TW201043333A - Friedel-crafts post-crosslinked adsorbent and method of preparation - Google Patents

Friedel-crafts post-crosslinked adsorbent and method of preparation Download PDF

Info

Publication number
TW201043333A
TW201043333A TW98118514A TW98118514A TW201043333A TW 201043333 A TW201043333 A TW 201043333A TW 98118514 A TW98118514 A TW 98118514A TW 98118514 A TW98118514 A TW 98118514A TW 201043333 A TW201043333 A TW 201043333A
Authority
TW
Taiwan
Prior art keywords
bjh adsorption
bet
volume
pore volume
monomer
Prior art date
Application number
TW98118514A
Other languages
Chinese (zh)
Inventor
man-cai Xu
Zheng Zhang
Original Assignee
Rohm & Haas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm & Haas filed Critical Rohm & Haas
Priority to TW98118514A priority Critical patent/TW201043333A/en
Publication of TW201043333A publication Critical patent/TW201043333A/en

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A post-crosslinked adsorbent comprises: monomer units of (a) at least 47wt% at least one polyvinylaromatic monomer and (b) up to 53wt% at least one monovinylaromatic monomer; and 0-0.2 mmol/g pendent vinyl groups; wherein the dry adsorbent has BET specific surface area in the range of about 700-1500 m2/g, BET average pore diameter 6.0-11.8 nm, BET porosity 1.2-3.5 mL/g, BJH adsorption micropore volume less than 20% of total BJH adsorption pore volume, and HK micropore volume less than 24% of total BJH adsorption pore volume. The invention is also directed to a preparation method for the polymeric adsorbent.

Description

201043333 ^ 六、發明說明: 【發明所屬之技術領域】 本發明大體上關於後交聯(p〇st_cr〇ssl inkecj)吸附 劑,以及具有高孔隙度與高表面積之後交聯吸附劑樹脂之 製備方法,此方法係藉由共聚合多乙烯基芳香系單體與單 乙烯基芳香系單體,並接著藉由夫—夸(Friedel_Crafts) 反應於單一反應器不需移除孔源物(P〇r〇gen )下後交聯該 共聚物之側烯基。 〇 【先前技術】 多孔性高度交聯芳香系共聚物為廣泛用來作為有機 化合物之分離與純化之吸附劑。聚合物吸附劑之吸附能力 通常隨著表面積與孔隙度之增加而增加。一種增加多孔性 高度交聯芳香系共聚物之表面積與孔隙度的方法為自共聚 物移除孔源物後,使存在於共聚物中之殘餘烯基,於路易 士酸(Lewis-acid)催化劑存在下於升高之溫度進行反應, ❹並熱乾燥,其係如美國專利案4, 543, 365,5, 218, 004, 5, 885, 638,6, 147, 127,6, 235, 802,6, 541,527,A. K.201043333 ^ VI. Description of the Invention: [Technical Field of the Invention] The present invention relates generally to post-crosslinking (p〇st_cr〇ssinkecj) adsorbent, and a method for preparing a crosslinked adsorbent resin after having high porosity and high surface area This method is carried out by copolymerizing a polyvinyl aromatic monomer with a monovinyl aromatic monomer, and then by a Friedel_Crafts reaction in a single reactor without removing the pore source (P〇r〇) The pendant alkenyl group of the copolymer is crosslinked after gen. 〇 [Prior Art] Porous highly crosslinked aromatic copolymers are widely used as adsorbents for the separation and purification of organic compounds. The adsorption capacity of the polymeric adsorbent generally increases with increasing surface area and porosity. A method for increasing the surface area and porosity of a porous highly crosslinked aromatic copolymer is to remove residual alkenyl groups present in the copolymer after Lewis source removal from the copolymer, in Lewis-acid catalyst The reaction is carried out at an elevated temperature in the presence of hydrazine and is thermally dried, as in U.S. Patent Nos. 4,543,365, 5,218, 004, 5,885,638, 6,147, 127, 6, 235, 802. , 6, 541, 527, AK

Nyhus, et al., Journal of Polymer Science, Part A: Polymer chemistry, John Wi ley & Stones, Inc., Vol.38, 1366-1378(2000), C. Zhou et al., Journal of Applied polymer Science, John Wiley & Sons, Inc. , Vol.83, 1668-1677(2002),以及 L Aleksieva,etal·, PoJjA/Ber, Elsevier Science Publisher, Vol.47, 6544-6550(2006) 所描述。與起始共聚物相比,後交聯共聚物具有更高之孔 3 94689 201043333 隙度、更高之表面積,且因此顯示改良之吸附能力(尤其是 小分子)以及增加之表面積。然而,蒸餾移除孔源物與乾燥 起始共聚物導致微孔含量增加,其可能超過多如30%總孔 體積。當此種高微孔含量吸附劑用於回收有機化合物時, 儘管吸附能力高,此種吸附劑通常難以快速且完全地釋出 吸附(desorbed)。 【發明内容】 本發明針對之問題為克服先前技術之吸附劑的缺 陷,例如富含在吸附劑中之微孔所導致之低釋出吸附率, 以及改良後交聯吸附劑吸附與釋出吸附之表現。據此,本 發明提供在夫-夸(Friedel-Crafts)催化劑存在下,不需移 除孔源物以減少後交聯吸附劑中微孔含量之高度交聯芳香 系共聚物之製造方法。 本發明係關於後交聯吸附劑,其包括: 下述單體單元:(a)至少47重量%<^七%)之至少一種多 乙烯基芳香系單體,以及(b)高達53wt%之至少一種單乙稀 基芳香系單體;以及 0至0. 2毫莫耳(mmol)/公克(g)侧烯基; 其中乾吸附劑具有BET比表面積為約700至1500平 方公尺(m2)/公克(g)之範圍,BET平均孔徑為6. 0至11. 8 奈米(nm),BET孔隙度為1. 2至3. 5毫升(mL)/g,BJH吸附 微孔體積為少於20%之總BJH吸附孔體積,以及HK微孔體 積為少於24%之總BJH吸附孔體積。 本發明復關於聚合物吸附劑之製備方法,其包括下述 4 94689 201043333 步驟: _ (i)於共聚孔源物存在下,使包含至少一種多乙稀基 . 芳香系單體以及至少一種單乙烯基芳香系單體之單體懸浮 共聚合; (i i)以該後交聯孔源物作為共溶劑,在夫-夸催化劑 存在下後交聯該共聚物;以及 (iii)單離該後交聯吸附劑。 【實施方式】 〇 本發明藉由提供作為本發明核心之高孔隙度與高比 表面積之樹脂(其以高容量吸附有機化合物)之製備方法而 克服本領域現階段聚合物吸附劑之缺點。具有高孔隙度與 低微孔含量之吸附劑使得所吸附之化合物能容易地自樹脂 中釋放。 如本發明所用,“BET”意指布厄特理論 (Brunauer-Emmett-Teller theory),其為一種基於多層吸 〇附之吸附模式。BET平均孔徑係以下式計算:d=4V/A(D-平 均孔徑’ V-孔之體積,A-比表面積)。 如本文所用’ BJH” 意指 Barret-Joyner-Halenda 方案,其用於自氮吸附數據計算孔之大小分布。 如本文所用’ “ΗΓ意指Horvath-Kawazoe方法,其 用於自低壓吸附等溫線評估微孔之大小分布。 懸浮共聚合所用之該等單體係包含至少一種多乙烯 土芳g系單體。该多乙烯基芳香系單體包括由二乙烯基苯 (例如間-二乙烯基苯與對_二乙烯基苯)、三乙烯基苯、二 5 94689 201043333 乙烯基甲苯、二乙烯基二曱苯、二乙烯基萘及彼等之衍生 物(例如經鹵化物取代者,諸如二乙烯基氯苯)所組成之基 團。這些化合物可單獨使用或是以彼等之二種或是更多種 之混合物之形式使用。尤其較佳者為由間-二乙烯基苯與對 -二乙烯基苯所組成之多乙烯基芳香系單體之混合物。 以共聚物之乾重為基準計,本發明的第一種態樣中所 使用之多乙烯基芳香系單體的量為至少47wt%。較佳為至 少55%,尤其佳是自63%至80%。 本發明百分比範圍中所用之名詞“至少”意指任何 或是所有大於該範圍起始點且包括該起始點至100%但不 含 100%。 懸浮共聚合所用之該等單體係包含至少一種單乙烯 基芳香系單體。該單乙烯基芳香系單體包括但不限於苯乙 烯與經(Ci-CO烷基取代之苯乙烯,例如乙基乙烯基苯(包 括間-乙基乙烯基苯與對-乙基乙烯基苯)、乙烯基曱苯及彼 等之衍生物(例如經鹵化物取代者,諸如氯化乙烯基苯與氯 化乙基乙烯基苯)。這些化合物可單獨使用或是以彼等之二 種或是更多種之混合物之形式使用。較佳係選自下述混合 物:間-乙基乙烯基苯與對-乙基乙烯基苯之混合物;以及 苯乙烯、間-乙基乙烯基苯與對-乙基乙烯基苯之混合物。 以共聚物之乾重為基準計,本發明的第一種態樣中所 使用之單乙烯基芳香系單體的量為高達53重量%(wt%)。較 佳為高達45%,尤其佳是自20至37%。 本發明範圍中所用之名詞“高達”意指任何或是所 6 94689 201043333 ' 有大於〇直至該範圍終點並包括該範圍終點。 於極端具體例中,以共聚物乾重為基準計,共聚物包 括下述之單體單元:(a)接近l〇〇wt%之間-二乙烯基苯與對 -二乙烯基苯之混合物;以及(b)幾乎為Owt%之間-乙基乙 烯基苯與對-乙基乙烯基苯之混合物。 視需要地,共聚物可包含以共聚物乾重為基準計高達 1 Owt%,較佳高達5wt%,之經共聚合的極性婦性單體,例 如丙烯腈、曱基丙烯酸甲酯以及丙烯酸曱酯。此類單體並 〇不包含任何其他前述單體。 於本發明之一種具體例中,以共聚物乾重為基準計, 共聚物包含自55wt%至80wt%之至少一種選自下列之多乙 烯基芳香系單體:間-二乙烯基苯、對-二乙烯基苯以及間-二乙烯基苯與對-二乙烯基苯之混合物;以及自20wt%至 45wt%之至少一種選自下列之單不飽和乙烯基芳香系單 體:間-乙基乙烯基苯;對-乙基乙烯基苯;苯乙烯;間-0 乙基乙烯基苯與對-乙基乙烯基苯之混合物;以及苯乙烯、 間-乙基乙烯基苯與對-乙基乙烯基苯之混合物。 於本發明之另一種具體例中,以共聚物乾重為基準 計,共聚物包含下述單體:(a)約55wt%之間-二乙烯基苯 與對-二乙烯基苯之混合物;以及(b)約45wt%之間-乙基乙 烯基苯與對-乙基乙烯基苯之混合物。 後交聯吸附劑中側烯基含量係於0至0. 2毫莫耳 (匪〇1)/公克(g)之範圍,其係遠少於傳統共聚多孔性芳香 系聚合物於後交聯之前之含量。 7 94689 201043333 本發明第一態樣中之吸附劑較佳係藉由包含下列步 驟之方法所製備: (i) 於共聚孔源物存在下,使包含至少一種多乙烯基 芳香系單體以及至少一種單乙烯基芳香系單體之單體懸浮 共聚合; (ii) 以該後交聯孔源物作為共溶劑,在夫-夸催化劑 存在下後交聯該共聚物;以及 (iii) 單離該後交聯吸附劑。 本發明第二態樣復關於聚合物吸附劑之製備方法,其 包含下列步驟: (i) 於共聚孔源物存在下,使包含至少一種多乙烯基 芳香系單體以及至少一種單乙烯基芳香系單體之單體懸浮 共聚合; (ii) 以該後交聯孔源物作為共溶劑,在夫-夸催化劑 存在下後交聯該共聚物;以及 (iii) 單離該後交聯吸附劑。 聚合物吸附劑之製備方法包括單體共聚合與共聚物 後交聯二個步驟,於這兩個步驟中都存在著孔源物。本發 明之名詞“於單一反應器中進行”係意指共聚合與後交聯 反應並未於共聚合反應後移除孔源物,也未如本領域通常 所述般於後交聯前單離起始共聚物之情況下完成。 除了含量不同外,本發明第二態樣中之懸浮共聚合所 使用之單體單元係與第一態樣相同。本發明聚合物吸附劑 之製備方法係適用於任何技術上可接受之單體單元含量。 8 94689 201043333 ' 較佳地,本發明第二態樣之單體單元係為至少47wt%之至 少一種多乙烯基芳香系單體,以及高達53wt%之至少一種 單乙烯基芳香系單體。更佳為55至80wt%之至少一種多乙 « 烯基芳香系單體,以及20至45wt%之至少一種單乙烯基芳 香系單體。 懸浮共聚合所使用之孔源物係選自氯化烷類,例如二 氯甲烷、二氯乙烷以及二氯丙烷;芳香系氯化物,例如氯 化苯以及氯曱苯。孔源物對單體之體積比為自1 : 2至3 : Ο 1,較佳為自1 : 1至2 : 1。 共聚合反應係依據傳統方法進行,較佳於含有懸浮助 劑(例如分散劑、保護性膠體與缓衝劑)之連續水相溶液中 接著藉由與含有單體、孔源物與起始劑之有機相溶液混合 而進行。該等單體係於升高之溫度共聚合,且該共聚物為 珠形。 自上述懸浮共聚合所得之共聚物珠接著係在夫-夸催 0 化劑存在下後交聯,以製備具有增加之比表面積以及孔體 積之後交聯聚合物,而允許其用來作為聚合物吸附劑、離 子交換樹脂、經溶劑浸潤樹脂或嵌合樹脂。 共聚物之後交聯所使用之夫-夸催化劑係包括金屬鹵 化物,諸如,舉例來說鹵化鐵、iS化鋅、鹵化鋁、鹵化錫 與鹵化棚,較佳者為 FeC 13、ZnC 12、A1C13、SnC 14 與 BF3, 尤佳者為彼等之無水化物。夫-夸催化劑之適當用量為自約 5%至約20%之共聚物乾重。 後交聯所使用之適當孔源物包括但不限於二(乙二醇) 9 94689 201043333 單甲醚、二(乙二醇)單乙醚、二(乙二醇)單丁醚、二(乙二 醇)二曱醚、二(乙二醇)二乙醚、二(乙二醇)乙醚乙酸酯、 二(丙二醇)、二(丙二醇)單甲醚、三(乙二醇)單甲醚、三(乙 二醇)單曱醚、三(乙二醇)單乙醚、三(丙二醇)、聚(乙二 醇)單曱醚、聚(乙二醇)二曱醚以及聚(乙二醇共_(丙二 醇)。 較佳係在以夫-夸催化劑處理前將含有孔源物之共聚 物外面之水相溶液移除。該水相之移除步驟包括自反應器 虹吸或排出水相溶液,並加入孔源物或孔源物可相容溶劑 作為後交聯㈣。難地,接著於升高之溫度蒸鶴直 到蒸儲液呈清澈。 典型的交聯步驟包括以共聚物/夫_夸催化劑之重量 比為20 : 1至2G : 3 ’將夫-夸催化劑添加至共聚物與孔源 物溶劑之混合物中,而形成共聚物―溶劑—夫_夸催化劑之混 合物;以及於本領域已知條件,特混合物之溫度。 夫-夸後交聯之較佳條件包括升高之溫度,自約Μ 後氣•下孔源物溶劑之沸點低5 4〇d皿度。後父聯反應之時間係取決於所選用之, X ’且於較高溫度難地❹較㈣ f 至少約1小時,較佳為自4小時至16小時。㈣為 ^交聯科物之後處理可包含將酸性水溶液添 :㈣-洛劑—催化劑之混合物令,升高溫 餾移除孔源物溶劑,以水可相办 3由/、,弗瘵 以移除催化劑,以及最終收年:二:溶劑與水清洗共聚物 叹茱經早離之吸附劑珠。 94689 10 201043333 特別地,共聚合蛊 孔體積具有作用,其中條件對聚合物珠-表面積與 基乙稀基笨之莫耳比包括:例如笨乙歸對乙 交聯程度以及孔源物之存在:早體之-乙?基笨之量、 催化劑用量、反應時心^種類,且後父聯條件包括 』以及溶劑種類。 實施例 Ο 除了如申》月專利圍般限制外,下述實施例係音 來例示而非意欲用以限制本發明。除非特別 == 則所有比例、重量份與百分Μ以重量計,且除 行指明,否則所有使用之試劑為良好《品質= 寫具有下述意義: & DVB—二乙烯基苯 EVB—乙基乙晞基笨 EDC —二氣乙烯 TBP—過氧-2-乙基己酸第三丁酯 本發明之後交聯聚合物吸附劑之BET比表面積與Β£:τ 孔隙度係藉由Micromeritics TriStar 3000儀器測試與分 析。BET比表面積之誤差百分比為±5%。BET平均孔徑之誤 差百分比為±1%。BJH吸附孔體積與Μ微孔體積係藉由 Quantachrome Nova儀器測試與分析。 如同 K· L. Hubbard,et al.,Reactive and Functional Polymers, Elsevier Science Publishers, vol. 36, ppl4-30(1998)所述般’使用…與拉曼光譜來決 定側烯基之含量。 11 94689 201043333 實施例1 、機㈣拌11、迴流冷凝11、溫度計、氮氣進氣 ㈣工J及熱錶組合件之2公升4頸燒瓶中充填由820g Χ 〇.82§分散劑、2.5g硼酸以及0.74g氫氧化鈉 J:預此水相。攪拌率預設為124rpm,且啟動緩慢氮 氣流動。關上擔拄哭、 攪袢态,加入 200g 之 55%DVB/45%EVB、500g 、及2.〇gTBP之預混有機相。啟動攪拌器,並將混合 物加熱^至耽,維持於該溫度15小時。 接著將反應混合物冷卻至5()。〇。從共聚物_霞之混 2中將水相虹吸掉。加入8〇QgEDC,並進—步加熱共聚 —^之混合物以藉由共沸蒸餾移除共聚物外面之水,並 面藉由添加EDC來維持流體分散性。 於冷郃時加入30. 〇g之無水氣化鐵,伴隨攪拌將共聚 物EDC-氣化鐵之混合物加熱至6〇至8〇它,維持於該溫度 8小時。 接著將共聚物-EDC-氯化鐵之混合物冷卻至。加 入3〇〇g之5% HC1,接著加熱以藉由共沸蒸餾而自混合物 移除EDC,並一面藉由添加5%HC1水溶液來維持流體分散 性。 於冷卻時,將水相虹吸掉。並以曱醇與水清洗共聚 物。後交聯共聚物係以脂狀、半透明珠回收。於定性該共 聚物之孔結構時,發現其具有下述性質:未偵測到側烯基, BE丁孔隙度為1. 62mL/g,BET表面積為880m2/g,BET平均 孔徨為7. 36nm,BJH吸附孔體積為1. 62mL/g,BJH吸附微 94689 12 201043333 ' 孔體積為〇.265mL/g(16.4%之總BJH吸附孔體積),以及ΗΚ 微孔體積為0. 316mL/g(19· 5%之總BJH吸附孔體積)。 實施例2至9以相似於實施例1所述之方法製備。使 i 用各種預混之有機相。 實施例2 188g 之 55% DVB/45% EVB、519g EDC 以及 2. 0g TBP 之預混有機相。未偵測到侧烯基,BEIT孔隙度為1. 66mL/g, BET表面積為830m2/g,BET平均孔徑為8. OOnm,BJH吸附 〇 孔體積為1· 71mL/g,BJH吸附微孔體積為0. 283mL/g (16. 5%之總BJH吸附孔體積),以及HK微孔體積為 0. 323mL/g (18. 9%之總BJH吸附孔體積)。 實施例3 、 187g 之 63% DVB/37%EVB、518g EDC 以及 2. 0g TBP 之 預混有機相。0. lmmol/g之側烯基,BET孔隙度為 2. 10mL/g,BET表面積為1062m2/g,BE1T平均孔徑為 ❹7. 91nm,BJH吸附孔體積為2. 28mL/g,BJH吸附微孔體積 為0. 360mL/g(15· 8%之總BJH吸附孔體積),以及HK微孔 體積為0· 453mL/g(19. 9°/。之總BJH吸附孔體積)。 實施例4Nyhus, et al., Journal of Polymer Science, Part A: Polymer chemistry, John Wiley & Stones, Inc., Vol. 38, 1366-1378 (2000), C. Zhou et al., Journal of Applied polymer Science , John Wiley & Sons, Inc., Vol. 83, 1668-1677 (2002), and L Aleksieva, et al., PoJjA/Ber, Elsevier Science Publisher, Vol. 47, 6544-6550 (2006). The postcrosslinked copolymer has a higher porosity than the starting copolymer 3 94689 201043333, a higher surface area, and thus exhibits improved adsorption capacity (especially small molecules) and increased surface area. However, distillation to remove the pore source and dry starting copolymer results in an increase in microporous content, which may exceed as much as 30% of the total pore volume. When such a high microporous content adsorbent is used for the recovery of an organic compound, it is generally difficult to quickly and completely release the adsorbent despite the high adsorption capacity. SUMMARY OF THE INVENTION The problem addressed by the present invention is to overcome the drawbacks of the prior art adsorbent, such as the low release adsorption rate caused by the micropores enriched in the adsorbent, and the improved post-crosslinking adsorbent adsorption and release adsorption. Performance. Accordingly, the present invention provides a process for producing a highly crosslinked aromatic copolymer which does not require removal of a pore source in the presence of a Friedel-Crafts catalyst to reduce the microporous content of the postcrosslinked adsorbent. The present invention relates to a postcrosslinking adsorbent comprising: the following monomer units: (a) at least 47% by weight of <^7% by weight of at least one polyvinyl aromatic monomer, and (b) up to 53% by weight At least one monoethylenically aromatic monomer; and 0 to 0.2 millimoles (mmol) per gram (g) of the pendant alkenyl group; wherein the dry adsorbent has a BET specific surface area of from about 700 to 1500 square meters ( M2) / gram (g) range, BET average pore size of 6.0 to 11. 8 nm (nm), BET porosity of 1. 2 to 3. 5 ml (mL) / g, BJH adsorption micropore volume The total BJH adsorption pore volume is less than 20%, and the HK micropore volume is less than 24% of the total BJH adsorption pore volume. The invention relates to a method for preparing a polymer adsorbent, which comprises the following 4 94689 201043333. Step: _ (i) comprising at least one polyethylidene group in the presence of a copolymerized pore source. An aromatic monomer and at least one single Suspension copolymerization of a monomer of a vinyl aromatic monomer; (ii) crosslinking the copolymer in the presence of a fu-boil catalyst with the post-crosslinking pore source as a co-solvent; and (iii) after the separation Cross-linking sorbent. [Embodiment] The present invention overcomes the disadvantages of the present stage polymer adsorbent by providing a method for preparing a high porosity and high specific surface area resin which adsorbs an organic compound at a high capacity as a core of the present invention. The adsorbent having a high porosity and a low microporous content allows the adsorbed compound to be easily released from the resin. As used herein, "BET" means the Brunauer-Emmett-Teller theory, which is an adsorption mode based on multilayer adsorption. The BET average pore size is calculated by the following formula: d = 4 V / A (D - average pore diameter 'V - pore volume, A - specific surface area). As used herein, 'BJH' means the Barret-Joyner-Halenda scheme for calculating the size distribution of pores from nitrogen adsorption data. As used herein, 'ΗΓ means the Horvath-Kawazoe method, which is used for low pressure adsorption isotherms. Evaluate the size distribution of the micropores. The single systems used in the suspension copolymerization comprise at least one polyvinylarene monomer. The polyvinyl aromatic monomer includes divinylbenzene (for example, m-divinylbenzene and p-divinylbenzene), trivinylbenzene, bis 5 94689 201043333 vinyl toluene, divinyl fluorene benzene. a group consisting of divinylnaphthalene and derivatives thereof (e.g., substituted by a halide such as divinylchlorobenzene). These compounds may be used singly or in the form of a mixture of two or more of them. Particularly preferred is a mixture of a polyvinyl aromatic monomer composed of m-divinylbenzene and p-divinylbenzene. The amount of the polyvinyl aromatic monomer used in the first aspect of the invention is at least 47% by weight based on the dry weight of the copolymer. It is preferably at least 55%, particularly preferably from 63% to 80%. The term "at least" as used in the percentage range of the invention means that any or all are greater than the starting point of the range and include the starting point to 100% but not 100%. The single systems used in the suspension copolymerization comprise at least one monovinyl aromatic monomer. The monovinyl aromatic monomer includes, but is not limited to, styrene and styrene (Ci-CO alkyl substituted styrene, such as ethyl vinyl benzene (including m-ethylvinyl benzene and p-ethyl vinyl benzene). , vinyl benzene and their derivatives (for example, substituted by halides such as chlorovinylbenzene and ethylvinylbenzene). These compounds may be used alone or in combination of two or It is used in the form of a mixture of more kinds. It is preferably selected from the group consisting of a mixture of m-ethylvinylbenzene and p-ethylvinylbenzene; and styrene, m-ethylvinylbenzene and A mixture of ethylvinylbenzene. The amount of the monovinylaromatic monomer used in the first aspect of the invention is up to 53% by weight (wt%) based on the dry weight of the copolymer. Preferably, it is up to 45%, particularly preferably from 20 to 37%. The term "up to" as used in the context of the present invention means any or all of the 6 94689 201043333 'is greater than 〇 up to the end of the range and includes the end of the range. In an extreme example, based on the dry weight of the copolymer, the copolymer package The monomer units described below: (a) close to 10% by weight of a mixture of divinylbenzene and p-divinylbenzene; and (b) almost between Owt% and -ethylvinylbenzene a mixture of p-ethylvinylbenzene. Optionally, the copolymer may comprise up to 1% by weight, preferably up to 5% by weight, based on the dry weight of the copolymer, of a copolymerized polar monomeric monomer, such as propylene. Nitrile, methyl methacrylate and decyl acrylate. Such monomers do not contain any of the other monomers mentioned above. In one embodiment of the invention, the copolymer comprises from 55 wt% based on the dry weight of the copolymer. Up to 80% by weight of at least one vinyl aromatic monomer selected from the group consisting of m-divinylbenzene, p-divinylbenzene, and a mixture of m-divinylbenzene and p-divinylbenzene; 20% by weight to 45% by weight of at least one monounsaturated vinyl aromatic monomer selected from the group consisting of m-ethylvinylbenzene; p-ethylvinylbenzene; styrene; m-ethylethylbenzene a mixture of p-ethylvinylbenzene; and styrene, m-ethylvinylbenzene and p-ethylethylene A mixture of benzenes. In another embodiment of the invention, the copolymer comprises the following monomers based on the dry weight of the copolymer: (a) between about 55 wt% - divinylbenzene and p-divinyl 2毫米摩尔。 The mixture of the mixture of the benzene and the mixture of the ethyl benzene and the mixture of the ethyl benzene. The range of the ear (匪〇1)/g (g) is much less than the content of the conventional copolymerized porous aromatic polymer before post-crosslinking. 7 94689 201043333 The adsorbent in the first aspect of the invention is preferably Prepared by a method comprising the steps of: (i) suspending a monomer comprising at least one polyvinyl aromatic monomer and at least one monovinyl aromatic monomer in the presence of a copolymerization source; (ii) crosslinking the copolymer with a post-crosslinking pore source as a co-solvent in the presence of a fu-boil catalyst; and (iii) isolating the post-crosslinking adsorbent. A second aspect of the present invention relates to a method of preparing a polymeric adsorbent comprising the steps of: (i) comprising at least one polyvinyl aromatic monomer and at least one monovinyl aromatic in the presence of a copolymerized pore source; Suspension copolymerization of a monomer of a monomer; (ii) crosslinking the copolymer with a post-crosslinking pore source as a co-solvent in the presence of a fu-boil catalyst; and (iii) separating the post-crosslinking adsorption Agent. The preparation method of the polymer adsorbent comprises two steps of monomer copolymerization and copolymer post-crosslinking, and a pore source exists in both steps. The term "in a single reactor" of the present invention means that the copolymerization and postcrosslinking reactions do not remove the pore source after the copolymerization, nor do they are post-crosslinking as previously described in the art. This is done in the case of the starting copolymer. The monomer unit used in the suspension copolymerization in the second aspect of the present invention is the same as the first aspect except that the content is different. The method of preparing the polymeric adsorbent of the present invention is suitable for any technically acceptable monomer unit content. 8 94689 201043333 ' Preferably, the monomer unit of the second aspect of the invention is at least 47% by weight of at least one polyvinyl aromatic monomer, and up to 53% by weight of at least one monovinyl aromatic monomer. More preferably, it is 55 to 80% by weight of at least one polyethylene group, and 20 to 45% by weight of at least one monovinyl aromatic monomer. The pore source used in the suspension copolymerization is selected from the group consisting of chlorinated alkanes such as methylene chloride, dichloroethane and dichloropropane; aromatic chlorides such as chlorobenzene and proguanil. The volume ratio of the pore source to the monomer is from 1:2 to 3: Ο 1, preferably from 1:1 to 2:1. The copolymerization reaction is carried out according to a conventional method, preferably in a continuous aqueous phase solution containing a suspension aid (for example, a dispersant, a protective colloid and a buffer), followed by a monomer, a pore source and a starter. The organic phase solution is mixed and carried out. The single systems are copolymerized at elevated temperatures and the copolymer is in the shape of a bead. The copolymer beads obtained from the above suspension copolymerization are then crosslinked in the presence of a fu-hybridization agent to prepare a crosslinked polymer having an increased specific surface area and a pore volume, and are allowed to be used as a polymer. Adsorbent, ion exchange resin, solvent infiltrated resin or chimeric resin. The copolymer used in the post-copolymer crosslinking comprises a metal halide such as, for example, an iron halide, an iS zinc, an aluminum halide, a tin halide and a halogenated shed, preferably FeC 13, ZnC 12, A1C13. , SnC 14 and BF3, especially those of them are anhydrous. A suitable amount of the catalyst is from about 5% to about 20% by dry weight of the copolymer. Suitable pore sources for postcrosslinking include, but are not limited to, di(ethylene glycol) 9 94689 201043333 monomethyl ether, di(ethylene glycol) monoethyl ether, di(ethylene glycol) monobutyl ether, di(ethylene) Alcohol) Dimethyl ether, di(ethylene glycol) diethyl ether, di(ethylene glycol) diethyl ether acetate, di(propylene glycol), di(propylene glycol) monomethyl ether, tris(ethylene glycol) monomethyl ether, three (ethylene glycol) monoterpene ether, tris(ethylene glycol) monoethyl ether, tris(propylene glycol), poly(ethylene glycol) monoterpene ether, poly(ethylene glycol) diterpene ether, and poly(ethylene glycol) (propylene glycol). Preferably, the aqueous phase solution outside the copolymer containing the pore source is removed prior to treatment with the Wolf-Bra catalyst. The step of removing the aqueous phase comprises siphoning or discharging the aqueous phase solution from the reactor, and Adding a source of pores or a source of pores may be compatible with the solvent as a post-crosslinking (4). Difficult, then steaming the crane at an elevated temperature until the vaporized stock is clear. Typical crosslinking steps include copolymers/fus-catalysts a weight ratio of 20:1 to 2G: 3'-fufu-biao catalyst is added to the mixture of the copolymer and the solvent of the pore source, Forming a copolymer-solvent-fus-catalyst mixture; and the conditions known in the art, the temperature of the special mixture. The preferred conditions for the cross-exaggeration crosslinking include elevated temperature, from about Μ back gas to the lower hole The boiling point of the source solvent is 5 4 〇d. The time of the post-parent reaction depends on the selected X, and at a higher temperature, it is harder than (4) f for at least about 1 hour, preferably from 4 hours. Up to 16 hours. (4) After the cross-linking process, the treatment may include adding an acidic aqueous solution: (tetra)-alloy-catalyst mixture, and evaporating the high-temperature distillation to remove the solvent of the pore source, and the water can be used for 3//, Fossil to remove the catalyst, and finally to receive the year: two: solvent and water cleaning copolymer sighs early by the adsorbent beads. 94689 10 201043333 In particular, the copolymerization of the pupil volume has a role, wherein the condition of the polymer beads - the molar ratio of the surface area to the ethylidene group includes, for example, the degree of cross-linking of the b-ethyl group and the presence of the source of the pores: the amount of the precursor-B-base, the amount of the catalyst, and the type of the reaction, And the post-parent condition includes "and the type of solvent." The following examples are intended to be illustrative and are not intended to limit the invention, except in particular, unless otherwise specified, unless otherwise specified, all ratios, parts and percentages are by weight, and Indicates that otherwise all reagents used are good "Quality = written with the following meaning: & DVB - Divinylbenzene EVB - Ethylethyl hydrazine EDC - Diethylene TBP - Peroxy-2-ethylhexanoic acid Third butyl ester The BET specific surface area and the ::τ porosity of the crosslinked polymer adsorbent after the present invention were tested and analyzed by a Micromeritics TriStar 3000 instrument. The error percentage of the BET specific surface area was ±5%. The percentage error is ±1%. The BJH adsorption pore volume and the Μ micropore volume were tested and analyzed by the Quantachrome Nova instrument. The content of the pendant alkenyl group is determined by using Raman spectroscopy as described in K. L. Hubbard, et al., Reactive and Functional Polymers, Elsevier Science Publishers, vol. 36, ppl 4-30 (1998). 11 94689 201043333 Example 1, machine (four) mix 11, reflux condensation 11, thermometer, nitrogen gas inlet (four) work J and heat meter assembly 2 liter 4 neck flask filled with 820g Χ 82 82 82 82 82 82 And 0.74 g of sodium hydroxide J: pre-aqueous phase. The agitation rate was preset to 124 rpm and a slow nitrogen flow was initiated. Close the crying, stirring state, add 200g of 55% DVB / 45% EVB, 500g, and 2. 〇 gTBP premixed organic phase. The stirrer was turned on and the mixture was heated to 耽 and maintained at this temperature for 15 hours. The reaction mixture was then cooled to 5 (). Hey. The aqueous phase was siphoned off from the copolymer _ Xia Zhi Mix 2. 8 〇 QgEDC was added, and the mixture of copolymerization was further heated to remove water outside the copolymer by azeotropic distillation, and fluid dispersibility was maintained by adding EDC. 30 g of anhydrous iron-dissolved iron was added while cold-rolling, and the mixture of the copolymer EDC-ironized iron was heated to 6 Torr to 8 Torr with stirring, and maintained at this temperature for 8 hours. The copolymer-EDC-ferric chloride mixture is then cooled to . 3 gram of 5% HCl was added, followed by heating to remove EDC from the mixture by azeotropic distillation, and maintaining fluid dispersibility by adding a 5% aqueous HCl solution. Upon cooling, the water phase is siphoned off. The copolymer was washed with decyl alcohol and water. The postcrosslinking copolymer is recovered as a lipid, translucent bead. When the pore structure of the copolymer was characterized, it was found to have the following properties: no side alkenyl group was detected, BE butt porosity was 1.62 mL/g, BET surface area was 880 m 2 /g, and BET average pore diameter was 7. 316mL/克。 The volume of the BJH adsorption pores was 1.62mL / g, BJH adsorption micro-94689 12 201043333 'the pore volume was 265.265mL / g (16.4% of the total BJH adsorption pore volume), and ΗΚ micropore volume was 0. 316mL / g (19·5% of the total BJH adsorption pore volume). Examples 2 to 9 were prepared in a manner similar to that described in Example 1. Make i use a variety of premixed organic phases. Example 2 188 g of 55% DVB/45% EVB, 519 g EDC and 2. 0 g of TBP premixed organic phase. No side alkenyl group was detected, BEIT porosity was 1.66 mL/g, BET surface area was 830 m 2 /g, BET average pore diameter was 8. OOnm, BJH adsorption pupil volume was 1.71 mL/g, BJH adsorption micropore volume 0. 283 mL / g (16. 5% of the total BJH adsorption pore volume), and HK micropore volume of 0. 323mL / g (18. 9% of the total BJH adsorption pore volume). Example 3, 187 g of 63% DVB/37% EVB, 518 g EDC, and 2. 0 g of TBP premixed organic phase. The BET porosity is 2.10mL / g, the BET surface area is 1062m2 / g, the BE1T average pore diameter is ❹ 7.91nm, BJH adsorption pore volume is 2. 28mL / g, BJH adsorption microporous The volume was 0. 360 mL/g (15.8% of the total BJH adsorption pore volume), and the HK micropore volume was 0·453 mL/g (19. 9 °/. total BJH adsorption pore volume). Example 4

225g 之 55% DVB/45% EVB、463g EDC 以及 2. 4g TBP 之預混有機相。未偵測到側烯基,BET孔隙度為1. 39mL/g, BET表面積為841m2/g,BET平均孔徑為6. 61nm,BJH吸附 孔體積為1. 40mL/g ’ BJH吸附微孔體積為〇. 271mL/g (19. 4%之總BJH吸附孔體積),以及HK微孔體積為 13 94689 201043333 0. 311mL/g(22. 2%之總BJH吸附孔體積)。 實施例5225g of 55% DVB/45% EVB, 463g EDC and 2. 4g TBP premixed organic phase. No side alkenyl group was detected, the BET porosity was 1.39 mL/g, the BET surface area was 841 m 2 /g, the BET average pore diameter was 6.61 nm, and the BJH adsorption pore volume was 1.40 mL/g 'BJH adsorption micropore volume was 271 271 mL / g (19.4% of the total BJH adsorption pore volume), and HK micropore volume of 13 94689 201043333 0. 311mL / g (22.2% of the total BJH adsorption pore volume). Example 5

237g 之 55% DVB/45% EVB、443g EDC 以及 2. 4g TBP 之預混有機相。未偵測到側烯基,BET孔隙度為1. 26mL/g, BET表面積為840m2/g,ΒΠ平均孔徑為6. OOnm,BJH吸附 孔體積為1. 28mL/g,BJH吸附微孔體積為〇. 255mL/g (19. 9%之總BJH吸附孔體積),以及HK微孔體積為 0. 301mL/g(23. 6%之總BJH吸附孔體積)。 實施例6 164g 之 63% DVB/37% EVB、24g 苯乙烯、519g EDC 以 及2. Og TBP之預混有機相。未偵測到側烯基,bet孔隙度 為1. 65mL/g ’ BE1T表面積為838m2/g,BET平均孔徑為 7. 88nm ’ BJH吸附孔體積為1. 70mL/g,BJH吸附微孔體積 為0· 281mL/g(16. 5%之總BJH吸附孔體積),以及HK微孔 體積為0· 321mL/g(18. 9%之總BJH吸附孔體積)。 實施例7 188g 之 47% DVB/53% EVB、519g EDC 以及 2. 0g TBP 之預混有機相。未偵測到側烯基,BET孔隙度為1. 25mL/g, BET表面積為721m2/g,BET平均孔徑為6. 94nm,BJH吸附 孔體積為1. 41mL/g,BJH吸附微孔體積為〇. 208mL/g (14. 8%之總BJH吸附孔體積),以及HK微孔體積為0. 253 mL/g (17.9%之總^11‘吸附孔體積)。 實施例8237g of 55% DVB/45% EVB, 443g EDC and 2. 4g TBP premixed organic phase. The BET porosity is 1.26mL/g, the BET surface area is 840m2/g, the average pore diameter of the ΒΠ is 0.001nm, the BJH adsorption pore volume is 1.28mL/g, and the BJH adsorption micropore volume is 301 255 mL / g (19. 9% of the total BJH adsorption pore volume), and HK micropore volume of 0. 301mL / g (23. 6% of the total BJH adsorption pore volume). Example 6 164 g of a premixed organic phase of 63% DVB/37% EVB, 24 g styrene, 519 g EDC, and 2.0 g TBP. No side alkenyl group was detected, the bet porosity was 1.65mL/g 'BE1T surface area was 838m2/g, BET average pore diameter was 7.88nm 'BJH adsorption pore volume was 1.70mL/g, BJH adsorption micropore volume was 0· 281 mL/g (16.5% of total BJH adsorption pore volume), and HK micropore volume of 0·321 mL/g (18.9% of total BJH adsorption pore volume). Example 7 188 g of a premixed organic phase of 47% DVB/53% EVB, 519 g EDC and 2. 0 g TBP. The side olefinicity was not detected, the BET porosity was 1.25 mL/g, the BET surface area was 721 m 2 /g, the BET average pore diameter was 6.94 nm, the BJH adsorption pore volume was 1.41 mL/g, and the BJH adsorption micropore volume was 208 208 mL / g (14. 8% of the total BJH adsorption pore volume), and HK micropore volume of 0. 253 mL / g (17.9% of the total ^ 11 'adsorption pore volume). Example 8

187g 之 80% DVB/20% EVB、518g EDC 以及 2. 0g TBP 14 94689 201043333 之預混有機相。0· 2imnol/g側烯基,BET孔隙度為 - 2. 98mL/g ’ BET表面積為1462m2/g,BET平均孔徑為 * 8· 15nm ’ BJH吸附孔體積為3. 08mL/g,BJH吸附微孔體積 為0· 475mL/g(15· 4%之總BJH吸附孔體積),以及HK微孔 體積為0. 583mL/g(18. 9%之總BJH吸附孔體積)。 實施例9 175g 之 80% DVB/20% EVB、537g EDC 以及 2. Og TBP 之預混有機相。0. 2mmol/g側烯基,BET孔隙度為 η 3. 50mL/g,BET表面積為1195m2/g,BET平均孔徑為 11. 7nm,BJH吸附孔體積為3. 68mL/g,BJH吸附微孔體積 為0. 480mL/g(13. 0%之總BJH吸附孔體積),以及HK微孔 體積為0. 588mL/g(16. 0%之總BJH吸附孔體積)。 【圖式簡單說明】 無 【主要元件符號說明】 〇無 15 94689187g of 80% DVB/20% EVB, 518g EDC and 2. 0g TBP 14 94689 201043333 premixed organic phase. 0·2imnol/g pendant alkenyl group, BET porosity is - 2. 98mL / g ' BET surface area is 1462m2 / g, BET average pore diameter is * 8 · 15nm ' BJH adsorption pore volume is 3. 08mL / g, BJH adsorption micro The pore volume was 0·475 mL/g (15. 4% of the total BJH adsorption pore volume), and the HK micropore volume was 0. 583 mL/g (18.9% of the total BJH adsorption pore volume). Example 9 175 g of a premixed organic phase of 80% DVB/20% EVB, 537 g EDC and 2. Og TBP. 0. 2mmol / g side alkenyl group, BET porosity η 3. 50mL / g, BET surface area of 1195m2 / g, BET average pore diameter of 11. 7nm, BJH adsorption pore volume of 3. 68mL / g, BJH adsorption microporous The volume is 0. 480 mL / g (13.0% of the total BJH adsorption pore volume), and the HK micropore volume is 0. 588mL / g (16.0% of the total BJH adsorption pore volume). [Simple diagram description] None [Main component symbol description] 〇无 15 94689

Claims (1)

201043333 七、申請專利範圍: 1. 一種後交聯吸附劑,其包括: 下述單體單元:(a)至少47wt%之至少一種多乙稀 基务香系單體以及(b)高達53wt%之至少一種單乙烯基 芳香系單體;以及 自0至0. 2mmol/g之側烯基; 其中乾的該吸附劑具有BET比表面積為約〇至 1500m2/g之範圍,BET平均孔徑為6. 0至11. 8nm,BET 孔隙度為1. 2至3. 5mL/g,BJH吸附微孔體積為少於2〇% 之總BJH吸附孔體積,以及HK微孔體積為少於24%之 總BJH吸附孔體積。 2·如申請專利範圍第1項之後交聯吸附劑,其中,該吸附 劑係由包含下列步驟之方法製備: (i) 於共聚孔源物存在下,使包含至少—種多乙稀 基芳香系單體以及至少一種單乙烯基芳香系單體之單 體懸浮共聚合; (ii) 以該後交聯孔源物作為共溶劑,在夫_夸催化 劑存在下後交聯該共聚物;以及 (iii) 單離該後交聯吸附劑。 3.—種聚合物吸附劑之製備方法,其包含下列步驟: (i) 於共t孔源物存在下,使包含至少—種多乙烯 基芳香系單體以及至少-種單乙晞基芳香系單體之單 體懸浮共聚合; (ii) 以後交聯之該孔源物作為共溶劑,在夫-夸催 94689 16 201043333 i 化劑存在下後交聯該共聚物;以及 - (i i i)單離該後交聯吸附劑。 4 4·如申請專利範圍第3項之製備方法,其中,該多乙歸基 方香糸單體為間-二乙稀基苯與對-二乙缔基苯之混合 物。 5.如申請專利範圍第4項之製備方法,其中,該單乙稀基 芳香系單體係選自下述混合物:間-乙基乙烯基苯與對一 乙基乙烯基苯之混合物;以及苯乙烯、間_乙基乙烯基 〇 笨與對-乙基乙烯基苯之混合物。 6·如申請專利範圍第3項之製備方法,其中,以共聚物之 乾重為基準計’該共聚合單體包含(a)至少47wt%之至 J —種多乙烯基芳香系單體,以及(b)高達53wt%之至 少一種單乙烯基芳香系單體。 7. 如申請專利範圍第6項之製備方法,其中,以共聚物之 乾重為基準計’該共聚合單體包含(a)自55 wt%至80 〇 Wt%之至少一種多乙烯基芳香系單體,以及自20 wt%至 45 wt%之至少一種單乙烯基芳香系單體。 8. 如申請專利範圍第3項之製備方法,其中,該夫—夸催 化劑選自金屬鹵化物。 如申明專利範圍第8項之製備方法,其中,該夫_夸催 化劑為氯化鐵。 1〇.如申請專利範圍第3項之製備方法,其中,該共聚合孔 ,物係選自下述所組成群組:二氣甲燒、二氯乙烧、二 氯丙烷、氯苯以及氯甲苯。 94689 】7 201043333 四、指定代表圖:本案無圖式 (一) 本案指定代表圖為:第()圖。 (二) 本代表圖之元件符號簡單說明: 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 本案無代表化學式 94689 201043333 特別也〃“與後交聯條件 芬 孔體積具有作用’其中共聚合條面積與 基乙烯基苯之莫耳比、作為 ,例如本乙婦對乙 交聯程度以及孔源物之存在及:體之二乙埽基苯之量、 催化劑用量、反麟心及_= 4後交魏件包括 實施例 ' 陈^睛寻利_叫双吡制 ^ Ο 來例示而非意欲用以限制本發 〜施例係意欲用 則所有比例、重量份與百分行指明’否 行指明,否則所有使用之試劑為良別另 寫具有下述意義: 時商業品質。所用之縮 DVB —二乙烤基苯 EVB—乙基乙烯基笨 EDC —二氯乙稀 TBP —過氧-2-乙基己酸第三丁酯 Ο 本發明之後交聯聚合物吸附劑之BET比表面積與BET 孔隙度係错由Micromeritics TriStar 3000儀器測試與分 析。BET比表面積之誤差百分比為±5°/^ BET平均孔徑之誤 差百分比為±1%。BJH吸附孔體積與HK微孔體積係藉由 Quantachrome Nova儀器測試與分析。 如同 K. L. Hubbard, et al., Reactive and Functional Polymers, Elsevier Science Publishers, vol. 36, ppl4-30(1998)所述般,使用IR與拉曼光譜來決 定側浠基之含量。 11 94689 201043333 實施例1 於配有機械授拌考 π 午态迴流冷凝器、溫度計、氮氣進氣 口、加熱爐及熱錶纟人 ^ ,. ,、σ件之2公升4頸燒瓶中充填由820g 去離子水、0. 82g分·%如 S g刀散劑、2. 5g硼酸以及0. 74g氫氧化鈉 ^ 復袢率預設為124rpm,且啟動緩慢氮 氣流動。關上擾拌考 見幵裔加入2〇〇之55%dvb/45%evb、5 £DC以及2.〇gTBP之褚、日一 US u ^ ^預/fcb有機相。啟動攪拌器,並將混合 物加熱ΐ 6G至啊,維持於該溫度15小時。 人j著將反應混合物冷卻至5Gt:。從共聚物—EDC之混 α將水相虹吸掉。加人卿g狐,並進一步加執 物-EDC之混合物以藉由共彿蒸鮮除共聚物外面之^並 -面藉^添加E D C來維持流體分散性。 ;_ Ί7k加入30. 〇g之無水氯化鐵,伴隨授拌將共聚 物就氯化鐵之混合物加熱至60至80°C,維持於該溫度 8小時。 接著將共聚物-EDG、氯化鐵之混合物冷卻至50。〇加 =300g之5% HC卜接著加熱以藉由共滞蒸鑛而自混合物 私除EDC ’並-面藉由添加5%hci水溶液來維持流體分散 於冷卻時,將水相虹吸掉。並以曱醇與水清洗丘聚 物。後交聯共聚物係以脂狀、半透明珠回收。於定性該共 聚物之孔結構日$’發現其具有下述性質:未^貞測到侧稀基, BET孔隙度為h 62mL/g,BET比表面積為880m2/g,BET平 均孔徑為7.36nm,BJH吸附孔體積為L 62mL/g , BJH吸附 94689修正版 12 201043333 微孔體積為0. 265mL/g(16. 4%之總BJH吸附孔體積),以及 HK微孔體積為0. 316mL/g(19. 5%之總BJH吸附孔體積)。 實施例2至9以相似於實施例1所述之方法製備。使 用各種預混之有機相。 實施例2 188g 之 55% DVB/45% EVB、519g EDC 以及 2. 0g TBP 之預混有機相。未偵測到側烯基,BET孔隙度為1. 66mL/g, BET比表面積為830m2/g,BET平均孔徑為8. OOnm,BJH吸 附孔體積為1. 71mL/g,BJH吸附微孔體積為〇. 283mL/g (16. 5%之總BJH吸附孔體積),以及HK微孔體積為 0. 323mL/g (18. 9%之總BJH吸附孔體積)。 實施例3 187g 之 63% DVB/37%EVB、518g EDC 以及 2. 0g TBP 之 預混有機相。0. lmmol/g之侧烯基,BET孔隙度為 2· 10mL/g,BET比表面積為1062m2/g,BET平均孔徑為 〇 7. 91nm ’ BJH吸附孔體積為2. 28mL/g,BJH吸附微孔體積 為0. 360mL/g(15. 8%之總BJH吸附孔體積),以及hk微孔 體積為0. 453mL/g(19. 9%之總BJH吸附孔體積)。 實施例4 225g 之 55% DVB/45% EVB、463g EDC 以及 2 4g TBP 之預混有機相。未偵測到侧烯基,BET孔隙度為!. 3 9mL/g, BET比表面積為841m2/g,BET平均孔徑為6· 6lnm,BJH吸 附孔體積為1.40mL/g ’ BJH吸附微孔體積為〇. 27imL/g (19. 4%之總BJH吸附孔體積),以及HK微孔體積為 94689修正版 13 201043333 1 0· 311mL/g(22. 2%之總BJH吸附孔體積)。 實施例5 237g 之 55% DVB/45% EVB、443g EDC 以及 2. 4g TBP 之預混有機相。未偵測到側烯基,BET孔隙度為1. 26mL/g, BET比表面積為840m2/g,BET平均孔徑為6. OOnm,BJH吸 附孔體積為1· 28mL/g,BJH吸附微孔體積為〇. 255mL/g (19. 9%之總BJH吸附孔體積),以及HK微孔體積為 0· 301mL/g(23. 6%之總BJH吸附孔體積)。 實施例6 164g 之 63% DVB/37% EVB、24g 苯乙烯、519g EDC 以 及2. OgTBP之預混有機相。未偵測到側烯基,BET孔隙度 為1. 65mL/g,BET比表面積為838m2/g,BET平均孔徑為 7. 88nm,BJH吸附孔體積為1. 70mL/g,BJH吸附微孔體積 為0. 281mL/g(16. 5%之總BJH吸附孔體積),以及HK微孔 體積為0. 321mL/g(18· 9%之總BJH吸附孔體積)。 實施例7 188g 之 47% DVB/53% EVB、519g EDC 以及 2. 0g TBP 之預混有機相。未偵測到側烯基,BET孔隙度為1. 25mL/g, BET比表面積為721m2/g,BET平均孔徑為6. 94nm,BJH吸 附孔體積為1.41mL/g,BJH吸附微孔體積為〇. 208mL/g (14. 8%之總BJH吸附孔體積),以及HK微孔體積為〇. 253 mL/g (17. 9%之總BJH吸附孔體積)。 實施例8 187g 之 80% DVB/20% EVB、518g EDC 以及 2. 0g TBP 14 94689修正版 201043333 之預混有機相。〇.2mmol/g側烯基,BET孔隙度為 2. 98mL/g,BET比表面積為1462m2/g,BET平均孔徑為 8. 15nm,BJH吸附孔體積為3· 08mL/g,BJH吸附微孔體積 為0. 475mL/g(15. 4%之總BJH吸附孔體積),以及{JK微孔 體積為0· 583mL/g(18. 9%之總BJH吸附孔體積)。 實施例9 175g 之 80% DVB/20% EVB、537g EDC 以及 2. 〇g TBP 之預混有機相。0. 2mmol/g侧烯基,BET孔隙度為 〇 3. 50mL/g,BET比表面積為1195m2/g ’ BET平均孔徑為 11. 7nm ’ BJH吸附孔體積為3· 68mL/g,BJH吸附微孔體積 為0. 480mL/g(13. 0%之總BJH吸附孔體積),以及HK微孔 體積為0. 588mL/g(16. 0%之總BJH吸附孔體積)。 【圖式簡單說明】 益 【主要元件符號說明】 〇無 15 94689修正版 201043333 七、申請專利範圍: 1 · 一種後交聯吸附劑,其包括: 下述單體單元:(a)至少47wi:%之至少—種多乙稀 基芳香系單體以及(b)高達53wt%之至少一種單乙稀基 芳香系單體;以及 自0至0. 2mmol/g之侧烯基; 其中乾的該吸附齊彳具有BET比表面積為約7〇〇至 1500m2/g之範圍,BET平均孔徑為6. 0至11. 8nm,BET 孔隙度為1. 2至3· 5mL/g,BJH吸附微孔體積為少於2〇% 之總BJH吸附孔體積,以及HK微孔體積為少於24%之 總BJH吸附孔體積。 2. 如申請專利範圍第1項之後交聯吸附劑,其中,該吸附 劑係由包含下列步驟之方法製備: (i) 於共聚孔源物存在下,使包含至少—種多乙烯 基芳香系單體以及至少一種單乙烯基芳香系單體之單 體懸浮共聚合; (ii) 以該後交聯孔源物作為共溶劑,在夫_夸催化 劑存在下後交聯該共聚物;以及 (iii) 單離該後交聯吸附劑。 3. —種聚合物吸附劑之製備方法,其包含不列步驟: (i)於共聚孔源物存在下,使包含至少—種多乙稀 基芳香系單體以及至少一種單乙蝉基芳香系單體之單. 體懸浮共聚合; (Π)以後交聯之該孔源物作為共溶劑,在夫_夸催 94689 16201043333 VII. Patent Application Range: 1. A post-crosslinking adsorbent comprising: the following monomer units: (a) at least 47% by weight of at least one polyethylenic auxin monomer and (b) up to 53% by weight At least one monovinyl aromatic monomer; and from 0 to 0.2 mmol/g of a pendant alkenyl group; wherein the adsorbent has a BET specific surface area of from about 〇 to 1500 m 2 /g, and a BET average pore diameter of 6 0至11. 8nm, BET porosity is 1.2 to 3. 5mL / g, BJH adsorption micropore volume is less than 2〇% of total BJH adsorption pore volume, and HK micropore volume is less than 24% Total BJH adsorption pore volume. 2. Cross-linking the adsorbent after the first application of the patent scope, wherein the adsorbent is prepared by a method comprising the following steps: (i) in the presence of a copolymerized pore source, comprising at least a polyethylidene aromatic Suspension copolymerization of a monomer and at least one monomer of a monovinyl aromatic monomer; (ii) crosslinking the copolymer in the presence of a fu-catalyst with the post-crosslinking pore source as a co-solvent; (iii) Cross-linking the adsorbent after the separation. 3. A method of preparing a polymeric adsorbent comprising the steps of: (i) comprising at least one polyvinyl aromatic monomer and at least one monoethyl fluorene in the presence of a total t-hole source Suspension copolymerization of monomers of monomers; (ii) crosslinking of the pore source as a co-solvent, and crosslinking the copolymer in the presence of Fu-Guauke 94689 16 201043333; and - (iii) The cross-linking adsorbent is isolated after the separation. 4: The preparation method of claim 3, wherein the polyethyl fluorene oxime monomer is a mixture of m-diethyl benzene and p-diethyl phenyl benzene. 5. The preparation method of claim 4, wherein the monoethyl aromatic system is selected from the group consisting of: a mixture of m-ethylvinylbenzene and p-ethylvinylbenzene; A mixture of styrene, m-ethylvinyl anthracene and p-ethylvinylbenzene. 6. The preparation method of claim 3, wherein the copolymerized monomer comprises (a) at least 47% by weight to J-polyvinyl aromatic monomer, based on the dry weight of the copolymer, And (b) up to 53% by weight of at least one monovinyl aromatic monomer. 7. The preparation method of claim 6, wherein the copolymerized monomer comprises (a) at least one polyvinyl aromatic from (from 55 wt% to 80 〇 Wt%) based on the dry weight of the copolymer. A monomer, and from 20 wt% to 45 wt% of at least one monovinyl aromatic monomer. 8. The preparation method of claim 3, wherein the fu-catalyst is selected from the group consisting of metal halides. The preparation method of claim 8, wherein the catalyzed catalyst is ferric chloride. 1. The preparation method of claim 3, wherein the copolymerization pores are selected from the group consisting of: methane, dichloroethane, dichloropropane, chlorobenzene, and chlorine. Toluene. 94689 】7 201043333 IV. Designated representative map: There is no schema in this case (1) The representative representative figure of this case is: (). (2) A brief description of the symbol of the representative figure: 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: This case does not represent the chemical formula 94689 201043333. In particular, it also has the effect of the post-crosslinking condition. 'In which the area of the copolymerized strip is compared with the molar ratio of the vinylbenzene to the base, for example, the degree of cross-linking of the female and the source of the pores and the amount of the diacetylbenzene, the amount of the catalyst, and the reverse Heart and _= 4 after the Wei pieces include the example 'Chen ^ eye _ _ _ 双 双 ^ ^ Ο 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 Specify 'No line to indicate otherwise, otherwise all reagents used are different and have the following meanings: Commercial quality. DVB-diethyl benzene EVB-ethyl vinyl stupid EDC-dichloroethylene TBP — used Peroxy-2-ethylhexanoate tert-butyl ester Ο The BET specific surface area and BET porosity of the crosslinked polymer adsorbent after the present invention were tested and analyzed by the Micromeritics TriStar 3000 instrument. The error of the BET specific surface area The percentage is ±5°/^ The error percentage of the BET average pore diameter is ±1%. The BJH adsorption pore volume and the HK micropore volume are tested and analyzed by the Quantachrome Nova instrument. Like KL Hubbard, et al., Reactive and Functional Polymers, Elsevier Science Publishers, vol. 36, ppl 4-30 (1998), uses IR and Raman spectroscopy to determine the content of the side thiol group. 11 94689 201043333 Example 1 with mechanically calibrated π noon reflux condensation 2 liters of 4-necked flask filled with 820 g of deionized water, 0.82 g·%, such as S g granules, 2, 2, and σ parts of the apparatus, thermometer, nitrogen inlet, heating furnace, and heat meter 5g boric acid and 0.74g sodium hydroxide ^ The recuperation rate is preset to 124rpm, and the nitrogen flow is started slowly. Turn off the scavenging test and see the descendants add 25% of 55% dvb/45% evb, 5 £DC and 2 〇gTBP 褚, 日一 US u ^ ^ pre/fcb organic phase. Start the stirrer and heat the mixture ΐ 6G to ah, maintain this temperature for 15 hours. The person will cool the reaction mixture to 5Gt: Copolymer - EDC mixed alpha will siphon the water phase. Add people to the g fox, and into A one-step addition-EDC mixture is used to maintain fluid dispersibility by adding EDC to the outside of the copolymer by steaming. _ Ί7k is added to 30. 〇g of anhydrous ferric chloride, accompanied by The copolymer was heated to 60 to 80 ° C with respect to the mixture of ferric chloride and maintained at this temperature for 8 hours. The mixture of copolymer-EDG and ferric chloride was then cooled to 50. 5% plus 5% of the HCb was then heated to separate the EDC from the mixture by co-salting the sulphur ore and the aqueous phase was siphoned off by adding a 5% aqueous solution of hci to maintain the fluid dispersion upon cooling. The hills are washed with decyl alcohol and water. The postcrosslinking copolymer is recovered as a lipid, translucent bead. The pore structure of the copolymer was qualitatively found to have the following properties: the side dilute was not detected, the BET porosity was h 62 mL/g, the BET specific surface area was 880 m 2 /g, and the BET average pore diameter was 7.36 nm. 316mL/, BJH adsorption pore volume is L 62mL / g, BJH adsorption 94689 correction version 12 201043333 micropore volume is 0. 265mL / g (16. 4% of the total BJH adsorption pore volume), and HK micropore volume is 0. 316mL / g (19. 5% of total BJH adsorption pore volume). Examples 2 to 9 were prepared in a manner similar to that described in Example 1. Use a variety of premixed organic phases. Example 2 188 g of 55% DVB/45% EVB, 519 g EDC and 2. 0 g of TBP premixed organic phase. The BET porosity is 1.66 mL / g, the BET specific surface area is 830 m 2 / g, the BET average pore diameter is 8. OOnm, the BJH adsorption pore volume is 1.71 mL / g, BJH adsorption micropore volume 323 283 mL / g (16. 5% of the total BJH adsorption pore volume), and HK micropore volume of 0. 323mL / g (18. 9% of the total BJH adsorption pore volume). Example 3 187 g of a premixed organic phase of 63% DVB/37% EVB, 518 g EDC, and 2. 0 g TBP. 0. lmmol/g of the side alkenyl group, BET porosity of 2·10mL / g, BET specific surface area of 1062m2 / g, BET average pore diameter of 〇 7. 91nm 'BJH adsorption pore volume of 2. 28mL / g, BJH adsorption The micropore volume was 0. 360 mL/g (15.8% of the total BJH adsorption pore volume), and the hk micropore volume was 0. 453 mL/g (19.9% of the total BJH adsorption pore volume). Example 4 225 g of a premixed organic phase of 55% DVB/45% EVB, 463 g EDC and 24 g TBP. No side alkenyl group detected, BET porosity is! 3 9mL / g, BET specific surface area is 841m2 / g, BET average pore diameter is 6.6lnm, BJH adsorption pore volume is 1.40mL / g 'BJH adsorption micropore volume is 〇. 27imL / g (19. 4% of the total BJH adsorption pore volume), and HK micropore volume is 94689 revision 13 201043333 1 0 · 311 mL / g (22. 2% of the total BJH adsorption pore volume). Example 5 237 g of 55% DVB/45% EVB, 443 g EDC and 2. 4 g of TBP premixed organic phase. No side alkenyl group was detected, BET porosity was 1.26 mL/g, BET specific surface area was 840 m 2 /g, BET average pore diameter was 6.0 nm, BJH adsorption pore volume was 1·28 mL/g, BJH adsorption micropore volume 255 255 mL / g (19.9% of the total BJH adsorption pore volume), and HK micropore volume of 0 · 301mL / g (23.6% of the total BJH adsorption pore volume). Example 6 164 g of a premixed organic phase of 63% DVB/37% EVB, 24 g styrene, 519 g EDC, and 2.0 g of TBP. The side-alkenyl group was not detected, the BET porosity was 1.65 mL/g, the BET specific surface area was 838 m 2 /g, the BET average pore diameter was 7.88 nm, and the BJH adsorption pore volume was 1.70 mL/g, and the BJH adsorbed micropore volume. 0. 281 mL / g (16. 5% of the total BJH adsorption pore volume), and HK micropore volume of 0. 321mL / g (18.9% of the total BJH adsorption pore volume). Example 7 188 g of a premixed organic phase of 47% DVB/53% EVB, 519 g EDC and 2. 0 g TBP. No side alkenyl group was detected, the BET porosity was 1.25 mL/g, the BET specific surface area was 721 m 2 /g, the BET average pore diameter was 6.94 nm, the BJH adsorption pore volume was 1.41 mL/g, and the BJH adsorption micropore volume was 208 208 mL / g (14. 8% of the total BJH adsorption pore volume), and HK micropore volume is 253 253 mL / g (17.9% of the total BJH adsorption pore volume). Example 8 187 g of 80% DVB/20% EVB, 518 g EDC and 2. 0 g TBP 14 94689 Rev. 201043333 Premixed organic phase. 2. 2mmol / g side alkenyl group, BET porosity of 2. 98mL / g, BET specific surface area of 1462m2 / g, BET average pore diameter of 8. 15nm, BJH adsorption pore volume of 3.08mL / g, BJH adsorption microporous The volume was 0. 475 mL/g (15. 4% of the total BJH adsorption pore volume), and {JK micropore volume was 0·583 mL/g (18.9% of the total BJH adsorption pore volume). Example 9 175 g of a premixed organic phase of 80% DVB/20% EVB, 537 g EDC and 2. 〇g TBP. 0. 2mmol / g side alkenyl, BET porosity 〇 3. 50mL / g, BET specific surface area of 1195m2 / g ' BET average pore diameter of 11. 7nm ' BJH adsorption pore volume of 3. 68mL / g, BJH adsorption micro The volume of the pores was 0. 480 mL / g (13.0% of the total BJH adsorption pore volume), and the HK micropore volume was 0. 588 mL / g (16.0% of the total BJH adsorption pore volume). [Simple description of the diagram] Benefits [Main component symbol description] 〇无15 94689 Revision 201043333 VII. Patent scope: 1 · A post-crosslinking adsorbent, which includes: The following monomer units: (a) at least 47wi: % of at least a polyethylenic aromatic monomer and (b) up to 53% by weight of at least one monoethylenic aromatic monomer; and from 0 to 0.2 mmol/g of a pendant alkenyl group; The adsorption enthalpy has a BET specific surface area of about 7 〇〇 to 1500 m 2 /g, a BET average pore diameter of 6.0 to 11. 8 nm, a BET porosity of 1.2 to 3 · 5 mL / g, BJH adsorption micropore volume The total BJH adsorption pore volume is less than 2%, and the total BJH adsorption pore volume of the HK micropore volume is less than 24%. 2. Cross-linking the adsorbent after the first application of the patent scope, wherein the adsorbent is prepared by a process comprising the steps of: (i) comprising at least one polyvinyl aromatic system in the presence of a copolymerized pore source; Suspension copolymerization of a monomer and a monomer of at least one monovinyl aromatic monomer; (ii) crosslinking the copolymer in the presence of a fu-catalyst with the post-crosslinking pore source as a co-solvent; Iii) Crosslinking the adsorbent after the separation. 3. A method for preparing a polymeric adsorbent comprising the steps of: (i) comprising at least one polyethylenic aromatic monomer and at least one monoethylidene aromatic in the presence of a copolymerized pore source Monomer suspension. Co-suspension copolymerization; (Π) cross-linking of the pore source as a co-solvent in the _ _ _ _ _ _ _ _ _
TW98118514A 2009-06-04 2009-06-04 Friedel-crafts post-crosslinked adsorbent and method of preparation TW201043333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98118514A TW201043333A (en) 2009-06-04 2009-06-04 Friedel-crafts post-crosslinked adsorbent and method of preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98118514A TW201043333A (en) 2009-06-04 2009-06-04 Friedel-crafts post-crosslinked adsorbent and method of preparation

Publications (1)

Publication Number Publication Date
TW201043333A true TW201043333A (en) 2010-12-16

Family

ID=45000888

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98118514A TW201043333A (en) 2009-06-04 2009-06-04 Friedel-crafts post-crosslinked adsorbent and method of preparation

Country Status (1)

Country Link
TW (1) TW201043333A (en)

Similar Documents

Publication Publication Date Title
US20090325798A1 (en) Friedel-crafts post-crosslinked adsorbent and method of preparation
US8076384B2 (en) Free radical post-crosslinked adsorbent and method of preparation
Zhang et al. Ethylene glycol dimethacrylate modified hyper-cross-linked resins: Porogen effect on pore structure and adsorption performance
He et al. Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture
Israel et al. Carbons with a hierarchical porous structure through the pyrolysis of hypercrosslinked emulsion-templated polymers
Zeng et al. Preparation and characterization of polar polymeric adsorbents with high surface area for the removal of phenol from water
JPH10502107A (en) Polymeric adsorbents with increased adsorption capacity and kinetic properties and methods for their production
Wang et al. Amino-modified hyper-cross-linked polymers with hierarchical porosity for adsorption of salicylic acid from aqueous solution
Zhou et al. Hyper-cross-linked polymers functionalized with primary amine and its efficient adsorption of salicylic acid from aqueous solution
WO2019072105A1 (en) Waste polystyrene-based crosslinked polymer, preparation method therefor and application thereof
CN106660039B (en) Sulfonic acid-containing polymeric materials as amine adsorbents
Eun Shim et al. Mechanism of the formation of stable microspheres by precipitation copolymerization of styrene and divinylbenzene
Wang et al. 4-Vinylpyridine-modified post-cross-linked resins and their adsorption of phenol and Rhodamine B
Chang et al. Indolo [3, 2-b] carbazole-containing hypercrosslinked microporous polymer networks for gas storage and separation
Zeng et al. Synthesis, characterization and adsorption performance of a novel post-crosslinked adsorbent
JP2005097545A (en) Porous resin bead and method for producing the same
TW201043333A (en) Friedel-crafts post-crosslinked adsorbent and method of preparation
WO2013069681A1 (en) Vinyl chloride-based copolymer porous body and method for producing same
JPH07100375A (en) High-density large surface area adsorbent
JP2006328290A (en) Method of manufacturing granular polymer, method of manufacturing ion-exchange resin and method of manufacturing synthetic adsorbent, as well as anion-exchange resin, cation-exchange resin and synthetic adsorbent
JP2021502441A (en) Polymerization process involving the addition of monofunctional vinyl monomers
JPH0586132A (en) Porous resin and its production
CN1081186A (en) Pyrolytic porous polypropylene nitrile
TW201043334A (en) Free radical post-crosslinked adsorbent and method of preparation
CA1110223A (en) Partially pyrolyzed polymer emulsion coagulate