TW201038186A - Microscale heat transfer systems - Google Patents

Microscale heat transfer systems Download PDF

Info

Publication number
TW201038186A
TW201038186A TW99105790A TW99105790A TW201038186A TW 201038186 A TW201038186 A TW 201038186A TW 99105790 A TW99105790 A TW 99105790A TW 99105790 A TW99105790 A TW 99105790A TW 201038186 A TW201038186 A TW 201038186A
Authority
TW
Taiwan
Prior art keywords
condenser
microchannel
working fluid
microchannels
heat sink
Prior art date
Application number
TW99105790A
Other languages
Chinese (zh)
Other versions
TWI544865B (en
Inventor
Jesse David Killion
Seri Lee
Matthew Determan
Scott W C H Lee
Abel Manuel Siu Ho
Original Assignee
Pipeline Micro Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/511,945 external-priority patent/US8833435B2/en
Application filed by Pipeline Micro Inc filed Critical Pipeline Micro Inc
Publication of TW201038186A publication Critical patent/TW201038186A/en
Application granted granted Critical
Publication of TWI544865B publication Critical patent/TWI544865B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

This disclosure concerns micro-scale heat transfer systems. Some systems relate to electronics cooling. As a example, a microscale heat transfer system can comprise a microchannel heat exchanger defin ing a plurality of flow microchannels fluidicly coupled to each other by a plurality of cross-connect channels. The cross-connect channels can be spaced apart along a streamwise flow direction defined by the flow microchannels. Such a configuration of flow microchannels and cross-connect channels can enable the microchannel heat exchanger to stably vaporize a portion of a working fluid when the microchannel heat exchanger is thermally coupled to a heat source. Microscale heat transfer systems can also comprise a condenser fluidicly coupled to the microchannel heat exchanger and configured to condenser the vaporized portion of the working fluid. A pump can circulate the working fluid between the microchannel heat exchanger and the condenser.

Description

201038186 六、發明說明: 相關申請案交互參照 本申請案是申請於2009年7月29曰的美國非臨時專 利申請案Νο·12/511,945的部份連續申請案及主張申請於 2009年2月27曰的美國臨時專利申請案第61/156,465號, 申請於2009年8月11曰的美國臨時專利申請第61/233,090 號’申請於2009年9月10曰的美國臨時專利申請案第 61/241,028號’申請於2009年10月1〇曰的美國臨時專利 申請案第61/250,511號,及申請於2009年1〇月η日的美 國臨時專利申請案第61/250,516號的優先權。在此上述的 每一申請案的内容是以引用的方式併入本文。 【發明所屬之技術領域】 諸如,例如,關於電 或是更多安裝於一附 本申請案關於微尺度熱傳系統, 子冷卻的系統,作為一實例,冷卻一 加卡(add-in card)上的電子零件。 【先前技術】201038186 VI. INSTRUCTIONS: CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part application and claim application for the US non-provisional patent application filed on July 29, 2009 Νο·12/511,945. U.S. Provisional Patent Application No. 61/156,465, filed on Aug. 27, 2009, U.S. Provisional Patent Application No. 61/233,090, filed on Aug. 11, 2009, U.S. Provisional Patent Application Serial No. 61/250, 511, filed on Jan. 1, 2009, and the priority of U.S. Provisional Patent Application No. 61/250,516, filed on Jan. The contents of each of the above-identified applications are hereby incorporated by reference. [Technical field to which the invention pertains] For example, a system for sub-cooling, which is installed in a supplementary application on a micro-scale heat transfer system, as an example, an add-in card is cooled. Electronic parts on. [Prior Art]

的熱傳速率, 器械)被放置與此種零件 及藉此在操作期間維持 201038186 零件/JSL度於上臨界溫度或是於上臨界溫度之下。 參考圖iA,複數個電子零件42,44及—或是更多基板 仏可電氣地彼此耦合呈-可操作構形5()。該可操作構形5〇 可包含用於-般用途計算裝置的一母板,用於對一計算裝 置提供某些功能的-附加卡,用於一特殊性計算裝置的一、 邏輯板等。作為-個例子,該可操作構形5()可包含一顯示 卡被建構以提供圖像處理及輸出。 Ο 〇 參考圖1B,兩個或是更多電子零件42, 44可使用多樣 化的習知技術被安裝於基板46的—側,諸如,例如,焊接。 =一=操作構形5〇中,該基板46為—層壓基板包含至 Ζ Γ及至少一對應的電介質層。此層遷基板可包含 Ui導層藉由—或是更多的電介質材料層從鄰接的傳 :離° —印刷電路板(PCB)是此種層壓基板的-實例。 元製造期間’儘f基於所選的設計,可產生在個別單 個別:广物理差異。例如’材料特性可隨每-批而改變, 接零件42,44 f $ f稀)的,從基板46鄰 产 a 表面至零件的一上方表面所量測的一高 一批的:或疋&向度」)可隨每一批而改變,及即使在單 、早元之間。這些及其他的物 42,44之間的相机一 左/、j V绞在零件 即使以 、z_尚度的對應差異(例如’ Z2 - Z】)。例如, 即使以一控制良好的製 度在可操作構开在零件42,44之間的相對2_高 对,或更多。 &個別製程單元間可變化多至+/-〇.020 再者,當電子零件設計發展到達成更高程度的效能, 5 201038186 積體電路操作在較高的頻率’併入更多電晶體及佔據較少 的實體空間,@導致較高的操作動力,較高的熱通量或是 兩者。雖然一些零件設計已超過傳統冷卻系統冷卻能力, 但預期將會繼續朝向增加的動力及熱通量。 新冷卻技術的不懈追求傳統上僅在冷卻能力上產生增 量的改善。例如,一冷卻裝置實現一溫度改善相較於另一 冷卻裝置,當散發150瓦時(W)(例如,從一半導體模量測 為約1平方公分)即使才攝氏3或4度fc)已經被視為一顯 著地改善的冷卻裝置。 一些失敗的嘗試使用微通道熱交換器結合相變化的潛 熱,及特別的是,蒸發的潛熱,某些冷卻劑的(例如,沸騰) 以冷卻此高動力(及高熱通量)裝置。在先前嘗試中,使用透 過一微通道散熱器的沸騰以從例如,一電子零件移除廢熱 的共同缺點在於冷卻劑流率的不穩定波動,及在冷卻劑溫 度及壓力的對應波動。 【發明内容】 本揭示内容關於微尺度熱傳系統。一些系統關於電子 冷卻。 例如,一微尺度熱傳系統可包含一微通道熱交換器, 其界定複數個微流道藉由複數個交叉連接通道流動地彼此 耦合。該等交叉連接通道可沿著藉由該等微流道所界定的 一流向流動方向間隔開。當該微通道熱交換器是熱地耦合 至一熱源時,微流道及交叉連接通道的此種構形可使該微 通道熱交換器能夠穩定地蒸發一工作流體的一部分。微尺 201038186 度熱傳系統亦可包含一冷凝哭、ώΛ Λ 埏斋μ動地耦合至該微通道熱交 換器及被建構以冷凝工作流體的蒸發部分。一泵可循環該 工作流體於該微通道熱交換器及該冷凝器之間。 微通道熱交換器及冷凝哭I —人&人 ▽凝益可包含整合子組件的一部 分。例如’一第一板可界定 疋相對的内部及外部主要表面。 第一板的内部主要表面可界定一 Λ„ 介疋一散熱益區域被建構以容納The heat transfer rate, the instrument) is placed with such parts and thereby maintains the 201038186 part/JSL degree at or above the upper critical temperature during operation. Referring to Figure iA, a plurality of electronic components 42, 44 and - or more substrates - can be electrically coupled to each other in an operational configuration 5 (). The operative configuration 5 can include a motherboard for a general purpose computing device, an add-on card for providing certain functions to a computing device, a logic board for a particular computing device, and the like. As an example, the operational configuration 5() can include a display card constructed to provide image processing and output. Referring to FIG. 1B, two or more electronic components 42, 44 may be mounted to the side of the substrate 46 using various conventional techniques, such as, for example, soldering. In the case of a = operational configuration, the substrate 46 is a laminated substrate comprising to Ζ and at least one corresponding dielectric layer. The layered substrate may comprise a Ui via layer - or more layers of dielectric material from adjacent sources - an example of a printed circuit board (PCB) being such a laminate substrate. During the manufacturing period, the 'following the selected design can be produced in individual singles: wide physical differences. For example, 'the material properties can vary with each-batch, and the part 42, 44 f $f is thin, a high-volume one measured from the adjacent surface of the substrate 46 to an upper surface of the part: or 疋&; degree") can vary with each batch, and even between single and early yuan. The camera between these and other objects 42, 44 left/, j V is twisted on the part even with the corresponding difference of z_shang (eg 'Z2 - Z】). For example, a relatively 2_high pair, or more, between the parts 42, 44 can be operatively constructed even with a well-controlled system. & individual process units can vary up to +/- 〇.020. Furthermore, when electronic part design evolves to achieve higher levels of performance, 5 201038186 integrated circuit operation incorporates more transistors at higher frequencies And occupy less physical space, @ leads to higher operating power, higher heat flux or both. While some parts have been designed to exceed the cooling capacity of conventional cooling systems, they are expected to continue to move toward increased power and heat flux. The relentless pursuit of new cooling technology has traditionally only resulted in an increase in cooling capacity. For example, a cooling device achieves a temperature improvement compared to another cooling device, when 150 watts (W) is emitted (for example, from a semiconductor modulus of about 1 square centimeter) even if it is only 3 or 4 degrees fc) It is considered as a significantly improved cooling device. Some failed attempts have used microchannel heat exchangers to combine the latent heat of phase change, and in particular, the latent heat of evaporation, some of the coolant (e.g., boiling) to cool the high power (and high heat flux) device. In previous attempts, a common disadvantage of using a boiling through a microchannel heat sink to remove waste heat from, for example, an electronic component is the unstable fluctuations in coolant flow rate and corresponding fluctuations in coolant temperature and pressure. SUMMARY OF THE INVENTION The present disclosure is directed to a microscale heat transfer system. Some systems are about electronic cooling. For example, a micro-scale heat transfer system can include a microchannel heat exchanger that defines a plurality of microchannels that are fluidly coupled to each other by a plurality of cross-connect channels. The cross-connect channels may be spaced apart along the direction of flow defined by the microchannels. This configuration of the microchannels and cross-connect channels allows the microchannel heat exchanger to vaporize a portion of a working fluid stably as the microchannel heat exchanger is thermally coupled to a heat source. The micro-scale 201038186 heat transfer system can also include a condensation crying, ώΛ Λ μ 动 至 至 至 至 至 至 至 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 A pump can circulate the working fluid between the microchannel heat exchanger and the condenser. Microchannel heat exchangers and Condensation Cry I - Human & People Condensation can include a part of the integrated subassembly. For example, a first plate can define the opposing inner and outer major surfaces. The inner main surface of the first plate can define a 散热 疋 a heat dissipation area is constructed to accommodate

微通道熱乂換态。一第二板可界定相對的内部及外部主 要表面:第二板的内部主要表面可界定一蓋子區域及一冷 凝器區域。第一板及第二板可5相斟沾 攸』玉相對的對齊被固定地鎖固 在-起’使得個別的内部主要表面面對彼此。該微通道熱 交換器可被佈置在該第一板及該第二板之間。 該微通道熱交換器可熱地耦合至散熱器區域。該蓋子 區域可置於複數個微流道上以便界定微流道的一流動邊 界。第二板的冷凝器區域及第一板的—對應的,相對的區 域可界定至少一冷凝器流道。 第二板的冷凝器區域可界定從第二板的内部主要表面 延伸的複數個鰭片及該等複數個鰭片沿著藉由該至少一冷 凝器流道所界定一流向流動方向彼此間隔開。在一些實例 中,複數個延伸表面的至少一者是被焊接至第一板的内部 表面的一對應部分。 一整合子組件可進一步包含從第一板,第二板,或是 兩者的外部主要表面延伸的複數個鰭片。在一些微尺度熱 傳系統中,第一板的外部主要表面界定一升高的表面,該 升高的表面實質上地相對於由第一板的内部主要表面所界 7 201038186 定的散熱器區域而定位。 該微通道熱交換器可包含一第一微通道熱交換器及一 第二微通道熱交換器。該散熱器區域可包含一第一散熱器 區域及第一散熱器區域。該第一散熱器區域可被建構以 容納該第一微通道散熱器,及該第二散熱器區域可被建構 以容納該第二微通道散熱器。 在一些實例中,該蓋子區域包含一第一蓋子區域及一 第二蓋子區域。該第一蓋子區域可置於第一熱交換器上及 該第二蓋子區域可置於第二微通道熱交換器上。 該冷凝器區域可包含一第一冷凝器區域及一第二冷凝 器區域。該第一微通道散熱器及該第一冷凝器區域可被流 動地串聯耦合至該第二微通道散熱器及該第二冷凝器區 域。在其他實例中,該第一微通道散熱器及該第一冷凝器 區域可被流動地並聯耦合至該第二微通道散熱器及該第二 冷凝器區域。 一泵外罩歧管可界定一内部腔室’該内部腔室被建構 以容納一泵,一入口開口及一出口開口。該泵可至少部分 地被定位在果外罩歧管的内部腔室内。該泵可界定一果入 口及一泵出口。該泵入口可被流動地耦合至泵外罩歧管的 入口開口及該泵出口可被流動地耦合至泵外罩歧管的出口 開口。 一或是更多微流道的流截面可界定大於大約1〇:1的長 寬比,諸如’例如’ 12:1的長寬比。 亦揭示用於電腦系統的附加卡。—些已揭示的附加卡 8 201038186 包含一基板’該基板包含複數 電路零件電氣地 电路部分’及至少—積 什1虱地耦合至該等電路 槓體 的實例中,當操作時該積體 ^的至少—者°在多數 的-冷卻系統可包含一工作〜零件政發熱。用於附加卡 該蒸發器可被定位鄰接積體;路零二冷凝器。 電路零件。該蒸發n可界定複數個交又連接微=邊積體 Ο 0 =ΓΓ蒸發…體的-部分以二二= 散發的熱。該冷凝器可被流動地輕牛所 部分的藉由該基板支撐。—栗可法I …發益及至少 冷凝器’以便可操作的循環該=發益及該 凝器之間。 ^體於该_及該冷 該冷凝器及該蒸發器可包含一整合子組件的部分今 積體子組件包含相對的第一及第二板。例如,㈣發器‘ 包含-微通道散熱器佈置在第一及第二板之間。複數個鰭 片可從第一板,第二板,或是兩者向外地延伸。 在一些實例中,該蒸發器包含_第一蒸發器及—第二 蒸發器。該第一療發器及該第二蒸發器可流動地彼此串聯 耦合。該第-蒸發器及該第二蒸發器可流動地彼此並聯: 合〇 在一些實例中,垓冷凝器亦包含複數個鰭片向外地延 伸。該附加卡可亦包含一護罩置於該等鰭片上及一鼓風機 被建構以傳遞空氣越過§亥等鰭片。此外,當蒸發器,冷凝 器,泵,鰭片及鼓風機可操作地相對於彼此及積體電路零 件定位時,該蒸發器’冷凝器,泵’鰭片及鼓風機可,在 9 201038186 一些實例中,配合在1斷細A叶乘以射的體積中。 聚可被如此相對於附加卡的其他零件定位以便至少部分地 從鼓風機導向空氣於鰭片間。 -底盤構件可置於基板的一部分上及卡合至少基板的 一部分α該冷凝器可被㈣地附接至底盤構件使得該底盤 支擇該冷凝器。據此,兮、入料1 像此°亥冷凝益可至少部分地藉由該基板 支撐。 亦揭示冷卻电子零件的方法。例如,冷卻一電子零件 的方法可包3工作流體呈佔多數的液相流動進入複數個 微通道中。藉由電子零件散發的熱可以該工作流體吸收。 在-些實例中,工作流體的一部分在微通道内蒸發。一體 積的工作流體在-或是更多沿著該等微通道的流向位置可 從微通道之一流至微通道的另一者。此流在流向位置可至 少部分地平衡在微通道間的壓力。已蒸發的工作流體可在 一冷凝器中被冷凝。在冷凝器中冷凝已蒸發的工作流體的 行為可包含流動空氣越過從冷凝器的表面延伸之複數個鰭 片。 在一些貫例中,電子零件包含一第一封裝積體電路模 及一第二封裝積體電路模。複數個微通道可包含一第一複 數個微通道被定位鄰接該第一積體電路模及一第二複數個 微通道被定位鄰接該第二積體電路模。從微通道之一流動 工作流體至微通道的另一者的行為可包含從第一複數個微 通道的微通道之一流動工作流體至第一複數個微通道的微 通道的另一者,及從第二複數個微通道的微通道之一流動 10 201038186 體至第二複數個微通道的微通道的另―者。在—此 實例中’在微通道中蒸發工作流體 =微通一流體。在微通道 為亦可包合在第二複數個微通道蒸發工作流體。 該冷凝器可包含一第一冷凝器部分及_;第二冷凝器部 分。在冷凝II中冷;疑該已蒸發的工作流體的行為可包含在 第一冷凝11部分的第—複數健通道巾冷凝已蒸發的工作 流體。The microchannel is hot and versatile. A second panel can define opposing interior and exterior major surfaces: the interior major surface of the second panel can define a lid region and a condenser region. The first plate and the second plate can be fixedly locked in the opposite direction of the jade, so that the individual inner main faces face each other. The microchannel heat exchanger can be disposed between the first plate and the second plate. The microchannel heat exchanger is thermally coupled to the heat sink region. The lid region can be placed over a plurality of microchannels to define a flow boundary of the microchannel. The condenser zone of the second plate and the corresponding, opposite zone of the first plate may define at least one condenser flow path. The condenser region of the second plate may define a plurality of fins extending from an inner major surface of the second plate and the plurality of fins are spaced apart from each other along a flow direction defined by the at least one condenser flow path . In some examples, at least one of the plurality of extended surfaces is a corresponding portion that is welded to the interior surface of the first panel. An integrated subassembly can further include a plurality of fins extending from an outer major surface of the first panel, the second panel, or both. In some micro-scale heat transfer systems, the outer major surface of the first panel defines an elevated surface that is substantially opposite the heat sink region defined by the inner major surface of the first panel 7 201038186 And positioning. The microchannel heat exchanger can include a first microchannel heat exchanger and a second microchannel heat exchanger. The heat sink region can include a first heat sink region and a first heat sink region. The first heat sink region can be configured to receive the first microchannel heat sink, and the second heat sink region can be configured to receive the second microchannel heat sink. In some examples, the lid region includes a first lid region and a second lid region. The first lid region can be placed on the first heat exchanger and the second lid region can be placed on the second microchannel heat exchanger. The condenser zone can include a first condenser zone and a second condenser zone. The first microchannel heat sink and the first condenser region can be fluidly coupled in series to the second microchannel heat sink and the second condenser region. In other examples, the first microchannel heat sink and the first condenser region can be fluidly coupled in parallel to the second microchannel heat sink and the second condenser region. A pump housing manifold can define an interior chamber that is configured to receive a pump, an inlet opening and an outlet opening. The pump can be positioned at least partially within the interior chamber of the outer cover manifold. The pump defines an inlet and a pump outlet. The pump inlet can be fluidly coupled to an inlet opening of the pump housing manifold and the pump outlet can be fluidly coupled to an outlet opening of the pump housing manifold. The flow cross section of one or more microchannels may define an aspect ratio greater than about 1 〇: 1, such as an aspect ratio of 'e' Additional cards for computer systems are also disclosed. Some of the disclosed add-on cards 8 201038186 comprise a substrate 'the substrate comprising a plurality of circuit parts electrically ground circuit portions' and at least - an example of coupling to the circuit blocks, the integrated body when operating ^ At least - the ° in the majority - the cooling system can contain a work ~ part of the government fever. For additional cards The evaporator can be positioned adjacent to the integrated body; Circuit parts. The evaporation n can define a plurality of intersections and join micro-edge complexes Ο 0 = ΓΓ evaporation... the body-parts are two-two = radiated heat. The condenser can be supported by the substrate in part by the flowing light cattle. - Chestnut method I ... the benefit and at least the condenser 'for an operable cycle between the benefit and the condenser. The portion of the condenser and the evaporator that can include an integrated subassembly includes opposing first and second plates. For example, (4) the transmitter 'includes - the microchannel heat sink is disposed between the first and second plates. The plurality of fins may extend outwardly from the first panel, the second panel, or both. In some examples, the evaporator comprises a first evaporator and a second evaporator. The first hair expander and the second evaporator are fluidly coupled to each other in series. The first evaporator and the second evaporator are flowably coupled in parallel with one another: In some examples, the helium condenser also includes a plurality of fins extending outwardly. The add-on card may also include a shroud disposed on the fins and a blower constructed to pass air over the fins such as § hai. In addition, when evaporators, condensers, pumps, fins, and blowers are operatively positioned relative to one another and integrated circuit components, the evaporator 'condenser, pump' fins and blowers may, in some instances, 9 201038186 , fit in the volume of 1 broken fine A leaf multiplied by the shot. The poly can be positioned relative to other parts of the add-on card to at least partially direct air from the blower between the fins. The chassis member can be placed on a portion of the substrate and snapped over at least a portion of the substrate. The condenser can be (4) attached to the chassis member such that the chassis selects the condenser. Accordingly, the crucible, the feed 1 can be at least partially supported by the substrate. Methods of cooling electronic components are also disclosed. For example, a method of cooling an electronic component can include a working fluid flowing into a plurality of microchannels in a majority liquid phase. The working fluid is absorbed by the heat dissipated by the electronic components. In some examples, a portion of the working fluid evaporates within the microchannel. The integrated working fluid can flow from one of the microchannels to the other of the microchannels at or more along the flow direction of the microchannels. This flow balances the pressure between the microchannels at least partially in the flow direction. The vaporized working fluid can be condensed in a condenser. The act of condensing the vaporized working fluid in the condenser can include flowing air across a plurality of fins extending from the surface of the condenser. In some embodiments, the electronic component includes a first packaged integrated circuit die and a second packaged integrated circuit die. The plurality of microchannels can include a first plurality of microchannels positioned adjacent to the first integrated circuit mode and a second plurality of microchannels positioned adjacent to the second integrated circuit mode. The act of flowing the working fluid from one of the microchannels to the other of the microchannels can include flowing the working fluid from one of the microchannels of the first plurality of microchannels to the other of the microchannels of the first plurality of microchannels, and Flowing from one of the microchannels of the second plurality of microchannels 10 201038186 to the other of the microchannels of the second plurality of microchannels. In this example, 'the working fluid is evaporated in the microchannel = microfluid-fluid. The microchannel can also be enclosed in a second plurality of microchannel evaporation working fluids. The condenser may comprise a first condenser portion and a second condenser portion. Cooling in condensing II; the behavior of the vaporized working fluid is suspected to include the first plurality of channels in the first condensing portion 11 condensing the vaporized working fluid.

從X下洋細的描述,上文及其他特徵和優點將變得更 明顯’以下將參考隨附圖式繼續說明。 【實施方式】 以下藉由參考示範性系統描述關於微尺度熱傳系統的 各種原理。一或是更多所揭示的原理可被併入於各種系統 構形中以達成各種微尺度熱傳系統特徵。關於冷卻一或是 更多電子零件的系統僅為微尺度熱傳系統的實例及將在下 文中描述以說明在此所揭示的各種原理的態樣。 在某種意義上’微尺度熱傳系統可包含一第一熱交換 器被建構以允許一工作流體從一熱源吸收熱(例如,藉由蒸 發),一第二熱交換器被建構以允許該工作流體去除所吸收 的熱至一環境介質(例如,藉由冷凝)及一泵被建構以循環該 工作流體於該第一及該第二熱交換器之間。在另一種意義 上,微尺度熱傳系統包含關於橫越一低的溫度梯度從高熱 通量區域散發熱的方法。關於此種微尺度熱傳系統的原理 11 201038186 將聯結系統(在此亦稱做為「冷卻系統」)而 建構以冷卻安裝至附加卡的-或是更多電子零件 一些冷卻系統界定—整合冷卻系統,其被設定尺寸以 配合於一小的’緊密的體積内,諸如,例如,能夠與心 規範相容的實體尺寸(phy⑽丨f(mn faet。⑽。例如,對於 些應用的最大谷許厚度(包含一印刷電路板厚度及安裝於 印刷電路板的任-零件的高度)可為約1 375叶(例如,一「雙 槽」PCIe卡)’及對於其他應用約0.57对(例如,—「單槽」 PCIe卡)。此冷卻系統可包含一内含,被驅動的,二相流體 電路’將在下文更徹底地描述。亦將描述冷卻系統額外的 態樣。 如在此所描述的一些冷卻系統1 〇〇,2〇〇,3〇〇,4〇〇可 配合於一體積量測為約1〇%吋乘以^/8吋乘以約⑽吋,及 可冷卻第一及第二零件,其等每一者連續地散發約15〇瓦(w) (總計300W),於一最大零件溫度(例如,一機殼溫度)及一 環境空氣溫度之間具有約攝氏35度)的溫差。其他冷卻 系統(包含此冷卻系統的一些工作實施例)可足夠地冷卻第 一及第二零件,其等每一者散發約200 W(總計400 W)。一些 已揭示的冷卻系統可同時地容納在零件之間的z_高度變化 超出0.020吋,諸如高至約〇 〇3〇叶。 如在此所使用的,「微通道」意指一通道具有至少一 主要維度(例如,一通道寬度)量測為少於約丨毫米,諸如, 例如’約0.1毫米,或數十毫米。 如在此所使用的’ 「流動的」意指或是關於一流體(例 12 201038186 如,氣體,液體,液相或氣相的混合等)。因此,二區域是 「流動地耦合」為彼此耦合以允許一流體從—區域流至其 他區域以反應在區域之間的壓力梯度。 如在此所使用的,術語"工作流體"及”冷卻劑”是可交換 的。 參考圖2, 一冷卻系統100可包含一或是更多微通道散 熱器110, 120(例如,第一熱交換器,亦稱做為「蒸發器」) 被建構以冷卻一或是更多個別的電子零件42,44(圖i,圖 Ο 4A),如藉由一工作流體(未顯示)通過散熱器,促進由個別 的電子零件所散發的熱,Q2的吸收。在—些系統中,液 相或是液體及氣體的飽和混合物可進入蒸發器丨丨〇,丨2〇。 當熱Q!,Q2被交換至工作流體,液體部分可在個別的蒸發 器110 ’ 12 0中蒸發。由於蒸發(或凝結)的潛熱典型地遠大 於一給定流體的比熱(Specific heat),通常藉由使流體經歷 相變化比僅在溫度的改變,更多熱可被吸收或是去除。 系統100亦可包含一或是更多冷凝器130(例如,一第 二熱交換器)被建構以促進由工作流體在個別的蒸發器 110 ’ 120中所吸收的熱,Q2的去除。在一些系統中,一 氣相或是液體和氣體的飽和混合物在通過蒸發器110,120 之後可進入冷凝器13〇。當熱Q〇ut是從工作流體及冷凝器 1 30交換,工作流體的一蒸氣部分可凝結。 一泵150可循環一工作流體於散熱器110 ’ 120及冷凝 器1 3 0間。栗1 5 〇可被流動地柄合至一歧管1 5 2以分配工 作流體於由冷卻系統1〇〇所界定的流體電路的各種零件之 13 201038186 間。如在下文中更徹底地描述者,用於泵15〇的外罩155 可界定歧管152(在此亦稱做為一「泵-外罩歧管」)。 冷凝器130可被建構以從一局部環境去除所吸收的熱 Q 1 ’ out ’ Q2 . out至一環境流體(例如,空氣μ 〇 i。例如,如在 下文中更徹底地描述者,一冷卻器160可被熱地耗合至冷 凝13 0以移除從流體所吸收的熱。在此一實施例中,一 氣冷式散熱器162可被熱地耦合至冷凝器13〇<3在一些實例 中’冷凝器130支撐延伸的熱傳表面,或是鰭片,其等被 定位在冷凝器的一外部表面上’提供一整合的冷凝器及散 熱器子組件(例如,一單一構造)。 此熱的累積,攜帶及去除與已使用於冷卻電子零件的 傳統冷卻系統相比可改善電子零件的冷卻(例如,從電子零 件的熱傳速率)。改善的熱傳速率可允許電子零件42,44 對於在零件與環境之間一給定的溫度差散發更多動力,允 β平電子零件達成較高程度的效能而無需改善環境(例如,降 低環境溫度)或是改善電子零件的特定上臨界溫度(例如,提 高上臨界溫度)。 如圖3指示,所揭示的冷卻系統可冷卻超過約每平方 公分70瓦的熱通量(w/cm2)及大至約200W/cm2,諸如,例 如’在約80W/cm2及約190W/cm2之間,具有一工作流體流 率小於約每分鐘400毫升(ml/min),諸如,例如,約在 75ml/min及約300ml/min之間。所揭示的冷卻系統併入一 果’其被建構以分配工作流體於各種系統零件之間。 相反的,被動二相系統(亦稱作為「熱管冷卻」系統或 14 201038186 是「熱虹吸官」系統)能夠冷卻僅至大約6〇w/cm2。此種被 動二相系統依賴表面張力及沸騰以「抽吸(pump)」一工作流 體通過系統。 雖然一些單相冷卻系統可能能夠冷卻大至約 200W/cm2,此單相冷卻系統需要非常大工作流體流率(例 如’在約700ml/min及約i500ml/min之間)及對應地大的零 件被建構以容納大體的冷卻劑。當結合入一可操作系統 時’此大的’過大地零件將無法配合於一緊密的體積,諸 Ο 如由PCIe規範所界定者。例如,習知單相冷卻系統需要需 要一大的’遠距熱交換器’或是散熱器(radiat〇r)(就像一汽 車散熱器)’自將被冷卻的電子零件隔開。雖然此一散熱器 通吊了被放置在一電腦糸統的後故板上,或是放置在覆蓋 將被冷卻的零件之外殼外部上,並非所有習知單相冷卻系 統的零件能夠被安裝至一附加卡,其與所揭示的系統大相 逕庭。 對比於習知被動二相冷卻系統及習知單相冷卻系統, 〇 一 所揭示的冷卻系統iOO,200 ’ 300,400能夠散發高熱通量 (如上文所註記及圖3所顯示)’其仍能夠被整合於一緊密系 統其配合於一小體積(諸如,例如,在一體積量測為約1 〇 %吋乘以約丨3/8吋乘以約3¾吋。)製成此種緊密冷卻系統是 可能的,部分因為所揭示的系統需要實質上地較單相系統 少的工作流體及可冷卻高熱通量,部分因為抽吸(或驅動) "IL體電路可循環工作流體以較熱虹吸管循環冷卻劑高的流 率通過冷卻系統。 15 201038186 緊雄'冷卻系統概要 、雖然緊始、,整合冷卻系統的特定實施例及相關的器械 被建構以配合於—小體積内的實質細節是敘述在下文中, 乡考圖4A ’ 4B及4C提供此系統的一簡短概要。顯示在圖 4A的分解圖描述冷卻系統丨已敘述於上文中,大致上參 考圖2)的一緊密實施例,一電腦附加+ 50,一支樓構件(或 疋底盤構件)60 ’及保持夹7 i ’ 72被建構以藉由冷卻系統 100及保持益7〇 一起保持冷卻系統卡及支撐構件的層壓 組件。 所況明的附加卡5〇可為根據pcie規範建構的一高效 月匕顯不卡。該卡5〇可包含一印刷電路板(pcB)基板钧具有 。邊緣連接器5 1及一後_嵌板介面區域52,該後-嵌板介面 區域包含複數個連接器被建構以與一或是更多外部附加物 件(未顯不)連接。該卡5〇可具有兩的圖像處理單元 (GPU)42,44女裝至基板46。該pCB可界定一或是更多電 氣電路邛刀,& GPU42,44的每一者可電氣地耦合至個別 電氣電路部分。料緣連接器51可根據pcie規範建構及 可傳遞電氣訊號及動力至在pCB内的電路部分。 如顯示在圖2冷卻系統1〇〇的示意圖所指示,顯示在 圖4A’ 4B及4C的系統包含第一及第二微通道散熱器11〇, 1 20抓動地耦合至—冷凝器i 3〇。一熱交換器1 6〇(例如,氣 冷式散熱器162)促進從冷凝器13〇至環境1〇1的熱傳Q_。 一離心鼓風機或是泵(或是其他流體-移動裝置)丨7 〇可被建 構以造成(例如,迫使)環境流體通過散熱器l62A,及熱 16 201038186 的σ卩刀Q°ut,1可被去除至環境流體(例如,空氣,當其通 過散熱器162的韓片間)。一護軍,或是導管,164二一 通道,或通路或導管,被建構以從鼓風機葉輪17〇導向空 氣於散熱為、162的延伸表面(鰭片)之間。缺少該導管164, 由鼓風機m散發的一部分空氣流可能除此之外繞行(例 如’旁通)界定於散熱器162的縛片間的通道。在一些實例 中’一塑膠護罩可形成導管164。 一The above and other features and advantages will become more apparent from the following description of the drawings. The following description will be continued with reference to the accompanying drawings. [Embodiment] Various principles regarding a micro-scale heat transfer system are described below by referring to an exemplary system. One or more of the disclosed principles can be incorporated into various system configurations to achieve various micro-scale heat transfer system features. The system for cooling one or more electronic components is only an example of a micro-scale heat transfer system and will be described below to illustrate various aspects of the principles disclosed herein. In a sense, a microscale heat transfer system can include a first heat exchanger configured to allow a working fluid to absorb heat from a heat source (eg, by evaporation), and a second heat exchanger configured to allow the The working fluid removes the absorbed heat to an environmental medium (e.g., by condensation) and a pump is constructed to circulate the working fluid between the first and second heat exchangers. In another sense, the microscale heat transfer system includes a method of dissipating heat from a high heat flux region across a low temperature gradient. Principles of such a microscale heat transfer system 11 201038186 The coupling system (also referred to herein as a "cooling system") is constructed to cool the mounting to the add-on card - or more electronic components - some cooling system definition - integrated cooling A system that is sized to fit within a small 'tight volume, such as, for example, a physical size that is compatible with cardiac specifications (phy(10)丨f(mn faet. (10). For example, for the largest application of some applications) The thickness (including the thickness of a printed circuit board and the height of any part mounted on the printed circuit board) can be about 1 375 leaves (eg, a "double slot" PCIe card) and about 0.57 pairs for other applications (eg, "Single-slot" PCIe card. This cooling system can include an included, driven, two-phase fluid circuit' which will be described more fully below. Additional aspects of the cooling system will also be described. Some cooling systems 1 〇〇, 2 〇〇, 3 〇〇, 4 〇〇 can be combined with a volume measurement of about 1 〇 % 吋 multiplied by ^ / 8 吋 multiplied by about (10) 吋, and can cool the first and the first Two parts, each of which is continuous Dissipates approximately 15 watts (w) (300W total), a temperature difference of approximately 35 degrees Celsius between a maximum part temperature (eg, a cabinet temperature) and an ambient air temperature. Other cooling systems (including this cooling system) Some working embodiments) can sufficiently cool the first and second parts, each of which emits about 200 W (400 W total). Some of the disclosed cooling systems can simultaneously accommodate the z_ between the parts. The height varies by more than 0.020 inches, such as up to about 〇3 〇. As used herein, "microchannel" means that a channel has at least one major dimension (eg, a channel width) measured to be less than about 丨. Millimeter, such as, for example, 'about 0.1 mm, or tens of millimeters. As used herein, 'flowing' means either a fluid (example 12 201038186, for example, a mixture of gas, liquid, liquid or gas phase). Therefore, the two regions are "fluidly coupled" to each other to allow a fluid to flow from the region to other regions to reflect the pressure gradient between the regions. As used herein, the term "working fluid"; and "cold "The agent" is interchangeable. Referring to Figure 2, a cooling system 100 can include one or more microchannel heat sinks 110, 120 (e.g., a first heat exchanger, also referred to as an "evaporator") constructed Cooling one or more individual electronic components 42, 44 (Fig. i, Fig. 4A), such as by a working fluid (not shown) through the heat sink, promoting the heat dissipated by the individual electronic components, Q2 absorption In some systems, the liquid phase or a saturated mixture of liquid and gas can enter the evaporator 丨丨〇, 丨 2 〇. When the heat Q!, Q2 is exchanged to the working fluid, the liquid portion can be in the individual evaporator 110 Evaporation in '120. Since the latent heat of evaporation (or condensation) is typically much greater than the specific heat of a given fluid, more heat can usually be absorbed by subjecting the fluid to a phase change than a change in temperature alone. Or remove. System 100 can also include one or more condensers 130 (e.g., a second heat exchanger) configured to facilitate the removal of heat, Q2, absorbed by the working fluid in individual evaporators 110'120. In some systems, a gas phase or a saturated mixture of liquid and gas can enter the condenser 13 after passing through the evaporators 110,120. When the thermal Q〇ut is exchanged from the working fluid and the condenser 1 30, a vapor portion of the working fluid can condense. A pump 150 can circulate a working fluid between the radiator 110' 120 and the condenser 130. The pump 1 5 can be fluidly stalked to a manifold 152 to distribute the working fluid between the various parts of the fluid circuit defined by the cooling system 1 2010. As described more fully below, the outer cover 155 for the pump 15A can define a manifold 152 (also referred to herein as a "pump-cover manifold"). The condenser 130 can be configured to remove absorbed heat Q 1 ' out ' Q2 . out to a local fluid (eg, air μ 〇 i from a local environment. For example, as described more fully below, a cooler 160 may be thermally consumed to condense 130 to remove heat absorbed from the fluid. In this embodiment, an air-cooled heat sink 162 may be thermally coupled to the condenser 13 〇 < 3 in some examples The 'condenser 130 supports the extended heat transfer surface, or the fins, which are positioned on an outer surface of the condenser' to provide an integrated condenser and heat sink subassembly (eg, a single configuration). The accumulation of heat, carrying and removing can improve the cooling of electronic components (eg, heat transfer rates from electronic components) compared to conventional cooling systems that have been used to cool electronic components. Improved heat transfer rates allow electronic components 42, 44 For more than a given temperature difference between the part and the environment, it allows the β-flat electronic parts to achieve a higher level of performance without improving the environment (for example, reducing the ambient temperature) or improving the electronic parts. The critical temperature is set (e.g., the upper critical temperature is increased). As indicated in Figure 3, the disclosed cooling system can cool more than about 70 watts per square centimeter of heat flux (w/cm2) and up to about 200 W/cm2, such as For example, 'between about 80 W/cm 2 and about 190 W/cm 2 , having a working fluid flow rate of less than about 400 ml per minute (ml/min), such as, for example, between about 75 ml/min and about 300 ml/min. The disclosed cooling system incorporates a fruit that is constructed to distribute working fluid between various system components. Conversely, a passive two-phase system (also known as a "heat pipe cooling" system or 14 201038186 is a "hot siphon officer". The system can cool down to only about 6 〇 w/cm 2. This passive two-phase system relies on surface tension and boiling to "pump" a working fluid through the system. Although some single-phase cooling systems may be able to cool up to about 200W/cm2, this single-phase cooling system requires very large working fluid flow rates (eg 'between about 700 ml/min and about i500 ml/min) and correspondingly large parts are constructed to accommodate the bulk of the coolant. One operating system 'This large' oversized part will not fit into a tight volume, as defined by the PCIe specification. For example, conventional single-phase cooling systems require a large 'distance heat exchanger' or heat dissipation. Radi〇r (like a car radiator) 'separated from the electronic components to be cooled. Although the radiator is placed on the back panel of a computer system, or placed in Covering the exterior of the housing to be cooled, not all of the components of the conventional single-phase cooling system can be mounted to an add-on card that is quite different from the disclosed system. Compared to conventional passive two-phase cooling systems and conventional singles Phase cooling system, the cooling system iOO, 200 ' 300, 400 disclosed in the first one can emit high heat flux (as noted above and shown in Figure 3) 'which can still be integrated into a compact system that fits into a small volume (such as, for example, a volume measurement of about 1 〇 % 吋 multiplied by about / 3 / 8 吋 multiplied by about 33⁄4 吋. It is possible to make such a compact cooling system, in part because the disclosed system requires substantially less working fluid than a single phase system and can cool high heat flux, in part because of pumping (or driving) "IL body circuits The recyclable working fluid passes through the cooling system at a higher flow rate than the hot siphon circulating coolant. 15 201038186 Tight's 'cooling system overview, although initially, specific embodiments of integrated cooling systems and related instruments are constructed to fit in the small details of the small details are described below, Township Chart 4A '4B and 4C Provide a short summary of this system. The exploded view shown in FIG. 4A depicts a cooling system (described above), generally referring to a close embodiment of FIG. 2), a computer attached + 50, a floor member (or a sill member 60' and a retaining clip 7 i '72 is constructed to maintain the laminated assembly of the cooling system card and the support member by the cooling system 100 and the holding unit. The additional card 5〇 can be an efficient monthly display card constructed according to the pcie specification. The card 5 can include a printed circuit board (PCB) substrate. An edge connector 51 and a back-panel interface region 52, the back-panel interface region including a plurality of connectors constructed to interface with one or more external attachments (not shown). The card 5 can have two image processing units (GPUs) 42, 44 women's to the substrate 46. The pCB can define one or more electrical circuit files, and each of the & GPUs 42, 44 can be electrically coupled to an individual electrical circuit portion. The edge connector 51 can be constructed and can transmit electrical signals and power to the circuit portion within the pCB according to the pcie specification. As indicated by the schematic diagram of the cooling system 1A of Figure 2, the system shown in Figures 4A' 4B and 4C includes first and second microchannel heat sinks 11 , 1 20 grippingly coupled to the condenser i 3 Hey. A heat exchanger 16 〇 (e.g., air-cooled radiator 162) promotes heat transfer Q_ from condenser 13 to ambient 〇1. A centrifugal blower or pump (or other fluid-moving device) 丨7 〇 can be constructed to cause (eg, force) ambient fluid to pass through the radiator l62A, and the heat σ 201038186 σ Q knife Q°ut, 1 can be Removal to ambient fluid (eg, air as it passes between the Korean plates of the heat sink 162). A escort, or conduit, passage 164 or passage or conduit, is constructed to direct air from the blower impeller 17 之间 between the extended surfaces (fins) of the heat sink 162. In the absence of the conduit 164, a portion of the air flow emanating from the blower m may otherwise bypass (e.g., 'bypass') the passage defined between the tabs of the heat sink 162. In some examples, a plastic shield can form a conduit 164. One

顯示在圖4A,4B及4C的系統1〇〇亦包含一整合的泵_ 及-歧管子組件155(由於其由導管164及護I 163覆蓋無The system 1 shown in Figures 4A, 4B and 4C also includes an integrated pump _ and - manifold tube assembly 155 (since it is covered by conduit 164 and guard I 163

㈣® 4A’4B^ 4C可視)被建構以循環工作流體於散熱 器1 12〇及冷滅器之間。顯示在圖4A,4B及4C 的系統100可包含一「封閉系統」,意指在操作期間,在 系統100内大量的工作流體保持恆定或至少實質上地恆(4)® 4A'4B^4C visible) is constructed to circulate the working fluid between the radiator 1 12〇 and the chiller. The system 100 shown in Figures 4A, 4B and 4C can include a "closed system", meaning that a large amount of working fluid remains constant or at least substantially constant within the system 100 during operation.

疋泵及-歧管子組件1 5 5的位置是類似於被分別地說明在 圖17及25之泵歧管子組件155,及255的位置。 另參考圖2, 4A’ 4B及4C,及上文所註記,泵15〇(未 顯不)傳遞工作流體(未顯示)至一歧管152(未顯示),該歧管 被建構以分配工作流體至每一散熱器i 1 〇 , 1 2〇(圖4c) Ο個 別的導管,或是流體連接件,ΐθ2’ ΐθ3(未顯示)流動地耦合 歧管152的對應出口與對應的散熱器η〇,ι2〇。散熱器 11 〇 ’ 120的每一者可被流動地耦合至個別的冷凝器部分 132 ’ 134(未顯示)’該等個別的冷凝氣部分藉由冷凝器ι3〇 藉由個別的導管,或是流體連接件1〇4,1〇5界定。一導管, 或是流體連接件106可流動地耦合該冷凝器部分丨32,134 17 201038186 至泵1 50的入口。 如上文所註記,導管,戎4 诚、由& & ^ 6 取疋流體連接件,102,103, 104,105,106,107a,l〇7b 的么 . /b的母一者可被建構以運送工作 流體(呈一氣相,一液相,痞县;上7 l , 次疋兩者的飽和混合物)在個別的 系統零件 110,120,130,150,日日 ,152,155間。此導管,或 是流體連接件,可包含,例如,從鋁合金形成的傳統管子 或管路。在其他具體實施财’ &導管,或Α流體連接件, 可包含鄰接的開口,如下文中炎去4人 ,,g 人T麥亏包含—或是更多歧管的 系統更徹底地描述者。 參考圖2,如由虛線102及1〇〜所指示者,散熱器12〇 及冷凝器部分134可被流動地並聯耦合至散熱器11〇及冷 凝器部分132。擇一地,如由虛線1〇7b所指示者,散熱器 120及冷凝器部分134可被流動地串聯耦合至散熱器11〇及 冷凝器部分132(如藉由消除在泵15〇及散熱器11〇之間的 連接1 02)。才結合圖2的示意圖描述的並聯及串聯構形的 每一者可被併入於顯示在圖4A,4B及4C的系統實施例ι〇〇 内。流動地並聯耦合微通道散熱器丨i 〇,丨2〇,如才被描述 者’在一些貫例中可比假使散熱器是被串聯耦合而供應較 低溫的工作流體至微通道散熱器之—。例如,假使該散熱 器被流動地串聯耦合,該散熱器除此之外將容納預熱工作 流體’假使散熱器流動地並聯粞合,該散熱器可容納未加 熱的工作流體。 申請人發現,在一些實例中,諸如在對於冷卻系統i 〇〇 提供有限的物理體積的應用中’諸如電腦附加卡(例如,顯 18 201038186 不卡),在冷凝器130及環境之間的熱交換(例如,「空氣_ 側熱交換」)可限制冷卻系統1〇〇的整體效能。申請人亦發 見此種效能「瓶頸」的影響可被緩和,至少部分地,藉由 在冷郃系統1 〇〇上所強加之給定體積的限制下盡可能的多 提供「空氣-側」熱傳表面。在一系統100中改善空氣側熱 傳的方法是提供盡可能長的鰭片,鰭片在此是可配合於 有限的物理體積中。 〇 至少在一些實例中,假使冷凝器130及散熱器162是 、° 〇的’使得鰭片從冷凝器本體延伸(如在圖1 6及1 7),如 相對於熱地耦接一個別的散熱器丨62(例如,一底座構件具 有鰭片從其延伸)至冷凝器(如在圖15),可達成實質上地較 大的缝片表面積。 參考圖4A,冷卻系統1〇〇可被保持於緊接該附加卡 例如保持夾71 ’ 72可如此卡合從散熱器11 〇,120 每一者延伸的特徵280a_d(圖4C)及通過pCB46及底盤構件 Q 6〇以便迫使該附加卡壓縮於底盤構件及冷卻系統1〇〇之 間。例如,耦接器71a_d可卡合從散熱器11〇延伸的個別特 徵280a-d,及耦接器72a_d可卡合從散熱器12〇延伸的個別 特徵28〇a-d。每一散熱器11〇,12〇可包含一部分,其界定 一配對表面延伸通過在底盤構件的一開口,使得每—個別 的配對表面是與一對應的電子零件42, 44直接接觸,或是 ^定位鄰接至—對應的電子零件42,44,藉此熱地輕合每 —散熱器至一個別的零件42,44。 關於冷卻系統的這些及其他特徵及原理將在下文結合 19 201038186 關於冷卻電子零件,諸如安裝至—顯示卡的圖像零件之特 定具體實施例而更徹底地描述。 泵及歧管 現在將描述歧管及泵-外罩歧管。如在圖2指示,該冷 卻系統100包含一泵-外罩歧管155被建構以覆蓋泵15〇及 分配工作流體至個別的散熱器丨丨〇,丨2 〇。 參考圖5及6,該泵250a可推進一工作流體(例如,可 造成工作流體循環)於一冷卻系統的各種部分之間。可使用 一或更多歧管252a,252b(及/或是一或更多泵_外罩歧管 155’ (圖7))以分配一工作流體於冷卻系統的一或是更多其 他部分之間以便從在冷卻系統内的導管(或是流體連接件) /肖除或減少傳統的管路或管子。此種歧管252a,252匕可包 含一銅區塊,其界定複數個内部通路,該等通路被建構為 在區塊内的一或是更多充氣部或是流動路徑。例如,在此 一區塊内的一或是更多交叉孔(例如,鑽洞)可界定在歧管 25 2a内的此種流道。 仍參考圖5及6,藉由歧管252a,252b泵250a可被流 動地麵合至個別的微通道散熱器21〇a,22〇a及冷凝器 23〇a,23〇a,,230b,230b,。例如,—泵出口 257a 可被 流動地耦合(例如,藉由一管子)至歧管252a的一入口耦接 器257b。該歧管252a界定内部通路(未顯示),其等被建構 以從藉由入口耦接器257b所界定的一歧管入口乃以分配一 工作流體至一歧管出口(未顯示),其依序流動地耦合至散熱 器220a。從散熱器22〇3的一出口(未顯示)可被流動地耦= 20 201038186 至冷凝器230a’ ,以及歧管252a使得已經通過散熱器之工 作流體的一部分流經歧管252a及進入一第二冷凝器230a。 以一類似的方式,歧管252b流動地耦合散熱器210a 至冷凝器230b,230b’ 。冷凝器230b,230b,的出口(未顯 示)流動地麵合至歧管出口 253a,其依序流動地耦合至一入 口 25 6a至泵250a。因此,泵250a及歧管252a,252b是被 建構以循環工作流體通過一封閉流路於所述的散熱器及冷 凝器之間。 現在參考圖7,說明一泵-外罩歧管155,的一部分及一 泵150 。外罩155’界定一泵接收開口(未顯示),其被建構 以容納泵150’的一部分,使得外罩155,置於泵上。外罩155, 亦可界定一或是更多内部腔室(例如,擴散器)(未顯示),其 等一起形成一整合有外罩的歧管,藉此形成一泵_外罩歧 官。泵的出口、入口,或是兩者,可被流動地耦合至一或 是更多内部腔室。 、、泵-外罩歧管可界定内部通路(未顯示),其被建構以運 送一工作流體使得泵入口被流動地耦合至泵·外罩歧管 155’的入口,及泵出口被流動地耦合至泵-外罩歧管出口 ⑴,及154’ 。 此一泵-外罩-歧管155,可從一或是更多入口 156•分配 工作流體於各種出口 153|,154,之間。例如,從泵-外^歧 ^55’的—第—出° Η3, 微通道散熱器可藉由 導管(在一些實例中,一長度的管路或是管子)流動地 耦δ,及從泵-外罩歧管155’的一第二出口 _ 及一第二 21 201038186 认通道政熱器可猎由一第二導管流動地耗合。 雖然圖7顯示從泵-外罩歧管155’的兩出口 153,, 154 ,可考慮泵-外罩歧管具有多於或是少於兩出口及是落 入本揭示内容的範圍。例如,冷卻系統的一些具體實施例 包含二’四或是更多微通道散熱器流動地耦合至一單一泵_ 外罩歧管。在其他具體實施例,多於一個出口可從泵-外罩 歧管運送工作流體至一給定的散熱器。如在下文更徹底地 描述者,一些泵-外罩歧管具有一單一出口及一單一入口(可 為當散熱器1 1 0,1 20為流動地串聯耦合的情形)。 泵150可被设定尺寸以提供足夠的水頭❽㈡幻以循環 工作流體遍佈一冷卻系統。在—些實例中,諸如當工作流 體的溫度是接近流體的相變溫度,即使一稍微的壓力降可 造成流體的一部分蒸發(或是形成氣穴(cavitate))。一些泵是 較其他U更容易受到此種局部蒸發,或是氣穴的影響。 如-級’正向位移泵(例如’一些壓電栗,往復式活塞系及 齒輪泵)一般不會受到此種局部蒸發之苦。在—些實例中, 果150, T包含含有一往復式活塞的系,#活塞往復㈣ 時,沿著活塞的每-衝程,推進頂靠鄰接活塞之工作流體 的-部分m實施例巾,已經❹市售的線性電 磁泵。 現在參考圖7A及7B,說明—種兩件式“w ”㈣泵 外罩歧管255。該歧管255具有—芍山π加、 ^ 果出口部分255a及一泵 入口部分255b。出口部分255a界定-内部㈣25〇a,,其 被設定尺寸以容納泵的—出口端部,«類似於顯示在圖7 22 201038186 的装150’ 。腔室250a’被建構以與具有一泵出口被定位在 果的一端部之泵相容’而不是如顯示在圖7在泵的—側壁 上。例如’出口部分255a界定被定位在腔室250a,的端部 之歧管入口 257。出口部分255a界定一歧管出口 254,該歧 管出口形成一嵌壁式開口,或是孔254a,其相交界定歧管 入口 257的一橫向地定向的孔254b。相交的孔254a,254b 流動地耦合歧管入口 257及歧管出口 254。 腔室250a’凹進所描述的出口部分255a的一端部及以 〇 一距離量測為對應的泵的長度之一半延伸一深度進入出口 部分。該腔室亦界定一嵌壁式部分258a延伸環繞(例如,周 圍地環鐃)對腔室250a的一開口的周圍。該嵌壁式部分258& 被建構以容納從泵-外罩歧管255的入口部分25〇b延伸的一 肩部258b(圖7B)。The position of the pump and manifold assembly 155 is similar to that of the pump manifold assemblies 155, and 255, respectively, illustrated in Figures 17 and 25. Referring additionally to Figures 2, 4A' 4B and 4C, and noted above, the pump 15 〇 (not shown) delivers a working fluid (not shown) to a manifold 152 (not shown) that is configured for dispensing work. Fluid to each radiator i 1 〇, 1 2〇 (Fig. 4c) Ο individual conduits, or fluid connections, ΐθ2' ΐ θ3 (not shown) fluidly coupled to the corresponding outlet of the manifold 152 and the corresponding radiator η Hey, ι2〇. Each of the heat sinks 11 〇 ' 120 can be fluidly coupled to individual condenser portions 132 134 (not shown) 'the individual condensed gas portions are passed through a separate conduit by a condenser ι3 ,, or The fluid connections 1 〇 4, 1 〇 5 are defined. A conduit, or fluid connection 106, is fluidly coupled to the condenser portion 32, 134 17 201038186 to the inlet of the pump 150. As noted above, the catheter, 戎4 诚, by && ^ 6 take the fluid connection, 102, 103, 104, 105, 106, 107a, l 〇 7b. / b mother can be Constructed to transport working fluids (in a gas phase, a liquid phase, Jixian; upper 7 l, a saturated mixture of both )) in individual system parts 110, 120, 130, 150, day, 152, 155. The conduit, or fluid connection, may comprise, for example, a conventional tube or tubing formed from an aluminum alloy. In other implementations, the "catheter, or sputum fluid connection, may include adjacent openings, as in the case of inflammation, as follows, the g-tack contains - or more manifold systems are more thoroughly described . Referring to Figure 2, heat sink 12A and condenser portion 134 can be fluidly coupled in parallel to heat sink 11 and condenser portion 132 as indicated by dashed lines 102 and 1 〜. Alternatively, as indicated by the dashed line 1 〇 7b, the heat sink 120 and the condenser portion 134 may be fluidly coupled in series to the heat sink 11 冷凝器 and the condenser portion 132 (eg, by eliminating the pump 15 〇 and the heat sink) 11〇 connection 1 02). Each of the parallel and series configurations described in conjunction with the schematic of Figure 2 can be incorporated into the system embodiment ι shown in Figures 4A, 4B and 4C. The parallel coupling of the microchannel heatsinks 丨i 〇, 丨2〇, as described, can be described in some examples as if the heat sinks were coupled in series to supply a lower temperature working fluid to the microchannel heat sink. For example, if the heat sinks are fluidly coupled in series, the heat sink will otherwise contain a preheating working fluid. If the heat sinks are flow-connected in parallel, the heat sink can accommodate unheated working fluid. Applicants have found that, in some instances, such as in applications that provide a limited physical volume for a cooling system, such as a computer add-on card (eg, display 18 201038186 not card), heat between the condenser 130 and the environment Exchange (eg, "air_side heat exchange") can limit the overall performance of the cooling system. Applicants have also found that the effect of this "bottleneck" of performance can be mitigated, at least in part, by providing as much air-side as possible by the given volume limit imposed on the cold heading system 1 Heat transfer surface. The method of improving air side heat transfer in a system 100 is to provide fins that are as long as possible, and the fins here can be fitted into a limited physical volume. 〇 At least in some instances, if the condenser 130 and the heat sink 162 are '°' such that the fins extend from the condenser body (as in Figures 16 and 17), such as being thermally coupled to one another The heat sink bore 62 (e.g., a base member having fins extending therefrom) to the condenser (as in Figure 15) achieves a substantially larger seam surface area. Referring to FIG. 4A, the cooling system 1A can be held in close proximity to the add-on card, such as the retaining clip 71' 72, such that the features 280a-d (FIG. 4C) extending through each of the heat sinks 11 120, 120 and through the pCB 46 and The chassis member Q 6 is forced to compress the additional card between the chassis member and the cooling system 1〇〇. For example, the couplers 71a-d can engage the individual features 280a-d extending from the heat sink 11A, and the couplers 72a-d can engage the individual features 28A-d extending from the heat sink 12A. Each of the heat sinks 11 〇, 12 〇 may comprise a portion defining a mating surface extending through an opening in the chassis member such that each of the individual mating surfaces is in direct contact with a corresponding electronic component 42, 44 or The locating is adjacent to the corresponding electronic components 42, 44 whereby the each heat sink is thermally coupled to one of the other components 42, 44. These and other features and principles of the cooling system are more fully described below in connection with the specific embodiments of the cooling element, such as image parts mounted to a display card, in conjunction with 19 201038186. Pumps and Manifolds Manifolds and pump-outer manifolds will now be described. As indicated in Figure 2, the cooling system 100 includes a pump-cover manifold 155 constructed to cover the pump 15 and distribute the working fluid to individual radiators, 丨2 〇. Referring to Figures 5 and 6, the pump 250a can propel a working fluid (e.g., can cause a working fluid to circulate) between various portions of a cooling system. One or more manifolds 252a, 252b (and/or one or more pump-cap manifolds 155' (FIG. 7) may be used to dispense a working fluid between one or more other portions of the cooling system In order to remove or reduce conventional pipes or pipes from conduits (or fluid connections) in the cooling system. Such manifolds 252a, 252 can include a copper block that defines a plurality of internal passages that are constructed as one or more plenums or flow paths within the block. For example, one or more intersecting holes (e.g., drill holes) within the block may define such a flow path within the manifold 25 2a. Still referring to Figures 5 and 6, the pump 250a can be fluidly coupled to the individual microchannel heatsinks 21a, 22a and the condensers 23a, 23a, 230b by the manifolds 252a, 252b. 230b,. For example, pump outlet 257a can be fluidly coupled (e.g., by a tube) to an inlet coupler 257b of manifold 252a. The manifold 252a defines an internal passage (not shown) that is configured to dispense a working fluid to a manifold outlet (not shown) from a manifold inlet defined by the inlet coupler 257b, The sequence is fluidly coupled to the heat sink 220a. An outlet (not shown) from the heat sink 22A can be fluidly coupled = 20 201038186 to the condenser 230a', and the manifold 252a causes a portion of the working fluid that has passed through the radiator to flow through the manifold 252a and into the first Two condensers 230a. In a similar manner, manifold 252b fluidly couples heat sink 210a to condensers 230b, 230b'. The outlets (not shown) of the condensers 230b, 230b, flow to the manifold outlet 253a, which are sequentially flowably coupled to an inlet 256a to the pump 250a. Thus, pump 250a and manifolds 252a, 252b are configured to circulate working fluid through a closed flow path between the radiator and the condenser. Referring now to Figure 7, a portion of a pump-outer manifold 155, and a pump 150, are illustrated. The outer cover 155' defines a pump receiving opening (not shown) that is configured to receive a portion of the pump 150' such that the outer cover 155 is placed on the pump. The outer cover 155 can also define one or more internal chambers (e.g., diffusers) (not shown) that together form a manifold incorporating the outer casing, thereby forming a pump-cover ambiguity. The pump outlet, inlet, or both can be fluidly coupled to one or more internal chambers. The pump-housing manifold may define an internal passage (not shown) configured to carry a working fluid such that the pump inlet is fluidly coupled to the inlet of the pump/cover manifold 155' and the pump outlet is fluidly coupled to Pump-outer manifold outlet (1), and 154'. The pump-housing-manifold 155 can dispense working fluid from one or more inlets 156 to various outlets 153|, 154. For example, from the pump-outer 歧^55'----out Η3, the microchannel heatsink can be fluidly coupled to δ by a conduit (in some instances, a length of tubing or tube), and from the pump - a second outlet _ of the outer cover manifold 155' and a second 21 201038186. The channel heater can be hunted by a second conduit. Although Figure 7 shows the two outlets 153, 154 from the pump-housing manifold 155', it is contemplated that the pump-cap manifold has more or less than two outlets and is within the scope of the present disclosure. For example, some embodiments of the cooling system include two 'four or more microchannel heat sinks that are fluidly coupled to a single pump _ housing manifold. In other embodiments, more than one outlet may carry working fluid from a pump-housing manifold to a given heat sink. As described more fully below, some pump-cap manifolds have a single outlet and a single inlet (which may be the case when the radiators 110, 120 are fluidly coupled in series). The pump 150 can be sized to provide sufficient head water (2) to circulate the working fluid throughout a cooling system. In some instances, such as when the temperature of the working fluid is near the phase transition temperature of the fluid, even a slight pressure drop can cause a portion of the fluid to evaporate (or form a cavitation). Some pumps are more susceptible to such localized evaporation or air pockets than other Us. Forward-stage displacement pumps such as 'some piezoelectric pumps, reciprocating piston systems and gear pumps' are generally not subject to such localized evaporation. In some instances, the effect 150, T includes a system containing a reciprocating piston, and the # piston reciprocates (four), along each stroke of the piston, advances the portion of the working fluid abutting the piston, A commercially available linear electromagnetic pump. Referring now to Figures 7A and 7B, a two-piece "w" (four) pump housing manifold 255 is illustrated. The manifold 255 has a mountain π plus, a fruit outlet portion 255a and a pump inlet portion 255b. The outlet portion 255a defines an inner (four) 25 inch, which is sized to accommodate the pump-outlet end, «similar to the load 150' shown in Figure 7 22 201038186. The chamber 250a' is constructed to be compatible with a pump having one end of the pump outlet positioned rather than as shown in Figure 7 on the side wall of the pump. For example, the 'outlet portion 255a defines a manifold inlet 257 that is positioned at the end of the chamber 250a. The outlet portion 255a defines a manifold outlet 254 that defines a recessed opening or aperture 254a that intersects a laterally oriented aperture 254b that defines the manifold inlet 257. The intersecting apertures 254a, 254b fluidly couple the manifold inlet 257 and the manifold outlet 254. The chamber 250a' is recessed into one end of the outlet portion 255a as described and one half of the length of the corresponding pump, measured at a distance, extends a depth into the outlet portion. The chamber also defines a recessed portion 258a that extends around (e.g., circumferentially around) an opening around the chamber 250a. The recessed portion 258& is configured to receive a shoulder 258b (Fig. 7B) extending from the inlet portion 25b of the pump-cover manifold 255.

所說明的入口部分250b界定一嵌壁式腔室25〇b,其被 建構以容納一對應的泵(未顯示)的入口端部。入口部分 亦界定一歧管入口 256,其被建構以容納來自一冷凝器(例 如,在系統200中的冷凝器,顯示在圖17至24)的工作流 體。-嵌壁式開口’或是孔,256a肖内地延伸於入口… 及藉由一孔256b橫向地相交,該孔25讣延伸至腔室25仳 及對腔室2邊打開。流動地耗合至孔256a為一填充管子 259。可使用該填充管子259以—卫作流體填充組裝的冷卻 系統。例如,一但-冷卻系統已經被組裝,可供應工作流 胃m管子’及m氣體(例如’空氣)可使用習知技術 從系統放掉。-但已經供應—所要的體積,或是質量的工 23 201038186 作流體至冷卻系統,填充 ®子259可被密封。 部分255a,25 5b的每一去叮w 者可界定個別對的嵌壁式η π 9l(例如,刻有螺紋的開口 弋碉口 J,其被建構以鎖固_ & _ μ $ 外罩歧管255至一组裝^主裝的泵- 部系統的個別零件。在一些實例 中,刻有螺紋的緊固件,4 t 91。 F 4如螺釘,可以螺紋地卡合開口The illustrated inlet portion 250b defines a recessed chamber 25〇b that is configured to receive an inlet end of a corresponding pump (not shown). The inlet portion also defines a manifold inlet 256 that is configured to receive a working fluid from a condenser (e.g., a condenser in system 200, shown in Figures 17-24). - a recessed opening or hole, 256a extending inwardly from the inlet ... and laterally intersecting by a hole 256b which extends to the chamber 25 and opens to the side of the chamber 2. The flow consuming to the aperture 256a is a fill tube 259. The fill tube 259 can be used to fill the assembled cooling system with a fluid. For example, once the cooling system has been assembled, the supply of the working fluid, the stomach tube, and the m gas (e.g., 'air) can be released from the system using conventional techniques. - But already supplied - the required volume, or the quality of the work 23 201038186 Fluid to the cooling system, the filling ® 259 can be sealed. Each of the portions 255a, 25 5b can define an individual pair of recessed η π 9l (eg, a threaded opening 弋碉 J, which is constructed to lock _ & _ μ $ Tube 255 to individual components of the assembled pump-part system. In some examples, threaded fasteners, 4 t 91. F 4 such as screws, can be snapped into the opening

如描述於上文的站營L 了減父洩漏的可能,改善系統的 構k完整及減少藉由一冷卻系統(例如,可允許一冷卻系统 配合於—較小的「封裝覆蓋區(paekaglng fGGtpdnt)」)所佔 據的體積。此夕卜’此歧管可界定一或是更多面,豆可提供 -足夠大地大的表面用於結合(例如,焊接,銅焊或是溶接; 傳統流體導管至歧管入口及/或出口。 微通道散熱器 概要 微通道散熱器構形現在將參考隨附圖式之圖2,及圖 8A至12B而敘述。在某種意義上,一微通道熱交換器ιι〇, 120(圖2)可包含二部分:(1) 一外部熱傳表面ma,12ia(圖 2’ 5’ 6及10)’通過該表面熱(^,q2(圖2)可與一外部流 體或是物體(諸如,例如,一電子零件42 , 44(圖2))交換; (2)—内部熱傳表面112(圖9,9A及1〇),通過該表面從外 部流體或是物體的熱可通入及與一工作流體交換;及(3)在 熱交換器内的工作流體(未顯示)。如顯示在圖5,6及1 〇, 一外部熱傳表面111a,121a可界定一平坦表面,當個別的 微通道熱交換器1 1 0 ’ 1 20,11 〇a,1 20a是被可操作地定位 24 201038186 時,該平坦表面被建構以配合一電子零件42,44的一對應 平坦表面。 參考圖9,9A及10,一微通道散熱器,諸如微通道散 熱器Π0,12〇(圖2)可包含一第一基板113,其包含一單一 構造(unitary construction)。該基板可界定内部熱傳表面丄 及外部熱傳表面111a。該第一基板113可包含具有高熱傳 導力的材料,諸如一銅合金’或是一以矽為主的材料。該 内部熱傳表面112可界定於複數鰭片118之間的内部流道 ¢) 119 。 此微通道基板113可包含具有相對地高熱傳導力的材 料。除了諸如銅合金及矽的材料外,可使用諸如鑽石之其 他材料。 亦可使用具有異向性熱傳導力的材料。此一材料在一 方向具有一較低的熱傳^力,但在另肖具有車交高的熱 傳導力。例如’可使用諸如GrafTech,Intenmi嶋i的As described above, Station L has reduced the possibility of parental leakage, improving the structural integrity of the system and reducing it by a cooling system (for example, allowing a cooling system to be fitted with a smaller "package coverage area" (paekaglng fGGtpdnt )") The volume occupied. Furthermore, this manifold can define one or more faces, and the beans can provide - a sufficiently large surface for bonding (eg, welding, brazing or welding; conventional fluid conduit to manifold inlet and/or outlet) Microchannel Heatsink Overview The microchannel heatsink configuration will now be described with reference to Figure 2 of the accompanying drawings, and Figures 8A through 12B. In a sense, a microchannel heat exchanger ιι〇, 120 (Figure 2 ) can contain two parts: (1) an external heat transfer surface ma, 12ia (Fig. 2' 5' 6 and 10) 'through the surface heat (^, q2 (Fig. 2) can be associated with an external fluid or object (such as For example, an electronic component 42, 44 (Fig. 2) is exchanged; (2) an internal heat transfer surface 112 (Fig. 9, 9A and 1) through which heat can be passed from an external fluid or object. Exchange with a working fluid; and (3) a working fluid (not shown) in the heat exchanger. As shown in Figures 5, 6 and 1 , an external heat transfer surface 111a, 121a can define a flat surface, when individually The microchannel heat exchanger 1 1 0 ' 1 20,11 〇a,1 20a is operatively positioned 24 201038186 when the flat surface is built To fit a corresponding flat surface of an electronic component 42, 44. Referring to Figures 9, 9A and 10, a microchannel heat sink, such as a microchannel heat sink Π0, 12A (Fig. 2), can include a first substrate 113, A unitary construction is included. The substrate can define an internal heat transfer surface 丄 and an external heat transfer surface 111a. The first substrate 113 can comprise a material having a high thermal conductivity, such as a copper alloy or a Main material. The internal heat transfer surface 112 can be defined by an internal flow channel 复 119 between the plurality of fins 118. The microchannel substrate 113 can comprise a material having a relatively high thermal conductivity, except for materials such as copper alloys and tantalum. In addition to materials, other materials such as diamonds can be used. Materials with anisotropic thermal conductivity can also be used. This material has a low heat transfer force in one direction, but has a high heat transfer force in the other. For example, 'can use such as GrafTech, Intenmi嶋i

eGRAF®材料eeGRAFTM具有—熱傳導力,其在二個維度是 高的(例如,在一平面内),及在一第三方向為低的(例2, 垂直於平面典型地利用eGRAFTM以散佈熱橫越_熱遮罩 的平面同時維持垂直熱遮罩的平面的低溫。可使用諸如 eGRAF-的材料用於散熱器。例如,可使用此一材料以垂 直於散熱器的底座提供-高熱傳導力。換言之, 可具有一高熱傳導力垂直於底座。 、口 ^ ^ j, ^ ^ · 在此實施例中,散熱 “改善的能力以交換熱通過與冷卻劑接觸的表面。 其結果是,此-散熱器能夠較佳的通過微通道交換熱至冷 25 201038186 卻流體。 另參考圖9’ 9A及10’内部熱_傳表面ιΐ2可界定—陣 列的向外地延伸特徵118, 118a,諸如鰭片(或是通道壁), 其等之間界定通道(例如,微流道119及交叉_連接微通道 122)。換言之,内部熱傳表面112可界定_陣列㈣壁式區 域(例如,通道119, 122),其等之間界定壁ii8, u8a。與 微通道散熱器110, 12〇連接’内部熱傳表面112的鰭片及 通道特徵具有典型地長度刻度為大約十微米至一千微米的 層級,及可使用各種材料移除技術成形,諸如化學蝕刻, 微機械切削,雷射剝蝕及其他者,或是材料沉積技術成形, 諸如蒸氣或疋其他,沉積技術。可使用其他微通道及/或 鰭片成形技術,諸如切削(skiving)及/或是微變形技術,如 敘述於,例如,申請於2010年2月27日的美國專利申請 案第61/308,936,及其讓與於本申請案的受讓人。圖丨1及 12 ’將在下文更徹底地討論者,顯示使用此切削及微變形 技術成形的鰭片及通道特徵的示意圖。 内部流道的許多構形為可能的。例如,申請於2009年 7月29日的美國非臨時專利申請案第12/5 11,945號題為微 尺度冷卻器械及方法(MICROSCALE COOLING APPARATUS AND MEHTOD),揭示可與單相及二相操作相 容的數個内部流道的構形。 一覆蓋件板(或是蓋子)114(圖10)除此之外可包覆通 道Π 9 ’ 1 22的打開頂部平面,從而界定一封閉的微通道通 路’ 一工作流體可通過該通路。 26 201038186 蓋子The eGRAF® material eeGRAFTM has a thermal conductivity that is high in two dimensions (eg, in a plane) and low in a third direction (Example 2, perpendicular to the plane typically uses eGRAFTM to spread the heat cross The higher the plane of the thermal mask while maintaining the low temperature of the plane of the vertical thermal mask. Materials such as eGRAF- can be used for the heat sink. For example, this material can be used to provide high thermal conductivity perpendicular to the base of the heat sink. In other words, there may be a high thermal conduction force perpendicular to the base. Port ^ ^ j, ^ ^ · In this embodiment, heat dissipation "improves the ability to exchange heat through the surface in contact with the coolant. As a result, this - heat dissipation The device can preferably exchange heat to the cold 25 201038186 through the microchannel. Referring additionally to Figures 9' 9A and 10', the internal thermal_transmission surface ι 2 can be defined - the outwardly extending features 118, 118a of the array, such as fins (or Is a channel wall), which defines a channel (eg, microchannel 119 and cross_connect microchannel 122). In other words, internal heat transfer surface 112 can define an array of (four) wall regions (eg, channels 119, 122). , The walls ii8, u8a are defined therebetween. The fins and channel features of the internal heat transfer surface 112 are coupled to the microchannel heat sinks 110, 12A having a typical length scale of about ten microns to one thousand microns, and can be used Various material removal techniques are formed, such as chemical etching, micromachining, laser ablation, and others, or material deposition techniques, such as vapor or helium, deposition techniques. Other microchannel and/or fin forming techniques can be used. , such as skiving and/or micro-deformation techniques, as described in, for example, U.S. Patent Application Serial No. 61/308,936, filed on Feb. 27, 2010, and assigned to Figures 1 and 12' will be discussed more fully below, showing schematic diagrams of fin and channel features formed using this cutting and micro-deformation technique. Many configurations of internal flow channels are possible. For example, apply for 2009 U.S. Non-Provisional Patent Application No. 12/5 11,945 of July 29, entitled MICROSCALE COOLING APPARATUS AND MEHTOD, Reveals Operation with Single-Phase and Two-Phase Operation Compatible with the configuration of several internal flow paths. A cover plate (or cover) 114 (Fig. 10) can in addition cover the open top plane of the channel Π 9 ' 1 22 to define a closed micro Channel passage 'a working fluid can pass through this passage. 26 201038186 Cover

如顯示在圖8A,8B及8C,及圖ι〇的側視圖,一第二 基板可界^ -覆蓋板,或是蓋子,114,U4a(例如,包含一 錫-板(tin-plated)鋁合金),其被建構以包覆通道ιΐ9, M2 的一 ”頂部",該等通道藉由内部熱傳表面! 12界定。如顯示 在圖8A,8B及8C,-蓋子U4a可界定流體轉接件ιΐ5 , 其被建構W流動㈣合_組裂微通道散熱器至冷卻系統的 其他部分。例如,蓋子"4a可界定一入口耦接器"6及一 出口麵接器117(圖8A)。—蓋子n4a及—微通道散熱器基 板113(圖9)亦可界定—或是更多内部充氣冑123,124(圖 9)流動地鄰接-或是兩㈣器116,117。此充氣部可被被 建構以分配一工作於複數個内部流道i丨9之間。例如,蓋 子114a界定一入口充氣部U6a及一出口充氣部η?”通 過併入蓋子114a的一微通道散熱器,工作流體一般,按順 序的,從一入口耦接器116流動至入口充氣部U6a,通過 微流道119,通過出口充氣部U7a,及至出口耦接器ιΐ7。 微通道散熱器操作概要 如上方所註記者,在操作期間,一微通道散熱器11 〇 , 12〇可被熱地耦合至(例如,被定位鄰接或是擇一地,結合) —熱-散發裝置,諸如一電子零件42,44(圖2)。藉由熱-散 毛裝置所散發的熱Q】,Q2(圖2)可通過散熱器i 1〇,12〇的 一外部熱傳表面111,121(圖2),通過内部熱傳表面112及 傳入流經微通道散熱器的一工作流體(例如,一冷卻劑)。 當工作流體通過流道丨19及流經鰭片丨18,工作流體(例 27 201038186 透、對〜熱傳模式從内部熱傳 收熱(例如,平流及傳道、士如 予衣面112吸 L及傳導)。工作流體的實例為水,介雷f仆 物冷卻劑,NovecTM,p” 違敦化 „ , Rl34a,R22,及/或可使用其他致冷 钟,匕含向壓致冷劑。可選擇 7 、睬视从m m 芏夕哔分,取決於被 的特殊泵(未顯示)。此外,可選擇—工作流 取決於流體材料性質,諸如,例如,相變化的一潛 及流體的相變溫度如何隨壓力變化。例如,當—工;流體 蒸毛時’可增加在一封閉冷卻系統的一内部壓力。據此, 相變溫度隨壓力變化可為選擇一工作流體的因子。在一些 實例中,可使用對於寬廣的壓力範圍具有一相變溫度少= 大賴氏八十五度的流體。例如,此一流體對於寬廣的壓 力把圍(例如,大約1大氣壓,正負百分之二十),其相變溫 度大於大約攝氏40度及小於大約攝氏45。當冷卻一電子裝 置在小於裝置的上臨界溫度時,此—流體可更類似於沸 騰。因此’可改變結合一給定的冷卻系統所使用的特定冷 卻劑。 HFE7000在大約攝氏35度沸騰(在i大氣 絕對壓力),及在大約攝氏5〇度及大約攝氏6G度之間(在大 約1.2及大約1.6大氣絕對壓力之間)。hfe7〇〇〇具有一蒸 發潛熱量測大約14議gK。可使用其他工作流體結合所揭 示的微通道散熱器’諸如’例如,纟。一工作流體,當其 從一微通道熱交換器110, 120通過,攜帶從内部熱傳:面 112所吸收的熱,如上文所敘述。藉由工作流體在微通道熱 交換器110, 12〇所吸收的熱可在冷卻系統的另一部分從流 28 201038186 體去除(例如,從一冷凝器130 ’(圖2))及因此提供f置 44持續,連續的冷卻。 置2, 大置的熱可藉由許多工作流體吸收’當熱^,q“皮吸 收時,該等工作+ 寻L持在液相。儘管如此,許多流體具 能轉熱(亦即,在特定塵力下一單位質量的流體從液 w⑨態(蒸氣)所需的能量),或是凝結潛熱(亦即,在 特疋壓:下-單位質量的流體從氣態(蒸氣)轉變成液態所 ❹ 需的能量)共同地在此稱作為一,,潛熱或是相變化",苴2 流體的比熱(亦即,在—特定溫度及厂堅力的一單位質量❹ 體改變一單位溫度所需要的能量)。由於許多流體在一實二 上地恒定溫度從液體改變為氣相’具有一高潛熱或是相變 化的流體可以相對高的速率吸收能量同時維持在—實質上 地怪定的溫度。當-蒸發流體冷凝時,流體的内能一切 content)根據流體的凝結潛熱而下降。據此,在蒸發期間所 茜收的熱可藉由冷凝流體去除。 微通道散熱器,在其中至少一些工作流體在正常操作 期間中蒸發在此稱作為「二相」微通道散熱器。散熱器, 在其中沒有(或是不顯著的量)工作流體在正常操作期間基 發稱作為「單相」散熱器。 … 如上為所註記者,微通道散熱器110,120可操作在二 相「模式」。雖然稱作為"二相"散熱器,該等微通道散Μ no, m可操作在一單相或是二相模式。例士口,一冷卻劑 在相對地高冷卻劑流率及/或當曝露在相對地低的分散熱通 量下可能維持在其液相。在此情況中,微通道散熱器⑽, 29 201038186 120操作為一單相散熱器。假使冷卻劑流率是足夠低及/戋 將被散發的熱通量是足夠地大的,液體冷卻劑可達到其彿 點同時仍流過散熱器110, 120,及發生流動沸騰。此導致 散熱器110,120操作為二相散熱器。在操作期間,在此二 相模式,與冷卻劑從液體至氣體的過渡相關的潛熱交換可 更有效地從二相微通道散熱器移除熱。 可使用二相微通道散熱器以達成各種優勢。由於液體_ 至-氣體相變的潛熱可允許在液體内蒸發液體以低的溫度梯 度吸收大量的熱而可達成有效的冷卻。 鰭片構形 微流道119可為形成在一底座内的一連串的平行,對 稱,矩形截面微-溝槽,或是凹處。微流道丨19具有一寬度 及其藉由相對的通道壁118’ 118a界定,相對的通道壁亦具 有一寬度及高度。微流道119可能未大於微尺度等級。例 如,對於某些具體實施例,微流道寬度的範圍可從數十至 一千微米。較小的寬度亦是可能的。通道壁丨18可具有一 厚度在-百微求範圍内’—高度在數百微米範圍内。然而, 對於微流道119其他通道截面,寬度,高度,通道方向是 可能的。 一雖然顯示在圖9, 9A及1〇的微通道119為實質上地平 订及對稱的(例如,具有矩形截面),_些微通道非為平行, =性:對稱’及/或是矩形的。例如,一微流道122可具有 或是更多截面尺度沿著微流道的—流向長度改變。再 者’在相同基板,㈣器,或是冷卻系統中,一微流道可 30 201038186 較另-微流道為尺寸上不㈣。在其他具體實施例中,微 流道可寶曲及/或不垂直於入口或是出口。賢雖然圖24 描述冷凝器緒片通道,—微流道119可彎曲通過—或是更 多轉彎處及/或是可沿著—流向流動方向逐漸變得尖細。As shown in the side views of Figures 8A, 8B and 8C, and Figure ι, a second substrate can be bound to the cover plate, or cover, 114, U4a (e.g., comprising a tin-plated aluminum Alloy), which is constructed to cover a "top" of the channels ιΐ9, M2, which are defined by an internal heat transfer surface! 12. As shown in Figures 8A, 8B and 8C, the cover U4a defines the fluid transfer. The connector ιΐ5 is constructed to flow (four) _ split the microchannel heat sink to other parts of the cooling system. For example, the cover "4a can define an inlet coupler"6 and an exit face connector 117 (Fig. 8A) - The cover n4a and the microchannel heat sink substrate 113 (Fig. 9) may also be defined - or more internal inflatable ports 123, 124 (Fig. 9) flowably adjacent - or two (four) devices 116, 117. The inflator can be configured to dispense a work between the plurality of internal flow passages i. 9. For example, the cover 114a defines an inlet inflation portion U6a and an outlet inflation portion η"" by dissipating heat through a microchannel incorporated into the cover 114a The working fluid, in general, flows from an inlet coupler 116 to the inlet plenum U6a through the microfluid Lane 119, through outlet plenum U7a, and to outlet coupler ΐ7. Microchannel Heatsink Operation Overview As noted above, during operation, a microchannel heatsink 11 〇, 12 〇 can be thermally coupled (eg, positioned adjacent or alternatively, combined)—heat-distribution A device, such as an electronic component 42, 44 (Fig. 2). By means of the heat Q emitted by the heat-spraying device, Q2 (Fig. 2) can pass through the internal heat transfer surface 112 and through an external heat transfer surface 111, 121 (Fig. 2) of the heat sink i 1 , 12 A working fluid (eg, a coolant) that flows through the microchannel heat sink. When the working fluid passes through the flow channel 丨19 and flows through the fin 丨18, the working fluid (Example 27 201038186 is transparent, and the heat transfer mode heats up from the inside heat transfer (for example, advection and evangelism, and the shovel 112) And conduction). Examples of working fluids are water, sulphide coolant, NovecTM, p" 违 „ , Rl34a, R22, and / or other chilling clocks, 匕 containing pressure refrigerant. Choice 7, contempt from mm, depends on the particular pump (not shown). Alternatively, the workflow depends on the nature of the fluid material, such as, for example, a phase change and a fluid phase change. How the temperature changes with pressure. For example, when the fluid is steamed, it can increase an internal pressure in a closed cooling system. According to this, the phase change temperature with pressure can be a factor for selecting a working fluid. In the case of a wide pressure range, it is possible to have a fluid having a phase transition temperature of less than eighty-five degrees. For example, this fluid is surrounded by a wide pressure (for example, about 1 atmosphere, plus or minus twenty percent). ), its phase change temperature Greater than about 40 degrees Celsius and less than about 45 degrees Celsius. When cooling an electronic device at less than the upper critical temperature of the device, the fluid can be more similar to boiling. Thus 'can change the specific cooling used in conjunction with a given cooling system. HFE7000 boils at approximately 35 degrees Celsius (at i atmosphere absolute pressure) and between approximately 5 degrees Celsius and approximately 6 degrees Celsius (between approximately 1.2 and approximately 1.6 atmosphere absolute pressure). An evaporation latent heat is measured at about 14 gK. Other working fluids can be used in conjunction with the disclosed microchannel heat sink 'such as ', for example, a working fluid, when it passes from a microchannel heat exchanger 110, 120, carries it from Internal heat transfer: heat absorbed by face 112, as described above. Heat absorbed by the working fluid in microchannel heat exchangers 110, 12 can be removed from stream 28 201038186 in another portion of the cooling system (eg, Continuous cooling is continued from a condenser 130' (Fig. 2)) and thus provides a set of 44. 2, the large heat can be absorbed by many working fluids 'when the heat ^, q' is absorbed by the skin, Waiting for work + finding L in the liquid phase. However, many fluids can turn heat (that is, the energy required for a unit mass of fluid from the liquid w9 state (vapor) at a specific dust force), or latent heat of condensation. (i.e., the energy required to convert a specific mass of fluid from a gaseous state (vapor) to a liquid state) is collectively referred to herein as ", latent heat or phase change", 苴2 fluid Specific heat (i.e., the energy required to change a unit temperature in a unit mass of a specific temperature and plant strength). Since many fluids change from a liquid to a gas phase at a constant temperature on a solid two, there is a high Latent heat or phase change fluids can absorb energy at a relatively high rate while maintaining a temperature that is substantially ambiguous. When the evaporating fluid condenses, the internal energy of the fluid drops according to the latent heat of condensation of the fluid. Accordingly, the heat collected during the evaporation can be removed by the condensing fluid. A microchannel heat sink in which at least some of the working fluid evaporates during normal operation is referred to herein as a "two phase" microchannel heat sink. The heat sink, in which there is no (or insignificant amount) of working fluid, is referred to as a "single phase" heat sink during normal operation. ... As noted above, the microchannel heatsinks 110, 120 can operate in a two-phase "mode". Although referred to as the "two-phase" heatsink, these microchannels can be operated in a single-phase or two-phase mode. In the case of a mouth, a coolant may be maintained in its liquid phase at a relatively high coolant flow rate and/or when exposed to a relatively low dispersion heat flux. In this case, the microchannel heat sink (10), 29 201038186 120 operates as a single phase heat sink. If the coolant flow rate is sufficiently low and / 戋 the heat flux to be dissipated is sufficiently large, the liquid coolant can reach its point of view while still flowing through the radiators 110, 120, and flow boiling occurs. This causes the heat sinks 110, 120 to operate as a two-phase heat sink. During operation, in this two-phase mode, latent heat exchange associated with the transition of the coolant from liquid to gas can more efficiently remove heat from the two-phase microchannel heat sink. Two-phase microchannel heat sinks can be used to achieve various advantages. The latent heat due to the liquid-to-gas phase transition allows for efficient cooling by evaporating the liquid within the liquid to absorb a large amount of heat at a low temperature gradient. Fin Configuration The microchannels 119 can be a series of parallel, symmetrical, rectangular cross-sections, or recesses formed in a base. The microchannel turns 19 have a width and are defined by opposing channel walls 118' 118a, and the opposing channel walls also have a width and height. The microchannels 119 may not be larger than the microscale scale. For example, for certain embodiments, the microchannel width can range from tens to thousands of microns. Smaller widths are also possible. The channel niche 18 can have a thickness in the range of - hundred micro-requisites - the height is in the range of hundreds of micrometers. However, for microchannels 119 other channel sections, widths, heights, channel directions are possible. Although the microchannels 119 shown in Figures 9, 9A and 1 are substantially planar and symmetrical (e.g., having a rectangular cross section), the microchannels are not parallel, = sex: symmetrical 'and/or rectangular. For example, a microchannel 122 may have a change in flow direction length along the microchannel or more cross-sectional dimensions. Furthermore, in the same substrate, (four) device, or in the cooling system, one micro-channel can be 30 201038186 than the other micro-channel is not (4). In other embodiments, the microchannels may be curved and/or not perpendicular to the inlet or outlet. Although Figure 24 depicts the condenser channel, the microchannel 119 can be bent through—or more turns and/or can taper along the flow direction.

除微流道119之外,内部熱傳表φ 112可界定-或是 更多交叉連接通道丨22(圖9,9A* 1G)n㈣在微流 道H9内沸騰時(例如,從液體至氣體的相變),交又連接通 道122可至少部分地平衡在工作流體内的一壓力場。交叉 連接通道122允許瘵氣及/或是液體流動在鄰接的微流道 119之間(例如,橫向於—般流向流動方向)。此局部的橫向 流動可實質上地平衡在微流道119間的一冷卻劑壓力。結 果是’工作流體m 口 123以―實質上地均勻方式進 入微流道119’而非以一不均勻的方式進入微流道,如在缺 少交又連接通道114可能發生者。換言之,在缺少交又連 接通道122,-工作流體將傾向進入一低壓力梯度微流道 (諸如那些微通道中的工作流體未沸騰者)優於一鄰接的微 流道沿著其長度具有一較高的壓力梯度(諸如可引發沸 騰)。此一非均勻流場通過液壓地平行微流道可導致微流道 乾透及/或不穩定流動波動於各種微流道間,及藉此減少微 通道散熱器的冷卻效力。提供交又-連接微通道或是其他壓 力-平衡特徵可緩和(或是消除)乾透及不穩定流動波動(及其 等在效能上的有害效應)。此穩定的效能藉由圖32顯示的圖 表所指示,及將在下文更徹底地討論。 交叉連接通道122可具有特徵尺寸在大約1〇微米至大 31 201038186 約1000微来的等級。較小的特徵長度亦是可能的。偏離所 說明的交叉·連接通道幾何尺寸亦是可能的。例如,此交叉 連接通道可具有-變化的截面面積,及可被彎曲。交叉連 接通道122可為部分地藉由—蓋子m包覆,如顯示在圖 1 〇的等角視圖。 如顯不在圖9, 9A及1〇,交叉連接通道122可被橫向 地定向實質上地垂直於工作流體的一般流動方向241(圖 9A)(例如,工作流體一般流動於由微流道丨丨9所界定及由箭 號241所指示的一流向流動路徑)。一些交叉連接通道122, 諸如通道122a’部分地延伸橫越内部熱傳表面m的寬度 W1 (圖9及10)及/或與微流道11 9的部分交錯而非全部。其 他交又連接通道122延伸橫越寬度Wi及/或是與微流道n9 的全部交錯。在一些微通道散熱器11〇,12〇中,所有的交 叉連接通道1 22延伸橫越寬度w卜及在其他實例中,沒有 交叉連接通道延伸橫越寬度W1。交又連接通道122,122A 可沿著一藉由微流道119所界定的流向流動方向241(圖9A) 均勻地間隔(例如,在大約一毫米間隔),或是可沿著流向流 動方向非均勻地間隔開(例如,實質上隨機地)。 入口 123及出口 124對應在二相微通道散熱器的個別 的入口及出口端部之個別的充氣部116a,117a及鄰接入口 及出口耦接器116,117(圖8C)。入口 123及出口 124被分 別地建構,以分別地導入冷卻劑至微流道丨丨9及從微流道 11 9排出冷卻劑。因此,冷卻劑從入口 1 23沿著微流道119 流動至出口 124。換言之,微流道119被建構以攜帶冷卻劑, 32 201038186 其在入口 123及出口 124之間可存在—或是二相。 二相微通道散熱器110, 12〇亦可界定交叉連接通道 122, i22a。在-些實例中,交又連接通道122可為不長於 微尺度等級。例如,在-些具體實施例中,交叉連接通道 122可具有-寬度範圍在十至—千微米。較小的寬度亦是可 能的。雖然顯示為具有相同寬度及為矩形截面,對於交又 連接微通道122其他通道截面,寬度,高度,及通道方向 亦疋可能的。在-些具體實施例中,交又連接通道可非為 平行,線性,對稱,及/或是矩形。類似地,一些具體實施 例,交叉連接通道122可具有變化的寬度。例如,—特別 的交叉連接通道可具有-寬度沿著交叉連接通道的長度改 變。此外,一交叉連接通道122可不具有如另一交叉連接 通道的相同寬度。交叉連接通道122可使用覆蓋件板114, 或是蓋子114a被封閉。 冷部劑一般地在一流向流動方向241(圖9A)從入口 123 ◎ 机動至出口 124。如上文所註記者,可使用交叉連接通道 122至少部分地平衡一壓力場用於冷卻劑橫越複數個微流 道的部分的沸騰。交叉連接通道122允許在微流道122之 間的氣體及/或是液體連通。當二相微通道散熱器110,120 操作在一相模式,沸騰冷卻劑的壓力可沿著每一交叉連接 通道122 @ ★度平衡。才矣言之,壓力沿著每一交叉連接通 道122可為實質上地均勻。結果是,流動通過微流道1 ^ 9 的冷部劑的壓力橫越二相微通道散熱器(圖9)的寬度,W1, 的至^部分為被平衡的。對於一交叉-連接通道,諸如通 33 201038186 道1 22a ’濟騰冷卻劑的壓力橫越僅只二相微通道散熱器的 寬度的一部分爲被平衡的。因此,在一通道壁118a的一側 邊上的一交叉連接通道122a可具有較通道壁丨18a的相反側 邊上的父又-連接通道122 —不同的壓力。 如上文所討論者,交叉連接通道122可以各種間隔而 隔開及可被如此建構以沿著其等個別的長度平衡壓力。交 叉連接通道122的位置’長度’及其他特徵可取決於實行 而改變。在一些具體實施例中,交叉連接通道122可以較 大的間隔而隔開只要交叉連接通道丨22足夠地接近使得不 穩定的Μ力波動在散熱器的操作範圍是被減少或是消除。 在其他具體實施例中,交叉連接通道122可被更緊密地間 隔。然而’在此具體實施例中,理想的設置交叉連接通道 122足夠地遠離使得可維持冷卻劑流經微流道丨丨9之符合要 求的流動。 高長寬比特徵 如在此所使用者,「長寬比(aSl)ect rati〇)」意指第一維 度對第二維度的比例。例如,一流道(或是通道)可界定—矩 形截面,其具有一高度及一寬度。據此,流道的長寬比可 為微通道的高度對微通道的寬度的比例。 如在此所使用者,「高長寬比」意指一長寬比量測為 至少1 0:1。 如在此所使用者’ 「高長寬比微通道」意指界定—流 動截面的微通道具有一量測的高度及一量測的寬度,其中 量測的高度對量測的寬度的比例為至少1 〇: 1。例如,具有 34 201038186 一矩形流動截面量測為ο. 1毫米寬及丨〇毫米高的一微通道 具有10:1的長寬比,及因此被視為一高長寬比的微通道。 一些微通道散熱器的鰭片118界定高長寬比微通道。 如上文所述的散熱器的微通道,每一高長寬比微通道可在 流動周邊的相反側上藉由鄰接的,鳍片丨丨8,在底部側邊上藉 由一底座123(例如,基板113的一部分)及一蓋子114劃界。 參考圖11A,11B,12A及12B,顯示包含高長寬比微 通道的工作微通道散熱器110a,u〇b的概要視圖。如敘述 〇 於上文的微通道119,個別的散熱器1 i〇a,11〇b的每—微 通道119a,119b可縱向地延伸在一入口端部及一出口端部 之間在藉由高長寬比微通道所界定的一般流向流動方向。 至少一些鰭片118’a,11 8b界定一對應的交叉-連接開口(未 顯不)在其等之間延伸。交叉連接開口可被建構,如上文所 述’以流動地耦合鄰接的微流道119a,119b至另一個。此 交叉連接開口或是交叉連接通道,可相對於藉由微通道所 界定的流向流動方向橫向地延伸。 Q 一 在一些實例中,一交又連接開口例如,一交叉連接通 道,可具有一縱向尺寸(例如,在一流向流動方向)量測為在 大約1至大約3倍於一寬度w之間(圖u&12)的一高長 寬比微通道119a,U9b。交又連接開口(未顯示)可從鰭片的 一遠端向下地延伸朝向底座123 a,i23b。一些交叉連接開 口向下地延伸通過整個鰭片n8a,118b至個別的底座 23a 123b及些父叉連接開口向下地延伸通過少於整個 鰭片,諸如,例如’通過鰭片的大約25〇/〇,大約5〇%或是 35 201038186 大約75%。一些交叉連接開口界定一孔口通過鰭片,使得 鰭片的遠端部界定一連續的邊緣’及交叉連接開口延伸通 過鰭片118a ’ 118b的一部分在底座123a,123b及鰭片的遠 端部之間。 如在此揭示的其他微通道散熱器,一高長寬比微通道 散熱器的底座123a,123b可界定一實質上地平坦表面 111a,111b,其被建構以熱地耦合至藉由一封裝電子零件, 諸如一封裝半導體模所界定的一對應的實質上地平坦表 面。鰭片118a’ 118b及底座123a,123b可形成一單一構造 及可自一單一基板113a,113b形成,如下文參考此高長寬 比微通道散熱器的工作樣本所描述者。 工作樣本-高長寬比微通道散熱器 在二相微通道散熱器的一些工作具體實施例中,微流 道119,119a ’ 119b(圖8,9,11及12)界定形成在一基板 113内的一系列實質上地平行,對稱,矩形截面微-溝槽, 或是嵌壁式通道。微流道119 ’ 119a,119b可具有一寬度W 及個別的高度h! ’ hz(圖11及12)及是藉由個別的通道壁(或 是鰭片)118 ’ 118a,118b所界定,其界定一對應的高度及 鰭片厚度。通道壁I18, 118a’ 118b可具有一鰭片厚度為大 約一百微米的等級及一高度為數百微米的等級。 圖11及圖12顯示高長寬比微通道散熱器ii〇a,n 〇b 的個別的工作樣本的概要視圖’該高長寬比微通道散熱器 具有數個間隔的交叉連接件122流動地耦合鄰接的微通道 118a,118b,如上文所描述者。在每一工作樣本中,每一錯 36 201038186 片118a,118b量測大約為loo微米(或是大約0.1毫米)厚 及大約1 · 2宅米南(亦即,每一錯片具有大約12:1長寬比)。 在個別的鰭片118a,118b之間的每一微通道119a,119b 具有一寬度w量測大約為〇. 1毫米及一高度h!量測大約為 1.2毫米,因此界定一高長寬比微通道具有大約ΐ2·_1長寬 比。鰭片118a使用一微變形製程而形成。鰭片118b使用一 切削製程(skiving process)而形成。In addition to the microchannels 119, the internal heat transfer table φ 112 can define - or more cross-connect channels 22 (Fig. 9, 9A * 1G) n (d) boil in the microchannel H9 (eg, from liquid to gas) The phase change channel, the cross-connect channel 122 can at least partially balance a pressure field within the working fluid. The cross-connect channel 122 allows helium and/or liquid to flow between adjacent microchannels 119 (e.g., transverse to the direction of flow direction). This localized lateral flow can substantially balance a coolant pressure between the microchannels 119. The result is that the 'working fluid m port 123 enters the microchannel 119' in a substantially uniform manner rather than entering the microchannel in a non-uniform manner, such as in the absence of a crossover and the connecting channel 114 may occur. In other words, in the absence of the cross-connect channel 122, the working fluid will tend to enter a low pressure gradient microchannel (such as those in the microchannel that are not boiled) better than an adjacent microchannel having a length along its length. Higher pressure gradients (such as can cause boiling). This non-uniform flow field through the hydraulically parallel microchannels can cause the microchannel dry and/or unstable flow to fluctuate between the various microchannels and thereby reduce the cooling effectiveness of the microchannel heat sink. Providing cross-connected microchannels or other pressure-balancing features can alleviate (or eliminate) dry and unstable flow fluctuations (and their detrimental effects in performance). This stable performance is indicated by the graph shown in Figure 32 and will be discussed more thoroughly below. The cross-connect channel 122 can have a feature size of about 1 micron to a large 31 201038186 of about 1000 micron. Smaller feature lengths are also possible. It is also possible to deviate from the illustrated cross-connection channel geometry. For example, the cross-connect channel can have a varying cross-sectional area and can be bent. The cross-connect channel 122 can be partially covered by a cover m, as shown in the isometric view of Figure 1. As seen in Figures 9, 9A and 1B, the cross-connect channel 122 can be oriented transversely substantially perpendicular to the general flow direction 241 of the working fluid (Fig. 9A) (eg, the working fluid generally flows through the microfluidic channel). 9 defined and the first-class flow path indicated by arrow 241). Some of the cross-connect channels 122, such as the channels 122a', extend partially across the width W1 of the internal heat transfer surface m (Figs. 9 and 10) and/or are interleaved with portions of the microchannels 11 9 rather than all. Other cross-connect channels 122 extend across the width Wi and/or are interlaced with all of the micro-runners n9. In some of the microchannel heat sinks 11, 12, all of the cross-connect channels 1 22 extend across the width w. In other examples, no cross-connect channels extend across the width W1. The cross-connect channels 122, 122A may be evenly spaced (e.g., at intervals of about one millimeter) along a flow direction 241 (Fig. 9A) defined by the microchannels 119, or may be non-flow along the flow direction. Evenly spaced (eg, substantially randomly). Inlet 123 and outlet 124 correspond to individual plenums 116a, 117a and adjacent inlet and outlet couplers 116, 117 (Fig. 8C) at the respective inlet and outlet ends of the two phase microchannel heat sink. The inlet 123 and the outlet 124 are separately constructed to separately introduce the coolant to the microchannels 9 and to discharge the coolant from the microchannels 11 9 . Therefore, the coolant flows from the inlet 1 23 along the microchannel 119 to the outlet 124. In other words, the microchannel 119 is constructed to carry a coolant, 32 201038186 which may be present between the inlet 123 and the outlet 124 - or two phases. The two-phase microchannel heat sinks 110, 12A can also define cross-connect channels 122, i22a. In some examples, the cross-connect channel 122 may be no longer than the micro-scale level. For example, in some embodiments, the cross-connect channel 122 can have a width ranging from ten to one thousand microns. Smaller widths are also possible. Although shown to have the same width and a rectangular cross-section, it is also possible to cross-connect the other channels, widths, heights, and channel directions of the microchannels 122. In some embodiments, the cross-connect channels may be non-parallel, linear, symmetrical, and/or rectangular. Similarly, in some embodiments, the cross-connect channel 122 can have a varying width. For example, a particular cross-connect channel can have a width that varies along the length of the cross-connect channel. Additionally, a cross-connect channel 122 may not have the same width as another cross-connect channel. The cross-connect channel 122 can be closed using the cover panel 114 or the cover 114a. The cold pack is generally maneuvered from the inlet 123 ◎ to the outlet 124 in a first direction flow direction 241 (Fig. 9A). As noted above, the cross-connect channel 122 can be used to at least partially balance a pressure field for boiling of a portion of the coolant across a plurality of microchannels. The cross-connect channel 122 allows gas and/or liquid communication between the microchannels 122. When the two-phase microchannel heat sinks 110, 120 operate in a phase mode, the boiling coolant pressure can be balanced along each cross-connect channel 122 @. In other words, the pressure can be substantially uniform along each cross-connect channel 122. As a result, the pressure of the cold agent flowing through the microchannel 1^9 traverses the width of the two-phase microchannel heat sink (Fig. 9), and the portion of W1 is balanced. For a cross-connect channel, such as pass 33 201038186 track 1 22a 'the eton coolant's pressure traverses only a portion of the width of the two-phase microchannel heat sink to be balanced. Thus, a cross-connect channel 122a on one side of a channel wall 118a can have a different pressure than the parent-connection channel 122 on the opposite side of the channel wall 18a. As discussed above, the cross-connect channels 122 can be spaced apart at various intervals and can be constructed to balance pressure along their respective lengths. The position 'length' of the cross-connect channel 122 and other features may vary depending on the implementation. In some embodiments, the cross-connect channels 122 may be spaced apart by a relatively large spacing as long as the cross-connect channels 22 are sufficiently close such that unstable fluctuations in the operating range of the heat sink are reduced or eliminated. In other embodiments, the cross-connect channels 122 can be more closely spaced. However, in this particular embodiment, it is desirable to provide the cross-connect channel 122 sufficiently far apart that the desired flow of coolant through the microchannel 丨丨9 can be maintained. High Aspect Ratio Features As used herein, "aspect ratio (aSl) ect rati〇)" means the ratio of the first dimension to the second dimension. For example, a first-class track (or channel) can define a rectangular section having a height and a width. Accordingly, the aspect ratio of the flow channel can be the ratio of the height of the microchannel to the width of the microchannel. As used herein, "high aspect ratio" means that the aspect ratio is measured to be at least 10:1. As used herein, the term "high aspect ratio microchannel" means that the microchannel defining the flow section has a measured height and a measured width, wherein the measured height has a ratio of the measured width to at least one. 〇: 1. For example, a microchannel having a rectangular flow profile measured at 34 201038186 having a width of ο. 1 mm wide and a height of 丨〇 mm has a 10:1 aspect ratio, and thus is considered a high aspect ratio microchannel. The fins 118 of some microchannel heat sinks define high aspect ratio microchannels. As with the microchannels of the heat sink as described above, each of the high aspect ratio microchannels may be on the opposite side of the flow perimeter by abutting the fins 8 on the bottom side by a base 123 (eg, a substrate Part of 113) and a cover 114 are delimited. Referring to Figures 11A, 11B, 12A and 12B, a schematic view of a working microchannel heat sink 110a, u〇b comprising high aspect ratio microchannels is shown. As described above for the microchannels 119, each of the microchannels 119a, 119b of the individual heat sinks 1 i 〇 a, 11 〇 b can extend longitudinally between an inlet end and an outlet end. The general flow direction of the flow defined by the high aspect ratio microchannel. At least some of the fins 118'a, 11 8b define a corresponding cross-connect opening (not shown) extending between them. The cross-connect openings can be constructed to fluidly couple adjacent micro flow channels 119a, 119b to one another as described above. The cross-connect opening or cross-connecting channel may extend laterally relative to the flow direction defined by the microchannel. Q In some instances, a cross-connect opening, for example, a cross-connect channel, may have a longitudinal dimension (eg, in a first-rate flow direction) measured between about 1 and about 3 times a width w ( Figure u & 12) A high aspect ratio microchannel 119a, U9b. A cross-connect opening (not shown) may extend downwardly from a distal end of the fin toward the base 123a, i23b. Some of the cross-connect openings extend downwardly through the entire fins n8a, 118b to the individual bases 23a 123b and the parent fork connection openings extend downwardly through less than the entire fin, such as, for example, 'about 25 〇/〇 through the fins, About 5% or 35 201038186 is about 75%. Some of the cross-connect openings define an aperture through the fin such that the distal end of the fin defines a continuous edge 'and the cross-connect opening extends through a portion of the fin 118a ' 118b at the base 123a, 123b and the distal end of the fin between. As with other microchannel heat spreaders disclosed herein, the bases 123a, 123b of a high aspect ratio microchannel heat sink can define a substantially planar surface 111a, 111b that is configured to be thermally coupled to a packaged electronic component, A corresponding substantially planar surface, such as defined by a packaged semiconductor die. The fins 118a' 118b and the bases 123a, 123b can be formed in a single configuration and can be formed from a single substrate 113a, 113b, as described below with reference to the working sample of the high aspect ratio microchannel heat sink. Working Sample - High Aspect Ratio Microchannel Heatsink In some operational embodiments of a two phase microchannel heat sink, microchannels 119, 119a '119b (Figs. 8, 9, 11 and 12) are defined to be formed in a substrate 113. A series of substantially parallel, symmetrical, rectangular cross-section micro-grooves, or recessed channels. The microchannels 119' 119a, 119b can have a width W and individual heights h! 'hz (Figs. 11 and 12) and are defined by individual channel walls (or fins) 118' 118a, 118b, which Define a corresponding height and fin thickness. Channel walls I18, 118a' 118b can have a fin thickness of about one hundred microns and a height of hundreds of microns. 11 and 12 show schematic views of individual working samples of high aspect ratio microchannel heat sinks i〇a, n 〇b 'The high aspect ratio microchannel heat sink has a plurality of spaced cross connectors 122 that are fluidly coupled to adjacent microchannels 118a, 118b, as described above. In each working sample, each error 36 201038186 piece 118a, 118b is measured to be approximately loo microns (or approximately 0.1 mm) thick and approximately 1 · 2 homes south (ie, each piece has approximately 12: 1 aspect ratio). Each of the microchannels 119a, 119b between the individual fins 118a, 118b has a width w measuring approximately 〇. 1 mm and a height h! measuring approximately 1.2 mm, thus defining a high aspect ratio microchannel having Approximately ·2·_1 aspect ratio. The fins 118a are formed using a micro-deformation process. The fins 118b are formed using a skiving process.

數個交又連接件122延伸在鄰接的微通道119a,119b 〇 之間,藉此將鄰接的微通道彼此流動地耦合。工作樣本的 交又連接件122橫切進入預先存在的鰭片(例如,自一切削 技術成形的鰭片)。換言之’在鰭片11 8a,11 8b形成之後, 執行一微機械加工製程以铣出交又連接開口(未顯示,但類 似於通道122)延伸通過鰭片11 8a,11 8b。儘管如此,如申 請於2010年2月27曰的美國專利申請案第61/308,936號 及讓與于本申請案的受讓人所揭示者,鰭片n8b可使用一 切削製程成形以同時地形成鰭片11 8b及對應的交又連接 參考圖12A’每一鰭片118b是大約1〇〇微米(或是大約 0.1毫米)厚及大約1.2毫米向(亦即,從底座i23b延伸一長 度h!量測為大約ι·2毫米。每一微通道i19t)具有一寬度w 量測為大約〇· 1毫米及一咼度h量測為大約】.2毫米,界定 一南長寬比微通道具有大約12:1長寬比。鰭片n8b顯示具 有由切削製程所導致的一微曲率’形成微通道n 9b具有一 對應的稍微地弯曲的截面。弧長h2大約相同於對於工作樣 37 201038186 本的微曲率的高度hl。在一些實例中,微通道丨丨9b的截面 可具有更多曲率,及弧長!^可為實質上地大於高度^。在 這些實例中,微通道長寬比可取決於弧長度h而界定。 安裝特徵 如顯示在圖8A,8B及8C,一微通道散熱器的一部分, 諸如蓋子114a’可界定一或是更多接腳28〇,其被建構以鎖 固微通道散熱器至一冷卻系統底盤6〇(圖4A)及/或以可操 作地定位微通道散熱器110,120相對於一基板46(圖4a) 及安裝至此的電子零件42,44。參考圖8C,接腳280可包 含一狹窄部分281被建構以延伸通過底盤24()及/或基板 46。接腳280亦可界定一或是更多肩部282,其被建構以分 別地卡合或是靜置停抵靠底盤240及/或是基板46,藉此限 制接腳280的狹窄部分281在此延伸通過的程度。每一接 腳280的遠端部283(相對於微通道散熱器的本體)可界定一 開口 284及一對應的嵌壁式開口 285於接腳的長度方向延 伸(例如,接腳的長度的一部分)。嵌壁式開口 285可相配地 谷納一螺栓,一螺釘或是具有一頭部的其他緊固裝置諸如 —有頭螺栓(headed stud)延伸通過一保持器夹71,72(圖 4A)。此一緊固件71a_d,72a_d可保持接腳28〇相對於底盤 60及/或基板46,接腳通過其等延伸。在一些具體實施例 中,嵌壁式開口 285可被刻螺紋以便螺紋地卡合—螺釘本 體的對應螺紋。 微通道散熱器的摘要 此外,微流道119(圖9)及交叉連接通道122的妗人允 38 201038186 許減少的壓力波動及沸騰液體冷卻劑的穩定流動。這些特 性能夠使二相微通道散熱器11 〇穩定地及重複地散發高熱 通量’如圖3所指示,特別是從小面積。二相微通道散熱 器110’ 120亦可具有低熱阻以熱散發’大的表面積對體積 比,小散熱器重量及體積,小液體冷卻劑存量(inventory), 及一較小流率需求。亦可達成在流動方向更均勻溫度變化 及較咼對流熱傳係數。因此二相微通道散熱器可適用於高 動力费度電子裝置的熱管理’包含但不限制於諸如高效能 0 微處理器的裝置,雷射二極體陣列,在雷達系統内的高動 力零件’在動力電器内的切換零件,x射線單色器晶體(x_ray monochromator crystal),航空電子動力模組,及太空船動力 零件。 冷凝器 如上文參考圖2所註記者,一冷卻系統1〇〇可包含_ 冷凝器1 3 0被建構以在冷卻系統從工作流體去除熱至 在環境的一流體。在一些實例中,冷凝器可去除熱q 至 Ο 來自環丨兄的空氣。在其他實例中’冷凝器可去除熱Q 至 另一冷卻系統,諸如,例如,一氣體-壓縮冷凍循環,一單 相冷卻循環(例如,一水冷凍器可供應冷凍的水至熱地耦接 至冷凝器的一冷板),或是甚至一個第二二相冷卻循環具有 一蒸發器熱地麵合至冷凝器。 如在下文更徹底描述者,此冷凝器丨3〇可容納來自— 或是更多微通道散熱器110, 12〇的加熱工作流體(例如,在 一過冷(sub-cooled)液相,在一飽和液相及氣相,或是在一 39 201038186 氣相卜戈是另—零件(例如,一歧管)流動地麵合在—微通 道散熱器及冷凝器之間。 如顯示在圖13,藉由實例,一冷凝器u〇a可包含—層 壓構造。例如’—第一基板131可界定一内部熱傳表面 13 2 a,從工作流體(未顯示)而來的熱透過該内部熱傳表面通 過及-外部熱傳表面133,熱Q_可通過該外部熱傳表面傳 至環境(例如,一環境流體或是另一物體,諸如,例如,具 有一氣冷式散熱器162之熱交換器,作為一實例)。内部表 面132a可界定_或是更多錢式區域,該區域界定一或是 更多流道,工作流體可通過該等流道透過内部熱傳表面 132a以去除熱(例如,對流地)。内部表面n2a可界定複數 個錯片,如顯示在圖24之冷凝器板23〇a。 一第二基板,或是蓋子,135可配合地卡合第一基板 131以便包覆嵌壁式區域132a及界定所包覆的冷凝器流 道。蓋子135亦可界定一内部熱傳表面136,通過該内部熱 傳表面從工作流體的熱可傳遞至一外部熱傳表面137。在一 些實例中,熱可通過表面i 37傳遞至環境(例如,至一散熱 器或是其他冷卻系統)。如表面133,蓋子135的外部熱傳 表面137可被直接地暴露至一環境流體,諸如空氣a!,或 是可熱地柄合至—熱交換器,諸如—氣冷式散熱器162(如 顯示’例如’在圖15)。蓋子135可包含一散熱器底座,及 鰭片或是其他延伸表面(未顯示)可自此延伸用於促進與環 境流體101的熱交換(如下文參考圖16更徹底地描述者 例如’環境流體可通過此延伸表面之間及吸收由卫作流體 201038186 去除的熱。 内部地,冷凝器130a可界定一入口充氣部138及/或是 一出口充氣部13 9分別地流動地耦合流道與一或是更多入 口 141a及/或是出口 141b辆接器。此充氣部138,139可分 配工作流體於複數流道間,或從複數流道收集工作流體, it供一流動過渡區在流道和入口及/或出口輕接器1 4 1 a, 141b之間。 一冷凝器可界定一單一連續流道,諸如一迂迴通道流 〇 動地耦合至複數個微通道散熱器。擇一地,如圖2所指示, 一冷凝器可界定複數個流道區域1 32,1 34對應每一個別的 微通道散熱器110,120。例如,參考圖2 , —冷凝器130 可界定一第一流道區域132對應第一微通道散熱器11()及 一第二流道區域134對應第二微通道散熱器12〇。在此一實 施例中,雖然可能發生一標稱(n〇minal)淨熱交換在流動區 域之間,如藉由傳導通過冷凝器板,對於每一流道區域的 一主要熱傳路徑可為從在每一區域1 3 2,1 3 4的工作流體至 〇環境。 圖14概要地顯示用於第一流道區域(或是冷凝器部 分)13 2及第二流道區域1 3 4的相對佈置的兩替代構形。在 「系統A」構形中’流道區域132,134被串聯的冷卻(如顯 示在圖15及16的構形)。換言之,一環境流體1〇1(在圖14A 標示為「空氣流」)可在通過熱交換器1 6 2鄰接第二流道區 域134的一部分之前’通過熱交換器鄰接第一流道區域132 的一部分。結果是,在圖14A的系統a構形,第二流道區 41 201038186 域1 34是被曝露至藉由第一流道區域132加熱的一環境流 體(例如,空氣)。在一些實例中’冷凝器部分132,134的 此串聯冷卻提供對於下游(例如’第二)流道區域134的不充 足冷卻。 在顯示於圖14 A的「系統B」構形中,流道區域1 3 2, Π4是被並聯的冷卻。換言之,第一流道區域132是鄰接一 熱交換器,或是冷卻器的一第一部分及第二流道區域134 是鄰接熱交換器的一第二部分。冷卻器的第一及第二部分 可平行於彼此流動地耦合。具有此一構形,環境流體的第 一流通過鄰接冷卻器的第一部分及環境流體的第二流通過 鄰接冷卻器的第二部分。當其等通過個別的熱交換器部分 時’第一流及第二流可維持實質上地彼此隔離。在此一構 形由於環*兄流體的第一流及環境流體的第二流維持實質 ^地隔離,流道區域132’ 134兩者未實質上地暴露至一已 經藉^其他流道區域預熱的環境流動場。此平行冷卻可使 用斤早熱交換器(或是冷卻器)平衡在第一流道區域132 及第=流道區域134之間(例如,提供相似的熱傳速率)的冷 二=及系統㈣形中’冷凝器130及散熱器162(圖 般流動方==反向·流熱交換P換言之,環境流體的一 域132, 13 4相反於通過冷凝器⑽(例如,通過流道區 換器可實?的工作流體之-般流動方向。此-反向流熱交 此實例中地改善在卫作流體及環境流冑⑻以氣,在 )之間的熱傳速率。換言之,爲提供從卫作流體至 42 201038186A plurality of interconnecting members 122 extend between adjacent microchannels 119a, 119b, whereby the adjacent microchannels are fluidly coupled to one another. The cross-connecting member 122 of the working sample is transected into pre-existing fins (e.g., fins formed from a cutting technique). In other words, after the fins 11 8a, 11 8b are formed, a micromachining process is performed to mill the cross-connect openings (not shown, but similar to the channels 122) through the fins 11 8a, 11 8b. Nonetheless, as disclosed in U.S. Patent Application Serial No. 61/308,936, the entire disclosure of which is incorporated herein by reference in its entirety, the entire entire entire entire entire entire entire entire disclosure Forming fins 11 8b and corresponding intersections and connections. Referring to FIG. 12A', each fin 118b is approximately 1 μm (or approximately 0.1 mm) thick and approximately 1.2 mm (ie, extending a length from the base i23b). h! The measurement is about ι·2 mm. Each microchannel i19t) has a width w measured as approximately 〇·1 mm and a h度 h measured as approximately ..2 mm, defining a south aspect ratio micro The channel has an aspect ratio of approximately 12:1. The fins n8b are shown to have a micro-curvature caused by the cutting process. The microchannels n 9b have a corresponding slightly curved cross section. The arc length h2 is approximately the same as the height hl of the micro-curvature for the working sample 37 201038186. In some instances, the cross section of the microchannel 丨丨9b can have more curvature and arc length! ^ can be substantially greater than height ^. In these examples, the microchannel aspect ratio can be defined by the arc length h. Mounting Features As shown in Figures 8A, 8B and 8C, a portion of a microchannel heat sink, such as cover 114a', can define one or more pins 28〇 that are configured to lock the microchannel heat sink to a cooling system The chassis 6A (Fig. 4A) and/or operatively positions the microchannel heatsinks 110, 120 relative to a substrate 46 (Fig. 4a) and the electronic components 42, 44 mounted thereto. Referring to Figure 8C, pin 280 can include a narrow portion 281 that is configured to extend through chassis 24() and/or substrate 46. The pin 280 can also define one or more shoulders 282 that are configured to snap or rest against the chassis 240 and/or the substrate 46, thereby limiting the narrow portion 281 of the pin 280. The extent to which this extension is passed. The distal end portion 283 of each pin 280 (relative to the body of the microchannel heat sink) can define an opening 284 and a corresponding recessed opening 285 extending in the length direction of the pin (eg, a portion of the length of the pin) ). The recessed opening 285 can be mated with a bolt, a screw or other fastening means having a head such as a headed stud extending through a retainer clip 71, 72 (Fig. 4A). The fasteners 71a-d, 72a-d can hold the pins 28A relative to the chassis 60 and/or the substrate 46 through which the pins extend. In some embodiments, the recessed opening 285 can be threaded to threadably engage a corresponding thread of the body of the screw. Summary of the microchannel heat sink In addition, the microchannel 119 (Fig. 9) and the cross-connect channel 122 allow for reduced pressure fluctuations and stable flow of boiling liquid coolant. These characteristics enable the two-phase microchannel heat sink 11 to stably and repeatedly emit high heat fluxes as indicated in Figure 3, particularly from a small area. The two-phase microchannel heat sink 110' 120 can also have low thermal resistance to heat dissipation 'large surface area to volume ratio, small heat sink weight and volume, small liquid coolant inventory, and a small flow rate requirement. It is also possible to achieve a more uniform temperature change in the flow direction and a higher convective heat transfer coefficient. Therefore, the two-phase microchannel heatsink can be applied to the thermal management of high-powered electronic devices 'including but not limited to devices such as high-performance 0 microprocessors, laser diode arrays, high-power parts in radar systems 'Switching parts in power electronics, x-ray monochromator crystals, avionics modules, and spacecraft power parts. Condenser As noted above with reference to Figure 2, a cooling system 1 can include a condenser 1300 constructed to remove heat from the working fluid to a fluid in the environment. In some instances, the condenser removes heat q to 空气 air from the ring brother. In other examples, the 'condenser can remove heat Q to another cooling system, such as, for example, a gas-compression refrigeration cycle, a single-phase cooling cycle (eg, a water freezer can supply frozen water to thermally coupled) A cold plate to the condenser, or even a second two-phase cooling cycle with an evaporator heat to the condenser. As described more fully below, the condenser 〇3〇 can accommodate heated working fluids from - or more of the microchannel heat sinks 110, 12 (eg, in a sub-cooled liquid phase, at A saturated liquid phase and a gas phase, or a gas phase in a 39 201038186 is another part (for example, a manifold) flowing between the micro-channel radiator and the condenser. As shown in Figure 13 By way of example, a condenser u〇a may comprise a laminated structure. For example, the first substrate 131 may define an internal heat transfer surface 13 2 a through which heat from a working fluid (not shown) is transmitted. The heat transfer surface passes through the - external heat transfer surface 133 through which the thermal Q_ can be transferred to the environment (eg, an ambient fluid or another object such as, for example, a heat having an air cooled radiator 162) The exchanger, as an example. The inner surface 132a can define a _ or more money zone that defines one or more flow paths through which the working fluid can pass through the internal heat transfer surface 132a to remove heat. (for example, convection). Internal surface n2a is delimited A plurality of splicing pieces, such as the condenser plate 23A shown in Fig. 24. A second substrate, or cover, 135 can cooperatively engage the first substrate 131 to cover the recessed area 132a and define the cladding The condenser flow path. The cover 135 can also define an internal heat transfer surface 136 through which heat from the working fluid can be transferred to an external heat transfer surface 137. In some instances, heat can pass through the surface i 37 Transfer to the environment (eg, to a heat sink or other cooling system). As with surface 133, the outer heat transfer surface 137 of cover 135 can be directly exposed to an ambient fluid, such as air a!, or a heat handle A heat exchanger, such as an air-cooled heat sink 162 (as shown, for example, in Figure 15). The cover 135 can include a heat sink base, and fins or other extended surfaces (not shown). The extension serves to promote heat exchange with the ambient fluid 101 (as described more fully below with reference to Figure 16 for example, 'the ambient fluid can pass between this extended surface and absorb heat removed by the wise fluid 201038186. Internally, the condenser 130a Definable The inlet plenum 138 and/or an outlet plenum 13 9 respectively fluidly couple the flow passage with one or more inlets 141a and/or outlets 141b. The plenums 138, 139 can distribute the working fluid to The working fluid is collected between the plurality of flow paths or from the plurality of flow paths, and it is supplied to a flow transition zone between the flow path and the inlet and/or outlet light connectors 1 4 1 a, 141b. A condenser can define a single continuous flow A channel, such as a bypass channel, is turbulently coupled to a plurality of microchannel heat sinks. Alternatively, as indicated in Figure 2, a condenser can define a plurality of flow channel regions 1 32, 1 34 for each individual micro. Channel radiators 110, 120. For example, referring to FIG. 2, the condenser 130 can define a first flow path region 132 corresponding to the first microchannel heat sink 11() and a second flow channel region 134 corresponding to the second microchannel heat sink 12A. In this embodiment, although a nominal (n〇minal) net heat exchange may occur between the flow regions, such as by conduction through the condenser plate, a primary heat transfer path for each flow channel region may be Working fluid in each zone 1 3 2, 1 3 4 to the environment. Figure 14 schematically shows two alternative configurations for the relative arrangement of the first flow path region (or condenser portion) 13 2 and the second flow channel region 1 34. In the "System A" configuration, the flow path regions 132, 134 are cooled in series (as shown in the configurations of Figures 15 and 16). In other words, an ambient fluid 1 〇 1 (labeled "air flow" in FIG. 14A) may abut the first runner region 132 through the heat exchanger before passing through a portion of the second runner region 134 through the heat exchanger 16 2 2 portion. As a result, in the configuration of system a of Figure 14A, second runner region 41 201038186 region 134 is exposed to an ambient fluid (e.g., air) heated by first runner region 132. This series cooling of the condenser sections 132, 134 in some instances provides insufficient cooling for downstream (e. g., 'secondary) runner zones 134. In the "System B" configuration shown in Figure 14A, the runner regions 1 3 2, Π 4 are cooled in parallel. In other words, the first flow path region 132 is adjacent to a heat exchanger, or a first portion of the cooler and the second flow path region 134 are adjacent a second portion of the heat exchanger. The first and second portions of the cooler are fluidly coupled in parallel with each other. With this configuration, the first stage of the ambient fluid passes through a second portion of the adjacent cooler and a second stream of ambient fluid that abuts the second portion of the cooler. The first stream and the second stream may remain substantially isolated from each other as they pass through the individual heat exchanger portions. In this configuration, since the first flow of the ring fluid and the second flow of the ambient fluid remain substantially isolated, the flow path regions 132' 134 are not substantially exposed to one that has been preheated by other flow channel regions. Environmental flow field. This parallel cooling can be used to balance the cold two = and system (four) shapes between the first flow path region 132 and the third flow channel region 134 (e.g., to provide similar heat transfer rates) using an early heat exchanger (or cooler). In the 'condenser 130 and the radiator 162 (the flow side == reverse · flow heat exchange P in other words, a field of environmental fluid 132, 13 4 is opposite to the condenser (10) (for example, through the flow zone converter) The normal flow direction of the working fluid. This - reverse flow heat transfer improves the heat transfer rate between the working fluid and the ambient flow (8) with gas, in the example. In other words, to provide the Guardian Working fluid to 42 201038186

環境流體的高整體熱傳速率,工作流體通過流道區域⑴ 及134每-者的流動方向可為與空氣流的流動方向相反(例 如’工作流體可從右至左流動及空氣流可從左至右流動, 如由顯示在圖14的“ A及系統B構形的箭頭所指示 。參考圖15及16,顯示替代的冷凝器及冷卻器(熱交換 器)構形。參考圖15,-冷凝器板i鳥可為一分離的零件 與冷卻器祕(例如’一氣冷式散熱器⑽)熱接觸。例如, 如顯示在Μ 15, -散熱器162b的底座構件i6ib及一第一 冷凝器基板13ib(類似於顯示在圖13的層職板ΐ3ι)可熱 地耦合於彼此(例如,一毗連的關係具有熱介面材料的薄膜 (例如’熱潤滑脂,焊料#)142b佈置在之間)。氣冷式散孰 器 162b的底座構件161b可包含一第一表面 164b用於配合 地卡合冷凝器板l30b的一對應的相對表面264,例如,每 一表面164b,264可為實質上地平坦。一熱介面材料M2c(例 如,一熱地傳導潤滑脂或是膏’焊料或是一合成材料,諸The high overall heat transfer rate of the ambient fluid, the flow direction of the working fluid through the flow channel regions (1) and 134 may be opposite to the flow direction of the air flow (eg 'working fluid can flow from right to left and air flow can be left from left Flow to the right, as indicated by the arrows shown in the "A and System B configurations of Figure 14. Referring to Figures 15 and 16, an alternative condenser and cooler (heat exchanger) configuration is shown. Referring to Figure 15, - The condenser plate i can be in thermal contact with a cooler component (eg, an air-cooled heat sink (10)). For example, as shown in FIG. 15, a base member i6ib of the radiator 162b and a first condenser The substrate 13ib (similar to the layer plate ΐ3ι shown in Fig. 13) may be thermally coupled to each other (e.g., a film having a thermal interface material (e.g., 'thermal grease, solder #) 142b disposed therebetween) The base member 161b of the air-cooled diffuser 162b can include a first surface 164b for matingly engaging a corresponding opposing surface 264 of the condenser plate 130b, for example, each surface 164b, 264 can be substantially Flat. A thermal interface material M2c (for example, Thermally conductive grease or paste 'solder or a synthetic material, such

如-傳統的潤滑脂或是膏’具有懸浮的熱地傳導粒子,或 是「填充材料」)可被施加於在配對表面164b,264之間的 面以改善在表面之間的熱耗合。仍參考圖Μ,第一及第 二流道區㉟132b’ 134b每-對應—個別的微通道散熱器, 及可被流動地耦合至一個別的微通道散熱器,例如,類似 於描述於上文參考圖2的方式。一蓋子135b除此之外可包 覆流動區域1 32b ’ 1 34b的打開頂部部分。 如顯示在圖16,一冷凝器130c可與一冷卻器16〇c結 合。例如,一散熱器的一底座13 lc可界定分離的流動區域 43 201038186 132c’ 134c’類似於參考圖15描述於上文的流動區域132b, 134b。嵌壁式流道132c,134c在單一構造131c内可流動地 柄合至個別的微通道散熱器丨1 〇,丨2〇(圖2)。顯示在圖i 6 替代的冷凝器構造130c消除一分離的冷凝器基板丨3 lb及一 散熱器底座164b(圖15)之一’及進一步減少在冷凝器通道 13 2c ’ 134c及冷卻器子組件的鰭片162c之間的整體厚度。 對於一固定整體南度的冷凝器及鰭片組件13〇b,及 13 0c l62c,此一溥的设計允許韓片162c相較於顯示在圖 15的鰭片162b在長度的增加。在一些實例中,鰭片16仏 在長度增加相較於鰭片162b可為多至底座1611)及熱介面 材料142b厚度的總合。此—單—構造131c可因此允許空 氣-側熱阻降低,藉此顯著地改善冷卻系統的整體冷卻效能。 一些蓋子135b,l35c(圖H,16)可包含一或是更多壁 136c實質上地垂直於冷凝器讓,13〇c的第一基板ΐ3. 13k延伸及被定位在冷凝器i鳥,的第一基板⑶卜 3 1 c的外例如,一或是更多此種壁13 6c可部分地界定 -環境流體導管,或是護罩,163(圖勢其被建構以導向 環境流體’當環境流體通過冷卻器義,的延伸表面 祕’ 162C之間(例如,以減少或是消除除此之外可能發生 的一流動旁通,如參考圖4B #丈述於上文者)。一些蓋子 ⑽,135C包含—熱地傳導材料(例如,紹或銅的合金)。此 蓋子可被暴露至環境流體及提供-額外的熱傳路徑用於從 冷凝器_,_去除熱(例如, =於從 體。 ”、' W ’ 〇ut(圖2))至環境流 44 201038186 冷卻系統 現在將說明包含如上文所述的特徵之緊密微尺度熱傳 系統的實例。特別的是,以下三個系統整合實例的每一者 可被建構以配合在由PCIe規範所界定的物理體積内。 系統整合-實例 1 現在參考顯示在圖17至圖24的圖式,現在將描述一 第一緊密,微尺度熱傳系統,或是冷卻系統,2〇〇。如概要 地顯示在圖2的冷卻系統1〇〇 ’冷卻系統2〇〇包含第一及第 〇 二微通道散熱器210,220(圖22)流動地耦合至個別的冷凝 器部分232,234(圖18,20-24)。一泵類似於顯示在圖7的 泵150及顯不在圖5的泵250a及被如此建構以便被罩在 二件式泵-外罩歧管255a及255b(圖7A及7B)内,增加足夠 的壓力落差(pressure head)至一工作流體以便循環工作流體 於散熱器210,220及個別的冷凝器部分232,234間。 如下文中更徹底描述者,散熱器21〇, 22〇及冷凝器部 q 分232,234被整合入一層壓的子組件230(圖20),提供一 非常低側影的(l〇W-pr0file)流體電路構造。鰭片262從散熱 器-及-冷凝器子組件230(圖17及2〇)的一第一表面235延 伸。此整合的構造允許轉片262較在其他具體實施例中的 鰭片長,類似於敘述在顯示於圖15及16的鰭片i62b,16仏 之討論。子組件230的一第二相對表面215(圖18)界定熱傳 表面21 1,221 ’該等熱傳表面對應個別的微通道散熱器 210 ’ 220及電子零件位置,使得表面2 i ^丄可操作地被 定位。 45 201038186 如在此所使用者,「操作地被定位」意指以—方式被 定位(例如,定向)以便能夠達成一想要的或是特定的功能。 例如,一操作地被定位之微通道散熱器可相對於—對應的 電子零件被定位以便能夠熱地耦合至電子零件,部分地, 藉由使用傳統熱介面處理,諸如熱地傳導聚合物,潤滑脂, 合成物,黏著劑,焊料及類似物。 一離心鼓風機1 70是如此相對於鰭片262被定位以便 能夠造成空氣流通過於鰭片間(圖17)。泵_外罩歧管255&, 25 5b,微通道散熱器及冷凝器子組件23〇(圖2〇),及離心鼓 風機170藉由一底盤構件24〇(圖17及19)是被支撐在個別 的操作位置。一電動動力纜線171具有一動力連接器從鼓 風機170的一電動馬達延伸。一護罩(圖18)包含如描述 在上文的特徵(例如,—導管從鼓風機i 7〇及一置於鰭片π] 上的熱傳表面延伸)可置於冷卻系統2〇〇的各種零件上。據 此,冷卻系統2 0 0可具有一外部外貌類似於描繪在圖4 A及 4B的冷卻系統100。 參考圖18’可見藉由層壓散熱器_及_冷凝器子組件 的「底側」或是第二表面215界定的熱傳表面211 n 熱傳表面川,221藉由the第二表面215延伸的個別升高 :面所界定’及表面211,221的每—者具有一般地矩形周 圍(在-些實例中方形周圍)。最佳如圖^戶斤見,當一 =封4 42 ’ 44(圖υ是被安裝至其個別的基板μ時升 _ 221的個別周圍可被定向對應至該電子封裝的 --向。例如,如顯示在圖18,熱傳表面2ιι,22ι的個別 46 201038186 周圍可相對於冷卻系統200的一縱向輛線(例如,相對於, 例如〜著在各種H片262間(圖17)的―空氣流路控延伸 的流向轴線)旋轉大約45度。 ^亦可見於圖18是底盤構件24〇,其界定一開口 241。 升π表面211 ’ 221是從散熱器及冷凝器子組件23〇的表面 215足夠地升高的以便延伸通過開口 241及能夠熱地耦合至 (例如’接觸)個別的電子零件42,44。 在圖18,可見底盤構件24〇的一「底側」。藉由參考 的方式’底盤構件240的-第—端部區域242置於鼓風機 17〇下及支撐鼓風機170(圖17)。底盤構件24〇的一相對端 部區域界定一排出端部區域243置於從縫片脱(圖⑺的排 氣之下。顯示在圖18及21之冷卻系統2〇〇的「底側」被 建構以置於一附加卡5〇(圖4Α)的電子零件上。 在圖19,顯示底盤構件24〇的一「頂側」。顯示在圖 19之底盤構件24G的頂側是被建構以置於冷卻系統_的 零件下及支撐冷卻系統2〇〇的零件。 圖2〇描述層壓的微通道散熱器-及·冷凝器子组件 謂。該子組件230界定一外部周圍241,被建構以被容納 在底盤構件24〇(圖19)的-對應的開口 240,嵌壁式部分或 疋兩者’使得熱傳表面211 ’ 221延伸通過在底盤構件的— 開口 241 ’及「上方」表面加被定位實質上地平行於 背對底盤構件。對齊特徵,例如,標簽(t a b ),可由周圍⑷, 界定以助於組件230與底盤構件,或是托盤,24〇 托盤謂對應的對齊特徵可配合地與組件謂的對 201038186 卡合。 子組件23 0的「上方」表面235可如此被建構以能夠 被熱地耦合至一冷卻器(例如,一分離的散熱器,以一類似 於冷凝器130b(圖15)的方式’或是鰭片,其被固定地直接 地鎖固至表面235’以一類似於冷凝器130c(圖16)的方式)。 如上文所5主§己者’提供從冷凝表面2 3 5延伸的鰭片2 6 2 及消除一介於中間的散熱器底座(例如,藉由焊接旋繞的或 是堆疊的鰭片直接於表面)可提供用於較大的鰭片262。換 言之’消除具有一可量測的厚度之零件可允許較長的鰭片 262被放置在一體積内,該體積具有_受限的「高度」限制, 諸如由PCIe規範所規定。層壓的子組件23〇提供一低的側 影及薄的構造,其提供用於鰭片262(圖17)佔據之額外的 「向度」。 現在參考圖22,顯示一散熱器板230b的主要表面 215’ 。散熱器板230b亦界定主要表面215(圖21),其在顯 示於圖22的主要表面215,之散熱器板的一相對側邊上。 如上文所註記者,主要表面215界定升高熱傳表面211, 221 ’其等被建構以熱地耦合至個別的電子零件。散熱器板 230b的主要表面215,界定散熱器_及冷凝器子組件2川的 一内部表面。主要表面215,亦界定嵌壁式區域2ΐι,, 221 ’其等分別地對應升高熱傳表面2 1 1,22 1。換言之, 表面211及2 U被放置於板23〇b的相對面上,及藉由板 的厚度分離。類似地,表面221及221,被放置於 板230b的相對面上及藉由板23卟的—厚度分離。 48 201038186 如在圖22所指示,板230b的嵌壁式表面211,,22 !, 可容納從個別的單一基板形成之個別的微通道熱交換器 2 1 0,220。散熱斋210,220的每一者可如上文所描述的被 建構。例如,微通道散熱器210, 220的每一者可界定高長 寬比微通道’可界定交叉連接通道,或是兩者。每一散熱 器之底座的一表面(未顯示,但類似於,例如,底座12 3 a, 123b(圖11A至12B))可被焊接至(或是除此之外固定地鎖固 及熱地耦合至)個別的嵌壁式表面2 1 1, ,22 1,。藉由個別 〇 的散熱器210’ 220所界定之微通道的最下方壁(例如,藉由 底座123a,123b(圖11A至12B)所界定的一微通道119a, 119b的一壁)可實質上地與表面215,共平面,使得一工作 流體可流動越過表面215 ’及進入一個別的微通道(例如, 一微通道119a(圖11A))而無需流動越過一「階層」。 一冷凝器板230a ’如顯示在圖23及24,可置於散熱器 板230b上呈與散熱器板23〇b配對卡合以形成,例如,顯 示在圖20之子組件230。換言之,表面215,(圖22)及235(圖 β 1 23)可被帶入彼此相對對齊,及彼此固定地鎖固。例如,板 230a(圖22)的一外部周圍部分241a’可被焊接至板23〇b(圖 21)的一對應的外部周圍部分241b,。冷凝器板230a界定 個別的蓋子部分2 14a ’ 2 14b,當個別的微通道散熱器2 1 〇, 220被鎖固至嵌壁式表面211,,221,(圖22)時,個別的蓋子 部分被建構以置於個別的微通道散熱器2丨〇,22〇上。蓋子 部分214a’ 214b可為在板23〇a内之嵌壁式部分及可界定個 別的散熱器210,220的微流道的一上方壁,以一類似於顯 49 201038186 示在圖10的側視圖之蓋子114的方式。 冷凝器板230a界定嵌壁式冷凝器部分232,234,其等 對應個別的蓋子部分214a,214b及微通道散熱器210, 220。 此外’冷凝器板230a界定一入口開口 205及一對應的嵌壁 式導管部分,嵌壁式導管部分延伸在開口 205及嵌壁式蓋 子部分214b(對應該散熱器22〇)之間。冷凝器部分234從嵌 壁式蓋子部分214b迂迴地延伸至一嵌壁式導管部分2〇7。 嵌壁式導管部分207從冷凝器部分234迂迴地延伸至嵌壁 式蓋子部分214a。轉向葉片(turning vane)2〇2被定位於蓋子 部分214a的「上游」及被建構以作用為一入口歧管至微通 道’微通道藉由散熱器210及蓋子部分214a界定。對應散 熱器基板210之冷凝器部分232從蓋子部分214a延伸至一 出口導管,該出口導管流動地辆合至一冷凝器板出口 2〇6。 如顯示在圖24,冷凝器板230a可界定冷凝器流道於延 伸的熱傳表面’或疋·鰭片2 3 8間。冷凝器流道可量測為大 約0.635毫米(mm)寬及大約2毫米深,給定冷凝器流道一 長寬比,在一些實例中,為大約3:1(高度:寬度)。在一些具 體實施例中,冷凝器流道可具有較大或是較小的長寬比。 界定冷凝器流道之鰭片可量測為在大約〇 25毫米至大約 1.0毫米寬(及大約2¾米深)之間。此外,鰭片238可藉由 父又連接通道236被中斷在變化長度的間隔中。如被描述 於上文中連結微通道熱交換器的交叉連接通道,延伸於各 種冷凝器流道間的交叉連接通道236可平衡於鄰接的流道 間的壓力變化。當流體去除熱,相變化,或是兩者時,此 50 201038186 壓力的平衡可改善一工作流體的流動一致性。 ΟFor example, a conventional grease or paste' having suspended thermally conductive particles, or "filler material" can be applied to the face between the mating surfaces 164b, 264 to improve heat dissipation between the surfaces. Still referring to the figures, the first and second flow channel regions 35132b' 134b are each-corresponding to individual microchannel heat sinks, and can be fluidly coupled to a further microchannel heat sink, for example, similar to that described above. Refer to the way of Figure 2. In addition to this, a cover 135b may cover the open top portion of the flow area 1 32b ' 1 34b. As shown in Figure 16, a condenser 130c can be combined with a cooler 16A. For example, a base 13c of a heat sink can define a separate flow region 43 201038186 132c' 134c' similar to the flow regions 132b, 134b described above with reference to FIG. The recessed flow channels 132c, 134c are flowably slidably coupled to individual microchannel heat sinks 丨1, 丨2〇 (Fig. 2) in a single configuration 131c. The condenser configuration 130c shown in Fig. i 6 eliminates a separate condenser substrate 丨3 lb and a radiator base 164b (Fig. 15) and further reduces the condenser passage 13 2c ' 134c and the cooler subassembly. The overall thickness between the fins 162c. For a fixed overall south condenser and fin assembly 13Ab, and 130c62c, this design allows the Korean piece 162c to increase in length compared to the fin 162b shown in FIG. In some examples, the fins 16A may increase in length as compared to the fins 162b to a total of the thickness of the base 1611) and the thermal interface material 142b. This-single-structure 131c can thus allow for a reduction in air-side thermal resistance, thereby significantly improving the overall cooling performance of the cooling system. Some of the covers 135b, l35c (Figs. H, 16) may comprise one or more walls 136c substantially perpendicular to the condenser, 13 〇 c of the first substrate ΐ 3.13k extending and positioned in the condenser i bird, For example, one or more such walls 13 6c may partially define an environmental fluid conduit, or a shield, 163 (illustrated that it is constructed to direct environmental fluids) when the environment The fluid passes through the cooler, extending between the surface 162C (eg, to reduce or eliminate a flow bypass that may occur otherwise, as described above with reference to Figure 4B). Some covers (10) 135C includes - a thermally conductive material (eg, an alloy of sinter or copper). The cover can be exposed to ambient fluid and provide - an additional heat transfer path for removing heat from the condenser _, _ (eg, = from ”, 'W ' 〇ut (Fig. 2)) to ambient flow 44 201038186 Cooling system An example of a compact microscale heat transfer system incorporating the features as described above will now be described. In particular, the following three system integrations Each of the examples can be constructed to match the definition by the PCIe specification Within the physical volume. System Integration - Example 1 Referring now to the drawings shown in Figures 17 through 24, a first compact, micro-scale heat transfer system, or cooling system, will now be described. The cooling system 1 'cooling system 2' of FIG. 2 includes first and second microchannel heat sinks 210, 220 (FIG. 22) fluidly coupled to individual condenser portions 232, 234 (FIG. 18, 20). -24). A pump is similar to the pump 150 shown in Figure 7 and the pump 250a shown in Figure 5 and constructed such that it is housed within the two-piece pump-closure manifolds 255a and 255b (Figures 7A and 7B), A sufficient pressure head is applied to a working fluid to circulate the working fluid between the radiators 210, 220 and the individual condenser portions 232, 234. As described more fully below, the radiators 21, 22 and condenser Portions 232, 234 are integrated into a laminated subassembly 230 (Fig. 20) to provide a very low profile (l〇W-pr0file) fluid circuit configuration. Fins 262 from the heat sink-and-condenser subassembly A first surface 235 of 230 (Figs. 17 and 2) extends. This integrated configuration allows for rotation Sheet 262 is longer than fins in other embodiments, similar to the discussion of fins i62b, 16 显示 shown in Figures 15 and 16. A second opposing surface 215 (Figure 18) of subassembly 230 defines heat transfer. Surface 21 1,221 'The heat transfer surfaces correspond to individual microchannel heat sinks 210' 220 and electronic component locations such that surface 2 i ^ 丄 is operatively positioned. 45 201038186 As herein, "operating "Located" means being positioned (eg, oriented) in a manner to enable a desired or specific function to be achieved. For example, an operatively positioned microchannel heat sink can be positioned relative to the corresponding electronic component to be thermally coupled to the electronic component, in part, by using conventional thermal interface processing, such as thermally conductive polymer, lubrication Lipids, compounds, adhesives, solders and the like. A centrifugal blower 1 70 is thus positioned relative to the fins 262 to enable air flow through the fins (Fig. 17). Pump_outer manifold 255&, 25 5b, microchannel radiator and condenser subassembly 23〇 (Fig. 2〇), and centrifugal blower 170 are supported by individual chassis members 24 (Figs. 17 and 19) Operating position. An electric power cable 171 has a power connector extending from an electric motor of the blower 170. A shroud (Fig. 18) containing various features (e.g., the duct extending from the blower i7〇 and a fin π) on the heat transfer surface as described above can be placed in various types of cooling system 2〇〇 On the part. Accordingly, the cooling system 200 can have an external appearance similar to the cooling system 100 depicted in Figures 4A and 4B. Referring to FIG. 18', the heat transfer surface 211 n defined by the "bottom side" or the second surface 215 of the laminated heat sink_and_condenser subassembly can be seen, and the 221 is extended by the second surface 215. Individual elevations: the face defined 'and each of the surfaces 211, 221' have a generally rectangular circumference (around the square in some instances). The best picture is as shown in Fig. 2. When a = 4 42 '44 (Fig. υ is mounted to its individual substrate μ, the individual circumferences of _221 can be oriented to correspond to the direction of the electronic package. For example As shown in Figure 18, the heat transfer surface 2ιι, 22ι of the individual 46 201038186 can be around a longitudinal line of the cooling system 200 (for example, relative to, for example, ~ between the various H slices 262 (Figure 17) - The flow direction of the air flow path extends about 45 degrees. ^ Also visible in Figure 18 is a chassis member 24A defining an opening 241. The π surface 211 '221 is from the heat sink and condenser subassembly 23 The surface 215 is raised sufficiently to extend through the opening 241 and to be thermally coupled (e.g., 'contacted) to the individual electronic components 42, 44. In Figure 18, a "bottom side" of the chassis member 24 is visible. Reference Mode 'The first end region 242 of the chassis member 240 is placed under the blower 17 and supports the blower 170 (Fig. 17). An opposite end region of the chassis member 24 defines a discharge end region 243 placed from Sewing off (Figure (7) under the exhaust. Shown in the cold of Figures 18 and 21 The "bottom side" of the system 2 is constructed to be placed on an electronic component of an add-on card 5 (Fig. 4A). In Fig. 19, a "top side" of the chassis member 24 is shown. The chassis shown in Fig. 19 is shown. The top side of member 24G is the part that is constructed to be placed under the components of the cooling system and supports the cooling system 2〇〇. Figure 2〇 depicts the laminated microchannel heat sink-and-condenser subassembly. 230 defines an outer perimeter 241 that is configured to be received in the corresponding opening 240 of the chassis member 24 (FIG. 19), the recessed portion or both such that the heat transfer surface 211 '221 extends through the chassis member - the opening 241 'and the "upper" surface are positioned substantially parallel to the back facing chassis member. Alignment features, such as tabs, may be defined by the perimeter (4) to assist the assembly 230 and the chassis member, or the tray, The 24" pallet means that the corresponding alignment feature can be mated with the component pair 201038186. The "upper" surface 235 of the subassembly 23 0 can be constructed to be thermally coupled to a cooler (eg, a separate Radiator to a similar In the manner of the condenser 130b (Fig. 15) 'or a fin, which is fixedly fixed directly to the surface 235' in a manner similar to the condenser 130c (Fig. 16). 'providing fins 2 6 2 extending from the condensing surface 2 3 5 and eliminating an intermediate heat sink base (eg, by soldering the wound or stacked fins directly to the surface) can be provided for larger Fin 262. In other words, 'eliminating a part having a measurable thickness allows for longer fins 262 to be placed within a volume that has a _limited "height" limit, such as specified by the PCIe specification. The laminated subassembly 23 provides a low profile and a thin construction that provides additional "direction" for the fins 262 (Fig. 17). Referring now to Figure 22, a major surface 215' of a heat sink plate 230b is shown. The heat sink plate 230b also defines a major surface 215 (Fig. 21) on an opposite side of the heat sink plate shown on the major surface 215 of Fig. 22. As noted above, the primary surface 215 defines an elevated heat transfer surface 211, 221' that is configured to be thermally coupled to individual electronic components. The major surface 215 of the heat sink plate 230b defines an interior surface of the heat sink_and condenser subassembly. The major surface 215, which also defines the recessed areas 2ΐ, 221 ', respectively, corresponds to the elevated heat transfer surface 2 1 1, 22 1 . In other words, the surfaces 211 and 2 U are placed on the opposite faces of the plate 23〇b and separated by the thickness of the plates. Similarly, surfaces 221 and 221 are placed on opposite faces of plate 230b and separated by thickness of plate 23'. 48 201038186 As indicated in Figure 22, the recessed surfaces 211, 22! of the plate 230b can accommodate individual microchannel heat exchangers 2 10, 220 formed from individual single substrates. Each of the heat sinks 210, 220 can be constructed as described above. For example, each of the microchannel heat sinks 210, 220 can define a high aspect ratio microchannel 'definable cross-connect channel, or both. A surface of the base of each heat sink (not shown, but similar to, for example, the bases 12 3 a, 123b (Figs. 11A to 12B)) can be welded to (or otherwise fixedly locked and thermally Coupled to) individual recessed surfaces 2 1 1, 22 1 . The lowermost wall of the microchannel defined by the individual heat sinks 210' 220 (e.g., a wall of a microchannel 119a, 119b defined by the bases 123a, 123b (Figs. 11A through 12B) may be substantially The ground and surface 215 are coplanar such that a working fluid can flow across the surface 215' and into another microchannel (e.g., a microchannel 119a (Fig. 11A)) without flowing over a "hierarchy." A condenser plate 230a', as shown in Figures 23 and 24, can be placed on the heat sink plate 230b in a mating engagement with the heat sink plate 23b to form, for example, the subassembly 230 of Figure 20. In other words, the surfaces 215, (Fig. 22) and 235 (Fig. β 1 23) can be brought into relative alignment with each other and fixedly locked to each other. For example, an outer peripheral portion 241a' of the plate 230a (Fig. 22) can be welded to a corresponding outer peripheral portion 241b of the plate 23b (Fig. 21). The condenser plate 230a defines individual cover portions 2 14a ' 2 14b, when the individual microchannel heat sinks 2 1 , 220 are locked to the recessed surfaces 211, 221, (Fig. 22), individual cover portions It is constructed to be placed on individual microchannel heatsinks 2, 22 。. The lid portion 214a' 214b can be a recessed portion in the panel 23A and an upper wall of the microchannel that can define the individual heat sinks 210, 220, as shown in Fig. 10, similar to the display 49 201038186 The way the view of the lid 114 is. The condenser plate 230a defines a recessed condenser portion 232, 234 that corresponds to the respective cover portions 214a, 214b and the microchannel heat sinks 210, 220. Further, the condenser plate 230a defines an inlet opening 205 and a corresponding in-line conduit portion extending between the opening 205 and the recessed cover portion 214b (corresponding to the heat sink 22). The condenser portion 234 extends back from the recessed cover portion 214b to a recessed conduit portion 2〇7. The recessed conduit portion 207 extends back from the condenser portion 234 to the in-line cover portion 214a. The turning vane 2〇2 is positioned "upstream" of the lid portion 214a and is configured to function as an inlet manifold to the microchannel' microchannel defined by the heat sink 210 and the lid portion 214a. The condenser portion 232 of the corresponding heat sink substrate 210 extends from the cover portion 214a to an outlet conduit that is fluidly coupled to a condenser plate outlet 2〇6. As shown in Figure 24, the condenser plate 230a can define a condenser flow path between the extended heat transfer surface ' or the fins 238. The condenser flow path can be measured to be about 0.635 millimeters (mm) wide and about 2 millimeters deep, giving a condenser flow path an aspect ratio, in some instances, about 3:1 (height: width). In some embodiments, the condenser flow path can have a larger or smaller aspect ratio. The fins defining the condenser flow path can be measured to be between about 25 mm and about 1.0 mm wide (and about 23⁄4 m deep). In addition, the fins 238 can be interrupted in varying length intervals by the parent connection channel 236. As described above in the cross-connect channel connecting the microchannel heat exchangers, the cross-connect channels 236 extending between the various condenser channels can be balanced against pressure changes between adjacent flow channels. When the fluid removes heat, phase changes, or both, the pressure balance of the 2010 201018 can improve the flow consistency of a working fluid. Ο

進一步參考圖24,所說明的冷凝器板23〇a界定一列鰭 片238a’其較鰭片238具有一較大的截面厚度(例如,大約 兩倍)。鰭片23 8a可提供足夠的接觸面積以焊接或是除此之 外附接鰭片238a的個別的遠端部至散熱器板23〇b(圖22)。 此附接沿著冷凝器部分232,234 一大約的中心線,其可提 供額外的剛性於子組件230,及可緩和或是消除任何向外的 彎曲,或是凸起,其等除此之外可能始於高内部壓力發生, 而當冷卻系統200操作時可能導致該高内部壓力。 當所說明冷凝器板230a及所說明散熱器板23〇b進入相 對對齊狀態,使得個別的主要表面215, ,235,彼此配合 地卡&入口 205,政熱器21〇, 220及蓋子部分214a,214b, 冷凝器部分232, 234’及出口 2〇6(及相關的導管部分)是流 動地串聯耦合。在其他子組件具體實施例中,散熱器21〇, 220及冷凝器部分232,234是流動地並聯耦合。 如才被說明的此一層壓子組件23〇,對於複數個微通道 散熱器及冷凝器提供-薄的構形。此…薄的子組件23〇較 微通道散熱器及冷凝器的其他構形,對於鰭片262留下一 大的體積’及因此可較其他構形允許更多表面積用於「空 氣側」熱交換。 再次參考圖17,子組件23〇及續片262可藉由底盤構 件240支揮。泵外罩歧f 255a,255b的出口 254可被流動 地耦合至子組件230的入口 2〇5。例如,一 〇型環可以一習 知的方式環繞開口 205,254延伸在果外罩歧管255a,25化 51 201038186 及子組件230之間。類似地,泵外罩歧管255a,255b的入 口 256可被流動地耦合至從子組件230的出口 206。 β其結果是,子組件230的層壓構造結合泵外罩歧管255 提:一非常緊密的二相工作流體電路,其留下顯著體積用 〇的〆密集陣列的鰭片262。此一密集陣列的鰭片可減 二或疋緩和,_「空氣側」熱交換「瓶頸」的影響,允 許、Ρ系’洗2〇〇實施如指示在顯示在圖3的圖表。此一冷 卻系,200是非常適於空間限制的應用,該等應用需要高 熱通量電氣零件的Α名卩,+ 旳令卻啫如電腦附加卡,汽車電子及豆 他應用。 ~ 系統整合-實例2 在 些糸統中,每一料·】g ;首Ά, 「- “通道放熱益可相對冷卻系統的 ”他邻刀洋動」(亦即,獨立地於彼此銘 底描述者。當鄰接的電子零件由::此移動),如下文更徹 gi , ,, ^ ^公差具有變化的高 度牯,此汙動可為理想的。換言之, 120可被操作地相對於 110’ 芬姑〜 對應的電子零件42, 44(圖υ定位 及被疋位遍及相對於冷卻 -⑽⑽的其他部分的?1'·匕例二一框架t是底盤 容納電子零件,基板及其等之組&目對彼此疋位以便 的變化可能於製造期間產生。B維度的變化’該維度With further reference to Figure 24, the illustrated condenser plate 23A defines a row of fins 238a' which have a greater cross-sectional thickness (e.g., approximately twice) than fins 238. The fins 23 8a may provide sufficient contact area to solder or otherwise attach the individual distal ends of the fins 238a to the heat sink plates 23A (Fig. 22). This attachment is along the approximate centerline of the condenser portions 232, 234 which provides additional rigidity to the subassembly 230 and can alleviate or eliminate any outward bending, or bulging, etc. Outside may begin with high internal pressure, which may result in high internal pressure when the cooling system 200 is operating. When the illustrated condenser plate 230a and the illustrated radiator plate 23〇b are brought into a relative alignment state, the individual main surfaces 215, 235 are engaged with each other in the & inlet 205, the heat exchanger 21〇, 220 and the cover portion. 214a, 214b, condenser sections 232, 234' and outlets 2〇6 (and associated conduit sections) are fluidly coupled in series. In other sub-component embodiments, the heat sinks 21, 220 and the condenser portions 232, 234 are fluidly coupled in parallel. This laminated subassembly 23, as illustrated, provides a thin configuration for a plurality of microchannel heat sinks and condensers. This...the thin sub-assembly 23〇 is smaller than the microchannel heat sink and other configurations of the condenser, leaving a large volume for the fins 262' and thus allowing more surface area for "air side" heat than other configurations. exchange. Referring again to Figure 17, subassembly 23 and 262 may be supported by chassis member 240. The outlet 254 of the pump housing manifold f 255a, 255b can be fluidly coupled to the inlet 2〇5 of the subassembly 230. For example, a 〇-shaped ring can extend around the opening 205, 254 in a conventional manner between the outer cover manifold 255a, 25 51 201038186 and the subassembly 230. Similarly, the inlet 256 of the pump housing manifold 255a, 255b can be fluidly coupled to the outlet 206 from the subassembly 230. As a result, the laminated construction of subassembly 230 is combined with pump housing manifold 255 to provide a very tight two phase working fluid circuit that leaves a significant volume of crucibles 262 of dense array of fins 262. This dense array of fins can be reduced or mitigated, the effect of the "air side" heat exchange "bottleneck", allowing the ’ system to be implemented as indicated in the diagram shown in Figure 3. This cooling system, 200 is a very suitable space-constrained application, which requires the name of high heat flux electrical parts, such as computer add-on cards, automotive electronics and other applications. ~ System Integration - Example 2 In some systems, each material ·] g; first, "- "channel heat release can be relative to the cooling system," he is next to each other (that is, independently of each other Descriptor. When the adjacent electronic parts are:: this movement), as described below, the gi, , ^ ^ tolerances have varying heights, and this contamination can be ideal. In other words, 120 can be operatively relative to 110' Fen gu ~ corresponding electronic parts 42, 44 (Fig. υ positioning and being clamped throughout the other parts of the cooling-(10)(10)? The chassis accommodates electronic components, the substrate and its group & aligning with each other so that changes may occur during manufacturing. The change in B dimension 'this dimension

現在將描述顯示在圖25的整合A 述於上文之冷卻系統,該 7心克扇。如被描 由雷+ f杜μ 糸、"先300可被使用以移除 由電子零件42, 44(圖2)散發的 移除精 定的零件、、® _机 Γ Q2及猎此維持一特 / 皿上臨界溫度或是在—上臨界溫度之下。 52 201038186 冷卻系統300包含藉由底盤34〇支撐之兩獨立地浮動 微通道散熱器310,320,其操作地相對於個別的電子零件 42,44定位散熱器,同時容納零件間z_高度的變化。 底盤340是被建構以相對於基板46(圖1}安裝及/或支 撐冷卻系統300的零件以及其他冷卻系統零件,諸如散熱 器162c,冷凝器131c,泵15〇,及對應的泵外罩-歧管 155’ ,155a’ ,鼓風機葉輪170(及其外罩(1 64))及護罩 163’實質上地獨立於浮動的微通道散熱器31〇, 32〇。此獨 立的安裝允許散熱器310, 32〇維持操作地相對於個別的電 子零件42, 44,以及其他冷卻系統零件定位,同時容納零 件間z-高度的變化。 如在此描述的離心鼓風機i 7〇,所說明的鼓風機葉輪可 驅動一環境流體(例如’空氣)於遙遠的熱交換器的延伸表面 162c間。在冷卻系統3〇〇中,* ^ ^ 工亂從一鼓風機入口通過至 葉輪170’其給予一動落茗μ 洛差(dynamic head)於空氣。一鼓風The cooling system shown in Figure 25, in which the integration is described above, will now be described. As described by Ray + f Du μ 糸, " 300 can be used to remove the removed precision parts emitted by electronic parts 42, 44 (Figure 2), ® _ machine Q2 and hunting this maintenance The critical temperature on a special/tank is below the upper critical temperature. 52 201038186 The cooling system 300 includes two independently floating microchannel heat sinks 310, 320 supported by a chassis 34 that operatively position the heat sink relative to the individual electronic components 42, 44 while accommodating changes in z_height between the parts . Chassis 340 is a component that is constructed to mount and/or support cooling system 300 relative to substrate 46 (Fig. 1) and other cooling system components, such as radiator 162c, condenser 131c, pump 15A, and corresponding pump housing-discrimination Tubes 155', 155a', blower wheel 170 (and its outer cover (1 64)) and shroud 163' are substantially independent of floating microchannel heat sinks 31, 32. This separate mounting allows heat sink 310, 32〇 maintains operational positioning relative to individual electronic components 42, 44, and other cooling system components while accommodating changes in z-height between the parts. As described herein, the centrifugal blower i 7〇, the illustrated blower impeller can be driven An ambient fluid (e.g., 'air) is between the extended surfaces 162c of the remote heat exchanger. In the cooling system 3, a ^ ^ ^ is passed from a blower inlet to the impeller 170' which gives a moving 茗μ 洛(dynamic head) in the air.

機外罩 1 6 4界定一撼私时m '政益用於減速從葉輪排出的空氣及恢 復動落差為壓力落差。 此一鼓風機外罩通常亦界定一鼓風 機出口用於連接至一導瞢式3 # 等s戈疋其他導官163’用於導向藉 由鼓風機發出的空氣 g 濩罩,或是導管,可界定一流道在 豉風機葉輪及在延伸矣品 面162c間的流動路徑之間。在所描 迷的冷卻系統300(及農仙、人,、 順時鐘浐鐘Μ / 〇他冷郃系統100, 200, 400),葉輪 )丨負時鐘叙轉(如從上方 -\义 厅見)使侍從葉輪及鼓風機出口(未甚頁 不)發射出的氣流在一 戍田(禾頌 15η, Η* 熱父換窃入口(鄰接鼓風機)自泵 50 敢遠的區域具右—4 較尚的動落差。換言之,在所揭 53 201038186 示的系統的每一者,泵被定位在一「死區」,在此處發生 少許或是沒有空氣流動。在其他具體實施例中,葉輪可逆 時鐘旋轉,造成具有最高動落差之區域為在泵丨50’目前顯 示的區域中。在此一實施例中,泵可被定位在相對於其位 置(相對於熱交換器)’以允許具有高動落差之區域流動地與 熱交換器鰭片連通,及佔據「死區」,在此沒有或是發生 少許空氣流動。 在一些冷卻系統中,鼓風機出口可 -.、一 ,曰u '口吧卜,a 八w 至熱交換器1 62c。例如,此一鼓風機外罩可配合地卡合(例 如,「無縫地」結合)藉由冷凝器蓋子形成的護罩163,, 排除一分離的護罩或是其他通風管卡合鼓風機及延伸越過 遙m的熱交換器的需要。消除分離的護罩或是其他通風管 及其的對應厚度可允許遙遠的熱交換器在一給定的空間限 制體積内具有較長的延伸熱傳表面。 如申請人所發現者,冷卻系統200的效能可由在熱交 換器260及環境1〇1(亦即,「空氣_側熱交換」)之間的熱交 換限制巾n月人亦發現,驚人地,即使消除薄零件諸如通 風管及對應的厚度’及加長延伸表面(例如,鰭片)一對應的 距離’即使才十分之―对,可改善空氣_側熱交換 改善冷卻系統丨。0,2。。,300及4。。的冷卻。 ,爲進-步增加用於增域片表面積之可用的體積,^ 卻系統3 0 0可包含一金屬的^ 、 7 匕3孟屬的5蒦罩部分163,被建構以傳遞埶 _的4分Q〇u"至環境。金屬護罩部分163,,如被建構 在系統3〇0中,被熱地麵合至冷凝器。如結合圖15及16 54 201038186 所討論者,護罩可形成一「蓋子 」’其部分地包覆在冷凝 器内的流動通道,該通道攜帶工从、+ 作 體,及因此可被放置 直接與工作流體接觸。雖然所說 兄明的糸統300包含一金屬 護罩’在一些實例中,護罩163 J包含一塑膠護罩從導管 164延伸。在此一實施例中,大部 分熱Q〇ut是從散熱器162 去除。The outer cover of the machine 1 6 4 defines a private time m 'political interest is used to decelerate the air discharged from the impeller and restore the dynamic drop to the pressure drop. The blower cover usually also defines a blower outlet for connection to a guide type 3#, etc. Other guides 163' are used to guide the air g hood provided by the blower, or a duct, which can define a first-class road Between the blower wheel and the flow path between the extended slabs 162c. In the described cooling system 300 (and Nong Xian, Ren,, clock 浐 Μ / 〇 郃 郃 100 100 100 100 100 100 100 , , 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 叶轮 ( ( ( ( ( ( ( The airflow emitted by the attendant impeller and the blower outlet (not even paged) is in a field (Wuyi 15η, Η* hot father exchanges the entrance (adjacent blower) from the pump 50 dare to the right area - 4 In other words, in each of the systems shown in the disclosure No. 53 201038186, the pump is positioned in a "dead zone" where little or no air flow occurs. In other embodiments, the impeller reversible clock Rotating, causing the region with the highest dynamic drop to be in the region currently shown by pump 丨 50'. In this embodiment, the pump can be positioned relative to its position (relative to the heat exchanger) to allow for high motion The area of the drop is connected to the heat exchanger fins and occupies the "dead zone". There is no or a small amount of air flow. In some cooling systems, the blower outlet can be -., one, 曰u 'mouth , a 八w to heat exchanger 1 62c. For example The blower cover can be snap-fitted (for example, "seamlessly") with a shield 163 formed by a condenser cover, excluding a separate shield or other air duct to engage the blower and extend over the distance The need for a heat exchanger for m. Eliminating separate shrouds or other venting tubes and their corresponding thicknesses allows remote heat exchangers to have longer extended heat transfer surfaces within a given space-constrained volume. It has been found that the performance of the cooling system 200 can be found by heat exchange between the heat exchanger 260 and the environment 1 (i.e., "air_side heat exchange"). Eliminating the thinner parts such as the venting tube and the corresponding thickness 'and lengthening the extended surface (eg, fins) by a corresponding distance 'even if it is quite right, can improve the air_side heat exchange to improve the cooling system 丨. 0,2. Cooling of 300 and 4, for increasing the available volume for increasing the surface area of the surface, but the system 300 can contain a metal ^, 7 匕 3 genus 5 蒦 cover part 163 , was constructed to pass 埶_ 4 points Q〇u&quot To the environment, the metal shield portion 163, if constructed in the system 3〇0, is thermally grounded to the condenser. As discussed in connection with Figures 15 and 16 54 201038186, the shield can form a "cover" 'It partially encloses a flow channel in the condenser that carries the worker, the + body, and thus can be placed in direct contact with the working fluid. Although the brother of the brother 300 contains a metal shield' In some examples, the shield 163 J includes a plastic shield extending from the conduit 164. In this embodiment, most of the thermal Q〇ut is removed from the heat sink 162.

再者,顯示在圖3的護罩163, — A 包含一熱地傳導材料及 是與冷凝器131c熱接觸以便提佴一Furthermore, the shield 163 shown in Fig. 3, A contains a thermally conductive material and is in thermal contact with the condenser 131c for lifting

〇 額外的熱傳路徑用於從 電子零件42,44去除由冷卻系统ώ ,, 兄300吸收的熱至環境1(Η。 申請人發現此額外的通過護罩的埶蚀狄y_ 叉千叼熟傳路徑可進一步改善空 氣-侧熱交換,及實質上地增加冷卻糸 7问糸統300的整體效能。 底盤340界定二個主要開口 31〇, ,32〇,用於提供在 微通道散熱器310, 320及對應的電子零件42, 44(圖丨)之 間的熱接觸。底盤240亦界定四個接腳開口圍繞主要開口 310’ ,320’的每一者,微通道散熱器31〇,32〇的接腳28〇 可延伸通過接腳開口,如敘述在上文者。 參考圖4A,8C,2S及26,一基板46可被定位在一實 質上地與底盤340平行對齊及以微通道散熱器3 1〇,32〇的 接腳280延伸通過基板而緊固至底盤34〇 ^ 一旦基板46及 底盤340是鎖固地彼此附接,微通道散熱器3丨〇,3〇〇可相 對於基板移動,如其可相對於底盤。此運動的範圍可取決 於’部分地,所選擇用於流體導管316, 317的長度及材料, 流體導管結合微通道散熱器3 10,320至冷卻系統的其他部 分(例如,冷凝器1 3 1 c。)但是,散熱器3 10,320可被移動 55 201038186 通過足夠的距離以便操作地定位其等相對於每—個別的 電子零件42,44。 例如緊固件(未顯示)配合地卡合每一接腳28〇的嵌壁 式空隙(圖8C)可繃緊抵靠基板46及拉動微通道散熱器 310,320朝向基板,推進每—微通道散熱器抵靠一對應的 子7件2 44。以此方式,微通道散熱器可被操作地相 對對應的電子零件定位而不管在例如,附加卡間相對零 件Z-rfj度(Z!-Z2)的變化。 進一步參考圖25,所說明的熱交換器162c為一氣冷式 政熱器具有一底座構件包含一單一構造具有冷凝器基板 131c(圖16)及複數個延伸熱傳表面(例如,鰭片)i62c實質上 地向q凝器基板垂直地延伸。在一些具體實施例中,鰭片 為切削(slaved)鰭片,及在其他具體實施例中,鰭片為堆疊 的轉片。底座構件13 1 c是被定位實質上地平行於底盤34〇, 及當系統300如圖25所指示而組裝時,其從微通道散熱器 3 10 ’ 320間隔開。複數個延伸熱傳表面162c實質上地垂直 地相對於底座構件丨3丨c延伸及向下地進入在底座構件丨3 i c 及微通道散熱器3 10,320之間的空間。鰭片的遠端部(相 對於底座構件)是典型地鄰接微通道散熱器及從微通道散熱 間隔開在一常規的,靜止不動的位置。取決於,例如, 在電子零件42 ’ 44間z-高度變化的範圍,當冷卻系統3〇〇 是被操作地定位時,一或是更多遠端部可緊密地被定位鄰 接’或是甚至碰觸,一或是兩微通道散熱器31〇,32〇。 爲進一步增加用於增加的鰭片表面積之可用體積,冷 56 201038186 卻系統300可包含一金屬護罩部分163,被建構以傳遞熱〇 An additional heat transfer path is used to remove the heat absorbed by the cooling system 从, 兄弟 300 from the electronic components 42, 44 to the environment 1 (Η. Applicants found this extra etched through the shield y The pass path can further improve the air-side heat exchange and substantially increase the overall efficiency of the cooling system. The chassis 340 defines two main openings 31〇, 32〇 for providing the microchannel heat sink 310. , 320 and the corresponding thermal contact between the electronic components 42, 44. The chassis 240 also defines four pin openings around each of the main openings 310', 320', the microchannel heatsink 31, 32 The pins 28 of the crucible can extend through the pin openings as described above. Referring to Figures 4A, 8C, 2S and 26, a substrate 46 can be positioned in a substantially parallel alignment with the chassis 340 and in microchannels. The heat sink 3 1 〇, 32 〇 pin 280 extends through the substrate and is fastened to the chassis 34 〇 ^ Once the substrate 46 and the chassis 340 are fixedly attached to each other, the microchannel heat sink 3 丨〇, 3 〇〇 can be opposite Moving on the substrate, as it can be relative to the chassis. The range of this motion can depend on 'Partially, the length and material selected for the fluid conduits 316, 317, the fluid conduits combine the microchannel radiators 3 10, 320 to other parts of the cooling system (eg, condenser 1 3 1 c.) 3 10,320 can be moved 55 201038186 by a sufficient distance to operatively position it relative to each of the individual electronic components 42, 44. For example, fasteners (not shown) cooperatively engage each of the pins 28〇 The wall void (Fig. 8C) can be tensioned against the substrate 46 and the microchannel heat sinks 310, 320 are oriented toward the substrate, advancing each of the microchannel heat sinks against a corresponding sub-piece 7 44. In this manner, the microchannels The heat sink can be operatively positioned relative to the corresponding electronic component regardless of, for example, a change in the Z-rfj degrees (Z!-Z2) relative to the part between the additional cards. With further reference to Figure 25, the illustrated heat exchanger 162c is an air cooled The chemist has a base member comprising a single configuration having a condenser substrate 131c (Fig. 16) and a plurality of extended heat transfer surfaces (e.g., fins) i62c extending substantially perpendicularly toward the q condenser substrate. In the example The fins are slaved fins, and in other embodiments, the fins are stacked rotators. The base member 13 1 c is positioned substantially parallel to the chassis 34 〇, and when the system 300 is as shown in FIG. 25 When assembled as indicated, it is spaced apart from the microchannel heat sink 3 10 '320. The plurality of extended heat transfer surfaces 162c extend substantially perpendicularly relative to the base member 丨3丨c and down into the base member 丨3 ic And the space between the microchannel heat sinks 3 10, 320. The distal end of the fins (relative to the base member) is typically adjacent to the microchannel heat sink and spaced apart from the microchannel by a conventional, stationary position . Depending on, for example, the range of z-height variations between the electronic components 42'44, when the cooling system 3〇〇 is operatively positioned, one or more distal ends can be closely positioned adjacent to each other or even Touch, one or two microchannel heatsinks 31〇, 32〇. To further increase the available volume for increased fin surface area, cold 56 201038186 but system 300 can include a metal shield portion 163 that is configured to transfer heat

Qout的一部分Qc^t,2至環境。金屬護罩部分163’ ,如被建 構在系統300中,是熱地耦合至冷凝器。如下文更徹底描 述者,護罩可形成一「蓋子」其部分地包覆在冷凝器内的 流動通道,該通道攜帶工作流體,及因此可被放置直接與 工作流體接觸。雖然所說明的系統3〇〇包含一金屬護罩, 在一些實例中,護罩163,可包含一塑膠護罩從導管164延 伸。在此一實施例中,大部分的熱Qc>ut&散熱器162去除。 參考圖26,顯示用於散熱器及冷凝器的一替代的構 形。顯不在圖26的構形是類似於顯示在圖丨5,及連結圖 1 5而描述。 系統整合-實例3 參考圖27至3 1 ’將描述另一冷卻系統4〇〇。冷卻系統 400(圖31)包含第一及第二散熱器子組件26〇&,26〇b。子組 件26〇a’ 260b的每一者包含一個別的微通道散熱器流動地 〇 耦合至一對冷凝器板(例如,板23〇b,23〇b,,如顯示在圖 27)。如敘述在上文的系統,子組件26〇a,可藉由一底 盤構件支撐,部分地藉由一嗜置固# 柯田'•隻罩圍繞及藉由一鼓風機所驅 動的空氣流冷卻。 參考圖27 ’ -散熱器組件祕可包含一微通道散熱器 基板,如被敘述在上文者。因此,微通道散熱器_(圖叫 可包含除了被敘述於上文的微流道之外的交又連接通道。 微通道散熱器可因此操作為—單相 早相C例如,液體)散熱器或是 二相散熱器,如上文所描述者。 57 201038186 微通道散熱器2丨0a可被流動地耦合 23〇b,230b,的每—者,及 7凝盗組件 有及轧冷式鰭片262b可延伸 之間。當空氣側熱交換非為主要系統瓶頸,此^ 特別有用。換言之,在實例中當 ^ Λ 片從—早—端部(如在季 :先00, 3〇〇)被加熱’在此處散熱器鰭片262b的鰭片效率 是低的,放置一第二冷凝器組件2 I·" /… 妾觸㈣W自組件而遠端地放置)熱接觸,可增加 .曰片262b的鰭片效率及因此以較高的速率散發執。 冷凝器組件2鳥,2鳩,具有類似於描述在上文之户 特徵。冷凝器組件可使用歧管被流動地輕合,如‘ 述於上文及顯示在,例如,圖5及6。 纟且件=至f 11描緣各種特徵,其等可能被顯示在散熱器 、、’千的,、體實施例。圖9 7谷q+ 緣故,散…件的… 製。爲簡潔的 至3 i省略、。D如所顯疋更多零件可從一或是更多圖27 器子組件(子二組件可包含一或是 爲簡潔的緣故,:rr=b 具體實施例中,及一鼓風機。然而,在其他 簡潔的緣故,J使==及/或是多個鼓風機。亦為了 子-組件。例如=::。:而’可使用其他數量的 多子·組件。 采用自早-子-組件,或是三個或是更 缺此外’所顯示的子-植件為實質上類似的(圖27至31)。 然而,在一4b且I*眚M h + 全部可不I 子七件的每一者的部分或是 °子-組件260b的板可大於子-組件26〇a 58 201038186 的板。個別的微通道散熱器210a,21〇 牡于組件間亦 不同的。對於每一子-組件,使用具有 一 力‘謂片耦合在其等之間 的二板 '然而’在另一實施例’可採用其他數量的板,其 可能:或是可能不’使用鰭片的相同構形。組件可與想要 被冷郃的電氣零件耦合。未顯示此電氣零件。例如,在— 些具體實施例中,可使用該組件以冷卻—顯示卡。Part of Qout Qc^t, 2 to the environment. Metal shield portion 163', as constructed in system 300, is thermally coupled to the condenser. As described more fully below, the shield can form a "lid" that partially encloses a flow passage within the condenser that carries the working fluid and, therefore, can be placed in direct contact with the working fluid. Although the illustrated system 3 includes a metal shield, in some examples, the shield 163 can include a plastic shield extending from the conduit 164. In this embodiment, most of the thermal Qc > ut & heat sink 162 is removed. Referring to Figure 26, an alternate configuration for the heat sink and condenser is shown. The configuration shown in Fig. 26 is similar to that shown in Fig. 5, and is linked to Fig. 15. System Integration - Example 3 Another cooling system 4 will be described with reference to Figs. 27 to 3 1 '. Cooling system 400 (Fig. 31) includes first and second heat sink subassemblies 26A & 26b. Each of the subassemblies 26A' 260b includes a further microchannel heat sink fluid 〇 coupled to a pair of condenser plates (e.g., plates 23〇b, 23〇b, as shown in Figure 27). As described above, the subassembly 26A can be supported by a chassis member, partially cooled by a flow of air that is driven by a fan and surrounded by a blower. Referring to Figure 27', the heat sink assembly can include a microchannel heat sink substrate as described above. Thus, the microchannel heatsink _ (which may include a cross-connect channel other than the microchannel described above. The microchannel heatsink may thus operate as a - single phase early phase C, eg liquid) heat sink Or a two-phase heat sink, as described above. 57 201038186 The microchannel heatsink 2丨0a can be fluidly coupled between each of the 23〇b, 230b, and the 7 snail components and the chilled fins 262b can be extended. This is especially useful when air side heat exchange is not the main system bottleneck. In other words, in the example, when the film is heated from the early-end (such as in the season: first 00, 3〇〇) 'where the heat sink fin 262b has low fin efficiency, place a second The condenser assembly 2 I·" /... 妾 (4) W placed remotely from the assembly) thermal contact can increase the fin efficiency of the 262b and thus dissipate at a higher rate. The condenser assembly 2 birds, 2 inches, have characteristics similar to those described above. The condenser assembly can be fluidly coupled using a manifold, as described above and shown in, for example, Figures 5 and 6. The components = to f 11 depict various features, which may be displayed on the heat sink, 'thousands,' body embodiment. Figure 9 7 Valley q+ sake, scattered... For the sake of brevity to 3 i omitted. D. As shown, more parts may be available from one or more of the 27 subassemblies (the sub-components may include one or for the sake of brevity: rr=b in the specific embodiment, and a blower. However, in For other concise reasons, J makes == and / or multiple blowers. Also for sub-components. For example =::.: and 'can use other quantities of multi-sub-components. Use self-early-sub-components, or It is three or more. In addition, the displayed sub-plants are substantially similar (Figures 27 to 31). However, in 4b and I*眚M h + all can not be seven of each of the seven pieces. The portion or the plate of the sub-assembly 260b may be larger than the plate of the sub-assembly 26〇a 58 201038186. The individual micro-channel heat sinks 210a, 21 are also different between the components. For each sub-assembly, use There are two plates that have a force between the two plates, however 'in another embodiment' may employ other numbers of plates, which may or may not use the same configuration of the fins. It is desirable to couple the cold electrical parts. This electrical part is not shown. For example, in some embodiments, it can be used This component uses a cooling-display card.

參考圖27,每一子-組件包含,藉由實例的方式,—微 通道散熱器210a,一底部板230b’ ’ —頂部板23〇b,轉片 262b,及至少一歧管252b。熱從待被冷卻的裝置被交換至 微通道散熱器。從微通道散熱器的熱是與每一子_組件的底 板及頂板交換。透過具有内部冷卻通道(亦即鰭片)的二冷卻 板之使用’從底板及頂板的熱亦提供至藉由鼓風機產生的 二氣。因此,攸待被冷卻的零件的熱可從系統移除。 參考圖5,6及29,一般而言,流體可為飽和的進入微 通道散熱器210a。在一實施例中,從泵250a的液體,通過 歧管252b至底部板230b,通過一入口或是出口輕接器 215(圖29),接著至微通道散熱器2 10a。流體流動通過在散 熱器中的微尺寸通道及吸收熱。假使足夠的熱被交換及/或 使用一足夠低的流量,流體可相變化(沸騰)。二相流體可離 開微通道散熱器210a及進入底部冷卻板230b的通道 232b。在底部板230b中,一或是更多流體通道232b被配 置呈一圖樣,諸如一蜿蜒圖樣。通道232b可覆蓋底部板230b 的面積。此允許熱流體散佈熱遍及底部板的面積。在一實 施例中,熱可實質上地被散佈遍及整個底部板,建立一較 59 201038186 杈(微通道散熱器)尺寸大的平台面積以交換熱至空氣。熱引 導進入空氣熱交換鰭片,接著至流動通過組件的空氣。從 底部板230b,流體行進至頂部冷卻板23〇b,(圖2乃。在一 實施例中,流體從底部板23〇b透過歧管252b行進至頂部 板230b 。流體橫越在頂部板内的通道。熱可以依類似的 方式被散佈至底部板230b。雖然流體流動被敘述為橫越串 聯子-組件,散熱器組件可被建構以至於子_組件是流動地並 聯耦合。 當流體行進通過頂部及底部冷卻板及熱是被去除至空 氣,蒸氣凝結及一飽和流體,或是稍微過冷(Sub_C〇〇led)流 體,離開頂部板230b’ 。流體從子-組件26〇b的頂部板 230b流動至子-組件26〇a的底部板23〇a。在一實施例中, 歧管252b從頂部板傳遞流體至一交叉管子258或是其他用 於提供流體至子-組件260a之機構。在另一實施例中,流體 可通過至另一泵,其接著抽吸流體至子-組件26〇a。流體接 著從底部板230a’行進進入微通道散熱器22〇的入口。在 此流體可跟隨一類似於(包含相同)子_組件26〇b之路徑。子 -組件260a以一類似於子·組件26〇b的方式作用。流體可交 換熱進入空氣熱交換鰭片262a , 262b以及至一護罩463(圖 3 1)以去除熱至就在冷卻系統400外側的面。當離開頂部板 230a ’流體是接著送回泵25〇a。 此散熱器組件260a,260b,如顯示在圖30,可提供各 種如系統100,200及300之優點。可發生相變化而在流體 改變狀態内沒有一實質溫度梯度。對於冷卻應用,使用沸 60 201038186 3提供一均勻溫度的優點’於此-溫度提供冷 ::度相對於沸騰表面以及-改變的熱輸入可為均勾 ==藉!!件,待被冷卻的零件可具有-更均勻的 古 …發潛熱相較於流體溫度的變化是 同使用微通道散熱器能夠散發—較大量的熱。 如描述於上文的直侦备 被建構A.、, ,、…,放’,,、器組件260a,260b可 被建構為延向流熱交換器 c ^ V U 工作流體的一般流動方向 仃進反向於環境流體,例如,* 〇 ^ # ^ ^^ 工轧通過延伸在冷凝器板 、,且件之間的熱交換器鰭片的—般流動方向)。 此外’每一子-組件包 的使用加仵用於在” /、有鰭片於/、間的兩板。兩板 用:倍用於在流體及韓片之間的熱傳之接觸表面積。 ==被附接至頂板部及底板兩者。此允許熱從 Ί、用於> 1道遞進入韓片。從兩端部的熱傳,有效地減 少用於母一傳導熱傳路徑 鍵 的鰭片長度。此改善鰭片效率, ,,、曰片效率反比於鰭片長度。 , m 換&之在鰭片端部的冷卻是 ❹ 免’因為,片的兩端部是全被附接至一板。 再者,可選擇泵的位w ..^ . 置以改善政熱斋組件的效率。如 文所时Sw者,空氣流動一 阿叙疋從子-組件260a至子- 、且件260b。然而,在— 纟具體實施财,空氣流對其運動 的万向可具有一此i甚^ 勺M 零件。從鼓風機的空氣流不會均 勻地流及線性地從鼓風嫵,ώ M 扣 幾/爪動。替代地,鼓風機葉輪的環 形運動給予一空氣流方 咖形成的通道。結果a二方向非元全地平行於由錯片 疋’在散熱器組件内的一區域可且 有—較低的空氣流。換古夕 '、 。之,一死區可存在於空氣流動中。 61 201038186 泵是放,在散熱器組件的死^。因為泵,其不會需要熱 的直接交換至空氣》’如所想要的作用,泵是放置在此死 ,,散熱器組件的區域,其維持一空氣流,該空氣流對於 父換熱的使用可保持有效的。結果是,可改善散熱器組件 的效率。 再者,歧管的使用亦可改善散熱器組件。散熱器子-組 件可利用歧管用於導向流體進入及離開頂板及底板,以及 進入及離開子-組件。歧管是固體,例如從一具有孔洞鑽於 其内之銅塊形成以控制流體流動。在一些具體實施例中, 一歧官導向流體進入—子-組件至底板,從底板導向流體至 頂板及從頂板導向流體至一交叉管子至另一子_組件或是回 到泵。可使用歧管在管子處以導向流體流動。如此諸如洩 漏’缺乏穩定度,及增加系統的覆蓋區等問題,可被避免。 進一步,因為歧管可為一大的銅塊,歧管可提供一較大的 覆蓋區以焊接至底板或維持子-組件的部分。因此,歧管亦 可改善穩定度,減少茂漏,及除此之外改善散熱器組件的 效能。 透過假通道(dummy channel)的使用,散熱器組件亦可 具有改善的冷卻效率。底板可包含對微通道散熱器的一假 通道及通道及從微通道散熱器的一假通道及通道。注意的 是,可改變通道及假通道的特定構形。進一步,可提供額 外的通道及/或額外的假通道在另一實施例中。可使用假通 道以隔離流體進入微通道散熱器。在一實施例中,假通道 是形成在底板内。當一覆蓋件被提供在底板上,形成一空 62 201038186 氣-填充假通道。擇一地,可提供覆蓋件在另一大氣及密封 的,或是通道可以另一方式填充。流體從子'组件的底板進 入微通道散熱益。此流體是稍微地冷。離開微通道散熱器 的流體橫越底板。從微通道散熱器的流體是相對地熱,具 有才從微通道散熱器接收的熱。假通道Referring to Figure 27, each sub-assembly includes, by way of example, a microchannel heat sink 210a, a bottom plate 230b'' - a top plate 23b, a rotor 262b, and at least one manifold 252b. Heat is exchanged from the device to be cooled to the microchannel heat sink. The heat from the microchannel heatsink is exchanged with the bottom and top plates of each sub-assembly. The heat from the bottom plate and the top plate through the use of two cooling plates having internal cooling passages (i.e., fins) is also supplied to the two gases generated by the blower. Therefore, the heat of the parts to be cooled can be removed from the system. Referring to Figures 5, 6 and 29, in general, the fluid can be saturated into the microchannel heat sink 210a. In one embodiment, the liquid from pump 250a, through manifold 252b to bottom plate 230b, passes through an inlet or outlet adapter 215 (Fig. 29), and then to microchannel radiator 2 10a. The fluid flows through the micro-sized channels in the heat sink and absorbs heat. The fluid can change phase (boiling) if sufficient heat is exchanged and/or a sufficiently low flow rate is used. The two-phase fluid can exit the microchannel heat sink 210a and the passage 232b that enters the bottom cooling plate 230b. In the bottom plate 230b, one or more fluid passages 232b are configured in a pattern, such as a pattern. Channel 232b can cover the area of bottom plate 230b. This allows the hot fluid to spread heat over the area of the bottom plate. In one embodiment, heat may be substantially spread throughout the bottom plate to create a platform area that is larger than the size of the 2010 2010 186 微 (microchannel heat sink) to exchange heat to the air. The heat is directed into the air heat exchange fins and then to the air flowing through the assembly. From the bottom plate 230b, the fluid travels to the top cooling plate 23b, (Fig. 2 is. In one embodiment, fluid travels from the bottom plate 23b through the manifold 252b to the top plate 230b. The fluid traverses within the top plate The heat may be spread to the bottom plate 230b in a similar manner. Although the fluid flow is described as traversing the series sub-assembly, the heat sink assembly may be constructed such that the sub-components are fluidly coupled in parallel. The top and bottom cooling plates and heat are removed to the air, vapor condensed and a saturated fluid, or slightly subcooled (Sub_C〇〇led) fluid, leaving the top plate 230b'. Fluid from the top plate of the sub-assembly 26〇b 230b flows to the bottom plate 23A of the sub-assembly 26A. In one embodiment, the manifold 252b transfers fluid from the top plate to a cross-tube 258 or other mechanism for providing fluid to the sub-assembly 260a. In another embodiment, the fluid can pass to another pump, which in turn draws fluid to the sub-assembly 26A. The fluid then travels from the bottom plate 230a' into the inlet of the microchannel heat sink 22(R). Follow a class The path of the (including the same) sub-assembly 26〇b. The sub-assembly 260a acts in a manner similar to the sub-assembly 26〇b. The fluid exchanges heat into the air heat exchange fins 262a, 262b and to a shroud 463 (Fig. 31) to remove heat to the face just outside the cooling system 400. When leaving the top plate 230a 'the fluid is then returned to the pump 25A. This heat sink assembly 260a, 260b, as shown in Figure 30, Various advantages such as systems 100, 200 and 300 are provided. Phase changes can occur without a substantial temperature gradient in the fluid change state. For cooling applications, the use of boiling 60 201038186 3 provides the advantage of a uniform temperature 'this temperature provides cold :: degrees relative to the boiling surface and - the changed heat input can be a uniform hook == lend!!, the parts to be cooled can have - more uniform ancient ... the latent heat phase is the same as the change in fluid temperature The channel heatsink is capable of dissipating a greater amount of heat. As described above, the direct finder is constructed A.,,,,..., and the assembly 260a, 260b can be constructed as a directional heat exchanger. c ^ VU general flow of working fluid Ding opposite to the ambient fluid into, for example, * # ^ ^^ ^ square work roll extending through a heat exchanger between the condenser fin plate member,, and - as the flow direction). In addition, the use of each sub-component package is applied to the two plates with / / fins in /. The two plates are used: double the contact surface area for heat transfer between the fluid and the Korean film. == is attached to both the top plate and the bottom plate. This allows heat to be transferred from the Ί, used for > 1 into the Korean film. The heat transfer from both ends effectively reduces the heat transfer path for the parent The fin length. This improves the fin efficiency. The efficiency of the cymbal is inversely proportional to the fin length. The m-changing & cooling at the end of the fin is '" because the ends of the slab are fully attached. Connected to a board. In addition, the pump position w..^. can be selected to improve the efficiency of the political heating component. As in the text, the Sw, the air flow, the Axu from the sub-component 260a to the sub-, And the piece 260b. However, in the concrete implementation, the air flow can have one or more M parts for its universal movement. The air flow from the air blower does not flow uniformly and linearly from the blast, ώ M buckles a few / claws. Alternatively, the circular motion of the blower impeller gives a channel formed by an air flow coffee. The result is a two-way non-quantitative The ground parallel to the area of the heat sink assembly by the wrong piece can have a lower air flow. For the old days, a dead zone can exist in the air flow. 61 201038186 The pump is placed in The heat sink assembly is dead. Because of the pump, it does not require the direct exchange of heat to the air" as the desired effect, the pump is placed in the dead, the area of the heat sink assembly that maintains an air flow, The use of air flow for the parent heat transfer can remain effective. As a result, the efficiency of the heat sink assembly can be improved. Furthermore, the use of a manifold can also improve the heat sink assembly. The heat sink sub-assembly can utilize a manifold for guiding the fluid Entering and exiting the top and bottom panels, and entering and leaving the sub-assembly. The manifold is solid, such as formed from a copper block having holes drilled therein to control fluid flow. In some embodiments, an inertial guiding fluid The inlet-sub-assembly to the bottom plate directs fluid from the bottom plate to the top plate and directs fluid from the top plate to a cross-over tube to another sub-assembly or back to the pump. A manifold can be used at the tube to direct fluid flow. This problem, such as leakage 'lack of stability, and increased coverage of the system, can be avoided. Further, because the manifold can be a large piece of copper, the manifold can provide a larger footprint to weld to the floor or maintain Sub-component parts. Therefore, the manifold can also improve stability, reduce leakage, and improve the efficiency of the heat sink assembly. The heat sink assembly can also be improved through the use of dummy channels. Cooling efficiency. The bottom plate may include a dummy channel and channel to the microchannel heat sink and a dummy channel and channel from the microchannel heat sink. Note that the specific configuration of the channel and the dummy channel may be changed. Further, additional The channel and/or the additional dummy channel are in another embodiment. A dummy channel can be used to isolate fluid from entering the microchannel heat sink. In an embodiment, the dummy channel is formed in the bottom plate. When a cover member is provided on the bottom plate, an air 62-filled false passage is formed. Alternatively, the cover may be provided in another atmosphere and sealed, or the passage may be filled in another manner. Fluid enters the microchannel from the bottom plate of the sub-assembly. This fluid is slightly cold. The fluid leaving the microchannel heat sink traverses the bottom plate. The fluid from the microchannel heat sink is relatively geothermal and has heat received from the microchannel heat sink. False channel

他熱隔離器,或是真空。結果是,假通道是被=離:、 因為假通道本質上是被隔離’假通道可協助熱地隔離通道 進入微通道散熱ϋ。結果是,至微通道散熱器的流體可保 持較冷的。可藉此改善微通道散熱器的效率。 在此描述的散熱器組件可分享一些或所有於上文中討 論的優點。例如,散熱器組件可採用一或是更多以下特徵: 微通道散熱器,液體流動於氣流的相反方向,多個冷卻板, 每一冷卻板與鰭片連接,用於空氣流在一死區的泵,歧管, 及/或是假通道。因此,組件可具有改善的效率,改善的穩 定度,改善的冷卻,及/或其他先前被描述的優點。 如顯示在圖,散熱器組件施,2_可被彼此流動 地耦合及藉由一底盤構# 44〇支撐,其類似於描述在上文 之底盤構件。底盤構件44〇可支撐鼓風機17〇及—罐罩 可置於鼓風機170上,及一導管⑹可置於個別:散熱器 、且件60a 260b上。熱接觸表面21 ia,221a可充分地延伸 通過底盤構件以被熱地耦合至一被安裝於例如,一附加卡 的零件 微尺度熱傳系統效能 圖32顯示如在此所揭示具有二相《通過—微通道散熱 63 201038186 益的一閉路式冷卻迴路的工作樣本所獲得的測試數據。圖 32顯不入口壓力Pin及出口壓力PDUt改變遠少於假使通過微 通道散熱器的流場是不穩定的。據此,顯示在圖32大體上 地均勻入口壓力及出口壓力指示二相流通過微通道散熱器 保持穩定’儘管相對地高熱通量將造成一流通過具有連續 鱗片(亦即’沒有如在此所揭示的交叉連接件)的一微通道散 熱器為不穩定的。顯示在圖32的數據展示在散熱器效能上 藉由包含交叉連接件,相較於一沒有交叉連接件的微通道 放熱益所獲得的驚人增加。 圖33顯示一預測的散熱器溫度對微通道長寬比的變化 之圖表。圖33指出對於假設的冷卻系統及環境條件,加倍 Μ通道長寬比從6:1至12:1被預測會減少散熱器溫度上升 超過環境,Τ,當散發大約15〇瓦(W)時,大約攝氏12度 (t )。 & 圖3 4顯示一預測的泵背壓對微通道長寬比的變化之圖 表。圖16指出,對於假設的冷卻系統及環境條件,加倍微 通道長見比從6:1至12:1被預測會減少粟背壓p為大約4.1 的係數。 圖35顯示微通道散熱器溫度上升超過環境溫度的比較 圖’對於一界定交叉連接微通道具有一6:1長寬比的微通道 散熱|§(工作樣本1)及一工作微通道散熱器界定高長寬比 (12:1)及交叉連接微通道(工作樣本2),如在此所揭示者。 ,具有旧長寬比微 通道的散熱器提供-驚人的7.代低於具有6:1長寬比微通 64 201038186 道的散熱器超過環ρ、ra危认π产 、過%土兄溫度的溫度上升。此7 4。 比預期而驚人地軔社认4处", 幻汉口展不 ‘的效犯(例如,遠好於所預測1.2。(:的 改善,指不在圖33)。 其他具體實例 Ο ο 一如所敘述特徵,其是可能的在許多具體實施例中,以 、配σ於+的、緊密的體積之冷卻系統(例如,一體積合 規範及量測為大約⑽吋乘以大約13/8吋乘以大 )冷部電氣零件散發多至150瓦(連續地)而具有少至大 約抓-抑零件溫度上升超過—局部環境溫度。 胃丁的内谷參考成為該揭示内容一部分的隨附圖 式其中遍及全文類似的元件符號指示類似的部件。該等 圖式說明特定具體實施例,但可形成其他具體實施例及可 改變構造而不偏離本揭示内容所欲涵蓋的範嘴。方向及參 考如上下,頂部,底部,左,右,向後,向前等) 可被使用以促進圖式的討論但不意為限制ϋ口,可使用 :些術語諸如「上」,「下」,「上方」,「下方」,「水 '」 垂直」,「左」,「右」及類似者。當處理相對 關係,特別是相對於所制具體實施例,使用這些術語, 在合適之處,以提供明確描述。某些術語,然而,非意欲 暗指絕對的關係,位置,及/或是方位。例如,相對於-物 Βσ,一「上方」表面藉由簡單的翻轉物品可變為一「下方」 表面》儘管如此’其仍為相同表面及物品保持相同。如在 此所使用者,「及/或」意指「及」還有「及」和「或」。 據此,此詳細的描述不應被建構為一限制的方式,及 65 201038186 以下為本揭示内容的_回顧’所屬技術領域具有通常知識 者將了解冷卻系統的多樣化,其可使用在此所描述的各種 概念被設計及建構。再者,所屬技術領域具有通常知識者 將了解在此所揭示的示範性具體實施例可被採用為各種構 形而不偏離所揭示的概念。因此,見於可應用所揭示的原 理於許多可能的具體實施例’應承認以上所述的具體實施 例僅為實例及不應被視為限制範,。因此我們主張我們的 發月王。卩包3在以下巾請專利範圍的範•及精神内。 【圖式簡單說明】He is a thermal isolator, or a vacuum. As a result, the false channel is = away: because the dummy channel is essentially isolated. The false channel helps to thermally isolate the channel into the microchannel heat sink. As a result, the fluid to the microchannel heatsink can be kept cold. This can improve the efficiency of the microchannel heat sink. The heat sink assembly described herein may share some or all of the advantages discussed above. For example, the heat sink assembly may employ one or more of the following features: a microchannel heat sink, the liquid flows in the opposite direction of the air flow, a plurality of cooling plates, each of which is connected to the fins for air flow in a dead zone Pump, manifold, and / or false passage. Thus, the assembly can have improved efficiency, improved stability, improved cooling, and/or other previously described advantages. As shown in the figures, the heat sink assembly, 2_ can be fluidly coupled to each other and supported by a chassis structure #44, similar to the chassis member described above. The chassis member 44A can support the blower 17 and the can cover can be placed on the blower 170, and a conduit (6) can be placed on the individual: heat sink and the member 60a 260b. The thermal contact surface 21 ia, 221a can extend sufficiently through the chassis member to be thermally coupled to a component microscale heat transfer system that is mounted, for example, to an add-on card. Figure 32 shows a two phase "passed as disclosed herein. - Microchannel cooling 63 201038186 Benefits of the test data obtained from a working sample of a closed circuit cooling circuit. Figure 32 shows that the inlet pressure Pin and the outlet pressure PDUt change much less than if the flow field through the microchannel heat sink is unstable. Accordingly, it is shown in Figure 32 that substantially uniform inlet pressure and outlet pressure indicate that the two-phase flow remains stable through the microchannel heat sink, although relatively high heat flux will result in first-class passage through having continuous scales (i.e., 'not as here A microchannel heat sink of the disclosed cross-connector is unstable. The data shown in Figure 32 shows an amazing increase in heat sink performance by including cross-connects compared to a microchannel heat release without cross-connects. Figure 33 shows a graph of the predicted change in heat sink temperature versus microchannel aspect ratio. Figure 33 indicates that for hypothetical cooling systems and environmental conditions, doubling the channel aspect ratio from 6:1 to 12:1 is predicted to reduce the heat sink temperature rise above the environment, Τ, when about 15 watts (W) is emitted, About 12 degrees Celsius (t). & Figure 3 4 shows a graph of predicted changes in pump backpressure versus microchannel aspect ratio. Figure 16 indicates that for hypothetical cooling systems and environmental conditions, the double microchannel long-term ratio is predicted to reduce the millet back pressure p by a factor of about 4.1 from 6:1 to 12:1. Figure 35 shows a comparison of the temperature rise of the microchannel heatsink over ambient temperature. 'A microchannel heat dissipation with a 6:1 aspect ratio for a defined cross-connect microchannel|§ (Working Sample 1) and a working microchannel heat sink definition High aspect ratio (12:1) and cross-connected microchannels (Working Sample 2), as disclosed herein. The radiator with the old aspect ratio microchannel is provided - amazing 7. The generation is lower than the 6:1 aspect ratio micro pass 64 201038186 The heat sink exceeds the ring ρ, ra dangerous π production, over % soil brother temperature The temperature rises. This 7 4. It’s surprisingly more than expected, and the singularity of the singularity of the singularity of the singularity of the singularity of the slogan (for example, far better than the predicted 1.2. (: improvement, not in Figure 33). Other specific examples ο ο Narrative feature, which is possible in many embodiments, with a tight volume of cooling system with a σ of + (eg, a volumetric specification and measurement of approximately (10) 吋 multiplied by approximately 13/8 吋 times The large part of the cold part of the electrical parts is distributed up to 150 watts (continuously) and has as little as about the grab-inhibited part temperature rise exceeds the local ambient temperature. The inner valley reference of the stomach is part of the disclosure. The same reference numerals are used to refer to the same elements throughout the drawings. The drawings illustrate the specific embodiments, but may form other specific embodiments and changeable configurations without departing from the scope of the present disclosure. , top, bottom, left, right, backward, forward, etc.) can be used to facilitate the discussion of the schema but is not meant to limit the mouth. Use: terms such as "upper", "lower", "above", " Below," ' "Vertical", "left", "right" and the like. These terms are used, where appropriate, to provide a clear description of the relative relationship, particularly with respect to the specific embodiments made. Certain terms, however, are not intended to imply absolute relationships, positions, and/or orientations. For example, an "upper" surface can be changed to a "lower" surface by simply flipping the object relative to the object Β σ. However, it remains the same for the same surface and article. For the purposes of this user, "and/or" means "and" and "and" and "or". Accordingly, this detailed description is not to be construed as a limited limitation, and 65 201038186 The following is a general knowledge of the disclosure of the present disclosure. Those skilled in the art will appreciate the variety of cooling systems that can be used herein. The various concepts described are designed and constructed. In addition, those skilled in the art will appreciate that the exemplary embodiments disclosed herein may be embodied in various embodiments without departing from the disclosed concepts. Therefore, the specific embodiments disclosed herein are to be considered as illustrative and not restrictive. Therefore, we advocate our king of the moon. The bag 3 is in the scope and spirit of the patent scope below. [Simple description of the map]

圖1A描述一可操竹播犯AA 吊作構形的一概要的平面視圖,其包含 第一及第二電子零件安奘$ 女衷至—基板,作為一實例具有一附 力〇 卡(add-in card) ° ® 1B描述顯示在圖1之可操作構形的側視圖。 圖1C描述顯示在圖1A及之可操作構形的—部分的 側視圖。 圖2描述在此所揭示的冷卻系統的一實例的示意圖。 圖3包含在此所揭示的冷卻系統的效能與先前技藝冷 卻系統的效能的比較圖表。 圖4 A顯示包含在此所j _ 隹此所揭不的冷卻系統的一實施例、— 顯示卡及-底盤構件的組件的分料角視圖。 圖4B顯示在圖4A的冷卻系統的等角視圖。 圖4C顯不在圖4A及4B的冷卻系統的底部平面視圖。 圖5顯示一冷卻系統的—部分地組裝的第二實施例的 66 201038186 之部分地組裝的冷卻系統的分解等角 圖7插述一部分泵-外罩歧管及泵組件的分解圖。 圖7A及7B顯示另一泵-外罩歧管的部分。 、圖8A,8B及8C描述合併有入口及出口柄接器的一微 通道熱交換器蓋子的一實施例的各種等角視圖。Figure 1A depicts a schematic plan view of an abbreviated AA suspension configuration including first and second electronic components, and a substrate with an attached Leica (add) -in card) ° ® 1B depicts a side view of the operational configuration shown in Figure 1. Figure 1C depicts a side view of a portion of the operative configuration shown in Figure 1A. FIG. 2 depicts a schematic diagram of an example of a cooling system disclosed herein. Figure 3 contains a graph comparing the performance of the cooling system disclosed herein with the performance of prior art cooling systems. Figure 4A shows a cross-sectional view of the assembly of the display card and the chassis member, including an embodiment of the cooling system disclosed herein. Figure 4B shows an isometric view of the cooling system of Figure 4A. Figure 4C shows a bottom plan view of the cooling system of Figures 4A and 4B. Figure 5 shows an exploded isometric view of a partially assembled cooling system of a partially assembled second embodiment of a cooling system 66 201038186. Figure 7 illustrates an exploded view of a portion of the pump-housing manifold and pump assembly. Figures 7A and 7B show portions of another pump-housing manifold. Figures 8A, 8B and 8C depict various isometric views of an embodiment of a microchannel heat exchanger cover incorporating inlet and outlet adapters.

圖9顯不在一微通道散熱器基板的交又連接微通道的 一陣列的頂部平面視圖。 圖9A顯示在圖9的陣列的一部分。 圖10顯示交叉連接微通道的一頂部視圖,一端視圖, —側視圖及一等角視圖。 圖11A及11B為使用一微變形技術成形一微通道散熱 器的一工作樣本的概要視圖。 圖12A及12B為使用一切削技術(skiving technique)成 形一微通道散熱器的一工作樣本的概要視圖。Figure 9 shows a top plan view of an array of interconnected microchannels in a microchannel heat sink substrate. Figure 9A shows a portion of the array of Figure 9. Figure 10 shows a top view, an end view, a side view and an isometric view of the cross-connect microchannels. 11A and 11B are schematic views of a working sample for forming a microchannel heat sink using a micro-deformation technique. 12A and 12B are schematic views of a working sample for forming a microchannel heat sink using a skiving technique.

圖6顯示在圖 視圖。 圖1 3為一冷凝器的分解圖。 圖14顯示可能的冷凝器構形的兩概要視圖。 圖15顯示一冷凝器及散熱器組件的分解圖。 圖16顯示一冷凝器的分解圖,該冷凝器包含從冷凝器 的一外部表面延伸的鰭片。 圖17顯示在此所揭示—緊密冷卻系統的等角視圖。 圖18顯示在圖17冷卻系統的底側的等角視圖。 圖19顯不一托盤,或是底盤構件,其等被建構以支柃 顯示在圖17的冷卻系統的零件。 67 201038186 圖20顯示整合散熱器及冷凝器子組件的等角視圖。 圖21顯示在圖20的整合散熱器及冷凝器子組件的底 側的等角視圖。 _ 圖22顯示在圖20的子組件的散熱器部分的等角視圖。 圖23顯示在圖20的子組件的冷凝器部分的等角視圖。 圖24顯示用於圖20的子組件的冷凝器部分的另一實 施例的頂視圖。 圖25顯示一冷卻系統的第二實施例的分解圖。 圖26描述顯示在圖25的組件的一部分的分解圖。 圖27描述一散熱器子組件。 圖2 8描述另一散熱器子組件。 圖29顯示在圖27中的子組件從冷凝器下方所見的一 分解等角視圖。 圖30顯示一對散熱器子組件。 圖3 1顯示包含顯示在圖3〇的散熱器子組件的冷卻系 統的分解圖。 圖3 2顯示由如此所揭示的一穩定二相流通過一微通道 月欠熱器所導致的隨時間變化的流體壓力波動。 圖3 3顯示對於在此所揭示的系統,預測的散熱器溫度 對微通道長寬比的圖表。 圖3 4顯示對於在此所揭示的系統預測的泵背壓對微通 道長寬比的圖表。 圖35顯示上升超過大氣溫度的微通道散熱器溫度的比 較圊表’就以長寬比6:丨界定微通道的微通道散熱器以及以 68 201038186 長寬比12:1界定微通道的微通道散熱器。 【主要元件符號說明】 無Figure 6 shows the view in the figure. Figure 13 is an exploded view of a condenser. Figure 14 shows two schematic views of a possible condenser configuration. Figure 15 shows an exploded view of a condenser and heat sink assembly. Figure 16 shows an exploded view of a condenser containing fins extending from an outer surface of the condenser. Figure 17 shows an isometric view of the compact cooling system disclosed herein. Figure 18 shows an isometric view of the bottom side of the cooling system of Figure 17. Figure 19 shows a tray, or chassis member, which is constructed to support the components of the cooling system shown in Figure 17. 67 201038186 Figure 20 shows an isometric view of the integrated radiator and condenser subassembly. Figure 21 shows an isometric view of the bottom side of the integrated heat sink and condenser subassembly of Figure 20. Figure 22 shows an isometric view of the heat sink portion of the subassembly of Figure 20. Figure 23 shows an isometric view of the condenser portion of the subassembly of Figure 20. Figure 24 shows a top view of another embodiment of a condenser portion for the subassembly of Figure 20. Figure 25 shows an exploded view of a second embodiment of a cooling system. Figure 26 depicts an exploded view of a portion of the assembly shown in Figure 25. Figure 27 depicts a heat sink subassembly. Figure 2 8 depicts another heat sink subassembly. Figure 29 shows an exploded isometric view of the subassembly of Figure 27 as seen from below the condenser. Figure 30 shows a pair of heat sink subassemblies. Figure 31 shows an exploded view of the cooling system including the heat sink subassembly shown in Figure 3A. Figure 3 2 shows the time-dependent fluctuations in fluid pressure caused by a stable two-phase flow as disclosed by a microchannel monthly heat sink. Figure 3 3 shows a graph of predicted heat sink temperature versus microchannel aspect ratio for the systems disclosed herein. Figure 34 shows a graph of pump backpressure versus microchannel aspect ratio predicted for the system disclosed herein. Figure 35 shows a comparison of the temperature of a microchannel heatsink that rises above atmospheric temperature. The microchannel heatsinks that define the microchannels with an aspect ratio of 6:丨 and the microchannels of the microchannels with an aspect ratio of 12:1,2010. heat sink. [Main component symbol description] None

Ο 69Ο 69

Claims (1)

201038186 七、申請專利範圍: 1. 一種微尺度熱傳系統包含: 一微通道熱交換器,其界定複數個微流道藉由複數個 交叉連接通道流動地彼此耦合,該等交叉連接通道沿著— 流向流動方向被間隔開,該流向流動方向由微流道所界 定’使得當微通道熱交換器熱地耦合至一熱源時,微通道 熱父換器被建構以穩定地蒸發^一工作流體的一部分; 一冷凝器’其被流動地耦合至微通道熱交換器及被建 構以冷凝工作流體的蒸發部分;及 一泵,其流動地耦合至冷凝器及微通道熱交換器以便 被建構以循環工作流體在微通道熱交換器及冷凝器之間。 2·如申請專利範圍第1項所述的微尺度熱傳系統,其中 微通道熱交換器及冷凝器包含一整合子組件的部分,該子 組件包含: 一第一板,其界定相對的内部及外部主要表面,其中 第一板的内部主要表面界定一散熱器區域,其被建構以容 納微通道熱交換器;及 —第二板,其界定相對的内部及外部主要表面,其中 第二板的内部主要表面界定一蓋子區域及一冷凝器區域, 其中第一板及第二板是固定地鎖固在一起呈相對對 背’使得個別的内部主要表面彼此面對,及其中微通道熱 交換器是佈置在第一板及第二板之間。 3.如申請專利範圍第2項所述的微尺度熱傳系統,其中 微通道熱交換器熱地耦合至散熱器區域,及其中蓋子區域 70 201038186 置於複數個微流道上以便 4.如申請專利範圍第3項戶广道的一 ^動邊界。 第二板的冷凝器區域及第—板^的微尺度熱傳系統’其中 定至少-冷凝器流道。 、—對應的、相對的區域界 5·如申請專利範圍第4 笛一把 員所述的微尺度熱傳系統,i中 第一板的冷凝器區域界 凡,、中 延賴片及續片心t 第二板的内部主要表面 门久1方/L者精由至少_ ά Ο Ο 流向流動方向彼此間隔開。 ,^ ^ _ 6·如申請專利範圍第5項所述的微尺度熱傳系統,盆中 複數個延伸表面的至少-者是被焊接至第-板的内部表面 的一對應部分。 面 7·如申請專利範圍第2項所述的微尺度熱傳系統,其中 整合子組件另包含複數㈣片從第,第二板,或是兩 者的外部主要表面延伸。 8.如申請專利範圍第2項所述的微尺度熱傳系統,其中 第一板的外部主要表面界定一升高的表面,其被定位實質 上地相對於由第一板的内部主要表面所界定的散熱器區 域。 9.如申晴專利範圍第2項所述的微尺度熱傳系統,其中 微通道熱交換器包含一第一微通道熱交換器及一第二微通 道熱交換器’及其中散熱器區域包含一第一散熱器區域及 一第二散熱器區域’其中第一散熱器區域被建構以容納第 一微通道散熱器及第二散熱器區域被建構以容納第二微通 道散熱器。 71 201038186 10.如申請專利範圍第9項所述的微尺度熱傳系統,其 中蓋子區域包含—第一蓋子區域及一第二蓋子區域,其中 第一蓋子區域置於第一熱交換器上及第二蓋子區域置於第 二微通道熱交換器上。 11 ‘如申請專利範圍第9項所述的微尺度熱傳系統,其 中冷凝器區域包含一第一冷凝器區域及一第二冷凝器區 域0 12.如申請專利範圍第11項所述的微尺度熱傳系統,其 中第微通道散熱器及第一冷凝器區域流動地串聯耦合至 第二微通道散熱器及第二冷凝器區域。 * 13.如申清專利範圍第丨丨項所述的微尺度熱傳系統,其 中第-微通道散熱器及第—冷凝器區域流動地並聯耦合至 第二微通道散熱器及第二冷凝器區域。 14·如申印專利祀圍第2項所述的微尺度熱傳系統,進 Γ步包含—泉外罩歧管,其界定-内部腔室,肖内部腔室 被建構以容納泵,一入口開口月 及—出口開口,其中泵被定 位至少部分地在泵外罩歧管的 ^ n。丨4腔室内。 15.如申請專利範圍第14 ^ ^ β 貝所返的微尺度熱傳系統,其 中泵界定一泵入口及一泵出口, ^ s χ Α 具中泵入口流動地耦合至 泵外罩歧管的入口開口及泵出〇衣 的出口開σ。 ^地輕合至果外罩歧管 項所述 流動戴 16.如申請專利範圍第 中一或是更多微流道的一 10:1。 的微尺度熱傳系統,其 面界定一長寬比大於大 72 201038186 種用於一電腦系統的附加卡(add-in card),該附加 卡包含: 一基板包含複數個電路部分; 者 至夕積體電路零件電氣地耦合至電路部分的至少一 其中當操作時,積體電路零件散發熱; 一工作流體; 件 f、、、X器/、被疋位鄰接及熱地輕合至積體電路零 Ο G 其中蒸發器界定複數個交又連接微通道,其被建構以 對應於由零件散發的熱穩定地蒸發工作流體的—部分; -冷凝器’其被流動地耦合至蒸發器 少部分的藉由基板支撐; 7疑益至 择作,其被流動地耦合至蒸發器及至冷凝器以便為可 作的錢工作流體在蒸發器及冷凝器,之間。 18. 如申請專利範圍第17項所 :蒸:器包含-整合子組件的部分,其包含相對Si: 二^間其中蒸發器包含-微通道散熱器佈置在第一及第 19. 如申請專利範圍第18項所述的附加卡 組件另包含複數個鰭片自第—板 ,、中整&子 地延伸。 第一板,或是兩者向外 20.如申請專利範圍第18項所述的附 包含一第-蒸發器及-第二蒸發器。 U蒸發益 發利範圍第2°項所述的附加卡,其中第4 考态及第—瘵發器流動地彼此串聯耦A。 弟… 73 201038186 22.如申請專利_ 2〇項所述的 發器及第二蒸發器流動地搞合彼此並聯。...... 23·如申請專利範圍第17項所述的附加 :一'含複數個趙片從冷凝器向外地延伸…附加卡另包 …蒦罩置於鰭片上及一鼓風機被建構以遞送空氣越過鰭 ”中田蒸發器’冷凝器,栗,H片及鼓風機被操作地 相對彼此及積體電路零件被定位時,蒸發器,冷凝器,果, 韓片及鼓風機配合在—乘以13/8时乘以射的體積 内。 Μ·如申請專利範圍第23項所述的附加卡,其中泵被定 位以便至少部分地從鼓風機導向空氣於鰭片間。 25. 如申請專利範圍第17項所述的附加卡,另包含一底 盤構件置於基板的至少一部分上及卡合基板的至少一部 ^,其中冷凝器固定地附接至底盤構件使得底盤支撐冷凝 器’藉此冷凝器至少部分地由基板支撐。 26. —種冷卻包含一積體電路模之一電子零件的方法, 該方法包含: 流動呈一占多數地液相的一工作流體進入複數個微通 道; 以工作流體吸收熱藉由電子零件散發的熱’藉此在微 通道内蒸發工作流體的至少一部分; 沿著微通道在一或是更多流向位置從微通道之一流動 —體積的工作流體至另一微通道,藉此至少部分地在流向 ^立置平衡於微通道間的壓力; 74 201038186 在一冷凝器冷凝蒸發的工作流體。 27.如申請專利範圍帛26項戶_方法, 冷凝蒸發工作流體的行為包含流動空氣越過從冷凝 表面延伸之複數個鰭片。 28.如申請專利範圍第26項所述的方法,其中電子零件 包含一第一封裝積體電路模及一第=封裝積體電路模,复 中複數個#通道包含ϋ數個微通道被;t位鄰接第1 積體電路模及一第二複數個微通道被定位鄰接第二積體電 路模; ' a201038186 VII. Patent Application Range: 1. A micro-scale heat transfer system comprising: a microchannel heat exchanger defining a plurality of microchannels coupled to each other by a plurality of cross-connect channels, the cross-connect channels along - the flow direction is spaced apart, the flow direction being defined by the microchannels such that when the microchannel heat exchanger is thermally coupled to a heat source, the microchannel heat master is constructed to stably evaporate a working fluid a portion; a condenser 'which is fluidly coupled to the microchannel heat exchanger and configured to condense the vaporized portion of the working fluid; and a pump fluidly coupled to the condenser and the microchannel heat exchanger to be constructed The circulating working fluid is between the microchannel heat exchanger and the condenser. 2. The microscale heat transfer system of claim 1, wherein the microchannel heat exchanger and the condenser comprise a portion of an integrated subassembly comprising: a first plate defining an opposing interior And an outer major surface, wherein an inner major surface of the first panel defines a heat sink region configured to receive the microchannel heat exchanger; and a second panel defining opposing inner and outer major surfaces, wherein the second panel The inner main surface defines a cover area and a condenser area, wherein the first plate and the second plate are fixedly locked together in opposite opposite sides such that the individual inner main surfaces face each other, and the microchannel heat exchange therebetween The device is disposed between the first plate and the second plate. 3. The microscale heat transfer system of claim 2, wherein the microchannel heat exchanger is thermally coupled to the heat sink region, and wherein the cover region 70 201038186 is placed on the plurality of microchannels for 4. The third boundary of the patent scope is the boundary of Huguang Road. The condenser zone of the second plate and the microscale heat transfer system of the first plate define at least a condenser flow path. - Corresponding, relative regional boundaries 5 · The micro-scale heat transfer system described in the 4th Flute of the patent application scope, the condenser area of the first plate in i, the middle extension film and the continuous film heart t The inner main surface of the second plate is 1 square/L. The flow is separated from each other by at least _ ά Ο Ο flow direction. The micro-scale heat transfer system of claim 5, wherein at least one of the plurality of extended surfaces in the basin is welded to a corresponding portion of the inner surface of the first plate. The micro-scale heat transfer system of claim 2, wherein the integration sub-assembly further comprises a plurality of (four) sheets extending from the outer major surface of the first, second, or both. 8. The microscale heat transfer system of claim 2, wherein the outer major surface of the first panel defines a raised surface that is positioned substantially relative to the inner major surface of the first panel Defined radiator area. 9. The micro-scale heat transfer system of claim 2, wherein the microchannel heat exchanger comprises a first microchannel heat exchanger and a second microchannel heat exchanger and the heat sink region thereof comprises A first heat sink region and a second heat sink region 'where the first heat sink region is configured to receive the first microchannel heat sink and the second heat sink region is configured to receive the second microchannel heat sink. The micro-scale heat transfer system of claim 9, wherein the cover area comprises a first cover area and a second cover area, wherein the first cover area is placed on the first heat exchanger and The second cover area is placed on the second microchannel heat exchanger. The micro-scale heat transfer system of claim 9, wherein the condenser region comprises a first condenser region and a second condenser region 0. 12. The micro-process described in claim 11 A scale heat transfer system, wherein the first microchannel heat sink and the first condenser region are fluidly coupled in series to the second microchannel heat sink and the second condenser region. The micro-scale heat transfer system of claim 1, wherein the first-microchannel heat sink and the first-condenser region are fluidly coupled in parallel to the second microchannel heat sink and the second condenser region. 14. The micro-scale heat transfer system described in the second paragraph of the patent application, the inlet step comprises a spring cover manifold, which defines an internal chamber, and the internal chamber is configured to accommodate the pump, an inlet opening The month and the outlet opening, wherein the pump is positioned at least partially at the manifold of the pump housing.丨 4 chambers. 15. A microscale heat transfer system as claimed in claim 14 wherein the pump defines a pump inlet and a pump outlet, and wherein the pump inlet is fluidly coupled to the inlet of the pump housing manifold. The opening and the outlet of the pumping out of the garment are opened σ. ^Lightly combined to the outer cover manifold Item Description Flow Wear 16. A 10:1 of the first or more microchannels in the scope of the patent application. The micro-scale heat transfer system, which defines an aspect ratio greater than a large 72 201038186 add-in card for a computer system, the add-on card comprises: a substrate comprising a plurality of circuit parts; The integrated circuit component is electrically coupled to at least one of the circuit portions. When operating, the integrated circuit component dissipates heat; a working fluid; the component f, , , X, /, is clamped adjacent and thermally coupled to the integrated body Circuit zero Ο G wherein the evaporator defines a plurality of interconnected and connected microchannels that are configured to evaporate a portion of the working fluid corresponding to heat emanating from the part; a condenser that is fluidly coupled to a portion of the evaporator Supported by the substrate; 7 suspected to be selected, it is fluidly coupled to the evaporator and to the condenser so that the working fluid can be used between the evaporator and the condenser. 18. As claimed in claim 17, the steaming device comprises a portion of the integrated subassembly comprising relatively Si: wherein the evaporator comprises - the microchannel heat sink is arranged in the first and the 19th. The add-on card assembly of claim 18 further includes a plurality of fins extending from the first plate, the middle and the lower portion. The first plate, or both, is outwardly included as described in claim 18, and includes a first-evaporator and a second evaporator. U. Evaporation is an add-on card as described in item 2 of the benefit range, wherein the fourth test state and the first tester are fluidly coupled to each other in series A.弟... 73 201038186 22. The generator and the second evaporator as described in the application of the patent _ 2 流动 are fluidly connected in parallel with each other. ...... 23. As mentioned in the scope of claim 17: a 'containing a plurality of Zhao pieces extending outward from the condenser... additional cards are included... the hood is placed on the fins and a blower is constructed When the air is delivered over the fins "Nakada evaporator" condenser, the pump, the H-piece and the blower are operatively positioned relative to each other and the integrated circuit components are positioned, the evaporator, condenser, fruit, Korean and blower are matched - multiplied The 13/8 hour multiplied by the volume of the shot. 附加 The add-on card of claim 23, wherein the pump is positioned to at least partially direct air from the blower between the fins. The add-on card of item 17, further comprising a chassis member disposed on at least a portion of the substrate and at least one portion of the engaging substrate, wherein the condenser is fixedly attached to the chassis member such that the chassis supports the condenser 'by the condenser At least partially supported by the substrate. 26. A method of cooling an electronic component comprising an integrated circuit mold, the method comprising: flowing a working fluid in a majority of the liquid phase into the plurality of microchannels; Absorbing heat by the working fluid by the working fluid to thereby evaporate at least a portion of the working fluid within the microchannel; flowing from one of the microchannels at one or more flow locations along the microchannel to the volume of working fluid to Another microchannel, thereby at least partially balancing the pressure between the microchannels in the flow direction; 74 201038186 Condensing the evaporated working fluid in a condenser. 27. As claimed in the patent 帛26 households_method, condensation evaporation The behavior of the working fluid comprises flowing air over a plurality of fins extending from the condensing surface. 28. The method of claim 26, wherein the electronic component comprises a first packaged integrated circuit module and a first = packaged product The body circuit mode, the complex number of # channels includes a plurality of microchannels; the t bit adjacent to the first integrated circuit mode and a second plurality of microchannels are positioned adjacent to the second integrated circuit mode; ' a 從微通道之一流動一體積的工作流體至另一微通道的 包含流動工作流體從第一複數個微通道的一微通道至第— 複數個微通道的另一微通道及流動工作流體從第二複數個 微通道的一微通道至第二複數個微通道的另一微通道。 29.如申請專利範圍第28項所述的方法,其中在微通i 蒸發工作流體的行為包含在第一複數個微通道蒸發工作流 體。 3 0.如申請專利範圍第28項所述的方法,其中在微通道 蒸發工作流體的行為包含在第二複數個微通道蒸發工作流 體。 3 1.如申請專利範圍第29項所述的方法,其中冷凝器包 含一第一冷凝器部分及一第二冷凝器部分,其中在冷凝器 内冷凝蒸發工作流體的行為包含在第一冷凝器部分内冷凝 蒸發於第一複數個微通道的蒸發工作流體。 75 201038186 f 七、申請專利範圍: 1. 一種微尺度熱傳系統包含: 一微通道熱交換器,其界定複數個微流道藉由複數個 交叉連接通道流動地彼此耦合,該等交叉連接通道沿著一 流向流動方向被間隔開,該流向流動方向由微流道所界 定,使得當微通道熱交換器熱地耦合至一熱源時,微通道 熱交換器被建構以穩定地蒸發一工作流體的一部分; 一冷凝器,其被流動地耦合至微通道熱交換器及被建 Ο 構以冷凝工作流體的蒸發部分;及 一栗’其流動地耦合至冷凝器及微通道熱交換器以便 被建構以循環工作流體在微通道熱交換器及冷凝器之間。 2. 如申請專利範圍第1項所述的微尺度熱傳系統,其中 微通道熱交換器及冷凝器包含一整合子組件的部分,該子 組件包含: 一第一板,其界定相對的内部及外部主要表面,其中 ^ 第一板的内部主要表面界定一散熱器區域,其被建構以容 〇 納微通道熱交換器;及 一第一板’其界定相對的内部及外部主要表面,其中 第二板的内部主要表面界定一蓋子區域及一冷凝器區域, 其中第一板及第二板是固定地鎖固在一起呈相對對 齊’使付個別的内部主要表面彼此面對,及其中微通道熱 父換器疋佈置在第一板及第二板之間。 3. 如申請專利範圍第2項所述的微尺度熱傳系統,立中 微通道熱交換器熱地耦合至散熱器區域,及其中蓋子區域 79 201038186 置於複數個微流道上以便界定微流道的一流動邊界。 4. 如申請專利範圍第3項所述的微尺度熱傳系統,其中 第二板的冷凝器區域及第一板的一對應的、相對的區域界 定至少一冷凝器流道。 5. 如申請專利範圍第4項所述的微尺度熱傳系統,其中 第二板的冷凝器區域界定複數個從第二板的内部主要表面 延伸的韓片及鰭片沿著藉由至少一冷凝器流道所界定的一 流向流動方向彼此間隔開。 6. 如申請專利範圍第5項所述的微尺度熱傳系統,其中 複數個延伸表面的至少一者是被焊接至第一板的内部表面 的一對應部分。 7·如申請專利範圍第2項所述的微尺度熱傳系統,其中 正合子組件另包含複數個鰭片從第一板,第二板,或是兩 者的外部主要表面延伸。 8. 如申請專利範圍第2項所述的微尺度熱傳系統,其中 第一板的外部主要表面界定一升高的表面,其被定位實質 上地相對於由@ , 田弟一板的内部主要表面所界定的散熱器區 域D 9. 如申請專利範圍第2項所述的微尺度熱傳系統,其中 微通道熱交拖4人 、 乂換益包含一第一微通道熱交換器及一第二微通 道熱交換,jR # ° 中散熱器區域包含一第一散熱器區域及 第一散熱器區域’其中第一散熱器區域被建構以容納第 微通道政熱器及第二散熱器區域被建構以容納第二微通 道散熱器。 201038186 10. 如申請專利範圍第9項所述的微尺度熱傳系統,其 中蓋子區域包含一第一蓋子區域及一第二蓋子區域,其中 第一蓋子區域置於第一熱交換器上及第二蓋子區域置於第 一微通道熱交換器上。 11. 如申請專利範圍第9項所述的微尺度熱傳系統,其 中冷凝器區域包含一第一冷凝器區域及一第二冷凝器區 域0Flowing a volume of working fluid from one of the microchannels to another microchannel comprising another microchannel from the first plurality of microchannels to the microchannel and the flow of working fluid from the first plurality of microchannels One microchannel of the plurality of microchannels to another microchannel of the second plurality of microchannels. 29. The method of claim 28, wherein the act of evaporating the working fluid at the micropass i comprises the first plurality of microchannel evaporation working fluids. The method of claim 28, wherein the act of evaporating the working fluid in the microchannel comprises a second plurality of microchannel evaporation working fluids. 3. The method of claim 29, wherein the condenser comprises a first condenser portion and a second condenser portion, wherein the act of condensing the evaporating working fluid in the condenser is included in the first condenser The portion of the condensation evaporates into the vaporizing working fluid of the first plurality of microchannels. 75 201038186 f VII. Patent application scope: 1. A micro-scale heat transfer system comprises: a microchannel heat exchanger, wherein a plurality of microchannels are defined to be fluidly coupled to each other by a plurality of cross-connect channels, the cross-connect channels Separated along the flow direction, the flow direction is defined by the microchannels such that when the microchannel heat exchanger is thermally coupled to a heat source, the microchannel heat exchanger is configured to stably evaporate a working fluid a portion of a condenser that is fluidly coupled to the microchannel heat exchanger and configured to condense the vaporized portion of the working fluid; and a pump that is fluidly coupled to the condenser and the microchannel heat exchanger to be Constructed with a circulating working fluid between the microchannel heat exchanger and the condenser. 2. The microscale heat transfer system of claim 1, wherein the microchannel heat exchanger and the condenser comprise a portion of an integrated subassembly comprising: a first plate defining an opposing interior And an outer major surface, wherein the inner major surface of the first plate defines a heat sink region that is configured to accommodate the cannulated microchannel heat exchanger; and a first plate that defines opposing inner and outer major surfaces, wherein The inner main surface of the second plate defines a cover area and a condenser area, wherein the first plate and the second plate are fixedly locked together in a relative alignment to make the individual inner main surfaces face each other, and The channel hot parent converter 疋 is disposed between the first board and the second board. 3. The micro-scale heat transfer system of claim 2, wherein the central microchannel heat exchanger is thermally coupled to the heat sink region, and wherein the cover region 79 201038186 is placed on the plurality of microchannels to define the microflow A flowing boundary of the road. 4. The micro-scale heat transfer system of claim 3, wherein the condenser region of the second plate and a corresponding, opposite region of the first plate define at least one condenser flow path. 5. The micro-scale heat transfer system of claim 4, wherein the condenser region of the second plate defines a plurality of Korean and fins extending from the inner major surface of the second plate along with at least one The first-class flow direction defined by the condenser flow path is spaced apart from each other. 6. The microscale heat transfer system of claim 5, wherein at least one of the plurality of extended surfaces is welded to a corresponding portion of the interior surface of the first panel. 7. The microscale heat transfer system of claim 2, wherein the positron assembly further comprises a plurality of fins extending from the outer major surface of the first panel, the second panel, or both. 8. The microscale heat transfer system of claim 2, wherein the outer major surface of the first panel defines an elevated surface that is positioned substantially relative to the interior of the board by @, Tiandi Radiator area D defined by the main surface. 9. The micro-scale heat transfer system according to claim 2, wherein the micro-channel heat transfer drags 4 people, and the 乂 益 benefits include a first micro-channel heat exchanger and a The second microchannel heat exchange, the heat sink region in jR # ° includes a first heat sink region and a first heat sink region 'where the first heat sink region is constructed to accommodate the microchannel heat exchanger and the second heat sink region Constructed to accommodate the second microchannel heat sink. The micro-scale heat transfer system of claim 9, wherein the cover area comprises a first cover area and a second cover area, wherein the first cover area is placed on the first heat exchanger and The two cover areas are placed on the first microchannel heat exchanger. 11. The micro-scale heat transfer system of claim 9, wherein the condenser region comprises a first condenser region and a second condenser region. I1 2·如申請專利範圍第1 1項所述的微尺度熱傳系統,其 中第微通道散熱器及第一冷凝器區域流動地串聯耦合至 第二微通道散熱器及第二冷凝器區域。 13.如申凊專利範圍第丨丨項所述的微尺度熱傳系統,其 中第微通道散熱器及第―冷凝器區域流動地並聯耗合至 第二微通道散熱器及第二冷凝器區域。 14·如申請專利範圍第2項所述的微尺度熱傳系統,進 一步包含—泵外罩歧營, 千叹e 兵介疋—内部腔室,該内部腔室 被建構以容納栗,一入口關口;j . 八口開口及—出口開口,其中泵被定 位至少部分地在泵外罩歧管的内部腔室内。 15 ·如申請專利範圍第14項斯 ^ ^ β 項所建的微尺度熱傳糸統,其 中泵界定—泵入口及一, ,^ 其中泵入口流動地耦合至 泵外罩歧管的入口開 及果出α流動地耦合至泵外罩歧管 的出口開口。 16.如申請專利範圍第 中一或是更多微流道的一 10:1。 81 1 項所述的微尺度熱傳系統,其 2 流動截面界定一長寬比大於大約 201038186 卡包1含7·「種用於—電腦系統的附加卡(add'in咖d),該附加 一基板包含複數個電路部分; 者 乂積體电路零件電氣地福合至電路 其中當操作時,積體電路零件散發熱;的至^ 一工作流體; 件 二ι器’其被定位鄰捿及轨地叙人牵接胁恭 其中基称吳w 安及’,,、地耦〇至積體電路零 、11 ,疋複數個交又連接微通道,其被建槿w 對應於由零件今旅从也枝 ’、建構以 、 s的…、穩定地蒸發工作流體的一部分; 冷凝器’其被流動地耦 少部分的藉由基板支撐; 叾中冷凝器至 1 其被流動地雜合至基發$ $ $ > 3g 操作的循環工作…冷凝器以便為可 作Μ體在热發器及冷凝器之間。 8.如申請專利範圍第17項. 及蒸發器包含_单人;"相附加卡,其中冷凝器 第二板部分’其包含相對的第一及 二板之間'器包含-微通道散熱器佈置在第-及第 1 9.如申請專利範圍第1 8項 組件另勺人e 、斤迷的附加卡,其中整合子 件另包含複數個縛片自第—板 口千 地延伸。 禾—板,或疋兩者向外 2〇·如申請專利範圍第18項所奸& 包含-第… 項所述的附加卡,其中蒸發器 弟—4發器及一第二蒸發器。 21.如申請專利範圍第2〇項 發器及第_ $ 以勺附加卡,其中第一蒸 弟一4發益流動地彼此串聯執人 δ2 201038186 L 22·如申請專利範圍第20項所述的附加卡,其中第一蒸 發器及第二蒸發器流動地耦合彼此並聯。 23.如申請專利範圍第1 7項所述的附加卡,其中冷凝器 另包含複數個鰭片從冷凝器向外地延伸,其中附加卡另包 含一護罩置於鰭片上及一鼓風機被建構以遞送空氣越過鳍 片,其中當蒸發器,冷凝器,泵,鰭片及鼓風機被操作地 相對彼此及積體電路零件被定位時,蒸發器,冷凝器,泵, θ ,鰭片及鼓風機配合在一 1〇yz叶乘以η、吋乘以巧吋的體積 内。 24_如申請專利範圍第23項所述的附加卡’其中果被定 位以便至少部分地從鼓風機導向空氣於鰭片間。 25·如申請專利範圍帛17項所述的附加+,另&含一底 盤構件置於基板的至少一部分上及卡合基板的至少一部 分,其中冷凝器固定地附接至底般堪丛冰a 低盤構件使得底盤支撐冷凝 器’藉此冷凝器至少部分地由基板支撐。 26.—種冷卻包含一精體雷牧姑 ⑮體电路模之-電子零件的方法, 該方法包含: 流動呈一占多數地液相的— 作,风體進入複數個微通 道; 以工作流體吸收熱藉由電 电千零件政發的熱,藉此在微 通道内蒸發工作流體的至少―部分; ft此隹微 沿者微通道在一或是—夕、*人 更夕流向位置從微通道之一流動 一體積的工作流體至另一糌诵、苦^ ^ ,爪動 诚通道,藉此至少部分 位置平衡於微通道間的壓力. /;IL 83 201038186 在凝器冷凝蒸發的工作流體。 27.如申請專利範圍第26項所述的方法,其中在冷凝器 冷凝蒸發工作流體 體的仃為包含流動空氣越過從冷凝器的— 表面延伸之複數個鰭片。 入28·如申請專利範圍第%項所述的方法,其中電子零件 3第封凌積體電路模及一第二封裝積體電路模,其 中複數们Μ通道包含一第一複數個微通道被定位鄰接第— 積體電路模及—第二複數個冑通道被定位鄰接第二積體電 路模; 從微通道之一流動一體積的工作流體至另一微通道的 包含流動工作流體從第一複數個微通道的一微通道至第一 複數個微通道的另一微通道及流動工作流體從第二複數個 微通道的一微通道至第二複數個微通道的另一微通道。 29. 如申請專利範圍第28項所述的方法,其中在微通道 蒸發工作流體的行為包含在第一複數個微通道蒸發工作流 體。 30. 如申請專利範圍第28項所述的方法,其中在微通道 蒸發工作流體的行為包含在第二複數個微通道蒸發工作流 體。 3 1 ·如申請專利範圍第2 9項所述的方法,其中冷凝器包 含一第一冷凝器部分及一第二冷凝器部分,其中在冷凝器 内冷凝蒸發工作流體的行為包含在第一冷凝器部分内冷凝 蒸發於第一複數個微通道的蒸發工作流體。 84The micro-scale heat transfer system of claim 1, wherein the first microchannel heat sink and the first condenser region are fluidly coupled in series to the second microchannel heat sink and the second condenser region. 13. The micro-scale heat transfer system of claim 1, wherein the microchannel heat sink and the first-condenser region are flowably connected in parallel to the second microchannel heat sink and the second condenser region. . 14. The micro-scale heat transfer system of claim 2, further comprising: a pump cover squad, a sigh, an internal chamber, the internal chamber being constructed to accommodate the chestnut, an entry gateway ;j. Eight opening and - outlet openings, wherein the pump is positioned at least partially within the interior chamber of the pump housing manifold. 15 · The micro-scale heat transfer system constructed according to item 14 of the patent application scope, wherein the pump defines the pump inlet and the first, and the pump inlet is fluidly coupled to the inlet of the pump cover manifold and It is shown that a is fluidly coupled to the outlet opening of the pump housing manifold. 16. A 10:1 of the first or more microchannels in the scope of the patent application. In the micro-scale heat transfer system described in Item 81, the 2 flow cross-section defines an aspect ratio greater than approximately 201038186. The card package 1 contains 7 "additional card for the computer system (add'in coffee d), the additional A substrate includes a plurality of circuit portions; the plenum circuit components are electrically integrated into the circuit, wherein when operating, the integrated circuit components dissipate heat; to a working fluid; the device is positioned to be adjacent to each other The orbital narrator is connected to the ruling, which is called Wu W An and ',, and the ground is coupled to the integrated circuit zero, 11, and the plurality of intersections are connected to the microchannel, which is constructed by 零件w corresponding to the part of the tour. From the branch, constructing, s..., steadily evaporating a portion of the working fluid; the condenser 'which is fluidly coupled to a small portion supported by the substrate; the middle condenser to 1 is fluidly hybridized to the base The $3 $ > 3g operation of the cycle works... the condenser is used as a carcass between the heat generator and the condenser. 8. As claimed in item 17 and the evaporator contains _ single; " Add-on card in which the second plate portion of the condenser 'which contains Between the first and second plates, the device includes - the microchannel heatsink is arranged in the first and the first. 9. The component of the 18th component of the patent application scope, the add-on card of the fan, and the integrated component In addition, a plurality of binding pieces are extended from the first-plate mouth. The two-plates, or the two sides are outwardly disposed 2, as described in the 18th item of the patent application, including the additional card described in the item - Among them, the evaporator is a 4-hair device and a second evaporator. 21. For example, the second item of the patent application and the _$ spoon-added card, wherein the first steaming one The add-on card of claim 20, wherein the first evaporator and the second evaporator are fluidly coupled in parallel with each other. 23. The add-on card of claim 17 Wherein the condenser further comprises a plurality of fins extending outwardly from the condenser, wherein the additional card further comprises a shroud disposed on the fin and a blower is constructed to deliver air over the fins, wherein the evaporator, the condenser, the pump , fins and blowers are operatively operated relative to each other and When the integrated circuit components are positioned, the evaporator, condenser, pump, θ, fins, and blower are matched in a 1〇yz leaf multiplied by η, 吋 multiplied by the volume of the 吋 。. 24_ patent application scope 23 The add-on card described in the item is positioned to at least partially direct air from the blower between the fins. 25. Additional + as described in claim 17 of the patent application, & At least a portion of the upper and at least a portion of the carding substrate, wherein the condenser is fixedly attached to the bottom of the ice plate, such that the chassis supports the condenser 'by virtue of the condenser being at least partially supported by the substrate. 26. A method of cooling an electronic component comprising a snail body of a sacred body, the method comprising: flowing a liquid phase in a majority, the wind body entering a plurality of microchannels; Absorbing heat by emanating the heat of the thousands of parts, thereby evaporating at least a portion of the working fluid in the microchannel; ft the micro-channels of the micro-channels in one or the evening, One of the microchannels flows a volume of working fluid to another, bitter, and clawed channel, thereby at least partially balancing the pressure between the microchannels. /; IL 83 201038186 Condensation evaporation in the condenser fluid. 27. The method of claim 26, wherein the condensing of the working fluid body in the condenser condenses a plurality of fins comprising flowing air over the surface of the condenser. The method of claim 5, wherein the electronic component 3 is a first block circuit module and a second package integrated circuit mode, wherein the plurality of channels comprise a first plurality of microchannels Positioning adjacent to the first integrated circuit mode and - the second plurality of germanium channels are positioned adjacent to the second integrated circuit mode; flowing one volume of working fluid from one of the microchannels to the other containing the flowing working fluid from the first One microchannel of the plurality of microchannels to the other microchannel of the first plurality of microchannels and the flow working fluid from one microchannel of the second plurality of microchannels to another microchannel of the second plurality of microchannels. 29. The method of claim 28, wherein the act of evaporating the working fluid in the microchannel comprises the first plurality of microchannel evaporation working fluids. 30. The method of claim 28, wherein the act of evaporating the working fluid in the microchannel comprises a second plurality of microchannel evaporation working fluids. The method of claim 29, wherein the condenser comprises a first condenser portion and a second condenser portion, wherein the act of condensing and evaporating the working fluid in the condenser is included in the first condensation The evaporative working fluid is condensed and evaporated in the first plurality of microchannels. 84
TW099105790A 2009-02-27 2010-03-01 Microscale heat transfer systems, add-in cards incorporating same, and related methods TWI544865B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US15646509P 2009-02-27 2009-02-27
US12/511,945 US8833435B2 (en) 2008-08-05 2009-07-29 Microscale cooling apparatus and method
US23309009P 2009-08-11 2009-08-11
US24102809P 2009-09-10 2009-09-10
US25051109P 2009-10-10 2009-10-10
US25051609P 2009-10-11 2009-10-11

Publications (2)

Publication Number Publication Date
TW201038186A true TW201038186A (en) 2010-10-16
TWI544865B TWI544865B (en) 2016-08-01

Family

ID=42665972

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099105790A TWI544865B (en) 2009-02-27 2010-03-01 Microscale heat transfer systems, add-in cards incorporating same, and related methods

Country Status (2)

Country Link
TW (1) TWI544865B (en)
WO (1) WO2010099545A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033196A (en) * 2020-08-19 2020-12-04 扬州船用电子仪器研究所(中国船舶重工集团公司第七二三研究所) Low-pressure gas-liquid two-phase flow cold plate
TWI744364B (en) * 2016-08-12 2021-11-01 美商高通公司 Multi-phase heat dissipating device embedded in an electronic device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10638648B2 (en) 2016-04-28 2020-04-28 Ge Energy Power Conversion Technology Ltd. Cooling system with pressure regulation
TWI614409B (en) 2016-12-08 2018-02-11 研能科技股份有限公司 Air cooling heat dissipation device
CN110621137A (en) * 2018-06-20 2019-12-27 鸿富锦精密工业(武汉)有限公司 Liquid cooling heat sink and electronic device integrating the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6988534B2 (en) * 2002-11-01 2006-01-24 Cooligy, Inc. Method and apparatus for flexible fluid delivery for cooling desired hot spots in a heat producing device
DE10393588T5 (en) * 2002-11-01 2006-02-23 Cooligy, Inc., Mountain View Optimal propagation system, apparatus and method for liquid cooled, microscale heat exchange
WO2004042306A2 (en) * 2002-11-01 2004-05-21 Cooligy, Inc. Method and apparatus for achieving temperature uniformity and hot spot cooling in a heat producing device
US20040250994A1 (en) * 2002-11-05 2004-12-16 Lalit Chordia Methods and apparatuses for electronics cooling
US6741469B1 (en) * 2003-02-07 2004-05-25 Sun Microsystems, Inc. Refrigeration cooling assisted MEMS-based micro-channel cooling system
US6903929B2 (en) * 2003-03-31 2005-06-07 Intel Corporation Two-phase cooling utilizing microchannel heat exchangers and channeled heat sink

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744364B (en) * 2016-08-12 2021-11-01 美商高通公司 Multi-phase heat dissipating device embedded in an electronic device
CN112033196A (en) * 2020-08-19 2020-12-04 扬州船用电子仪器研究所(中国船舶重工集团公司第七二三研究所) Low-pressure gas-liquid two-phase flow cold plate

Also Published As

Publication number Publication date
WO2010099545A1 (en) 2010-09-02
TWI544865B (en) 2016-08-01

Similar Documents

Publication Publication Date Title
US20120087088A1 (en) Microscale heat transfer systems
US7450386B2 (en) Phase-separated evaporator, blade-thru condenser and heat dissipation system thereof
US7571618B2 (en) Compact heat exchanging device based on microfabricated heat transfer surfaces
US10524388B2 (en) Loop heat pipe and electronic device
US6990816B1 (en) Hybrid capillary cooling apparatus
US7156159B2 (en) Multi-level microchannel heat exchangers
US7304842B2 (en) Apparatuses and methods for cooling electronic devices in computer systems
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
KR100912538B1 (en) The flat plate type micro heat transport device
EP2568789B1 (en) Heat exchanger
US20100032150A1 (en) Microscale cooling apparatus and method
US20050257532A1 (en) Module for cooling semiconductor device
US20200344914A1 (en) Phased array antenna
TW201038186A (en) Microscale heat transfer systems
EP1519646A2 (en) Use of graphite foam materials in pumped liquid, two phase cooling, cold plates
US20070151275A1 (en) Methods and apparatus for microelectronic cooling using a miniaturized vapor compression system
US7924564B1 (en) Integrated antenna structure with an embedded cooling channel
WO2013023279A1 (en) Two-phase heat transfer apparatus
US20220412662A1 (en) Integrated Heat Spreader
WO2007130668A2 (en) Phase-separated evaporator, blade-thru condenser and heat dissipation system thereof
RU107582U1 (en) MICROCHANNEL HEAT EXCHANGER WITH NANORELIEF
WO2005121681A2 (en) Counter flow micro heat exchanger for optimal performance
WO2023042880A1 (en) Boiling-type cooling device
Walchli et al. Radially oscillating flow hybrid cooling system for low profile electronics applications
Vogel et al. Passive phase change tower heat sink & pumped coolant technologies for next generation CPU module thermal design

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees