TW201039264A - Forecasting TAIFEX based on particle swarm optimization - Google Patents

Forecasting TAIFEX based on particle swarm optimization Download PDF

Info

Publication number
TW201039264A
TW201039264A TW98113806A TW98113806A TW201039264A TW 201039264 A TW201039264 A TW 201039264A TW 98113806 A TW98113806 A TW 98113806A TW 98113806 A TW98113806 A TW 98113806A TW 201039264 A TW201039264 A TW 201039264A
Authority
TW
Taiwan
Prior art keywords
fuzzy
prediction
particle
equation
data
Prior art date
Application number
TW98113806A
Other languages
Chinese (zh)
Other versions
TWI399699B (en
Inventor
Shi-Jinn Horng
I-Hong Kuo
Original Assignee
Univ Nat Taiwan Science Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Science Tech filed Critical Univ Nat Taiwan Science Tech
Priority to TW98113806A priority Critical patent/TWI399699B/en
Publication of TW201039264A publication Critical patent/TW201039264A/en
Application granted granted Critical
Publication of TWI399699B publication Critical patent/TWI399699B/en

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

In the past decades, the TAIFEX (Taiwan Stock Index Futures) forecasting problem has attracted some researchers' attention. Several prior arts for the TAIFEX forecasting based on the statistic theorems have been proposed, but their results are not satisfied. To solve nonlinear problems, fuzzy time series models are believed to be more suitable; however, most of these studies were for one variable only. The lengths of intervals and the content of forecast rules are two main factors to impact the forecasted accuracy of the forecast models created based on the fuzzy time series. The present invention provides a new hybrid forecast method to solve the TAIFEX forecasting problem based on fuzzy time series and particle swarm optimization. By means of particle swarm optimization, the present invention would find the best main factors influencing forecasted accuracy. The present invention provides a more precise forecasted accuracy than those of existing forecast methods.

Description

201039264 六、發明說明: 【發明所屬之技術領域】 是一關臺股指數㈣之方法’特別 數期貨^測方法群最佳化演算法及模糊時間序列的臺股指 【先前技術】 长,决人類對於各種特定問題及經濟活動預測之需 ο 期對於说學者試圖提出了各式預測方法及模型。早 、,、:券期貨指數之預測多採取傳統迴歸分析法,然 象預:歸Sit適用於變因較少、線性且複雜度低之現 =對:充滿不確定性之證券期貨市場而言回歸分 !有其相4㊅限性’其主要制在於證券㈣ 舌 =1屬隨機現象,其總體時間序列資料普遍為非定態 :::_ry) ’若直接進行迴歸分析會產生虛假迴歸 (spUn_ regressi〇n)的問題,造成嚴重錯誤的 ❹ 時間序列分析模式屬定量預測法,其預測模式,普遍存在 史資料的變動情況決定預測模式準確性 程度,2.右資料不足或收集的#料有所誤差時,傳 模式會有南誤差;3.若有突發狀況發生,足 真實值時,傳統時間序列之預測。 響下/月 式預測效果不甚理想’準確率過低等缺陷,近 =Γ=續被發展建立;隨著預測方㈣* 斷改進變革’學者更發現’針對特定問題建構之特定目的 活動預測方法,較一般性目的的預測方法更具準確性。 4 201039264 時間模糊序列的預測概念係時間序列模式中加入模糊 理論(Fuzzy Theory)的理論應用,其在各研究領域上扮演著 重要的角色,例如交通載運量預估、股票市場股價預測、 醫學上的血壓預測等。1993年,學者Song等人首先將模 糊邏輯觀念合併時間序列預測,並提出了模糊時間序列預 測架構,其運用模糊邏輯推理有效地處理模糊及不確定環 境下的語意資料;透過模糊時間序列理論,Song等人提出 兩種預測模型(即,時變預測模型及非時變預測模型),並 ¢) 針對阿拉巴馬大學學生人數進行預測。1996年,學者Chen 改良先前的預測方法,建立一個較為簡便的預測模型,其 優點在於減少運算的次數及簡化計算方式,為後來預測研 究領域中常用之預測方法。嗣後,Chen更提出利用高階模 糊時間序列(High-Order Fuzzy Time Series)的預測方法。學 者Yu等人則針對模糊時間序列之時間間隔予以調整,以 取得更加之預測準確率;學者Liu則以梯形模糊數 (trapezoidal fuzzy numbers)為基礎,建立新的預測模型。 ® 而在臺股指數預測研究方面,學者Yu與Huarng等人建立 雙變量模糊時間序列預測模型進行臺股指數預測;其後, 王麗惠、陳錫明教授等人更利用模糊時間序列理論、遺傳 學演算法(Genetic Algorithm),及模擬退火演算法 (Simulated Annealing algorithm),建立不同模糊預測模 型,用以預測溫度及臺股指數。透過模糊時間序列理論應 用的演進,我們可以得知「區間的數目(lengths of intervals)」以及「建立的模糊規則(content of forecast 201039264 rules)」是影響預測準確率的兩大因素前述幾種習知之預 測模型均係利用經驗法則或演化法則來調整此二因素,但 是它們的效果仍未令人滿意。 有4α於此,一種具有尚度準確率之臺股指數期貨預測 方法是有其必要。 【發明内容】 鑒於上述先前技術之缺失,本發明提出一種基於粒子 群最佳化演算法(particle Swarm 〇ptimizati〇n)及模糊時 〇間序列的臺股指數期貨預測方法,其結合粒子群最佳化演 算法與模糊時間序列理論,提出一高準確率之臺股指數期 貨預測模型。粒子群最佳化演算法(Particle Swarm Optimization)的理論最早在1995年由以繼扑和別池抓 兩位學者所提出來的,這個靈感主要來自於鳥和魚的群聚 行為所得到的。因此這個演算法的精神主要是利用群聚移 動的概念在我們的搜尋空間中找尋最佳解。在每次最佳化 的運算中,每一個粒子(particle ’意指鳥或魚)都各自負責 〇 —部分的區域最佳化的參數搜尋,在這搜尋過程中每個粒 子都會紀錄目前自己找到的最好的解(Local best),讓在搜 尋過程中有個移動的目標。每個粒子除了會往自己目前所 找到的最好解之外,也會往目前所有粒子中的最好的解 (Global best)作移動’這樣可以使我們找出的解達到全域最 佳化的效果。 本發明一目的係利用粒子群最佳化演算法將「區間的 數目(lengths of intervals)」以及「建立的模糊規則(c〇ntent 6 201039264 〇ff〇recast rules)」調整到最佳值,有效提升臺股指數期貨 預測之準確率。本發明利用粒子群最佳化演算法,基於全 =訓練資料以建立模糊規則;當所有模糊預測規則均訓 練建立時,則得以賴糊規則制新的賴資料,亦即運 算出台灣證券市場臺股指數期貨之預測值。 本發明的另一目的係提供一種基於臺股指數期貨市場 中判斷趨勢以評估市場交易的方法。 Ο Ο 本發明的再—目的係提供—種在臺股指數期貨市場 中,以預測未來市場趨細評估市場交㈣方法,來提高 獲利能力並降低投資風險。 上述目私特徵及優點將從以下較佳實施例之詳細敘 述及所附圖式變得易於明瞭。 【實施方式】 、本發明之較佳實施例將參照所附之圖式加以詳細敘 …於圖式中,相同或類似之元件即使描繪於不同之圖式 中係仍以相同之參照數字代表^以下敘述中,此處所併入 之已知功能及結構之詳細敘述當可能會模糊本發明之標的 時係予以省略。 如第一圖所示,為習知模糊時間序列預測方法流程 圖,其步驟如下: 1.於步驟11將歷史資料1〇予以區間分割及模糊化, 疋義區間長度,論域的上界及下界,及區間個數: 設Dmin與Dmax分別為歷史資料中最小與最大值,將 該二數值分別減去與加上一適當調整值使論域為 201039264 〔Dmin-i7阳Dmax+t/wa;c〕’設定區間數目為η,以 一常數為組距將論域進行分組分為/丨,/2,/3,/4,···, 4。 2. 於步驟12定義模糊集合(fuzzy set)及模糊關係 (fuzzy relationships),建立模糊關係群組:將歷史資 料落入的區間資料改寫成以文字表示值的資料,並 以模糊集關係求得模糊關係,所推論出的模糊邏輯 關係歸為同一群組;其中所有群組可區分為已訓練 0 資料群組及未訓練資料群組。 3. 於步驟13依模糊關係,建立模糊預測規則:透過前 述推論出的模糊邏輯關係群組,建立模糊預測規 貝1J ;其中包括一符合部分(matching part)及一相應預 測值(corresponding forecasted value);該符合部分 包括群組之目前狀態(current state),該相應預測值 則分別透過估計方案(estimating based on next state scheme, EBN)及母投票(mater voting, MV)方案計算 ❹ 之 4. 於步驟14依據前述模糊預測規則,預測該訓練、測 試資料。 如第二圖所示,其顯示本發明用於預測臺股期貨指數 方法之流程圖;本發明係以模糊時間序列預測方法為基 礎,結合粒子群最佳化演算法調整「區間的數目(lengths of intervals)」以及「建立的模糊規則(content of forecast rules)」,以提升臺股期貨指數之準確率。於本發明之實施 201039264 !!:’首先於步驟2G1中’就歷史資料1G定義為γ⑴,並 ^區間個數為η,其論域上界及下界分別為Α及4,t 為歷史資料之時間序列;以具有《-1個元素(elem⑽之- ° 量(P 义’ 4,4-2 及 1,其巾 1S,S «-1 且 ^ ⑹作為粒子群最佳化演算法之一粒子(panicie);於 步驟202中,依據該”一1個元素,定義η區間為L Ui], (1? 2]’ ...,人 «-1,A],1 = (d«-2,U 且 /« = «-1’ ί/„],即依據模糊時間序列理論予以模糊化丨於步驟 〇 203中,進一步定義每一粒子之模糊集合及模糊關係,建 立模糊關係群組;於步驟2〇4中,針對已訓練之模糊預測 規則,以次狀態基礎之估計方案(ΕΒΝ)計算之;於步驟2〇5 中’針對未訓練模糊預測規則,以母投票(MV)方案計算。 依據步驟204及205之結果,建立每一粒子之模糊預測規 則,如步驟206所示。201039264 VI. Description of the invention: [Technical field of invention] It is a method of the Taiwan stock index (IV) 'Special number futures ^ method group optimization algorithm and fuzzy time series of Taiwan stock index [previous technology] long, decisive human For a variety of specific problems and the prediction of economic activities ο period for scholars to try to put forward various prediction methods and models. Early,,,: The forecast of the vouchers futures index adopts the traditional regression analysis method. However, it is suitable for the Sit to be applied to the securities futures market with uncertainties, linearity and low complexity. Regression points! There are four phases of 'phases'. The main system is that securities (4) tongue = 1 is a random phenomenon, and its overall time series data is generally non-stationary:::_ry) 'If regression analysis directly produces false regression (spUn_ Regressi〇n) problem, causing serious errors ❹ Time series analysis mode is a quantitative forecasting method, its prediction mode, the ubiquitous history data changes determine the accuracy of the prediction mode, 2. The right data is insufficient or the collected material has When the error occurs, the transmission mode will have a south error; 3. If there is a sudden occurrence, the true time value, the prediction of the traditional time series. The effect of the ringing/monthly prediction is not ideal. The accuracy is too low. The near = Γ = continued development is established; as the forecasting party (4) * breaks the change, the scholars find that the specific purpose of the specific problem is predicted. The method is more accurate than the general purpose prediction method. 4 201039264 The concept of time fuzzy sequence prediction is the application of fuzzy theory in time series mode, which plays an important role in various research fields, such as traffic load estimation, stock market stock price forecast, medical Blood pressure predictions, etc. In 1993, scholar Song et al first merged fuzzy logic concepts into time series prediction, and proposed a fuzzy time series prediction architecture, which uses fuzzy logic reasoning to effectively deal with semantic data in fuzzy and uncertain environments; through fuzzy time series theory, Song et al. proposed two predictive models (ie, time-varying predictive models and non-time-varying predictive models) and predicted the number of students at the University of Alabama. In 1996, scholar Chen improved the previous prediction method and established a relatively simple prediction model, which has the advantages of reducing the number of calculations and simplifying the calculation method, which is a prediction method commonly used in the field of later prediction research. Later, Chen proposed a prediction method using the High-Order Fuzzy Time Series. The scholar Yu et al. adjusted the time interval of the fuzzy time series to obtain a more accurate prediction rate; the scholar Liu built a new prediction model based on the trapezoidal fuzzy numbers. In the research of Taiwan stock index forecasting, scholars Yu and Huarng et al. established a bivariate fuzzy time series forecasting model for Taiwan stock index forecasting. Later, Professor Wang Lihui and Professor Chen Ximing used fuzzy time series theory and genetic algorithm. (Genetic Algorithm), and Simulated Annealing algorithm, to establish different fuzzy prediction models to predict temperature and Taiwan stock index. Through the evolution of the application of fuzzy time series theory, we can know that "lengths of intervals" and "content of forecast 201039264 rules" are the two major factors affecting the accuracy of prediction. The predictive models are known to use empirical rules or evolutionary rules to adjust these two factors, but their effects are still unsatisfactory. There is a 4α here, and a Taiwan stock index futures forecasting method with a degree of accuracy is necessary. SUMMARY OF THE INVENTION In view of the above-mentioned shortcomings of the prior art, the present invention proposes a method for predicting the futures index of a stock index based on a particle swarm optimization algorithm (particle Swarm 〇ptimizati〇n) and a fuzzy inter-day sequence, which combines the most Based on the optimization algorithm and fuzzy time series theory, a high-accuracy Taiwan stock index futures forecasting model is proposed. The theory of Particle Swarm Optimization was first proposed by two scholars in 1995, and it was mainly inspired by the clustering behavior of birds and fish. Therefore, the spirit of this algorithm is mainly to use the concept of clustering to find the best solution in our search space. In each optimization operation, each particle (particle 'meaning bird or fish) is responsible for the parameter search of the partial optimization of the region - each particle will record the current self-find The best (Local best) is to have a moving target during the search. In addition to the best solution that we have found so far, each particle will move to the best solution of all current particles (this will allow us to find solutions that are globally optimized). effect. One object of the present invention is to use the particle swarm optimization algorithm to adjust the "lengths of intervals" and the "established fuzzy rules (c〇ntent 6 201039264 〇ff〇recast rules)" to an optimum value. Improve the accuracy of the forecast of Taiwan stock index futures. The invention utilizes a particle swarm optimization algorithm, based on the full = training data to establish a fuzzy rule; when all the fuzzy prediction rules are trained to be established, it is possible to make a new rule based on the rules, that is, to calculate the Taiwan securities market. The forecast value of the stock index futures. Another object of the present invention is to provide a method for judging trends in a Taiwan stock index futures market to evaluate market transactions. Ο Ο The re-purpose of the present invention is to provide a method for predicting the future market to assess the market crossover in the Taiwan stock index futures market to improve profitability and reduce investment risk. The above described features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, in which the same or similar elements are represented by the same reference numerals. In the following description, the detailed description of the known functions and structures incorporated herein is omitted when it may obscure the subject matter of the present invention. As shown in the first figure, it is a flow chart of the conventional fuzzy time series prediction method. The steps are as follows: 1. In step 11, the historical data 1〇 is segmented and blurred, the length of the meaning interval, the upper bound of the domain and Lower bound, and number of intervals: Let Dmin and Dmax be the minimum and maximum values in the historical data respectively, and subtract the two values and add an appropriate adjustment value to make the domain 201038264 [Dmin-i7 Yang Dmax+t/wa ;c]'The number of set intervals is η, and the domain is grouped into /丨, /2, /3, /4, ···, 4 by a constant group distance. 2. In step 12, define a fuzzy set and a fuzzy relationship, and establish a fuzzy relationship group: rewrite the interval data in which the historical data falls into the data represented by the text, and obtain the fuzzy set relationship. Fuzzy relationships, the inferred fuzzy logical relationships are grouped into the same group; all groups can be divided into trained 0 data groups and untrained data groups. 3. In step 13, based on the fuzzy relationship, establish a fuzzy prediction rule: through the above-mentioned fuzzy logical relationship group, establish a fuzzy prediction rule 1J; including a matching part and a corresponding forecasting value (corresponding forecasted value) The matching part includes the current state of the group, and the corresponding predicted value is calculated by an estimating based on next state scheme (EBN) and a mater voting (MV) scheme, respectively. In step 14, the training and test data are predicted according to the foregoing fuzzy prediction rule. As shown in the second figure, it shows a flow chart of the method for predicting the Taiwan stock futures index according to the present invention; the present invention is based on the fuzzy time series prediction method, and combines the particle swarm optimization algorithm to adjust the number of intervals (lengths Of intervals) and "content of forecast rules" to improve the accuracy of the Taiwan stock futures index. In the implementation of the present invention 201039264 !!: 'First in step 2G1', the historical data 1G is defined as γ(1), and the number of intervals is η, and the upper and lower bounds of the domain are Α and 4, respectively, t is historical data. Time series; with "-1 elements (elem(10) - ° quantity (P meaning '4, 4-2 and 1, its towel 1S, S «-1 and ^ (6) as one of particle particle optimization algorithms) (panicie); in step 202, according to the "one element", the η interval is defined as L Ui], (1? 2]' ..., person «-1, A], 1 = (d«-2 , U and /« = «-1' ί/„], that is, fuzzy according to the fuzzy time series theory, in step 〇203, further define the fuzzy set and fuzzy relationship of each particle, and establish a fuzzy relationship group; In step 2〇4, the trained fuzzy prediction rule is calculated by the sub-state based estimation scheme (ΕΒΝ); in step 2〇5, the untrained fuzzy prediction rule is calculated by the mother voting (MV) scheme. Based on the results of steps 204 and 205, a fuzzy prediction rule for each particle is established, as shown in step 206.

本發明之一具體實施例於訓練階段中,如步驟2〇7所 示’係利用均方差(mean square error, MSE)值代表一粒子 之預測準確性’均方差值愈低表示準確率愈高。 於一具體實施例中’該均方差之表示如下: 以 forecasted £ (FD^TD^In an embodiment of the present invention, in the training phase, as shown in step 2〇7, the mean square error (MSE) value is used to represent the prediction accuracy of a particle. The lower the mean square difference, the higher the accuracy. high. In a specific embodiment, the mean square error is expressed as follows: to forecasted £ (FD^TD^

MSEMSE

costedCosted

其中,w表示預測資料數量,FA·表示ah預測 資料,Π),·表示關於户从·之相對應歷史訓練資料。 視步驟207之結果,於其結果滿足預先定義之停止條 件時’諸如:取得最佳解或達到最大移動步驟,如步驟2〇8 9 201039264 所示,則完成預測規則之訓練,選擇所有粒子之最佳解之 最佳一者所訓練建構之模糊預測規則作為最終結果即如 步驟211所示。 如步驟209所示,倘步驟207之結果未能滿足停止條 件者,則於步驟210中,使每一粒子移動至一新位置,其 所相應產生之一新向量之元素應先予調整,以確保每一元 素 A (1 s / s «-1)係於一升冪順序(ascending 〇rder)。 本發明之一具體實施例於訓練階段中,將所有粒子移 〇動至其他位置。一粒子之運動方式係表示如下: (2) (3) +Clx Random -^)+C2 x ^id = ^id + ^id 其中係表示一粒子W之速率,其速率限於 之預先自定義範圍中;历係表示慣性權重值係數 (mertial weight coefficient) ; c丨與q分別表示自信程度 係數(self confidence coefficient)及社會信心程度係數 (social confidence coefficient)。 於粒子群最佳化演算法中,於整個運作程序裡,历值 係為線性遞減,與C2為常數,及“()係一亂數產生器 (Random Number Generator) ’其於正常分布之下,得於〇 到1間產生一隨機實數U 4係分別表示-粒子w 之現在位置與資料範圍内之最佳解;iW係表示全部粒子 在全部資料範圍内之最佳解。 201039264 本發明之一具體實施例於訓練階段中,係利用每一粒 子表示之區間,以模糊時間序列理論建構模糊預測規則之 獨立群組’並用來預測每—粒子之所有歷史訓練資料。 本發明之—具體實施例於訓練階段中,係使所有粒子 移動至一新位置,其運動方式之依據係以方程式(?)、(3) 表示’並依方程式⑴進行上述評估所有粒子預測準破性, 且播環步驟203到207直至滿足預先定義之停止條件,諸 如:取得最佳解或達到最大移動步驟。倘若該停止條件滿 〇足,如步驟208所示,即選擇所有粒子之最佳解之最佳一 者所訓練建構之模糊預測規則作為最終結果。若該停止條 件未滿足者,則循環步驟2〇3到2〇7,直至滿足預先定義 之停止條件,並選擇所有粒子之最佳解之最佳-者所訓練 建構之模糊預測規則作為最終結果。 本發明之一具體實施例於測試階段中,如步驟212所 示,係使用所有粒子之最佳解之最佳一者所訓練建構之模 糊預測規則以預測新測試資料。首先,若該新測試資料之 相應符合之部分如果符合一已經訓練之模糊預測規則,則 依模糊預測規則計算其預測值。 若該新測試資料之相應符合之部分如果符合一未經訓 練之模糊制規貞彳,心母投票(Mv)㈣對㈣測試資料 進行預測;如非前述情況者,該新測試資料之預測係以符 合之模糊預測規則進行之。其中母投票(MV)方案依下述方 程式計算其預測值: 11 (4) 201039264Among them, w indicates the number of predicted data, FA· indicates ah forecast data, Π), and indicates the corresponding historical training data about households. According to the result of step 207, when the result satisfies the predefined stop condition, such as: obtaining the best solution or reaching the maximum moving step, as shown in step 2〇8 9 201039264, the training of the prediction rule is completed, and all the particles are selected. The fuzzy prediction rule constructed by the best one of the best solutions is the final result as shown in step 211. As shown in step 209, if the result of step 207 fails to satisfy the stop condition, then in step 210, each particle is moved to a new position, and the element corresponding to the new vector is first adjusted to Make sure that each element A (1 s / s «-1) is in the ascending 〇rder. One embodiment of the present invention moves all particles to other locations during the training phase. The motion pattern of a particle is expressed as follows: (2) (3) +Clx Random -^)+C2 x ^id = ^id + ^id where is the rate of a particle W, the rate of which is limited to the pre-custom range The calendar indicates the inertial weight coefficient; c丨 and q respectively represent the self confidence coefficient and the social confidence coefficient. In the particle swarm optimization algorithm, the logarithmic value is linearly decremented, C2 is constant, and "() is a Random Number Generator' under normal distribution. A random real number U 4 system is obtained to represent the optimal solution of the current position and the data range of the particle w; iW is the optimal solution for all particles in the entire data range. 201039264 In a specific embodiment, in the training phase, an independent group of fuzzy prediction rules is constructed using fuzzy time series theory using an interval of each particle representation and used to predict all historical training data for each particle. In the training phase, all particles are moved to a new position, and the basis of their motion is expressed by equations (?), (3) and the above-mentioned evaluation of all particle prediction quasi-breaking according to equation (1), and broadcast ring Steps 203 to 207 until a predefined stop condition is met, such as: obtaining an optimal solution or reaching a maximum moving step. If the stopping condition is sufficient, as shown in step 208 , that is, selecting the fuzzy prediction rule constructed by the best one of the best solutions of all particles as the final result. If the stop condition is not satisfied, loop steps 2〇3 to 2〇7 until the predefined stop is satisfied. Conditions, and select the best solution for all particles - the fuzzy prediction rule of the trained construction as the final result. One embodiment of the present invention in the test phase, as shown in step 212, uses the most particles The best prediction of the best solution is to construct a fuzzy prediction rule to predict the new test data. First, if the corresponding part of the new test data meets a trained fuzzy prediction rule, the prediction is calculated according to the fuzzy prediction rule. If the corresponding part of the new test data meets an untrained fuzzy rule, the cardinal vote (Mv) (4) predicts (4) the test data; if it is not the case, the new test data The prediction is performed in accordance with the fuzzy prediction rules. The mother voting (MV) scheme calculates its predicted value according to the following equation: 11 (4) 201039264

Forcasted Vnh^ = ) + mh+mh+A+ mtiForcasted Vnh^ = ) + mh+mh+A+ mti

Wh+(A-l) 其中,%表示用戶預設最高票數,』指模糊關係級 數,Wtl與Wtk (2 s A s j )表示於目前狀態…虹代拊下 最新過去文字表示值及其他過去文字表示值對應區間之中 點。 〇 為便於闡釋本發明,本發明之一具體實施例,係以 胸年8月3曰到8月31曰之臺股指數期貨市場情形 首先’為了便於說明’羑就1998年8月3日" 二1曰臺股指數期貨市場交易歷史資料中例假設粒子個 數為5,母一粒子分別定義為具7個區間之一 亦即 Λ = (6〇,卜]、/2 = (6〗,62]、/3 u3]、& 群組’ /5,,65]、/6 = (M6]、/7 u7];其所示數=]、 簡單說明本發明之例示,非為列舉;該 為 所示: 以枓叩)如下 曰期 實際^ 8/3/1998 7552^~ 8/4/1998 ~ 〜S---- 7560 8/5/1998 7 48^7~~~~ 8/6/1998 —- 一 ___ 7462^ 8/7/1998 75lT^^ 8/10/1998 ~ '~ ^—----- 73 65^ 8/11/1998 73 ^ -- 〇 12 201039264 8/12/1998 73 3 0 8/13/1998 7291 8/14/1998 7320 8/15/1998 7300 8/17/1998 72 19 8/18/1998 7220 8/19/1998 7285 8/20/1998 7274 8/21/1998 7225 8/24/1998 6955 8/25/1998 6949 8/26/1998 6790 8/27/1998 683 5 8/28/1998 ----- 6695 8/29/1998 6728 8/31/1998 6566 其中該資料最大值與最小值分別為及£) =7560 ’經調整後y⑴之論域以y⑺:^ (65〇〇, 76〇〇]表示。 又為便於闡述本發明’爰以建構粒子1之模糊規則為 例不,關於其他粒子之模糊規則建立於一般熟知該項技術 領域人士均得藉由本發明揭露之具體實施例予以具體實施 之。於本實施例中,假設5個粒子中之粒子〗之7個區間, 分別為 L = (6500, 6657]、/2 = (6657, 6814]、/3 = (6814, 13 201039264 6971] > /4 = (6971,7128] '/5 = (7128, 7285] ^/6 = (7285, 7442]以及^ = (7442,76(^,惟應予說明,本實施例所示 數據僅為簡單說明本發明之例示,非為列舉,自不以之為 限。 又’將粒子中Γ(ί)之論域區分為7個區間,分別以山 = ’’w〇m”、冯=,,bad”、禹=,,alittlebad”、山= ”average”, 々=’’good”、4 = ”very good” ’ 以及禹=”excellent”之文 字表示值,並以下述方程式(5)分別表示為一模糊集合。 A, = IJu, + I2/u2 + I3/u3 + I4/u4 + I5/u5 + I6/U6 + 1ηΙηη (5) 其中Wy (1 S J < 7)係為介於1到0之間的實數。 其模糊集合與區間對照表示如下: 區 間 文字表示值 模糊集合 /1 worst /2 Π bad ^ 2 h a little bad ^ 3 /4 average a4 /5 good ^ 5 u very good ^ 6 II excellent A 7 o 據此,歷史資料經模糊化之結果如下表所示: 14 201039264 曰期 實際資 模糊集合 8/3/1998 7552 ^ 7 8/4/1998 7560 ^ 7 8/5/1998 7487 ^ 7 8/6/1998 7462 d 7 8/7/1998 75 15 ^ 7 8/10/1998 73 65 d 6 8/11/1998 7360 ^ 6 8/12/1998 73 30 / 6 8/13/1998 729 1 A 6 8/14/1998 7320 A 6 8/15/1998 7300 d 6 8/17/1998 7219 8/18/1998 7220 8/19/1998 7285 A5 8/20/1998 7274 As 8/21/1998 7225 A5 8/24/1998 6955 a3 8/25/1998 6949 As 8/26/1998 6790 ^ 2 8/27/1998 683 5 A 3 8/28/1998 6695 / 2 8/29/1998 6728 2 8/31/1998 6566 其次,本實施例建立一 2級模糊關係,以(F(i- 2 ), F(i- 15 201039264 2+1),…,F〇-2),冲-1))表示「目前狀態(current办⑻」, F(〇表示「次狀態(next state)」’其模糊關係以(F(卜乂),尸(卜 /2+1)’…為表示;便於闡述本發明, 本實施例設定該2級模糊關係中2 = 惟其所示數據僅為 簡單說明本發明之例示,非為列舉;舉例來說,模糊關係 〇47,為,J7)~^47 即為(F(8/3/1998),尸(8/4/1998) F(8/5/1998))—F(8/6/1998)。 於此,模糊關係如下表所示:Wh+(Al) where % indicates the user's default maximum number of votes, 』 refers to the fuzzy relationship series, Wtl and Wtk (2 s A sj ) are expressed in the current state... The latest past text representation value and other past text representations The value corresponds to the midpoint of the interval.便于 In order to facilitate the explanation of the present invention, one embodiment of the present invention is based on the situation of the Taiwan stock index futures market from August 3 to August 31 of the chest year, first of all, for the convenience of explanation, 羑August 3, 1998 &quot In the transaction history data of the 2nd Taiwan Stock Index Futures Market, the number of particles is assumed to be 5, and the parent particle is defined as one of 7 intervals, ie Λ = (6〇, Bu], /2 = (6〗 , 62], /3 u3], & group ' /5,, 65], /6 = (M6], /7 u7]; the number shown therein =], a brief description of the present invention, not enumerated ; This is shown as: 枓叩) The following period is actually ^ 8/3/1998 7552^~ 8/4/1998 ~ ~S---- 7560 8/5/1998 7 48^7~~~~ 8 /6/1998 —- 一___ 7462^ 8/7/1998 75lT^^ 8/10/1998 ~ '~ ^—----- 73 65^ 8/11/1998 73 ^ -- 〇12 201039264 8 /12/1998 73 3 0 8/13/1998 7291 8/14/1998 7320 8/15/1998 7300 8/17/1998 72 19 8/18/1998 7220 8/19/1998 7285 8/20/1998 7274 8/21/1998 7225 8/24/1998 6955 8/25/1998 6949 8/26/1998 6790 8/27/1998 683 5 8/28/1998 ----- 6695 8/29/1998 6728 8/ 31/1998 6566 where the information is the most The value and the minimum value are respectively and £) = 7560 'The adjusted field of y(1) is represented by y(7):^(65〇〇, 76〇〇). For the sake of convenience, the fuzzy rule of constructing particle 1 is For example, the fuzzy rules for other particles are established by those skilled in the art and are specifically implemented by the specific embodiments disclosed in the present invention. In this embodiment, 7 of the particles in 5 particles are assumed. Intervals, respectively L = (6500, 6657], /2 = (6657, 6814), /3 = (6814, 13 201039264 6971] > /4 = (6971,7128] '/5 = (7128, 7285] ^/6 = (7285, 7442) and ^ = (7442, 76 (^, however, it should be noted that the data shown in this embodiment is merely illustrative of the present invention, not enumerated, and is not limited thereto. In addition, the domain of Γ(ί) in the particle is divided into seven intervals, namely, mountain = ''w〇m', von=, bad', 禹=, alittlebad, mountain= average, 々 = ''good', 4 = "very good" ' and 禹 = "excellent" are textual representations and are represented as a fuzzy set by equation (5) below. A, = IJu, + I2/u2 + I3/u3 + I4/u4 + I5/u5 + I6/U6 + 1ηΙηη (5) where Wy (1 SJ < 7) is a real number between 1 and 0 . The fuzzy set and interval comparison are expressed as follows: Interval text indicates value fuzzy set /1 worst /2 Π bad ^ 2 ha little bad ^ 3 /4 average a4 /5 good ^ 5 u very good ^ 6 II excellent A 7 o The results of the fuzzification of historical data are shown in the following table: 14 201039264 The actual capital fuzzy set in the flood season 8/3/1998 7552 ^ 7 8/4/1998 7560 ^ 7 8/5/1998 7487 ^ 7 8/6/1998 7462 d 7 8/7/1998 75 15 ^ 7 8/10/1998 73 65 d 6 8/11/1998 7360 ^ 6 8/12/1998 73 30 / 6 8/13/1998 729 1 A 6 8/14 /1998 7320 A 6 8/15/1998 7300 d 6 8/17/1998 7219 8/18/1998 7220 8/19/1998 7285 A5 8/20/1998 7274 As 8/21/1998 7225 A5 8/24/ 1998 6955 a3 8/25/1998 6949 As 8/26/1998 6790 ^ 2 8/27/1998 683 5 A 3 8/28/1998 6695 / 2 8/29/1998 6728 2 8/31/1998 6566 Secondly, In this embodiment, a 2-level fuzzy relationship is established, and (F(i- 2 ), F(i- 15 201039264 2+1), ..., F〇-2), rush-1)) represents "current state (current office (8)", F (〇 indicates "next state"" and its fuzzy relationship is (F (division), corpse (Bu/2+1)' For the purpose of illustrating the present invention, this embodiment sets the level 2 fuzzy relationship 2 = only the data shown is merely illustrative of the invention, not enumerated; for example, the fuzzy relationship 〇 47, is, J7 )~^47 is (F(8/3/1998), corpse (8/4/1998) F(8/5/1998))-F(8/6/1998). Here, the fuzzy relationship is as follows: Shown as follows:

〇 ❹ 201039264〇 ❹ 201039264

8 d 5,d 5, 9 d 5,d 3, A s~>A 2 10 j 3,d 3, A 2~>A 2 11 d 3,d 2, 3 —> ^ 2 12 j 2,/ 3, A Λ 2 13 d 3,d 2, A 1 14 ^ 2 j ^2, A 其中 〇42, J2, 4)4# 係指(F(8/28/1998),尸(8/29/1998),8 d 5,d 5, 9 d 5,d 3, A s~>A 2 10 j 3,d 3, A 2~>A 2 11 d 3,d 2, 3 —> ^ 2 12 j 2, / 3, A Λ 2 13 d 3,d 2, A 1 14 ^ 2 j ^2, A where 〇42, J2, 4)4# refers to (F(8/28/1998), corpse (8 /29/1998),

F(8/31/1998))-»F(9/1/1998),而尸(9/1/1998)係未列出之資 料,故以#為標記。又,前述列表中,每一群組即包含一個 以上的模糊關係;本實施例依據前述列表之模糊關係,建 立模糊預測規則。模糊預測規則係由一符合部分(matching part)及相應預測值(corresponding forecasted value)組成, 前者係由群組之目前狀態構成;後者之計算則區分已訓練 和未訓練之部分,已訓練部分係以次狀態基礎之估計方案 (estimating based on next state scheme, EBN)計算之,未訓 練之部分則以母投票(mater voting, MV)方案計算之。 17 201039264 關於後續狀態基礎之估計方案(EBN),係將每一相應 區間再區分為三等份的次區間,依據下述方程式(6)計算取 得一預測值: ^submidk +midkF(8/31/1998))-»F(9/1/1998), and the corpse (9/1/1998) is an unlisted material, so it is marked with #. Moreover, in the foregoing list, each group contains more than one fuzzy relationship; this embodiment establishes a fuzzy prediction rule based on the fuzzy relationship of the foregoing list. The fuzzy prediction rule consists of a matching part and a corresponding forecasted value. The former consists of the current state of the group; the latter calculates the trained and untrained parts. The trained part is Calculated by the estimating based on next state scheme (EBN), the untrained part is calculated by the mater voting (MV) scheme. 17 201039264 For the subsequent state basis estimation scheme (EBN), each corresponding interval is further divided into three equal intervals, and a predicted value is obtained according to the following equation (6): ^submidk +midk

Forcasted Valuer —----- ( 6 ) 其中,《表示同群組中次狀態(next state)總數,(1 S A: < w)表示關於次狀態數灸對應區間之中點(midpoint), 〇 ϊΜττπΆ表示次狀態數對應區間中三個次區間之一者的 中點。以上表群組4為例,僅一次狀態,並依次狀態基 礎之估計方案(EBN)等分區間/6 (即(7285, 7442])為三個 次區間,分別為 =(7285, 7337.3]、SR6f2 = (7337.3, 7389.6]和3 = (7389.6, 7442]。依前述群組2係取自模 糊關係 〇F(8/6/1998),F(8/7/1998),尸(8/10/1998)) —F(8/ll/1998);依次狀態基礎之估計方案(EBN)得知 尸(8/11/1998)對應實際資料Γ(8/11/1998)(即7360)係落於 ® 次區間狀6,2,該次區間中點似6讲^6係7363.45(即 7337.3+(7389.6- 7337.3)/2);據此,以 M6,2 之中點與區間 /6中點之平均值’並根據前述方程式’計算得知群組 2之預測值為7363.475。 於此,本實施例計算所得預測值如下表所示: 群組標示 模糊關係 預測值 — 1 A 7,Α Ί, 7459.72 18 201039264Forcasted Valuer —----- ( 6 ) where “represents the total number of next states in the same group, (1 SA: < w) represents the midpoint of the corresponding interval of the secondary state moxibustion, 〇ϊΜττπΆ indicates the midpoint of one of the three sub-intervals in the corresponding number of sub-states. The above table group 4 is taken as an example, and only one state, and the state-based estimation scheme (EBN) and other partitions/6 (ie, (7285, 7442)) are three sub-intervals, respectively = (7285, 7337.3), SR6f2 = (7337.3, 7389.6) and 3 = (7389.6, 7442). According to the aforementioned group 2 is taken from the fuzzy relationship 〇F (8/6/1998), F (8/7/1998), corpse (8/10 /1998)) —F(8/ll/1998); The continuation of the state based estimation scheme (EBN) is informed that the corpse (8/11/1998) corresponds to the actual data 8 (8/11/1998) (ie 7360) In the ® interval interval 6, 2, the middle point of the interval is 6 lectures ^ 6 series 7736.45 (ie 7337.3 + (7389.6 - 7337.3) / 2); accordingly, with M6, 2 midpoint and interval / 6 midpoint The average value 'and calculated according to the above equation' is that the predicted value of group 2 is 7363.875. Here, the predicted values calculated in this embodiment are as follows: Group marker fuzzy relationship prediction value - 1 A 7, Α Ί , 7459.72 18 201039264

Α η —> A, A 1,A Ί, d 7 6 2 j 7,义 7, A e~^>A ^ 7363.5 3 d 7,d 6, 73 3 7.3 3 4 j 6,/ 6, ^6, ^6, ^ 6~^ ^ 5 7304.625 5 j 6,d 6, 7206.5 6 ^ 6 5 ^5, ^ 5 5 7232.66 7 ^5, ^5, λ5-^λ5 ^5, ^5, Λ s~^> Λ 2, 7119.27 8 ^5, ^5, ^2,-^ A -i 6918.66 9 ^ 5 > ^3, A 3 —>A 2 6761.66 19 201039264 Ο Ο r 10 A3 , ^ 2~>A 2 6866.3 3 11 ^3, A2, ___^ 3 ~>A 2 6709.33 --- 12 A2, A3, A A 2 6735.5 ---~~-- 13 A3, A2, ^ 2~>A i 6578.5 6657 14 (以母投票(mater ^2, A2, Ai-># voting, MV)方案 計算之’最tfj票數 -- 為2) 針對未訓練部分’利用母投票voting,My)方案 預測计算之;以上表群組14為例,依方程式(4)計算,設 定% = 2’最新過去文字表示值山之最高投票數為2,其 餘文子表示值4與乂2之投票述各為1,則上表群組14之 預測值計算如下: ijnidjXWh) + rnid1+mid^ _ (6578.5x2) + 6735.5 + 6735.5 ^Ηλ-\) = -=6657 依據前數表列結果,可得出相關模糊預測規則;其中, 一模糊預測規則包括一符合部分(Matching Part)及一預測 部分(Forecasting Part);符合部分係同群組模糊關係之目前 狀態’預測部分係預測值部分,本實施例所得模糊預測規 20 201039264Α η —> A, A 1,A Ί, d 7 6 2 j 7, meaning 7, A e~^>A ^ 7363.5 3 d 7,d 6, 73 3 7.3 3 4 j 6,/ 6, ^6, ^6, ^ 6~^ ^ 5 7304.625 5 j 6,d 6, 7206.5 6 ^ 6 5 ^5, ^ 5 5 7232.66 7 ^5, ^5, λ5-^λ5 ^5, ^5, Λ s~^> Λ 2, 7119.27 8 ^5, ^5, ^2,-^ A -i 6918.66 9 ^ 5 > ^3, A 3 —>A 2 6761.66 19 201039264 Ο Ο r 10 A3 , ^ 2~>A 2 6866.3 3 11 ^3, A2, ___^ 3 ~>A 2 6709.33 --- 12 A2, A3, AA 2 6735.5 ---~~-- 13 A3, A2, ^ 2~&gt ;A i 6578.5 6657 14 (The most tfj votes counted by the mother vote (mater ^2, A2, Ai-># voting, MV) scheme - 2) For the untrained part 'use the mother vote voting, My The scheme prediction calculation; the above table group 14 is taken as an example, calculated according to the equation (4), setting % = 2', the latest past text indicates that the highest vote number of the mountain is 2, and the remaining texts represent the voting values of the value 4 and 乂2. For each 1, the predicted value of the above table group 14 is calculated as follows: ijnidjXWh) + rnid1+mid^ _ (6578.5x2) + 6735.5 + 6735.5 ^Ηλ-\) = -=6657 According to the results of the previous list, available Out of phase The fuzzy prediction rule includes: a fuzzy prediction rule including a matching part and a prediction part; and a current state of the partial group fuzzy relationship, the predicted part prediction value part, this embodiment Obtained fuzzy prediction gauge 20 201039264

則如下表所示: 規則編 號 符合部分 預測部分 1 如尸(ί —3)等於 且 F(i-2)等於 且尸(ί-1)等 於 a7 則預測值 Γ(ί) =7459.72 2 如尸(ί-3)等於 且尸(纟-2)等於 且 F(i-l)等於 則預測值 Γ(〇 =7363.5 3 如 F(i-3)等於 且 —2)等於 且 F(i-l)等於 則預測值 =73 3 7.3 3 4 如 F(i —3)等於 且 F(i-2)等於 且 F(i-l)等於」6 則預測值 7(ί) =7304.625 5 如 F(i-3)等於 且 F(i-2)等於 且 F(i-l)等於 則預測值 Ζ(ί) =7206.5 6 如 F(i-3)等於 且 F(i-2)等於 且尸(ί-l)等於 則預測值 Γ(ί) =7232.66 7 如 F(i-3)等於 則預測值 Γ(ί) 21 201039264The following table shows: The rule number meets the partial prediction part 1 such as corpse (ί -3) is equal and F(i-2) is equal and corpse (ί-1) is equal to a7 then the predicted value Γ(ί) =7459.72 2 (ί-3) is equal to and the corpse (纟-2) is equal to and F(il) is equal to the predicted value Γ (〇=7363.5 3 if F(i-3) is equal to and -2) is equal and F(il) is equal to the prediction Value = 73 3 7.3 3 4 If F(i - 3) is equal and F(i-2) is equal and F(il) is equal to "6" then the predicted value 7(ί) = 7304.625 5 If F(i-3) is equal to F(i-2) is equal to and F(il) is equal to the predicted value Ζ(ί) =7206.5 6 If F(i-3) is equal and F(i-2) is equal and corpse (ί-l) is equal to the predicted value Γ(ί) =7232.66 7 If F(i-3) is equal to the predicted value Γ(ί) 21 201039264

且尸(ί-2)等於 且 F(i-l)等於 =7119.27 8 如 F(i-3)等於 且 FG-2)等於 且 F(i-l)等於 則預測值 Γ(ί) =6918.66 9 如 F(i-3)等於乂5 且 F(i-2)等於 且 F(i-l)等於 則預測值 Mi) =6761.66 10 如 F(i-3)等於 且 F(i-2)等於 且 F(i-l)等於 則預測值 F(i) =6866.33 11 如 F(i-3)等於 且 F(i-2)等於 且尸(ί-l)等於 則預測值 Γ(ί) =6709.33 12 如尸(ί-3)等於 且 F(i-2)等於 且 F(i-l)等於 則預測值 Γ(〇 =6735.5 13 如 F(i-3)等於 且 F(i-2)等於 且尸(ί-l)等於 則預測值 Γ(ί) =6578.5 14 如 F(i-3)等於 且 F(i-2)等於 且 F(i-l)等於^ 則預測值 Γ(ί) =6623.35 據此,本實施例就1998年8月3日到8月31日之臺 22 201039264 股指數期貨市場之歷史資料,所得預測值如下表所示: 曰期 實際 資料 模糊 集合 符合規 則編號 預測值 8/3/1998 7552 ^ 7 未預測 8/4/1998 75 60 A 7 未預測 8/5/1998 7487 ^ 7 未預測 8/6/1998 7462 A 1 1 7459.72 8/7/1998 75 15 ^ 7 1 7459.72 8/10/1998 73 65 ^ 6 1 7459.72 8/11/1998 73 60 d 6 2 7363.5 8/12/1998 73 3 0 3 73 3 7.3 3 8/13/1998 729 1 d 6 4 7304.625 8/14/1998 7320 j 6 4 7304.625 8/15/1998 7300 d 6 4 7304.625 8/17/1998 72 19 4 7304.625 8/18/1998 7220 ^ 5 5 7206.5 8/19/1998 7285 ^ 5 6 7232.66 8/20/1998 7274 ^ 5 7 7119.27 8/21/1998 7225 ^ 5 7 7119.27 8/24/1998 6955 3 7 7119.27 8/25/1998 6949 ^ 3 8 6918.66 8/26/1998 6790 ^ 2 9 6761.66 8/27/1998 683 5 d 3 10 6866.33 23 201039264And the corpse (ί-2) is equal to and F(il) is equal to =7119.27 8 If F(i-3) is equal to and FG-2) is equal and F(il) is equal to then the predicted value Γ(ί) =6918.66 9 such as F( I-3) is equal to 乂5 and F(i-2) is equal and F(il) is equal to the predicted value Mi) =6761.66 10 If F(i-3) is equal and F(i-2) is equal to and F(il) Equal to the predicted value F(i) =6866.33 11 If F(i-3) is equal and F(i-2) is equal and corpse (ί-l) is equal to the predicted value Γ(ί) =6709.33 12 如尸(ί- 3) equal and F(i-2) is equal and F(il) is equal to the predicted value Γ (〇=6735.5 13 if F(i-3) is equal and F(i-2) is equal and corpse (ί-l) is equal Then the predicted value Γ(ί) = 6578.5 14 If F(i-3) is equal and F(i-2) is equal and F(il) is equal to ^ then the predicted value Γ(ί) =6623.35 accordingly, this embodiment is 1998 From August 3rd to August 31st, the historical data of Taiwan 2010 201026264 stock index futures market, the predicted value is as shown in the following table: The actual data fuzzy set meets the rule number forecast value 8/3/1998 7552 ^ 7 Prediction 8/4/1998 75 60 A 7 Not forecast 8/5/1998 7487 ^ 7 Unpredicted 8/6/1998 7462 A 1 1 7459.72 8/7/1998 75 15 ^ 7 1 7459 .72 8/10/1998 73 65 ^ 6 1 7459.72 8/11/1998 73 60 d 6 2 7363.5 8/12/1998 73 3 0 3 73 3 7.3 3 8/13/1998 729 1 d 6 4 7304.625 8/ 14/1998 7320 j 6 4 7304.625 8/15/1998 7300 d 6 4 7304.625 8/17/1998 72 19 4 7304.625 8/18/1998 7220 ^ 5 5 7206.5 8/19/1998 7285 ^ 5 6 7232.66 8/20 /1998 7274 ^ 5 7 7119.27 8/21/1998 7225 ^ 5 7 7119.27 8/24/1998 6955 3 7 7119.27 8/25/1998 6949 ^ 3 8 6918.66 8/26/1998 6790 ^ 2 9 6761.66 8/27/ 1998 683 5 d 3 10 6866.33 23 201039264

8/28/1998 6695 α2 11 6709.33 8/29/1998 6728 ^ 2 12 --^~-- 6735.5 8/31/1998 6566 Α: 13 6578.5 9/1/1998 Ν/Α Ν/Α 14 6623.35 以上係本發明之一具體實施例,以假設之5個粒子中 之粒子1為例示,建構粒子1之模糊規則;據此,關於其 他粒子模糊規則之建立於一般熟知該項技術領域人士均得 藉由本發明上述揭露之具體實施例予以具體實施之。 依據上述列表之結果,於前述方程式(2)、(3)中,乃使8/28/1998 6695 α2 11 6709.33 8/29/1998 6728 ^ 2 12 --^~-- 6735.5 8/31/1998 6566 Α: 13 6578.5 9/1/1998 Ν/Α Ν/Α 14 6623.35 In one embodiment of the present invention, the particle 1 of the five particles is assumed to be an example, and the fuzzy rule of the particle 1 is constructed; accordingly, the establishment of other particle fuzzy rules in the technical field is generally understood by the present disclosure. The specific embodiments of the invention disclosed above are embodied. According to the results of the above list, in the above equations (2), (3),

不限於(6500, 7600],限於[―50, 50],q 與 C2 為 2 ’ 而ω為1.4’並依據方程式(1)計算每一粒子之均方差;則 各該5個粒子之隨機起始位置與均方差如下表所示: ------ bl b2 b 3 b4 b 5 b6 MSE 粒子 — 1 6 6 5 7 68 14 697 1 7 128 7285 7442 4497.87 粒子 ----- 2 6590 6680 6790 6 8 95 7000 73 00 7091.33 粒子 3 66 10 6750 6900 7000 7 150 7400 5613.6 粒子 -~ > 4 66 80 6800 6940 7 160 7320 7480 4494.03 粒子5 — 6640 6 7 8 0 6925 7095 7280 75 10 5035.16 各該5個粒子之隨機起始速率如下表所示:Not limited to (6500, 7600), limited to [-50, 50], q and C2 are 2' and ω is 1.4' and the mean square error of each particle is calculated according to equation (1); then the randomization of each of the 5 particles The starting position and the mean square error are shown in the following table: ------ bl b2 b 3 b4 b 5 b6 MSE particles - 1 6 6 5 7 68 14 697 1 7 128 7285 7442 4497.87 Particles ----- 2 6590 6680 6790 6 8 95 7000 73 00 7091.33 Particles 3 66 10 6750 6900 7000 7 150 7400 5613.6 Particles -~ > 4 66 80 6800 6940 7 160 7320 7480 4494.03 Particles 5 — 6640 6 7 8 0 6925 7095 7280 75 10 5035.16 The random starting rates of the five particles are shown in the following table:

Vl v2 v3 v4 v5 v6 粒子 1 12 14 19 30 25 16 粒子 2 16 20 8 1 5 13 7 粒子3 19 23 13 25 8 30 24 201039264 粒子4 24 18 粒子5 Γι7~ lirVl v2 v3 v4 v5 v6 particles 1 12 14 19 30 25 16 particles 2 16 20 8 1 5 13 7 particles 3 19 23 13 25 8 30 24 201039264 particles 4 24 18 particles 5 Γι7~ lir

得以前述表列之模糊預測規則進行;= ’技術領域人士應可知悉,對於粒子有不 :,則 模糊預測規則之選擇非以前述表列數據為限。 據此,舉例來說,依方程式(1)、(2 子1之均方差(MSE)值,如下式計算: 异付粒 ΟIt can be carried out by the fuzzy prediction rules listed above; = ' Technical personnel should be aware that if there is no particle, then the choice of fuzzy prediction rule is not limited to the above table data. According to this, for example, according to the mean square error (MSE) value of equation (1) and (2), the following formula is calculated:

f 20 ㈣-7D,)2 £ ㈣-22),)2f 20 (four)-7D,) 2 £ (four)-22),) 2

Nt MSE: V forecasted 20 20 ' ~ = 4497.87 其中,預測資料數量乂。…心以為2〇,i <如) 表示7(8/5/1998+/)之預測值;τ^·表示關於^:之相應歷 史訓練資料(即r(8/5/1998+0)。應注意,FZ)2i表示新測試 ^料(即Γ(9/1/1998))之預測值,因而於本例示中未用以計 算粒子1之均方差(MSE)值。 經前開之計算,本實施例之每一粒子均可得出其所屬 均方差,並據以取得每一粒子之目前最佳位置;如下表所 示: —-—- bi b 2 b3 b4 b 5 be MSE 粒子1 --—__ 6657 6814 697 1 7 128 7285 7442 4497.87 粒子2 _ 6590 6680 6790 6895 7000 73 00 7091.33 25 201039264 粒子3 66 10 6750 6900 7000 7 150 7400 5613.6 粒子4 6 6 8 0 6 8 00 6940 7 160 73 20 748 0 4494.03 粒子5 6640 67 8 0 6925 7095 7280 75 10 5035.16 六τ,m工农/7Γ不’不貰施例之全邵5個粒于在全部 資料範圍内之目前最佳解(即方程式(1)之尸ge^),係為粒 子4(因其均方差值最小)。其後,再依方程式(1)、(2)調整 全部粒子至第二位置,並依方程式(3)取得相關位置之均方 差值,依本實施例所例示之歷史資料經計算,第二位置與 其均方差值表列如下: ΟNt MSE: V forecasted 20 20 ' ~ = 4497.87 where the forecasted quantity is 乂. ...heart thought 2〇, i < as) indicates the predicted value of 7(8/5/1998+/); τ^· indicates the corresponding historical training data about ^: (ie r(8/5/1998+0) It should be noted that FZ) 2i represents the predicted value of the new test material (ie, Γ(9/1/1998)) and thus is not used in this example to calculate the mean square error (MSE) value of particle 1. According to the calculation of the pre-opening, each particle of the embodiment can obtain the mean square error, and obtain the current optimal position of each particle; as shown in the following table: —-—- bi b 2 b3 b4 b 5 Be MSE Particle 1 ---__ 6657 6814 697 1 7 128 7285 7442 4497.87 Particle 2 _ 6590 6680 6790 6895 7000 73 00 7091.33 25 201039264 Particle 3 66 10 6750 6900 7000 7 150 7400 5613.6 Particle 4 6 6 8 0 6 8 00 6940 7 160 73 20 748 0 4494.03 Particles 5 6640 67 8 0 6925 7095 7280 75 10 5035.16 Six τ, m workers and peasants / 7 Γ 不 不 不 不 贳 全 邵 5 5 5 5 于 于 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 (ie, the corpse ge^ of equation (1)) is the particle 4 (since its mean squared difference is the smallest). Thereafter, all the particles are adjusted to the second position according to equations (1) and (2), and the mean square difference of the relevant position is obtained according to equation (3), and the historical data exemplified in the embodiment is calculated, second. The location and its mean squared difference are listed below:

5 2 7 3 · 1--------- # ^ ° 依上表所示之全部 之目前最佳解(即方程式⑴之户咖),仍係粒子4。於此, 本實化,仍得依據前述步驟,以方程式⑴、⑺調整全部粒 子至第三位置’並依方程式(3)取得相關位置之均方差,並 =開環計算,直至滿足停止條件。當停止條件滿 1不預測規則已完成訓練,藉由已完成訓練之預 測規則,進行測試資料預測。 依據本發明之-具體實施例,乃藉由模糊時間序列理 26 201039264 論與粒子群最佳化演算法,有效提升對於臺股指數期貨預 測之準確率。以本發明之一具體實施例與其他先前技術之 預測結果對照,本發明對於臺股指數期貨預測有更高之準 確率,其中本發明係為16區間之三級模糊關係,預測結果 如下表所示:5 2 7 3 · 1--------- # ^ ° According to all the current best solutions shown in the table (ie, the coffee of equation (1)), it is still particle 4. Here, in the actualization, according to the foregoing steps, all particles are adjusted to the third position by equations (1), (7) and the mean square error of the relevant position is obtained according to equation (3), and = open loop calculation until the stop condition is satisfied. When the stop condition is over 1 and the prediction rule has not been completed, the test data prediction is performed by the pre-test rule of the completed training. According to the specific embodiment of the present invention, the accuracy of the prediction of the Taiwan stock index futures is effectively improved by the fuzzy time series theory and the particle swarm optimization algorithm. In comparison with the prediction results of other prior art embodiments of the present invention, the present invention has a higher accuracy rate for the prediction of the Taiwan stock index futures, wherein the present invention is a three-level fuzzy relationship of 16 intervals, and the prediction results are as follows: Show:

Date Actual Data Linear Polynomial of degree 2 PolyiK^nial ofdegr^S ^bving Awage (pmod**3) HPSO NPSO 讎 1998 6890.0 6333.0 6923.4361 8032.7297 6879.7 6861.0 6878.3 9/25/1998 6871.0 6305.7 6958.7064 8266.964 6889.3 6897.8 6906.1 9/28/1998 6840.0 6278.3 6996.5325 8522.4575 6871.0 6912.8 6866.8 9/29/1998 6806.0 6251.0 7036.9144 8799.9584 6867.0 6858.4 6844J 9/30/1998 6787.0 6223.6 7079.8521 9100.2149 6839.0 6800.6 6820.8 MSE 314130.5 34479J 3082409.0 1565.8 1955.9 938.9 R2 0.6435 0.7713 0.8778 ❹ 其中,上表所列之先前技術分別為:Date Actual Data Linear Polynomial of degree 2 PolyiK^nial ofdegr^S ^bving Awage (pmod**3) HPSO NPSO 雠1998 6890.0 6333.0 6923.4361 8032.7297 6879.7 6861.0 6878.3 9/25/1998 6871.0 6305.7 6958.7064 8266.964 6889.3 6897.8 6906.1 9/28/ 1998 6840.0 6278.3 6996.5325 8522.4575 6871.0 6912.8 6866.8 9/29/1998 6806.0 6251.0 7036.9144 8799.9584 6867.0 6858.4 6844J 9/30/1998 6787.0 6223.6 7079.8521 9100.2149 6839.0 6800.6 6820.8 MSE 314130.5 34479J 3082409.0 1565.8 1955.9 938.9 R2 0.6435 0.7713 0.8778 ❹ where, listed above The prior technologies are:

Linear model: y = -27.348 jc + 7509 Polynomial model of degree 2: y = 1.2779 x2 - 75.907 jc + 7824.6 Polynomial model of degree 3: y = 0.1247 x3 - 5.8308 jc2 + 33.592 χ + 7454.9 Moving average model·, period = 3 由此可知,本發明相較於習知技術之臺股指數期貨預 測有更高之準確率。 從以上敘述,此領域之技藝者將得以領會,本發明之 特定實施例係只為說明之目的敘述於此而非用以限制本發 明。然而’具有此領域之通常知識之技藝者在不脫離本發 27Linear model: y = -27.348 jc + 7509 Polynomial model of degree 2: y = 1.2779 x2 - 75.907 jc + 7824.6 Polynomial model of degree 3: y = 0.1247 x3 - 5.8308 jc2 + 33.592 χ + 7454.9 Moving average model·, period = 3 It can be seen that the present invention has a higher accuracy rate than the conventional stock index futures forecast. It will be appreciated by those skilled in the art that the present invention is described by way of example only. However, the skilled person with the usual knowledge in this field is not out of this issue.

Claims (1)

201039264 ==::Γ,改。因此’本發明除謝 【圖式簡單說明】 本發明之較佳實施例將於以下敘述及所附圖 一步之說明,其中: 第一圖係為先前技術之習用模糊時間序列預測方 流程圖。 / < 第二圖係為根據本發明之預測方法之流程圖。 0 【主要元件符號說明】 1 〇歷史資料 201定義粒子個數程序 202設定粒子區間並模糊化程序 2 0 3模糊關係群組建立程序 2 0 4次狀態基礎估計方案計算程序 205母投票方案計算程序 206粒子模糊預測規則建立程序 Ο 207均方差計算程序 208停止條件達成 2 0 9停止條件未達成 210粒子位置移動程序 2 11預測規則完成訓練 2 1 2測試資料預測程序 七、申請專利範圍: 1. 一種基於粒子群最佳化演算法之臺股指數期貨預則方 28 201039264 法’其包含: 、歷史訓練資料為基礎,利用粒子群最佳化演算法訓練 模糊預測規則;以及 於該模糊預測規則訓練完成後,利用已完成訓練之模糊 預測規則預測測試資料。 2.如申請專利範圍帛1項之臺股指數期貨預測方法,其中 該以歷史訓練資料為基礎,利用粒子群最佳化訓練模糊 預測規則之步驟包含: 利用母一粒子所代表之區間產生模糊預測規則之獨立 群組’用以預測所有訓練資料;以及 根據第一方程式及第二方程式各別移動所有粒子至另 一位置, 其中第一方程式係為 ^ +C, x W()x(Pw -xirf) + c2,Rand〇HPgbest # 其中第二方程式係為 ^id~Xid+Vid , 其中厂W表示一粒子M之速率,⑺表示慣性權重值係數 (inertial weight coefficient),C!表示自信程度係數(self confidence coefficient) ’ C2表示社會信心程度係數 (social confidence coefficient),係一亂數產生器 (Random Number Generator),其於正常分布之下,產生 0到1間一隨機實數,係表示該粒子Μ之現在位置, Λν表示該粒子W之一最佳解,係表示全部粒子最 29 201039264 佳解之一最佳解。 3. 如申請專利範圍第2 利用每一粒子所代表 群組之步驟包括: 項之臺股指數期貨預測方法,其中 之區間產生模糊預測規則之獨立 將該歷史資料中最小值與最大值分別減去與加上一調 整值,定義該歷史資料之論域; 將該歷史資料分割為n個區間,定義該區 〇 = 7 '09 且H“]; … 以該區間根據第三方程式表示為一模糊集合,其中第三 方程式係為為=/1/W1 + /2/w2 H3/M3 + /4/…+ + + /7/1/7; 建立一 2級模糊關係’以(F(i_ J ),F(卜J +1), ,F(卜2) F(i-1))表示「目前狀態(currentstate)」,p⑺表示「次狀 態(next state)」,其模糊關係以F(卜 2),厂(卜1))4F⑺為表示; ’ ’ 依據該2級模糊關係建立模糊預測規則,其中包括針對 已訓練之模糊預測規則以第四方程式計算預測值,未訓 練之模糊預測規則以第五方程式計算預測值。 4.如申請專利範圍第3項之臺股指數期貨預測方法, 第四方程式係為 、 30 201039264 少submidk+midk Forcasted Value = M---, n 其中’ ForecaWec? Ffl/we表示預測值,w表示同群組中次 狀態(next state)總數,m/心(1 $灸$ 表示關於次狀態 數灸對應該區間之中點(midpoint),⑽表示該次狀 態數A:對應該區間中區分三個次區間之一者的中點。 5·如申請專利範圍第3項之臺股指數期貨預測方法,其中 〇 第五方程式係為 Forcasted X%) +, 其中,化/M表示預測值,%表示預設之最 高票數指模糊關係級數’ Wtl與Wtk(2aq)表示 於目前狀態㈣綱state)下最新過去文字表示值及其 他過去文字表示值對應該區間之中點。 ❹ 6.如申請專利範圍第2項之臺股指數期貨預測方法,其中 以該訓練資料為基礎,利用舱+继 規則夕半锁η人 佳化剜練模糊預測 規則之步驟更包含:根據第六方程式所定義之均方 不該每一粒子之預測準確度, 其中第六方程式係為 ^forecasted MSE Σ(^ ~TD.f f^.1 N forecasted 其中繼表示均方差表示_資料數量 31 201039264 •表示/th預測資料,ji/)志-n、 才叶表不關於該™丨·之相對應訓 7.t申請專利範圍第1項之臺股指數期貨預測方法,其中 =訓:資料為基礎’利用粒子群最佳化訓練模糊預測 規則之步驟更包含:重複申請專利範圍第2項及第6項 所述步驟,直到一預定停止條件滿足。 0 8.如申:專利範圍第7項之臺股指數期貨預測方法,其中 s預足止條件包含該所有粒子之移動到達最大值或 已獲得粒子最佳解。 9.如申請專利範圍第!項之臺股指數期貨預測方法其中 利用已完成训練之模糊預測規則預測測試資料之步驟 包含: ⑤該測試資料相對應之符合部分符合該已訓練之模糊 預測規則時’依該已訓練之模糊預測規則取得該測試資 料之預測值;以及 於該測試資料相對應之符合部分符合該未訓練之模糊 預測規則時’以第五方程式計算取得該測試資料之預測 值0 32201039264 ==::Γ, change. BRIEF DESCRIPTION OF THE DRAWINGS [Brief Description of the Drawings] A preferred embodiment of the present invention will be described in the following description and the accompanying drawings in which: FIG. 1 is a flow chart of a conventional fuzzy time series prediction method of the prior art. / < The second figure is a flow chart of the prediction method according to the present invention. 0 [Description of main component symbols] 1 〇Historical data 201 defines the number of particles program 202 sets the particle interval and blurs the program 2 0 3 fuzzy relationship group establishment procedure 2 0 state state basic estimation scheme calculation program 205 mother voting scheme calculation program 206 particle fuzzy prediction rule establishing procedure 207 207 mean square error calculating program 208 stop condition achievement 2 0 9 stop condition not reached 210 particle position moving program 2 11 prediction rule completion training 2 1 2 test data prediction program 7. Patent application scope: 1. A method for predicting the futures of Taiwan stock index based on the particle swarm optimization algorithm 28 201039264 The method includes: based on historical training data, using the particle swarm optimization algorithm to train fuzzy prediction rules; and the fuzzy prediction rules After the training is completed, the test data is predicted using the fuzzy prediction rules of the completed training. 2. For example, the method for predicting the futures index of the Taiwan stock index, which is based on the historical training data, the step of using the particle swarm optimization to train the fuzzy prediction rules includes: using the interval represented by the parent particle to generate blur An independent group of prediction rules is used to predict all training data; and each particle is moved to another position according to the first equation and the second equation, wherein the first equation is ^ + C, x W() x (Pw -xirf) + c2, Rand〇HPgbest # where the second equation is ^id~Xid+Vid, where factory W represents the rate of a particle M, (7) represents the inertial weight coefficient, and C! represents the degree of confidence. Self confidence coefficient ' C2 denotes a social confidence coefficient, which is a Random Number Generator, which produces a random real number between 0 and 1 under normal distribution. The current position of the particle ,, Λν represents the best solution of the particle W, which represents one of the best solutions for all particles. 3. If the scope of applying for patents is 2, the steps of using the group represented by each particle include: the method for predicting the index of the stock index of the item, wherein the interval is independent of the fuzzy prediction rule, and the minimum and maximum values in the historical data are respectively reduced. Add and adjust an value to define the domain of the historical data; divide the historical data into n intervals, define the area 〇 = 7 '09 and H "]; ... to represent the interval as a third-party program Fuzzy set, where the third-party program is =/1/W1 + /2/w2 H3/M3 + /4/...+ + + /7/1/7; establish a level 2 fuzzy relationship 'to (F(i_ J), F (Bu J +1), , F (Bu 2) F(i-1)) means "current state", p(7) means "next state", and the fuzzy relationship is F ( Bu 2), factory (Bu 1)) 4F (7) is the representation; ' ' Based on the 2 levels of fuzzy relations to establish fuzzy prediction rules, including the calculation of predicted values using the fourth equation for the trained fuzzy prediction rules, untrained fuzzy prediction rules The predicted value is calculated by the fifth equation. 4. For the forecast method of Taiwan stock index futures in the third application patent scope, the fourth equation is, 30 201039264 Less submidk+midk Forcasted Value = M---, n where 'ForecaWec? Ffl/we indicates the predicted value, w Indicates the total number of next states in the same group, m/heart (1 $ moxibustion $ indicates the midpoint of the secondary state moxibustion corresponding to the interval, and (10) indicates the number of the state number A: the corresponding interval The midpoint of one of the three sub-intervals. 5. The method for predicting the futures index of the stock index in item 3 of the patent application scope, wherein the fifth equation is Forcasted X%) +, where /M represents the predicted value, % means that the preset maximum number of votes refers to the fuzzy relationship series 'Wtl and Wtk (2aq) indicate the current past (4) state), the latest past text representation value and other past text representation values correspond to the midpoint of the interval. ❹ 6. For the method of predicting the futures index of Taiwan stock index in the second paragraph of the patent application, based on the training data, the steps of using the cabin + following the rules of the rule of the night to modify the fuzzy prediction rules include: The mean square defined by the six equations should not be the prediction accuracy of each particle, where the sixth equation is ^forecasted MSE Σ(^ ~TD.ff^.1 N forecasted where the mean mean square representation is expressed_number of documents 31 201039264 • Representation /th forecast data, ji /) Zhi-n, Cai Ye table does not refer to the TM 丨 · corresponding training 7.t application for patent range item 1 of the Taiwan stock index futures forecasting method, where = training: data based The step of using the particle swarm optimization to train the fuzzy prediction rule further includes repeating the steps described in items 2 and 6 of the patent application until a predetermined stop condition is satisfied. 0 8. Shen Shen: The method for predicting the futures index of the Taiwan stock index in item 7 of the patent scope, wherein the pre-sufficient condition includes that the movement of all the particles reaches the maximum value or the optimal solution of the obtained particles is obtained. 9. If you apply for a patent scope! The step of predicting the test data using the fuzzy prediction rule of the completed training includes: 5 the corresponding part of the test data conforms to the trained fuzzy prediction rule The prediction rule obtains the predicted value of the test data; and when the corresponding part corresponding to the test data conforms to the untrained fuzzy prediction rule, the predicted value of the test data is obtained by the fifth equation.
TW98113806A 2009-04-24 2009-04-24 Forecasting taifex based on particle swarm optimization TWI399699B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98113806A TWI399699B (en) 2009-04-24 2009-04-24 Forecasting taifex based on particle swarm optimization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98113806A TWI399699B (en) 2009-04-24 2009-04-24 Forecasting taifex based on particle swarm optimization

Publications (2)

Publication Number Publication Date
TW201039264A true TW201039264A (en) 2010-11-01
TWI399699B TWI399699B (en) 2013-06-21

Family

ID=44995409

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98113806A TWI399699B (en) 2009-04-24 2009-04-24 Forecasting taifex based on particle swarm optimization

Country Status (1)

Country Link
TW (1) TWI399699B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622496A (en) * 2011-01-26 2012-08-01 中国科学院大气物理研究所 Self-adaptive prediction method with embedded fuzzy set state and self-adaptive prediction system
CN105185106A (en) * 2015-07-13 2015-12-23 丁宏飞 Road traffic flow parameter prediction method based on granular computing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8589315B2 (en) * 2004-08-14 2013-11-19 Hrl Laboratories, Llc Behavior recognition using cognitive swarms and fuzzy graphs

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622496A (en) * 2011-01-26 2012-08-01 中国科学院大气物理研究所 Self-adaptive prediction method with embedded fuzzy set state and self-adaptive prediction system
CN102622496B (en) * 2011-01-26 2016-07-06 中国科学院大气物理研究所 A kind of adaptive multi-step forecasting procedure embedding fuzzy set state and system
CN105185106A (en) * 2015-07-13 2015-12-23 丁宏飞 Road traffic flow parameter prediction method based on granular computing
CN105185106B (en) * 2015-07-13 2017-07-04 丁宏飞 A kind of road traffic flow parameter prediction method based on Granule Computing

Also Published As

Publication number Publication date
TWI399699B (en) 2013-06-21

Similar Documents

Publication Publication Date Title
CN105788249B (en) A kind of traffic flow forecasting method, prediction model generation method and device
Moeini et al. Fuzzy rule-based model for hydropower reservoirs operation
CN104155423B (en) A kind of landscape water quality method for early warning of changeable weight combination
CN113256138A (en) Flood disaster risk assessment method based on heterogeneous multi-scale monitoring data
Muriana et al. An expert system for financial performance assessment of health care structures based on fuzzy sets and KPIs
CN110212524A (en) A kind of region Methods of electric load forecasting
CN111652425A (en) River water quality prediction method based on rough set and long and short term memory network
Zarghami et al. Measuring project resilience–Learning from the past to enhance decision making in the face of disruption
JP7471471B2 (en) A robust prediction system for irregular time series in dialysis medical records
Bouramdane Optimal water management strategies: paving the way for sustainability in smart cities
Wu et al. Local and global Bayesian network based model for flood prediction
CN108877224A (en) A kind of Short-time Traffic Flow Forecasting Methods carrying out Estimating Confidence Interval
Wang et al. Construction of fuzzy control charts based on weighted possibilistic mean
Ahmadi et al. Robust methods for identifying optimal reservoir operation strategies using deterministic and stochastic formulations
CN113362931B (en) Attribute analysis method, device and system based on knowledge graph
CN107563096A (en) A kind of waterlogging modeling and analysis methods based on FCM
TW201039264A (en) Forecasting TAIFEX based on particle swarm optimization
TWI587222B (en) Neural networks based water level predicting system and method for reservoirs
CN116843069A (en) Commuting flow estimation method and system based on crowd activity intensity characteristics
Iwakin et al. Improving urban water demand forecast using conformal prediction-based hybrid machine learning models
CN107292425A (en) Aquaculture dissolved oxygen prediction method and device
Zhao et al. Valuing hydrological forecasts for a pumped storage assisted hydro facility
Mohammadi et al. Exploiting the spatio-temporal patterns in IoT data to establish a dynamic ensemble of distributed learners
CN108921340B (en) Flood probability forecasting method based on error transfer density function
Ning et al. A catfish effect based team recommendation system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees