TW201040605A - Stacked optical glass lens array, stacked lens module and the manufacturing method thereof - Google Patents

Stacked optical glass lens array, stacked lens module and the manufacturing method thereof Download PDF

Info

Publication number
TW201040605A
TW201040605A TW098115127A TW98115127A TW201040605A TW 201040605 A TW201040605 A TW 201040605A TW 098115127 A TW098115127 A TW 098115127A TW 98115127 A TW98115127 A TW 98115127A TW 201040605 A TW201040605 A TW 201040605A
Authority
TW
Taiwan
Prior art keywords
optical
optical glass
stacked
glass lens
lens array
Prior art date
Application number
TW098115127A
Other languages
Chinese (zh)
Inventor
Jian-Min Wu
xue-lin Chen
san-wei Xu
Original Assignee
E Pin Optical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Optical Industry Co Ltd filed Critical E Pin Optical Industry Co Ltd
Priority to TW098115127A priority Critical patent/TW201040605A/en
Priority to JP2009005501U priority patent/JP3154617U/en
Priority to KR1020090094592A priority patent/KR20100121383A/en
Publication of TW201040605A publication Critical patent/TW201040605A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0085Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing wafer level optics

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lens Barrels (AREA)

Abstract

A stacked optical glass lens array, a stacked lens module and a manufacturing method thereof are disclosed. The stacked optical glass lens array includes at least two optical glass lens arrays whose optical axes are aligned and then stacked with each other by cement glue in glue grooves. A stacked optical glass lens element can be singularized by cutting along with the alignment notches of stacked optical glass lens array. The stacked lens module is formed by a single stacked optical glass lens element and related optical element mounted in a lens holder. Thereby the optical axes of the lenses of the stacked lens module are aligned precisely, the manufacturing process is simplified and the production cost is reduced.

Description

201040605 100 :堆疊光學玻璃鏡片元件(stacked optical glass lens element) 11 :第一光學玻璃鏡片陣列(first optical glass lens array) 111 :黏膠槽(glue groove) 12 :第二光學玻璃鏡片陣列(second optical glass lens array) 121 :定位槽(alignment notch) 122 :定位點(alignment marks) 13 :黏膠(cement glue) 14 :光學中心軸(optical axis) ® 21 :玻璃元材(glass blank) 225 :加熱器(heater) 51 :第一光學面模具(first optical mold) 511、511a、511b :第一光學面模面(first optical mold surface) 52 :第二光學面模具(secon(j optical mold) 521、521a、521b .第二光學面模面(second optical mold surface) 524、524a、524b :黏膠槽模面(glue groove mold surface) 〇 301 :鏡頭支架(iens holder) 五、 本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無) 六、 發明說明: 【發明所屬之技術領域】 + 本發明係有關一種堆疊光學玻璃鏡片陣列、堆疊鏡頭 模組及其製法,尤指一種利用一精密組合之堆疊光學玻璃 鏡片陣列並以定位機構切割分離成單一的堆疊光學鏡片元 件’再配合所需的光學元件裝設入鏡頭支架内以組成一堆 201040605 疊鏡頭模組’供使用於LED光源之組合鏡片、太陽能轉換 系統之組合鏡片、及手機相機的光學鏡頭等。 【先前技術】 精密玻璃模造成型(glass precision molding)技術已 大罝應用於製造向解析度、穩定性佳且成本較低廉的非球 面模造玻璃鏡片’如美國專利US2006/0107695、 US2007/0043463,台灣專利 TW095101830、TW095133807,201040605 100 : stacked optical glass lens element 11 : first optical glass lens array 111 : glue groove 12 : second optical glass lens array (second optical glass lens array (second optical glass lens array) Glass lens array) 121 : alignment notch 122 : alignment marks 13 : cement glue 14 : optical axis ® 21 : glass blank 225 : heating Heater 51: first optical mold 511, 511a, 511b: first optical mold surface 52: second optical mold (Secon (j optical mold) 521, 521a, 521b. Second optical mold surface 524, 524a, 524b: glue groove mold surface 〇 301: lens holder (iens holder) 5. In the case of chemical formula, Please disclose the chemical formula that best shows the characteristics of the invention: (None) VI. Description of the invention: [Technical field of the invention] + The present invention relates to a stacked optical glass lens array, stacked lens module And a method thereof, especially a stacked optical glass lens array using a precise combination and cut into a single stacked optical lens element by a positioning mechanism, and then assembled with the required optical components into the lens holder to form a stack of 201040605 stacks The lens module is used for a combination lens for LED light source, a combination lens for a solar energy conversion system, and an optical lens for a mobile phone camera. [Prior Art] Precision glass molding technology has been widely applied to manufacturing analysis. Aspherical molded glass lenses with good stability and low cost, such as US Patent US2006/0107695, US2007/0043463, Taiwan Patent TW095101830, TW095133807,

Ο 曰本專利JP63-295448等,其係利用玻璃在高溫軟化的特 性,將一玻璃元材(或玻璃預型體,glasspref〇rm)於上、下 模具中加熱軟化,再將上、下模具對應閉合並施壓,使上、 下模具之光學模面轉印至軟化的玻璃預型體上,經冷卻後 分開上、下模具取出而成為一具有上、下模具模面的模造 玻璃鏡片。而為能降低製造成本,日本專利jp63_3〇42〇1、 美國專利US2005/041215提出玻璃模造成型的鏡片陣列 (lens array);對於製成單一鏡片,在此稱為鏡片元件(iens 日本專利Jp〇2-〇44〇33提出使用移動玻璃材料以 多=模造方式以製成具有多個光學鏡片的鏡片毛胚, 一步裁切成多個鏡片元件。 ,璃模造成型的光學鏡片已開始大量運用於LED光 、太陽能轉換系統之組合鏡片、及手機相機的 碩,組合鏡片或光學鏡頭,為光學成像效果,常 為光ϋ不同屈光度的光學鏡片,以—定空氣間隔組合成 :時因此’當多片不同屈光度的光學鏡片組 以避备a光學鏡片的光學中心軸(〇pticaiaxis)需要精密對正 距组析度降低的問題’且各光學鏡片也需要以-定間 ϊί:而成’故將耗費許多的工序與精密校正,致產“ /合光ί拉成本也難以下降;尤其在光學鏡片陣列組合上, 匕2片陣列的光學中心軸產生偏移時’將影響 驭造上,如日本專利JP200U94508提出塑膠光學鏡 3 201040605 片陣列之製造方法;台灣專利TW M343166提出玻璃光學 鏡片陣列之製造方法。光學鏡片陣列製成後可以切割分離 成為單一之光學鏡片單元,以組裝於鏡頭模組(lens module) 中。或者可以先將光學鏡片陣列與其他光學元件(optical element)先組合成鏡頭次模組陣列(lens submodule array), 再切割成單一的鏡頭次模組(lens submodule) ’經與鏡頭支 架(lens holder)、影像感測器(image capture device)或其他光 學元件組合後,製成鏡頭模組(lens module)。 在鏡頭模組陣列製造上,美國專利US7,183,643、 US2007/0070511、WIPO 專利 W02008011003 等提出晶元 ❹ 級鏡頭模組(Wafer level lens module)。如圖1,一般光學用 的鏡頭模組陣列通常包含一光闌711 (aperture)、一表玻璃 712(cover glass)、多片光學鏡片及一紅外線濾光鏡片 717(IR cut lens),如圖所示為三片式光學鏡片組,包含第一 光學鏡片 714(firstlens)、第二光學鏡片 715(secondlens)及 第三光學鏡片716(third lens),各光學鏡片間以間隔片 713(spacer)隔開;經組合後形成一鏡頭模組陣列,經切割 後製成鏡頭模組。另如WIPO專利W02008/063528以堆疊 方式製成鏡頭模組,如圖2,將光闌711、第一光學鏡片 〇 714、間隔片713、第二光學鏡片715、間隔片713、第三 光學鏡片716、影像感測器717、電路板718,封裝(packing) 於封裝體(encapsulant)719中,構成一鏡頭模組。 然而,對於鏡頭模組陣列,當多片光學鏡片陣列組合 時’各光學鏡片陣列的對正(alignment)將影響鏡頭模組陣 列的解析度,在多片光學鏡片陣列之組合上,美國專利 US2006/0249859提出使用紅外線(infrared ray)產生基準點 標號(fiducial marks)以組合晶元級鏡片模組;在塑膠光學鏡 片陣列之組合上’日本專利JP2000-321526、JP2000-227505 揭露雙凸型光學鏡片陣列以凸塊(height)與凹隙(crevice)組 合的方法;美國專利US7,187,501提出利用圓錐體 201040605 (cone-shaped projection)以堆疊(stack)多片的塑膠光學鏡片 陣列。然而,在LED光源之組合鏡片、太陽能轉換系統之 組合鏡片及手機相機之光學鏡頭使用的光學鏡片模組陣 列,常是由多種面不同形狀的光學鏡片陣列所組成。在習 知塑膠光學鏡片陣列以突出部(projection)與凹穴(hole)組 合的方法中’由於塑膠光學鏡片陣列係以塑膠射出成形, 在凸塊與凹隙處會造成材料收縮而使尺寸發生改變,其定 位精度難以提高,致光學中心轴較難定位,使用上有相當 限制。模造玻璃製成鏡片,其折射率比塑膠為佳,且可耐 熱,已漸應用於各種光學系統中;由於模造玻璃製成的光 ❹ 學鏡片陣列,其收縮問題相對較小,因此發展簡易且精密 度高的光學玻璃鏡片模組陣列的製法,以製成光學玻璃鏡 片模組陣列,提供給LED光源之組合鏡片、太陽能轉換系 統之組合鏡片、及手機相機的光學鏡頭使用,才能符合量 產化之良率與產量的需求。 【發明内容】 本發明之目的係提供一種堆疊光學玻璃鏡片陣列 (Stacked Optical Glass Lens Array)供使用於光學系統之光 學鏡頭’其包含至少二片光學玻璃鏡片陣列(optical glass G lensarra>〇,並藉黏膠以預定的間隔組合固定而製成;其中 光學玻璃鏡片陣列係利用多穴玻璃模造(multi-cavity glass molding)方法製成,包含光學作用區及非光學作用區,其 中至少一光學玻璃鏡片陣列在其非光學作用區的周邊 (periphery)上設有至少一個黏膠槽(glue gr〇〇ve)供設置黏 膠’以使鄰接組合的二光學玻璃鏡片陣列可藉由黏膠槽内 設的黏膠固化後而固定結合。 本發明再一目的係提供一種堆疊光學玻璃鏡片陣列供 使用於光學系統之光學鏡頭,其包含至少二光學玻璃鏡片 陣列’並藉黏膠以預定的間隔組合固定而製成,其中至少 一光學玻璃鏡片陣列在其非光學作用區的周邊上設有至少 201040605 一定位槽(alignment notch) ’藉由定位槽可精密切割光學玻 璃鏡片陣列以分離成單一的堆疊光學鏡片元件(stacked optical lens element)供使用於堆疊鏡頭模組(Stacked Lens Module)。 本發明又一目的係提供一種堆疊鏡頭模組(Stacked Lens Module),其包含至少一堆疊光學鏡片元件、一鏡頭支 架(lens holder)及相配合之光學元件(opticalelement),其中 該堆疊光學鏡片元件係由一堆疊光學玻璃鏡片陣列切割分 離成單一元件(element)而製成;其中該光學元件係選自光 學鏡片(optical lens)、間隔片(spacer)、光闌(aperture)、表 ❹ 玻璃(cover glass)、紅外線濾光鏡片(IR-Cut glass)、影像感 測器(image capture device)、太陽能光電半導體 (photoelectric device)、電路板(PCB)中之一種或其組合。 本發明另一目的在於提供一種堆疊光學玻璃鏡片陣列 及堆疊鏡頭模組的製法,包含下列步驟: 51 .提供一玻璃元材, 52 :提供一光學玻璃鏡片陣列模具包含第一與第二光學 面模具,其分別設具光學面成形模面;又第一光學 面模具及/或第二光學面模具設有黏膠槽成形模面; ❹ S3 :將上述玻璃元材置於第一與第二光學面模具内,利 用加熱器加溫並加壓,以模造成形一光學玻璃鏡片 陣列,其具有光學作用區及非光學作用區,且在光 學作用區具有光學面’在非光學作用區具有黏膠槽; S4:以上述步驟製造另一光學玻璃鏡片陣列,且進一步 可在S2或S4步驟之第一光學面模具或第二光學面 模具設置至少一定位槽成形模面,以可在其非光學 作用區形成至少一定位槽; 55 :在鄰接組合之二光學玻璃鏡片陣列之黏膠槽内塗置 黏膠; 56 :以雷射光校準對正鄰接組合二光學玻璃鏡片陣列之 201040605 光學中心軸; S7:固化該黏膠以組成一精密對準光學中心軸之堆疊光 學玻璃鏡片陣列; 58 :切割該堆疊光學玻璃鏡片陣列以分離成單一的堆疊 光學鏡片元件(stacked optical lens element),其中可 依據定位槽所形成的定位點(alignment marks)進行 切割以達精密製造之目的,; 59 :將堆疊光學鏡片元件裝設入鏡頭支架中,並組合其 他光學元件,以形成一堆疊鏡頭模組。 藉此製法,可製成精密的光學玻璃鏡片陣列、堆疊光 學玻璃鏡片陣列及堆疊鏡頭模組,達到精密的組合及量產 化效果。 【實施方式】 本發明之堆疊光學玻璃鏡片陣列係包含至少二光學玻 璃鏡片陣列,並利用黏膠以預定的間隔組合固定形成;如 圖3,第一與第二光學玻璃鏡片陣列11、12係利用多穴玻 璃模造(multi-cavity glass molding)方法製成,各包含光學作 用區及非光學作用區;第一光學玻璃鏡片陣列11在第二光 學面102(102a、102b、…)之非光學作用區的周邊上設有黏 ° 膠槽111,該黏膠槽111可為一圓周狀溝狀槽;藉由設於黏 膠槽111内的黏膠13固化後,使鄰接組合之二光學玻璃鏡 片陣列11、12可固定結合並對正光學中心軸(optical axis)14,形成一堆疊光學玻璃鏡片陣列10。 進一步,第二陣列光學玻璃鏡片12在第四光學面 104(104a、104b、…)之非光學作用區的周邊上設有定位槽 121(121a、121b、…),定位槽 121a(121b、…)可為一圓周 狀V型槽,其圓心位於第四光學面l〇4(104a、104b...)的光 學中心軸上,且每一個定位槽的半徑可為相同,藉由相鄰 之二定位槽121(121a、121b、...)之交點可構成二定位點122 如圖4所示,供可沿定位點122精密切割堆疊光學玻璃鏡 201040605 片陣列10以分離成單一堆疊光學鏡片元件100(如圖9之步 驟 S8)。 再進一步,本發明之堆疊鏡頭模組3〇如圖13係由前 述之單一堆疊光學鏡片元件1〇〇與所需的各種光學元件(如 311、312、313、314、315)組裝於一鏡頭支架 3〇1 (lens holder) 内所構成。 該黏膠槽111的形狀與型式不限於圓周狀溝狀槽,該 定位槽121的形狀與型式不限於圓周狀之V型槽,光學元 件亦不限於光學鏡片、間隔片、光闌、表玻璃、紅外線濾 光鏡片、影像感測器、太陽能光電半導體、電路板(PCB) 〇 等。 本發明之堆疊光學玻璃鏡片陣列及堆疊鏡頭模組的製 造方法如圖9所示:利用一玻璃元材21置入一多模穴之第 一與第二光學面模具51、52中,第一光學面模具51設有 光學面成型之第一光學面成形模面(first optical mold surface)511(511a、511b、…),第二光學面模具52設有光 學面成型之第一光學面成形模面(second optical mold surface) 521 (521a、521b、…)及黏膠槽成形模面(giUe groove mold surface)524(524a、524b、…);經由加熱管 225(heater) 〇 加溫並施以加麼模造,即為多穴玻璃模造(multi-cavity glass molding)方法,以一次模造成具有多個光學作用區的第一 光學玻璃鏡片陣列11 ;以同樣方法模造第二光學玻璃鏡片 陣列12 ’且第二陣列光學玻璃鏡片12同時形成至少一定 位槽121(121a、121b、…)如圖3所示;再於第一與第二光 學玻璃鏡片陣列11、12之間的黏膠槽111中塗設黏膠13, 經組合後固化黏膠13,以製成一堆疊光學玻璃鏡片陣列 10 ;再沿定位槽121所形成的定位點122如圖4所示,切 割該堆疊光學玻璃鏡片陣列10,分離形成單一的堆疊光學 鏡片元件100 ;於製造堆疊鏡頭模組30時,將堆疊光學鏡 片元件100裝設入鏡頭支架301中,並組合其他光學元件, 201040605 以形成一堆疊鏡頭模組30。 為使本發明更為明確詳實,茲配合下列較佳實施例圖 示詳述如後: <實施例一 > 參考圖3,本實施例為一 4x4 (即具有16個光學玻璃 鏡片)之堆疊光學玻璃鏡片陣列10,包含第一光學玻璃鏡 片陣列11及第二光學玻璃鏡片陣列12,並利用黏膠13黏 合固定;第一光學玻璃鏡片陣列11設有16 (4x4)個第一 光學面101(101a、l〇lb、…)及16 (4x4)個第二光學面 0 l〇2(102a、102b、…)且在第二光學面102上設有16 (4x4) 個圓周狀梯型(外寬内窄)溝狀槽之黏膠槽111 ;第二光學 玻璃鏡片陣列12設有16 (4x4)個第三光學面103(103a、 103b、…)、16 (4x4)個第四光學面 l〇4(104a、104b、…)。 組合該堆疊光學玻璃鏡片10時,先將第二光學玻璃鏡 片陣列12置入一組合治具(assembly fixture)内(圖未示); 再於第一光學玻璃鏡片陣列11之各黏膠槽111中塗以黏膠 13,該黏膠13為熱固化型黏膠,再置入組合沿具内並堆疊 於第二光學玻璃鏡片陣列12上;使第一與第二光學玻璃鏡 片陣列11、12固定於組合治具内,並送入烘箱以固化黏膠 13 ’即形成一對正光學中心軸14之堆疊光學玻璃鏡片陣列 10 ° <實施例二> 參考圖12 ’本實施例之堆疊光學玻璃鏡片陣列係應用 於太陽能轉換系統;在太陽能轉換系統中,為使太陽光線 之轉換效率最向,太陽能轉換模組(solar transformation ,odule)40常堆疊使用多個光學玻璃鏡片陣列,使太陽光線 能於太陽能光電半導體416上聚焦,使太陽能光電半導體 416將太陽能轉變成電力由電路板417而輸至外界。本實 施例之太陽能轉換模組4〇係包含:一堆疊光學玻璃鏡片陣 201040605 列ίο其由二光學玻璃鏡片陣列u、12組成、一電路板417 其上設有以陣列排列之太陽能光電半導體416,其中該堆 疊光學玻璃鏡片陣列1 0如同實施例一,其第一光學玻璃鏡 片陣列11具有16個新月型光學作用區,其第二光學破璃 鏡片陣列12亦具有16個相對應之新月型光學作用區。為 使堆疊光學玻璃鏡片陣列1〇有最佳的聚光效果,第一與第 一光學玻璃鏡片陣列11、12之間保持固定的間距,本實施 例中,第一光學玻璃鏡片陣列u之像侧凸面與第二光學玻 璃鏡片陣列12之物侧凹面的間距為〇.5mm,第二光學玻璃 鏡片陣列12之像侧凸面與太陽能光電半導體4ΐό的間距為 ® 10mm。為使太陽光線經過堆疊光學玻璃鏡片陣列1〇,玎 以聚焦在太陽能光電半導體416上,組合時,太陽能光電 半導體416之中心可對正堆疊光學玻璃鏡片陣列1〇的光學 中心軸14。 <實施例三> 參考圖10、11,本實施例係應用於高精密手機鏡頭使 用之堆疊光學鏡片元件100,其係由一堆疊光學玻璃鏡片 陣列10切割分離形成;該堆疊光學玻璃鏡片陣列10為一 4x4之堆疊光學玻璃鏡片陣列,包含一第一光學玻璃鏡片 ❹ 陣列11及一第二光學玻璃鏡片陣列12,並利用黏膠13黏 合固定;第一光學玻璃鏡片陣列11設有16 (4x4)個第一 光學面101(101a、101b、…)及16 (4x4)個第二光學面 102(102a、102b、…)且在第二光學面102上設有16 (4χ4) 個圓周狀梯型溝狀槽之黏膠槽111;第二光學玻璃鏡片陣列 12 設有 16(4x4)個第三光學面 103(103a、103b、…)、4x4 個第四光學面104(104a、104b、…)及在第四光學面104上 設有16 (4x4)個圓周狀V型槽之定位槽121(121a、 121b、…),且各定位槽121(121a、121b、…)之圓心分別位 於相對應各第四光學面104(104a、104b、…)之光學中心軸 14上。 201040605 由於本實施例係應用於高精密手機鏡頭使用,因此在 組合堆疊光學玻璃鏡片陣列1〇時,第一光學玻璃鏡片陣列 11與第一光學玻璃鏡片陣列12之光學中心軸14需對JE*以 滿足精密公差範圍;組合時,先將第二光學玻璃鏡片陣列 12置入一組合治具(assembly fixture)(圖未示)内;再於第一 光學玻璃鏡片陣列11之黏膠槽111塗設黏膠13,再置入組 合置具内以堆疊於第二光學玻璃鏡片陣列12上,並利用雷 射光140進行光學中心軸之校準;當雷射光14〇穿過第二 光學玻璃鏡片陣列12之光學中心軸14,,先使雷射光140 與光學中心轴14’重合,再左右移動調整第一光學玻璃鏡片 ° 陣列u,使雷射光140與第一光學玻璃鏡片11陣列之光學 中心軸14重合,即完成二光學中心軸14,、14的校準;通 常此校準僅在4x4的對角光學面校準即可。 ,在本實施例中,該黏膠13為紫外線固化型黏膠,經校 準光學中心軸14’、14後,將第一與第二光學玻璃鏡月陣 列11、12固定於組合治具内,送入紫外線固化爐後,固化 黏膠13以形成堆疊光學玻璃鏡片陣列1〇。 如圖11 (同時參考圖4),在第四光學面1〇4上設有 16(4x4)個圓周狀V型槽之定位槽121(121a、121b、…), ❹相鄰接二定位槽121之間如定位槽1213與定位槽 121b, 可形成二定位點122 (如圖4所示),連接定位點122可構 成切割線(diCingline)15 (亦如圖9之步驟別所示),使 續石砂輪沿切割線15可分離形成16個堆叠光學鏡片 1〇〇,每個堆疊光學鏡片元件刚的第―、二、三及四 面之光學中心可以對正,且每個堆疊光學鏡片元件1〇〇外 型尺寸均一,可方便提供給手機鏡頭使用。 <實施例四> 參考圖13,本實施例係將一堆叠光學鏡片元件1〇〇應 用於一手機相機鏡頭模組30 ;本實施例之鏡頭模組3〇包 含一堆疊光學鏡片元件100、一鏡頭支架3〇1及數個光學 201040605 元件,其中相配合之光學元件包含一表玻璃311、一光闌 312、間隔片313、一紅外線濾光鏡片314、一影像感測器 315及一電路板316。 本實施例之應用方法如第三實施例,先製成一堆疊光 學鏡片元件100其包含一第一光學玻璃鏡片元件(first glass lens element)141及一第二光學玻璃鏡片元件(second glass lenselement)142及至少一黏膠槽111 ;先製備一鏡頭支架 301 ;再將表玻璃311、光闌312、堆疊光學鏡片元件1〇〇、 間隔片313、紅外線濾光鏡片314依序組裝於鏡頭支架301 内;再將預先設有影像感測器315之電路板316組裝於鏡 ❹ 頭支架301上以構成一完整之鏡頭模組30。藉此,鏡頭模 組30可簡便及快速製成,符合量產規模而可大幅降低製作 成本。 <實施例五> 參考圖14,本實施例係將堆疊光學鏡片元件1〇〇應用 於相機變焦鏡頭(Zoom lens)之鏡頭模組30中,為達變焦 (Zooming)目的,以不同的光學鏡片組成一光學鏡片群 (optical lens group),藉由移動光學鏡片群彼此間距以達到 變焦之光學效果。在本實施例中,鏡頭模組30包含一第一 ◎ 光學鏡片群31及一第二光學鏡片群32,第一光學鏡片群 31包含一堆疊光學鏡片元件1〇〇、一鏡頭支架3〇1及數個 光學元件,其中堆疊光學鏡片元件100係由一第一光學玻 璃鏡片元件151及一第二光學玻璃鏡片元件152構成;該 光學元件包含一表玻璃311及一光闌312 ;第二光學鏡片 群32包含一第三光學塑膠鏡片元件(third plastic lens element)153、一鏡頭支架302及數個光學元件,設光學元 件包括:一間隔片313、一紅外線濾光鏡片314、一影像感 測器315及一電路板316。 本實施例之應用方法如實施例三,先製成堆疊光學鏡 片元件100其包含第一光學玻璃鏡片元件151、第二光學 12 201040605 玻璃鏡片元件152及黏膠槽111 ;並先製備一鏡頭支架 301 ;將表玻璃311、光闌312、堆疊光學鏡片元件1〇〇組 裝於鏡頭支架301内以構成第一光學鏡片群31。另由射出 成型方法製作第三光學塑膠鏡片元件153,及製備一鏡頭 支架302 ;將第三光學塑膠鏡片153、間隔片313、紅外線 濾光鏡片314依序組裝於鏡頭支架302内,再將預先設於 電路板316之影像感測器315組裝於鏡頭支架302上,構 成第二光學鏡片群32。 使用時,將第一光學鏡片群31裝設於鏡筒(lensbarrel) 内(圖未示),藉由移動第一光學鏡片群31產生不同的距離 ❹ 而達成變焦目的。藉此,鏡頭模組30可簡便及快速製成, 符合量產規模以可大幅降低製作成本。 <實施例六> 本實施例係如實施例三之堆疊陣列光學玻璃鏡片10 及堆疊光學鏡片元件100之製法。參考圖9,利用一玻璃 元材21置入一多模穴之第一光學面模具51與第二光學面 模具52中,經由加熱管225(heater)加温並加壓模造,以製 成一第一光學玻璃鏡片陣列11 ;再以相同方法製成一第二 光學玻璃鏡片陣列12。 ® 第一光學玻璃鏡片陣列11之模具如圖5、6所示,其 中在第一光學面101之第一光學面模具51之模座513上設 有第一光學面成形模面(first optical mold surface) 511 (511a、5llb、…),其為凹面且以4x4陣列排列,且各成 形模面511 (511a、511b.")之間距相同,可以玻璃模造成 型方法製成一 4x4的第一光學玻璃鏡片陣列11之第一光學 面101。在第二光學面102之第二光學面模具52之模座523 上設有第二光學面成形模面521 (521a、521b.·.),其為凸 面且以4x4陣列排列,且各成形模面511a (511b、...)之間 距相同,可以玻璃模造成型方法製成4x4的第一光學玻璃 鏡片陣列11之第二光學面102;在第二光學面成形模面521 13 201040605 (521a、521b...)之外圍設有黏膠槽成形模面(giue groove mold surface) 524( 524a、524b…),其為圓周狀之梯形凸面, 可以製成第二光學面之圓周狀黏膠槽111。 第二光學玻璃鏡片陣列12之模具如圖7、8所示,其 中第三光學面103之第三光學面模具53如圖7所示,在模 座533上設有第三光學面成形模面531 ( 531a、531b...), 其為凸面且以4x4陣列排列,各成形模面之間距相同,可 以玻璃模造成型方法製成4x4的第二光學玻璃鏡片陣列12 之第三光學面103。第四光學面104之第四光學面模具54 如圖8所示,在模座543上設有第四光學面成形模面(负urth Ό optical mold surface) 541 ( 541a、541b."),其為凹面且以 4x4陣列排列’各成形模面之間距相同,可以玻璃模造成 型方法製成4x4的第二光學玻璃鏡片陣列π之第四光學面 104 ;在第四光學面成形模面541 (541a、541b..·)之外圍設 有定位槽成形模面(alignment notch mold surface) 545 ( 545a、545b…),其為圓周狀v形凸面,其圓心位於第四 光學面之光學中心軸14上,且每個定位槽成形模面545 ( 545a、545b".)之半徑與v形凸面均相同。 參考圖9,堆疊光學玻璃鏡片陣列1〇及堆疊光學鏡片 Ο 元件100之製法包含下列步驟: S1 :提供一玻璃元材21 ; S2:提供一光學玻璃鏡片陣列第一光學面模具51與第 一光學面模具52,且分別設具第一光學面成形模面511 (511a、511b.,.)與第二光學面成形模面521 ( 521a、 521b...)’第二光學面模具52設有黏膠槽成形模面524 ( 524a ' 524b...); S3:將上述玻璃元材放置於第一光學面模具51與第二 光學面模具52内’利用加熱器225加溫並加壓以模造一第 一光學玻璃鏡片陣列11,其具有4x4個第一光學面與相對 應之4x4個第二光學面,且在第二光學面之非光學作用區 201040605 具有4x4個黏膠槽m ; 54 :以上述方法製造一第二光學玻璃鏡片陣列12 ;該 光學玻璃鏡片陣列12具有4x4個第三光學面與相對應之 4x4個第四光學面,且在第四光學面之非光學作用區具有 4x4個圓周狀V型槽之定位槽121(121a、121b、...); 55 :在鄰接二光學玻璃鏡片陣列(u、12)之黏膠槽m 塗以黏膠13 ; S6:使用雷射光15以校準及對正二光學玻璃鏡片陣列 (11、12)之光學中心軸14 ;曰 曰 JP patent JP63-295448, etc., which utilizes the characteristics of glass softening at high temperature, heats and softens a glass element (or glass preform, glasspref〇rm) in the upper and lower molds, and then applies the upper and lower molds. Correspondingly closing and pressing, the optical mold faces of the upper and lower molds are transferred onto the softened glass preform, and after cooling, the upper and lower molds are separated to form a molded glass lens having upper and lower mold faces. In order to reduce the manufacturing cost, Japanese patents jp63_3〇42〇1, US Patent US2005/041215 propose a lens array type lens array; for making a single lens, referred to herein as a lens element (iens Japanese patent Jp〇) 2-〇44〇33 proposes to use a moving glass material in a multi-molding manner to make a lens blank having a plurality of optical lenses, which are cut into a plurality of lens elements in one step. The optical lens of the glass mold type has begun to be widely used. LED light, solar energy conversion system combination lens, and mobile phone camera master, combination lens or optical lens, for optical imaging effects, often optical lenses with different diopter of light, combined with - air separation: when The optical lens set with different diopter to avoid the optical central axis of the a-optical lens (〇pticaiaxis) requires the problem of precise alignment reduction of the positive distance 'and the optical lens also needs to be - It takes a lot of processes and precision corrections, which makes it difficult to reduce the cost of the product. Especially in the optical lens array combination, the optical center of the 匕2 array When the offset is generated, 'the effect will be affected. For example, Japanese Patent JP200U94508 proposes a manufacturing method of the plastic optical mirror 3 201040605 chip array; Taiwan patent TW M343166 proposes a manufacturing method of the glass optical lens array. The optical lens array can be cut and separated after being fabricated. A single optical lens unit is assembled in a lens module. Alternatively, the optical lens array and other optical elements can be first combined into a lens submodule array and then cut into A single lens submodule is combined with a lens holder, an image capture device, or other optical components to form a lens module. In the array manufacturing, a wafer level lens module is proposed in US Patent No. 7,183,643, US2007/0070511, WIPO Patent W02008011003, etc. As shown in Fig. 1, a lens array of general optical lens usually includes a diaphragm. 711 (aperture), a cover glass 712 (cover glass), a multi-piece optical lens and an infrared filter lens 717 (IR The cut lens), as shown in the figure, is a three-piece optical lens set comprising a first optical lens 714 (first lens), a second optical lens 715 (secondlens), and a third optical lens 716 (third lens). The spacers 713 are separated by spacers; after being combined, a lens module array is formed, and after being cut, the lens module is formed. In addition, the lens module is fabricated in a stacked manner as in WIPO Patent WO2008/063528, as shown in FIG. 2, the aperture 711, the first optical lens 714, the spacer 713, the second optical lens 715, the spacer 713, and the third optical lens. 716. The image sensor 717 and the circuit board 718 are packaged in an encapsulant 719 to form a lens module. However, for a lens module array, when multiple optical lens arrays are combined, the alignment of each optical lens array will affect the resolution of the lens module array. In the combination of multiple optical lens arrays, US Patent US2006 /0249859 proposes the use of infrared ray to produce fiducial marks to combine the crystal-level lens modules; in the combination of plastic optical lens arrays, 'Japanese Patent JP2000-321526, JP2000-227505, discloses a double convex optical lens The array is a combination of a height and a crevice; U.S. Patent No. 7,187,501 teaches the use of a cone 201040605 (cone-shaped projection) to stack a plurality of plastic optical lens arrays. However, an array of optical lens modules used in combination lenses of LED light sources, combined lenses of solar energy conversion systems, and optical lenses of mobile phone cameras are often composed of optical lens arrays of various shapes and shapes. In the conventional method of combining a plastic optical lens array with a projection and a hole, the plastic optical lens array is formed by plastic injection molding, and the material shrinks at the bump and the recess to make the size occur. Changes, its positioning accuracy is difficult to improve, resulting in the optical center axis is difficult to locate, there are considerable restrictions on the use. Molded glass is made of glass, which has better refractive index than plastic and is heat-resistant. It has been gradually applied to various optical systems. Since the optical lens array made of molded glass has a relatively small shrinkage problem, it is easy to develop and High-precision optical glass lens module array method for making optical glass lens module array, providing combined lens for LED light source, combination lens of solar energy conversion system, and optical lens of mobile phone camera to meet mass production The demand for yield and output. SUMMARY OF THE INVENTION An object of the present invention is to provide a stacked optical glass lens array (Arrayed Optical Glass Lens Array) for use in an optical lens of an optical system, which comprises at least two optical glass lens arrays (optical glass G lensarra) The optical glass lens array is formed by a multi-cavity glass molding method, and comprises an optically active region and a non-optical active region, wherein at least one optical glass is formed by a combination of fixing and fixing at a predetermined interval; The lens array is provided with at least one glue groove on the periphery of the non-optical active area for providing the glue so that the adjacent optical glass lens array can be disposed in the adhesive groove The adhesive is cured and fixedly bonded. Another object of the present invention is to provide a stacked optical glass lens array for use in an optical lens of an optical system, comprising at least two optical glass lens arrays, and combined by adhesive at predetermined intervals Fixedly formed, wherein at least one optical glass lens array is provided on the periphery of its non-optical active area to 201040605 An alignment notch 'The optical glass lens array can be precisely cut by the positioning groove to be separated into a single stacked optical lens element for use in a stacked lens module (Stacked Lens Module). Still another object is to provide a stacked lens module (Stacked Lens Module) comprising at least one stacked optical lens element, a lens holder and a matching optical element, wherein the stacked optical lens element is A stacked optical glass lens array is cut and separated into a single element; wherein the optical element is selected from the group consisting of an optical lens, a spacer, an aperture, and a cover glass. , an IR-Cut glass, an image capture device, a solar photovoltaic device, a circuit board (PCB), or a combination thereof. Another object of the present invention is to provide A method for fabricating a stacked optical glass lens array and a stacked lens module comprises the following steps: 51 . Providing a glass element, 52: providing an optical glass lens array mold comprising first and second optical surface molds respectively provided with an optical surface forming mold surface; and a first optical surface mold and/or a second optical surface mold There is a glue groove forming die face; ❹ S3: the glass element material is placed in the first and second optical surface molds, and heated and pressurized by a heater to form an optical glass lens array, which has an optical effect a region and a non-optical active region, and having an optical surface in the optically active region' having a glue groove in the non-optical active region; S4: fabricating another optical glass lens array in the above steps, and further capable of being first in the step S2 or S4 The optical surface mold or the second optical surface mold is provided with at least one positioning groove forming die surface to form at least one positioning groove in the non-optical active region thereof; 55: coating in the adhesive groove adjacent to the combined optical glass lens array Viscose; 56: Aligning the 201040605 optical center axis of the pair of adjacent optical glass lens arrays with laser light; S7: curing the glue to form a stacking optical with a precisely aligned optical center axis Glass lens array; 58: cutting the stacked optical glass lens array to separate into a single stacked optical lens element, wherein the cutting can be performed according to alignment marks formed by the positioning grooves for precision manufacturing Purpose, 59: Mounting the stacked optical lens components into the lens holder and combining other optical components to form a stacked lens module. By this method, precise optical glass lens arrays, stacked optical glass lens arrays and stacked lens modules can be fabricated to achieve precise combination and mass production effects. [Embodiment] The stacked optical glass lens array of the present invention comprises at least two optical glass lens arrays, and is formed by a combination of adhesives at predetermined intervals; as shown in FIG. 3, the first and second optical glass lens arrays 11 and 12 are Made by a multi-cavity glass molding method, each comprising an optically active region and a non-optically active region; the first optical glass lens array 11 is non-optical on the second optical surface 102 (102a, 102b, ...) A glue groove 111 is disposed on the periphery of the action area, and the glue groove 111 can be a circumferential groove groove; after the adhesive 13 disposed in the glue groove 111 is solidified, the adjacent optical glass is adjacently combined. The lens arrays 11, 12 can be fixedly coupled to a positive optical axis 14, forming a stacked optical glass lens array 10. Further, the second array optical glass lens 12 is provided with positioning grooves 121 (121a, 121b, ...) on the periphery of the non-optical active area of the fourth optical surface 104 (104a, 104b, ...), and the positioning grooves 121a (121b, ... ) can be a circumferential V-shaped groove whose center is located on the optical central axis of the fourth optical surface 10 4 (104a, 104b...), and the radius of each positioning groove can be the same, by adjacent The intersection of the two positioning grooves 121 (121a, 121b, ...) can constitute two positioning points 122 as shown in FIG. 4, for precisely cutting the stacked optical glass mirror 201040605 chip array 10 along the positioning point 122 to be separated into single stacked optical lenses. Element 100 (step S8 of Figure 9). Still further, the stacked lens module 3 of the present invention is assembled into a lens by a single stacked optical lens element 1 〇〇 and various optical elements (such as 311, 312, 313, 314, 315) as shown in FIG. The bracket is constructed in a 3 holder1 (lens holder). The shape and shape of the adhesive groove 111 are not limited to the circumferential groove-shaped groove. The shape and shape of the positioning groove 121 are not limited to the circumferential V-shaped groove, and the optical element is not limited to the optical lens, the spacer, the diaphragm, the watch glass. , infrared filter lens, image sensor, solar photovoltaic semiconductor, circuit board (PCB) 〇 and so on. The manufacturing method of the stacked optical glass lens array and the stacked lens module of the present invention is as shown in FIG. 9 : using a glass element 21 to be placed in the first and second optical surface molds 51 and 52 of a multi-cavity, first The optical surface mold 51 is provided with a first optical mold surface 511 (511a, 511b, ...) formed by an optical surface, and the second optical surface mold 52 is provided with a first optical surface forming mold formed by an optical surface. Second optical mold surface 521 (521a, 521b, ...) and giUe groove mold surface 524 (524a, 524b, ...); heated by heating tube 225 (heater) and applied Adding a mold, that is, a multi-cavity glass molding method, the first optical glass lens array 11 having a plurality of optically active regions is formed in a single mold; and the second optical glass lens array 12' is molded in the same manner. And the second array of optical glass lenses 12 simultaneously form at least one positioning groove 121 (121a, 121b, ...) as shown in FIG. 3; and then in the adhesive groove 111 between the first and second optical glass lens arrays 11, 12 Set glue 13, after combination The adhesive 13 is formed to form a stacked optical glass lens array 10; the positioning point 122 formed along the positioning groove 121 is cut as shown in FIG. 4, and the stacked optical glass lens array 10 is cut to form a single stacked optical lens element. 100. When manufacturing the stacked lens module 30, the stacked optical lens component 100 is mounted in the lens holder 301, and other optical components are combined, 201040605 to form a stacked lens module 30. In order to make the present invention clearer and more detailed, the following detailed description of the preferred embodiment is as follows: <First Embodiment> Referring to Figure 3, this embodiment is a 4x4 (i.e., having 16 optical glass lenses). The stacked optical glass lens array 10 includes a first optical glass lens array 11 and a second optical glass lens array 12, and is bonded and fixed by an adhesive 13; the first optical glass lens array 11 is provided with 16 (4×4) first optical surfaces. 101 (101a, l〇lb, ...) and 16 (4x4) second optical planes 0 l〇2 (102a, 102b, ...) and 16 (4x4) circumferential ladders on the second optical surface 102 (The outer width is narrow inside) the groove groove 111 of the groove groove; the second optical glass lens array 12 is provided with 16 (4x4) third optical faces 103 (103a, 103b, ...), 16 (4x4) fourth optics Face l〇4 (104a, 104b, ...). When the stacked optical glass lens 10 is assembled, the second optical glass lens array 12 is first placed in an assembly fixture (not shown); and the adhesive grooves 111 of the first optical glass lens array 11 are further disposed. The adhesive 13 is applied to the middle, and the adhesive 13 is a thermosetting adhesive, which is then placed in the assembly and stacked on the second optical glass lens array 12; the first and second optical glass lens arrays 11 and 12 are fixed. In the combined jig, and fed into the oven to cure the adhesive 13', that is, a stack of optical glass lens arrays forming a pair of positive optical central axes 14° <Example 2> Referring to Fig. 12 'Stacking optics of the present embodiment The glass lens array is applied to a solar energy conversion system; in the solar energy conversion system, in order to maximize the conversion efficiency of the solar light, the solar conversion module (odle transformation) 40 often stacks multiple optical glass lens arrays to make the sun light The solar photovoltaic semiconductor 416 can be focused to cause the solar photovoltaic semiconductor 416 to convert solar energy into electricity that is transmitted from the circuit board 417 to the outside. The solar energy conversion module 4 of the present embodiment comprises: a stacked optical glass lens array 201040605, which is composed of two optical glass lens arrays u, 12, and a circuit board 417 having solar photovoltaic semiconductors 416 arranged in an array. The stacked optical glass lens array 10 is the same as the first embodiment, the first optical glass lens array 11 has 16 crescent-shaped optical active regions, and the second optical glass lens array 12 also has 16 corresponding new ones. Moon type optical action zone. In order to achieve optimal concentrating effect of the stacked optical glass lens array 1 , a fixed spacing is maintained between the first and first optical glass lens arrays 11 , 12 . In this embodiment, the image of the first optical glass lens array u The distance between the convex surface of the convex surface and the concave surface of the second optical glass lens array 12 is 〇5 mm, and the distance between the image side convex surface of the second optical glass lens array 12 and the solar photovoltaic semiconductor 4 is 1.0 mm. In order to pass the solar light through the stacked optical glass lens array 1 〇 to focus on the solar photovoltaic semiconductor 416, the center of the solar photovoltaic semiconductor 416 can be aligned with the optical central axis 14 of the stack of optical glass lens arrays. <Embodiment 3> Referring to Figures 10 and 11, the present embodiment is applied to a stacked optical lens element 100 for use in a high-precision mobile phone lens, which is formed by cutting and separating a stacked optical glass lens array 10; the stacked optical glass lens The array 10 is a 4x4 stacked optical glass lens array comprising a first optical glass lens array 11 and a second optical glass lens array 12, and is bonded and fixed by an adhesive 13; the first optical glass lens array 11 is provided with 16 (4x4) first optical faces 101 (101a, 101b, ...) and 16 (4x4) second optical faces 102 (102a, 102b, ...) and 16 (4χ4) circles on the second optical face 102 The second optical glass lens array 12 is provided with 16 (4x4) third optical surfaces 103 (103a, 103b, ...) and 4x4 fourth optical surfaces 104 (104a, 104b). And a positioning groove 121 (121a, 121b, ...) of 16 (4x4) circumferential V-shaped grooves is provided on the fourth optical surface 104, and the centers of the positioning grooves 121 (121a, 121b, ...) are respectively Located on the optical central axis 14 of each of the fourth optical faces 104 (104a, 104b, ...). 201040605 Since the present embodiment is applied to a high-precision mobile phone lens, the optical central axis 14 of the first optical glass lens array 11 and the first optical glass lens array 12 needs to be JE* when the stacked optical glass lens array is assembled. The second optical glass lens array 12 is first placed in a combination fixture (not shown); The adhesive 13 is disposed in the assembly to be stacked on the second optical glass lens array 12, and the optical central axis is calibrated by the laser light 140; when the laser light 14 passes through the second optical glass lens array 12 The optical central axis 14 first overlaps the laser light 140 with the optical central axis 14', and then moves left and right to adjust the first optical glass lens array u, so that the laser light 140 and the optical central axis 14 of the first optical glass lens 11 array Coincidence, that is, the calibration of the two optical central axes 14, 14 is completed; usually this calibration is only calibrated on a diagonal optical surface of 4x4. In the embodiment, the adhesive 13 is an ultraviolet curing adhesive. After the optical center axes 14' and 14 are calibrated, the first and second optical glass mirror arrays 11 and 12 are fixed in the combined fixture. After being fed into the ultraviolet curing oven, the adhesive 13 is cured to form a stacked optical glass lens array. As shown in FIG. 11 (also referring to FIG. 4), 16 (4×4) positioning grooves 121 (121a, 121b, . . . ) of circumferential V-shaped grooves are provided on the fourth optical surface 1〇4, and two positioning grooves are adjacent to each other. For example, between the positioning groove 1213 and the positioning groove 121b, two positioning points 122 (shown in FIG. 4) may be formed, and the connection positioning point 122 may constitute a cutting line (diCingline) 15 (also shown in the step of FIG. 9). The continuous stone grinding wheel can be separated along the cutting line 15 to form 16 stacked optical lenses 1 , and the optical centers of the first, second, third and fourth sides of each stacked optical lens element can be aligned, and each stacked optical lens element The 1〇〇 size is uniform and can be easily supplied to the lens of the mobile phone. <Embodiment 4> Referring to FIG. 13, this embodiment applies a stacked optical lens element 1〇〇 to a mobile phone camera lens module 30; the lens module 3〇 of the present embodiment includes a stacked optical lens element 100. a lens holder 3〇1 and a plurality of optical 201040605 components, wherein the matching optical component comprises a watch glass 311, a stop 312, a spacer 313, an infrared filter lens 314, an image sensor 315 and a Circuit board 316. Application Method of the Present Embodiment As in the third embodiment, a stacked optical lens element 100 is first formed, which comprises a first glass lens element 141 and a second glass lens element. 142 and at least one adhesive groove 111; first, a lens holder 301 is prepared; and the watch glass 311, the aperture 312, the stacked optical lens element 1〇〇, the spacer 313, and the infrared filter lens 314 are sequentially assembled to the lens holder 301. Then, the circuit board 316 provided with the image sensor 315 is assembled on the mirror head bracket 301 to form a complete lens module 30. Thereby, the lens module 30 can be easily and quickly manufactured, and the production scale can be greatly reduced. <Embodiment 5> Referring to Fig. 14, the present embodiment applies a stacked optical lens element 1〇〇 to a lens module 30 of a camera zoom lens for different purposes of zooming. The optical lens constitutes an optical lens group, and the optical effect of the zoom is achieved by moving the optical lens groups at a distance from each other. In this embodiment, the lens module 30 includes a first ◎ optical lens group 31 and a second optical lens group 32. The first optical lens group 31 includes a stacked optical lens element 1 〇〇 and a lens holder 3 〇 1 And a plurality of optical components, wherein the stacked optical lens component 100 is composed of a first optical glass lens component 151 and a second optical glass lens component 152; the optical component comprises a surface glass 311 and a diaphragm 312; The lens group 32 includes a third plastic lens element 153, a lens holder 302 and a plurality of optical components. The optical component includes a spacer 313, an infrared filter lens 314, and an image sensing device. The device 315 and a circuit board 316. The application method of the embodiment is as follows. First, the stacked optical lens element 100 is firstly composed of a first optical glass lens element 151, a second optical 12 201040605 glass lens element 152 and an adhesive groove 111; and a lens holder is prepared first. 301. The watch glass 311, the diaphragm 312, and the stacked optical lens element 1 are assembled in the lens holder 301 to constitute the first optical lens group 31. The third optical plastic lens element 153 is prepared by the injection molding method, and a lens holder 302 is prepared. The third optical plastic lens 153, the spacer 313, and the infrared filter lens 314 are sequentially assembled in the lens holder 302, and then The image sensor 315 disposed on the circuit board 316 is assembled on the lens holder 302 to form a second optical lens group 32. In use, the first optical lens group 31 is mounted in a lens barrel (not shown), and the first optical lens group 31 is moved to generate different distances ❹ to achieve the zooming purpose. Thereby, the lens module 30 can be easily and quickly manufactured, and is in a mass production scale to greatly reduce the production cost. <Embodiment 6> This embodiment is a method of manufacturing the stacked array optical glass lens 10 and the stacked optical lens element 100 as in the third embodiment. Referring to FIG. 9, a glass element 21 is placed in the first optical surface mold 51 and the second optical surface mold 52 of a multi-cavity, heated and pressurized by a heating tube 225 (heater) to form a The first optical glass lens array 11; a second optical glass lens array 12 is formed in the same manner. The mold of the first optical glass lens array 11 is as shown in Figs. 5 and 6, wherein the first optical mold forming surface (first optical mold) is provided on the mold base 513 of the first optical surface mold 51 of the first optical surface 101. Surface) 511 (511a, 5llb, ...), which are concave and arranged in a 4x4 array, and the distance between the forming faces 511 (511a, 511b. ") is the same, and can be made into a 4x4 first by the glass mold forming method. The first optical face 101 of the optical glass lens array 11. A second optical surface forming surface 521 (521a, 521b..) is provided on the mold base 523 of the second optical surface mold 52 of the second optical surface 102, which is convex and arranged in a 4×4 array, and each forming mold The surfaces 511a (511b, ...) are the same distance, and the second optical surface 102 of the 4x4 first optical glass lens array 11 can be formed by a glass mold forming method; and the second optical surface forming surface 521 13 201040605 (521a, The outer periphery of 521b...) is provided with a giue groove mold surface 524 (524a, 524b...) which is a trapezoidal convex surface in a circular shape, and can be made into a circumferential adhesive groove of the second optical surface. 111. The mold of the second optical glass lens array 12 is as shown in Figs. 7 and 8, wherein the third optical surface mold 53 of the third optical surface 103 is provided with a third optical surface forming mold surface on the mold base 533 as shown in Fig. 7 . 531 (531a, 531b...), which is convex and arranged in a 4x4 array, and the distance between the forming faces is the same, and the third optical surface 103 of the 4x4 second optical glass lens array 12 can be formed by a glass mold forming method. The fourth optical surface mold 54 of the fourth optical surface 104 is provided with a fourth erth Ό optical mold surface 541 (541a, 541b. ") on the mold base 543, as shown in FIG. It is concave and arranged in a 4×4 array. The distance between the forming surfaces is the same, and the fourth optical surface 104 of the 4×4 second optical glass lens array π can be formed by a glass mold forming method; and the molding surface 541 is formed on the fourth optical surface ( 541a, 541b........) is provided with an alignment notch mold surface 545 (545a, 545b...) which is a circumferential v-shaped convex surface whose center is located at the optical central axis 14 of the fourth optical surface. The radius of each of the positioning groove forming faces 545 (545a, 545b".) is the same as the v-shaped convex surface. Referring to FIG. 9, the method for fabricating the stacked optical glass lens array 1 and the stacked optical lens unit 100 comprises the following steps: S1: providing a glass element 21; S2: providing an optical glass lens array first optical surface mold 51 and first The optical surface mold 52 is provided with a first optical surface forming surface 511 (511a, 511b.,.) and a second optical surface forming surface 521 (521a, 521b...)' There is a glue groove forming die surface 524 ( 524a ' 524b...); S3: placing the above glass material in the first optical surface mold 51 and the second optical surface mold 52 'heating and pressurizing with the heater 225 Forming a first optical glass lens array 11 having 4×4 first optical surfaces and corresponding 4×4 second optical surfaces, and having 4×4 adhesive grooves m in the non-optical active region 201040605 of the second optical surface; 54: manufacturing a second optical glass lens array 12 by the above method; the optical glass lens array 12 has 4x4 third optical faces and corresponding 4x4 fourth optical faces, and in the non-optical active region of the fourth optical surface Positioning groove 121 (121a, 121b) having 4x4 circumferential V-shaped grooves ...); 55: Adhesive groove 13 is applied to the adhesive groove m adjacent to the two optical glass lens arrays (u, 12); S6: laser light 15 is used to align and align the two optical glass lens arrays (11, 12) Optical center axis 14;

S7.固化該黏膠13形成一堆疊光學玻璃鏡片陣列1〇 ; 藉此可形成一精密對準光學中心的堆疊光學玻璃鏡片陣列 10, S8·堆疊光學玻璃鏡片陣列1〇之二個 與定位= 121b)之交點可形成二個定二12(匕 定位點122 τ構成切割線(di_ 單=光=;;:線15切割可 學玻璃鏡ΐ陣學列、堆疊光 化的效果。 頌模組,以達到精密組合及量產 以上所示僅為本發明之妨社者 是說明性的,而非限制性的。本專業二倂广t發明而言僅 發明專利要求U的精d以2理解,在本 内。 *都將洛入本發明的保護範圍 【圖式簡單說明】 圖1係習知4學玻模㈣ 圖2係習知一鏡頭模乡且封装^意圖;’、‘、, 15 201040605 圖3係本發明之堆疊光學玻璃鏡片陣列示意圖(實施例 一); 圖4係本發明堆疊光學玻璃鏡片陣列之定位槽上 圖; 圖5,本發明第一光學面模具之上視及側面剖視示意圖; 圖6係本發明第二光學面模具之上視及侧面剖視示意圖; 圖7,本發明第三光學面模具之上視及侧面剖視示意圖; 圖8係本發明第四光學面模具之上視及侧面剖視示意圖; 圖9係本發明之堆疊光學玻璃鏡片陣列與堆疊鏡頭模組之 製造流程示意圖(實施例六); ❹ 圖10係本發明之堆疊光學玻璃鏡片陣列校準光學中心軸 之示意圖(實施例三); 圖11係本發明之堆疊光學玻璃鏡片陣列切割分離成單一 的堆疊光學鏡片元件之示意圖; 圖12係本發明之堆疊光學玻璃鏡片陣列應用於太陽能轉 換模組之示意圊(實施例二); 圖13係本發明之堆疊光學鏡片元件應用於手機相機鏡頭 模組示意圖(實施例四);及 圖14係本發明之施例堆疊光學鏡片元件應用於相機變焦 〇 鏡頭模組之示意圖(實施例五)。 【主要元件符號說明】 10 :堆疊光學玻璃鏡片陣列(stacked optical glass lens array) 100 :堆疊光學玻璃鏡片元件(stacked optical glass lens element) 101、 101a、101b :第一光學面 102、 102a、102b ··第二光學面 103、 103a、103b :第三光學面 104、 104a、104b:第四光學面 11 :第一光學玻璃鏡片陣列(first optical glass lens array) 111 :黏膠槽(glue groove) 201040605 12 :第二光學玻璃鏡片陣列(second optical glass lens array) 121、121a、121b :定位槽(alignment notch) 122 :定位點(alignment marks) 13 :黏膠(cement glue) 14 :光學中心軸(optical axis) 140:雷射光(collimating light) 15 :切割線(dicing line) 141、 151 :第一光學玻璃鏡片元件(first glass lens element) 142、 152:第二光學玻璃鏡片元件(second glass lens element) 153 :第三光學塑膠鏡片元件(third plastic lens element) ❹ 21 :玻璃元材(glass blank) 225 :加熱器(heater) 30 :鏡頭模組(lens module) 31 :第一光學鏡片群(first optical lens group) 32 :第二光學鏡片群(second optical lens group) 301 :鏡頭支架(lens holder) 311 :表玻璃(cover glass) 312 ··光闌(aperture) 313 :間隔片(spacer) 〇 314:紅外線濾光鏡片 315 :影像感測器(image sensor) 40 :太陽能轉換模組 415 :太陽能光電半導體(solar die) 416 :電路板(PCB) 51 :第一光學面模具(first optical mold) 511、511a、511b:第一光學面成形模面(first optical mold surface) 52:第二光學面模具(second optical mold) 513、523、533、543 :模座 521、521a、521b:第二光學面成形模面(second optical mold 17 201040605 surface) 524、524a、524b:黏膠槽成形模面(glue groove mold surface) 53:第三光學面模具(third optical mold) 531、531a、531b :第二光學面模面(second optical mold surface) 54 :第四光學面模具(fourth optical mold) 541、541a、541b :第四光學面成形模面(fourth optical mold surface) 545、545a、545b :定位槽成形模面(aiignment notch mold surface) 〇S7. Curing the adhesive 13 to form a stacked optical glass lens array 1; thereby forming a precision alignment optical center of the stacked optical glass lens array 10, S8·Stacking optical glass lens array 1 and positioning= The intersection of 121b) can form two fixed two 12 (匕 positioning point 122 τ constitutes a cutting line (di_ single = light =;;: line 15 cuts the glass mirror array, stacking actinic effect. 颂 module In order to achieve the precise combination and mass production, the above-mentioned ones are merely illustrative and not limiting. In the case of the invention, only the invention patent requires that the fineness of U is understood by 2 In this book. * All will be in the scope of protection of the present invention [Simple description of the drawing] Figure 1 is a conventional 4 learning glass mold (4) Figure 2 is a conventional lens model and package ^ intent; ', ',, 15 201040605 FIG. 3 is a schematic view of a stacked optical glass lens array of the present invention (Example 1); FIG. 4 is a top view of a positioning groove of the stacked optical glass lens array of the present invention; FIG. 5 is a top view of the first optical surface mold of the present invention. Side cross-sectional view; Figure 6 is a second optical surface mold of the present invention Figure 7 is a top view and a side cross-sectional view of the third optical surface mold of the present invention; Figure 8 is a top and side cross-sectional view of the fourth optical surface mold of the present invention; FIG. 10 is a schematic diagram showing the calibration optical center axis of the stacked optical glass lens array of the present invention (Example 3); FIG. 11 is a schematic diagram of the manufacturing process of the stacked optical glass lens array and the stacked lens module of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 12 is a schematic diagram of a stacked optical glass lens array of the present invention applied to a solar energy conversion module (Embodiment 2); FIG. 13 is a view of the present invention The stacked optical lens component is applied to a camera lens module of a mobile phone (Embodiment 4); and FIG. 14 is a schematic diagram of a stacked optical lens component of the present invention applied to a camera zoom lens module (Embodiment 5). Component Symbol Description] 10: Stacked optical glass lens array 100: Stacked optical glass mirror A stacked optical glass lens element 101, 101a, 101b: a first optical surface 102, 102a, 102b, a second optical surface 103, 103a, 103b: a third optical surface 104, 104a, 104b: a fourth optical surface 11 : first optical glass lens array 111 : glue groove 201040605 12 : second optical glass lens array 121 , 121 a , 121 b : alignment notch 122: alignment marks 13: cement glue 14: optical axis 140: collimating light 15: dicing line 141, 151: first optical glass First glass lens element 142, 152: second glass lens element 153: third plastic lens element ❹ 21 : glass blank 225 : Heater 30: lens module 31: first optical lens group 32: second optical lens group 301: lens holder 311 : cover glass 312 ·· aperture 313 : spacer spacer 314 : infrared filter lens 315 : image sensor 40 : solar energy conversion module 415 : solar photovoltaic semiconductor (solar die) 416: circuit board (PCB) 51: first optical mold 511, 511a, 511b: first optical mold surface 52: second optical surface mold ( Second optical mold) 513, 523, 533, 543: mold base 521, 521a, 521b: second optical mold 17 201040605 surface 524, 524a, 524b: glue groove forming die surface (glue groove Mold surface) 53: third optical mold 531, 531a, 531b: second optical mold surface 54: fourth optical mold 541, 541a, 541b : fourth optical mold surface 545, 545a, 545b: aiignment notch mold surface 〇

Claims (1)

201040605 七、申請專利範圍: 1、 一種堆疊光學玻璃鏡片陣列,包含至少二個光學玻璃 鏡片陣列,利用黏膠以預定的間隔組合固定而製成; 其特徵在於:該光學玻璃鏡片陣列係利用多六玻璃模造 (multi-cavity glass molding)方法製成,具有以陣列排列的 複數個光學玻璃鏡片,而形成光學作用區及非光學作用 區; 其中,該光學玻璃鏡片陣列在非光學作用區的周邊上設 有黏膠槽供塗設黏膠(cement glue),藉以利用黏膠以使相201040605 VII. Patent application scope: 1. A stacked optical glass lens array comprising at least two optical glass lens arrays, which are prepared by combining and fixing adhesive at predetermined intervals; and the optical glass lens array is utilized. A multi-cavity glass molding method having a plurality of optical glass lenses arranged in an array to form an optically active region and a non-optical active region; wherein the optical glass lens array is in the periphery of the non-optical active region There is a glue tank for applying cement glue, so as to make use of the glue to make the phase 鄰接組合之二光學玻璃鏡片陣列以預定的間隔固定結 合0 2、 如申請專利範圍第1項所述之堆疊光學玻璃鏡片陣列, 其中至少一個光學玻璃鏡片陣列在其非光學作用區的周 邊上設有至少一個定位槽。 3、 如申請專利範圍第2項所述之堆疊光學玻璃鏡片陣列, 其中δ亥疋位槽為圓周形,並形成陣列形狀,且其圓心設 在各光學玻璃鏡片之光學中心軸上。 、 4、 如申請專利範圍第丨項所述之堆疊光學玻璃鏡片陣列, 其中該光學玻璃鏡片陣列之間進一步包含間隔片,該間 隔片以黏膠與相鄰接之光學玻璃鏡片陣列組合固定,用 以產生預定的空氣間隔。 5、 如申請專利範圍第1項所述之堆疊光學玻璃鏡片陣列, 其中該黏膠為熱固型供可經由加熱後固化。 6、 如申請專利範圍第i項所述之堆疊光學玻璃鏡片陣列, 其中該黏膠為紫外線固化型供可經由紫外線照射後固 化0 7、一種堆疊鏡頭模組,包含至少一堆疊光學玻璃鏡片 件、一鏡頭支架及至少一個光學元件 其特徵在於:該堆疊光學玻璃鏡片元件係由一堆疊光學 玻璃鏡片陣列切割分離而成為單一的元件; 201040605 其中該堆疊光學玻璃鏡片陣列包含至少二光學玻璃鏡片 陣列,且相鄰接組合之二光學玻璃鏡片陣列中至少一光 學玻璃鏡片陣列上設有黏膠槽供塗佈黏膠,藉以利用黏 膠以使相鄰接組合之二光學玻璃鏡片陣列以預定的間隔 組合固定; 其中該鏡頭支架係用以容納堆疊光學玻璃鏡片元件,並 與光學元件組合。 8、 如申請專利範圍第7項所述之堆疊鏡頭模組,其中該光 學元件係選自下列所述之一或其組合:陣列光學玻璃鏡 片、光闌、表玻璃、紅外線濾光鏡片、影像感測器、太 ® 陽能光電半導體、電路板。 9、 一種堆疊光學玻璃鏡片陣列之製法,包含下列步驟: 51 :提供一玻璃元材; 52 :提供一光學玻璃鏡片陣列之第一光學面模具與第 二光學面模具,且第一光學面模具及第二光學面 模具分別設具光學面成形模面,其中第一光學面 模具及第二光學面模具中至少一光學面模具設有 黏膠槽成形模面; 53 :將該玻璃元材置於第一光學面模具與第二光學面 〇 模具之中,利用加熱器加溫並加壓以模造成形一 光學玻璃鏡片陣列,該光學玻璃鏡片陣列在光學 作用區具有光學面,在非光學作用區具有至少一 黏膠槽; 54 :以上述方法製造另一光學玻璃鏡片陣列;該光學 玻璃鏡片陣列可不設有黏膠槽; 55 :在相鄰接組合之二光學玻璃鏡片陣列之黏膠槽塗 設黏膠; 56 :以雷射光校準相鄰接組合之二光學玻璃鏡片陣列 之光學中心軸,以使其對正光學中心軸; 57 :固化該黏膠以形成一堆疊光學玻璃鏡片陣列。 201040605 10、 如申請專利範圍第9項所述之堆疊光學玻璃鏡片陣列 之製法,其中該步驟S4進一步包含在該光學玻璃鏡片陣 列之第一光學面模具與第二光學面模具設有至少一定位 槽成形模面以在該光學玻璃鏡片陣列之非光學作用區形 成定位槽。 11、 一種堆疊鏡頭模組之製法,包含下列步驟: SS1 :提供一利用申請專利範圍第9項至第10項任一 項所述之製法所製成之堆疊光學玻璃鏡片陣列; SS2:切割該堆疊光學玻璃鏡片陣列以分離製成單一的 堆疊光學玻璃鏡片元件; SS3 :將該堆疊光學鏡片元件裝設入一鏡頭支架中,並 組合相關之光學元件以製成一堆疊鏡頭模組。 12、 如申請專利範圍第11項所述之堆疊鏡頭模組之製法, 其中步驟SS2進一步包含:依據定位槽所形成的定位點 以進行切割分離製成單一的堆疊光學玻璃鏡片元件。The contiguous combination of two optical glass lens arrays is fixedly bonded at a predetermined interval. The stacked optical glass lens array according to claim 1, wherein at least one optical glass lens array is disposed on the periphery of the non-optical active region thereof. There is at least one positioning slot. 3. The stacked optical glass lens array according to claim 2, wherein the δ 疋 疋 groove is circumferentially shaped and formed in an array shape, and the center of the circle is disposed on an optical central axis of each optical glass lens. 4. The stacked optical glass lens array of claim 3, wherein the optical glass lens array further comprises a spacer between the optical glass lens array and the adjacent optical glass lens array. Used to generate a predetermined air gap. 5. The stacked optical glass lens array according to claim 1, wherein the adhesive is a thermosetting type which can be cured by heating. 6. The stacked optical glass lens array according to claim i, wherein the adhesive is ultraviolet curable for curing by ultraviolet irradiation, and a stacked lens module comprising at least one stacked optical glass lens member. a lens mount and at least one optical component, characterized in that the stacked optical glass lens component is cut and separated into a single component by a stacked optical glass lens array; 201040605 wherein the stacked optical glass lens array comprises at least two optical glass lens arrays And at least one optical glass lens array in the adjacent two optical glass lens arrays is provided with an adhesive groove for coating the adhesive, so as to utilize the adhesive to make the adjacent optical glass lens arrays of the adjacent combination be predetermined. The spacer assembly is fixed; wherein the lens holder is used to accommodate the stacked optical glass lens elements and combined with the optical elements. 8. The stacked lens module of claim 7, wherein the optical component is selected from one or a combination of the following: an array optical glass lens, a diaphragm, a watch glass, an infrared filter lens, and an image. Sensor, Tai® Solar Photoelectric Semiconductor, Circuit Board. 9. A method of fabricating an array of stacked optical glass lenses, comprising the steps of: 51: providing a glass element; 52: providing a first optical surface mold and a second optical surface mold of an optical glass lens array, and the first optical surface mold And the second optical surface mold is respectively provided with an optical surface forming die surface, wherein at least one of the first optical surface mold and the second optical surface mold is provided with an adhesive groove forming die surface; 53: the glass element material is placed Between the first optical surface mold and the second optical surface mold, the heater is heated and pressurized to form an optical glass lens array, and the optical glass lens array has an optical surface in the optically active region, and is non-optical. The area has at least one adhesive groove; 54: another optical glass lens array is manufactured by the above method; the optical glass lens array may not be provided with an adhesive groove; 55: the adhesive groove of the adjacent optical glass lens array adjacent to the combination Applying glue; 56: calibrating the optical center axis of the adjacent optical glass lens array with laser light to align it with the positive optical center axis; 57 : Of the viscose to form a stacked array of optical glass lenses. The method of manufacturing the stacked optical glass lens array according to claim 9 , wherein the step S4 further comprises at least one positioning of the first optical surface mold and the second optical surface mold of the optical glass lens array. The groove forms a die face to form a locating groove in the non-optical active area of the array of optical glass lenses. 11. A method of fabricating a stacked lens module, comprising the steps of: SS1: providing a stacked optical glass lens array produced by the method of any one of claims 9 to 10; SS2: cutting the The optical glass lens array is stacked to separate into a single stacked optical glass lens component; SS3: the stacked optical lens component is mounted in a lens holder, and the associated optical components are combined to form a stacked lens module. 12. The method for manufacturing a stacked lens module according to claim 11, wherein the step SS2 further comprises: forming a single stacked optical glass lens component according to the positioning point formed by the positioning groove for cutting and separating. 21twenty one
TW098115127A 2009-05-07 2009-05-07 Stacked optical glass lens array, stacked lens module and the manufacturing method thereof TW201040605A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW098115127A TW201040605A (en) 2009-05-07 2009-05-07 Stacked optical glass lens array, stacked lens module and the manufacturing method thereof
JP2009005501U JP3154617U (en) 2009-05-07 2009-08-04 Laminated optical lens array and laminated lens module thereof
KR1020090094592A KR20100121383A (en) 2009-05-07 2009-10-06 Stacked optical glass lens array, stacked lens module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098115127A TW201040605A (en) 2009-05-07 2009-05-07 Stacked optical glass lens array, stacked lens module and the manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201040605A true TW201040605A (en) 2010-11-16

Family

ID=43406737

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098115127A TW201040605A (en) 2009-05-07 2009-05-07 Stacked optical glass lens array, stacked lens module and the manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP3154617U (en)
KR (1) KR20100121383A (en)
TW (1) TW201040605A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5254139B2 (en) * 2009-07-03 2013-08-07 シャープ株式会社 Multilayer lens, laminated wafer lens, and manufacturing method thereof
JP2014056063A (en) * 2012-09-11 2014-03-27 Konica Minolta Inc Imaging apparatus, lens unit, and method for manufacturing lens unit
KR101592759B1 (en) * 2013-10-29 2016-02-05 서울대학교산학협력단 Sensing System Using Positive Feedback
CN113805357A (en) * 2021-09-07 2021-12-17 付泽宇 Method for processing eye composite lens

Also Published As

Publication number Publication date
KR20100121383A (en) 2010-11-17
JP3154617U (en) 2009-10-22

Similar Documents

Publication Publication Date Title
US8023208B2 (en) Miniature stacked glass lens module
US20100284089A1 (en) Stacked optical glass lens array, stacked lens module and manufacturing method thereof
US20100265597A1 (en) Rectangular stacked glass lens module with alignment member and manufacturing method thereof
US8077394B2 (en) Glass lens array module with alignment member and manufacturing method thereof
US8102600B2 (en) Stacked disk-shaped optical lens array, stacked disk-shaped lens module array and method of manufacturing the same
US20110063722A1 (en) Stacked disk-shaped optical lens array, stacked lens module and method of manufacturing the same
JP3160406U (en) Rectangular laminated glass lens module (Rectangular stacked glass lens module)
TW201104297A (en) Lens holder with alignment for stacked lens module and the manufacturing method thereof
EP2369391B1 (en) Wafer lens unit and method for manufacturing the same
US7944630B2 (en) Lens holder for stacked lens module and manufacturing method thereof
US20100013113A1 (en) Method for manufacturing lens groups
TW201040605A (en) Stacked optical glass lens array, stacked lens module and the manufacturing method thereof
EP2566685A1 (en) Optical device with replicated refractive surfaces and associated methods
CN201522571U (en) Miniature stacked optical glass lens module
CN201522557U (en) Stacked disc-shaped optical lens array and stacked disc-shaped lens module array
CN101872050A (en) Square stackable glass lens module and manufacturing method thereof
JP3157641U (en) Optical glass lens array module
CN201477271U (en) Square laminar glass lens module
CN101762856A (en) Array optical glass lens module and manufacturing method thereof
TWM367340U (en) Stacked optical glass lens array, stacked lens module
TWM374573U (en) Stacked disk-shaped optical lens array, stacked disk-shaped lens module array
CN201522570U (en) Stacked optical glass lens array and stacked lens module
KR20100011246U (en) Miniature stacked glass lens module
TWM374572U (en) Stacked disk-shaped optical lens array, stacked lens module
KR20100010466U (en) Rectangular stacked glass lens module