TW201038968A - Lens set for camera lens - Google Patents

Lens set for camera lens Download PDF

Info

Publication number
TW201038968A
TW201038968A TW98113688A TW98113688A TW201038968A TW 201038968 A TW201038968 A TW 201038968A TW 98113688 A TW98113688 A TW 98113688A TW 98113688 A TW98113688 A TW 98113688A TW 201038968 A TW201038968 A TW 201038968A
Authority
TW
Taiwan
Prior art keywords
lens
plastic
concave
focal length
group
Prior art date
Application number
TW98113688A
Other languages
Chinese (zh)
Inventor
Ku-Yuan Chang
Original Assignee
Asia Optical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Optical Co Inc filed Critical Asia Optical Co Inc
Priority to TW98113688A priority Critical patent/TW201038968A/en
Publication of TW201038968A publication Critical patent/TW201038968A/en

Links

Abstract

The present provides a lens set for camera lens. There are provided with, in the order from the object side to the image side along the optical axis, a first lens group having negative index of refraction and a second lens group having positive index of refraction respectively located between the iris and object and the iris and image, wherein the ratio of the composite focal length of the second lens group to that of the first lens group is between 0.5 to 1. The first lens group comprises two or three lenses arranged together to correct chromatic aberration, wherein at least one of the lenses is a plastic aspheric lens for aberration correction and resolution enhancement. The ratio of the focal length of the first lens to that of the second lens, or the composite focal length of the first lens and second lens to the focal length of the third lens is between 0 to -3.5. The second lens group comprises three lenses, wherein at least one of them is a plastic aspheric lens, and the two lenses near the image side are arranged in a one concave and one convex style. The ratio of the focal length is between 0.5 to 2.

Description

201038968 ' 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種鏡頭鏡片組,特別是指一種適用於廣角高畫素攝影鏡 頭之鏡片組。 【先前技術】 鏡頭乃位攝影產品中不可或缺之元件。目前,整合數位攝影鏡頭 (DSC)的可攜式產品,其需求為:輕便、體積小、價格低廉。 D 習知之光學鏡頭使用玻璃球面鏡片,須於鏡頭上進行昂貴鍍膜處理,及 對於玻璃複雜加工研磨,遂拉長製作鏡片時間、也降低成品良率、且成品重 量大而攜帶不易,且-般利用球面玻璃透鏡組成的鏡片組,在攝取影像時會 產生各種的像差。為了獲得正確清晰的影像、便利鏡頭鏡片加卫、減低綱 的重量’在鏡頭鏡片組立之光學系中可採用塑膠材質製成的球面及非球面透 鏡鏡片,相互組合排列,以求獲得符合市場趨勢的鏡頭。 例如細專辦職第2G_121218A1號,其在技術上發展出四群凹 ϋ鏡及&透鏡’糊四群鏡#合成後的焦距,而組構成為—種較雖習知鏡 頭解析度更高的鏡頭。 唯,此-創作,-方面需複合四群透鏡組,大為增加製造加工的麻須, 另-方面’透鏡數量太多,且只在第四群透鏡鏡片中使用一枚娜鏡片,對 於減少整體鏡頭重量的貢獻有限。 、 美國專利第6943962 Β2號,其技術為複合三群透鏡鏡片,以達到對不 同距離物體雛焦距的雜。該技術支援使用者彻較大的細、較廣角取 景的功能。 3 201038968 i述創#中錢用到不同折射率的材料來製作透鏡鏡片,但是,詳細剖 析之後該等光學系在鏡頭的組立、成品的成本及體積上,仍不符合市場的 需求。 因此’提供-種具有低重量、長度短、製造成本低廉、像差小、且可適 用於间晝素廣角數位鏡頭的鏡片組,實有其必要。 【發明内容】 本發明之目的在於提供—種鏡頭鏡片組 ,由物方側往成像侧,依序含 具有負屈折率的第一透鏡群、一光圈、一具有正屈折率的第二透鏡群, 其中第二透鏡群的合成焦距與第-透鏡群的合成焦距的比值是在〇.5與〈之 間,第一透鏡群可包含有二或三個透鏡,用以矯正色收差,且其中至少具有 -塑膠非球錢鏡’用崎正像差、提高解像性能,第―透鏡群巾的第一透 鏡焦距與第二透齡距的雜,献第-鮮二透鏡之合成肢與第三透鏡 焦距的比值是在〇與_3.5之間,第二透鏡群具有三個透鏡,其中至少有一塑 膠非球面鏡片,且其中靠成像侧的二個透鏡為一凸一凹的配置,其焦距的比 D 值是在-0.5與_2之間。 根據上述之目的’本發明利用交錯組立非球面或球面之塑膠及玻璃材質 透鏡’而構成咼畫素廣角數位鏡頭(Digital Still Camera,DSC )。 根據本發明第一實施例,係於鏡片組中,利用二枚塑膠鏡片及四枚玻璃 鏡片組合成為廣角高晝素攝影鏡頭之鏡片組光學系。本發明之光學系於物方 侧往光圈為第一透鏡群,依序包含有一第一凹透鏡塑膠鏡片、一第二凹透鏡 玻璃鏡片、與一第三凸透鏡玻璃鏡片;光圈後往成像側為第二透鏡群,依序 包含有一第四凸透鏡塑膠鏡片、一第五凹透鏡玻璃鏡片、與一第六凸透鏡玻 4 201038968 璃鏡片。第一透鏡群之三牧鏡片經過組立後相當於一牧凹透鏡負鏡片,第二 透鏡群之三牧鏡片經過組立後相當於一牧凸透鏡正鏡片。 此系統二鏡片群合成屈折率的分配,依序以凹凸(負正)的型式構成, 滿足以下條件:-〇.5<2Gf/lGf<0.5,其中lGf及2Gf分別為第一及第二透鏡 群的合成焦距。 在第一透鏡群中,第一凹透鏡塑膠鏡片、第二凹透鏡玻璃鏡片、與第三 凸透鏡玻璃鏡片,相互搭配可矯正色收差,其中第一凹透鏡塑膠鏡片使用非 〇 球鱗正像差’可提高觸性能,第—透鏡群巾的三枚鏡滿足以下條件: -1.0<Ll.L2£OJf<0 ’其中Ll.L2f代表第一透鏡li與第二透鏡L2的合成焦 距’而L3f則代表第三透鏡的焦距。 在第二透鏡群中’第五凹透鏡玻璃鏡片與第六凸透鏡玻璃鏡片為一凹一 凸透鏡,二者搭配錄正像差,此二鏡片滿足以下條件:_l 5<L5f/L6f<_〇.5, 其中L5f是第五透鏡L5的焦距’而L6f則是第六透鏡L6的焦距。 根據本發明第二實施例,係於鏡版巾’ _三枚_鏡片及二枚玻璃 〇 鏡片’組合成為高畫素攝影鏡頭之鏡片組光學系。本發明之光學系於系統物 方側往光圈為第-透鏡群,依序包含有—第—凸透鏡玻璃鏡片與—第二凹透 鏡塑膠鏡iW目聽合在-起;細後往細貞⑽二透麟,依序包含有 -第三凸透鏡_鏡片、-第四凸透鏡玻魏片、及—第五凹透鏡塑膠鏡 片。第-魏群之二枚鏡錄駄域姆於—枚赠鏡負制,第二透鏡 群之三枚鏡片經過組立後相當於一枚凸透鏡正鏡片。 此系統二鏡片群合成屈折率的分配,依序以凹凸(負正)的型式構成, 滿足以下條件:⑽顧Gf<0,其中1Gf及2Gf分別為第一及第二透餅 5 201038968 的合成焦距。 在第-透鏡群中,第-凸透鏡玻璃鏡片與第二_鏡塑膠鏡片相互黏合 搭配後可_色收差’其”二凹透鏡师鏡片使帅細矯正像差,可提 高解像性能。此二牧鏡片需滿足以下條件:_3 5<L购f<_25,其中此是 第一透鏡的焦距,L2f是第二透鏡的焦距。 θ201038968 ' VI. Description of the Invention: [Technical Field] The present invention relates to a lens lens group, and more particularly to a lens group suitable for a wide-angle high-resolution photographic lens. [Prior Art] The lens is an indispensable component of a photographic product. At present, the portable products that integrate digital photographic lens (DSC) have the following requirements: light weight, small size and low price. D The optical lens of the conventional use of glass spherical lens requires expensive coating treatment on the lens, and the complicated processing and polishing of the glass, the lengthening of the lens production time, the reduction of the finished product yield, and the heavy weight of the finished product is not easy to carry, and A lens group composed of a spherical glass lens produces various aberrations when capturing an image. In order to obtain correct and clear images, to facilitate the lens lens to enhance and reduce the weight of the program, the spherical and aspherical lens lenses made of plastic materials can be arranged in the optical system of the lens lens group, and arranged in order to obtain the market trend. Shot. For example, in the second job, No. 2G_121218A1, which technically develops a focal length of four groups of concave ϋ mirrors and & lens 'paste four group mirrors#, and the composition of the group is higher than that of the conventional lens. Shot. Only, this-creation--requires a composite of four groups of lens groups, which greatly increases the manufacturing and processing of whiskers. In addition, the number of lenses is too large, and only one lens is used in the fourth group of lens lenses. The contribution of the overall lens weight is limited. U.S. Patent No. 6,944,962, No. 2, the technology of which is a composite three-group lens lens to achieve the mismatch of the focal length of objects at different distances. This technology supports users' large-scale, wide-angle viewfinder functions. 3 201038968 i Shuchuang #中钱 uses different refractive index materials to make lens lenses. However, after detailed analysis, these optical systems still do not meet the market demand in terms of lens assembly and cost and volume of finished products. Therefore, it is necessary to provide a lens group which has a low weight, a short length, a low manufacturing cost, a small aberration, and is applicable to a magnarration wide-angle digital lens. SUMMARY OF THE INVENTION An object of the present invention is to provide a lens lens assembly, from an object side to an imaging side, sequentially including a first lens group having a negative refractive index, an aperture, and a second lens group having a positive refractive index. The ratio of the composite focal length of the second lens group to the composite focal length of the lenticular lens group is between 〇.5 and 〈, and the first lens group may include two or three lenses for correcting the color difference, and At least the plastic non-spherical lens uses the positive aberration of the smear, improves the resolution, the first lens focal length of the first lens group and the second penetration age, and the synthetic limb of the first-fresh two lens The ratio of the focal length of the third lens is between 〇 and _3.5, the second lens group has three lenses, at least one of which is a plastic aspherical lens, and wherein the two lenses on the imaging side are a convex and concave configuration, The focal length ratio D is between -0.5 and _2. According to the above object, the present invention utilizes a staggered aspherical or spherical plastic and glass lens to form a digital still camera (DSC). According to the first embodiment of the present invention, in the lens group, a combination of two plastic lenses and four glass lenses is used to form a lens group optical system of a wide-angle high-density photographic lens. The optical system of the present invention is a first lens group on the side of the object side, and includes a first concave lens plastic lens, a second concave lens glass lens and a third convex lens glass lens, and a second lens aperture to the imaging side. The lens group sequentially includes a fourth convex lens plastic lens, a fifth concave lens glass lens, and a sixth convex lens glass 4 201038968 glass lens. The third lens of the first lens group is equivalent to a negative lens of the concave lens after being assembled, and the third lens of the second lens group is equivalent to a positive lens of the convex lens after being assembled. The distribution of the inflection rate of the two lens groups of the system is sequentially formed by the concave-convex (negative positive) pattern, and the following conditions are satisfied: -〇.5 < 2Gf/lGf < 0.5, wherein lGf and 2Gf are the first and second lenses, respectively The composite focal length of the group. In the first lens group, the first concave lens plastic lens, the second concave lens glass lens, and the third convex lens glass lens are matched with each other to correct color difference, wherein the first concave lens plastic lens uses non-balloon scale positive aberrations. To improve the touch performance, the three mirrors of the first lens group towel satisfy the following condition: -1.0<Ll.L2£OJf<0' where Ll.L2f represents the combined focal length of the first lens li and the second lens L2 and L3f Represents the focal length of the third lens. In the second lens group, the fifth concave lens glass lens and the sixth convex lens glass lens are a concave convex lens, which are combined with positive aberrations, and the two lenses satisfy the following conditions: _l 5 <L5f/L6f<_〇.5 Where L5f is the focal length ' of the fifth lens L5 and L6f is the focal length of the sixth lens L6. According to the second embodiment of the present invention, a combination of a mirror towel _ three _ lenses and two glass 〇 lenses is used as a lens group optical system of a high-resolution photographic lens. The optical system of the present invention is a first lens group on the side of the system side, and the optical lens is a first lens group, which sequentially includes a first-convex lens glass lens and a second concave lens plastic lens iW. The transparent lens includes a third convex lens _ lens, a fourth convex lens, and a fifth concave lens plastic lens. The two mirrors of the first-Wei group are in the form of a mirror, and the three lenses of the second lens group are equivalent to a convex lens. The distribution of the inflection rate of the two lens groups of the system is composed of irregularities (negative positive) in order, and the following conditions are satisfied: (10) Gf < 0, wherein 1Gf and 2Gf are respectively the synthesis of the first and second transmissive cakes 5 201038968 focal length. In the first lens group, the first-convex lens glass lens and the second-mirror plastic lens are adhered to each other, and the two concave lens lenses can be used to correct the aberration and improve the resolution performance. The grazing lens needs to satisfy the following conditions: _3 5 < L purchase f < _ 25, where this is the focal length of the first lens, and L2f is the focal length of the second lens.

G 在第二透鏡射’第四凸透鏡玻璃鏡片與第.魏娜為一凸一 凹透鏡,二者搭配矯正像差,此二鏡片滿足以下條件:_15《4贿5, 其中L4f是第四透鏡的焦距,L5f是第五透鏡的焦距。 方側往光圈為第一透鏡群, 根據本發Μ三實補’係於鏡版中,四枚娜鏡歧—枚玻璃 鏡片,組合成為高4素攝雜頭之鏡版光學卜本發狀光料於系統物 第凸透鏡塑膠鏡片及一第二凹透 鏡塑膠鏡片,互相黏合;細後往成像側為第二透鏡群,依序包含有一第三 凸透鏡塑膠鏡片、-第四凸透鏡玻璃鏡片、與一第五凹透鏡塑膠鏡片。第一 透鏡群之二餘互黏合鏡諸過組錢树於—枚凹透鏡議,第二透鏡 群之二牧鏡片經過組立後相當於一枚凸透鏡正鏡片。 此系統二鏡片群合成屈折率的分配,依序以凹凸(負正)的型式構成, 滿足以下條件:桃耀咖,其中1Gf及观分別為第—及第二透鏡群 的合成焦距。 在第-透鏡群中’第-凸透鏡塑膠鏡片與第二凹透鏡塑膠鏡片係相互黏 合搭配’可橋正色收差,其中第-及第二塑膠鏡片均使用非球面續正像差, 可提高解像性能。此二枚·滿足以下條件:_2<L肌糾,其中此是第 一透鏡的焦距,L2f是第二透鏡的焦距。 201038968 在第二透鏡群中,第四凸透鏡玻璃鏡片與第五凹透鏡塑膠鏡片為一凸— 凹透鏡’二者搭配矯正像差’此二鏡片滿足以下條件:_15<L4f/L5f<_〇5, 其中L4f是第四透鏡的焦距,L5f是第五透鏡的焦距。 根據本發明第四實施例,係於鏡片組中,利用四枚塑膠鏡片及二枚破璃 鏡片,組合成為廣角高晝素攝影鏡頭之鏡片组光學系。本發明之光學系於系 統物方側往光圈為第一透鏡群,依序包含有一第一凹透鏡玻璃鏡片、一第二 凹透鏡塑膠鏡片、與-第三凸透鏡塑膠鏡片;光圈後往成像側為第二透鏡 〇 群,依序包含有一第四凸透鏡塑膠鏡片、一帛五凸透鏡娜鏡片、及一第六 凹透鏡玻璃鏡片。第-透鏡群之三枚鏡片經過組立後相當於一枚凹透鏡負鏡 片,第二透鏡群之三枚鏡片經過組立後相當於一枚凸透鏡正鏡片。 此系統二鏡片群合成屈折率的分配,依序以凹凸(負正)的型式構成, 滿足以下條件:_1.〇<厕皿<(),其巾1Gf及2Gf分縣第__及第二透鏡群 的合成焦距。 在第-透鏡群中,第-凹透鏡玻璃鏡片、第二凹透鏡塑膠鏡片、與第三 Ο 凸透鏡塑膠鏡片’相互搭配可橋正色收差,其中第二枚凹透鏡塑膠鏡片與第 三枚凸透鏡歸鏡片均非球爾正縣,可提高解雜I此三枚鏡片 滿足以下條件·· -l<Ll.L2fTL3f<0,其中L1.L2f代表第一透鏡L1與第二透鏡 L2的合成焦距,而L3f則是第三透鏡L3的焦距。 在第二透鏡群中,第五凸透鏡塑膠鏡片與第六凹透鏡玻璃鏡片為一凹一 凸透鏡,一者搭配矯正像差,此二鏡片滿足以下條件:_2 〇<L5f/L6f<_l 〇, 其中L5f是第五透鏡L5的焦距’ L6f是第六透鏡L6的焦距。 根據本發明第五實施例,係於鏡肢巾,利肛牧瓣鏡脉合成為高 201038968 晝素攝〜鏡頭之鏡片組光學系。本發明之光學系於物方侧往光圈為第一透鏡 &序包含有-枚第—凹透鏡轉鏡片與一第二凸透鏡塑膠鏡片,·光圈後 ί成像側為第一透鏡群,依序包含有一第三凸透鏡塑膝鏡片、一第四凸透鏡 娜鏡丨與-第五凹透鏡塑膠鏡片。第一透鏡群之二牧相互黏合鏡月經過 、’且立後相⑽-枚C3透鏡負鏡片,第二透鏡群之三枚鏡片經過組立後相當於 一枚凸透鏡正鏡片。 m剝群合成屈折率的分配,依序㈣凸(負正)的型式構成, 〇 '茜足以下條件:她聊胸,其中lGf及2Gf分別為第-及第二透鏡群 的合成焦距。 在第-透鏡群中’第-凹透鏡塑膠鏡片與第二凸透鏡塑膠鏡片,搭配後 可橋正色收差’其㈣—及第二瓣均制非球面續正像差,可提高解 像性能。此二牧鏡片需滿足以下條件:_〇 5<Llf/L2f<〇,其中[Η代表第一 透鏡L1的焦距,而L2f則是第二透鏡L2的焦距。 在第二透鱗巾’細凸透鏡瓣鄕五凹透鏡歸制為一凸一 〇 凹透鏡,二者搭配痛正像差,此二鏡片滿足以下條件:-l.5<L4f/L5f<_0.5, 其中L4f是第四透鏡L4的焦距,L5f是第五透鏡L5的焦距。 根據本發明第六實施例,係於鏡片組中’利用四枚塑膠鏡片及二枚玻璃 鏡片,組合成為高晝素攝影鏡頭之鏡片組光學系。本發明之光學系於物方側 往光圈為第-透鏡群,依序包含有-第-凹透鏡塑膠鏡片、一第二凹透鏡塑 膠鏡片、與-第三凸透鏡塑膠鏡片;光圈後往成像侧為第二透鏡群,依序包 含有-第四凸親餅鏡片、-第五&透鏡玻璃鏡片、及—第六凹透鏡破璃 鏡片。第-透鏡群之二牧相互黏合鏡片經過組立後相當於—枚凹透鏡負鏡 8 201038968 片,第二透鏡群之三牧鏡片經過組立後相當於一枚凸透鏡正鏡片。 此系統二鏡片群合成屈折率的分配,依序以凹凸(負正)的型式構成, 滿足以下條件:-l.G<2Gf/lGf<G,其巾iGf及观分別為第-及第二透鏡群 的合成焦距。 在第-透鏡群中,第-凹透鏡塑膠鏡片與第二凹透鏡塑膠鏡片,搭配後 可矮正色收差,其中第-及第二塑膠鏡片均使用非球面繞正像差,可提高解 像性能。此二枚鏡片滿足以下條件:_1<L1£^2f<〇,其中Llf代表第一透鏡 D L1的焦距,而L2f則是第二透鏡L2的焦距。 在第二透鏡群中,第五凸透鏡玻璃鏡片及第六凹透鏡玻璃鏡片為一凸— 凹透鏡,二者搭配矯正像差,此二鏡片滿足以下條件:_15<L5f/L6f<_〇 5, 其中L5f是第五透鏡L5的焦距,而L6f則是第六透鏡L6的焦距。 根據本發明第七實施例,係於鏡片組中,利用六枚塑膠鏡片組合成為高 晝素攝影鏡頭之鏡片組光學系。本發明之光學系於物方侧往光圈為第一透鏡 群,依序包含有一第一凹透鏡塑膠鏡片、一第二凹透鏡塑膠鏡片、與一第三 凸透鏡塑膠鏡片’光圈後往成像侧為第二透鏡群,依序包含有一第四凸透鏡 塑膠鏡片、一第五凸透鏡塑膠鏡片、與一第六凹透鏡玻璃鏡片。第一透鏡群 之二枚鏡片經過組立後相當於一枚凹透鏡負鏡片,第二透鏡群之三牧鏡片經 過組立後相當於一牧凸透鏡正鏡片。 此系統二鏡片群合成屈折率的分配,依序以凹凸(負正)的型式構成, 滿足以下條件:_l.〇<2Gf/lGf<0,其中lGf及2Gf分別為第一及第二透鏡群 的合成焦距。 在第一透鏡群中,第一凹透鏡塑膠鏡片與第二凹透鏡塑膠鏡片,搭配後 9 201038968 可矯正色收差,其中第一及第二塑膠鏡月均使用非球面矯正像差,可提高解 像性能。此二牧鏡片需滿足以下條件:-l<Llf/L2f<〇,其中Llf代表第一透 鏡L1的焦距,L2f是第二透鏡L2的焦距。 在第二透鏡群中,第五凸透鏡塑膠鏡片與第六凹透鏡玻璃鏡片為一凸一 凹透鏡’二者搭配矯正像差,此二鏡片滿足以下條件:_15<L5f/L6f<_〇 5, 其中L5f是第五透鏡L5的焦距,L6f是第六透鏡L6的焦距。 與本發明之先前技術相比較,本發明之鏡頭鏡片組可運用於高晝素(8M ) 至10M)品質之數位攝影鏡頭中。本光學系鏡片組分別摻雜採用非球面塑膠 鏡片來取代玻璃鏡片,如此則可大幅降低生產成本以及提高成像品質。本光 學系光圈前後二透鏡群公差敏感度分布均勻,對生產組立良率有相當的提昇 效果。如上所述,鏡片加工成本降低時,整體生產成本也相對隨之降低。光 學系的五枚或六牧鏡片全數採用非球面塑膠鏡片來取代玻璃鏡片時,可大幅 降低生產成本以及提高成像品質。 【實施方式】 有關前述之本發明描述及其他技術内容、特點與功效,配合以下參考圖 式及較佳實施例詳細說明,將可清楚地呈現。為簡化說明起見,各圖式内之 實施例的相對應或相等的元件或組件是以_的編號加以標示,絲陳明。 蓋實施你丨 請參照第-圖所不’其中顯不出本發曰月之攝影機綱鏡片組的第一實施 例’此實施例中的鏡牌係由二枚塑膠鏡片(第—透鏡u及第四透鏡L4) 及四枚玻璃鏡片組合成為廣角尚晝素攝影鏡頭之鏡片組光學系。本發明之光 學系沿著光軸OA自系統物方側(第-圖中標號〇BJ所標示之一側)至成 10 201038968 像侧(第-圖中標號IMG之-側),依序設置有第一透鏡群犯、光圈s、 第一透鏡群2G、'一透光的光輋_ 扪尤予千板LP、以及一成像面IP,其中第一透鏡群 1G具有負屈折率’而第二透鏡群2G則具有正屈折率。因此,在物方侧⑽ 與光圈ST之間為第—透鏡群1G,具有負屈折率,沿著光軸自物方側⑽ 至成像侧IMG依序包含H ―透鏡u 一第二透鏡L2、以及一第三透 鏡L3,其中第-透鏡L1是—凹透鏡,係由塑膠製成且具有非球面的非球面G in the second lens shot 'the fourth convex lens glass lens and the first Weina is a convex-concave lens, the two with correcting aberrations, the two lenses meet the following conditions: _15 "4 bribe 5, where L4f is the fourth lens The focal length, L5f, is the focal length of the fifth lens. The side of the square to the aperture is the first lens group, according to the hairpin three real complement 'in the mirror version, four Na mirror-glass lenses, combined into a high-quality four-headed mirror optical disc hair light The first convex lens plastic lens and the second concave lens plastic lens are bonded to each other; the second lens group is thinned toward the imaging side, and sequentially includes a third convex lens plastic lens, a fourth convex lens glass lens, and a fifth Concave lens plastic lens. The two mutual-adhesive mirrors of the first lens group pass through the group of concave trees, and the second lens group of the second lens group is equivalent to a convex lens. In this system, the distribution of the inflection rate of the two lens groups is sequentially formed in a concave-convex (negative positive) pattern, which satisfies the following condition: Tao Yao, where 1Gf and Guan are the combined focal lengths of the first and second lens groups, respectively. In the first lens group, the 'first-convex lens plastic lens and the second concave lens plastic lens are bonded to each other' to bridge the positive color difference, wherein the first and second plastic lenses use aspherical positive aberration to improve the resolution. performance. These two pieces satisfy the following conditions: _2 < L muscle correction, where this is the focal length of the first lens, and L2f is the focal length of the second lens. 201038968 In the second lens group, the fourth lenticular lens glass lens and the fifth concave lens plastic lens are a convex-concave lens 'with a correcting aberration'. The two lenses satisfy the following condition: _15 < L4f / L5f < _ 〇 5, wherein L4f is the focal length of the fourth lens, and L5f is the focal length of the fifth lens. According to the fourth embodiment of the present invention, in the lens group, four plastic lenses and two glass lenses are used to form a lens group optical system of a wide-angle high-density photographic lens. The optical system of the present invention is a first lens group on the side of the system side, and includes a first concave lens glass lens, a second concave lens plastic lens, and a third convex lens plastic lens; the aperture is directed to the imaging side. The two lens group includes a fourth convex lens plastic lens, a fifth convex lens nano lens, and a sixth concave lens glass lens. The three lenses of the first lens group are equivalent to one concave lens negative lens after being assembled, and the three lenses of the second lens group are assembled to be equivalent to one convex lens positive lens. The distribution of the inflection rate of the second lens group of the system is composed of the concave-convex (negative positive) pattern, which satisfies the following conditions: _1. 〇 < toilet < (), its towel 1Gf and 2Gf county __ and The combined focal length of the second lens group. In the first lens group, the first concave lens glass lens, the second concave lens plastic lens, and the third convex lens plastic lens are matched with each other to bridge the positive color, wherein the second concave lens plastic lens and the third convex lens return lens are both In the non-ball county, the three lenses can be improved. The three lenses satisfy the following condition: -1 < Ll.L2fTL3f < 0, where L1.L2f represents the combined focal length of the first lens L1 and the second lens L2, and L3f It is the focal length of the third lens L3. In the second lens group, the fifth convex lens plastic lens and the sixth concave lens glass lens are a concave convex lens, one of which is matched with the correction aberration, and the two lenses satisfy the following condition: _2 〇 < L5f / L6f < _ l 〇, wherein L5f is the focal length 'L6f of the fifth lens L5' is the focal length of the sixth lens L6. According to the fifth embodiment of the present invention, the lens is formed on the temple, and the lens of the anus and the lobes is combined into a high lens of the lens group of 201038968. The optical system of the present invention is a first lens & the aperture includes a first concave lens and a second convex lens plastic lens, and the imaging side is a first lens group, which is sequentially included There is a third convex lens plastic knee lens, a fourth convex lens nano mirror and a fifth concave lens plastic lens. The second lens group of the first lens group adheres to the meniscus, and the rear lens (10)-C3 lens negative lens, and the three lenses of the second lens group are assembled to correspond to a convex lens positive lens. The distribution of the inflection rate of the m-striped group is composed of the (4) convex (negative positive) pattern, and the 〇 '茜 is sufficient for the following conditions: she talks about the chest, where lGf and 2Gf are the combined focal lengths of the first and second lens groups, respectively. In the first lens group, the 'recessive lens plastic lens and the second convex lens plastic lens can be combined to form a positive color difference' (4) - and the second valve is aspherical continuous aberration, which can improve the resolution performance. The second lens needs to satisfy the following condition: _ 〇 5 < Llf / L2f < 〇, where [Η represents the focal length of the first lens L1, and L2f is the focal length of the second lens L2. In the second translucent towel 'fine convex lens 鄕 five concave lens is reduced into a convex one concave lens, the two with pain positive aberration, the two lenses meet the following conditions: -l.5 < L4f / L5f < _ 0.5, Where L4f is the focal length of the fourth lens L4, and L5f is the focal length of the fifth lens L5. According to the sixth embodiment of the present invention, in the lens group, four plastic lenses and two glass lenses are used, and the optical system of the lens group of the sorghum photographic lens is combined. The optical system of the present invention is a first lens group on the object side to the aperture, and includes a -first concave lens plastic lens, a second concave lens plastic lens, and a third convex lens plastic lens in sequence; the aperture is directed to the imaging side The two lens groups sequentially include a -four convex-lip mask lens, a fifth & lens glass lens, and a sixth concave lens glass lens. The second lens of the first lens group is bonded to each other and is equivalent to a concave lens negative lens 8 201038968. The third lens group of the third lens group is equivalent to a convex lens positive lens. The distribution of the inflection rate of the two lens groups of the system is composed of the concave-convex (negative positive) pattern, and the following conditions are satisfied: -l.G<2Gf/lGf<G, the towel iGf and the view are respectively - and second The composite focal length of the lens group. In the first lens group, the first concave lens plastic lens and the second concave lens plastic lens can be arranged in a short positive color, and the first and second plastic lenses use aspherical positive aberrations to improve the resolution performance. The two lenses satisfy the following condition: _1 < L1 £ 2 2 f < 〇, where Llf represents the focal length of the first lens DL1, and L2f is the focal length of the second lens L2. In the second lens group, the fifth convex lens glass lens and the sixth concave lens glass lens are a convex-concave lens, and the two are matched with the correction aberration, and the two lenses satisfy the following condition: _15 < L5f / L6f < _ 〇 5, wherein L5f It is the focal length of the fifth lens L5, and L6f is the focal length of the sixth lens L6. According to a seventh embodiment of the present invention, in the lens group, a combination of six plastic lenses is used to form a lens group optical system of a high-quality photographic lens. The optical system of the present invention is a first lens group on the object side to the aperture, and sequentially includes a first concave lens plastic lens, a second concave lens plastic lens, and a third convex lens plastic lens 'aperture to the imaging side is second The lens group includes a fourth convex lens plastic lens, a fifth convex lens plastic lens, and a sixth concave lens glass lens. The two lenses of the first lens group are assembled to correspond to a concave lens negative lens, and the third lens group of the second lens group is assembled to be equivalent to a lenticular lens positive lens. The distribution of the inflection rate of the two lens groups of the system is composed of the concave-convex (negative positive) pattern, which satisfies the following condition: _l. 〇 < 2Gf / lGf < 0, where lGf and 2Gf are the first and second lenses, respectively The composite focal length of the group. In the first lens group, the first concave lens plastic lens and the second concave lens plastic lens, after matching 9 201038968 can correct the color difference, wherein the first and second plastic mirrors use aspherical correction aberrations, which can improve the resolution performance. The second lens has to satisfy the following condition: -l < Llf / L2f < L, where Llf represents the focal length of the first lens L1, and L2f is the focal length of the second lens L2. In the second lens group, the fifth convex lens plastic lens and the sixth concave lens glass lens are a convex-concave lens, which are matched with the correction aberration, and the two lenses satisfy the following condition: _15 < L5f / L6f < _ 〇 5, where L5f It is the focal length of the fifth lens L5, and L6f is the focal length of the sixth lens L6. Compared to the prior art of the present invention, the lens lens group of the present invention can be applied to a high-quality photographic lens of high quality (8M) to 10M). The optical lens group is doped with an aspherical plastic lens instead of the glass lens, which can greatly reduce the production cost and improve the image quality. The tolerance of the two lens groups before and after the aperture of the Department of Optics is evenly distributed, which has a considerable improvement effect on the production group. As described above, when the lens processing cost is lowered, the overall production cost is also relatively reduced. When the five or six-grain lenses of the Department of Optics replace the glass lenses with aspherical plastic lenses, the production cost and image quality can be greatly reduced. The embodiments of the present invention and other technical contents, features, and advantages will be apparent from the following description of the drawings and preferred embodiments. For the sake of simplicity of the description, corresponding or equivalent elements or components of the embodiments in the various figures are labeled with the number of the _. For the implementation of the cover, please refer to the first embodiment of the camera lens group in which the present invention is not shown. The mirror plate in this embodiment is composed of two plastic lenses (the first lens u and The fourth lens L4) and the four glass lenses are combined to form a lens group optical system of the wide-angle photo lens. The optical system of the present invention is sequentially disposed along the optical axis OA from the side of the system object (one side indicated by the symbol 〇BJ in the drawing) to the image side of the 10 201038968 (the side of the label IMG in the first figure). There is a first lens group, an aperture s, a first lens group 2G, 'a light-transmissive pupil 扪 扪 千 千 、 、, and an imaging plane IP, wherein the first lens group 1G has a negative refractive index' The two lens group 2G has a positive refractive index. Therefore, between the object side (10) and the aperture ST, the first lens group 1G has a negative refractive index, and the H-lens u-second lens L2 is sequentially included from the object side (10) to the imaging side IMG along the optical axis. And a third lens L3, wherein the first lens L1 is a concave lens, which is made of plastic and has an aspherical aspheric surface

塑膠鏡片’其具有至少-非球面’或是二側表面均為非球面;第二透鏡Μ 係為-凹透鏡’是她璃製成的麵鏡片;第三透鏡u是―凸透鏡,係由 玻璃製成的玻璃鏡片。 第二透鏡群2G是設置於光圈灯與成像侧觸之間,具有正屈折率, 沿著光軸自物方側⑽至成像側細依序包含# : 一第四透鏡u、一第五 透鏡L5以及-第六透鏡a,其中第四透鏡μ是一凸透鏡,係由塑膠製 成且具有非球_非球面歸鏡片;第五透鏡[5是—凹透鏡,係為由玻璃 製成的玻璃鏡片;第六透鏡[6是—凸透鏡,是由玻璃製成的玻璃鏡片。 第-透鏡群1G之三枚鏡片L1、L2、u分別具有負、負、正屈折率, 經組合成第-透鏡群1G後整體具有負屈折率,第二透鏡群2G之三枚鏡片 L4、L5、L6分別具有正、負、正屈折率,經組合成第二透鏡群祀後整體 具有正屈折率。材關之魏鱗祕二魏群合成麟率齡配,是以 凹凸(負正)的型式構成,滿足以下條件: -0.5<2GfaGf<0.5 其中2Gf代表位於細ST靠成像侧觸這—綱第二透鏡群犯的合成焦 距,而IGf則是位於光圈ST靠物方側⑽這一侧的第一透鏡群的合成焦距。 11 201038968 第-透斜1G_第-凹透鏡瓣鏡片L1、第二凹透鏡玻璃鏡片口、 與第三凸透鏡義鏡片L3 ’可相互搭㈣触色收差,㈣―凹透鏡娜 鏡片L1中所使關非球面可矯正像差,以提高解像性能透鏡^心、 L3需滿足以下條件: -1.0<Ll.L2£L3f<0 其中LLUf代表第-透鏡L1與第二透鏡u的合成焦距,而⑶則代表第 三透鏡的焦距。 〇 第二透鏡群2G中的第五透鏡L5與第六透鏡L6分別為一凹一凸的透 鏡,二者搭配可用以橋正像差。此二透鏡L5、L6献以下條件: -1.5<L5 脇 f<-〇.5 其中L5f是第五透鏡L5的焦距,而L6f則是第六透鏡L6的焦距。 本實施例中採用非球面_膠鏡片取代玻璃鏡片來做為第—及第四透 鏡’可以大幅度地降低生產成本,並可提升成像品質,可以應用於廣角高晝 素的攝影綱上。此外,本實施例中的第一透鏡群1G及第二透鏡群2G的 Q 公差敏感度分布均勻’對於生產組立良率具有顯著的提升效果。 本發月第實施例之-例的各項相關數據,詳列於以下的表及表Μ 中,表1-1列出各透鏡的相關參數,而表!_2則列出本發明鏡頭複合透鏡的 參數。表W中所列之距離(厚度或表面間隔)都是以毫米作為單位,表W 中的「類型」及「曲率半徑」等二攔是相對應之透鏡表面的型式(即為「標 準」或「非球面」型式的表面)以及表面曲率半徑。「厚度/間隔」一搁意 指透鏡沿光軸處測量所得之同一透鏡的二表面間的厚度,或是二相鄰透鏡間 前後相鄰表面間的間距,「直徑」指透鏡之口徑,「材料」是指透鏡及光學平 12 201038968 板的製作材料。 表1-1 表面 序號 類型 曲率半徑 (mm) 厚度/間隔 (mm) 材料/型式 直徑 非球面圓錐 度常數k S1 非球面 15.39941 1.22 ARTON D4531F 12.97678 0.0233643 S2 非球面 4.642042 2.32 9.443247 -0.2738635 S3 標準 16.67474 1.1 FC5 9.372056 S4 標準 6.202452 6.68 8.082069 S5 標準 28.59992 5.15682 TAC6 6.830287 S6 1"標準 -24.2639 2.56 5.701903 ST 無窮大 2.2 4 S8 非球面 15.88899 2.6 ARTON D4531F 4.1 19.58347 S9 非球面 -9.891372 1.921829 4.819234 -4.632174 S10 標準 -32.05625 1.2 FDS30 5.346104 S11 標準 7.159116 0.1325181 5.756887 S12 標準 7.741002 2.55 LACL60 5.951902 S13 標準 -13.34149 6.8 6.482335 S14 無窮大 1 BCS7 8.218114 S15 無窮大 2.20118 8.382207 IP 無窮大 8.937164 表1-2 2Gf/ lGf -0.097 Ll.L2f/L3f -0.413 L5f / L6f -0.916 鏡頭總長(LensTOTR) 39.6423mm F/# [ — —— 3.472 — 鏡頭焦距(Focallength) 5.9mm 最大像高(Max. image height) 4.7 mm 在此數值實施例中,第一透鏡L1及第四透鏡L4的二個表面均為非 球面,亦即表面SI、S2、S8、S9均為非球面,其等的非球面的設計公 式表示如下: 13 201038968 ch2 一 1 +Μ4+Bh6+ch8+Dhl°+Ehl2+Fh〗4+Ghl6 其中Z爲沿光轴方向在高度爲h的位置以表面頂點作參考距光轴的位移值, k爲非球面錐度常數(conicC〇nstant),Γ表示曲率半徑,h表示鏡片高度, 入表示四次的非球面係數(他〇1^柳]1咖(:〇通也1^,3表示六次的非 球面係數,C表示八次的非球面係數,d表示十次的非球面係數,E表示十 Ο 二次的非球面係數,F表示十四次的非球面係數,G表示十六次的非球面係 數。 第一透鏡L1及第四透鏡L4的各非球面(亦即表面S1、S2、S8、 S9)的非球面係數條列如下:The plastic lens 'having at least - aspherical surface or both sides of the surface is aspherical; the second lens - is a concave lens 'is a face lens made of glass; the third lens u is a convex lens, made of glass Made of glass lenses. The second lens group 2G is disposed between the aperture lamp and the imaging side contact, and has a positive refractive index, and includes a #: a fourth lens u and a fifth lens along the optical axis from the object side (10) to the imaging side. L5 and - sixth lens a, wherein the fourth lens μ is a convex lens, which is made of plastic and has an aspherical-aspherical lens; the fifth lens [5 is a concave lens, which is a glass lens made of glass The sixth lens [6 is a convex lens, which is a glass lens made of glass. The three lenses L1, L2, and u of the first lens group 1G have negative, negative, and positive refractive rates, respectively, and are integrated into the first lens group 1G to have a negative refractive index as a whole, and the three lenses L4 of the second lens group 2G, L5 and L6 have positive, negative and positive inflection rates respectively, and after being combined into the second lens group, the whole has a positive refractive index. The material of Wei Wei, Wei Wei, and Wei Wei, is composed of concave and convex (negative positive), and satisfies the following conditions: -0.5<2GfaGf<0.5 where 2Gf represents the thin ST on the imaging side. The combined focal length of the second lens group, and IGf is the combined focal length of the first lens group on the side of the object side (10) of the aperture ST. 11 201038968 The first-transparent 1G_the first concave lens lens L1, the second concave lens glass lens port, and the third convex lens lens L3' can be mutually overlapped (4) the color difference is received, (4) the concave lens Na lens L1 The spherical surface can correct the aberration to improve the resolution performance. The lens, L3, must satisfy the following conditions: -1.0<Ll.L2£L3f<0 where LLUf represents the combined focal length of the first lens L1 and the second lens u, and (3) It represents the focal length of the third lens. The fifth lens L5 and the sixth lens L6 in the second lens group 2G are respectively a concave and convex lens, and the two can be used to bridge positive aberration. The two lenses L5, L6 provide the following conditions: -1.5 < L5 flank f < - 〇.5 where L5f is the focal length of the fifth lens L5, and L6f is the focal length of the sixth lens L6. In this embodiment, the use of an aspherical-gel lens instead of a glass lens as the first and fourth lenses can greatly reduce the production cost and improve the image quality, and can be applied to the wide-angle sorghum photography. Further, the Q tolerance sensitivity distribution of the first lens group 1G and the second lens group 2G in the present embodiment is uniform, which has a remarkable improvement effect on the production group formation yield. The relevant data of the examples in the first embodiment of this month are listed in the following tables and tables. Table 1-1 lists the relevant parameters of each lens, and the table! _2 lists the parameters of the lens compound lens of the present invention. The distances (thickness or surface spacing) listed in Table W are in millimeters. The two types of "type" and "curvature radius" in Table W are the corresponding types of lens surfaces (ie, "standard" or "Aspherical" type of surface) and the radius of curvature of the surface. "Thickness/interval" means the thickness between the two surfaces of the same lens measured by the lens along the optical axis, or the spacing between the adjacent surfaces between two adjacent lenses. "Diameter" refers to the diameter of the lens. “Material” means the material used for the lens and optical flat 12 201038968. Table 1-1 Surface No. Type Curvature Radius (mm) Thickness/Interval (mm) Material/Type Diameter Aspheric Conicity Constant k S1 Aspheric 15.99341 1.22 ARTON D4531F 12.97678 0.0233643 S2 Aspheric 4.66442 2.32 9.443247 -0.2738635 S3 Standard 16.67474 1.1 FC5 9.372056 S4 Standard 6.202452 6.68 8.082069 S5 Standard 28.59992 5.15682 TAC6 6.830287 S6 1"Standard-24.2639 2.56 5.701903 ST Infinity 2.2 4 S8 Aspheric 15.88899 2.6 ARTON D4531F 4.1 19.58347 S9 Aspheric 9.889372 1.921829 4.819234 -4.632174 S10 Standard -32.05625 1.2 FDS30 5.346104 S11 Standard 7.115916 0.1325181 5.756887 S12 Standard 7.741002 2.55 LACL60 5.951902 S13 Standard - 13.34149 6.8 6.482335 S14 Infinity 1 BCS7 8.218114 S15 Infinity 2.20118 8.382207 IP Infinity 8.937164 Table 1-2 2Gf/ lGf -0.097 Ll.L2f/L3f -0.413 L5f / L6f -0.916 Lens Total length (LensTOTR) 39.6423mm F/# [— —— 3.472 — Focal length 5.9mm Max. image height 4.7 mm In this numerical example, Both surfaces of a lens L1 and a fourth lens L4 are aspherical, that is, the surfaces SI, S2, S8, and S9 are aspherical surfaces, and the aspheric design formulas thereof are expressed as follows: 13 201038968 ch2 A 1 + Μ 4 +Bh6+ch8+Dhl°+Ehl2+Fh〗4+Ghl6 where Z is the displacement value of the optical axis along the surface vertex at the height h position, and k is the aspherical taper constant (conicC〇nstant ), Γ denotes the radius of curvature, h denotes the height of the lens, and enters the aspheric coefficient of four times (he 〇1^柳)1 coffee (: 〇通也1^, 3 represents the aspheric coefficient of six times, C represents eight times The aspherical coefficient, d represents the aspherical coefficient of ten times, E represents the aspherical coefficient of the tenth quadratic, F represents the aspherical coefficient of fourteen times, and G represents the aspherical coefficient of sixteen times. The aspherical coefficient bars of the respective aspherical surfaces (ie, surfaces S1, S2, S8, and S9) of the first lens L1 and the fourth lens L4 are as follows:

表面序號S1 (第一透鏡L1之物方側表面): A=7.155078e-006 B=-1.1079043e-006 D=4.8467887e-010 E=1.425167e-011 G=5.2398089e-015 表面序號S2 (第一透鏡LI之成像侧表面): A=-0.00023614207 B=1.321969e-005 D=-1.9717449e-008 E=2.879468e-009 G=-1.5286009e-012 表面序號S8 (第四透鏡L4之物方側表面): A=-0.00059976579 B=-0.00024295421 D=-4.2683855e-005 E=2.7059333e-006 G=-1.3305133e-007 表面序號S9 (第四透鏡L4之成像侧表面): A=2.6746028e-005 B=-0.00025809778 D=-2.3431237e-005 E=1.3857419e-006 C=-1.5425095e-008 F=-6.1370031e-013 C=-1.4402525e-006 F=-5.0200014e-011 00.00014365171 F=9.4783232e-007 0=0.00011316587 F=1.9370258e-007 14 201038968 * G=-2.2655164e-008 第-E圖中分別顯示出本發明第—實施例之鏡頭鏡片組的 光學性能曲線’分別是像場彎曲(A圖)、畸變像差(B圖)、慧星像差(C 圖)、縱向像差(〇圖)、離焦量(E圖)的曲線。 JL二實施你丨 耷…第一囷所不’其中顯示出本發明之攝影機綱鏡片組的第二實施 例’此實施例中的鏡片組係由三枚塑勝鏡片(第二透鏡u、第三透鏡l3、 ❹ 以及第五透鏡⑸及一枚玻璃鏡片(第一透鏡U、第四透鏡L4)組合成為 同畫素攝减敵鏡 >;組光學系^本發明之絲纟沿著光軸μ自系統物方 侧(第二圖中標號0BJ所標示之一侧)至成像側(第三圖中標號腦之一 側)’依序設置有第-透鏡群1G、光圈ST、第二透鏡群2G、一透光的光學 平板LP、以及-成像面Ip,其中第—透鏡群1G具有負麟率,而第二透 鏡物則具有正屈折率。因此,在物方側⑽與光圈灯之間為第一透鏡 群1G ’具有負屈折率,沿著光軸自物方側OBJ至成像側觸依序包含有: G —第—透鏡1^及—第二透鏡L2,二者膠合在—起,其中第—透鏡〇是一 凸透鏡’係由玻璃製成的玻璃鏡片,而第二透鏡L2則是一凹透鏡,係由塑 膠製成且具有至少一非球面的非球面塑夥鏡片,第二透鏡U之靠物方側 〇BJ的表面與第一透鏡L1膠合在一起,而其位於成像側細而遠離第一透 鏡L1的表面則為非球面。 第二透鏡群2G是設置於光圈ST與成像側IMG之間,具有正屈折率, 沿著光麵自物方側0BJ至成像側IMG依序包含有:一第三透鏡u、一第四 透鏡L4、以及一第五透鏡L5,其中第三透鏡L3是一凸透鏡,係由塑膠製 15 201038968 成且具有至少-非球面的非球面塑膠鏡片;第四透鏡[4是_凸透鏡,係為 由玻璃製成的玻璃鏡片;第五透鏡L5是-凹透鏡,係由塑膠製成且具有至 少一非球面的非球面塑膠鏡片。 第-透鏡群1G之二牧鏡片LI、L2分别具有正、負屈折率,經膠合在 一起而組成的第一透鏡群1G整體具有負屈折率,第二透鏡群2(}之三故鏡 片L3、L4、L5分別具有正、正、負屈折率,經組合成第二透鏡群2G後整 體具有正麟率。本實關之鏡頭光㈣的二親群合成雜率的分配,是 〇 以凹凸(負正)的型式構成,滿足以下條件: -1.0<2G£aGf<0 其中2Gf代表位於光圈ST靠成像側IMG這一側的第二透鏡群2G的合成焦 距’而lGf則是位於光圈ST靠物方侧OBJ這一側的第一透鏡群m的人成 焦距。 第一透鏡群1G内的第一凸透鏡玻璃鏡片L1與第二凹透鏡塑膠鏡片u 相互膠合搭配可橋正色收差,而第二凹透鏡塑膠鏡片L2中使用非球面可墙 ❹ 正像差,以提高解像性能。此二透鏡LI、L2需滿足以下條件: -3.5<LlfO,2f<-2.5 其中Llf代表第一透鏡L1的焦距,而L2f則是第二透鏡L2的焦距。 第二透鏡群2G中的第四透鏡L4與第五透鏡L5分別為一凸—凹的透 鏡,二者搭配可用以矯正像差。此二透鏡L4、L5滿足以下條件: -1.5<L4£TL5f<-0.5 其中L4f是第四透鏡L4的焦距,而L5f則是第五透鏡L5的焦距。 本實施例中採用非球面的塑膠鏡片取代玻璃鏡片來做為第二、第三及第 五透鏡,可以大幅度地降低生產成本’並可提升成像品質’可以應用於高畫 16 201038968 素的攝影鏡頭上。此外,本實施例中的第一透鏡群1G及第二透鏡群2G的 公差敏感度分布均勻,對於生產組立良率具有顯著的提升效果。 本發明第二實施例之一例的各項相關數據,詳列於以下的表及表2_2 中’表2-1列出各透鏡的相關參數,而表2_2則列出本發明鏡頭複合透鏡的 參數。表2-1及表2-2内的各項目的定義與先前的表14及R相同,在此 不再贅述。 表2-1Surface number S1 (object side surface of the first lens L1): A=7.155078e-006 B=-1.1079043e-006 D=4.8467887e-010 E=1.425167e-011 G=5.2398089e-015 Surface number S2 ( The image side surface of the first lens L1): A=-0.00023614207 B=1.321969e-005 D=-1.9717449e-008 E=2.879468e-009 G=-1.5286009e-012 Surface number S8 (the fourth lens L4) Square side surface): A=-0.00059976579 B=-0.00024295421 D=-4.2683855e-005 E=2.7059333e-006 G=-1.3305133e-007 Surface number S9 (image side surface of fourth lens L4): A=2.6746028 E-005 B=-0.00025809778 D=-2.3431237e-005 E=1.3857419e-006 C=-1.5425095e-008 F=-6.1370031e-013 C=-1.4402525e-006 F=-5.0200014e-011 00.00014365171 F = 9.4783232e-007 0=0.00011316587 F=1.9370258e-007 14 201038968 * G=-2.2655164e-008 The optical performance curves of the lens lens group of the first embodiment of the present invention are respectively shown in the image of FIG. Curves of field curvature (A map), distortion aberration (B diagram), comet aberration (C diagram), longitudinal aberration (〇图), and defocus amount (E diagram). The second embodiment of the camera lens set of the present invention is shown in JL II. The lens group in this embodiment is composed of three plastic lenses (second lens u, first The three lenses l3, ❹ and the fifth lens (5) and one glass lens (the first lens U and the fourth lens L4) are combined to form a same pixel minus the enemy lens>; the group optical system ^ the wire of the invention is along the light The axis μ is provided with the first lens group 1G, the aperture ST, and the second from the side of the system side (one side indicated by the numeral 0BJ in the second figure) to the imaging side (one side of the labeled brain in the third figure). a lens group 2G, a light transmissive optical plate LP, and an imaging surface Ip, wherein the first lens group 1G has a negative temper rate, and the second lens has a positive refractive index. Therefore, the object side (10) and the aperture lamp There is a negative refractive index between the first lens group 1G′, and the optical axis from the object side OBJ to the imaging side contact sequentially includes: G—the first lens 1^ and the second lens L2, which are glued together. - wherein the first lens 〇 is a convex lens ' is a glass lens made of glass, and the second lens L2 is a The lens is made of plastic and has at least one aspherical aspherical lens, and the surface of the object side 〇BJ of the second lens U is glued to the first lens L1, and is located on the imaging side and is thin and far away. The surface of the first lens L1 is aspherical. The second lens group 2G is disposed between the aperture ST and the imaging side IMG and has a positive refractive index, which is sequentially included along the optical surface from the object side 0BJ to the imaging side IMG. a third lens u, a fourth lens L4, and a fifth lens L5, wherein the third lens L3 is a convex lens, which is made of plastic 15 201038968 and has at least an aspherical aspheric plastic lens; The lens [4 is a convex lens, which is a glass lens made of glass; the fifth lens L5 is a concave lens, which is made of plastic and has at least one aspherical aspherical plastic lens. The first lens group 1G The lenses L1 and L2 respectively have a positive and negative inflection rate, and the first lens group 1G which is composed by being glued together has a negative refractive index as a whole, and the second lens group 2 has a positive lens L1, L4, and L5, respectively. Positive and negative inflection rates, combined into a second lens group After 2G, the whole has a positive lining rate. The distribution of the second parental group synthesis rate of the lens light (4) of this reality is composed of a concave-convex (negative positive) pattern, which satisfies the following conditions: -1.0<2G£aGf<0 2Gf represents the combined focal length ' of the second lens group 2G on the side of the imaging side IMG of the aperture ST and lGf is the focal length of the first lens group m on the side of the object side OBJ of the aperture ST. The first convex lens glass lens L1 and the second concave lens plastic lens u in a lens group 1G are glued to each other to bridge the positive color, and the second concave lens plastic lens L2 uses an aspherical wall positive aberration to improve the resolution. The two lenses L1, L2 need to satisfy the following conditions: -3.5 < LlfO, 2f < -2.5 wherein Llf represents the focal length of the first lens L1, and L2f is the focal length of the second lens L2. The fourth lens L4 and the fifth lens L5 in the second lens group 2G are respectively a convex-concave lens, and the two can be used to correct the aberration. The two lenses L4, L5 satisfy the following condition: -1.5 < L4 £ TL5f < -0.5 wherein L4f is the focal length of the fourth lens L4, and L5f is the focal length of the fifth lens L5. In this embodiment, the aspherical plastic lens is used instead of the glass lens as the second, third, and fifth lenses, which can greatly reduce the production cost and improve the imaging quality, and can be applied to the photography of the high painting 16 201038968. On the lens. Further, the first lens group 1G and the second lens group 2G in the present embodiment have a uniform tolerance sensitivity distribution, and have a remarkable improvement effect on the production group formation yield. The relevant data of an example of the second embodiment of the present invention is detailed in the following table and Table 2_2. 'Table 2-1 lists the relevant parameters of each lens, and Table 2_2 lists the parameters of the lens composite lens of the present invention. . The definitions of the items in Table 2-1 and Table 2-2 are the same as those in Tables 14 and R above, and are not described here. table 2-1

〇 表面 序號 類型 曲率半徑 (mm) 厚度/間隔 _ (_ 材料/型式 直徑 非球面圓錐 度當數k S1 標準 12.04106 1.97 ARTON D4531F 7.216598 S2 標準 -42.3082 0.56 5.900045 — S3 非球® 2.809586 3.047906 FC5 4.063797 0.5402386 ST 無窮大 0.477006 2.907999 S5 非球面 16.48956 ~~L88 TAC6 3.1 0 S6 非球面 -6.231706 0.2 4.033863 -15.40165 S7 標準 6.431134 1.69 4.677281 S8 標準 -5.942189 L 〇.〇5 ARTON D4531F 4.723129 S9 Γ非球面 「-109.1514 0.88 卜4.531147 0 S10 非球面 3.71 3 FDS30 4.333769 -0.4991667 S11 無窮大 0.5 BCS7 5.949879 S12 無窮大 3.998265 6.170534 IP 無窮大 8.931216 表2_2 17 201038968 2Gf/ lGf -0.6 Llf/L2f -2.915 L4f/L5f -0.869 鏡頭總長(LensTOTR) 18.25mm F/# 3.2 鏡頭焦距(Focallength) 7.2mm 最大像高(Max. image height) 4.6 mm〇Surface No. Type Curvature Radius (mm) Thickness/Interval _ (_ Material/Type Diameter Aspheric Cone Number k S1 Standard 12.04106 1.97 ARTON D4531F 7.216598 S2 Standard-42.3082 0.56 5.900045 — S3 Aspheric® 2.809586 3.047906 FC5 4.063797 0.5402386 ST Infinity 0.477006 2.907999 S5 Aspheric 16.48956 ~~L88 TAC6 3.1 0 S6 Aspheric -6.231706 0.2 4.033863 -15.40165 S7 Standard 6.431134 1.69 4.677281 S8 Standard - 5.942189 L 〇.〇5 ARTON D4531F 4.723129 S9 Γ Aspherical "-109.1514 0.88 卜 4.531147 0 S10 Aspherical surface 3.71 3 FDS30 4.333769 -0.4991667 S11 Infinity 0.5 BCS7 5.949879 S12 Infinity 3.998265 6.170534 IP Infinity 8.931216 Table 2_2 17 201038968 2Gf/ lGf -0.6 Llf/L2f -2.915 L4f/L5f -0.869 Lens total length (LensTOTR) 18.25mm F/# 3.2 lens focal length (Focallength) 7.2mm maximum image height (Max. image height) 4.6 mm

在此數值實施例中,第二透鏡L2有-側表面為非球面(表面S3), 而第三透鏡L3及第五透鏡L5的二個表面均為非球面,亦即表面%、 S6、S9、S1G均為非球面’其等的非球面的設計公式如前―實施例中所 示’在此不再重覆’而各非球面(亦即表面幻、S5、S6、S9、S10)的 非球面係數條列如下:In this numerical embodiment, the second lens L2 has a side surface that is aspherical (surface S3), and both surfaces of the third lens L3 and the fifth lens L5 are aspherical, that is, surface %, S6, S9 , S1G is aspherical, and the aspherical design formula of the same is as shown in the previous embodiment - 'here no longer repeated' and each aspherical surface (ie, surface illusion, S5, S6, S9, S10) The aspheric coefficient bars are listed below:

表面序號S3 (第二透鏡L2之成像侧表面): A=-0.00089361439 B=0.00060241807 D=0.00066085909 E=-0.00025804444 G=-4.2275254e-006 表面序號S5 (第三透鏡L3之物方侧表面): A=0.00086060255 B=-0.004350737 D=-0.0067650911 E=0.0030891277 G=6.8550894e-005 表面序號S6 (第三透鏡L3之成像侧表面): A=-0.0085469871 B=0.0015789748 D=0.0001108601 E=-3.1970405e-005 G=-3.6946339e-007 表面序號S9 (第五透鏡L5之物方侧表面): A=-0.0059597209 B=0.00027337283 D=-7.4287295e-006 E=-5.9791648e-007 C=-0.00099025161 F=5.1132322e-005 00.007968404 F=-0.00072432457 C=-0.00029358992 F=5.3330892e-006 C=2.5270422e-005 F=2.484856e-007 18 201038968 G=-1.845934e-008 表面序號S10 (第五透鏡L5之成像側表面): A=-〇.〇〇 11858245 B=0.00038831478 C=-6.8442042e-005 D=1.7600609e-005 E=-2.7430113e-0〇6 F=3.8870185e-008 G=1.4680709e-008 第四A圖至第四E圖中分別顯示出本發明第二實施例之鏡頭鏡片組的 光學性能曲線,分別是像場彎曲(A圖)、畸變像差(B圖)、慧星像差(c 圖)、縱向像差(D圖)、離焦量(E圖)的曲線。 ΟSurface number S3 (image side surface of the second lens L2): A=-0.00089361439 B=0.00060241807 D=0.00066085909 E=-0.00025804444 G=-4.2275254e-006 Surface number S5 (object side surface of the third lens L3): A=0.00086060255 B=-0.004350737 D=-0.0067650911 E=0.0030891277 G=6.8550894e-005 Surface number S6 (image side surface of the third lens L3): A=-0.0085469871 B=0.0015789748 D=0.0001108601 E=-3.1970405e- 005 G=-3.6946339e-007 Surface number S9 (the object side surface of the fifth lens L5): A=-0.0059597209 B=0.00027337283 D=-7.4287295e-006 E=-5.9791648e-007 C=-0.00099025161 F= 5.1132322e-005 00.007968404 F=-0.00072432457 C=-0.00029358992 F=5.3330892e-006 C=2.5270422e-005 F=2.484856e-007 18 201038968 G=-1.845934e-008 Surface number S10 (Imaging of the fifth lens L5 Side surface): A=-〇.〇〇11858245 B=0.00038831478 C=-6.8442042e-005 D=1.7600609e-005 E=-2.7430113e-0〇6 F=3.8870185e-008 G=1.4680709e-008 The optical performance curves of the lens lens group according to the second embodiment of the present invention are respectively shown in FIGS. 4A to 4E, which are respectively image fields. Curve (A in FIG.), Distortion aberration (B in FIG.), The comet aberration (c in FIG.), A longitudinal aberration (D in FIG.), The curve amount of defocus (E map). Ο

第三實施例 請參照第五圖所示’其中顯示出本發明之攝影機鏡頭鏡片組的第三實施 例,此實施例中的鏡片組係由四枚塑膠鏡片(第一透鏡u、第二透鏡L2、 第二透鏡L3、以及第五透鏡L5)及一枚玻璃鏡片(第四透鏡L4)等五枚鏡 片組合而絲*畫素攝影辆之鏡妝絲彡。本發明之光㈣沿著光轴 OA自系統物方侧(第五圖中觀⑽所標示之一侧)至成像側(第五圖中 標號IMG之-侧),依序設置有第一透鏡群1(}、光圈st、第二透鏡群犯、 -透光的光學平板LP、以及—成像面Ip,其中第—透鏡群1(}具有負屈折 率’而第二透鏡群犯貝具有正屈折率。因此,在物方側〇職光圈灯之 間為第透鏡群1G具有負屈折率,沿著光軸自物方側⑽至成像側觸 依序包含有:一第一透鏡U及—第二透鏡L2,二者膠合在一起,其中第一 透鏡U是—凸透鏡,係由轉製成且具有至少-非球面的非球面塑膠鏡 片,而第二透鏡L2則是一凹透鏡,亦係由塑膠製成且具有至少一非球面的 非球面塑膠鏡片,第二透鏡L2 ^ 之靠物方侧OBJ的表面與第一透鏡u之靠 成像側IMG的表面膠合在一起, I此一膠5在一起的表面可為標準球面,而 19 201038968 第-透鏡u之靠物方側⑽表面及第二_L2之靠成像側觸的表面則 為非球面,換言之此膠合透鏡二侧的表面均為非球面。 第二透鏡群2G是設置於光圈ST與成像侧觸之間,具有正屈折率, 沿著光軸自物方側om至成像侧IMG依序包含有:—第三透鏡L3、一第四 透鏡L4、以及-第五透駐5,其中第三透扣是一凸透鏡,係由塑膠製 成且具有至少-非球面的非球面塑膠鏡片;第四透鏡以是一凸透鏡,係為 域··賴鏡;1 ;第五透鏡Μ是1透鏡,係由歸製成且具有至 ® 少一非球面的非球面塑膠鏡片。 第-透鏡群1G之沐刻L1、L2分麟狂、負撕率,經膠合在 -起而組成的第-透鏡群1G整體具有負屈折率,第二透鏡群犯之三枚鏡 片L3、14、L5分別真有正、正、負屈折率,經組合成第二透鏡群犯後整 體具有正麟率。本實_之鏡贼㈣的二透鏡群合成騎率的分配,是 以凹凸(負正)的型式構成,滿足以下條件: -1.0<2G^lGf<0 〇 射2Gf代表位於光圈ST靠成像側IMG這-侧的第二透鏡群2G的合成焦 距,而IGf貝ij是位於細ST靠物方侧㈣這一側的第一透鏡群ig的合^ 焦距。 第-透鏡群1G内的第-凸透鏡玻璃鏡片L1與第二凹透鏡塑膠鏡片u 相互膠合搭配可矯正色收差,且第-凸透鏡瓣鏡片u與第二凹透鏡塑膠 鏡片L2二者均使用非球面,可橋正像差,以提高解像性能。此二透鏡以、 L2需滿足以下條件: -2<Llf/L2f<-l 20 201038968 * 其中Llf代表第—透鏡L1的焦距,而L2f則是第二透鏡L2的焦距。 第二透鏡群2G中的第四透鏡L4與第五透鏡L5分別為一凸一凹的透 鏡’二者搭配可用以矯正像差。此二透鏡L4、L5滿足以下條件: -1.5<L4CH,5f<-〇.5 其中L4f是第四透鏡L4的焦距,而L5f則是第五透鏡L5的焦距。 本實施例中採用非球面的塑膠鏡片取代玻璃鏡片來做為第一、第二、第 三及第五透鏡,可以大幅度地降低生產成本,並可提升成像品質,可以應用 〇 於高晝素的攝影鏡頭上。此外,本實施例中的第-透鏡群1G及第二透鏡群 2G的公差敏感度分布均勻,對於生產組立良率具有顯著的提升效果。 本發明第三實施例之-例的各項相關數據,詳列於以下的表及表Μ 中,表3-i列出各透鏡的相關參數,而表3_2則列出本發明鏡頭複合透鏡的 參數。表3·1及表3·2 _各項目的定義與先前各實施例的數據列表均等相 同,在此不再贅述。 〇 21 201038968 表3-1 表面 序號 類型 曲率半徑 (mm) 厚度/間隔 (mm) 材料/型式 直徑 非球面圓錐 度常數k S1 非球面 8.921 1.6 OKP4 6.772821 -0.217773 S2 標準 6.078 0.6 ARTON_D4531F 5.129124 S3 非球面 2.78 3.04 4.06138 0.4886269 ST 無窮大 0.508 2.91126 S5 非球面 14.488 1.88 ARTON_D4531F 3.16 37.91618 S6 非球面 -6.645 0.406 4.073332 -18.08045 S7 標準 6.128 1.69 LACL60 4.877043 S8 標準 -6.27 0.157 4.889029 S9 非球面 -90.04 0.88 OKP4 4.621503 910.6157 S10 非球面 3.71 3 4.401083 -0.6054319 S11 無窮大 0.5 BSC7 6.046703 S12 無窮大 3.746843 6.273239 — IP 無窮大 —-------L 8.934119 表3-2 2Gf/ lGf -0.61 ~ Llf/L2f -1.752 L4f / L5f -0.878 鏡頭總長(LensTOTR) 18mm F/# 3.2 鏡頭焦距(Focallength) 7.2mm ~ 最大像高(Max. image height) 4.6mm 在此數值實施财,第-透鏡L1與第二透肋各有—側表面為非 球面(表面S1及奶’第三透鏡u及第五透鏡Ls的二個表面均為非 球面’亦即表面S5、S6、S9、S10均為非球面,其等的非球面的設計公 式如別所不,在此不再重覆’而各非球面(亦即表面s3、S5、H S10)的非球面係數條列如下: 表面序號S1 (第一透鏡L1之物方侧表面): 22 201038968 A=-6.6586363e-005 B=-9.7338295e-006 D=7.4681932e-008 E=-5.0111975e-009 G=1.2085776e-011 表面序號S3 (第二透鏡L2之成像側表面): A=-0.0012343014 B=0.00032568935 D=0.00065740852 E=-0.0002482264 G=-3.8215297e-006 C=5.9826955e-007 F=-1.1597767e-010 C=-0.00098504813 F=4.7428346e-005Third Embodiment Referring to the fifth embodiment, a third embodiment of the camera lens lens group of the present invention is shown. The lens assembly in this embodiment is composed of four plastic lenses (first lens u, second lens). L2, the second lens L3, and the fifth lens L5) and one glass lens (fourth lens L4) are combined with five lenses to form a mirror of the silk. The light (4) of the present invention is arranged along the optical axis OA from the side of the system object (one side indicated by the view (10) in the fifth figure) to the image side (the side of the label IMG in the fifth figure), and the first lens is sequentially disposed. Group 1 (}, aperture st, second lens group, - light transmissive optical plate LP, and - imaging surface Ip, wherein the first lens group 1 (} has a negative inflection rate ' and the second lens group has a positive Therefore, the first lens group 1G has a negative inflection rate between the object side aperture lamps, and the first lens U and the semiconductor lens side along the optical axis from the object side (10) to the imaging side. The second lens L2 is glued together, wherein the first lens U is a convex lens, which is made of aspherical plastic lens which is made of at least an aspherical surface, and the second lens L2 is a concave lens. An aspherical plastic lens made of plastic and having at least one aspherical surface, the surface of the object side OBJ of the second lens L2 ^ is glued to the surface of the first lens u on the image side IMG, The surface together can be a standard spherical surface, and 19 201038968 the first lens-side (10) surface and the second _L2 The surface touched by the imaging side is aspherical, in other words, the surfaces on both sides of the cemented lens are aspherical. The second lens group 2G is disposed between the aperture ST and the imaging side contact, and has a positive refractive index along the optical axis. The self-object side om to the imaging side IMG sequentially includes: a third lens L3, a fourth lens L4, and a fifth penetrating 5, wherein the third through hole is a convex lens, which is made of plastic and has At least an aspherical aspherical plastic lens; the fourth lens is a convex lens, which is a domain lens; 1; the fifth lens is a lens, which is made up of and has an aspherical surface. Aspherical plastic lens. The first lens group 1G has a negative refractive index of the first lens group 1G composed of the first lens group 1G, and the second lens group is the third one. The lenses L3, 14, and L5 have positive, positive, and negative inflection rates, respectively, and have a positive lining rate after being combined into a second lens group. The distribution of the two-lens group synthetic riding rate of the Mirror thief (4) is It is composed of a concave-convex (negative positive) pattern and satisfies the following conditions: -1.0<2G^lGf<0 〇2Gf generation The combined focal length of the second lens group 2G on the side of the imaging side IMG of the aperture ST, and the IGf ij is the focal length of the first lens group ig on the side of the thin ST object side (four). The lenticular lens glass lens L1 and the second concave lens plastic lens u in the group 1G are glued together to correct the color difference, and both the lenticular lens lens u and the second concave lens plastic lens L2 use an aspheric surface, which can be bridged Aberration to improve the resolution performance. The two lenses are required to satisfy the following conditions: -2 < Llf / L2f < -l 20 201038968 * where Llf represents the focal length of the first lens L1, and L2f is the second lens L2 The focal length. The fourth lens L4 and the fifth lens L5 of the second lens group 2G are respectively a convex-concave lens ‘the combination can be used to correct the aberration. The two lenses L4, L5 satisfy the following condition: -1.5 < L4CH, 5f < - 〇.5 where L4f is the focal length of the fourth lens L4, and L5f is the focal length of the fifth lens L5. In this embodiment, the aspherical plastic lens is used instead of the glass lens as the first, second, third and fifth lenses, which can greatly reduce the production cost and improve the image quality, and can be applied to the sorghum. On the photographic lens. Further, the tolerance distribution of the first lens group 1G and the second lens group 2G in the present embodiment is uniform, which has a remarkable improvement effect on the production set yield. The relevant data of the third embodiment of the present invention are detailed in the following tables and tables, Table 3-i lists the relevant parameters of each lens, and Table 3_2 lists the lens composite lens of the present invention. parameter. The definitions of Tables 3.1 and 3·2 are the same as those of the previous embodiments, and will not be described here. 〇21 201038968 Table 3-1 Surface No. Type Curvature Radius (mm) Thickness/Interval (mm) Material/Type Diameter Aspheric Conicity Constant k S1 Aspherical Surface 8.921 1.6 OKP4 6.772821 -0.217773 S2 Standard 6.078 0.6 ARTON_D4531F 5.129124 S3 Aspherical 2.78 3.04 4.06138 0.4886269 ST Infinity 0.508 2.91126 S5 Aspheric 14.488 1.88 ARTON_D4531F 3.16 37.91618 S6 Aspheric 6.646 0.406 4.073332 -18.08045 S7 Standard 6.128 1.69 LACL60 4.877043 S8 Standard-6.27 0.157 4.889029 S9 Aspheric 90.04 0.88 OKP4 4.621503 910.6157 S10 Aspheric 3.71 3 4.401083 -0.6054319 S11 Infinity 0.5 BSC7 6.046703 S12 Infinity 3.746643 6.273239 — IP Infinity—-------L 8.934119 Table 3-2 2Gf/ lGf -0.61 ~ Llf/L2f -1.752 L4f / L5f -0.878 Lens total length (LensTOTR) 18mm F/# 3.2 Focal length 7.2mm ~ Max. image height 4.6mm In this value, the first lens L1 and the second rib have a side surface aspheric (surface S1) And the two surfaces of the third lens u and the fifth lens Ls The aspherical surface, that is, the surfaces S5, S6, S9, and S10 are all aspherical surfaces, and the aspherical design formula of the aspherical surface is not repeated, and the aspherical surfaces are not repeated here (ie, the surfaces s3, S5, and H). The aspherical coefficient bars of S10) are as follows: Surface number S1 (object side surface of the first lens L1): 22 201038968 A=-6.6586363e-005 B=-9.7338295e-006 D=7.4681932e-008 E=- 5.0111975e-009 G=1.2085776e-011 Surface number S3 (image side surface of second lens L2): A=-0.0012343014 B=0.00032568935 D=0.00065740852 E=-0.0002482264 G=-3.8215297e-006 C=5.9826955e- 007 F=-1.1597767e-010 C=-0.00098504813 F=4.7428346e-005

表面序號S5 (第三透鏡L3之物方側表面): A=-0.00080991632 B=-0.0046170679 D=-0.0068069465 E=0.0030845621 G=6.7071552e-005 表面序號S6 (第三透鏡L3之成像侧表面): A=-0.0086209707 B=〇.0015443547 D=9.9625333e-005 E=-3.0306744e-005 G=-3.9642518e-007 C=0.008036535 F=-0.00071661599 0-0.0002768645 F=5.4427302e-006 表面序號S9 (第五透鏡L5之物方侧表面):Surface number S5 (the object side surface of the third lens L3): A=-0.00080991632 B=-0.0046170679 D=-0.0068069465 E=0.0030845621 G=6.7071552e-005 Surface number S6 (image side surface of the third lens L3): A=-0.0086209707 B=〇.0015443547 D=9.9625333e-005 E=-3.0306744e-005 G=-3.9642518e-007 C=0.008036535 F=-0.00071661599 0-0.0002768645 F=5.4427302e-006 Surface No. S9 (No. The side surface of the object of the five lens L5):

A=-0.0066799351 D=-7.722366e-006 G=-1.2229948e-008 B=0.00043556543 E=6.6206084e-007 C=-1.0750448e-006 F=7.30975e-008 表面序號S10 (第五透鏡乙5之成像侧表面): A=-0.0016075887 D=1.4669362e-005 G=-8.3812403e-009 6=0.00069950126 E=-1.213826e-006 C=-0.00011009578 F=5.9499647e-008 第/、A @至第’、E圖中分麵示出本發明第三實施例之鏡頭鏡片組的 光學性能曲線,分別是像場彎曲(A圖)、畸變像差(B圖)、慧星像差(c 圖)、縱向像差(D圖)、離焦量(E圖)的曲線。 23 201038968 第四實施例 請參照第七騎示,其中顯示出本發明之攝影機鏡祕第四實施 例’此實施例中的鏡片組係由四枚娜鏡片(第二透鏡l2、第三透鏡L3、 第四透鏡14、第五透鏡L5)及二枚玻璃鏡片(第一透鏡u及第六透鏡L6) 等六枚鏡片組合而成為廣角高晝素攝影鏡頭之鏡片組光學系。本發明之光學 系沿著光軸OA自系統物方側(第七圖中標號⑽所標系之一側)至成像 側(第七圖中標號IMG之一侧),依序設置有第_透鏡群1G、光圈ST、第 〇 三透鏡群2G、一透光的光學平板LP、以及-成像面IP,其中第-透鏡群 1G具有負屈折率,而第二透鏡群2G則具有正屈折率。因此,在物方側 與光圈ST之間為第-透鏡群1G,具有負屈折率,沿著光軸自物方側⑽ 至成像侧IMG依序包含有:一第一透鏡u、一第二透鏡L2、以及一第三透 鏡L3,其中第-透鏡L1是一凹透鏡,係為由玻璃製成的玻璃鏡片;第二透 鏡L2亦是-凹透鏡,係由塑膠製成且具有至少一非球面的非球面塑膠鏡 Q 片;第三透鏡乙3是一凸透鏡,係由塑膠製成且具有至少-非球面的非球面 塑膠鏡片》 第二透鏡群2G是設置於光圈ST與成像側mg之間,具有正屈折率, 沿著光軸自物方侧OBJ至成像側IMG依序包含有:一第四透鏡L4、一第五 透鏡L5、以及一第六透鏡L0,其中第四透鏡μ是一凸透鏡,係由塑膠製 成且具有至少一非球面的非球面塑膠鏡片;第五透鏡!^是一凸透鏡,亦係 由塑膠製成且具有至少一非球面的非球面塑膠鏡片;第六透鏡[6是一凹透 鏡’係為由玻璃製成的玻璃鏡片。 第一透鏡群1G之三枚鏡片LI、L2、L3分別具有負、負、正屈折率, 24 201038968 經组合成第-親群1G整有貞麟率,第二魏群2G之錢、 L5、L6分別具有正、正、負屈折率,經組合成第二透鏡物後整體兄具有正 屈折率。本實施例之鏡頭峨的二透鏡群合輪率的分配凹凸 正)的型式構成,滿足以下條件: 凹凸(負 -1.0<2Gf/lGf<0 其中戰表位於細ST梅側騰這—轉二透鏡群 Ο Ο 距,續則是位彻ST靠軸⑽這—側…透鏡群㈣合成、 焦距。 —_玻義u、第二凹透鏡塑膠鏡片 第三凹透鏡塑繼U相互搭配可矯正色收差,且第二透鏡u與第三透 鏡L3均使用非球面’可矮正像差,以提高解像性能。此三透鏡^、L2、L3 需滿足以下條件: -l<Ll.L2f/L3f<0 其中U.L2f代表第-透鏡L1與第二透鏡L2的合賴距,^以則是第三 透鏡L3的焦距。 第二透鏡群2G中的第五透鏡L5與第六透鏡u分別為一凸一凹的透 鏡,二者搭配可用以矯正像差。此二透鏡L5、L6滿足以下條件: -2.0<L5^6f<-1.0 其中L5f是第五透鏡L5的焦距,而L6f則是第六透鏡L6的焦距。 本實施例中採用非球面的塑膠鏡片取代玻璃鏡片來做為第二、第三、第 四及第五透鏡,可以大幅度地降低生產成本,並可提升成像品質,可以應用 於廣角高晝素的攝影鏡頭上。此外,本實施例中的第—透鏡群1(}及第二透 鏡群2G的公差«度分布均勻’對於生產組立良率具有崎的提升效果。 25 201038968 本發明第四實施例之一例的各項相關數據,詳列於以下的表4-1及表4_2 中,表4-1列出各透鏡的相關參數,而表4_2則列出本發明鏡頭複合透鏡的 參數。表4-1及表4-2内的各項目的定義與先前各實施例的數據列表均等相 同,在此不再贅述。A=-0.0066799351 D=-7.722366e-006 G=-1.2229948e-008 B=0.00043556543 E=6.6206084e-007 C=-1.0750448e-006 F=7.30975e-008 Surface number S10 (Fifth lens B5 Imaging side surface): A=-0.0016075887 D=1.4669362e-005 G=-8.3812403e-009 6=0.00069950126 E=-1.213826e-006 C=-0.00011009578 F=5.9499647e-008 No., A @至第' The E-figure shows the optical performance curves of the lens lens assembly of the third embodiment of the present invention, which are image field curvature (A image), distortion aberration (B image), and comet aberration (c diagram). Longitudinal aberration (D map), defocus amount (E map) curve. 23 201038968 Fourth Embodiment Please refer to the seventh riding diagram, in which the fourth embodiment of the camera mirror of the present invention is shown. The lens group in this embodiment is composed of four lenses (second lens l2, third lens L3). The six lenses, such as the fourth lens 14 and the fifth lens L5) and the two glass lenses (the first lens u and the sixth lens L6), are combined to form a lens group optical system of the wide-angle high-density photographic lens. The optical system of the present invention is arranged along the optical axis OA from the side of the system object (one side marked by the reference numeral (10) in the seventh figure) to the imaging side (one side of the label IMG in the seventh figure), and is sequentially arranged _ The lens group 1G, the aperture ST, the third lens group 2G, a light transmissive optical plate LP, and an imaging plane IP, wherein the first lens group 1G has a negative inflection rate, and the second lens group 2G has a positive refractive index . Therefore, between the object side and the aperture ST, the first lens group 1G has a negative refractive index, and the first lens u and the second image are sequentially included from the object side (10) to the imaging side IMG along the optical axis. a lens L2, and a third lens L3, wherein the first lens L1 is a concave lens, which is a glass lens made of glass; the second lens L2 is also a concave lens, which is made of plastic and has at least one aspherical surface. The aspherical plastic mirror Q piece; the third lens B3 is a convex lens, which is made of plastic and has at least an aspherical aspherical plastic lens. The second lens group 2G is disposed between the aperture ST and the imaging side mg. Having a positive refractive index, along the optical axis from the object side OBJ to the imaging side IMG sequentially includes: a fourth lens L4, a fifth lens L5, and a sixth lens L0, wherein the fourth lens μ is a convex lens , a non-spherical plastic lens made of plastic and having at least one aspherical surface; fifth lens! ^ is a convex lens which is also made of plastic and has at least one aspherical aspherical plastic lens; the sixth lens [6 is a concave lens" is a glass lens made of glass. The three lenses LI, L2, and L3 of the first lens group 1G have negative, negative, and positive inflection rates, respectively. 24 201038968 is combined into a first-parent 1G unicorn rate, and the second Wei group 2G money, L5, L6 has positive, positive and negative inflection rates, respectively, and the overall brother has a positive inflection rate after being combined into a second lens. In the lens configuration of the lens lens of the present embodiment, the pattern of the distribution of the two lens groups is equal to the following: The concave and convex (negative -1.0 < 2Gf / lGf < 0 wherein the battle table is located in the thin ST Mei side - this turn The second lens group Ο 距 distance, continued to be the ST axis (10) - side ... lens group (four) synthesis, focal length. - _ glass Yi u, the second concave lens plastic lens third concave lens plastic U can match the color correction Poor, and the second lens u and the third lens L3 both use aspherical 'right aberrance aberrations' to improve the resolution performance. The three lenses ^, L2, L3 need to satisfy the following conditions: -l<Ll.L2f/L3f< Wherein U.L2f represents the distance between the first lens L1 and the second lens L2, and is the focal length of the third lens L3. The fifth lens L5 and the sixth lens u in the second lens group 2G are respectively A convex-concave lens can be used to correct the aberration. The two lenses L5, L6 satisfy the following condition: -2.0 <L5^6f<-1.0 where L5f is the focal length of the fifth lens L5, and L6f is The focal length of the sixth lens L6. In this embodiment, an aspherical plastic lens is used instead of the glass lens as the second, third, and The fourth and fifth lenses can greatly reduce the production cost and improve the image quality, and can be applied to a wide-angle high-density photographic lens. In addition, the first lens group 1 (} and the second lens in this embodiment The tolerance of the group 2G is uniform, and the distribution of the yield is good. 25 201038968 The relevant data of an example of the fourth embodiment of the present invention are listed in Table 4-1 and Table 4_2 below. Table 4-1 lists the relevant parameters of each lens, while Table 4_2 lists the parameters of the lens compound lens of the present invention. The definitions of the items in Table 4-1 and Table 4-2 are equal to the data lists of the previous embodiments. The same, no longer repeat here.

表4-1 表面 序號 類型 曲率半徑 (mm) 厚度/間隔 (mm) 材料/型式 直徑 非球面圓錐 廇當激 lc S1 標準 17.85147 1.2 FCD1 16.29635 S2 標準 6.489136 2.845278 11.92026 S3 非球面 7.082803 1.2 480R 11.05151 0.188632 S4 非球面 4.446298 7.0 9.465098 -0.7042273 S5 非球面 28.70209 2.2 OKP4 7.44998 -25.83829 S6 非球面 42.2789 5.8597 6.534309 102.7842 ST ------- 無窮大 0.1 4.354907 S8 非球面 11.24004 2.2 480R 4.40904 -9.418075 S9 非球面 -6.9705 4.5 -6.012136 S10 非球面 13.22605 2 480R 4.751397 14.5302 S11 非球面 -6.824982 0.2 4.854636 -0.005539855 S12 標準 25.15438 1 FD60 4.694527 S13 標準 6.254424 3 4.569259 S14 無窮大 1 BSC7 5.903923 S15 無窮大 5.547978 6.240804 IP -- 無窮大 9.127501 表4-2 26 201038968 2Gf / lGf -0.483 Ll.L2f/L3f -〇 〇7〇 L5f/L6f '一 ----—--- -1.447 鏡頭總長(LensTOTR) — 35·588τπτπ F/# ——— 3.2 鏡頭焦距(Focal length) 5-9mm 最大像尚(Μάχ. image height) 4.7mm 在此數值實施例中’第二透獻2、第三透鏡u、第四透鏡L4、第 五透鏡L5每-者的二個表面均為非球面,亦即表面s3、s4、%、%、Table 4-1 Surface No. Type Curvature Radius (mm) Thickness/Interval (mm) Material/Type Diameter Aspherical Cone 廇 lc lc S1 Standard 17.85147 1.2 FCD1 16.29635 S2 Standard 6.489136 2.845278 11.92026 S3 Aspheric 7.082803 1.2 480R 11.05151 0.188632 S4 Non Spherical 4.446298 7.0 9.465098 -0.7042273 S5 Aspherical surface 28.70209 2.2 OKP4 7.44998 -25.83829 S6 Aspherical surface 42.2789 5.8597 6.534309 102.7842 ST ------- Infinity 0.1 4.354907 S8 Aspherical surface 11.24004 2.2 480R 4.40904 -9.418075 S9 Aspherical surface -6.9705 4.5 -6.012136 S10 aspherical surface 13.22605 2 480R 4.751397 14.5302 S11 aspherical surface - 6.824982 0.2 4.854636 -0.005539855 S12 standard 25.15438 1 FD60 4.694527 S13 standard 6.254424 3 4.569259 S14 infinity 1 BSC7 5.903923 S15 infinity 5.547978 6.240804 IP -- infinity 9.127501 Table 4-2 26 201038968 2Gf / lGf -0.483 Ll.L2f/L3f -〇〇7〇L5f/L6f '一-------- -1.447 Lens total length (LensTOTR) — 35·588τπτπ F/# ——— 3.2 Focal length (Focal length) 5-9mm maximum image still Height. image height) 4.7mm In this numerical embodiment, the two surfaces of the 'second permeable 2, the third lens u, the fourth lens L4, and the fifth lens L5 are aspherical, that is, the surface s3 , s4, %, %,

S8、S9、S10、Sll均為非球面,其等的非球面的設計公式如前所示,在 此不再重覆’而各非球面(亦即表面S3、S4、S5、S6、S8、S9、S10、 Sll)的非球面係數條列如下: 表面序號S3 (第二透鏡L2之物方側表面): A=6.6560225e-005 B=-6.9576883e-006 C=5.5319589e-009 D=5.7820647e-009 E=-2.0884112e-011 F=-1.1351134e-012 G=-4.1425598e-014 C=-1.3058325e-006 F=-1.6240998e-011 C=1.4337244e-006 F=7.9376458e-010 表面序號S4 (第二透鏡L2之成像側表面): A=0.00036155606 B=3.86481e-006 D=7.9412293e-008 E=-3.3943623e-010 G=-8.3962931e-013 表面序號S5 (第三透鏡L3之物方側表面): A=-0.00011209779 B=9.1298742e-007 D=1.5486582e-007 E=-1.803009e-008 G=-2.0902498e-011 表面序號S6 (第三透鏡L3之成像側表面): A=0.00010639515 B=1.3070575e-005 C=2.174669e-006 D=2.1092991e-007 E=-6.7004939e-009 F=-6.8403584e-010 27 201038968S8, S9, S10, and S11 are all aspherical surfaces, and the aspherical design formulas are as shown above, and are not repeated here and each aspherical surface (ie, surfaces S3, S4, S5, S6, S8, The aspherical coefficient bars of S9, S10, and S11) are as follows: Surface number S3 (the object side surface of the second lens L2): A=6.6560225e-005 B=-6.9576883e-006 C=5.5319589e-009 D= 5.7820647e-009 E=-2.0884112e-011 F=-1.1351134e-012 G=-4.1425598e-014 C=-1.3058325e-006 F=-1.6240998e-011 C=1.4337244e-006 F=7.9376458e- 010 Surface number S4 (image side surface of second lens L2): A=0.00036155606 B=3.86481e-006 D=7.9412293e-008 E=-3.3943623e-010 G=-8.3962931e-013 Surface number S5 (third The object side surface of the lens L3): A=-0.00011209779 B=9.1298742e-007 D=1.5486582e-007 E=-1.803009e-008 G=-2.0902498e-011 Surface number S6 (imaging side of the third lens L3) Surface): A=0.00010639515 B=1.3070575e-005 C=2.174669e-006 D=2.1092991e-007 E=-6.7004939e-009 F=-6.8403584e-010 27 201038968

G=-3.7564106e-012 表面序號S8 (第四透鏡L4之物方側表面): A=0.00030961589 B=2.1102181e-005 D=-3.7419061 e-006 E=-1.9413742e-009 G=-3.2805964e-009 表面序號S9 (第四透鏡L4之成像側表面): A=0.00053519878 B=4.7017551e-005 D=1.6698795e-007 E=7.8309722e-008 G=-2.1899341e-010 表面序號S10 (第五透鏡L5之物方側表面): A=0.00049507879 B=-8.3906082e-005 D=-8.2211743e-007 E=1.2398342e-007 G=-4.9265385e-009 表面序號Sll (第五透鏡L5之成像側表面): A=0.00012808309 B=6.0023281e-005 D=-1.8849947e-006 E=6.7029298e-008 G=-5.6750483e-009 C=2.7502874e-005 F=4.6280254e-008 C=4.9506853e-006 F=-2.154582e-008 C=-9.8947876e-006 F=2.0074309e-008 C=-6.2323984e-006 F=5.0936021e-008G=-3.7564106e-012 Surface number S8 (object side surface of the fourth lens L4): A=0.00030961589 B=2.1102181e-005 D=-3.7419061 e-006 E=-1.9413742e-009 G=-3.2805964e -009 Surface No. S9 (image side surface of the fourth lens L4): A=0.00053519878 B=4.7017551e-005 D=1.6698795e-007 E=7.8309722e-008 G=-2.1899341e-010 Surface number S10 (fifth The object side surface of the lens L5): A=0.00049507879 B=-8.3906082e-005 D=-8.2211743e-007 E=1.2398342e-007 G=-4.9265385e-009 Surface number S11 (imaging side of the fifth lens L5) Surface): A=0.00012808309 B=6.0023281e-005 D=-1.8849947e-006 E=6.7029298e-008 G=-5.6750483e-009 C=2.7502874e-005 F=4.6280254e-008 C=4.9506853e-006 F=-2.154582e-008 C=-9.8947876e-006 F=2.0074309e-008 C=-6.2323984e-006 F=5.0936021e-008

第八A圖至第人E圊中分別顯示出本發明第四實施例之鏡頭鏡片組的 光學性能曲線,分別是像場彎曲(A圖)、畸變像差(8圖)、慧星像差(c 圖)、縱向像差(D圖)、離焦量(E圖)的曲線。 第五實施例 請參照第九騎示’其中顯示出本發明之攝影機鏡頭鏡片組的第四實施 例’此實施例中的鏡片組係由五枚塑膠鏡片組合而成為高晝素攝影鏡頭之鏡 片組光學系。本發明之光學系沿著光軸OA自系統物方侧(第九圖中襟斌 OBJ所標示之一側)至成像側(第九圖中標號iMG之一侧),依序設置有第 28The optical performance curves of the lens lens group according to the fourth embodiment of the present invention are respectively shown in FIG. 8A to the first embodiment, which are image field curvature (A image), distortion aberration (8 image), and comet aberration. (c), longitudinal aberration (D), and defocus (E). For the fifth embodiment, please refer to the ninth riding diagram, in which the fourth embodiment of the camera lens group of the present invention is shown. The lens group in this embodiment is a combination of five plastic lenses to form a lens of a high-quality photographic lens. Group optical system. The optical system of the present invention is provided along the optical axis OA from the side of the system object (one side indicated by the OBJ in the ninth figure) to the imaging side (one side of the label iMG in the ninth figure), and is sequentially provided with the 28th.

Ο 距,而lGf則是位於光圈ST靠物方側〇BJ這— 焦距。 201038968 一透鏡群1G、光圈ST、第二透鏡群2G、一透光的光學平板LP、以及一成 像面1P,其中第一透鏡群1G具有負屈折率,而第二透鏡群2G則具有正屈 折率。因此,在物方側OBJ與光圈ST之間為第一透鏡群1G,具有負屈折 率,沿著光軸自物方側OBJ至成像侧IMG依序包含有:一第一透鏡L1及 一第二透鏡L2,其中第一透鏡L1是一凹透鏡,係由塑膠製成且具有至少一 非球面的非球面塑膠鏡片,而第二透鏡L2則是一凸透鏡,亦係由塑膠製成 且具有至少一非球面的非球面塑膠鏡片。 第二透鏡群2G是設置於光圈ST與成像側IMG之間,具有正屈折率, 沿著光軸自物方侧OBJ至成像侧IMG依序包含有:一第三透鏡L3、一第四 透鏡L4、以及-第五透,其中第三透獻3是一透鏡,係由瓣製 成且具有至少-非球面的非球面塑膠鏡片;第四透鏡^是―凸透鏡,亦係 由塑膠製成且具有至少-非球面的非球面塑膠鏡片;第五透鏡[5是一凹透 鏡,亦係由塑膠製成且具有至少一非球面的非球面塑膠鏡片。 第-透鏡群1G之二枚鏡片L1、L2分別具有負、正屈折率,經組合而 成的第一透鏡群1G整體具有負屈折率,第二透鏡群2G之三枚鏡片^… L5分別具有正、正、負鱗率,敝合喊第二透鏡群犯整體具有正屈折 率。本實施例之鏡頭光學系的二透鏡群合成屈折率的分配,是以凹凸(負正) 的型式構成,滿足以下條件: -1.0<2Ο£ΊΟί<0 其中2Gf代表位於光圈ST靠成像側IMG這一側的第二透鏡群犯的合成魚 侧的第一透鏡群1G的合成 29 201038968 第一透鏡群1G内的第一凹透鏡塑膠鏡片L1與第二凸透鏡塑膠鏡片 相互搭配可矯正色收差,且第一透鏡L1與第二透鏡L2二者均使用非球面, 可矯正像差,以提高解像性能。此二透鏡LI、L2需滿足以下條件: -0.5^1£1,2ί<0 其中Llf代表第一透鏡L1的焦距,而L2f則是第二透鏡L2的焦距。 第二透鏡群2G中的第四透鏡L4與第五透鏡L5分別為一凸一凹的透 鏡,二者搭配可用以矯正像差《此二透鏡L4、L5滿足以下條件: 〇 -1.5<L 槪 5f<-(X5 其中L4f是第四透鏡L4的焦距,而L5f則是第五透鏡L5的焦距。 本實施例中的五個透鏡中全部採用非球面的塑膠鏡片來取代傳統的玻 璃鏡片,可以大幅度地降低生產成本,並可提升成像品質,可以應用於高畫 素的攝影綱上。此外,本實施例中的第一透鏡群m及第二透鏡群犯的 公差敏感度分布均勻,對於生產組立良率具有顯著的提升效果。Ο distance, and lGf is located on the side of the aperture ST on the side of the object 〇 BJ - the focal length. 201038968 A lens group 1G, an aperture ST, a second lens group 2G, a light transmissive optical plate LP, and an imaging surface 1P, wherein the first lens group 1G has a negative inflection rate, and the second lens group 2G has a positive refractive index rate. Therefore, between the object side OBJ and the aperture ST, the first lens group 1G has a negative refractive index, and the first lens L1 and the first lens are sequentially included along the optical axis from the object side OBJ to the imaging side IMG. The second lens L2, wherein the first lens L1 is a concave lens, is made of plastic and has at least one aspherical aspherical plastic lens, and the second lens L2 is a convex lens, which is also made of plastic and has at least one Aspherical aspherical plastic lens. The second lens group 2G is disposed between the aperture ST and the imaging side IMG and has a positive refractive index. The second lens L3 and the fourth lens are sequentially included along the optical axis from the object side OBJ to the imaging side IMG. L4, and - fifth through, wherein the third permeable 3 is a lens made of a flap and having at least an aspherical aspherical plastic lens; the fourth lens is a "convex lens" and is also made of plastic and An aspherical plastic lens having at least an aspherical surface; the fifth lens [5] is a concave lens which is also made of plastic and has at least one aspherical aspherical plastic lens. Each of the two lenses L1 and L2 of the first lens group 1G has a negative and positive refractive index, and the combined first lens group 1G has a negative refractive index as a whole, and the three lenses of the second lens group 2G have L... Positive, positive, and negative scales, and the second lens group is a positive inflection rate. The distribution of the yield ratio of the two lens groups of the lens optical system of the present embodiment is a pattern of irregularities (negative positive), which satisfies the following condition: -1.0 <2Ο£ΊΟί<0 where 2Gf represents the image side located on the aperture ST Synthesis of the first lens group 1G on the synthetic fish side by the second lens group on the IMG side 29 201038968 The first concave lens plastic lens L1 and the second convex lens plastic lens in the first lens group 1G are matched with each other to correct the color difference And both the first lens L1 and the second lens L2 use an aspherical surface to correct aberrations to improve resolution. The two lenses L1, L2 need to satisfy the following conditions: -0.5^1£1, 2ί<0 where Llf represents the focal length of the first lens L1, and L2f is the focal length of the second lens L2. The fourth lens L4 and the fifth lens L5 in the second lens group 2G are respectively a convex-concave lens, and the two can be used together to correct the aberration. The two lenses L4 and L5 satisfy the following conditions: 〇-1.5<L槪5f<-(X5 where L4f is the focal length of the fourth lens L4, and L5f is the focal length of the fifth lens L5. All of the five lenses in this embodiment use aspherical plastic lenses instead of the conventional glass lenses, The production cost can be greatly reduced, and the image quality can be improved, and the image quality can be applied to the high-figure photography. In addition, the tolerances of the first lens group m and the second lens group in the present embodiment are evenly distributed. There is a significant improvement in production yield.

本發明第五實施例之-例的各項_數據,詳列於以下的表W及表W Ο中,表Μ列出各透鏡的相關參數,而表5-2則列出本發明鏡頭複合透鏡的 參數。表Μ及表5_2 _各項目的定義触前各實施·數據概均 同,在此不再贅述。 30 201038968 表5-1 表面 序號 S1 類型 曲率半徑 (mm) 厚度/間隔 (mm) —— — 材料/型式 直徑 非球面圓錐度 受杉V 非球面 -27.51517 0.7 PMMA 4.855614 4.069948 3.691147 Φ Κ Κ 106.1752 -0.7186666 ~2.52261e+14 S2 非球面 3.520491 1.121859 ' --- S3 非球面 -230.5192 1.6 480R S4 非球面 -10.88619 1.005108 3.206053 -10.28376 ST 無窮大 0.1 -—____ 2.838449 S6 非球面 2898.485 1.526 PMMA 2.876804 -1 S7 非球面 -4.607927 0.05 3.12 ^ · x i i -3 992617 S8 非球面 3.905708 1.6 PMMA 3.592991 0 7999845 S9 非i面 -4.567626 0.06 3.51053 0.1229109 S10 非球面 285.5445 0.8 OKP4 3.327424 -1.259721e+13 Sll 非球面 2.646381 3 3.173565 -0 3853344 S12 無窮大 0.5 Γ BSC7 4.840676 S13 7 無窮大 無窮大 2.937055 ------ 5.052811 6.997514 — 表5-2 2Gf / lGf -0.526 Llf/L2f -0.29 L4f/L5f -1.041 鏡頭總長(LensTOTR) 15mm F/# Γ 3.2 鏡頭焦距(Focal length ) 6mm 最大像高(Max· image height) 3.6mmThe data of the example of the fifth embodiment of the present invention is detailed in the following Tables W and W, which lists the relevant parameters of each lens, and Table 5-2 lists the lens composite of the present invention. The parameters of the lens. Tables and Tables 5_2 _Definitions of each item are implemented before the implementation and data are the same, and will not be repeated here. 30 201038968 Table 5-1 Surface No. S1 Type Curvature Radius (mm) Thickness / Interval (mm) —— — Material / Type Diameter Aspheric Cone Degree by Cedar V Aspherical Surface - 27.51517 0.7 PMMA 4.855614 4.069948 3.691147 Φ Κ Κ 106.1752 -0.7186666 ~2.52261e+14 S2 Aspherical surface 3.520491 1.121859 ' --- S3 Aspherical surface -230.5192 1.6 480R S4 Aspherical surface -10.88619 1.005108 3.206053 -10.28376 ST Infinity 0.1 --____ 2.838449 S6 Aspherical surface 289.8.485 1.526 PMMA 2.876804 -1 S7 Aspherical - 4.607927 0.05 3.12 ^ · xii -3 992617 S8 Aspheric 3.905708 1.6 PMMA 3.592991 0 7999845 S9 Non-i-face -4.567626 0.06 3.51053 0.1229109 S10 Aspherical surface 285.5445 0.8 OKP4 3.327424 -1.259721e+13 Sll Aspherical surface 2.646381 3 3.173565 -0 3853344 S12 Infinity 0.5 Γ BSC7 4.840676 S13 7 Infinity infinity 2.937055 ------ 5.052811 6.997514 — Table 5-2 2Gf / lGf -0.526 Llf/L2f -0.29 L4f/L5f -1.041 Lens total length (LensTOTR) 15mm F/# Γ 3.2 Lens focal length (Focal length) 6mm Maximum image height (Max· image height) 3.6mm

在此數值實施例中’所的五個透鏡,即第一透鏡L1至第五透鏡L5, 均為具有二非球面的非球面透鏡,其各非球面的設計公式如前所示,在 此不再重覆’而各非球面(亦即表面S1、S2、S3、S4、S6、S7、S8、 S9、S10、Sll )的非球面係數條列如下: 表面序號S1 (第一透鏡L1之物方侧表面): A=-0.00070234144 B=-4.235602e-005 C=6.2894513e~006 31 201038968 D=3.30431e-006 E=2.4749632e-009 G=-3.0248147e-009 表面序號S2 (第一透鏡LI之成像側表面): A=-0.0001607698 B=-0.00062512126 D=1.3207228e-005 E=8.3025883e-006 G=-4.8546029e-007 表面序號S3 (第二透鏡L2之物方侧表面): A=-0.0012103543 B=2.9953942e-005 D=-4.4078534e-006 E=4.4986968e-006 ❹ G=-U572703e-006 表面序號S4 (第二透鏡L2之成像側表面): A=0.0042705404 B=0.0024554277 D=0.00016604713 E=4.1086428e-005 G=2.8280573e-006 表面序號S6 (第三透鏡L3之物方侧表面): A=0.0010997805 B=0.0029616022 D=-4.5659093e-005 E=5.0711284e-006 Q G=-2.5345971e-006 表面序號S7 (第三透鏡L3之成像側表面): A=-0.0010373183 B=0.0014219767 D=0.00015065638 E=-2.655719e-005 G=2.2625011e-008 表面序號S8 (第四透鏡L4之物方側表面): A=0.0047558101 B=-6.5859972e-006 D=-4.0306236e-008 E=8.7014732e-006 G=-7.4512725e-007 表面序號S9 (第四透鏡L4之成像側表面): F=8.207653e-009 C=-0.0003145518 F=8.9303667e-007 C=-0.00013335151 F=2.878967e-006 C=-0.00035064909 F=-2.5579012e-005 C=4.1705907e-005 F=7.8625889e-006 C=-0.00026406478 F=2.6878845e-006 C=-5.2770745e-005 F=1.2850658e-006 32 201038968 C=0.00023041519 F=-3.63454e-006 00.00014396796 F=2.7888769e-006 0-0.0002387534 F=-1.5371029e-005 A=0.0012975634 B=-0.00045886355 D=5.3466959e-005 E=-l.〇〇15624e-005 G=-3.0702907e-007 表面序號S10 (第五透鏡L5之物方側表面): Α=-0·011777774 Β=-〇.〇〇12712985 D=2.8389979e-005 E=3.3009496e-006 G=-3.8984465e-⑻ 6 表面序號Sll (第五透鏡L5之成像側表面): A=-0.0037717013 B=3.592539 le-005In the numerical embodiment, the five lenses, that is, the first lens L1 to the fifth lens L5, are aspherical lenses having two aspherical surfaces, and the design formulas of the respective aspheric surfaces are as shown above. The aspherical coefficient of each aspherical surface (ie, surfaces S1, S2, S3, S4, S6, S7, S8, S9, S10, S11) is repeated as follows: Surface number S1 (the object of the first lens L1) Square side surface): A=-0.00070234144 B=-4.235602e-005 C=6.2894513e~006 31 201038968 D=3.30431e-006 E=2.4749632e-009 G=-3.0248147e-009 Surface number S2 (first lens Image side surface of LI): A=-0.0001607698 B=-0.00062512126 D=1.3207228e-005 E=8.3025883e-006 G=-4.8546029e-007 Surface number S3 (object side surface of second lens L2): A =-0.0012103543 B=2.9953942e-005 D=-4.4078534e-006 E=4.4986968e-006 ❹ G=-U572703e-006 Surface number S4 (image side surface of second lens L2): A=0.0042705404 B=0.0024554277 D =0.00016604713 E=4.1086428e-005 G=2.8280573e-006 Surface number S6 (object side surface of the third lens L3): A=0.0010997805 B=0.0029616022 D=-4.5659093e- 005 E=5.0711284e-006 QG=-2.5345971e-006 Surface number S7 (image side surface of the third lens L3): A=-0.0010373183 B=0.0014219767 D=0.00015065638 E=-2.655719e-005 G=2.2625011e- 008 Surface number S8 (object side surface of the fourth lens L4): A=0.0047558101 B=-6.5859972e-006 D=-4.0306236e-008 E=8.7014732e-006 G=-7.4512725e-007 Surface number S9 ( Imaging side surface of the fourth lens L4): F=8.207653e-009 C=-0.0003145518 F=8.9303667e-007 C=-0.00013335151 F=2.878967e-006 C=-0.00035064909 F=-2.5579012e-005 C=4.1705907 E-005 F=7.8625889e-006 C=-0.00026406478 F=2.6878845e-006 C=-5.2770745e-005 F=1.2850658e-006 32 201038968 C=0.00023041519 F=-3.63454e-006 00.00014396796 F=2.7888769e- 006 0-0.0002387534 F=-1.5371029e-005 A=0.0012975634 B=-0.00045886355 D=5.3466959e-005 E=-l.〇〇15624e-005 G=-3.0702907e-007 Surface number S10 (fifth lens L5 Side surface of the object side): Α=-0·011777774 Β=-〇.〇〇12712985 D=2.8389979e-005 E=3.3009496e-006 G=-3.8984465e-(8) 6 Surface number S11 (Imaging of the fifth lens L5 Side surface): A= -0.0037717013 B=3.592539 le-005

D=0.00014040987 E=1.5823928e-005 G=8.4094414e-007 第十A圖至第十E圖中分別顯示出本發明第五實施例之鏡頭鏡片組的 光學性能曲線,分別是像場蠻曲(A圖)、畸變像差(b圖)、慧星像差(c 圖)、縱向像差(D圖)、離焦量(E圖)的曲線。 請參照第十一圖所示,其中顯示出本發明之攝影機鏡頭鏡片組的第六實 施例’此實施例中的鏡片組係由四枚塑膠鏡片(第一透鏡u、第二透鏡u、 第一透鏡L3第喊鏡⑷及:枚玻璃鏡片(第五透鏡u及第六透鏡l6) 等八枚鏡肢合喊為高畫絲影綱之鏡版光料、。本發明之光學系沿 著光轴〇A自_方側(第十一圖中標號⑽所標示之-側)至成像側 (第十一财標號觸之-侧),依序設置有第—透麟沿、細π、第 二透鏡群2G、—透光的光學平板LP、以及—成像面IP,其中第-透鏡群 1G具有負屈拆率,而第二透鏡D=0.00014040987 E=1.5823928e-005 G=8.4094414e-007 The optical performance curves of the lens lens group according to the fifth embodiment of the present invention are respectively shown in the tenth through tenth to tenthth Eth views, respectively. A picture), distortion aberration (b diagram), comet aberration (c diagram), longitudinal aberration (D diagram), defocus amount (E diagram) curve. Please refer to FIG. 11 , which shows a sixth embodiment of the camera lens lens set of the present invention. The lens assembly in this embodiment is composed of four plastic lenses (first lens u, second lens u, Eight lenses, such as a lens L3, a mirror (4) and a glass lens (fifth lens u and a sixth lens 16) are collectively called a mirror-type light material of the high-patterned silk screen. The optical system of the present invention is along The optical axis 〇A is set from the _ square side (the side indicated by the reference numeral (10) in the eleventh figure) to the imaging side (the eleventh fiscal label touches the side), and the first-passing edge, fine π, a second lens group 2G, a light transmissive optical plate LP, and an imaging surface IP, wherein the first lens group 1G has a negative yield ratio and the second lens

丨具有正屈鱗。目此,在物方側〇BJ 與光圈ST之間為第一透鏡群,且丨 has a positive scale. Therefore, the first lens group is between the object side 〇BJ and the aperture ST, and

/、有負屈折率,沿著光軸自物方侧OBJ 33 201038968 至成像側IMG依序包含有:_第—透鏡u、_第二透鏡L2、以及—第三透 鏡L3 ’其中第-透鏡u是一凹透鏡,係由塑膠製成且具有至少一非球面的 非球面塑膠鏡片;第二親L2S—凸透鏡,係由娜製成且具有至少一非 球面的非球面塑膠鏡片;第三透鏡L3是一凹透鏡,係由塑膠製成且具有至 少一非球面的非球面塑膠鏡片。 第二透鏡群2G是設置於錢ST^_IMG之間,具有正屈折率, 沿著光轴自物方側⑽至成像側IMG依序包含有:一第四透鏡u、一第五 〇 透鏡L5、以及—第六透鏡L6,其巾細透鏡L4是—凸透鏡,係由塑膠製 成且具有至少-非球面的非球面塑膠鏡片;第五透鏡u是一凸透鏡,係為 由玻璃製成的玻璃鏡片;第六透鏡^是一凹透鏡,係為由玻璃製成的玻璃 鏡片。 第-透顯^ 1G之三枚 L1、L2、L3分難有負、正、負屈折率, 經組合成第-透鏡群1G整體具有負屈折率,第二透鏡群2G之三牧鏡片Μ 〇 L5、L6分別具有正、正、負屈折率’馳合絲二透鏡群π彳_具有正 屈折率。本實施例之鏡頭光學系的二透鏡群合成屈折率的分配,是以凹凸(負 正)的型式構成,滿足以下條件: -1.0<2G^lGf<0 其中观代表位於光圈ST靠成像侧IMG這一侧的第二透鏡群犯的合成隹 距,而滞則是位於光圈ST靠物方側⑽這_側的第_透鏡群㈣合成 焦距。 第一透鏡群1G内的第一凹透鏡塑膠鏡片L1 丹弟—凸透鏡塑膠鏡片L2 相互搭配正色收差’且此二透鏡均使用非球面(或者第三透_的非 34 201038968 球面)’可矮正像差,以提高解像性能。第一透鏡以及第二透鏡乙2滿足以 下條件: -l<Limf<0 其中Llf代表第一透鏡li的焦距,而L2f則疋第二透鏡L2的焦距。 第二透鏡群2G中的第五透鏡L5與第六透鏡L6分別為一凸一凹的透 鏡’二者搭配可用以橋正像差。此二透鏡L5、L6滿足以下條件: -1.5<L5f/L6f<-0.5 〇 其中L5f是第五透鏡L5的焦距,而L6f則是第六透鏡L6的焦距。 本實施例中採用非球面的塑膠鏡片取代玻璃鏡片來做為第一、第二、第 二、第四等透鏡,可以大幅度地降低生產成本,並可提升成像品質,可以應 用於高畫素的攝影鏡頭上。此外,本實施例中的第一透鏡群1G及第二透鏡 群2G的公差敏感度分布均勻,對於生產組立良率具有顯著的提升效果。 本發明第六實施例之-例的各項相關數據,詳列於以下的表6_丨及表6_2 巾’表6-1列出各透鏡的相關參數’而表Μ刺出本發明綱複合透鏡的 〇 參數。表6_1及表6_2⑽各項目蚊義與先前各實励喊_表均等相 同,在此不再贅述。 35 201038968/, has a negative inflection rate, along the optical axis from the object side OBJ 33 201038968 to the imaging side IMG sequentially includes: _ first lens u, _ second lens L2, and - third lens L3 'where the first lens u is a concave lens, which is made of plastic and has at least one aspherical aspherical plastic lens; the second pro-L2S-convex lens is made of Na and has at least one aspherical aspherical plastic lens; third lens L3 It is a concave lens made of plastic and having at least one aspherical aspherical plastic lens. The second lens group 2G is disposed between the money ST^_IMG and has a positive inflection rate, and includes, along the optical axis from the object side (10) to the imaging side IMG, a fourth lens u and a fifth lens L5. And a sixth lens L6, the towel lens L4 is a convex lens, which is made of plastic and has at least an aspherical aspherical plastic lens; the fifth lens u is a convex lens, which is a glass made of glass. The lens; the sixth lens ^ is a concave lens which is a glass lens made of glass. The three L1, L2, and L3 of the first-permeability display 1G are difficult to have negative, positive, and negative inflection rates, and the combination of the first lens group 1G has a negative inflection rate, and the second lens group 2G has three negative lens lenses 〇 L5. L6 has a positive, positive, and negative inflection rate, respectively, and a two-lens group π彳_ has a positive refractive index. The distribution of the yield ratio of the two lens groups of the lens optical system of the present embodiment is a pattern of irregularities (negative positive), which satisfies the following condition: -1.0 <2G^lGf<0 where the representative representation is located on the imaging side of the aperture ST The second lens group on the IMG side has a synthetic pupil distance, and the lag is the combined focal length of the _th lens group (four) on the side of the object side (10) of the aperture ST. The first concave lens plastic lens L1 in the first lens group 1G, the Dian- convex lens plastic lens L2 is matched with the positive color difference 'and the two lenses are all aspherical (or the third transparent _ non-34 201038968 spherical surface) 'can be short Aberration to improve resolution. The first lens and the second lens B satisfy the following conditions: -l <Limf<0 where Llf represents the focal length of the first lens li, and L2f represents the focal length of the second lens L2. The fifth lens L5 and the sixth lens L6 in the second lens group 2G are respectively a convex-concave lens, and the two can be used to bridge positive aberrations. The two lenses L5, L6 satisfy the following condition: -1.5 < L5f / L6f < -0.5 〇 where L5f is the focal length of the fifth lens L5, and L6f is the focal length of the sixth lens L6. In this embodiment, the aspherical plastic lens is used instead of the glass lens as the first, second, second, fourth, etc. lens, which can greatly reduce the production cost and improve the image quality, and can be applied to the high pixel. On the photographic lens. Further, the first lens group 1G and the second lens group 2G in the present embodiment have a uniform tolerance sensitivity distribution, and have a remarkable improvement effect on the production group formation yield. The relevant data of the example of the sixth embodiment of the present invention are detailed in Table 6_丨 and Table 6_2 below. Table 6-1 lists the relevant parameters of each lens, and the composition of the present invention is ascertained. The 〇 parameter of the lens. The mosquito motives of the items in Table 6_1 and Table 6_2 (10) are the same as those of the previous actual screaming tables, and will not be repeated here. 35 201038968

表6-1 表面 序號 類型 曲率半徑 (mm) 厚度/間隔 (mm) 材料/型式 直徑 非球面圓錐 度常數k S1 非球面 -490 0.8 480R 7.693233 0 S2 非球面 5.547 1.702 6.139251 -0.04264281 S3 非球面 -100.92 1.8 480R 5.898429 0 S4 非球面 -11.565 0.831 5.457079 -8.518754 S5 非球面 9.742 1.3 480R 4.498053 -0.1962537 S6 非球面 6.097 1.631 3.768404 7.27268 ST 無窮大 0.035 3.228449 S8 非球面 21.175 1.8 480R 3.309581 0 S9 非球面 -6.91048 0.05 3.6 -12.39404 S10 標準 4.903 1.8 LAC14 4.042188 S11 標準 -21 0.05 4.011484 S12 標準 13.898 0.8 FDS90 3.960991 S13 標準 3.433 3 3.690026 S14 無窮大 0.5 BSC7 5.607002 S15 無窮大 3.96157 5.85372 IP 無窮大 8.938216 表6-2 2Gf/ lGf -0.522 Llf/L2f -0.423 L5f / L6f -1.057 鏡頭總長(LensTOTR) 20.068mm F/# 3.32 鏡頭焦距(Focallength) 7.2mm 最大像高(Max. image height) 4.6mm 在此數值實施例中,第一透鏡L1、第二透鏡L2、第三透鏡L3、第 四透鏡L4每一者的二個表面均為非球面,亦即表面SI、S2、S3、S4、 S5、S6、S8、S9均為非球面,其等的非球面的設計公式如前所示,在此 不再重覆,而各非球面(亦即表面SI、S2、S3、S4、S5、S6、S8、S9) 36 201038968Table 6-1 Surface No. Type Curvature Radius (mm) Thickness/Interval (mm) Material/Type Diameter Aspheric Conicity Constant k S1 Aspherical Surface -490 0.8 480R 7.693233 0 S2 Aspherical Surface 5.547 1.702 6.139251 -0.04264281 S3 Aspherical Surface -100.92 1.8 480R 5.898429 0 S4 Aspheric -11.565 0.831 5.457079 -8.518754 S5 Aspheric 9.742 1.3 480R 4.498053 -0.1962537 S6 Aspheric 6.097 1.631 3.768404 7.27268 ST Infinity 0.035 3.228449 S8 Aspheric 21.175 1.8 480R 3.309581 0 S9 Aspheric -6.91048 0.05 3.6 -12.39404 S10 Standard 4.903 1.8 LAC14 4.042188 S11 Standard-21 0.05 4.011484 S12 Standard 13.888 0.8 FDS90 3.960991 S13 Standard 3.433 3 3.690026 S14 Infinity 0.5 BSC7 5.607002 S15 Infinity 3.96157 5.85372 IP Infinity 8.932216 Table 6-2 2Gf/ lGf -0.522 Llf/L2f -0.423 L5f / L6f -1.057 Lens total length (LensTOTR) 20.068mm F / # 3.32 lens focal length (Focallength) 7.2mm maximum image height (Max. image height) 4.6mm In this numerical embodiment, the first lens L1, the second lens L2 Third lens L3, fourth through The two surfaces of each of the mirrors L4 are aspherical, that is, the surfaces SI, S2, S3, S4, S5, S6, S8, and S9 are all aspherical surfaces, and the aspherical design formulas thereof are as shown above. It is not repeated here, but each aspherical surface (ie surface SI, S2, S3, S4, S5, S6, S8, S9) 36 201038968

的非球面係數條列如下: 表面序號S1 (第一透鏡L1之物方側表面): A=-1.9343586e-005 B=1.2987781e-005 D=7.8382171e-009 E=5.7752056e-009 G=-2.2020507e-011 表面序號S2 (第一透鏡LI之成像侧表面): A=0.00034378539 B=1.9540871e-005 D=9.3773785e-007 E=7.5205761e-008 G=-1.5760965e-011 表面序號S3 (第二透鏡L2之物方側表面): A=0.00024884791 B=-0.00013459035 D=2.7006394e-007 E=2.5502137e-007 G=-2.8441573e-010 表面序號S4 (第二透鏡L2之成像側表面): A=0.00030411341 B=-4.2736476e-005 D=-2.5639814e-006 E=4.0795545e-007 G=-2.0128428e-009 表面序號S5 (第三透鏡L3之物方側表面): Α=-0.00097844596 Β=0·00018537541 D=-4.6747104e-006 E=-2.9459712e-007 G=3.4597519e-008 表面序號S6 (第三透鏡L3之成像側表面): A=-0.0022260294 B=-〇.〇〇〇28184223 D=-8.3647595e-005 E=-3.4720583e-006 G=-7.1533703e-007 表面序號S8 (第四透鏡L4之物方側表面): C=1.3260566e-006 F=-2.2342585e-011 C=-1.6522523e-005 F=7.8119627e-009 C=-2.0880842e-005 F=4.7156019e-009 C=-1.7563483e-005 F=2.7059617e-008 C=-7.4373654e-005 F=-5.1356206e-009 C=5.050206e-005 F=3.7747002e-006 37 201038968 C=1.9882493e-005 F=5.4922482e-006 C=-0.0001770739 F=-2.4330562e-006 * A=0.0058222585 B=0.00081955031 D=-3.1082599e-005 E=-2.7000875e-006 G=-9.8454449e-007 表面序號S9 (第四透鏡L4之成像側表面): A=-0.00066311436 B=0.0013048067 D=4.3005605e-005 E=2.9673432e-006 G=2.9226342e-007 第十二A圖至第圖中分麵示出本發明實施例之鏡頭鏡片組的 ◎ 光學性此曲線,分別是像場彎曲(A圖)、畴變像差(b圖)、慧星像差(c 圖)、縱向像差(D圖)、離焦量(E圖)的曲線。 第七實施例 请參照第十二圖所示,其中顯示出本發明之攝影機綱鏡片組的第七實 施例,此實施例中的鏡片組係由六枚塑膠鏡片組合而成為高晝素攝影鏡頭之 鏡片組光學系。本發明之光學系沿著光軸〇A自系統物方側(第十三圖中標 號OBJ所標示之-侧)至成像側(第十三圖中標號麗之一侧),依序設 〇 置有第—透鏡群1G、細ST、第二透鏡群2G、-透光的光學平板!^、以 及-成像面IP’其中第-透鏡群1(3具有負屈折率,而第二透鏡群抝則具 有正屈折率。因此,在物方側0BJ與光圈ST之間為第-透鏡群1G,具有 負屈折率’沿著光軸自物方侧⑽至成像側IMG依序包含冑:一第—透鏡 U、一第二透鏡L2、以及-第三透鏡L3,其中第一透鏡L1是—凹透鏡, 係由塑膠製成且具有至少-非球面_球難賴U二透鏡是-凸 透鏡’係由塑膠製成且具有至少一非球面的非球面塑膠鏡片;第三透鏡U 是-凹透鏡’係由塑膠製成且具有至少一非球面的非球面塑膠鏡片。 38 201038968 第二透鏡群2G是設置於光圈ST與成像侧!MG之間,具有正屈折率, 沿著光軸自物相⑽至成侧IMG依序包含γ —第四透鏡u、—第五 透鏡L5、以及-第六透鏡L6,其中第四賴L4是―凸透鏡,係由塑膠製 成且具有至少一非球面的非球面塑膠鏡片;第五透鏡]:5是一凸透鏡, 塑膠製成且具有至少-非球面的非球面娜鏡片;第六透鏡^是一、 鏡,係由塑膠製成且具有至少一非球面的非球面塑膠鏡片。 、The aspherical coefficient bars are as follows: Surface number S1 (object side surface of the first lens L1): A=-1.9343586e-005 B=1.2987781e-005 D=7.8382171e-009 E=5.7752056e-009 G= -2.2020507e-011 Surface number S2 (image side surface of the first lens L1): A=0.00034378539 B=1.9540871e-005 D=9.3773785e-007 E=7.5205761e-008 G=-1.5760965e-011 Surface number S3 (object side surface of the second lens L2): A=0.00024884791 B=-0.00013459035 D=2.7006394e-007 E=2.5502137e-007 G=-2.8441573e-010 Surface number S4 (imaging side surface of the second lens L2) ): A=0.00030411341 B=-4.2736476e-005 D=-2.5639814e-006 E=4.0795545e-007 G=-2.0128428e-009 Surface number S5 (the object side surface of the third lens L3): Α=- 0.00097844596 Β=0·00018537541 D=-4.6747104e-006 E=-2.9459712e-007 G=3.4597519e-008 Surface number S6 (image side surface of the third lens L3): A=-0.0022260294 B=-〇.〇 〇〇28184223 D=-8.3647595e-005 E=-3.4720583e-006 G=-7.1533703e-007 Surface number S8 (object side surface of the fourth lens L4): C=1.3260566e-006 F=-2.2342585e -011 C=-1.6522523e-005 F=7.8119627e-009 C=-2.0880842e-005 F=4.7156019e-009 C=-1.7563483e-005 F=2.7059617e-008 C=-7.4373654e-005 F=-5.1356206e-009 C=5.050206e -005 F=3.7747002e-006 37 201038968 C=1.9882493e-005 F=5.4922482e-006 C=-0.0001770739 F=-2.4330562e-006 * A=0.0058222585 B=0.00081955031 D=-3.1082599e-005 E=- 2.7000875e-006 G=-9.8454449e-007 Surface number S9 (image side surface of the fourth lens L4): A=-0.00066311436 B=0.0013048067 D=4.3005605e-005 E=2.9673432e-006 G=2.9226342e-007 The photographs of the optical characteristics of the lens lens group according to the embodiment of the present invention are shown in Fig. 12A to Fig. 5, which are image field curvature (A picture), domain variation aberration (b picture), and comet image. Curves of difference (c diagram), longitudinal aberration (D diagram), and defocus amount (E diagram). The seventh embodiment is shown in Fig. 12, which shows a seventh embodiment of the camera lens group of the present invention. The lens group in this embodiment is a combination of six plastic lenses to form a sorghum photographic lens. The lens group optical system. The optical system of the present invention is arranged along the optical axis 〇A from the side of the system object (the side indicated by the numeral OBJ in the thirteenth figure) to the imaging side (one side of the label in the thirteenth figure). The lens group 1G, the thin ST, the second lens group 2G, the optical plate that transmits light, the image plane IP', and the first lens group 1 (3 has a negative refractive index, and the second lens group) The crucible has a positive inflection rate. Therefore, the first lens group 1G is between the object side 0BJ and the aperture ST, and has a negative inflection rate 'in the optical axis from the object side (10) to the imaging side IMG. a first lens L, a second lens L2, and a third lens L3, wherein the first lens L1 is a concave lens, which is made of plastic and has at least an aspherical surface, a spherical lens, a U-lens, and a convex lens An aspherical plastic lens made of plastic and having at least one aspherical surface; the third lens U is a concave lens' is an aspherical plastic lens made of plastic and having at least one aspherical surface. 38 201038968 The second lens group 2G is set Between the aperture ST and the imaging side! MG, there is a positive inflection rate, along the optical axis from the object phase (10) to the side IMG The γ-fourth lens u, the fifth lens L5, and the sixth lens L6 are included, wherein the fourth ray L4 is a lenticular lens, which is made of plastic and has at least one aspherical aspherical plastic lens; the fifth lens ]: 5 is a convex lens, made of plastic and having at least an aspherical aspherical lens; the sixth lens is a mirror, which is made of plastic and has at least one aspherical aspherical plastic lens.

第一透鏡群1G之三枚鏡片LI、L2、L3分別具有 正 _屈拼率, ...........、員J 經組合成第-透鏡群1G整體具有負屈折率,第二透鏡群2 人〜饮鏡片I L5、L6分別具有正、正、負屈折率’經組合成第二透鏡群π後整體、 屈折率。本實酬之麵光學麵二親群合絲解的分配,^體戽有正 -、 〜四凸(負 正)的型式構成’滿足以下條件: -1.0<2G£aGf<0 其中紐代表位於光圈ST靠成像側細這一侧的第二透鏡群之 距,而lGf則是位於光圈ST靠物方側0BJ這一側的第 G的合成:The three lenses L1, L2, and L3 of the first lens group 1G respectively have a positive yaw rate, ....., and the members J are combined to have a negative refractive index as a whole of the first lens group 1G. The second lens group 2 has a positive, positive and negative inflection rate, respectively, which are combined into a second lens group π, and the overall refractive index. The distribution of the optical surface of the two-in-one group is the distribution of the optical surface of the two sides, and the form of the positive-and-four-convex (negative positive) is 'satisfying the following conditions: -1.0<2G£aGf<0 The distance between the second lens group on the side where the aperture ST is thin on the imaging side, and lGf is the synthesis of the Gth on the side of the aperture ST on the side of the object side 0BJ:

焦距 ’透鏡蛘 的合成 第一透鏡群ισ内的第一凹透鏡塑膠鏡片L1與第二凸 相互搭配獨正色收差’且此二透鏡均使用非球面(麵第_、轉鏡片L2 球面),可矯正像差,以提高解像性能。第一透鏡L1 鏡13的# 下條件: 透知滿足以 其中Llf代表第一透鏡L1的焦距,而L2f則是第二透鏡q、、、 第二透鏡群2G中的第五透鏡L5與第六透鏡L6分/ 趄 刀刿為一凸 39 201038968 鏡,二者搭配可用以矯正像差。此二透鏡L5、L6滿足以下條件: -1.5<L5£0,6f<-0.5 其中L5f是第五透鏡L5的焦距’而L6f則是第六透鏡L6的焦距。 本實施例中採用非球面的塑膠鏡片取代玻璃鏡片以做為本實施例光學 系中的六個透鏡,可以大幅度地降低生產成本,並可提升成像品質,可以應 用於高畫素的攝影鏡頭上。此外,本實施例中的第—透鏡群1G及第二透鏡 群犯的公差敏感度分布均勻,對於生產組立良率具有顯著的提升效果。 ) 本發明壯實施例之—例的各_關數據,詳顺町的表W及表^ 中,表7·!列出各透鏡的相數,而表軸本發明鏡賴合透鏡的 參數表7_1及表7_2⑽各項目的定義與先前各實關缝制表均等相 同’在此不再贅述。 表7-1 表面 序號 ... 曲粢主似 厚>^^~ (mm) 類型 (mm) 材料/型式 直徑 非球面圓錐度 常數k S1 非球面 -41.91 0.8 480R ~~ S2 非球面 5 66 7.666878 -0.3523834 S3 非球面 ^4L98~~ 1.88 6.145944 -0.2589146 | 〇 S4 非球面 -9.03 1.0 480R 5.859098 -64.51725 1.098 480R 55 56 非球面 非球面 9.61 6.16 1.3 1 Π1 5.524028 4.357118 -6.561688 -0.199071 ST S8 非球面 5窮大 23.08 丄·υ 1 0.48 ~~~ — 1.8 3.668679 3.364258 7.392882 S9 非球面 -6 76 480R 3.607891 17.90657 S10 非球面 4.47 ~~ 0.05 3.8 -12.48188 1 0 S11 非球面 -11.63 X .〇 0.05 -------- _ 0.8 480R 4.358466 0.2260266 4.254187 0.7760338— S12 非球面 23 23 ~ 513 514 非球面 ΟΚΡ4ΗΤ 4.148802 3.893435 -24.79438 -0.0003916202 3.3 3 S15 無窮大 無窮大 0.5 4.317661 BSC7 5.594608 IP 5.823845 無窮大 -----—--- 8.92931 -_ 40 201038968 ❸ 〇 表7-2 2Gf/lGf -0.541 Llf/L2f -0.439 ~~ L5f/L6f -Ϊ04 鏡頭總長(LensTOTR) 20.686mm F/# Γ 3.2 鏡頭焦距(Focal length) 7.2mm — 最大像高(Max· image height) 4.6mm —' 在此數值實施例中,所有六個透鏡,包括第一透鏡u、第二透鏡 L2、第三親L3、第四透鏡L4、第五透鏡L5、第六透鏡u,每一者 均具有二個非球面,亦即表面8卜S2、S3、S4、S5、S6、%、、請、 sn、S12、S13均為非球面,其等的非球面的設計公式如前所示,在此 不再重覆’而各非球的非球面係數條列如下: 表面序號S1 (第一透鏡L1之物方侧表面 A=-4.4844188e-005 B=1.5764609e-005 D=-4.0709306e-009 E=4.8798135e_009 G=-1.6196259e-011 表面序號S2 (第一透鏡!^之成像側表面): A=0.00042714887 B=7.7556309e-006 D=l.0364172e-006 E=8.3579461e-008 G=-2.9617609e-010 表面序號S3 (第二透鏡L2之物方侧表面): A=0.00042464353 B=-0.00011847585 D=1.6441011e-007 E=2.602018e-007 G=-4.9703018e-010 表面序號S4 (第一透鏡L2之成像側表面): C=1.4832739e-006 F=-7.397233e-011 C=-1.6975852e-005 F=7.7966077e-009 0-2.1001949e-005 F=4.8213595e-009 41 201038968The focal length 'the combination of the lens 蛘 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一Correct aberrations to improve resolution. The lower condition of the first lens L1 mirror 13 is: the knowledge is satisfied that Llf represents the focal length of the first lens L1, and L2f is the second lens q, and the fifth lens L5 and the sixth of the second lens group 2G. Lens L6 points / 趄 刿 is a convex 39 201038968 Mirror, the two can be used to correct aberrations. The two lenses L5, L6 satisfy the following condition: -1.5 < L5 £0, 6f < -0.5 where L5f is the focal length ' of the fifth lens L5 and L6f is the focal length of the sixth lens L6. In this embodiment, an aspherical plastic lens is used instead of the glass lens to make six lenses in the optical system of the embodiment, which can greatly reduce the production cost and improve the image quality, and can be applied to a high-resolution photographic lens. on. In addition, the tolerances of the first lens group 1G and the second lens group in the present embodiment are uniformly distributed, and the production yield is significantly improved. In the table of the example of the invention, the table W and the table of the shun-cho, Table 7·! lists the number of phases of each lens, and the parameter table of the mirror-receiving lens of the present invention The definitions of items 7_1 and 7_2(10) are the same as those of the previous actual sewing tables, 'will not be repeated here. Table 7-1 Surface No.... Quartz Main Thickness>^^~ (mm) Type (mm) Material/Type Diameter Aspheric Conicity Constant k S1 Aspherical Surface -41.91 0.8 480R ~~ S2 Aspherical Surface 5 66 7.666878 -0.3523834 S3 Aspherical surface ^4L98~~ 1.88 6.145944 -0.2589146 | 〇S4 Aspherical surface -9.03 1.0 480R 5.859098 -64.51725 1.098 480R 55 56 Aspherical aspherical surface 9.61 6.16 1.3 1 Π1 5.524028 4.357118 -6.561688 -0.199071 ST S8 Aspherical surface 5 Poor 23.08 丄·υ 1 0.48 ~~~ — 1.8 3.668679 3.364258 7.392882 S9 Aspheric -6 76 480R 3.607891 17.90657 S10 Aspheric 4.47 ~~ 0.05 3.8 -12.48188 1 0 S11 Aspherical -11.63 X .〇0.05 ---- ---- _ 0.8 480R 4.358466 0.2260266 4.254187 0.7760338— S12 Aspherical surface 23 23 ~ 513 514 Aspherical surface ΗΤ 4ΗΤ 4.148802 3.893435 -24.79438 -0.0003916202 3.3 3 S15 Infinity infinity 0.5 4.317661 BSC7 5.594608 IP 5.823845 Infinity ---------- 8.92931 -_ 40 201038968 ❸ 7 Table 7-2 2Gf/lGf -0.541 Llf/L2f -0.439 ~~ L5f/L6f -Ϊ04 Lens total length (LensTOTR) 20.686mm F/# Γ 3.2 Focal length 7.2mm - Max image height 4.6mm - 'In this numerical embodiment, all six lenses, including the first lens u, the second lens L2, the third pro L3, The fourth lens L4, the fifth lens L5, and the sixth lens u each have two aspherical surfaces, that is, the surface 8 S2, S3, S4, S5, S6, %, , please, sn, S12, S13 All are aspherical surfaces, and their aspherical design formulas are as shown above, and are not repeated here, and the aspherical coefficient bars of each aspherical are listed as follows: Surface number S1 (the object side surface of the first lens L1) A=-4.4844188e-005 B=1.5764609e-005 D=-4.0709306e-009 E=4.8798135e_009 G=-1.6196259e-011 Surface number S2 (image side surface of the first lens!^): A=0.00042714887 B =7.7556309e-006 D=l.0364172e-006 E=8.3579461e-008 G=-2.9617609e-010 Surface number S3 (object side surface of second lens L2): A=0.00042464353 B=-0.00011847585 D=1.6441011 E-007 E=2.602018e-007 G=-4.9703018e-010 Surface No. S4 (image side surface of the first lens L2): C=1.4832739e-006 F=-7.397233e-011 C=-1.6975852e-00 5 F=7.7966077e-009 0-2.1001949e-005 F=4.8213595e-009 41 201038968

A=0.00020069747 B=-4.3375922e-006 D=-2.6385571e-006 E=3.7752263e-007 G=-1.9458537e-009表面序號S5 (第三透鏡L3之物方側表面): A=-0.00075288864 B=0.00013 847882 D=-5.3834245e-006 E=4.5516125e-008 G=2.1040713e-008表面序號S6 (第三透鏡L3之成像側表面): A=-0.0018392122 B=-0.00047538601 D=-8.405463 le-005 E=-3.7720274e-006 G=-5.9954064e-007表面序號S8 (第四透鏡L4之物方側表面): A=0.0054226267 B=0.0007083442 D=-3.073673e-005 E=-3.3895425e-006 G=-8.8347396e-007 表面序號S9 (第四透鏡L4之成像側表面): A=-0.00072874237 B=〇.〇〇12926737 D=4.5845374e-005 E=2.8737889e-006 G=2.9710885e-007表面序號S10 (第五透鏡L5之物方側表面): A=〇.〇〇〇38017967 B=9.993226e-005 D=2.5134698e-006 E=4.2545873e-007 G=-3.1912448e-009 表面序號Sll (第五透鏡L5之成像側表面): A=-5.2047486e-005 B=-2.0401566e-005 D=-1.0411823e-007 E=1.1487137e-008 G=1.5440204e-008 C=-1.4525784e-005 F=1.9701144e-008 C=-8.5771531e-005 F=3.2364561e-008 C=3.054418e-005 F=3.5422294e-006 C=1.7013765e-005 F=5.4170538e-006 C=-0.00016973597 F=-2.5329608e-006 C=0 F=4.4990601e-008 C=0 F=3.1236515e-008 42 201038968 表面序號S12 (第六透鏡L6之物方侧表面): C=0 F=-4.2501829e-008 C=0 F=-1.4154933e-007 A=-0.00026261302 B=-0.0001387868 D=-5.1444358e-006 E=-5.3884865e-007 G=-7.4580629e-009 表面序號S13 (第六透鏡L6之成像側表面): A=-7.6759833e-005 B=5.008076e-005 D=-8.8679698e-008 E=-1.1666897e-007 G=-3.9035843e-009A=0.00020069747 B=-4.3375922e-006 D=-2.6385571e-006 E=3.7752263e-007 G=-1.9458537e-009 Surface number S5 (the object side surface of the third lens L3): A=-0.00075288864 B =0.00013 847882 D=-5.3834245e-006 E=4.5516125e-008 G=2.1040713e-008 Surface number S6 (image side surface of the third lens L3): A=-0.0018392122 B=-0.00047538601 D=-8.405463 le- 005 E=-3.7720274e-006 G=-5.9954064e-007 Surface number S8 (object side surface of the fourth lens L4): A=0.0054226267 B=0.0007083442 D=-3.073673e-005 E=-3.3895425e-006 G=-8.8347396e-007 Surface number S9 (image side surface of the fourth lens L4): A=-0.00072874237 B=〇.〇〇12926737 D=4.5845374e-005 E=2.8737889e-006 G=2.9710885e-007 Surface number S10 (the object side surface of the fifth lens L5): A=〇.〇〇〇38017967 B=9.993226e-005 D=2.5134698e-006 E=4.2545873e-007 G=-3.1912448e-009 Surface number S11 (image side surface of the fifth lens L5): A=-5.2047486e-005 B=-2.0401566e-005 D=-1.0411823e-007 E=1.1487137e-008 G=1.5440204e-008 C=-1.4525784e -005 F=1.9701144e-008 C=-8.5771531e-005 F=3.23 64561e-008 C=3.054418e-005 F=3.5422294e-006 C=1.7013765e-005 F=5.4170538e-006 C=-0.00016973597 F=-2.5329608e-006 C=0 F=4.4990601e-008 C=0 F=3.1236515e-008 42 201038968 Surface number S12 (object side surface of the sixth lens L6): C=0 F=-4.2501829e-008 C=0 F=-1.4154933e-007 A=-0.00026261302 B=- 0.0001387868 D=-5.1444358e-006 E=-5.3884865e-007 G=-7.4580629e-009 Surface No. S13 (image side surface of the sixth lens L6): A=-7.6759833e-005 B=5.008076e-005 D =-8.8679698e-008 E=-1.1666897e-007 G=-3.9035843e-009

第十四A圖至第十四E圖中分繼示出本發明實施例之鏡頭鏡片組的 光學性能曲線,分別是像場彎曲(A圖)、畸變像差圖)、慧星像差(c 圖)、縱向像差(D圖)、離焦量(E圖)的曲線。 綜上所述’本發明確已符合發明專利之要件,爰依法提出專利申請。惟, 以上所述者僅爲本㈣之触^施料,舉凡熟冑本帛技術之人士援依本發 明之精神所作之等效修飾或變化,皆涵蓋於後附之申請專利範圍内。 【圖式簡單說明】 第一圖為本發明第一實施例的攝影機鏡頭鏡片組之示意圖。 第二A圖為本發明第一實施例的攝影機鏡頭鏡片組之像場彎曲圖。 第二B圖為本發明第一實施例的攝影機鏡頭鏡片組之畸變像差圖。 第二C圖為本發明第一實施例的攝影機鏡頭鏡片組之慧星像差圖。 第二D圖為本發明第一實施例的攝影機鏡頭鏡片組之縱向像差圖。 第二E圖為本發明第一實施例的攝影機鏡頭鏡片組之離焦量圖。 第三·圖為本發明第二實施例的攝影機鏡頭鏡片組之示意圖。 第四A圖為本發明第二實施例的攝影機鏡頭鏡片組之像場彎曲圖。 43 201038968 第圖為本發明第二實施例的攝影機鏡頭鏡片組之崎變像差圖。 第四c圖為本發明第二實施例的攝影機鏡頭鏡片組之慧星像差圖。 第四D圖為本發明第二實施_攝職綱鏡片組之縱向像差圖。 第四E圖為本發„二實施例的攝影機鏡頭鏡片組之 離焦量圖。 第四F @為本發明第二實施儀攝影機鏡賴牌之舰_於視野之亮 度圖。 第五圖為本發明第二實施例的攝影機鏡頭鏡片組之示意圖。 第/、A @為本發明第三實施例的攝影機鏡頭鏡片組之像場彎曲圖。 第八B圖為本發明第三實施例的攝影機鏡頭鏡片組之畴變像差圖。 第/、C圖為本發明第三實施例的攝影機鏡頭鏡片組之慧星像差圖。 第六D圖為本發明第三實施例的攝影機鏡頭鏡片組之縱向像差圖。 第六E圖為本發,三實補輯職鏡頭組之離焦量圖。 第八F圖為本發明第三實施例的攝影機鏡頭鏡片組之焦距相關於視野之亮 度圖。 第七圖為本發明第四實施例的攝影機鏡頭鏡片組之示意圖。 第八A @為本伽第四實施例的攝影機鏡職版之像場料圖。 第八B圖為本發明細實施例的攝影機鏡賴片組之畸變像差圖。 第八(:@為本發明第四實施例的攝職鏡職版之慧星像差圖。 第八〇 u為本發明第四實施例的攝影機鏡頭鏡片組之縱向像差圖。 第八E圖為本發明第四實施例的攝影機鏡頭鏡片組之離焦量圖。 第八F圖為本㈣第四實施例的攝影機鏡職片組之焦距相關於視野之亮 度圖。 44 201038968 第九圖為本發明第五實施例的攝影機鏡頭鏡片組之示意圖。 第十A圖為本發明第五實施例的攝影機鏡頭鏡片組之像場彎曲圖。 第十B圖為本發明第五實施例的攝影機鏡頭鏡片組之崎變像差圖。 第十C圖為本發明第五實施例的攝影機鏡頭鏡片組之慧星像差圖。 第十D圖為本發明第五實施例的攝影機鏡頭鏡片組之縱向像差圖。 第十E圖為本發明第五實施例的攝影機鏡頭鏡片組之離焦量圖。 〇 + F圖為本發明第五實施例的攝影機鏡頭鏡片组之焦距相關於視野之亮 度圖。 第十-圖為本發明第六實施例的攝影機鏡頭鏡片組之示意圖。 第十二A ®為本發卿六實施儀_機鏡頭組之像場變曲圖。 第十1 _本發明第六實施_攝影機鏡職片組之畸變像差圖。 第十二0圖為本發明第六實施例的攝影機鏡頭鏡片組之慧星像差圖。 第十二0 ®為本發崎六實施_攝影機鏡職版之縱向像差圖。 〇 第十二㈣為本發明第六實補_影機鏡職版之離焦量圖。 第十二F圖為本發明第六實施例的攝影機鏡頭鏡片组之焦距糊於視野之 亮度圖。 第十三圖為本發明第七實施例的攝影機鏡頭鏡片組之示意圖。 第十四A圖為本發明第七實施例的攝影機鏡職片組之像場-曲圖。 第十㈣_本發明第七實施_攝影機綱鏡片組之畸變像差圖。 第十四C圖為本發·七實施例的攝影機鏡頭鏡版之慧星像差圖。 第十四D圖為本發明第七實施例的攝影機綱鏡版之縱向像差圖。 第十四Ε Η為本發明第七實酬的攝影機鏡賴版之離焦量圖。 45 201038968 第十四F圖為本發明第七實施例的攝影機鏡頭鏡片組之焦距相關於視野之 亮度圖。 【主要元件符號說明】 〇 1G 第一透鏡群 2G 第二透鏡群 L1 第一透鏡 L2 第二透鏡 L3 第三透鏡 L4 第四透鏡片 L5 第五透鏡片 L6 第六透鏡片 IMG 成像侧 OBJ 物方側 S1-S13 透鏡表面 ST 光圈 LP 光學平板 IP 成像面 46The optical performance curves of the lens lens group of the embodiment of the present invention are shown in FIG. 14A to FIG. 14E respectively, which are image field curvature (A image), distortion aberration diagram, and comet aberration ( c)), longitudinal aberration (D diagram), defocus amount (E diagram) curve. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above is only for the application of this (4). The equivalent modifications or changes made by those who are familiar with the technology in accordance with the spirit of the present invention are covered by the appended patent application. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a schematic view of a camera lens lens group according to a first embodiment of the present invention. The second A is a field curvature diagram of the camera lens group of the first embodiment of the present invention. The second B is a distortion aberration diagram of the camera lens group of the first embodiment of the present invention. The second C is a comet aberration diagram of the camera lens group of the first embodiment of the present invention. The second D diagram is a longitudinal aberration diagram of the camera lens group of the first embodiment of the present invention. The second E diagram is a defocus amount diagram of the camera lens group of the first embodiment of the present invention. Third is a schematic view of a camera lens group according to a second embodiment of the present invention. Figure 4A is a curved view of the field of the lens lens unit of the camera of the second embodiment of the present invention. 43 201038968 The figure is a diagram of the sagittal aberration of the camera lens group of the second embodiment of the present invention. The fourth c is a comet aberration diagram of the camera lens group of the second embodiment of the present invention. The fourth D diagram is a longitudinal aberration diagram of the second embodiment of the invention, the camera lens group. The fourth E is the defocusing amount map of the camera lens group of the second embodiment. The fourth F@ is the brightness of the camera of the second embodiment of the camera of the present invention. A schematic diagram of a camera lens lens set according to a second embodiment of the present invention. A / A @ is an image field curvature diagram of a camera lens lens group according to a third embodiment of the present invention. FIG. 8B is a camera according to a third embodiment of the present invention. The domain aberration diagram of the lens lens group. The figures C and C are the aura aberration diagrams of the camera lens group of the third embodiment of the present invention. The sixth figure is the camera lens group of the third embodiment of the present invention. The longitudinal aberration diagram of the sixth E is the defocus amount map of the camera lens group of the present invention. The eighth F diagram is the focal length of the camera lens group according to the third embodiment of the present invention, which is related to the brightness of the field of view. Figure 7 is a schematic view of a camera lens group according to a fourth embodiment of the present invention. The eighth image is the image field of the camera lens version of the fourth embodiment of the present invention. Distortion aberration diagram of the camera lens set of the embodiment. (: @ is the comet aberration diagram of the camera lens version of the fourth embodiment of the present invention. The eighth panel is the longitudinal aberration diagram of the camera lens group of the fourth embodiment of the present invention. The defocus amount map of the camera lens group of the fourth embodiment of the present invention. The eighth F is the brightness map of the focal length of the camera lens group according to the fourth embodiment of the fourth embodiment. 44 201038968 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 10 is a view showing an image field curvature of a camera lens lens group according to a fifth embodiment of the present invention. FIG. 10B is a camera lens lens according to a fifth embodiment of the present invention. The tenth C is a comet aberration diagram of a camera lens group according to a fifth embodiment of the present invention. The tenth D is a longitudinal image of a camera lens group according to a fifth embodiment of the present invention. The tenth E is a defocusing amount diagram of the camera lens group of the fifth embodiment of the present invention. The 〇+F diagram is a luminance diagram of the focal length of the camera lens group according to the fifth embodiment of the present invention related to the field of view. The tenth-figure is the sixth embodiment of the present invention Schematic diagram of the lens lens group of the camera lens. The twelfth A ® is the image field distortion diagram of the camera lens group of the first embodiment of the invention. The tenth 1 - the sixth embodiment of the invention - the distortion aberration of the camera lens group Fig. 12 is a diagram showing a comet aberration of a lens lens group of a camera according to a sixth embodiment of the present invention. The twelfth zero-th is a longitudinal aberration diagram of the SEM camera version. Twelve (four) is the defocus amount map of the sixth actual supplement_film machine version of the invention. The twelfth F is a brightness diagram of the focal length of the camera lens lens group in the field of view according to the sixth embodiment of the present invention. 3 is a schematic view of a camera lens lens group according to a seventh embodiment of the present invention. FIG. 14A is an image field-curve diagram of a camera lens service group according to a seventh embodiment of the present invention. The distortion aberration diagram of the camera lens group is implemented. The fourteenth Cth is a diagram of the comet aberration of the camera lens mirror of the present invention. Fig. 14D is a longitudinal aberration diagram of the camera lens version of the seventh embodiment of the present invention. The fourteenth Ε Η is the defocus amount map of the camera lens of the seventh remuneration of the invention. 45 201038968 The fourteenth F is a brightness diagram of the focal length of the camera lens group according to the seventh embodiment of the present invention, which is related to the field of view. [Description of main component symbols] 〇1G First lens group 2G Second lens group L1 First lens L2 Second lens L3 Third lens L4 Fourth lens sheet L5 Fifth lens sheet L6 Sixth lens sheet IMG Imaging side OBJ Object side Side S1-S13 Lens Surface ST Aperture LP Optical Plate IP Imaging Surface 46

Claims (1)

201038968 七、申請專利範圍·· 卜一麵韻鏡職片組,由物方側往成像側依序包含有;一具有負屈折 率的第-透鏡群、—光圈、以及—具有正屈折率的第二透鏡群,該等2 一及第二透鏡群中均至少包含有―娜非球面鏡片,料二透鏡群的合 成焦距相對於第—透鏡群的合成焦距的比值在G.5與-1.G的範圍内。 2 .如申請專利範圍第丨項所述之攝影機鏡頭鏡片組,其中該具有負屈折率 ) ❸第_魏群由物方娜細依序包含有-具註少-非球面的第— 凹透鏡塑膠鏡片、一第二凹透鏡玻璃鏡片、與一第三凸透鏡玻璃鏡片, 該具有正屈折率的第二透鏡群由光圈往成像侧依序包含有一具有至少 一非球面的第四凸透鏡塑膠鏡片、一第五凹透鏡玻璃鏡片、與—第六凸 透鏡玻璃鏡片。 3 ·如申請專利範圍第2項所述之攝影機鏡頭鏡片組,其中第二透鏡群的合 成焦距相對於第一透鏡群的合成焦距的比值在0.5與-0.5之間。 J 4.如申請專利範圍第2項所述之攝影機鏡頭鏡片組,其中第一透鏡群中的 三枚鏡片滿足以下條件:-1.0&lt;Ll.L2f/L3f&lt;0,其中Ll.L2f為第一凹透鏡 塑膠鏡片與第二凹透鏡玻璃鏡片的合成焦距,L3f為第三凸透鏡玻璃鏡 片的焦距。 5 ·如申請專利範圍第2項所述之攝影機鏡頭鏡片組,其中第二透鏡群中的 第五凹透鏡玻璃鏡片與第六凸透鏡玻璃鏡片滿足以下條件: -1.5&lt;L5沉6f&lt;-〇.5,其中L5f為第五凹透鏡玻璃鏡片的焦距,L6f為第 六凸透鏡玻璃鏡片的焦距。 47 201038968 6. 如申請專利範圍第2項所述之攝影機鏡頭鏡片组,其中該第一凹透鏡塑 膠鏡片具有二非球面,且該第四凸透鏡塑膠鏡片具有二非球面。 7. 如申請專鄕Μ丨_述之攝影機鏡頭鏡錄,射該具有負屈折率 的第一透鏡群由物方側往光圈依序包含有一第一凸透鏡玻璃鏡片、以及 一具有至少-鱗面且黏合_第—凸透鏡賴制上的第二凹透鏡 塑膠鏡片,該具有正屈折率的第二透鏡群由光圈往成像侧依序包含有一 〇 具有至少—非球面的第三凸透鏡塑膠鏡片一第四凸透鏡玻璃鏡片、及 一具有至少一非球面的第五凹透鏡塑膠鏡片。 8 .如申請專概圍第7項所述之攝影機鏡頭鏡片組,射第二透鏡群的合 成焦距相對於第一透鏡群的合成焦距的比值在0與-1.0之間。 9 ·如申請專利範圍第7項所述之攝影機鏡頭鏡版,其中第-透鏡群中的 二枚·滿足以下條件:_3.5&lt;L肌2f&lt;_2.5,其中Uf鱗—凸透鏡玻 璃鏡片的焦距’ L2f為第二凹透鏡塑膠鏡片的焦距。 〇 1G ·辦料概圍第7項所述之攝賴綱鏡纽,其中第二透鏡群中的 第四凸透鏡玻璃鏡片與第五凹透鏡塑膠鏡片滿足以下條件: -1.5《慨5抑.5 ’其中L4f為第四&amp;透鏡玻璃鏡片的焦距,^為第 五凹透鏡塑膠鏡片的焦距。 11 ·如申請專利難第7顧述之攝雜綱鏡肢,射鄕二凹透鏡塑 膠鏡片具有—非球面,係遠離於該第一凸透鏡玻璃鏡片之表面’且該第 二凸透鏡娜鏡片及該第五凹透鏡瓣鏡片均具有二非球面。 12 ·如申請專利範圍第1項所述之攝影機鏡頭鏡片組,其中該具有負屈光率 的第-透鏡群由物方側往光圈依序包含有一具有至少一非球面的第一 48 201038968 凸透鏡塑膠鏡片、以及—具有至少一非球面且黏合於該第一凸透鏡塑勝 鏡片上的第二喊鏡歸翻,該具有正麟率的第二透鏡群由光圏往 成像側依序&amp;含有—具有至少一非球面的第三凸透鏡瓣鏡片、一第 四凸透鏡玻璃鏡&gt;{、與—具有至少―非球面的第五凹透麵膠鏡另。 13 .如申請專利細第12項所述之攝影機鏡職片組,其巾第二透鏡群的 合成焦距相對於第-透鏡群的合成焦距的比值在〇與_1〇之間。 I4.如巾請補範_ Π項所述之攝影機綱鏡妝,帽—透鏡群中的 ) 二枚鏡片滿足以下條件·· _2.0&lt;Llf/L2f&lt;_1〇,其中uf為第一凸透鏡塑 膠鏡片的焦距,L2f為第二凹透難膝鏡片的焦距。 15如申明專利範圍第u項所述之攝影機綱鏡片組,其中第二透鏡群中 的第四凸透鏡玻璃鏡片與第五凹透鏡塑膠鏡片滿足以下條件·· -1.5&lt;L撒5f&lt;-〇.5,其中L4f為第四凸透鏡玻璃鏡片的焦距,…為第 五凹透鏡塑膠鏡片的焦距。 &gt; 16·如帽專利範圍第12項所述之攝影機鏡職片組,其中該第一凸透鏡 塑膠鏡片及該第二凹透鏡塑膠鏡片均具有一非球面,係為該第一凸透鏡 塑膠鏡片及該第二凹透鏡塑膠鏡片上互相相對而遠離開的表面,且該第 三凸透鏡瓣鏡&gt;;及該帛五日魏瓣鏡㈣具有二非球面。 17 ·如申請專利範圍丨項所述之攝影機鏡頭鏡片叙,其中該具有負屈折率的 第-透鏡群由物方齡細依序包含有-第—凹透鏡麵剝、一具有 至少-非球面的第二凹透鏡塑膠鏡片、與一具有至少一非球面的第三凸 透鏡塑膠·,該具有正麟率的第二透鏡群由光_成_依序包含 有-具有至少-非球面的第四凸透鏡塑膝鏡片、一具有至少一非球面的 49 201038968 第五凸透麵膠鏡片、及一第六凹透鏡㈣鏡片。 18如申請專利範圍第17項所述之攝影機鏡頭鏡片組,其中第二透鏡群的 〇成焦距相對於第_透鏡群的合成焦距的比值在G與_丨〇之間。 19如申°月專利範圍第17項所述之攝影機鏡頭鏡片組,其中第-透鏡群中 的三枚鏡滿足以下條件:_i g&lt;u丄胤胸,其巾[丨以為第一凹透 鏡玻璃鏡&gt;{與第二凹透鏡塑膠鏡片的合成焦距,L3f為第三凸透鏡塑膠 鏡片的焦距。 〇 2G.如巾睛專利範圍第17項所述之攝影機鏡頭鏡片組,其中第二透鏡群中 的第五凸透鏡塑膠鏡片與第六凹透鏡玻璃鏡片滿足以下條件: 2.0&lt;L5沉6f&lt;-i.0 ’其中為第五凸透鏡塑膠鏡片的焦距,⑽為第 六凹透鏡玻璃鏡片的焦距。 21 .如中請專利範圍第17項所述之攝影機鏡職片組,其帽第二凹透鏡 塑膠鏡片、該第三凸透鏡塑膠鏡片、該第四凸透鏡塑膠鏡片、以及該第 ❹ 五凸透鏡轉鏡片均具有二非球面。 如申叫專利範園S 1項所述之攝影機鏡頭鏡片組,其中該具有負屈光率 的第一透鏡群由物方纖細依序包含有-具有至少-非球面的第-凹透鏡塑膠鏡片、與一具有至少一非球面的第二凸透鏡塑膠鏡片,該具 有正屈光率的第二透鏡群由光圈往成像側依序包含有一具有至少一非 球面的第三凸透鏡塑膠鏡片、一具有至少一非球面的第四凸透鏡塑膠鏡 片、與一具有至少一非球面的第五凹透鏡塑膠鏡片。 23如申明專利範圍S 22 1 貝所述之攝影機鏡頭鏡片·组,其中第二透鏡群的 合成焦距相對於第一透鏡群的合成焦距的比值在0與-1.0之間。 50 201038968 24 25 Ο 26 27. Ο 28 . 如申明專利細第22項所述之攝影機鏡頭鏡片組,其中第—透鏡群中 的-枚鏡片滿足以下條件、a5&lt;_f♦其中Uf為第—凹透鏡塑 膠鏡片的焦距’ L2f為第二凸透鏡塑膠鏡片的焦距。 、申β月專利範圍第22項所述之攝影機綱鏡片組,其中第二透鏡群中 的第四凸透鏡塑膠鏡片與第五凹透鏡塑膠鏡片滿足以下條件: -1.5&lt;14沉取〇5,其中w為第四凸透鏡塑膠鏡片的焦距,[分為第 五凹透鏡轉刻的焦距。 如申明專纖畔22項所述之攝賴綱鏡版,其巾鱗—凹透鏡 塑膠鏡片、該帛二凸透鏡塑膠鏡片、該第三凸透鏡塑膠鏡片、該第四凸 透鏡塑膠鏡纽該第五凹透鏡娜則均具有二非球面。 如申請專利範圍第1項所述之攝職綱鏡片組,其中該具有負屈光率 的第一群透鏡由物方側往細依序包含有—具有至少—非球面的第一 凹透鏡塑膠鏡片、-具有至少—非球面的第二凸透鏡塑膠鏡片、與一具 有至少-非球面的第三凹透鏡卿鏡片,該具有正屈鱗的第二群透鏡 由光圈往成像侧依序包含有—具有至少—非球_第四凸透鏡塑膠鏡 片、一第五凸透鏡玻璃鏡片、及一第六凹透鏡玻璃鏡片。 如申請專利範圍第27項所述之攝影機鏡職片組,其中第二透鏡群的 合成焦距相對於第一透鏡群的合成焦距的比值在〇與_1〇之間。 如申請專利細S27項所述之攝職鏡職版,其巾透鏡群中 的第一凹透鏡塑膠鏡片與第二凸透鏡塑膠鏡片滿足以下條件: -1.0&lt;LlfiL2f&lt;0’其中Llf為第一凹透鏡塑膠鏡片的焦距,Uf為第二凹 透鏡塑膠鏡片的焦距。 51 29 · 201038968 30 ·如申請專利範圍第27項所述之攝影機鏡頭鏡片組,其中第二透鏡群中 的第五凸透鏡玻璃鏡片與第六凹透鏡玻璃鏡片滿足以下條件: -l‘5&lt;L5£^L6f&lt;-0_5 ’其中L5f為第五凸透鏡玻璃鏡片的焦距,L6f為第 六凹透鏡玻璃鏡片的焦距。 31 .如申請專利範圍第27項所述之攝影機鏡頭鏡片組,其中該第一凹透鏡 塑膠鏡片、該第二凸透鏡塑膠鏡片、該第三凹透鏡塑膠鏡片、以及該第 四凸透鏡塑膠鏡片均具有二非球面。201038968 VII. Scope of Application for Patent································································································· a second lens group, wherein each of the two lens groups includes at least a non-spherical lens, and a ratio of a composite focal length of the second lens group to a composite focal length of the first lens group is at G.5 and -1 Within the scope of .G. 2. The camera lens lens set according to the scope of the patent application, wherein the negative refractive index is ) ❸ 群 由 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物 物a lens, a second concave lens glass lens, and a third convex lens glass lens, wherein the second lens group having a positive refractive index sequentially includes a fourth convex lens plastic lens having at least one aspherical surface from the aperture toward the imaging side, and a second lens group Five concave lens glass lens, and - sixth convex lens glass lens. 3. The camera lens lens set of claim 2, wherein a ratio of a combined focal length of the second lens group to a composite focal length of the first lens group is between 0.5 and -0.5. J. The camera lens lens set of claim 2, wherein the three lenses in the first lens group satisfy the following condition: -1.0 &lt;Ll.L2f/L3f&lt;0, wherein Ll.L2f is The composite focal length of a concave lens plastic lens and a second concave lens glass lens, and L3f is the focal length of the third convex lens glass lens. 5. The camera lens lens set according to claim 2, wherein the fifth concave lens glass lens and the sixth convex lens glass lens in the second lens group satisfy the following condition: -1.5 &lt; L5 sink 6f&lt;-〇. 5, wherein L5f is the focal length of the fifth concave lens glass lens, and L6f is the focal length of the sixth convex lens glass lens. The camera lens lens assembly of claim 2, wherein the first concave lens plastic lens has two aspherical surfaces, and the fourth convex lens plastic lens has two aspherical surfaces. 7. If the lens of the camera lens is specified, the first lens group having a negative inflection rate includes a first convex lens glass lens from the object side to the aperture, and one having at least a scale surface. And bonding a second concave lens plastic lens on the lenticular lens, the second lens group having a positive refractive index sequentially includes a third convex lens plastic lens having at least an aspheric surface from the aperture toward the imaging side. A four-lens lens glass lens and a fifth concave lens plastic lens having at least one aspherical surface. 8. The ratio of the combined focal length of the second lens group to the composite focal length of the first lens group is between 0 and -1.0, as claimed in the camera lens group described in claim 7. 9. The camera lens plate according to claim 7, wherein two of the first lens groups satisfy the following condition: _3.5 &lt; L muscle 2f &lt; _ 2.5, wherein Uf scale-convex lens glass lens The focal length 'L2f is the focal length of the second concave lens plastic lens. 〇1G ·According to the material of the seventh item, the fourth convex lens glass lens and the fifth concave lens plastic lens meet the following conditions: -1.5 "5. 5" Where L4f is the focal length of the fourth & lens glass lens, and ^ is the focal length of the fifth concave lens plastic lens. 11 · If it is difficult to apply for a patent, the lens of the second concave lens has an aspherical surface that is away from the surface of the first convex lens glass lens and the second convex lens and the first lens The five concave lens lens lenses each have a second aspherical surface. The camera lens lens set according to claim 1, wherein the first lens group having a negative refractive power sequentially includes a first 48 201038968 convex lens having at least one aspherical surface from the object side to the aperture. a plastic lens, and a second mirror having at least one aspherical surface and adhered to the first convex lens plastic lens, the second lens group having an positive lining rate is sequentially included from the pupil toward the imaging side a third lenticular lens lens having at least one aspherical surface, a fourth convex lens glass mirror, and a fifth concave permeable mirror having at least an aspherical surface. 13. The camera lens set according to claim 12, wherein a ratio of a combined focal length of the second lens group of the towel to a composite focal length of the first lens group is between 〇 and 〇. I4. If the towel is a supplement, the camera lens makeup, cap-lens group, the two lenses meet the following conditions: _2.0&lt;Llf/L2f&lt;_1〇, where uf is the first convex lens The focal length of the plastic lens, L2f is the focal length of the second concave and hard-to-knee lens. The camera lens group according to claim 5, wherein the fourth convex lens glass lens and the fifth concave lens plastic lens in the second lens group satisfy the following condition: -1.5 &lt;L sprinkle 5f&lt;-〇. 5, wherein L4f is the focal length of the fourth convex lens glass lens, ... is the focal length of the fifth concave lens plastic lens. &lt; 16 </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The second concave lens plastic lens is opposite to each other and away from the surface, and the third convex lens valve &gt;; and the fifth five-day Wei mirror (four) has two aspherical surfaces. 17. The camera lens lens of claim 1, wherein the first lens group having a negative inflection rate comprises a first-concave lens peeling and an at least aspheric surface. a second concave lens plastic lens, and a third convex lens plastic having at least one aspherical surface, the second lens group having an positive lining ratio is sequentially included by the light _ into a fourth convex lens having at least an aspherical surface A knee lens, a 49 201038968 fifth convex surface plastic lens having at least one aspherical surface, and a sixth concave lens (four) lens. The camera lens lens set of claim 17, wherein the ratio of the focal length of the second lens group to the composite focal length of the _ lens group is between G and _丨〇. [19] The camera lens lens set of claim 17, wherein the three mirrors in the first lens group satisfy the following condition: _i g&lt;u丄胤 chest, the towel [丨 I think the first concave lens glass mirror &gt;{Comparative focal length with the second concave lens plastic lens, L3f is the focal length of the third convex lens plastic lens. The camera lens lens set of claim 17, wherein the fifth convex lens plastic lens and the sixth concave lens glass lens in the second lens group satisfy the following condition: 2.0 &lt; L5 sink 6f&lt;-i .0 'where is the focal length of the fifth convex lens plastic lens, and (10) is the focal length of the sixth concave lens glass lens. 21. The camera lens working group according to claim 17, wherein the second concave lens plastic lens, the third convex lens plastic lens, the fourth convex lens plastic lens, and the fifth convex lens lens are both Has two aspherical surfaces. The camera lens lens set of claim 1, wherein the first lens group having a negative refractive power comprises a first-concave lens plastic lens having at least an aspheric surface in a fine sequence. And a second lens plastic lens having at least one aspherical surface, the second lens group having a positive refractive power sequentially includes a third convex lens plastic lens having at least one aspherical surface from the aperture toward the imaging side, and having at least one The aspherical fourth convex lens plastic lens and the fifth concave lens plastic lens having at least one aspherical surface. The camera lens lens set of claim 2, wherein the ratio of the combined focal length of the second lens group to the composite focal length of the first lens group is between 0 and -1.0. The lens lens group of the lens lens according to claim 22, wherein the lens in the first lens group satisfies the following condition, a5&lt;_f♦ wherein Uf is a concave lens The focal length 'L2f of the plastic lens is the focal length of the second convex lens plastic lens. The camera lens group of claim 22, wherein the fourth convex lens plastic lens and the fifth concave lens plastic lens in the second lens group satisfy the following condition: -1.5 &lt;14 sinking 〇5, wherein w is the focal length of the fourth convex lens plastic lens, [divided into the focal length of the fifth concave lens. For example, the ray mirror version of the 22-special fiber-optic section, the towel scale-concave lens plastic lens, the 帛2-convex lens plastic lens, the third convex lens plastic lens, the fourth convex lens plastic mirror, the fifth concave lens They all have two aspheric surfaces. The constellation lens group according to claim 1, wherein the first group lens having a negative refractive power includes, by the object side side, a first concave lens plastic lens having at least an aspheric surface. a second convex lens plastic lens having at least one aspherical surface, and a third concave lens clear lens having at least an aspherical surface, the second group of lenses having positive scales being sequentially included by the aperture toward the imaging side - having at least - an aspherical_fourth convex lens plastic lens, a fifth convex lens glass lens, and a sixth concave lens glass lens. The camera mirror group according to claim 27, wherein a ratio of a combined focal length of the second lens group to a composite focal length of the first lens group is between 〇 and 〇. As claimed in the patent application S27, the first concave lens plastic lens and the second convex lens plastic lens in the towel lens group satisfy the following conditions: -1.0&lt;LlfiL2f&lt;0' where Llf is the first concave lens The focal length of the plastic lens, Uf is the focal length of the second concave lens plastic lens. The camera lens lens set of claim 27, wherein the fifth lenticular lens glass and the sixth concave lens glass lens in the second lens group satisfy the following conditions: -l'5&lt;L5£ ^L6f&lt;-0_5 'where L5f is the focal length of the fifth convex lens glass lens, and L6f is the focal length of the sixth concave lens glass lens. The camera lens lens set of claim 27, wherein the first concave lens plastic lens, the second convex lens plastic lens, the third concave lens plastic lens, and the fourth convex lens plastic lens have two non- Spherical. 32.如申請專利範圍第i項所述之攝影機綱鏡片組,其中該具有負屈光率 的第-透鏡群由物方側往光圈依序包含有一具有至少一非球面的第一 凹透鏡塑膠鏡片、-具有至少一非球面的第二凸透鏡塑膠鏡片、與一具 有至少-非球面的第三凹透鏡塑膠鏡片,該具有正屈折率的第二透鏡群 由光圈往成像側依序包含有一具有至少一非球面的第四凸透鏡塑勝鏡 片、一具有至少一非球面的第五凸透鏡塑膠鏡片、與-具有至少一#球 面的第六凹透鏡塑膠鏡片。 33 ·如申請專利範圍第32項所述之攝影機鏡頭鏡片組,其中第二透鏡群的 合成焦距相對於第—透鏡群的合成焦距的比值㈣與Μ之間。 如申凊專利範圍第32項所述之攝影機鏡頭鏡片組,射第一透鏡群中 、第凹透鏡塑膠鏡片與第二凸透鏡_鏡片滿足以下條件·· 肌2f&lt;〇,射[糊―峨峨輸、距 透鏡塑膠制的巧弟 ^專梅圍第32項所述之攝影機鏡頭鏡片組,其中第二透鏡群中 五凸透鏡_鏡#與第六凹透鏡塑膠鏡片滿;i以下條件·· 52 201038968 -1.5&lt;L5f^6f&lt;-0.5,其中L5f為第五凸透鏡塑膠鏡片的焦距,L6f為第 六凹透鏡塑膠鏡片的焦距。 36·如申請專利範圍第32項所述之攝影機鏡頭鏡片組,其中該第一凹透鏡 塑膠鏡片、該第二凸透鏡塑膠鏡片、該第三凹透鏡塑膠鏡片、該第四凸 透鏡塑膠鏡片、該第五凸透鏡塑膠鏡片、以及該第六凹透鏡塑膠鏡片均 具有二非球面。 37 .如申請專利範圍第1項所述之攝影機鏡頭鏡片組,進一步包含有一光學 〇 平板,設置於該第二透鏡群的成像側。32. The camera lens set according to claim i, wherein the first lens group having a negative refractive power sequentially includes a first concave lens plastic lens having at least one aspherical surface from the object side to the aperture. a second convex lens plastic lens having at least one aspherical surface, and a third concave lens plastic lens having at least an aspherical surface, the second lens group having a positive refractive index sequentially including at least one from the aperture toward the imaging side An aspherical fourth convex lens plastic lens, a fifth convex lens plastic lens having at least one aspherical surface, and a sixth concave lens plastic lens having at least one #spherical surface. The camera lens lens set of claim 32, wherein the ratio of the combined focal length of the second lens group to the composite focal length of the first lens group (four) is between Μ. The camera lens lens group according to claim 32, wherein the first lens group, the concave lens plastic lens and the second convex lens _ lens satisfy the following conditions: · muscle 2f &lt; 〇, shot [paste - 峨峨 lose The camera lens lens group described in Item 32 of the plastic lens made by the plastic lens of the lens, wherein the lenticular lens _ mirror # and the sixth concave lens plastic lens are in the second lens group; i the following conditions·· 52 201038968 - 1.5&lt;L5f^6f&lt;-0.5, wherein L5f is the focal length of the fifth convex lens plastic lens, and L6f is the focal length of the sixth concave lens plastic lens. 36. The camera lens lens set of claim 32, wherein the first concave lens plastic lens, the second convex lens plastic lens, the third concave lens plastic lens, the fourth convex lens plastic lens, the fifth convex lens The plastic lens and the sixth concave lens plastic lens each have a second aspherical surface. The camera lens lens set of claim 1, further comprising an optical slab disposed on the imaging side of the second lens group. 5353
TW98113688A 2009-04-24 2009-04-24 Lens set for camera lens TW201038968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98113688A TW201038968A (en) 2009-04-24 2009-04-24 Lens set for camera lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98113688A TW201038968A (en) 2009-04-24 2009-04-24 Lens set for camera lens

Publications (1)

Publication Number Publication Date
TW201038968A true TW201038968A (en) 2010-11-01

Family

ID=44995233

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98113688A TW201038968A (en) 2009-04-24 2009-04-24 Lens set for camera lens

Country Status (1)

Country Link
TW (1) TW201038968A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447426B (en) * 2011-10-14 2014-08-01 Hon Hai Prec Ind Co Ltd Imaging lens
US9057865B1 (en) 2013-12-20 2015-06-16 Genius Electronic Optical Co., Ltd. Optical imaging lens and eletronic device comprising the same
TWI490533B (en) * 2014-03-12 2015-07-01 玉晶光電股份有限公司 Mobile device and optical imaging lens thereof
US9158093B2 (en) 2013-10-31 2015-10-13 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
US9164258B1 (en) 2014-07-29 2015-10-20 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
TWI512320B (en) * 2013-11-25 2015-12-11 Ability Opto Electronics Technology Co Ltd Six-piece optical lens for capturing image and six-piece optical modules for capturing image
US9383552B2 (en) 2013-10-31 2016-07-05 Genius Electronic Optical Co., Ltd. Optical imaging lens and electronic device comprising the same
US9413934B2 (en) 2014-03-12 2016-08-09 Genius Electronic Optical Co., Ltd. Optical imaging lens and electronic device comprising the same
US9497365B2 (en) 2014-10-23 2016-11-15 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
US9513465B2 (en) 2013-12-20 2016-12-06 Genius Electronic Optical Co., Ltd. Camera device and optical imaging lens thereof
US9568710B2 (en) 2014-10-29 2017-02-14 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
CN108646393A (en) * 2018-07-13 2018-10-12 嘉兴中润光学科技有限公司 Telephoto lens

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447426B (en) * 2011-10-14 2014-08-01 Hon Hai Prec Ind Co Ltd Imaging lens
US9383552B2 (en) 2013-10-31 2016-07-05 Genius Electronic Optical Co., Ltd. Optical imaging lens and electronic device comprising the same
US9158093B2 (en) 2013-10-31 2015-10-13 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
TWI512320B (en) * 2013-11-25 2015-12-11 Ability Opto Electronics Technology Co Ltd Six-piece optical lens for capturing image and six-piece optical modules for capturing image
US9057865B1 (en) 2013-12-20 2015-06-16 Genius Electronic Optical Co., Ltd. Optical imaging lens and eletronic device comprising the same
US9513465B2 (en) 2013-12-20 2016-12-06 Genius Electronic Optical Co., Ltd. Camera device and optical imaging lens thereof
TWI490533B (en) * 2014-03-12 2015-07-01 玉晶光電股份有限公司 Mobile device and optical imaging lens thereof
US9413934B2 (en) 2014-03-12 2016-08-09 Genius Electronic Optical Co., Ltd. Optical imaging lens and electronic device comprising the same
US9703074B2 (en) 2014-03-12 2017-07-11 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9164258B1 (en) 2014-07-29 2015-10-20 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
US9497365B2 (en) 2014-10-23 2016-11-15 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
US9568710B2 (en) 2014-10-29 2017-02-14 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
CN108646393A (en) * 2018-07-13 2018-10-12 嘉兴中润光学科技有限公司 Telephoto lens
CN108646393B (en) * 2018-07-13 2024-03-29 嘉兴中润光学科技股份有限公司 Long focus lens

Similar Documents

Publication Publication Date Title
TW201038968A (en) Lens set for camera lens
CN108415152B (en) Optical eyepiece lens for head-mounted display equipment
TWI781947B (en) Optical lens
CN109669256A (en) Optical imaging lens
TW201224506A (en) Optical image lens assembly
TW201723560A (en) Optical lens set
TW201211614A (en) Imaging lens composed of four lenses and electronic device using the same
TW201235727A (en) Wide viewing angle optical lens assembly
TWI658288B (en) Optical lens
TWM400591U (en) Photographic lens and photographic device
TW201213925A (en) Fixed-focus lens
TW200907457A (en) Optical lens system for taking image
TW201011337A (en) Wide-angle lens
TW201229612A (en) Optical imaging lens assembly
TW201222060A (en) Optical lens system
TWI796312B (en) Lens and fabrication method thereof
TWI631366B (en) Optical lens
WO2019149176A1 (en) Eyepiece, glasses, head mounted display and vr system
TWI330751B (en) Fixed-focus lens
CN110082892A (en) Optical imaging lens
TWI247915B (en) Projection lens and projection type image display unit
TW200829949A (en) Fixed-focus lens
TWI355507B (en) Fixed-focus lens
CN110488470A (en) Optical lens
CN104603663B (en) Pantoscope and camera head