to be inserted into the front hub 34 and allowing the rear bearing 48 to be inserted rearward In the hub 44. The front hub = and the rear wheel valley 44 are rigid load-bearing components, depending on the application. Metal (such as aluminum and steel), plastic (including plastic that can be molded), composite materials Made of (such as carbon fiber) or any other suitable material. The front hub 34 and the rear wheel number 44 can have a plurality of front slots 3〇 and a rear slot 40, which can be the same angle as the front root attachment portion 13 and the rear root attachment portion 23 The slots cut into the hubs 34, 44. The root attachment portions 13, 23 can be inserted into the slots 3, 4, and fastened with standard fasteners that are screwed into the hub holes 32, 42. In some embodiments, the hub bores 32, 42 are unthreaded, but provide a gap for a bolt (not shown) that extends through the first of the front tab 14 and the rear tab 24 The hub holes 32, 42 ultimately pass through the second of the front tab 14 and the rear tab 24. In some embodiments, 'nuts' and iphone washers (not shown) are used to tighten and tighten the bolts. Still referring to Figures 1 through 5C, the front transition portion 16 represents the transition from the front section 12 to the top 18. The twisting of the pitch continues to the outermost portion of the top portion 18. In some embodiments, the pitch is zero degrees here. In some embodiments, the chord at the outermost portion of the top portion 18 (the portion defining the outer diameter of the rotor 1) is not tangent to the circle defining the outer diameter of the rotor 1, but is offset at an angle relative to the tangent shift. As used herein, the term "tangential pitch" refers to the chord angle relative to the tangent to the circle defined by the outermost portion of the top portion 18. The tangential pitch is raised in a 9G plane relative to the plane of the lift 13 201043778 j^fjuopn produced by the pitch. A tangential oscillating table having a negative angle does not have a chord whose prGfile has a leading edge in the radial direction of the inner side of the circle and a trailing edge on the outer side of the circle. In some embodiments, the top 18 is a tangentially tangential dragon that indicates that the chord angle at the center of the _ sub 丨 is raised in the direction of the center of the steering and tangential to the direction of rotation. The tangential component of the lift pulls the rotor in the direction of rotation. The fluid energy converter 100 is configured to add power to the rotor 1 when it is configured to convert kinetic energy in the fluid into rotational mechanical energy. Still referring to Figures 1 through 5C, a fluid pattern of the blade 1 is described. In these yoke examples, the foils such as section 12, top 18 and rear section 22 may be different 'to account for the difference in angular velocity from the root attachment portions 13, 23 to the top 18' and also increase the fluid The energy converter touches the power extraction in an important area, such as the top 18 . In some embodiments, a f-slice different from the front transition portion 16 and the rear transition portion % may be used at the root attachment portion 13/23. In some embodiments, the front section 12 adjacent the front root attachment portion 13 uses a flat sheet-shaped foil 17 turns having a rounded edge, as shown in Figure 5B. At the front transition portion 16, the top 丨8 ❹ and the rear transition portion 26, the foil can be changed to a typical fluid foil 172 (as shown in Figure 5A) to cause an increase in angular velocity. In the vicinity of the rear root attachment portion 23, the fluid foil can again become the curved foil 174 shown in Figure 5. The profile of the fluid pattern 172, 172, 174 can depend on the angular velocity of the fluid energy converter 100, the fluid In order to minimize manufacturing costs, in some embodiments, the fluid energy converter 1 uses a flat foil 170 over 14 201043778 - the entire length of the blade 10. In other applications, For example, in large wind turbines, the fluid energy converter 1 使用 uses the fluid foil 172 over the entire length of the blade 1 。. In other applications involving wind turbines, the fluid energy converter 100 can be on the length of the blade 1〇 Two, three, four or more airf〇ils are used to cause variations in angular velocity at different regions of the blade. The different functions performed by the front section 12 and the rear section 22 may require foil Different sets of q states of slices 17 172, 172, 174. For many wind turbines, for example, SG 6040, NACA 4412 or NACA 4415 are acceptable airfoils, but many different blades can be used. For small wind turbines, SD 2030 is a preferred choice. Still referring to Figures 1 through 5C, in some embodiments, the chord length of the blade is about 6% of the diameter of the rotor 1. The optimal chord length will follow the Reynolds number ( Reynoldsrmmber), the diameter of the rotor 1, the velocity of the fluid, the type of fluid, the change in angular velocity, and the fluid energy converter 1 〇〇 converts kinetic energy into rotational energy or vice versa, using mechanical rotational energy to impart kinetic energy to the fluid. In an embodiment, the chord length will be shorter on the rear section 22 than on the front crotch section 12, while in other embodiments the chord length will be longer on the rear section 22 than on the front section 12. In some embodiments, the chord lengths of the front regions 又12 and the rear section 22 decrease or taper by a length from the hubs 34, 44 toward the top 18. In other embodiments, the chord length Longer at the hubs 34, 44 and following a nonlinear taper towards the top 18. In general, when nonlinearly tapered, the chord length follows from the top 18 toward the front section 12 and the rear section The middle of the segment 22 moves and gradually increases, and from the segments 12, 22 In the middle, the hubs 34, 44 are rapidly increased respectively. 15 201043778 ^^tjuopu In some embodiments, the fluid energy converter 100 rarely suffers from a loss of top, even without suffering a top loss, because the tangential pitch of the top 18 not only produces Power, and to prevent fluid from escaping around the top portion 18. Some embodiments of the rotor 1 utilize this by utilizing a reverse taper that is the longest at the top 18 and lighter toward the wheel: 34, 44. Phenomenon. Depending on the application, the front section 12 and the rear section 22 may not have the same taper, and the rear section 22 may have a taper, while the front section 12 has an inverted cone. In the embodiment where the front section 12 and the rear section 22 are tapered in the same direction, the optimum angle of the 'cone may vary. In still other embodiments, neither the front section 12 nor the rear section 22 tapers the chord length. This may be for manufacturing reasons (such as stress on the blade 10) rather than aerodynamic or hydrodynamic efficiency. Cost can also be a factor because it is more damaging to make the blade 1 without shrinking the length of the string in some applications. a Still referring to Figures 1, 2 and 3, in some embodiments, such as in a wind turbine or windmill, the fluid energy converter 100 includes a tail 6 that is configured to change during the direction of the wind, such that The rotor 丨 remains pointing in the wind. In some embodiments, the tail 6 has four tail fins, while in other embodiments, one, two, three, four, $ or more tail fins 62 can be used. The tail shaft 64 is generally a rounded rod that connects the tail 60 to the tail body 66. Preferably, the material of the tail portion 6 is constructed using a material having a high strength to weight ratio; the material is aluminum, titanium, carbon fiber, glass fiber and polyester resin or epoxy resin, or plastic. In some embodiments, the tail flap 62, the tail shaft 64, and the tail two 16 201043778

二 來麟,成㈣速原物 在一些實施例中,尾部主體66具 η:軸桿28之插入的一個腔。軸桿28可藉由使^ ::地體適方法 (hingepinhole)68,鉸鏈銷孔⑽具有垂直於抽孔The second main body, in some embodiments, the tail main body 66 has a cavity in which the y: shaft 28 is inserted. The shaft 28 can have a hinge pin hole (10) perpendicular to the hole by means of a ^:gegepinhole 68

=?:座72 於其上之表面平行的平二 鏈銷孔8切鉸鏈銷(未圖示)之插入,鉸鏈銷被以干步 配合而按壓至尾部主體66中。尾部主體66中之第二腔= 納鉸鏈67之插入,鉸鏈67可為尾部主體66與塔架7〇之 間的界面;鉸鏈67允許轉子1縱搖及橫搖。 、鉸鏈67可為堅固耐用的組件,其在一些實施例中由 鋼或銘製成。在流體能量轉換H⑽較小且/或負載較輕的 一些實施例中,鉸鏈67可由模製的塑膠(諸如充填有^螭 之耐綸(nylon))或複合材料製成。鉸鏈67包含埋頭孔 (counterbore) ’所述埋頭孔具有垂直於軸桿28之軸的轴, 且在其最上部分處其内徑略大於塔架7〇的直徑。塔架軸承 78在一些實施例中為滾針推力軸承(needle thr^t bearing) ’其外徑大致與塔架7〇之最上部分的直徑相同, 且位於鉸鏈67之埋頭孔内在塔架70與鉸鏈67之間。塔架 軸承78提供轉子1之低摩擦橫搖。在一實施例中,鉸鏈 67在其最上部分附近具有兩個盲孔,以允許鉸鏈銷&之 插入,鉸鏈銷65穿過鉸鏈銷孔68而插入。鉸鏈銷孔68 17 201043778 ^^^υοριι 之直徑較佳是略大於鉸鏈銷65,以允許鉸鏈銷65自由旋 轉。在—些實施例中’不使用尾部60,而是使用人們普遍 知曉的橫搖傳動裝置來控制轉子丨的橫搖,並維持轉子i 相對於流體流的所要定向。 下文是對流體能量轉換器100之各種動力提取模式的 理論描述。能量轉換器100及/或轉子丨之任何給定實施例 的實際效能受多種因素控制;因此,除非另有特別陳述, 否則以下對操作原理之描述應被理解為一般化的、理論性 的且/或不限制本文所描述的裝置及其使用方法的發明性 ❹ 實施例。 現在參看圖1及圖6,描述穿過轉子i之壓力差效應。 圖6繪示流動的流體112中之轉子〗的示意圖,其中流體 U2之流動方向由箭頭指示。隨著流體112在轉子丨旋轉 時接觸葉片10的前部區段12,流體112被引導而在徑向 中離開轉子1的中心。此現象之效應為:在葉片頂部a 之内表面上形成内部高壓區域1U ,且在轉子丨之中心形 成内部低壓區域100。内部低壓區域11〇使轉子丨前方^ 流體112加速。當越in為空氣時,可用的動力增加了 0 風速之增加量的立方。 舉例而言,當轉子1轉動(例如,在每秒1〇米的 中)時,内部低壓區域110使流體112加速穿過轉子i。 若内部低壓區域110使轉子1自環繞轉子丨之直徑比轉子 1之直徑大20%的區域汲取流體112,則轉子丨之有效 積將增加44%。此情形使流體112穿過轉子丨之速度^加 18 201043778 桃,且流體112中之可用動力的量增加約3倍。此可用 動力之增加使轉子1之角速度增加,其更快速地推動流體 112使從向地離開轉子丨之中❼隨著流體ιΐ2更有力地 被引‘而禮向地離開轉子1之中心,内部低壓區域110之 . 尺寸增加。隨著内部低壓區域110的擴大,流經轉子i之 ^ 112更快地加速,從而增加可用的動力。結果是流體 月匕里轉換器100在用作風力渦輪機時之更高效的能量捕 捉。應注意,此現象亦可在流體能量轉換器1〇〇之其他應 用(諸如壓縮機、螺旋槳、泵及水力渦輪機)中出現。 仍參看圖1及圖6,當自大於由轉子丨之直徑界定之 區域的有效區域汲取流體112時,鄰近於接近葉片1〇之前 部區段12之流體112的流體112經由黏性交互作用而受影 響,且遵循類似的路徑。結果是流體112被壓縮至頂部18 之外表面上,從而形成外部高壓區域113,其環繞轉子i。 頂部18上之内部兩壓區域Hi及外部高壓是Η]使與轉子 1之動力產生表面交互作用之流體U2的密度增加,從而 〇 使得流體能量轉換器1〇〇可提取之動力的量進一步增加。 結果是流體能量轉換器100在用作風力滿輪機時之更高效 的能量捕捉。此現象亦可在流體能量轉換器100之其他應 用(諸如壓縮機、螺旋槳、泵及水力渦輪機)中出現。 現在參看圖7 ’描述轉子1之流體動力學特性。在一 些應用中,流體112在轉子1内被引導或移動,以最大化 自流體112中之動能的能量提取。圖7繪示自頂部觀看之 葉片10的示意性剖視圖。在所描繪之實施例中,葉片10 19 201043778=?: The seat 72 is inserted with a flat hinge pin 8 parallel to the surface thereof to cut the hinge pin (not shown), and the hinge pin is pressed into the tail body 66 in a dry step fit. The second cavity in the tail body 66 = the insertion of the nano hinge 67, which can be the interface between the tail body 66 and the tower 7〇; the hinge 67 allows the rotor 1 to pitch and roll. The hinge 67 can be a rugged component, which in some embodiments is made of steel or inscription. In some embodiments where the fluid energy conversion H(10) is small and/or lightly loaded, the hinge 67 can be made of molded plastic (such as nylon filled with nylon) or composite material. The hinge 67 includes a counterbore. The counterbore has a shaft perpendicular to the axis of the shaft 28, and its inner diameter is slightly larger than the diameter of the tower 7'' at its uppermost portion. The tower bearing 78, in some embodiments, is a needle thrust bearing, the outer diameter of which is substantially the same as the diameter of the uppermost portion of the tower 7〇, and is located within the counterbore of the hinge 67 in the tower 70 and Between the hinges 67. The tower bearing 78 provides a low friction roll of the rotor 1. In one embodiment, the hinge 67 has two blind holes near its uppermost portion to allow insertion of the hinge pin & the hinge pin 65 is inserted through the hinge pin hole 68. The diameter of the hinge pin hole 68 17 201043778 ^^^υοριι is preferably slightly larger than the hinge pin 65 to allow the hinge pin 65 to freely rotate. In some embodiments, instead of the tail 60, a widely known roll gear is used to control the roll of the rotor turns and maintain the desired orientation of the rotor i relative to the fluid flow. The following is a theoretical description of the various power extraction modes of the fluid energy converter 100. The actual performance of any given embodiment of energy converter 100 and/or rotor 受 is governed by a number of factors; therefore, unless otherwise stated otherwise, the following description of the principles of operation should be understood as generalized, theoretical, and / / Not limiting the inventive ❹ embodiment of the device described herein and methods of use thereof. Referring now to Figures 1 and 6, the pressure differential effect across rotor i is described. Figure 6 is a schematic illustration of the rotor in the flowing fluid 112, wherein the direction of flow of the fluid U2 is indicated by the arrows. As the fluid 112 contacts the front section 12 of the blade 10 as the rotor turns, the fluid 112 is directed away from the center of the rotor 1 in the radial direction. The effect of this phenomenon is that an inner high pressure region 1U is formed on the inner surface of the blade top a, and an inner low pressure region 100 is formed at the center of the rotor bore. The inner low pressure region 11 加速 accelerates the front of the rotor. When the in in is air, the available power increases by a cube of the increase in wind speed. For example, when the rotor 1 is rotated (e.g., in a 1 meter per second), the internal low pressure region 110 accelerates the fluid 112 through the rotor i. If the inner low pressure region 110 causes the rotor 1 to draw fluid 112 from a region of the circumference of the rotor which is 20% larger than the diameter of the rotor 1, the effective volume of the rotor turns will increase by 44%. This situation increases the velocity of the fluid 112 through the rotor 加 plus 18 201043778 peaches, and the amount of available power in the fluid 112 increases by a factor of about three. This increase in available power increases the angular velocity of the rotor 1, which pushes the fluid 112 more rapidly away from the rotor 向 from the ground, 被 pleasingly as the fluid ΐ 2 is more strongly directed away from the center of the rotor 1 The low pressure region 110 has an increased size. As the internal low pressure region 110 expands, the flow through the rotor i accelerates faster, thereby increasing the available power. The result is a more efficient energy capture of the fluid mile converter 100 when used as a wind turbine. It should be noted that this phenomenon can also occur in other applications of the fluid energy converter 1 such as compressors, propellers, pumps, and hydro turbines. Still referring to Figures 1 and 6, when fluid 112 is drawn from an active area greater than the area defined by the diameter of the rotor, the fluid 112 adjacent to the fluid 112 proximate the front section 12 of the blade 1 passes the viscous interaction. Affected and follow a similar path. The result is that the fluid 112 is compressed onto the outer surface of the top 18, thereby forming an outer high pressure region 113 that surrounds the rotor i. The internal two-pressure zone Hi and the external high pressure on the top 18 are such that the density of the fluid U2 interacting with the power generating surface of the rotor 1 is increased, so that the amount of power that the fluid energy converter 1 can extract is further increased. . The result is a more efficient energy capture of the fluid energy converter 100 when used as a wind turbine. This phenomenon can also occur in other applications of the fluid energy converter 100, such as compressors, propellers, pumps, and hydro turbines. Referring now to Figure 7', the hydrodynamic characteristics of the rotor 1 are described. In some applications, fluid 112 is directed or moved within rotor 1 to maximize energy extraction from kinetic energy in fluid 112. Figure 7 depicts a schematic cross-sectional view of the blade 10 as viewed from the top. In the depicted embodiment, the blade 10 19 201043778

J^fJUOplI 之前部區段12及後部區段22 當流體112接觸前部區段12時,、、::平f落片170。 127,亦即,若前部區段12相對於=曲成流體流 角(angle of attack),則流體、机體112之淹動具有攻 改變方向。當前部驗越丨前部㈣12之後 流體肋續方向,且核贱=㈣段12時, 1〇 128亦在大致與轉子〗之旋轉方奴112之後,内部流體 内部流體128 P遺後自不同於产㈣^相反的方向上旋轉。此 度的角度來接觸葉片10中之12接觸前部區段12之角 出現此情況,是因為前部tr2t的後部區段22。之所以 動方向。此外,内部流體128亦經更改内4流體128之流 隨著内部流體128繼續穿過轉子°地向外朝頂部18移動。 受到與周圍流體112之黏性交互你1之内部,内部流體丨28 之移動的-分量在與轉子i相用的影響,周圍流體112 内部流體128到達後部區段22 、方向上旋轉。因此,當 128不在與前部區段流體127相’在一些實施例中,流體J^fJUOplI Front section 12 and rear section 22 When the fluid 112 contacts the front section 12, the following: 127, that is, if the front section 12 is curved with respect to the angle of attack, the flooding of the fluid and the body 112 has an attack change direction. The current part of the inspection is the direction of the fluid rib after the front (4) 12, and the core 贱 = (4) section 12, 1〇128 is also after the rotation of the slave slave 112, the internal fluid internal fluid 128 P is different from the internal Produce (four)^ rotate in the opposite direction. This angle is such that contact 12 of the blade 10 contacts the corner of the front section 12 because of the rear section 22 of the front tr2t. The reason for moving. In addition, the internal fluid 128 is also modified by the flow of the internal 4 fluid 128 as the internal fluid 128 continues to move outwardly through the rotor toward the top 18. Under the interaction with the surrounding fluid 112, the internal component of the internal fluid 丨 28 is affected by the use of the rotor i, and the surrounding fluid 112 internal fluid 128 reaches the rear section 22 and rotates in the direction. Thus, when 128 is not in phase with the front section fluid 127, in some embodiments, the fluid

Q 成内部流體128之正確攻角,將7的方向上流動。為了形 搖’在-些實施例中,所述縱抵^^區段22設定於-縱 同。在-些實施例中,後部區段^部區1免12之縱搖不 之縱搖小10度,但後部區段2之縱搖比前部區段12 型、流體能量轉換器1〇〇之角、乘之縱搖將隨流體112之類 之用途以及流體112之速度而、流體能量轉換器100 現在參看圖7及圖9,當二 絆區段流體129經過後部 20 201043778 JHJUDpii Ο Ο 區段22時,因兵興後部區段22之交互作用,其方向冉次 更改。後部區段流體129在大致與後部區段弦22平行的方 向上移動,所述方向在一些實施例中可被設定為接近於〇 度的縱搖。因此’後部區段流體129在大致徑向離開轉子 1之中心的方向上移動。在圖9中,當後部區段流體129 離開轉子1時’將後部區段流體129之方向繪示為來自轉 子1後方。後部區段流體129之一分量正徑向離開轉子i 之中心。此動作進一步加深内部低壓區域110,增加内部 高壓區域111,且增加外部高壓區域113 (圖6中繪示)。 參看圖8’描述流體112在頂部18處之效應。圖8為 頂部18之輪廓的示意性橫剖面正視圖。在所示之實施例 中,頂部18具有圖5B中所描述的平坦箔片17〇。旋 向1M由陰影線弯曲箭頭所緣示,且轉子半徑9由陰 所繪示。可看出’在此實例中,頂部弦29並 二 9成9〇度或相切,而是具有_6度的切向縱搖。;轉:= 例中,隨著流體叫皮前部區段12朝頂部 ^ $ 且隨著流體m穿過轉子】時,流體112到達=導 -些實施财,頂部μ有助於防止經過頂 ^體在 逃脫轉子1之轉,且使頂賴域至最小。TMHU2 改流體I12之控向移動,使得流體 可更 子1。負切向縱搖亦將形成切向抬升m:以=至轉 示’戶=在旋轉方向174上具有較小:向=指 子1添加動力。 J置從而向轉 現在參看圖1、圖3、圖 圖4B、圖4C及圖8, 21 201043778 描述葉片10之撓曲。在—些實施例中,流體112之速度及 /或轉子1之角速度的變化可引起前部區段12之縱搖、頂 部18處之切向縱搖以及葉片1〇之後部區段22之縱搖的變 化。在一些實施例中,諸如在風力渦輪機中,依據流體ιΐ2 之速度及/或轉子1之角速度的變化而更改此等縱搖是有 利的。在一些實施例中,可使葉片1〇撓曲或彎曲,使得此 . 等縱搖隨流體112之速度的增加及/或角速度的增加而減 小。可藉由用可撓性材料(諸如金屬片、塑膠、複合材料) 或其他合適材料以構成葉片1〇來實現葉片1〇之撓曲。可 ❹ 藉由改變材料之厚度以及弦之長度來控制葉片1〇中之撓 曲量。隨著流體112之速度增加,其導致葉片1〇之表面上 尤其是前部區段12處的壓力增加。若前部區段12被流體 112在Θ部區段12之表面上之增加的壓力向後朝後部區段 22推動,則前部區段12之縱搖、頂部18處之切向縱搖以 及後β卩區段22之縱搖均可經組態而減小。通常,流體η〗Q is the correct angle of attack of the internal fluid 128 and will flow in the direction of 7. In order to sway, in the embodiment, the vertical section 22 is set to - the same. In some embodiments, the rear section section 1 is less than 12 pitched by 10 degrees, but the rear section 2 is pitched more than the front section 12 type, fluid energy converter 1〇〇 The corners, the pitches will be used with the fluid 112 and the like, and the fluid energy converter 100. Referring now to Figures 7 and 9, when the two-section section fluid 129 passes through the rear portion 20 201043778 JHJUDpii Ο Ο At the time of segment 22, the direction of the rear section of Bingxing was changed. The rear section fluid 129 moves in a direction generally parallel to the rear section chord 22, which in some embodiments can be set to a pitch that is close to the twist. Thus the rear section fluid 129 moves in a direction generally radially away from the center of the rotor 1. In Figure 9, the direction of the rear section fluid 129 is depicted as being from the rear of the rotor 1 when the rear section fluid 129 exits the rotor 1. One component of the rear section fluid 129 is radially away from the center of the rotor i. This action further deepens the internal low pressure region 110, increases the internal high voltage region 111, and increases the external high voltage region 113 (shown in Figure 6). The effect of fluid 112 at the top 18 is described with reference to Figure 8'. Figure 8 is a schematic cross-sectional elevation view of the outline of the top portion 18. In the illustrated embodiment, the top portion 18 has a flat foil 17 图 as depicted in Figure 5B. The rotation 1M is indicated by the hatched curved arrow, and the rotor radius 9 is shown by the shade. It can be seen that in this example, the top chord 29 is two to nine degrees nine degrees or tangent, but has a tangential pitch of _6 degrees. ; Turn: = In the example, as the fluid is called the front section 12 toward the top ^ and as the fluid m passes through the rotor, the fluid 112 reaches = guide - some implementation, the top μ helps to prevent the top The body escapes the rotation of the rotor 1 and minimizes the top field. The control movement of TMHU2 changes fluid I12 so that the fluid can be further changed to 1. The negative tangential pitch will also form a tangential lift m: with = to indicate 'home = smaller in the direction of rotation 174: add power to = finger 1. J. Thus, referring to Figs. 1, 3, 4B, 4C and 8, 21 201043778, the deflection of the blade 10 is described. In some embodiments, a change in the velocity of the fluid 112 and/or the angular velocity of the rotor 1 may cause the pitch of the front section 12, the tangential pitch at the top 18, and the longitudinal section of the rear section 22 of the blade 1〇. Shake the change. In some embodiments, such as in a wind turbine, it may be advantageous to modify such pitches depending on the speed of the fluid ι2 and/or the angular velocity of the rotor 1. In some embodiments, the blade 1 can be flexed or bent such that the pitch decreases as the velocity of the fluid 112 increases and/or the angular velocity increases. The deflection of the blade 1 can be achieved by forming a blade 1 可 with a flexible material such as a metal sheet, plastic, composite or other suitable material. The amount of deflection in the blade 1〇 can be controlled by varying the thickness of the material and the length of the string. As the velocity of the fluid 112 increases, it causes an increase in pressure on the surface of the blade 1 尤其, particularly at the front section 12. If the front section 12 is urged rearwardly toward the rear section 22 by the increased pressure of the fluid 112 on the surface of the crotch section 12, the pitch of the front section 12, the tangential pitch at the top 18, and the rear The pitch of the β卩 section 22 can be reduced by configuration. Usually, fluid η

之速度的增加將導致轉子丨之角速度的增加。在許多應用 中,角速度之增加將要求前部區段12及後部區段22 :及 頂部18之縱搖減小,以維持最佳效率。 U 當頂部18因流體112之速度增加而更快地旋轉時, 更多壓力將自流體112施加至頂部18之表面,且若葉片 10為可撓性的’則葉片10將被逆著轉子丨之旋轉方向^74 而切向地推回。此情形將使頂部18處的切向縱搖減小,此 狀況在一些實施例中是合乎需要的。 仍參看圖1、圖3、圖4A、圖4B、圖4C及圖8,在 22 201043778 ^-τ«/ 一些實施例中,動力系80附接至後輪轂44,且前輪轂34 自由旋轉。在此類實施例中,前輪轂34將在後輪轂44之 前旋轉,從而將後輪轂44向前拉動,因為後輪轂44必須 . 克服動力系80之扭矩的阻力。前輪轂34在後輪轂44之前 . 若干度的此旋轉通常在流體Π2之速度及/或角速度增加時 • 增加。前輪轂34相對於後輪轂44之此角度增加將使前部 區段12及後部區段22之縱搖以及頂部丨8處之切向縱搖減 ^ 小。 Ο Λ 現在爹看圖10至圖14,將描述葉片210周圍之流體 的攻角。葉片210在特定態樣中可類似於圖1之葉片1〇, 且可用與上文相對於葉片1〇而描繪及描述之方式類似的 方式,結合流體能量轉換器(諸如圖1之流體能量轉換器) 而使用。出於描述目的,轴ζ是指垂直於縱軸8 (本文有 時稱為軸「X」或「χ軸」)的座標軸。軸Υ自圖12、圖 ^及圖14中之頁平面中延伸出來。圖11在乂_¥平面中繪 不葉片210。出於說明目的,在圖12至圖14中提供剖面 A-A、B-B及C-C ’以描繪葉片210之流體薄片橫剖面的 相對形狀及相對位置。應注意,在大多數情況下,葉片210 之形狀在所描繪之剖面之間平滑過渡。亦應注意,圖12 至圖14中所示之橫剖面並未按比例繪製,且是出於闡釋而 非限制的目的而提供。 轉向圖12至圖14,在平面中繪示前根部流體箔 片310及後根部流體箔片312。流體32〇之流動方向由箭 頭示意性地描繪。在一些實施例中,前根部流體箔片310 23 201043778 J4JU〇pit 比前頂部流體箱片330 (圖14)厚,以增加葉片2i〇之結 構強度。縱抽8附近之角速度可低於頂部218附近之角速 度。因此,使前根部流體镇片31G比前頂部流㈣片33〇 厚可以是有利的。在-些實施财,前根部流體㈣31G 經組態以具有零度的攻角’以及Z|績前根部弦314之@ 57度的縱搖311。在其他實施例中,流體32〇之攻角可依 . 據葉片210之角速度及流體320之速度而在12度與_12度 之間變化。在另外其他實施例中,前根部流體薄片31〇之 縱搖311可大幅變化,自較高角速度應用(諸如壓縮機) 〇 中之1度,變為流體能量轉換器100緩慢地旋轉且流體320 具有較高速度的應用中之89度。 在一些實施例中’後根部流體箔片312可比前根部流 體箔片310薄。在一些實施例中’諸如在風力渦輪機中, 後根部流體箔片312與前根部流體箔片310相比將具有較 高的攻角,以促進自流體320提取動能。在一些實施例中, 後根部流體箔片312經組態以具有十度之攻角,以及z轴 與後根部弦316之間的44度的縱搖313。在其他實施例 ◎ 中’流體320之攻角可依據葉月210之角速度及流體320 之速度而在22度與-4度之間變化。在其他實施例中,後 根部流體箔片312之縱搖313可大幅變化,自較高角速度 應用(諸如壓縮機)中之1度’變為流體能量轉換器100 緩慢地旋轉且流體320具有較高速度之應用中的89度。 現在參看圖13 ’在一個實施例中’前部流體箔片322 處之攻角高於前根部流體箔片310處之攻角。在一些實施 24 201043778 例中,前部流體箔片322經組態以具有五度之攻角,以及 Z軸與前部弦324之間20度的縱搖323。在其他實施例中, 流體320之攻角可依據葉片210之角速度及流體320之速 度而在12度與-4度之間變化。在另外其他實施例中,前 部流體箔片322之縱搖323可大幅變化,自較高角速度應 '用(諸如壓縮機)中之1度,變為流體能量轉換器1〇〇緩 慢地旋轉且流體320具有較高速度之應用中的89度。 在一實施例中,後部流體箔片325處之攻角高於前部 ® 流體箔片322處之攻角。在一些實施例中,後部流體箔片 325經組態以具有八度之攻角,以及Z軸與後部弦327之 間19度的縱搖326。在其他實施例中,流體320之攻角可 依據葉片210之角速度及流體320之速度而在22度與-2 度之間變化。在另外其他實施例中,後部流體箔片325之 縱搖326可大幅變化,自較高角速度應用(諸如壓縮機) 中之1度,變為流體能量轉換器1 〇〇緩慢地旋轉且流體320 具有較高速度之應用中的89度。 〇 現在參看圖14,在一實施例中,前頂部流體箔片330 處之攻角高於前根部流體箔片310處之攻角。在一些實施 例中,前頂部流體箔片330經組態以具有五度之攻角,以 及Z軸與前頂部弦318之間20度的縱搖331。在其他實施 例中,流體320之攻角可依據葉片210之角速度及流體320 之速度而在18度與-4度之間變化。在另外其他實施例中, 前頂部流體箔片330之縱搖331可大幅變化,自較高角速 度應用(諸如壓縮機)中之1度,變為流體能量轉換器100 25 201043778An increase in the speed will result in an increase in the angular velocity of the rotor. In many applications, an increase in angular velocity will require a reduction in the pitch of the front section 12 and the rear section 22: and the top 18 to maintain optimum efficiency. U. When the top 18 rotates faster due to the increase in velocity of the fluid 112, more pressure will be applied from the fluid 112 to the surface of the top 18, and if the blade 10 is flexible 'the blade 10 will be against the rotor 丨The direction of rotation is ^74 and pushed back tangentially. This situation will reduce the tangential pitch at the top 18, which is desirable in some embodiments. Still referring to Figures 1, 3, 4A, 4B, 4C, and 8, in some embodiments, the powertrain 80 is attached to the rear hub 44 and the front hub 34 is free to rotate. In such an embodiment, the front hub 34 will rotate forward of the rear hub 44 to pull the rear hub 44 forward because the rear hub 44 must overcome the resistance of the torque of the powertrain 80. The front hub 34 precedes the rear hub 44. This degree of rotation typically increases when the velocity and/or angular velocity of the fluid Π2 increases. This increased angle of the front hub 34 relative to the rear hub 44 will reduce the pitch of the front section 12 and the rear section 22 and the tangential pitch at the top weir 8 by less. Ο Λ Referring now to Figures 10 through 14, the angle of attack of the fluid around the blade 210 will be described. The blade 210 may be similar to the blade 1〇 of FIG. 1 in a particular aspect, and may incorporate a fluid energy converter (such as the fluid energy conversion of FIG. 1) in a manner similar to that depicted and described above with respect to the blade 1〇. And use). For the purposes of this description, the axis is a coordinate axis that is perpendicular to the longitudinal axis 8 (referred to herein as the axis "X" or "χ axis"). The axis 延伸 extends from the page planes in Figure 12, Figure ^ and Figure 14. Figure 11 depicts the blade 210 in the 乂_¥ plane. For purposes of illustration, sections A-A, B-B, and C-C' are provided in Figures 12-14 to depict the relative shape and relative position of the fluid sheet cross-section of blade 210. It should be noted that in most cases, the shape of the blade 210 smoothly transitions between the depicted profiles. It should also be noted that the cross-sectional views shown in Figures 12 through 14 are not drawn to scale and are provided for purposes of illustration and not limitation. Turning to Figures 12 through 14, the front root fluid foil 310 and the rear root fluid foil 312 are shown in plan. The flow direction of the fluid 32 is schematically depicted by the arrow. In some embodiments, the anterior root fluid foil 310 23 201043778 J4JU 〇pit is thicker than the front top fluid tank sheet 330 (Fig. 14) to increase the structural strength of the blade 2i. The angular velocity near the longitudinal pumping 8 can be lower than the angular velocity near the top 218. Therefore, it may be advantageous to make the front root fluid fin 31G thicker than the front top stream (four) sheet 33. In some implementations, the front root fluid (4) 31G is configured to have an angle of attack of zero degrees and a pitch of 311 of the 57 degrees of the front root chord 314. In other embodiments, the angle of attack of the fluid 32 may vary between 12 degrees and -12 degrees depending on the angular velocity of the blade 210 and the velocity of the fluid 320. In still other embodiments, the pitch 311 of the front root fluid sheet 31 can vary widely, from 1 degree in a higher angular velocity application (such as a compressor) to a fluid energy converter 100 that slowly rotates and fluid 320 89 degrees in applications with higher speeds. In some embodiments, the rear root fluid foil 312 can be thinner than the front root fluid foil 310. In some embodiments, such as in a wind turbine, the rear root fluid foil 312 will have a higher angle of attack than the front root fluid foil 310 to facilitate extraction of kinetic energy from the fluid 320. In some embodiments, the rear root fluid foil 312 is configured to have an angle of attack of ten degrees and a pitch 313 of 44 degrees between the z-axis and the rear root chord 316. In other embodiments, the angle of attack of the fluid 320 may vary between 22 and -4 degrees depending on the angular velocity of the leaf 210 and the velocity of the fluid 320. In other embodiments, the pitch 313 of the rear root fluid foil 312 can vary widely, from 1 degree 'in a higher angular velocity application (such as a compressor) to a fluid energy converter 100 that slowly rotates and the fluid 320 has a higher 89 degrees in high speed applications. Referring now to Figure 13 'in one embodiment, the angle of attack at the front fluid foil 322 is higher than the angle of attack at the front root fluid foil 310. In some implementations 24 201043778, the front fluid foil 322 is configured to have a five degree angle of attack and a 20 degree pitch 323 between the Z axis and the front chord 324. In other embodiments, the angle of attack of fluid 320 may vary between 12 and -4 degrees depending on the angular velocity of blade 210 and the velocity of fluid 320. In still other embodiments, the pitch 323 of the front fluid foil 322 can vary widely, from a higher angular velocity to 1 degree (such as a compressor) to a fluid energy converter 1 〇〇 slowly rotating And fluid 320 has 89 degrees in applications with higher speeds. In an embodiment, the angle of attack at the rear fluid foil 325 is higher than the angle of attack at the front ® fluid foil 322. In some embodiments, the rear fluid foil 325 is configured to have an attack angle of octave and a pitch 326 of 19 degrees between the Z-axis and the rear chord 327. In other embodiments, the angle of attack of fluid 320 may vary between 22 and -2 degrees depending on the angular velocity of blade 210 and the velocity of fluid 320. In still other embodiments, the pitch 326 of the rear fluid foil 325 can vary widely, from 1 degree in a higher angular velocity application (such as a compressor) to a fluid energy converter 1 〇〇 slowly rotating and fluid 320 89 degrees in applications with higher speeds. Referring now to Figure 14, in one embodiment, the angle of attack at the front top fluid foil 330 is higher than the angle of attack at the front root fluid foil 310. In some embodiments, the front top fluid foil 330 is configured to have a five degree angle of attack and a 20 degree pitch 331 between the Z axis and the front top chord 318. In other embodiments, the angle of attack of fluid 320 may vary between 18 and -4 degrees depending on the angular velocity of blade 210 and the velocity of fluid 320. In still other embodiments, the pitch 331 of the front top fluid foil 330 can vary widely, from 1 degree in a higher angular velocity application (such as a compressor) to a fluid energy converter 100 25 201043778

34JU0piX 緩慢地旋轉且流體320具有較高速度之應用中的89度。 在一個實施例中,後頂部流體箔片332處之攻角高於 前頂部流體箔片330處之攻角。在一些實施例中,後頂部 流體箱片332經組態以具有八度之攻角,以及z轴與後頂 部弦319之間19度的縱搖333。在其他實施例中,流體320 之攻角可依據葉片210之角速度及流體32〇之速度而在20 度與-2度之間變化。在另外其他實施例中,後頂部流體箔 =332之縱搖333可大幅變化,自較高角速度應用(諸如34JU0piX rotates slowly and fluid 320 has 89 degrees in applications with higher speeds. In one embodiment, the angle of attack at the rear top fluid foil 332 is higher than the angle of attack at the front top fluid foil 330. In some embodiments, the rear top fluid tank 332 is configured to have an octave angle of attack and a 19 degree pitch 333 between the z-axis and the rear top chord 319. In other embodiments, the angle of attack of fluid 320 may vary between 20 and -2 degrees depending on the angular velocity of blade 210 and the velocity of fluid 32 。. In still other embodiments, the rear top fluid foil = 332 pitch 333 can vary widely, from higher angular velocity applications (such as

壓縮機)中之1度,變為流體能量轉換器100緩慢地旋轉 且流體320具有較高速度之應用中的89度。 雖然以上詳細描述已繪示、描述及指出應用於各種實 ^之本發明的新穎特徵,但將理解的是,熟習此項技術 可在不偏離本發日从精神的情況下,在所說明之裳置 細!上作出各種省略、替代及改變。就像將 : 〔發明可在不提供本文所陳述之全部特徵 =式内體現,因為有些特徵可獨立於其他特徵而One degree in the compressor) becomes 89 degrees in the application where the fluid energy converter 100 is slowly rotating and the fluid 320 has a higher speed. While the above detailed description has been shown and described with reference to the embodiments of the present invention, it will be understood that The skirts are fine! Make various omissions, substitutions and changes. Just like: [The invention can be embodied in the absence of all the features stated in this article, because some features can be independent of other features.

提及:尺;或33組件提供了尺寸。提供所 諸如最佳模式'圍j了儘1遵從特定的法定要求, 申請專利範圍之;:言來所明的範,將僅由 限制本發明之實施例,除非 S以應 範圍成為該項中請專利圍使 的描述内容詳述本發明之某些實施例。然而,將 26 201043778 瞭解,無論前述内: 1 以許多方式來實踐。如 多詳細’本發明均可 述本發明之某些特徵或方應注意的是,當描 解為暗示所述術語在本文.3語之使用不應被理 述術語相關聯之本發明之特徵或方33==與所 【圖式簡單朗】 账⑽疋特性。 圖1為流體能量轉換器的透視圖。 Ο Ο 圖2為圖1之流體能量轉換器的局部剖視圖。 圖3為圖1之流體能量轉換器的另一局部剖視圖。 透視=4Α為可配合圖1之流體能量轉換器使用之葉片的 兄f、目為可配合圖1之流體能量轉換11使用之葉片的 力一還視圖。 圖4C為可配合圖i之流體能量轉換器使用之葉片的 俯視圖。 ,、5A為圖i之流體能量轉換器之葉片之前部區段輪 廊的透視圖。 ,5B為圖!之流體能量轉換器之葉片之頂部輪廓的 透視圖® 圖5C為圖丨之流體能量轉換器之葉片之後段輪 廓的透視圖。 圖6為據信與圖1之流體能量轉換器相關聯之特定流 體動力學的示意圖。 圖7為圖1之流體能量轉換器之葉片之輪廊的示意性 27Mention: ruler; or 33 components provide dimensions. The provision of the best mode is to comply with the specific statutory requirements and to apply for a patent; the stated scope will be limited only by the embodiment of the invention, unless S is the scope of the application. The description of the patent enclosure details some embodiments of the invention. However, it will be understood that 26 201043778, regardless of the aforementioned: 1 practice in many ways. As the present invention may be described in some detail, it should be noted that when the description is used to imply that the term is used herein, the use of the term "3" should not be used to describe the features of the invention. Or the square 33 == and the [simplified schema] account (10) 疋 characteristics. Figure 1 is a perspective view of a fluid energy converter. Ο Ο Figure 2 is a partial cross-sectional view of the fluid energy converter of Figure 1. 3 is another partial cross-sectional view of the fluid energy converter of FIG. 1. The perspective = 4 Α is the sum of the blades of the blade that can be used with the fluid energy converter of Fig. 1, and the force of the blade that can be used with the fluid energy conversion 11 of Fig. 1. Figure 4C is a top plan view of a blade that can be used with the fluid energy converter of Figure i. , 5A is a perspective view of the front section of the blade of the fluid energy converter of Fig. i. , 5B is the picture! A perspective view of the top profile of the blade of the fluid energy converter. Figure 5C is a perspective view of the blade profile of the fluid energy converter of Figure 。. Figure 6 is a schematic illustration of the specific fluid dynamics associated with the fluid energy converter of Figure 1. Figure 7 is a schematic illustration of the turret of the blade of the fluid energy converter of Figure 1.

201043778 343Ut>piI 橫剖面俯視圖。 圖8為圖1之流體能量轉換器之葉片之輪廓的示意性 橫剖面正視圖。 圖9為圖1之流體能量轉換器之轉子的後視圖。 圖10為可配合圖1之流體能量轉換器而使用之另一 葉片的透視圖。 圖11為圖10之葉片的平面圖。 圖12為圖11之葉片之橫剖面圖A-A。 圖13為圖11之葉片之橫剖面圖B-B。 圖14為圖11之葉片之橫剖面圖C-C。 【主要元件符號說明】 I :轉子 8 :縱軸 9:轉子半徑 10 :葉片 II :前部區段弦 12 :前部區段 13 :前根部附接部分 14 :前調整片 15 :前孔 16 :前過渡部分 17 :前彎曲部分 18 :頂部 22 :後部區段 28 201043778 23 :後根部附接部分 24 :後調整片 25 :後孔 26 :後過渡部分 28 :軸桿 29 :頂部弦 30 :前狹槽 34 :前輪轂 ® 38 :前軸承 40 :後狹槽 44 :後輪轂 48 :後軸承 50 :導流罩 60 :尾部 62 :尾部翼片 64 :尾部軸桿 〇 65 :鉸鏈銷 66 :尾部主體 67 :较鍵 68 :较鍵鎖孔 70 :塔架 72 :塔架底座 78 :塔架軸承 80 :動力系 29 201043778 343ϋ6ριί 100:流體能量轉換器 110 :内部低壓區域 111 :内部高壓區域 112 :流體 113 :外部高壓區域 127 :流體流/前部區段流體/流體 128 :内部流體 129 :後部區段流體 170 :平坦的板型薄片/流體箔片 172 :流體箔片 174:彎曲箔片/流體箔片/旋轉方向 176:切向抬升 210 :葉片 218 :頂部 310 :前根部流體箔片 311 :縱搖 312 :後根部流體箔片 313 :縱搖 314 :前根部弦 316 :後根部弦 318 :前頂部弦 319 :後頂部弦 320 :流體 322 :前部流體箔片 30 201043778 323 :縱搖 324 :前部弦 325 :後部流體箔片 326 :縱搖 327 :後部弦 330 :前頂部流體箔片 331 :縱搖 332 :後頂部流體箔片 333 :縱搖201043778 343Ut> piI cross-sectional top view. Figure 8 is a schematic cross-sectional elevation view of the contour of the blade of the fluid energy converter of Figure 1. Figure 9 is a rear elevational view of the rotor of the fluid energy converter of Figure 1. Figure 10 is a perspective view of another blade that can be used in conjunction with the fluid energy converter of Figure 1. Figure 11 is a plan view of the blade of Figure 10. Figure 12 is a cross-sectional view A-A of the blade of Figure 11. Figure 13 is a cross-sectional view B-B of the blade of Figure 11. Figure 14 is a cross-sectional view C-C of the blade of Figure 11. [Description of main component symbols] I: Rotor 8: Longitudinal axis 9: Rotor radius 10: Blade II: Front section Chord 12: Front section 13: Front root attachment part 14: Front tab 15: Front hole 16 : Front transition portion 17 : Front curved portion 18 : Top 22 : Rear section 28 201043778 23 : Rear root attachment portion 24 : Rear tab 25 : Rear hole 26 : Rear transition portion 28 : Shaft 29 : Top chord 30 : Front slot 34: Front hub® 38: Front bearing 40: Rear slot 44: Rear hub 48: Rear bearing 50: Shroud 60: Tail 62: Tail flap 64: Tail shaft 〇 65: Hinge pin 66: Tail body 67: comparison key 68: key lock hole 70: tower 72: tower base 78: tower bearing 80: powertrain 29 201043778 343ϋ6ριί 100: fluid energy converter 110: internal low pressure region 111: internal high pressure region 112 Fluid 113: External High Pressure Zone 127: Fluid Flow/Front Section Fluid/Fluid 128: Internal Fluid 129: Rear Section Fluid 170: Flat Sheet Foil/Fluid Foil 172: Fluid Foil 174: Curved Foil / Fluid foil / direction of rotation 176: tangential lift 210: blade 218: top 310: front root fluid foil Sheet 311: Pitch 312: Rear Root Fluid Foil 313: Pitch 314: Front Root String 316: Rear Root String 318: Front Top String 319: Rear Top String 320: Fluid 322: Front Fluid Foil 30 201043778 323: Pitch 324: front chord 325: rear fluid foil 326: pitch 327: rear chord 330: front top fluid foil 331: pitch 332: rear top fluid foil 333: pitch

3131

Claims (1)

201043778 34306pif 七、申請專利範圍: h 一種用於流體能量轉換器的轉子,所述轉子包括: 縱轴; 可旋轉的前輪轂,其與所述縱軸同軸; 可旋轉的後輪轂,其與所述縱軸同軸; 夕個葉片,每一葉片包括前部區段、頂部及後部區段; 其中所述葉片圍繞所述縱軸成角度地設置著; /、中母一葉片在前根部附接部分處附接至所述前輪 數’且在後根部附接端處附接至所述後輪轂;且 其中所述前部區段之縱搖高於所述後部區段之縱搖。 2.如申請專利範圍第1項所述之轉子,其中所述轉子 在所述葉片頂部之外表面處產生高壓區域。 3·如申請專利範圍第1項所述之轉子,其中低壓區域 在所述葉片之所述前部區段附近開始,且其中所述低壓區 域與周圍壓力之間的差異朝所述葉片之所述後部區段增 加0 4.如申請專利範圍第1項所述之轉子,其中隨著距所 〇 述縱軸之距離增加,壓力在所述轉子内增加。 5·如申請專利範圍第1項所述之轉子,其中所述前部 區段使所述流體偏轉而在徑向中離開所述縱軸。 6. —種用於流體能量轉換器的轉子,所述轉子包括: 縱軸; 可旋轉的前輪轂,其與所述縱軸同軸; 可旋轉的後輪轂,其與所述縱軸同軸; 32 201043778 343U0pit 至少九個葉片’每一葉片在前部區段處附接至所述前 輪轂’且在後部區段處附接至所述後輪轂,所述葉片圍繞 所述縱軸而在徑向中定位,其中所述葉片中至少一些葉片 中之每一者包括前部區段、頂部及後部區段; 其中所述前部區段、頂部及後部區段使用流體箔片; 且 其中所述頂部弦角在4度與-15度之間。 7. —種流體能量轉換器,包括: ® 縱軸;以及 可旋轉的轉子,其同軸地圍繞所述縱軸,其中所述可 旋轉的轉子包含多個葉片’每一葉片包括前部區段、頂部 及後部區段;且 其中所述頂部弦產生切向抬升。 8. 如申請專利範圍第7項所述之流體能量轉換器,其 為風力渦輪機,具有至少九個葉片且其中流體加速穿過所 述轉子。 〇 9·如申請專利範圍第7項所述之流體能量轉換器,更 包括如部曲線’且其中所述前部曲線自主要車由向方向沿所 述縱轴而向垂直於所述縱軸之主要徑向方向過渡。 10. 如申請專利範圍第9項所述之流體能黃轉換器, 其中所述前部曲線經設計以使流體偏轉而在徑向中離開所 述縱軸。 11. 一種用於流體能量轉換器的轉子,所述轉子包括: 縱軸; 33 201043778 34306pif ,轉的雜it,其與所述縱轴同轴; 的後,轂:其與所述縱軸同軸; =葉片’每—葉片包括前部區段、頂部及後部區段; ^所述葉片圍繞所述縱軸成角度地設置著; 其中每一葉片在前根部附接部分處附接至所述前輪 轂,且在後根部附接端處附接至所述後輪轂;且 其中所述可旋轉的前輪轂附近之所述前部區段具有 的攻角低於所述可旋轉的後輪轂附近之後部區段處之攻 角。 12.如申請專利範圍第u項所述之流體能量轉換 器,其中所述前部區段與所述後部區段之攻角之間的差異 在所述可旋轉的前輪轂及可旋轉的後輪轂附近相較於在所 述頂部處者還大。201043778 34306pif VII. Patent Application Range: h A rotor for a fluid energy converter, the rotor comprising: a longitudinal axis; a rotatable front hub coaxial with the longitudinal axis; a rotatable rear hub, the same The longitudinal axis is coaxial; each blade comprises a front section, a top section and a rear section; wherein the blade is disposed at an angle around the longitudinal axis; /, the middle mother blade is attached to the front root Attached to the front wheel number ' at a portion and attached to the rear hub at a rear root attachment end; and wherein the pitch of the front section is higher than the pitch of the rear section. 2. The rotor of claim 1, wherein the rotor creates a high pressure region at an outer surface of the blade tip. 3. The rotor of claim 1, wherein the low pressure region begins near the front section of the blade, and wherein a difference between the low pressure region and ambient pressure is toward the blade The rear section is increased by 0. 4. The rotor of claim 1, wherein the pressure increases within the rotor as the distance from the longitudinal axis of the reference increases. 5. The rotor of claim 1, wherein the front section deflects the fluid away from the longitudinal axis in a radial direction. 6. A rotor for a fluid energy converter, the rotor comprising: a longitudinal axis; a rotatable front hub coaxial with the longitudinal axis; a rotatable rear hub coaxial with the longitudinal axis; 201043778 343U0pit at least nine blades 'each blade attached to the front hub' at a front section and attached to the rear hub at a rear section, the blades being radially around the longitudinal axis Positioning, wherein each of at least some of the blades comprises a front section, a top section and a rear section; wherein the front section, the top section and the rear section use a fluid foil; and wherein The top chord is between 4 and -15 degrees. 7. A fluid energy converter comprising: a longitudinal axis; and a rotatable rotor coaxially surrounding the longitudinal axis, wherein the rotatable rotor comprises a plurality of blades each of which includes a front section , a top and a rear section; and wherein the top chord produces a tangential lift. 8. The fluid energy converter of claim 7, which is a wind turbine having at least nine blades and wherein the fluid accelerates through the rotor. The fluid energy converter of claim 7, further comprising a curve of the portion and wherein the front curve is perpendicular to the longitudinal axis from the main vehicle from the direction of the longitudinal axis The main radial direction transition. 10. The fluid energy yellow converter of claim 9, wherein the front curve is designed to deflect fluid away from the longitudinal axis in a radial direction. 11. A rotor for a fluid energy converter, the rotor comprising: a longitudinal axis; 33 201043778 34306pif, a rotating mis-it that is coaxial with the longitudinal axis; a rear hub: coaxial with the longitudinal axis = blade 'each-blade includes a front section, a top section and a rear section; ^ said blades are angularly disposed about said longitudinal axis; wherein each blade is attached to said front root attachment portion a front hub attached to the rear hub at a rear root attachment end; and wherein the front section adjacent the rotatable front hub has an angle of attack lower than the rotatable rear hub The angle of attack at the rear section. 12. The fluid energy converter of claim 5, wherein a difference between an angle of attack of the front section and the rear section is after the rotatable front hub and the rotatable rear The vicinity of the hub is larger than at the top. 3434
TW099111950A 2009-04-20 2010-04-16 Fluid energy converter and rotor therefor TW201043778A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17103309P 2009-04-20 2009-04-20

Publications (1)

Publication Number Publication Date
TW201043778A true TW201043778A (en) 2010-12-16

Family

ID=42981101

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099111950A TW201043778A (en) 2009-04-20 2010-04-16 Fluid energy converter and rotor therefor

Country Status (3)

Country Link
US (1) US20100266414A1 (en)
TW (1) TW201043778A (en)
WO (1) WO2010123776A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348300A (en) * 2018-09-04 2021-09-03 拜欧姆可再生能源股份有限公司 Fluid turbine structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9976421B2 (en) * 2009-07-24 2018-05-22 II Ronald G. Houck Lifting foil
US20110274558A1 (en) * 2010-05-10 2011-11-10 Kathryn Chase Modular windmill
EP2788621A2 (en) * 2011-12-06 2014-10-15 Siemens Aktiengesellschaft Wind turbine
US9664175B2 (en) * 2014-08-30 2017-05-30 X Development Llc Carbon fiber motor rotor integrating propeller mount
JP5941200B1 (en) * 2015-06-30 2016-06-29 祥二 勝目 Multi-helical structure
CN105604803A (en) * 2016-01-18 2016-05-25 深圳市普源恒通新能源汽车科技有限责任公司 Automatic following wind power generation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE438787T1 (en) * 2001-01-26 2009-08-15 Minoru Yoshida FLOW MACHINE
WO2007133538A2 (en) * 2006-05-10 2007-11-22 Viryd Technologies Inc. Fluid energy converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348300A (en) * 2018-09-04 2021-09-03 拜欧姆可再生能源股份有限公司 Fluid turbine structure

Also Published As

Publication number Publication date
WO2010123776A1 (en) 2010-10-28
US20100266414A1 (en) 2010-10-21

Similar Documents

Publication Publication Date Title
US20080075599A1 (en) Fluid energy converter
US8905706B2 (en) Vortex propeller
US7600963B2 (en) Fluid energy converter
CN100353053C (en) Vertical-axis wind turbine
US9567970B2 (en) Wind turbines augmented with rotating diffusers
US9512817B2 (en) Diffuser augmented wind turbines
TW201043778A (en) Fluid energy converter and rotor therefor
US8829706B1 (en) Adaptive control ducted compound wind turbine
US10690112B2 (en) Fluid turbine rotor blade with winglet design
US20120076656A1 (en) Horizontal Axis Logarithmic Spiral Fluid Turbine
WO2008002338A2 (en) Rotary fluid dynamic utility structure
US20120217754A1 (en) Wind turbine blade, wind turbine generator with the same, and design method of wind turbine blade
WO2012053424A1 (en) Wind turbine blade, wind power generating device comprising same, and wind turbine blade design method
JP7469126B2 (en) Wind turbine blade assembly and wind turbine
JP2007239631A (en) Windmill
JP2015068197A (en) Axial flow waterwheel power generator
WO2015145723A1 (en) Wind turbine blade and wind power generator provided with same
TWM325389U (en) Windmill structure
WO2022204278A1 (en) Wind turbine blades and wind turbine systems that include a co-flow jet
WO2020194203A1 (en) Horizontal-axis turbine for a wind generator, and wind generator comprising said turbine