TW201036320A - Control techniques for motor driven systems - Google Patents

Control techniques for motor driven systems Download PDF

Info

Publication number
TW201036320A
TW201036320A TW099103439A TW99103439A TW201036320A TW 201036320 A TW201036320 A TW 201036320A TW 099103439 A TW099103439 A TW 099103439A TW 99103439 A TW99103439 A TW 99103439A TW 201036320 A TW201036320 A TW 201036320A
Authority
TW
Taiwan
Prior art keywords
drive signal
mechanical system
motor
drive
steps
Prior art date
Application number
TW099103439A
Other languages
Chinese (zh)
Other versions
TWI491167B (en
Inventor
Colin Lyden
Javier Calpe-Maravilla
Mark Murphy
Eoin English
Denis O'connor
Original Assignee
Analog Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/367,883 external-priority patent/US8299744B2/en
Priority claimed from US12/367,938 external-priority patent/US20100201302A1/en
Application filed by Analog Devices Inc filed Critical Analog Devices Inc
Publication of TW201036320A publication Critical patent/TW201036320A/en
Application granted granted Critical
Publication of TWI491167B publication Critical patent/TWI491167B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • H02P25/034Voice coil motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Stepping Motors (AREA)
  • Feedback Control In General (AREA)

Abstract

Embodiments of the present invention provide a motor-driven mechanical system with a detection system to measure properties of a back channel and derive oscillatory characteristics of the mechanical system. Uses of the detection system may include calculating the resonant frequency of the mechanical system and a threshold drive DTH required to move the mechanical system from the starting mechanical stop position. System manufacturers often do not know the resonant frequency and DTH of their mechanical systems precisely. Therefore, the calculation of the specific mechanical system's resonant frequency and DTH rather than depending on the manufacturer's expected values improves precision in the mechanical system use. The backchannel calculations may be used either to replace or to improve corresponding pre-programmed values.

Description

201036320 六、發明說明: 【發明所屬之技術領域】 本發明係關於馬達控制及及料 及及對馬達驅動系統之控制。詳 言之’本發明係關於對馬達 、 呢勒糸統之控制,其最小化由 馬達控制之機械系統中 . 振玲(ringing)或「彈跳 (bounce)j 。 9曰申請之美國臨時申請案 driven Mechanical Systems j ’該案之内容係以全文引用 本申請案主張2009年2月 「Control Protocols for· Motor201036320 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to motor control and materials and control of a motor drive system. In particular, the present invention relates to the control of motors and cymbals, which minimizes the mechanical system controlled by the motor. Ringing or bounce j. 9 曰 application for US interim application Driven Mechanical Systems j 'The content of this case is quoted in full by this application. February 2009 "Control Protocols for· Motor

第61 /15 0,9 5 8號之優先權權利 的方式併入本文中。 本申請案為-部分接續案且主張同在中請中之均在細9 年2月9日中請之第12/367,883號及第12/367,938號的申請宰 「C_r〇1 Techniques f〇r M〇t〇r 加職 S㈣刪」之優先 權,該等申請案之内容係全文弓丨用的方式 【先前技術】 馬達驅動平移系統為現代電氣裝置中之常見物。當必須 使-機械系統在電控制下在一預定運動範圍内移動時,使 用該等系統。冑見實例可包括數位相機、視訊記錄器、且 有此功能性之攜帶型裝置(例如,行動電話、個人數位助 理及掌上型遊㈣統)之自動對焦系統及光碟讀取器之雷 射驅動器。在此等系統中,一馬達驅動器積體電路產生一 多值驅動信號至一馬達,該馬達又驅動-機械系統(例 如,在-自動對焦系統之情況下’―透鏡組)。該馬達驅 動器回應於—外部供應之碼字纽㈣動錢。該碼字嗤 145778.doc 201036320 承為識別在*亥機械系統之運動範圍内之位置的數位 值’該馬達應使該機械“移動至該位置n,根據分 配給該運動範圍之竭字之數目將該運動範圍分成一預定數 目個可&址位置(本文中稱為「點」)。該驅動信號為一直 接施加至該馬達以使該機械系統根據需要移動之電子信 儘管機械系統之類型及組態通常改變,但許多機械系統 可模型化為一麵接至_ ^ ^ iJb AL. 柄丧主彈簧之塊狀物。當一馬達根據該驅 動信號使該塊狀物移動時,該運動在該系統内產生其他 力,該等力可使該塊狀物以某一諸振頻率(f〇以新位置為 中心振盪。舉例而言’已在消費型電子產品中觀察到約 110 Hz之諧振頻率。此振盪通常隨時間減少,但其可藉由 (例如)延長一相機透鏡系統對焦一影像所用的時間或一碟 其所欲功能上之效能 片讀取器移動至m道所用的時間之量而削弱裝置在 圖1為一通常用於鏡頭驅動器中之馬達驅動系統之簡化 方塊圖。該系統包括一成像晶片110、一馬達驅動器12〇、 —音圈馬達130及一透鏡14〇。該馬達驅動器回應於一由該 成像晶片提供之碼而產生—驅動信號至該音圈馬達。接下 來,該音圈馬達使該透鏡在其運動範圍内移動。該透鏡之 移動改變該透鏡將入射光聚焦於該成像晶片之一表面上之 路線(way) ’其可被谓測且用以產生新碼至該馬達驅動 器。圖2為圖丨之系統之可能回應之頻率曲線圖其說明一 頻率為fR之譜·振頻率。 145778.doc 201036320 圖则由習知馬達驅動器產生之兩個驅動信號。第一 驅動信號為一步階函數,且推 _ ± ± 少丨&山双具像一不連續跳躍一樣自一第一 狀態改變至-第二狀態(圖3⑷)。所說明之第二驅動信號 $-斜坡函數’其以一固定變化率自該第一狀態改變至該 第一狀態(圖3(b))。然而,兩個類型之驅動信號均導致如 上所述的削弱效能之振鈴行為。圖4(例如)說明在_個此機 械系統中觀察到的振鈐。 Ο ❹ 务明者已觀察到’此等馬達驅動系統之振鈴行為不必要 地延長此等機械系統之穩定時間且使效能降級。因此,此 員技術中需要-種馬達驅動系統,其可根據—數位碼字來 驅動且避免此等系統中所發現之振盡行為。 【發明内容】 在態樣中’提供__種用於產生—驅動信號至The manner of claim 61/15 0, 9 5 8 is hereby incorporated by reference. This application is a part of the continuation case and claims that the same application in the middle of the 9th, 9th, 9th, 9th, 367th, and 12th, 367, 938, "C_r〇1 Techniques f〇r M〇t〇r is the priority of the S (4) deletion. The contents of these applications are the full text of the application. [Prior Art] The motor-driven translation system is a common thing in modern electrical installations. These systems are used when it is necessary to move the mechanical system under electrical control within a predetermined range of motion. See examples of digital cameras, video recorders, and portable devices with such functionality (eg, mobile phones, personal digital assistants, and handheld games) and laser drivers for optical disc readers. . In such systems, a motor driver integrated circuit produces a multi-valued drive signal to a motor which in turn drives a mechanical system (e.g., in the case of an autofocus system - a "lens group"). The motor drive responds to the externally supplied codewords (4). The code word 嗤 145778.doc 201036320 is intended to identify the digit value of the position within the range of motion of the *Hai mechanical system 'the motor should cause the machine to "move to the position n, according to the number of characters assigned to the range of motion The range of motion is divided into a predetermined number of & address locations (referred to herein as "points"). The drive signal is an electronic signal that is directly applied to the motor to cause the mechanical system to move as needed. Although the type and configuration of the mechanical system typically changes, many mechanical systems can be modeled as one side to _ ^ ^ iJb AL. The handle is the block of the main spring. When a motor moves the block according to the drive signal, the motion creates other forces within the system that cause the block to oscillate at a certain vibration frequency (f〇 centered on the new position). For example, 'a resonant frequency of about 110 Hz has been observed in consumer electronics. This oscillation usually decreases over time, but it can be extended, for example, by extending the time it takes for a camera lens system to focus on an image or a disc. The simplified functional block diagram of the motor drive system typically used in the lens driver in FIG. 1 is a simplified block diagram of the desired time for the performance chip reader to move to the m track. The system includes an imaging die 110, a motor driver 12, a voice coil motor 130 and a lens 14. The motor driver generates a drive signal to the voice coil motor in response to a code provided by the imaging chip. Next, the voice coil motor causes the motor The lens moves within its range of motion. The movement of the lens changes the way the lens focuses incident light onto one of the surfaces of the imaging wafer 'which can be pre-measured and used to generate a new code to the Figure 2. Figure 2 is a frequency diagram of the possible response of the system of Figure 其, which illustrates a spectrum and frequency of frequency fR. 145778.doc 201036320 The two driving signals generated by a conventional motor driver. The signal is a one-step function, and the push _ ± ± less 丨 & mountain doubles change from a first state to a second state like a discontinuous jump (Fig. 3(4)). The second drive signal is described as $-slope The function 'changes from the first state to the first state at a fixed rate of change (Fig. 3(b)). However, both types of drive signals result in ringing behavior that impairs performance as described above. For example) Explain the vibrations observed in this mechanical system. Ο 务 The clerk has observed that the ringing behavior of these motor drive systems unnecessarily prolongs the stabilization time of these mechanical systems and degrades performance. In this technology, a motor drive system is required, which can be driven according to a digital code word and avoids the vibration-out behavior found in such systems. [Summary] In the aspect, 'provide __ kind for generation -drive Signal to

動機械系鉼之古、土 # a Α 馬違焉S ^ 統方法’其包含:以根據巴斯卡三角形之一.鹿 加至該馬達驅動機二 選定列之!^母一步階具有一對應於巴斯卡三角形之該 — 各別條目的步長,且該等步階根據一由下+ 疋之時間常數tc彼此分隔: 下式確The dynamic mechanical system of the ancient, soil # a Α horse violation S ^ system method 'includes: according to one of the Baska triangle. Deer added to the motor drive machine 2 selected column! The mother step has a step size corresponding to the Baska triangle - the respective entries, and the steps are separated from each other by a time constant tc of + 疋:

2fR 八中fR為該機械系統之一預期言皆振頻率。 心木X中’提供一種用於產峰—聰#Λ /P* afe 驅動機械t㈣Μ生㈣^至一馬達 η系統之方法,其包含:以 選定列之—么 1 r 一月形之一 '、列步階將一驅動信號施加至該馬達驅動機械 I45778.doc -5- 201036320 系統,其t ··料步階經分紐成 目等於來自巴斯卡三角形之〜β隔’其中間隔之數 . . w璉疋列之條目的數目,每 長,每-間隔包括對應於-來自巴:: 二角形之該選定列之各別條目 自巴斯卡 據一由下式確^之時間常數彼此分t,且該相隔根 2f 其中匕為該機械系統之一預期譜振頻率。 ^另—態樣中,提供—種驅動”產生器,其包含. 分接頭暫存器’其儲存表示巴斯卡:角形之列且:— 識別-選定列之控制信號之圖幸 ^之列且回應於- 對應於—時間常數。之時間間隔驅動該分接頭暫存器: tc"i ::,為-將由該驅動信號產生器驅動之機械系統之一預 /月4振頻率;及一 g 哭 甘 ’、β ,其回應於該分接頭暫存器及表 機械系統之-出發位置及—目的地位置之資料,產生 一步階驅動信號H步階之數目等於來自巴斯卡三角 之條目的數目,每—步階具有—對應於該出 :置:該目的地位置之間的一差且對應於巴斯卡三角形 ^亥選疋列之別條目的步長,且該等步階根據該時間 數4彼此分隔;及_數位至類比轉換器其用以產生該 步階驅動信號之一類比表示。 、在又態樣中,提供一種驅動信號產生器,其包含:一 刀接頭暫存器’其儲存表示巴斯卡三角形之列之圖案,該 145778.doc -6 - 201036320 專圖案各自含有具有許多均勾步階的間隔 應於巴斯卡三角形之條目的數目,每一間隔中的=目= 目對應於巴斯卡三角形之_各別條目之值…白之數 回應於來自該分接頭暫存器之輸出及表 :之其 出發位置及-目的地位置之資料,以產生之-號,其中該步階驅動信號具有一對應於自該分接=動信 輸出的步階之-累加數目且進—步對應於—出=器 Ο 〇 目的地位置之間的-差之振幅;-時序引擎,其用、— 該分接頭暫存器,其中該時序引擎使續纟μ驅動 以間隔分隔之步階,該^隔彼器輸出 間常數tc: 由下式確定之時2fR 八中 fR is the expected frequency of one of the mechanical systems. "Xinmu X" provides a method for producing a peak-c* afe drive machine t (four) twin (four) ^ to a motor η system, which includes: in the selected column - one 1 r one month shape The step step applies a driving signal to the motor-driven machine I45778.doc -5-201036320 system, and the t-·step step is equal to the number of intervals from the Baska triangle. The number of entries in the w琏疋 column, each length, per-interval, including the respective entries of the selected column corresponding to - from the bar:: the dipole from Baska according to the time constant of the following formula Dividing t, and the phase is separated by 2f where 匕 is the expected spectral frequency of one of the mechanical systems. In the other aspect, a "driver" generator is provided, which includes a tap register, which stores a representation of the Baska: angular column and: - identifies the control signal of the selected column. And in response to the - time constant, the time interval is driven to drive the tap register: tc"i:, is - a pre-/month 4 frequency of the mechanical system to be driven by the drive signal generator; g crying ', β, in response to the information of the tap register and the mechanical system - the starting position and the destination location, generating a step-by-step driving signal. The number of H steps is equal to the entry from the Baska Triangle. The number of each step has - corresponding to the out: set: the difference between the destination locations and corresponds to the step size of the other entries of the Baska triangle, and the steps are based on The time number 4 is separated from each other; and the _digit to analog converter is used to generate an analogy of the step drive signal. In another aspect, a drive signal generator is provided, comprising: a tool joint register 'The storage indicates the Baska triangle The pattern of the columns, the 145778.doc -6 - 201036320 special patterns each contain a number of entries with a number of steps in the Baska triangle, and the number of items in each interval corresponds to the Baska triangle The value of each item...the number of whites is in response to the output from the tap register and the data of the starting position and the destination position of the tap register to generate a -, wherein the step drive signal has One corresponds to the number of accumulated steps from the tap = mobile output and the step corresponds to the amplitude of the difference between the destinations and the destinations; - the timing engine, which uses - a tap register, wherein the timing engine causes the 纟μ drive to be separated by intervals, and the inter-output constant tc: when determined by the following formula

~~ 丨― 2fR 其中匕為該機械系統之一預期諧振頻率— 步階彼此分隔-比tc短之時間常數。 母-間隔内之 在再一態樣中’提供一種驅動— 法,其包含:回應於一識別該機械系統之—=統之方 生—多步階驅動信號’每-步階偏移-相= 其中4為該機械系統之一預期譜振頻率> 一振幅係自巴斯卡三角形之一選定, ”中母—步階之 出發位置之間的一差導出。、歹】及該目的地位置與該 在另-態樣中,提供一種驅動 馬達驅動機械系統之方 145778.doc 201036320 二其!^回應於—識別該機械系統之-目的地位置之 2於卜以複數個間隔分隔之步階驅動信號,每一間 隔偏私一相鄰間隔一時間tc: tp S--~~ 丨― 2fR where 匕 is the expected resonant frequency of one of the mechanical systems—the steps are separated from each other—the time constant shorter than tc. In the parent-interval, in a further aspect, 'providing a driving method, which comprises: responding to a recognition of the mechanical system---------------------------------------------------------------- = where 4 is the expected spectral frequency of one of the mechanical systems > an amplitude is selected from one of the Baska triangles, "the difference between the starting position of the middle mother-step", 歹] and the destination Position and the other aspect, providing a drive motor to drive the mechanical system 145778.doc 201036320 2^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Order drive signal, each interval is private and adjacent to each other for a time tc: tp S--

2fR 其中fR為該機械系統之一預期增 顶朋咕振頻率,其中每一步階具 有一均勻振幅且每—間 白之·數目係自巴斯卡三角 形之一選定列導出。 在另一態樣中,提供-種用於產生-驅動信號至一馬達 驅動機械系統之方法,嶋:以一系列步階將一驅動信 唬施加至該馬達驅動機械系統’其中:步階之數目取決於 -將由該馬達驅動機械系統橫跨之距離,且該驅動信號使 該馬達驅動機械系統在一與該離 兴邊此離無關之預定時間橫 跨該距離。 在另一態樣中,提供一種驅動信號產生器,其包含:一 斜坡調變器’其回應於—步階時脈速率及—淨距離^產生 -步階回應信號;—累加器,其回應於該步階回應信號, 產生一步階驅動信號;及一數位至類比轉換器,其用以產 生-驅動信號,其中該驅動信號使_馬達驅動機械系統在 一與該淨距離無關之預定時間内橫跨該淨距離。 【實施方式】 亡發明之實施例提供一種用於一馬達驅動機械系統之驅 動號,其頻率分佈在該機械系統之預期諧振頻率下具有 零(或近零)能量。該驅動信號可以根據巴斯二/ 卜二再形之一 選定列之一系列步階提供,其中步階之數 *=*号於來自巴斯 145778.doc 201036320 卡三角形之該撰它 # i 列條目的數目,每一步卩比且士 於:斯卡三角形之該選定列之一各別條目的;广對應 步产白根據-由該機械系統之 比步#且该等 三角形之-選定;=一;=動信號可作為根據巴斯卡 分隔成對應於來自巴斯卡形供’其中該等步階 月^/之該選定列的狄 的許多間隔,且每一間隔包括對應於_來自巴斯 目2fR where fR is the expected peak frequency of one of the mechanical systems, wherein each step has a uniform amplitude and the number of each is derived from one of the selected columns of the Baska triangle. In another aspect, a method for generating a drive signal to a motor-driven mechanical system is provided, wherein: a drive letter is applied to the motor-driven mechanical system in a series of steps: wherein: The number depends on the distance over which the mechanical system will be driven by the motor, and the drive signal causes the motor-driven mechanical system to span the distance for a predetermined time unrelated to the departure. In another aspect, a drive signal generator is provided, comprising: a ramp modulator 'which responds to a step clock rate and a - net distance ^ generation - step response signal; - an accumulator that responds Generating a step-by-step drive signal at the step response signal; and a digital to analog converter for generating a drive signal, wherein the drive signal causes the motor to drive the mechanical system for a predetermined time independent of the clear distance Across the net distance. [Embodiment] An embodiment of the invention provides a drive for a motor-driven mechanical system having a frequency distribution having zero (or near zero) energy at an expected resonant frequency of the mechanical system. The driving signal can be provided according to a series of steps selected by one of the Bass II / Bu II reshapes, wherein the number of steps *= * is in the column # i column from the 145778.doc 201036320 card triangle The number of entries, each step 且 且 : : : 斯卡 斯卡 斯卡 三角形 三角形 三角形 三角形 三角形 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡 斯卡a ==motion signal can be used as a number of intervals according to Baska to correspond to Dix from the Baska form for the selected column of the step months ^, and each interval includes a corresponding _ from the bar Sis

之該選定収各職目的許多步階。 二角形 在該預期諧振頻率下大體上^ u不僅產生一 ^ , 無月b置之驅動信號,而且兮笙 广”共―零能量「陷波」,其具有足夠寬度以容,實V 同於該等預期諸振頻率之系統。該馬達驅動; , #測系統’該偵測系統用以量測—回返通、酋 (ba:keh_i)之性質且導出該機械系統之《特性。= 測系統之用途可包括計算該機械系統之譜振頻率及一㈣ 機械系統自起始機械停止位置移動所需之臨限驅動、。 該等回返通道計算可用以替換或改良相應預程式化值。 圖5為說明一根據本發明之一實施例之例示性驅動信號 的圖。該驅動信號為-在對應於—時間常數之時間變化的 多級步階函數: 方程式1 此驅動彳§號轉換成一具有兩個步階之驅動信號:一在時 間to之第一步階,其具有一對應於橫跨舊位置(p〇LD)與新 位置(PNEW)之分開距離(ΔΡ=ρΝΕν_ρ〇ι^)所需之位準之約一 半之振幅。一第二步階可出現在時間t〇 + tc,其具有一對 145778.doc 9· 201036320 應於橫跨所需之距離之剩餘部分的振幅。圖6說明圖 動信號之差分回應。 圖7為說明圖5之驅動信號依據頻率之能量分佈的圖。如 所示》玄驅動45號於在諧振頻率&之上及之下的頻率下均 具1非零能量分佈。在諧振頻率4下,該驅動信號具有零 能量。此能量分佈最小化在諧振區中賦予機械系統之能 里,且因此,避免在此等系統中可能發生之振盪。 圖7亦說明在一根據一單式步階函數產生之驅動信號中 可能出現的能量分佈(虛線)。在此圖中,肖系統在諧振頻 率fR下具有非零能量,此使得能量以此頻率賦予機械系 統。咸信諧振頻率fR下之此非零能量分量促成發明者所觀 察到的延長的振盪效應。 圖8為說明機械系統當由具有如圖5中所示之形狀的驅動 信號驅動時(情況(a))之回應的圖。該機械系統在一位置 P〇LD處開始且移動至一位置pNEW。啟動脈衝係在時間(〇及 t0 + tC施加。在此實例中,P〇LD對應於27 μιη(數位碼5〇)且It is chosen to receive many steps for each job. At the expected resonant frequency, the dipole not only produces a ^, no monthly b-set drive signal, but also has a "zero" energy "notch", which has a sufficient width to accommodate, and the real V is the same as These systems are expected to have a frequency of vibration. The motor is driven; the #test system' is used to measure the nature of the return-to-back, emirate (ba:keh_i) and derive the characteristics of the mechanical system. = The purpose of the test system may include calculating the spectral frequency of the mechanical system and a threshold drive required to move the mechanical system from the initial mechanical stop position. These return channel calculations can be used to replace or improve the corresponding pre-programmed values. Figure 5 is a diagram illustrating an exemplary drive signal in accordance with an embodiment of the present invention. The drive signal is a multi-step function that varies with time corresponding to the time constant: Equation 1 This drive 彳§ is converted into a drive signal having two steps: one in the first step of time to There is an amplitude corresponding to about half of the level required for the separation distance (ΔΡ=ρΝΕν_ρ〇ι^) across the old position (p〇LD) from the new position (PNEW). A second step can occur at time t 〇 + tc, which has a pair of 145778.doc 9· 201036320 amplitudes that should span the remainder of the desired distance. Figure 6 illustrates the differential response of the motion signal. Fig. 7 is a view for explaining the energy distribution of the driving signal of Fig. 5 in accordance with the frequency. As shown, the "Xuan Drive No. 45" has a non-zero energy distribution at frequencies above and below the resonant frequency & At resonant frequency 4, the drive signal has zero energy. This energy distribution minimizes the ability to impart mechanical systems in the resonant region and, therefore, avoids oscillations that may occur in such systems. Figure 7 also illustrates the energy distribution (dashed line) that may occur in a drive signal generated according to a single step function. In this figure, the Xiao system has a non-zero energy at the resonant frequency fR, which allows energy to be imparted to the mechanical system at this frequency. This non-zero energy component at the resonant frequency fR contributes to the extended oscillation effect observed by the inventors. Fig. 8 is a view for explaining the response of the mechanical system when driven by a drive signal having a shape as shown in Fig. 5 (case (a)). The mechanical system begins at a position P 〇 LD and moves to a position pNEW. The start pulse is applied at time (〇 and t0 + tC. In this example, P〇LD corresponds to 27 μηη (digit code 5〇) and

Pnew對應於170 μιη(數位碼295) ’ tG對應於1=〇且4對應於 3.7 ms。 圖8比較機械系統在本文中所提議之驅動信號下的回應 (情況(a))與當由一根據一單式步階函數之驅動信號驅動時 觀察到的回應(情況(b))。而在情況(&)中,該機械系統在約 4 ms之後於新位置PNEW上穩定,相同的機械系統在情況沙) 中展現延長之振邊。即使在30 ms之後’該機械系統繼續 以該PNEW位置為中心振盪。因此’圖5之驅動信號提供實 145778.doc •10- 201036320 質上比習知驅動信號快之穩定時間。Pnew corresponds to 170 μηη (digit code 295) 'tG corresponds to 1=〇 and 4 corresponds to 3.7 ms. Figure 8 compares the response of the mechanical system under the drive signal proposed herein (case (a)) and the response observed when driven by a drive signal according to a single step function (case (b)). In the case (&), the mechanical system is stable at the new position PNEW after about 4 ms, and the same mechanical system exhibits an extended vibration edge in the case of sand. Even after 30 ms, the mechanical system continues to oscillate around the PNEW position. Therefore, the driving signal of Figure 5 provides real 145778.doc •10- 201036320 The stable time is faster than the conventional driving signal.

圖9為一根據本發明之一實施例之系統9〇〇的方塊圖。如 所示,㈣統可包括多個暫存!!_·㈣,其用於儲存表 示該機械系統之舊&置及新位置以&預期譜振頻率之資 料系統900可包括一用以根據Pnew及Pold計算ΔΡ之減法 器940。系統900進一步可包括一步階信號產生器95〇,其 接收H時脈且根據自方程式㈣定之時序產生脈衝至 -累加器960。步階信號產生器95〇可產生(例如)如圖6中所 不之脈衝,其具有各自對應於由該機械系統橫跨之總距離 的約一半之振幅。累加器960可總計由步階信號產生器95〇 產生之脈衝之總值且將該總值輸出至—亦自該減法器接收 該ΔΡ值之乘法器97〇。因此’乘法器97〇產生一對應於圖5 中所不之多步階增f之信號。可將乘法器97〇之輸出輸入 至亦自暫存器910接收該P0LD值之加法器98〇。因此,加 法器980可產生_ ^以用最小穩定時間將一機械系統自— 第一位置驅動至一第二位置之時變輸出信號。 田該機械系統完成其自該舊位置至該新位置之平移時, 可更新該舊位置。^圖9中所說明之系統中,在步階信號 產生器950產生其最後步階至該累加H之後,該步階信號 產生器亦可產生一轉移信號至暫存器910及920以用來自新 4置暫存器920之資料更新舊位置暫存器91〇。 若該機械系統之諧振頻率4精確地匹配驅動信號之「陷 波」曰(例如,在±3%内),則圖5之驅動信號工作良好。不幸 也疋系统製造商經常未精確地知道其機械系統之諧振頻 145778.doc 201036320 率。此外,特別是在系統組件必須廉價地製造之消費型裝 置中^振頻率可在—共同產品之不同製造批次之間改 變。因此,儘管-馬達驅動器可經設計以提供一在—預期 諸振頻率^處之陷波,但該預_振頻率與機械系統之實 際諧振頻率(fRM)之間可能存在一相當大差異。 為了適應此等用途,可擴展本發明之原理以擴大該頻率 陷波以允許供此等系統使料較大諧振頻率容限。一此擴 展包括提供多個遽波階層以「加寬」該陷波。圖ι〇為展示 多個濾波階層之職效應的圖。說明了四個此濾波階層。 每-此額外滤波階層擴展頻率之一「陷波」,關於此等頻 率,存在賦予該系統之零能量。儘管每―遽波階層減少職 予該系統之能量的總量’且因此可能導致該機械系統之較 慢移動’但藉由減小機械系統之穩定時間(即使當不能精 確地預測此等“之譜振頻率時),此澹波對總的系統操 作可為有利的。 圖11說明-根據本發明之另_實施例之系統i i⑼之簡化 方塊圖H統包括'驅動信號產生器111〇及串聯地設置 之-或多個陷波限制濾波器! 120 Η 12〇 N。系統i 1〇〇中之 第-濾波器1120.1可接受一來自驅動信號產生器111〇之驅 動信號。該N個濾波器(㈣中之每一者可對其輸入信號在 一預期諸振頻率(fRE)處進㈣波。因為級聯地設置該Μ 波器’所以該多個濾波器可共同操作以提供一具有一比可 此自| m系統出現之陷波寬的陷波之經渡波驅動 信號。或者’可將額外陷波置放於該預期單—雜頻率周 145778.doc -12- 201036320 圍之不同頻率處以加寬渡波器之衰減帶。 在時域中,濾波之額外位準提供一如下所示之步階回 應: 時間 0 1 1級 2級 2Figure 9 is a block diagram of a system 9A in accordance with an embodiment of the present invention. As shown, (4) can include multiple temporary storage! ! _·(d), the data system 900 for storing the old & new location of the mechanical system at & expected spectral frequency may include a subtractor 940 for calculating ΔΡ from Pnew and Pold. System 900 can further include a one-step signal generator 95A that receives the H clock and generates a pulse to accumulator 960 based on the timing determined from equation (4). The step signal generator 95A can generate, for example, pulses as shown in Fig. 6, each having an amplitude corresponding to about half of the total distance spanned by the mechanical system. The accumulator 960 may total the total value of the pulses generated by the step signal generator 95A and output the total value to the multiplier 97 that also receives the ΔΡ value from the subtractor. Therefore, the 'multiplier 97' produces a signal corresponding to the multi-step increment of f in Fig. 5. The output of the multiplier 97A can be input to an adder 98 that also receives the POLD value from the register 910. Thus, adder 980 can generate a time varying output signal that drives a mechanical system from a first position to a second position with a minimum settling time. When the mechanical system completes its translation from the old position to the new position, the old position can be updated. In the system illustrated in FIG. 9, after the step signal generator 950 generates its final step to the accumulated H, the step signal generator can also generate a transfer signal to the registers 910 and 920 for use. The data of the new 4-bit register 920 updates the old location register 91〇. If the resonant frequency 4 of the mechanical system exactly matches the "notch" of the drive signal (e.g., within ± 3%), then the drive signal of Figure 5 works well. Unfortunately, system manufacturers often do not accurately know the resonant frequency of their mechanical systems 145778.doc 201036320 rate. Moreover, particularly in consumer devices where system components must be inexpensively manufactured, the frequency of vibration can be varied between different manufacturing lots of the common product. Thus, although the motor driver can be designed to provide a notch at the expected vibration frequency, there may be a substantial difference between the pre-vibration frequency and the actual resonant frequency (fRM) of the mechanical system. To accommodate these uses, the principles of the present invention can be extended to expand the frequency notch to allow for greater resonant frequency tolerance for such systems. One such expansion includes providing multiple chopping levels to "widen" the notch. Figure ι〇 is a diagram showing the effect of multiple filter classes. Four such filter levels are illustrated. One of the additional filter-level spreading frequencies, "notch", for which there is zero energy imparted to the system. Although each "chopper class" reduces the total amount of energy applied to the system 'and thus may cause slower movement of the mechanical system' but by reducing the settling time of the mechanical system (even when it is not possible to accurately predict such This chopping wave may be advantageous for overall system operation. Figure 11 illustrates that a simplified block diagram of a system i i(9) in accordance with another embodiment of the present invention includes a 'driver signal generator 111' - or a plurality of notch limiting filters set in series! 120 Η 12 〇 N. The first filter 1120.1 of the system i 1 可接受 can receive a driving signal from the driving signal generator 111. The N filtering Each of the (4) inputs its signal at a desired frequency (fRE) into the (four) wave. Since the chopper is arranged in cascade, the plurality of filters can operate together to provide a A wave drive signal can be generated from the notch width of the notch width of the |m system. Or 'additional notch can be placed at different frequencies around the expected single-frequency frequency week 145778.doc -12- 201036320 To widen the attenuation band of the waver. Domain, an additional level of filtering to provide a further step should be shown as follows Press: Time 0 1 2 2 1

T 4 4 表1 ❹ Ο 該等輸出驅動信號在經正規化之後(將該等步階按比例 調整,使得其和等於丨)遵循表丨中所示之該等步階回應。 舉例而5,關於二級系統,在表〖中所示之該等時間中之 每一者處,可將該等步階回應設定為1/8、3/8、3/8及 1/8。驅動信號係根據隨著時間的流逝之該等步階回應之 彳而產生。因此,表丨之該等驅動信號可產生具有圖12中 所示之形狀之波形。 表1中所示之級數(progression)匹配巴斯卡三角形之級 數。—在-實施例中,藉由使用一取自巴斯卡三角形之一相 應第N列之級數,可使用—任意⑽攄波器。可視需要使 用任意數目個級以對抗機械系統之預期諧振頻率之不確定 性:儘管可使用任何數目個級’但較多數目個級涉及增加 的穩定時間且因此應慎重選擇級之數目。 圖13為一根據本發明之一實施例之信號產生器13〇〇的方 鬼圖L號產生器13〇〇可包括-對暫存器131〇、132〇,其 用^存表示機械系統之估計的諸振頻率及當前位置ρ_ 之資料。時序擎1330及分接頭暫存器1340可產生對應於 145778.doc -13- 201036320 適當步階圖案(諸如表1中所說 _ ± 說月之彼專步階)之輸出。具體 吕之’柃序引擎1330可以一料痛认丄 子應於由所儲存之估計的諧振 頻率確定之時間間隔t之速率 巡手馮刀接頭暫存器134〇提供時 脈。分接頭暫存器⑽可館存表示巴斯卡三角形之正規化 值之貧料。基於一識別巴斯卡三角形之將應用之列的控制 M(N選擇),分接頭暫存器n4G可在^脈之每—循環上 順序地輸出對應於該财之每—條目之步階值。 一乘法累MMAC)單元135〇可接收表示新位置p請、舊 位置P0LD之資料及來自分接頭暫存器134〇之步階圖案資 料。數學上,MAC 1340可產生一如下的數位驅動碼: Drlve(t)=p〇LD+(PNEw_p〇LD)^step⑴其中 吻⑴表示選定圖案之步階回應,且t在與該選定圖案有關 之所有tc間隔上改變。一數位至類比轉換器(dac)i36〇可 根據4 MAC之數位輸出產生—類比驅動輸出信號。該輸出 信號可作為電流或電壓而產生。 圖丨3之解決方法視需要提供一比圖9之實施例寬的陷 波:但其複雜性增加。巴斯卡三角形之每—列之正規化值 必須儲存於該分接頭暫存器之記憶體中或動態地計算。在 將時序未對齊應用於該等步階圖的本發明之另一實施例 中’可避免此複雜性。 考慮表1中所示之步階回應。任一級N之回應(假設) 為一先前級N-1與該先前級(級N_”延遲一時間常數之一 複本之和。舉例而言: 】45778,doc 201036320T 4 4 Table 1 ❹ Ο These output drive signals are normalized (the steps are scaled such that their sum is equal to 丨) following the step responses shown in the table. For example, 5, for the secondary system, at each of the times shown in the table, the step responses can be set to 1/8, 3/8, 3/8, and 1/8. . The drive signal is generated based on the response of the steps over time. Thus, the drive signals of the watch can produce waveforms having the shape shown in FIG. The progression shown in Table 1 matches the number of levels of the Baska triangle. - In an embodiment, an arbitrary (10) chopper can be used by using a number of stages from the corresponding Nth column of one of the Baska triangles. Any number of stages can be used as needed to counter the uncertainty of the expected resonant frequency of the mechanical system: although any number of stages can be used, a greater number of stages involve increased settling times and therefore the number of stages should be carefully selected. FIG. 13 is a schematic diagram of a signal generator 13 根据 according to an embodiment of the present invention, which may include a pair of registers 131 〇, 132 〇, which represent the mechanical system. Estimated vibration frequency and current position ρ_ data. The timing engine 1330 and the tap register 1340 can produce an output corresponding to the appropriate step pattern of 145778.doc -13 - 201036320 (such as the _± said month of the step). Specifically, the L's engine 1330 can be used to provide a clock at a rate t of the time interval t determined by the stored estimated resonant frequency. The tap register (10) can store the poor material of the normalized value of the Baska triangle. Based on a control M (N selection) that identifies the application of the Baska triangle, the tap register n4G can sequentially output the step value corresponding to each entry of the money on each cycle of the pulse. . A multiply-accumulate MMAC) unit 135 can receive data representing the new location p, the old location P0LD, and the step pattern information from the tap register 134. Mathematically, MAC 1340 can generate a digital drive code as follows: Drlve(t)=p〇LD+(PNEw_p〇LD)^step(1) where kiss (1) represents the step response of the selected pattern, and t is all related to the selected pattern The tc interval changes. A digital to analog converter (dac) i36 can generate an analog output signal based on the digital output of the 4 MAC. This output signal can be generated as a current or voltage. The solution of Figure 3 provides a wider notch than the embodiment of Figure 9 as needed: but its complexity is increased. The normalized value of each of the Baska triangles must be stored in the memory of the tap register or dynamically calculated. This complexity can be avoided in another embodiment of the invention in which timing misalignment is applied to the step maps. Consider the step response shown in Table 1. The response (assumed) of any level N is the sum of a previous stage N-1 and the previous stage (level N_" delayed by a time constant. For example: 】45778,doc 201036320

時間常數 2TC 2 1 Φ Φ 3 3 1 Φ Φ φ 4 6 4 1 表2 在一實施例Φ,$么& — Ο Τ 5亥系統產生表示相對於彼此在時間上略Time constant 2TC 2 1 Φ Φ 3 3 1 Φ Φ φ 4 6 4 1 Table 2 In an embodiment Φ, $ 么 & Ο Τ 5 系统 system generation means relative to each other in time

微不對齊(展示A 馮以下表3中之At)的複本信號之步階回應圖 案。該等步階回應圖案可表示如下: N D t() n 2 1 1 1 3 1 1 1 l 4 1 « _L_i_L i 表3 〇 β該等步階圖案可產生-諸如圖14之實例中所示之驅動信 號。在所說明之實例中,Ν=4。 曰實務上,Μ時間間隔可由該馬達驅動器内之一系統時脈 提供,該系統時脈可比根據預期諧振頻率匕計算之k時間 間隔快得多。圖14未按比例繪製。在一實施例中,—些係 數可彼此交換以加寬衰減帶。係數交換可減少對小&時間 間隔之需求。舉例而言,當利用係數交換時,可將設定 為 1/4 tc 或 1/8 tc。 時域實施例可包括藉由N個濾波器之卷積提供之非均句 分佈陷波之級聯’每一濾波器對應於巴斯卡=& β r二月形之第一 M5778.doc 15 201036320 列。該等遽波器可經調諧以使陷波出現在該標Μ振頻率 周圍。亦可使用如由該等濾波器之時間常數tc之最小共同 乘數界定之共同時基對該等m卷積。 貫例可包括4個濾波器,其回應為{ 1 00000 1 }、{ J 000000 1}、μ 0000000 】}及 ^ __咖㈠。當用一約 30倍的譜振週期之時基對該4個滤波器卷積時,得到係數 為"〇〇〇〇〇1110100111111〇〇1〇111〇〇〇〇 〇 1}之32分接㈣波器。圖15說明實例32分接㈣波器對 140 Hz之標稱諧振頻率之頻率回應。 圖16 „兒明一根據本發明之另一實施例之驅動信號產生器 1600。該驅動信號產生器可包括一對暫存器1610、1620, 其用以儲存表不機械系統之估計的諧振頻率及機械位置之 虽m位置(P0LD)之資料。該驅動信號產生器可包括一分 接頭暫存器1630,其儲存諸如表3中所示之步階圖案的分 散步階圖案。回應於一系統時脈之每一反覆(對應於M), 分接頭暫存器1630可移出該步階圖案之單一位元。該分接 頭暫存器可包括對應於分開每一時間常數砣之時間間隔之 緩衝位元(零)。可將該等經移位位元輸出至一累加器 164〇 ’該累加器1640計算隨著時間之流逝的脈衝之流動 矛口 0 一減法器1650可根據舊位置及新位置計算ΔΡ(Δρ=ΡΝΕχν_ P〇LD)。一除法器可將該ΔΡ除以一因數2ν,該除法器可用 簡單的位元移位實施’其中Ν表示當前使用的巴斯卡三角 形之列。一乘法器丨670及加法器1680完成該驅動信號之產 145778.doc •16· 201036320 生,數學上,該驅動信號可表示為: ZMve(,) = P⑽ + 知娜 U Σ_(,)。 在此實施例中,項step⑴又表示來自該分接頭暫存器之脈 衝。然而,在此實施例中,該分接頭暫存器不必儲存正規 • 化步階值。實情為,該分接頭暫存器可儲存該等At位置中 之每一者處之單一位元值(Is),其需要增量作用(參見表 3)。在該N列中之每一者内,該等單一位元步階總計2N 〇 個。在此實施例,除法器丨660完成正規化,同時准許該分 接頭暫存器之簡單實施。該〇八(:可根據由加法器168〇輸出 之碼字產生一類比信號(電壓或者電流)。 雖然圖16說明由一系統時脈提供時脈之分接頭暫存器 1630,但該分接頭暫存器可替代地由一時序信號產生器 (未圖示)來提供時脈,該時序信號產生器在一由每一時間 常數tc界定之時間段期間變得起作用,且當起作用時,以 —速率輯該分接㈣存㈣供時脈。f脈衝之每-叢發 、结束時,可停用該時序信號產生器直至下一個^間隔出現 為止。此第二實施例准許使該分接頭暫存器之大小較小, 但增加該時脈提供系統之複雜性。 圖17說明-根據本發明之另—實施例之驅動信號產生器 1700 °该驅動信號產生器可包括—對暫存器171G、1720, 儲存表示機械系統之估計的諧振頻率及機械位置之 田泊位置(p0LD)之資料。該驅動信號產生器可包括一分 接頭暫存器1730,其錯存諸如表3中所示之步階圖案之分 145778.doc 17- 201036320 散步階圖案。回應於-系統時脈之每-反覆(對應於△〇, 分接頭暫存器1730可移出該步階圖案之單一位元。該分接 頭暫存器可包括對應於分開每一時間常數tc之時間間隔之 緩衝位元(零)。可將該等經移位位元輸出至―累加器 1740。 在此實施例中,可將P〇LD值預载入至累加器174〇中。— 咸法器1750可根據舊位置及新位置計算 P_)。值暫存器mo可使用糾立元移位以將AP除以2n以計 算步長。可將該計算出之步長儲存於值暫存器中。每 當分接頭暫存器173〇移位—具有—⑴之位元時,即藉由 添加值暫存器mo中所含之内容值來更新累加器174〇,該 累加器用該舊位置值初始化。DAC 178〇可根據由累加器 1740輸出之碼字產生一類比信號(電壓或者電流)。 圖16及圖17之實施例係有利的,因為該等實施例提供比 表1及圖13之實施例簡單的實施。圖14/表3之實施例之步 階回應均勻’且因&,不需要展開如關於表1所論述地分 段步階回應值。與圖13之實施例一樣,圖16及圖n之實施 例亦促成一比圖5之實施例寬的陷波。 卉多機械系統並未在施加一驅動信號後立即自起始機械 停止位置移動。在該驅動信號之振幅到達某一臨限值 DTH(圖18)之前,通常存在未克服之彈簧彈力或其他慣性 力。該臨限值經常係未知的且可在製造批次之間改變。此 外,該臨限值可根據機械系統定向改變。 為了改良回應時間,當自一對應於一機械停止位置之出 145778.doc -18- 201036320 發位置移動時,本發明之實施例可使該驅動信號提昇至一 對應於4臨限驅動信號dth(圖19)之值且計算ΔΡ,該Δρ為 ΤΗ/、足以使該機械系統移動至該目的地位置之該驅動信 纟位準之間的_差。當將—驅動信號施加至此系統後,該 ^動#號可包括立即自該馬達驅動器施加之DTH位準及一 提供於Dth位準之上的對應於先前實施例(圖5、圖12及/或 圖14)中之—者之一步階式驅動信號之時變分量。可以 0 盲」方式估汁臨限驅動dth(例如,基於機械系統之預期 性質’其可能真實或可能不真實)。或者,可經由一暫存 器將該臨限值程式化至該系統中。 本發明之原理應用於多種電控機械系統中。如上文所論 述,該等機械系統可用以控制諸如圖1中所示之相機及視 讯S己錄益之自動對焦應用中之透鏡組。預期使用本文中所 論述之該等驅動信號之系統可達成改良之效能,因為該等 透鏡組將比利用習知驅動信號之系統更快速地在新位置穩 Q 定。因此’相機及視訊記錄器將比先前所達成之速度更快 地產生聚焦影像資料’吾人可產生較大輸送量。 圖20說明根據本發明之一實施例之另一系統2〇0〇。圖20 之糸統2000說明一具有多個移動維度之透鏡控制系統。與 圖1 一樣,此系統可包括一成像晶片2010、一馬達驅動器 2020、各種馬達2030-2050及一透鏡2060。每一馬達2030-2050可在一多維空間中驅動透鏡。舉例而言,如圖2〇中所 示’一自動對焦馬達2050可使透鏡相對於成像晶片2010橫 向地移動,成像晶片2010使光聚焦在晶片2010之一感光表 145778.doc -19- 201036320 面2010.1上。一上下偏轉馬達(pitch mot〇r)2030可使透鏡 繞一第一旋轉軸線旋轉以控制透鏡2060在一第一空間維度 中之定向。一左右偏轉馬達(yaw motor)2040可使透鏡繞一 垂直於該第一旋轉軸線之第二旋轉轴線旋轉以控制透鏡 2060在另一空間維度中之定向。 在圖20之實施例中,成像晶片2010可包括用以執行自動 對焦控制2010.1、運動偵測2010.2及光學影像穩定 (OIS)2010·3之處理單元。此等單元可針對驅動馬達2030_ 2050中之每一者產生碼字,該等碼字可在一輸出線上輸出 〇 至馬達驅動器2020。在圖20中所示之實施例中,該等碼字 可以多工方式輸出至馬達驅動器2020。馬達驅動器2020可 包括用以為驅動馬達2030-2050中之每一者產生類比驅動 信號之馬達驅動單元2020.1-2020.3。該等類比驅動信號可 根據本文中所論述之先前實施例產生。與一維透鏡驅動器 之情況一樣,預期如先前實施例中所示驅動多維透鏡驅動 器將達成比根據習知驅動信號驅動透鏡驅動器快的穩定時 間。 ' 〇 本發明之原理應用於其他系統中,例如,圖2 1中所示之 基於MEMS之開關^此等系統可包括一開關部件211〇 ,其 在一控制信號控制下在一打開位置與一閉合位置之間移 動。當閉合時1關部件2110之-可移動「樑」部分212〇 經置放成與-輸出端子213〇接觸。該控制信號係經由一控 制端子2M0施加至開關部件211〇,該控制端子將靜電力賦 予開關部件2110上以使該開關部件自一通常打開位置移動 145778.doc -20- 201036320 至該閉合位置。就此而言,厘£厘8開關之操作係已知的。 根據一實施例,一 MEMS控制系統可包括—開關驅動器 2150,其回應於一致動控制信號產生一具有諸如圖5、圖 12或圖14中所示之形狀的形狀之驅動信號至該MEMS開 關。MEMS開關將擁有一塊狀物,自其可導出一預期諧振 頻率及(藉由擴展)時間常數tc。開關驅動器215〇可施加具 有一足以使樑2120朝向輸出端子2130移動之總振幅的步 階。當最後時間常數結束時,開關驅動器215〇可施加一最 後步階以使樑2120以最小振盪暫停在該閉合位置。 本發明之原理亦可應用於諸如圖22中所示之光學MEMS 系統中。此處,一光學發射器2210及光學接收器222〇設置 在一共同光徑中。一MEMS鏡2230可沿著該光徑設置,該 鏡可在一 li動信號控制下自一第一位置平移至一第二位 置。在一預設狀態下,例如,MEMS鏡2230可在定位於發 射器2210與接收器2220之間的該光徑之外。然而,在一啟 動狀態下’ MEMS鏡2230可移動以遮掩(obscure)該光徑, 其導致阻擋所發射光束到達接收器2220。 根據一實施例,一 MEMS控制系統可包括一馬達驅動器 2240 ’其回應於一致動控制信號產生一驅動信號至MEMS 鏡2230以使該鏡自一預設位置移動至一啟動位置。鏡2230 可擁有一塊狀物’自其可導出一預期諧振頻率及(藉由擴 展)時間常數tc。鏡驅動器2240可施加具有一足以使鏡2230 朝向該啟動位置移動之總振幅的步階。當最後時間常數結 束時,鏡驅動器2240可施加最後步階以使鏡223 0以最小振 145778.doc • 21- 201036320 盪暫停在該啟動位置。 光學系統2200視情況可包括一沿著一當鏡223〇移動至該 啟動位置時形成之第二光徑設置之第二接收器225〇。在此 實施例中,系統2200可為由光學系統2200接收之光學信號 提供一路徑選擇能力。 本發明之原理可應用於使用觸覺(tactile或haptic)回饋確 認資料之接收的觸敏感測器裝置中。觸覺裝置提供模擬一 機械按鈕之「喀噠聲」之回饋或其他觸覺回饋。如圖23中 斤丁此等裝置2300可包括一用以自一輸入裝置(通常為们 喿作者之手扎、一鐵筆或其他物件)捕獲資料之觸控螢 幕面板2310。觸控螢幕面板231〇產生資料至一觸控螢幕控 制器2320 ’該觸控螢幕控制器處理該面板資料以導出一螢 幕位置,操作者於該位置輸入資料。為了提供觸覺回饋, 觸控螢幕控制器232〇可產生一數位碼字至一馬達驅動器, 該馬達驅動器產生一驅動信號至一觸覺馬達控制器233〇。 觸覺馬達控制器2330可產生_驅動信號至一觸覺效應馬達 234〇,該觸覺效應馬達將一力賦予觸控螢幕面板231〇内之❹ 一產生觸覺回饋之機械裝置上。 才據實知*例,馬達驅動器2330可根據一諸如圖12或圖 ,斤示之$狀產生—驅動信號至觸覺效應馬達2340。觸 覺效應馬達2340及該觸控螢幕裝置之相關機械組件可擁冑 龙狀物自其可導出一預期譜振頻率及(藉由擴展)時間 常數tc。馬達驅動器2330可根據巴斯卡三角形之一選定列 或本文中所描述的本發明之任何實施例施加一系列步階。 145778.doc •22- 201036320 由於歸因於使用者互動而控制之變化塊狀物,該等步階可 起源於巴斯卡二角形之一比其他應用深之列(例如,第4列 或更冰之列)。預期該步階脈衝驅動信號將在該觸控螢幕 裝置内產生觸覺回饋,其急劇地開始並結束,且因此提供 有力地模仿機械系統之回饋感覺。 Ο ❹ 本發明之原理亦可應用於光碟或磁碟讀取器中,該等讀 取器可包括基於擺臂或滑板(sled)之讀取器。在圖24中說 明碟片讀取器之—共同結構,圖24說明-設置於一碟片表 面2420上方之馬達驅動擺臂2410。該擺臂可包括一安裝於 其上之馬達線圈2430,當將驅動信號供應至該線圈時,其 產生與磁體(未圖示)相互作用之磁通量以使該擺臂在一運 動乾圍上移動。以此方式,一設置於該擺臂上之讀取頭 2440可自碟片定址一經識別資訊軌道且讀取資訊。 «-實施例,一碟片讀取器控制系統可包括一馬達驅 動器2450 ’其回應於-碼字產生-具有諸如圖5、圖12或 圖Η中所示之形狀之驅動信號至馬達線圈⑽。擺臂(及 滑板)可擁有慣性,自其可導出一預期譜振頻率fR及(藉由 擴ί)時时數tG。馬達驅㈣2450可施加具m使碟 貝取器移動至一新位置之總振幅的步階。當最後時間常 數結束時,馬達驅動器245〇可施加最後步階以使讀取器以 最小振盪暫停在該經定址位置。 根據—實施例,圖25之—驅動信號產生器2則可產生具 ::固定驅動窗之基於斜坡之馬達驅動信號。在先前馬達 ’動益糸統中,斜坡信號具備一恆定變化率。在此等「傾 145778.doc -23· 201036320 斜」斜坡信號系統中,將一機械系統驅動至-所要位置之 時間取決於將橫跨之距離。舉 芈幻而5,傳遞一對應於100 之ί動之斜坡信號所用之時間將為傳遞—對應於洲 點之移動之斜坡信號所用之時間的兩倍。然而,「傾斜」 斜坡信號需要陷波濾波且具有變化的頻率回應。另一方 111定驅動窗之基於斜坡之馬達㈣信號可以 線性纽操作且具有—恆定頻率回應。 驅動信號產生II 2·可包括_輸人碼暫存器251〇,盆用 以儲存表示-將橫跨之新位置之碼。驅動信號產生器测 I包括:舊碼暫存器252G’其用以儲存表示機械系統之一 售或當前位置之碼。一減法器253〇可藉由自舊位置碼減去 新位置碼來計算舊位置與新位置之間的分開距離。 驅動《產生㈣00亦可包括—以_步階時脈速率 脈衝之斜坡調變器254G,其用以基㈣分開距離產生^ 階回應信號。該步階回應可對應於—特^驅動信號中之2 別步階。此外’驅動信號產生器2500可包括—累加器 則,其用以回應於該步階回應信號產生—數位驅Z 號。累加器2550可用一對應於自一先前操作維持之舊瑪之 值初始化。DAC 2560可根據該數位驅動信號產生— 驅動信號。 圖26說明具有-固定驅動窗之基於斜坡之馬達驅動㈣ 之實例。不管該分開距離如何,該等信號可使機械系^ 一預定時間tp内到達其所要目的地。舉例而言,圖%展一、 用於全範圍距離、半程距離及四分之一範圍距離橫跨之= 145778.doc •24- 201036320 動信號,其操作歷時相同的預定時間tp。該預定時間tp可 經5又疋而對應於機械系統以1點/循環橫跨一全範圍位移所 用的一時間。到達該所要目的地所需的步階之數目可視將 橫跨之距離而改變。該等步階可在時間上分散,因此可能 不需要」某些步階。舉例而言,與全範圍位移所需之步 階相比,半程位移可能不需要50%的步階。舉例而言,與 全範圍位移所需之步階相比,四分之一範圍位移可能不需 要75%的步階。其他比率可產生步階循環之相應比率,但 亦可能產生不規則圖案。 驅動信號產生器2500可合作地用於本文中所描述之其他 實施例。舉例而言,一馬達驅動器系統可在若干模式下操 作,其中一個模式為具有固定驅動窗之基於斜坡之驅動信 號模式。 ° 根據一實施例,馬達驅動系統2700可包括一如圖27中所 示之回饋系統。該回饋系統可為一針對回返通道之偵測系 統、一霍耳效應感測器或其他合適回饋装置。該馬達驅動 系統可包括一控制晶片2710,其發送一用以指示馬達驅動 器2720驅動機械結構2750之碼。機械結構2750可包括—馬 達2730及機械系統2740。該馬達驅動器可經由一連接焉達 驅動器2720與馬達2730之信號線將一驅動信號傳輪至馬達 2730。馬達2730回應於該驅動信號使機械系統274〇移動, 此可在機械系統2740中導致振盪或振鈴行為。該等振靈可 由一回饋系統捕獲。該等振盪在於馬達2730與焉、童跋缸„ 2720之間延伸的該信號線中誘發一電子信號。守 〇发四返通道 145778.doc -25- 201036320 可在傳輪該驅動信號之同-信號線上或可在-單獨信號線 上。 °亥回返通逼偵測系統可計算該機械系統之諧振頻率fR。 系統製造商料切確地知道錢齡狀耗頻率。此 外特別疋在系統組件必須廉價地製造之消費型裝置中, 咱振頻率可在一共同產品之不同製造批次之間改變。因 此,該機械系統之實際諧振頻率之計算(而非取決於製造 商之預期5皆振頻率)改良該冑械系統在使用期間之精度且 由於阻▼見度減小而減少穩定時間。 一圖28忒明一可併入於一馬達驅動器中以計算機械系統之 實際諧振頻率的驅動信號產生器2_之—實施例。驅動信 號產生器2800可包括:一累加器282〇,其用以產生一數位 測試驅動信號;數位至類比轉換器(DAC)283〇,其用以根 據該累加器之數位輸出產生一類比測試驅動輸出信號(其 接著被施加至該機械結構之馬達);一回返通道感測器 2840,其用以捕獲一回返通道電子信號;一處理單元 2850,其用以計算實際諧振頻率;及一暫存器281〇,其儲 存計算出之諧振頻率。該類比信號可作為電流或電壓而產 生。The step response pattern of the replica signal of the micro misalignment (showing A Feng in Table 3 below). The step response patterns can be expressed as follows: ND t() n 2 1 1 1 3 1 1 1 l 4 1 « _L_i_L i Table 3 〇β These step patterns can be generated - such as shown in the example of FIG. Drive signal. In the illustrated example, Ν = 4. In practice, the time interval can be provided by one of the system clocks in the motor drive, which can be much faster than the k time interval calculated from the expected resonant frequency 。. Figure 14 is not drawn to scale. In an embodiment, the coefficients may be exchanged with each other to widen the attenuation band. Coefficient exchange reduces the need for small & time intervals. For example, when using coefficient swapping, it can be set to 1/4 tc or 1/8 tc. The time domain embodiment may include a cascade of non-uniform distribution notches provided by convolution of N filters 'each filter corresponding to the first M5778.doc of the Baska=& 15 201036320 column. The choppers can be tuned to cause a notch to appear around the target frequency. A common time base, as defined by the least common multiplier of the time constant tc of the filters, may also be used to convolve for the m. The example can include 4 filters whose responses are { 1 00000 1 }, { J 000000 1}, μ 0000000 】} and ^ __ coffee (1). When the four filters are convoluted with a time base of about 30 times the spectral period, a 32-degree tap of the coefficient "〇〇〇〇〇1110100111111〇〇1〇111〇〇〇〇〇1} is obtained. (four) wave device. Figure 15 illustrates the frequency response of the Example 32 tap (four) waver to a nominal resonant frequency of 140 Hz. Figure 16 is a drive signal generator 1600 in accordance with another embodiment of the present invention. The drive signal generator can include a pair of registers 1610, 1620 for storing an estimated resonant frequency of a mechanical system. And the position of the mechanical position of the m position (P0LD). The drive signal generator may include a tap register 1630 that stores a discrete step pattern such as the step pattern shown in Table 3. In response to a system Each of the clocks (corresponding to M), the tap register 1630 can move out of a single bit of the step pattern. The tap register can include a buffer corresponding to the time interval separating each time constant 砣Bits (zero). The shifted bits can be output to an accumulator 164 〇 'the accumulator 1640 calculates the flow of the pulses over time 0. The subtractor 1650 can be based on the old position and new The position is calculated as ΔΡ(Δρ=ΡΝΕχν_P〇LD). A divider can divide the ΔΡ by a factor of 2ν, and the divider can be implemented with a simple bit shift, where Ν denotes the currently used Baska triangle. a multiplier 丨670 and The adder 1680 completes the production of the driving signal 145778.doc •16·201036320, mathematically, the driving signal can be expressed as: ZMve(,) = P(10) + 知娜U Σ_(,). In this embodiment, the item Step (1) again represents the pulse from the tap register. However, in this embodiment, the tap register does not have to store the regular step value. In fact, the tap register can store the At A single bit value (Is) at each of the locations, which requires an incremental effect (see Table 3). Within each of the N columns, the single bit steps total 2N. In this embodiment, the divider 660 completes the normalization while permitting the simple implementation of the tap register. The 〇8 (: can generate an analog signal (voltage or current) according to the codeword output by the adder 168〇. Although FIG. 16 illustrates a tap register 1630 that provides a clock from a system clock, the tap register can alternatively be provided with a clock by a timing signal generator (not shown), the timing signal The generator is during a time period defined by each time constant tc It works, and when it works, it sorts the (4) memory (4) for the clock. At each end of the f pulse, the timing signal generator can be deactivated until the next interval occurs. This second embodiment permits the size of the tap register to be small, but increases the complexity of the clock providing system. Figure 17 illustrates a drive signal generator 1700 ° according to another embodiment of the present invention. The drive signal generator can include - a pair of registers 171G, 1720 storing information indicative of the estimated resonant frequency of the mechanical system and the field position (p0LD) of the mechanical position. The drive signal generator can include a tap register 1730, which has a step pattern of 145778.doc 17-201036320, such as the step pattern shown in Table 3. In response to the -system clock-repeated (corresponding to Δ〇, the tap register 1730 can remove a single bit of the step pattern. The tap register can include a time constant corresponding to each time constant tc The buffer bits of the time interval (zero). The shifted bits can be output to the accumulator 1740. In this embodiment, the P〇LD value can be preloaded into the accumulator 174〇. The appliance 1750 can calculate P_) based on the old location and the new location. The value register mo can use the aligning element shift to divide the AP by 2n to calculate the step size. The calculated step size can be stored in the value register. Whenever the tap register 173 〇 shifts - with the bit of - (1), the accumulator 174 更新 is updated by adding the content value contained in the value register mo, the accumulator is initialized with the old position value . The DAC 178 产生 can generate an analog signal (voltage or current) based on the code word output by the accumulator 1740. The embodiment of Figures 16 and 17 is advantageous in that these embodiments provide a simpler implementation than the embodiments of Tables 1 and 13. The step response of the embodiment of Figure 14/Table 3 is uniform' and because &, there is no need to expand the step response values as discussed with respect to Table 1. As with the embodiment of Fig. 13, the embodiment of Figs. 16 and n also contributes to a notch wider than the embodiment of Fig. 5. The Huiduo mechanical system did not move from the starting mechanical stop position immediately after applying a drive signal. Before the amplitude of the drive signal reaches a certain threshold DTH (Fig. 18), there is usually an uncompensated spring force or other inertial force. This threshold is often unknown and can vary between manufacturing lots. In addition, the threshold can be changed depending on the orientation of the mechanical system. In order to improve the response time, an embodiment of the present invention can raise the drive signal to a corresponding threshold drive signal dth when moving from a position corresponding to a mechanical stop position 145778.doc -18-201036320. The value of Figure 19) is calculated as ΔΡ, which is ΤΗ/, which is sufficient to move the mechanical system to the _ difference between the drive signal levels of the destination location. When a drive signal is applied to the system, the ## can include the DTH level applied immediately from the motor driver and a corresponding one of the Dth levels provided above the Dth level (Fig. 5, Fig. 12, and/or Or the time-varying component of the stepwise drive signal in one of the steps of Figure 14). The juice threshold drive dth can be estimated in a 0 blind manner (e.g., based on the expected properties of the mechanical system) which may or may not be true. Alternatively, the threshold can be programmed into the system via a temporary register. The principles of the present invention are applicable to a variety of electronically controlled mechanical systems. As discussed above, such mechanical systems can be used to control lens groups in autofocus applications such as the camera and video recording shown in Figure 1. It is contemplated that systems utilizing the drive signals discussed herein can achieve improved performance because the lens sets will be more stable at new locations than systems utilizing conventional drive signals. Therefore, the camera and video recorder will produce focused image data faster than previously achieved, and we can generate a larger throughput. Figure 20 illustrates another system 2〇0〇 in accordance with an embodiment of the present invention. The system 2000 of Figure 20 illustrates a lens control system having multiple movement dimensions. As with Figure 1, the system can include an imaging wafer 2010, a motor driver 2020, various motors 2030-2050, and a lens 2060. Each motor 2030-2050 can drive the lens in a multi-dimensional space. For example, as shown in FIG. 2A, an autofocus motor 2050 can move the lens laterally relative to the imaging wafer 2010, and the imaging wafer 2010 focuses the light on one of the wafers 2010 145778.doc -19-201036320 On 2010.1. An up and down deflection motor 2030 rotates the lens about a first axis of rotation to control the orientation of the lens 2060 in a first spatial dimension. A left and right yaw motor 2040 can rotate the lens about a second axis of rotation that is perpendicular to the first axis of rotation to control the orientation of the lens 2060 in another spatial dimension. In the embodiment of FIG. 20, imaging wafer 2010 may include a processing unit to perform auto focus control 2010.1, motion detection 2010.2, and optical image stabilization (OIS) 2010. These units may generate codewords for each of the drive motors 2030-2050 that may output 〇 to the motor driver 2020 on an output line. In the embodiment shown in Figure 20, the code words can be output to the motor driver 2020 in a multiplexed manner. Motor driver 2020 can include motor drive units 2020.1-2020.3 for generating analog drive signals for each of drive motors 2030-2050. The analog drive signals can be generated in accordance with previous embodiments discussed herein. As with the one-dimensional lens driver, it is contemplated that driving the multi-dimensional lens driver as shown in the previous embodiment will achieve a faster settling time than driving the lens driver in accordance with conventional drive signals. The principle of the present invention is applied to other systems, for example, the MEMS-based switch shown in FIG. 21, which may include a switching component 211, which is controlled by a control signal in an open position and a Move between closed positions. When closed, the movable "beam" portion 212 of the off component 2110 is placed in contact with the -output terminal 213. The control signal is applied via a control terminal 2M0 to the switch member 211, which imparts an electrostatic force to the switch member 2110 to move the switch member from a normally open position 145778.doc -20-201036320 to the closed position. In this regard, the operation of the PCT switch is known. In accordance with an embodiment, a MEMS control system can include a switch driver 2150 that generates a drive signal having a shape such as that shown in Figures 5, 12 or 14 to the MEMS switch in response to the actuating control signal. The MEMS switch will have a block from which an expected resonant frequency can be derived and (by expanding) the time constant tc. The switch driver 215 can apply a step having a total amplitude sufficient to move the beam 2120 toward the output terminal 2130. When the last time constant is over, the switch driver 215 can apply a final step to cause the beam 2120 to pause in the closed position with minimal oscillation. The principles of the invention may also be applied to an optical MEMS system such as that shown in FIG. Here, an optical transmitter 2210 and an optical receiver 222 are disposed in a common optical path. A MEMS mirror 2230 can be disposed along the optical path, the mirror being translatable from a first position to a second position under control of a li signal. In a predetermined state, for example, MEMS mirror 2230 can be positioned outside of the optical path between transmitter 2210 and receiver 2220. However, in an activated state, the MEMS mirror 2230 can be moved to obscure the optical path, which causes the blocked emitted light beam to reach the receiver 2220. In accordance with an embodiment, a MEMS control system can include a motor driver 2240' that generates a drive signal to the MEMS mirror 2230 in response to the actuation control signal to move the mirror from a predetermined position to an activated position. The mirror 2230 can have a block from which an expected resonant frequency can be derived and (by extension) a time constant tc. The mirror driver 2240 can apply a step having a total amplitude sufficient to move the mirror 2230 toward the activated position. When the last time constant is over, the mirror driver 2240 can apply the last step to cause the mirror 223 0 to pause at the start position with a minimum vibration of 145778.doc • 21-201036320. The optical system 2200 can optionally include a second receiver 225A disposed along a second optical path formed when the mirror 223 is moved to the activated position. In this embodiment, system 2200 can provide a path selection capability for optical signals received by optical system 2200. The principles of the present invention are applicable to touch sensitive device devices that use tactile or haptic feedback to acknowledge receipt of data. The haptic device provides feedback or other tactile feedback that simulates a click of a mechanical button. As shown in Fig. 23, the device 2300 can include a touch screen panel 2310 for capturing data from an input device (usually a hand of a colleague, a stylus or other object). The touch screen panel 231 generates data to a touch screen controller 2320'. The touch screen controller processes the panel data to derive a screen position at which the operator inputs data. To provide haptic feedback, the touch screen controller 232 can generate a digital codeword to a motor driver that generates a drive signal to a haptic motor controller 233A. The haptic motor controller 2330 can generate a _ drive signal to a haptic effect motor 234, which imparts a force to the haptic feedback mechanism on the touch screen panel 231. As is known in the art, the motor driver 2330 can generate a drive signal to the haptic effect motor 2340 according to a shape such as FIG. 12 or FIG. The haptic effect motor 2340 and associated mechanical components of the touch screen device can derive a desired spectral frequency and (by expanding) the time constant tc. Motor driver 2330 can apply a series of steps according to a selected column of one of the Baska triangles or any of the embodiments of the invention described herein. 145778.doc •22- 201036320 Due to the changing mass controlled by user interaction, these steps can originate from one of the Baska dips that are deeper than other applications (eg, column 4 or more) Ice column). It is contemplated that the step pulse drive signal will produce a tactile feedback within the touch screen device that begins and ends sharply, and thus provides a powerful imitation of the feedback feel of the mechanical system. Ο ❹ The principles of the present invention can also be applied to optical or magnetic disk readers, which can include readers based on swing arms or sleds. The common structure of the disc reader is illustrated in Fig. 24, and Fig. 24 illustrates a motor driven swing arm 2410 disposed above a disc surface 2420. The swing arm can include a motor coil 2430 mounted thereon that, when a drive signal is supplied to the coil, generates a magnetic flux that interacts with a magnet (not shown) to move the swing arm over a moving trunk . In this manner, a read head 2440 disposed on the swing arm can be addressed from the disc to the identified information track and read the information. «- Embodiment, a disc reader control system may include a motor driver 2450 'in response to - code word generation - having a drive signal such as that shown in Figure 5, Figure 12 or Figure to the motor coil (10) . The swing arm (and the slider) can have inertia from which an expected spectral frequency fR and (by expansion) hours tG can be derived. The motor drive (4) 2450 can apply a step with m to move the dish feeder to the total amplitude of a new position. When the last time constant ends, the motor driver 245 can apply the last step to cause the reader to pause at the addressed position with minimal oscillation. According to an embodiment, the drive signal generator 2 of Figure 25 can generate a ramp-based motor drive signal with a :: fixed drive window. In the previous motor system, the ramp signal had a constant rate of change. In such a "pour 145778.doc -23· 201036320 oblique" ramp signal system, the time to drive a mechanical system to the desired position depends on the distance that will be traversed. For example, the time it takes to pass a ramp signal corresponding to 100 will be twice the time it takes to transmit the ramp signal corresponding to the movement of the point. However, the "tilt" ramp signal requires notch filtering and has a varying frequency response. The ramp-based motor (4) signal of the other side of the drive window can be linearly operated and has a constant frequency response. The drive signal generation II 2· may include a _ input code register 251, which is used to store a code indicating the new position to be traversed. The drive signal generator test 1 includes an old code register 252G' for storing a code indicative of a sold or current location of the mechanical system. A subtractor 253 can calculate the separation distance between the old position and the new position by subtracting the new position code from the old position code. The drive "generate (4) 00 may also include - a ramp modulator 254G with a _ step clock rate pulse, which is used to generate a step response signal at a base (4) separation distance. The step response may correspond to two steps in the - drive signal. Further, the 'drive signal generator 2500' may include an accumulator for generating a digital drive Z number in response to the step response signal. Accumulator 2550 can be initialized with a value corresponding to the old horse maintained from a previous operation. The DAC 2560 can generate a drive signal based on the digital drive signal. Figure 26 illustrates an example of a ramp-based motor drive (4) with a fixed drive window. Regardless of the separation distance, the signals cause the mechanical system to reach its desired destination within a predetermined time tp. For example, the figure % is used for full range distance, half distance and quarter range distance = 145778.doc •24- 201036320 The dynamic signal is operated for the same predetermined time tp. The predetermined time tp may correspond to a time taken by the mechanical system to traverse a full range at 1 point/cycle. The number of steps required to reach the desired destination may vary depending on the distance spanned. These steps can be dispersed in time, so some steps may not be needed. For example, a half-range displacement may not require a 50% step compared to the step required for a full-range displacement. For example, a quarter range shift may not require a 75% step compared to the step required for a full range shift. Other ratios may produce corresponding ratios of step loops, but may also result in irregular patterns. Drive signal generator 2500 can be cooperatively used with other embodiments described herein. For example, a motor drive system can operate in several modes, one of which is a ramp-based drive signal mode with a fixed drive window. According to an embodiment, the motor drive system 2700 can include a feedback system as shown in FIG. The feedback system can be a detection system for a return channel, a Hall effect sensor or other suitable feedback device. The motor drive system can include a control wafer 2710 that transmits a code for instructing the motor driver 2720 to drive the mechanical structure 2750. Mechanical structure 2750 can include a motor 2730 and a mechanical system 2740. The motor driver can transmit a drive signal to the motor 2730 via a signal line connecting the driver 2720 to the motor 2730. Motor 2730, in response to the drive signal, causes mechanical system 274 to move, which can cause oscillation or ringing behavior in mechanical system 2740. These vibrations can be captured by a feedback system. The oscillations are induced by an electrical signal in the signal line extending between the motor 2730 and the cymbal and the nursery rhymes „ 2720. The guards send four return channels 145778.doc -25- 201036320 can transmit the same drive signal The signal line can be on the separate signal line. The °H back-to-back detection system can calculate the resonant frequency fR of the mechanical system. The system manufacturer should know exactly the frequency of the money-age consumption. In addition, the system components must be cheap. In a consumer device manufactured in the ground, the frequency of the vibration can be varied between different manufacturing lots of a common product. Therefore, the actual resonant frequency of the mechanical system is calculated (rather than depending on the manufacturer's expectations). Improving the accuracy of the mechanical system during use and reducing the settling time due to reduced resistance. Figure 28 shows a drive signal generator that can be incorporated into a motor drive to calculate the actual resonant frequency of the mechanical system. 2_ Embodiments. The driving signal generator 2800 can include: an accumulator 282A for generating a digital test drive signal; a digital to analog converter (DAC) 283〇, Generating an analog test drive output signal (which is then applied to the motor of the mechanical structure) according to the digital output of the accumulator; a return channel sensor 2840 for capturing a return channel electronic signal; a processing unit 2850 It is used to calculate the actual resonant frequency; and a register 281, which stores the calculated resonant frequency. The analog signal can be generated as a current or voltage.

圖29為一根據本發明系統之一實施例之用以確定機械系 統之實際諸振頻率之方法2900的流程圖。該方法可包括產 生一測試驅動信號(步驟2910)。該測試驅動信號可為—單 位步階驅動信號,其具有一足以將機械系統驅動至一在= 機械系統之運動範圍内之中間位置之值。該驅動信號可Z 145778.doc -26- 201036320 =單位步p&函數、一斜坡函數或其他函數產生該驅動 ^在該機械系統之候選諧振頻率之廣闊範圍上擁有非零 :里口應於㈣試驅動信號’該馬達可使該機械系統移 ^將在該機械系統中誘發振_為1等振蘯可在該馬 2之回返通道中誘發—電子信號。該方法可在該回返通道 感測益中捕獲該回返通道信號(步⑽40)。該方法可根據 返通道信號產生資料樣本(步驟295°)。根據該 〇 ’ ’ ,δ亥方法可計算該機械系統之實際諧振頻率 (步驟2960)。該過程可進一步包括將該計算出之諧振頻率 儲存於匕暫存器中(步驟297〇)。可接著使用該儲存之諸振 頻率以在執行時間期間產生驅動信號,如先前實施例中所 論述。 圖30展示圖30⑷中之一測試驅動信號之一實例及圖 尋)中之機械系統之相應移動。圖、)中之該測試驅動 以為-单位步階驅動信號,其對應於該機械系統之移動 〇冑_之巾點°㈣動信隸施加至馬達,此在該機械系 統中引起運動。在圖释)中展示該機械系統回應於該中點 驅動信號之位移。在該位移圖開始時發現該振铃效應,其 巾該機械系統之位移在穩定至其相應位移值之前首先以二 振盪行為之方式作用。該振盪行為在該回返通道中誘發— 電子信號’其具有與該機械系統中之該等振盪相同的 頻率。 又 亦可在—搜尋/適應過程中計算諧振頻率。圖31為—根 據-實施例之用以適應性地調整機械系統之—儲存之諧振 145778.doc •27· 201036320 頻率值之方法譲的流程圖。該方法可包括施加—驅動作 #“步驟311〇)。此時可將4之一標稱值儲存於一暫存器 中。fR之該標稱值可為最後計算出的^值。該驅動信號可 為-測試驅動信號或-在正常操作中施加之驅動信號。若 該驅動信號為-測試驅動信號,則該驅動信號可為一單位 步階驅動信號’其具有-足以將機械系統驅動至一在該機 械系統之運動範圍内之中間位置之值。該驅動信號可根據 一早位步階函數、-斜坡函數或其他函數產生,該驅動作 ,在該機械系統之候選諧振頻率之廣闊範圍上擁有非零能 回應於該㈣㈣可㈣機⑽統移動且將在 2〆、統中誘發振盪行為。該方法可估計該等振盡之一 3值=(步驟312G)°根據Μ,該方法可調整fR(步驟3130)。 峨可視諸如機械系統之定向及步長之因數而定。該方 包括將該計算出之譜振頻率儲存於該匕暫存器 驅動信乾間《產生 姽如先則實施例中所論述。 ⑷為根據—實施例之用以計算fR調整量之方法 =二!方法可包括估計該等振遷之-頻率區Fe(步 確旦 E_T具有一容限’諸如±10%;因此,不需要精 厂里2該方法可比較該儲存之㈣匕,以檢查該儲存之 儲存之内、在FE之下或是在FE之上(步驟32〇2)。若該 二:F:則該方法可維持該儲存之匕(步驟 )右錢存之下,則該方法可使該儲存之^ θ預定量(步驟3綱)。若該館存之咖之上,則該 145778.doc -28· 201036320 方法可使該儲存之fR減小— ..^ ^ ^ 預疋里(步驟3205)。該方法可 進-步包括將該經調仏儲存於糾暫存器中。 圖32(b)為根據另一實施W α $ 丨』l用以st异fR調整量之方沐 3250的流程圖。該方半4 a ^ …、… 去可包括為-“調整量指派-優選符Figure 29 is a flow diagram of a method 2900 for determining the actual vibration frequencies of a mechanical system in accordance with one embodiment of the system of the present invention. The method can include generating a test drive signal (step 2910). The test drive signal can be a unit step drive signal having a value sufficient to drive the mechanical system to an intermediate position within the range of motion of the = mechanical system. The drive signal can be Z 145778.doc -26- 201036320 = unit step p& function, a ramp function or other function to generate the drive ^ has a non-zero over a wide range of candidate resonant frequencies of the mechanical system: the inner port should be (4) The test drive signal 'The motor can move the mechanical system to induce an oscillation in the mechanical system to induce an -electron signal in the return channel of the horse 2. The method can capture the return channel signal in the return channel sense (step (10) 40). The method generates a data sample based on the return channel signal (step 295°). According to the ’ ' ', the δHel method can calculate the actual resonant frequency of the mechanical system (step 2960). The process can further include storing the calculated resonant frequency in a buffer (step 297A). The stored vibration frequencies can then be used to generate drive signals during the execution time, as discussed in the previous embodiments. Figure 30 shows the corresponding movement of the mechanical system in one of the test drive signals (Fig. 30(4) and the schematic). The test drive in Fig.,) is a unit-step drive signal that corresponds to the movement of the mechanical system. The wiper point (4) is applied to the motor, which causes motion in the mechanical system. The displacement of the mechanical system in response to the midpoint drive signal is shown in the illustration. The ringing effect is found at the beginning of the displacement map, and the displacement of the mechanical system first acts in a two-oscillation manner before stabilizing to its corresponding displacement value. The oscillating behavior induces in the return channel that the electronic signal 'has the same frequency as the oscillations in the mechanical system. The resonant frequency can also be calculated during the search/adaptation process. Figure 31 is a flow chart of a method for adaptively adjusting the resonance of a mechanical system according to an embodiment - 145778.doc • 27· 201036320 Frequency value. The method can include applying - driving as "Step 311". At this time, one of the nominal values of 4 can be stored in a register. The nominal value of fR can be the last calculated value. The signal can be a test drive signal or a drive signal applied during normal operation. If the drive signal is a test drive signal, the drive signal can be a unit step drive signal 'which has enough to drive the mechanical system to a value intermediate the range of motion of the mechanical system. The drive signal can be generated based on an early step function, a ramp function, or other function that is over a wide range of candidate resonant frequencies of the mechanical system. Having a non-zero energy response to the (four) (four) (4) machine (10) system moves and will induce an oscillation behavior in the system. The method can estimate one of the three values of the vibration = (step 312G) ° according to Μ, the method can Adjusting fR (step 3130). 峨 can be determined by factors such as the orientation of the mechanical system and the step size. The party includes storing the calculated spectral frequency between the buffer registers and the signal. Discussed in the examples (4) The method for calculating the fR adjustment amount according to the embodiment - the second method may include estimating the frequency region Fe of the relocations (the step E1 has a tolerance value such as ±10%; therefore, no The method requires that the method can compare the stored (four) 匕 to check the storage of the storage, under the FE or above the FE (step 32 〇 2). If the two: F: then the method After the storage can be maintained (step) under the right money, the method can make the storage θ a predetermined amount (step 3). If the library is stored above the 145778.doc -28· The 201036320 method may cause the stored fR to decrease by - .. ^ ^ ^ in the foreground (step 3205). The method may further include storing the buffer in the correction register. Figure 32(b) is According to another implementation, W α $ 丨 l l is used to calculate the amount of the different fR adjustment amount of the square 3250. The square half 4 a ^ ..., ... can be included as - "adjustment amount assignment - preferred

旎(+或-)(步驟3251)。該優撰气味沉A 優選 基於機械系統之先前 圖案或操作來指派。該方法可莊士卜卜私 ,, /万去可藉由比較—當前振盪量值與 一先前振盪量值來偵測与r m 但术俏利該機械系統之效能是否降級(步驟 Ο 〇 3252)。隨時間增加之振遺 ^ 佩I里值知不效能已降級。若該當 前振堡量值大於先前振盪量 1值該方法可改變該優選符號 且根據該新指派的符號將fR調整—預定量(步驟3253)。該 方法可進-步將該改變的符號儲存為優選符號以用於下 次反覆。若該_值不大於該先_量值,該方法可 維持該優選符號絲據該優選符號將fR調整—預定量(步驟 奶4)。可將該等對fR之狀量變化較為相對較小量,因 為不期望諧振頻率之巨大變化。因此,方法切何連續追 蹤並調整fR。 根據-實施例’該回返通道制錢可計算使機械系統 自起始機械停止位置移動所需之如。另外,系統製造商 經常未精確知道其機械系統之DTH。此外,特別是在系統 組件必須廉價地製造之消費型裝置中,Dth可在一共同產 品之不同製造批次之間改變。因此,該機械系統之實際 DTH之計算(而非取決於製造商之預期DTH)改良機械系統在 使用期間之精度。 圖33說明一可併入於一馬達驅動器中以計算機械系統之 145778.doc -29- 201036320旎 (+ or -) (step 3251). The scent A is preferably assigned based on a previous pattern or operation of the mechanical system. The method can be used by Zhuang Shi Bu Bu, and the 10,000 can be detected by comparing the current oscillation magnitude with a previous oscillation magnitude, but whether the performance of the mechanical system is degraded (step Ο 325 2252) . The increase of the vibrations over time ^ Pei I value has not been degraded. If the current seismic magnitude is greater than the previous oscillation 1 value, the method may change the preferred symbol and adjust fR to a predetermined amount based on the newly assigned symbol (step 3253). The method can further store the changed symbols as preferred symbols for the next iteration. If the _ value is not greater than the first _ magnitude, the method maintains the preferred symbol to adjust fR by the predetermined symbol by a predetermined amount (step milk 4). These changes in the amount of fR can be relatively small, since large changes in the resonant frequency are not desired. Therefore, the method continues to track and adjust the fR. According to the embodiment, the return channel can be used to calculate the amount required to move the mechanical system from the initial mechanical stop position. In addition, system manufacturers often do not know exactly the DTH of their mechanical systems. Moreover, particularly in consumer devices where system components must be manufactured inexpensively, Dth can vary between different manufacturing lots of a common product. Therefore, the calculation of the actual DTH of the mechanical system (rather than depending on the manufacturer's expected DTH) improves the accuracy of the mechanical system during use. Figure 33 illustrates a system that can be incorporated into a motor drive to calculate a mechanical system. 145778.doc -29- 201036320

實際dth的驅動信號產生器3300之一實施例。驅動信號產 生器330G在該馬達驅動器之—初始化模式下操作。該驅動 信號產生器可包括:一累加器332〇,其用以產生一數位測 試驅動信號;一數位至類比轉換器(DAC)333〇,其用以基 於該累加器之數位輸出產生一類比測試驅動輸出信號(其 被施加至該機械結構之馬達);—目返通道感測器334〇, 其用以捕獲一回返通道電子信號;一處理單元335〇,其用 以計算實際Dth值或指示累加器332〇產生另—數位測試驅 動信號;及一DTH暫存器333〇,其用以儲存計算出之、 值。该類比信號可作為電流或電壓而產生。An embodiment of the actual dth drive signal generator 3300. The drive signal generator 330G operates in the initialization mode of the motor drive. The drive signal generator can include: an accumulator 332A for generating a digital test drive signal; a digital to analog converter (DAC) 333〇 for generating an analog test based on the digital output of the accumulator Driving a output signal (which is applied to the motor of the mechanical structure); a head-back channel sensor 334A for capturing a return channel electrical signal; a processing unit 335A for calculating an actual Dth value or indication The accumulator 332 generates a further digital test drive signal; and a DTH register 333〇 for storing the calculated value. This analog signal can be generated as a current or voltage.

根據本發明之一實施例,該驅動信號產生器可進一步自 括一位置感測器3360,其用以儲存機械系統之位置及定 向。位置感測器3360可耗接至累加器332〇。Dth可對機輔 系統之^向敏感。舉例而言,—透鏡機械系統在面朝下萌 可具有一較低Dth’因為重力之輔助力向T,且相反地, -透鏡機械系統在面朝上時可具有一較高Dm,因為重力 之反作用力向下。位置感測器336()可為_傾斜計、—迴轉 儀或任何合適位置偵測裝置。 圖34為-根據本發㈣統之—實施例之用以確定機械系 :之DTH之方法3400的流程圖。方法侧可執行一用以確 疋DTH之反覆過程。該過程可使用儲存於該知暫存器中的 田#估。產生一測試驅動信號(步驟。可根 據單位步階函數產生該測試驅動信號。在一第一次反覆 中,該DTH估計可為—預程式化值,但在此後,其可藉^ 145778.doc -30- 201036320 一先前反覆設定。根據一實施例,可在偵測到—定向變化 時產生該測試驅動信號。亦可根據機械系統之谓測到的定 向產生該測試驅動信號。該測試驅動信號可施加至機械$ 統之馬達。若該測試驅動信號之值等於或高於實際y 則馬達使機械系統移動’此在機械系統中產生振堡。,等 振盪可在回返通道中誘發一電子信號。然而,若該測=驅 Ο ❹ 動信號之值低於實際dth,則機械系統不移動,且因此, 不誘發回返通道信號。 方法3400可監視回返通道以獲得振盪情況(步驟Μ”)且 判定-回返通道信號是否存在。若未觀察到一回返通道信 號,則方法3400使該測試驅動信號增加以用於另一次反覆 (步驟期)。該方法可重複。若觀察到回返通道信號則 該處理單元檢查當前Dth值Μ在—預定精度位準内(步驟 3450)。此檢查可(例如)藉由判定—之值在該過程中是否 變化一預定次數來進行。若當前DTH估計不在一精確位準 内’該方法使該測試驅動信號減小(步驟344q)。該方法可 重複。 若知道〇ΤΗ值在該精度位準内’則該處理單元將當前Dth 值作為-取後估計儲存於Du暫存器中(步驟術〇)。此 後《亥^法可以結束。接著可在使用預期Dm值的本發明 之任何實施例中使用該儲存之Dm值。另夕卜可實施一回 口貝° =搜尋方法以藉由基於該回返通道回應於先前驅動信 號之里測參數計算該等單位步階函數之振幅來改良收敛速 度。 145778.doc -31 · 201036320 圖35展不圖35⑷中之—測試驅動信號之一實例及圖 5(1>)中之機械系統之相應移動。圖35(a)中之第—步階值 測試驅動信號為一對應於估計的Dm值之單位步階驅動信 動》亥驅動L就施加至該馬達’此在該機械系統中引起運 。^圖35(b)中展示該機械系統回應於該第一步階值測試 艇動㈣之位移。在該位移圖開始時發現該振鈴效應,其 中該機械系統之位移在穩定至其相應位移值之前首先以二 振盪:為之方式作用。該振蓋行為在該回返通道中誘發一 ’其具有與該機械系統中之該等振I相同的諧振 “。里值上低於該第-步階值測試驅動信號之第二步階 測試驅動信號不驅動馬達,因此,機械系統不移動,因 ^圖35中所不之振|行為。因此,該第:步階值測試驅 =:TDth。該過程可藉由產生一在該第-步階 '4—步階值之間的第三步階值(未圖^及 x:仃為直至確定DTH值在精度位準内而繼續。 振頻率fR&DTH值均可在—初始化模式下確定。當第 :開啟機械系統時,或每當開啟機械系統時,或在其他 =時間,可觸發該初始化模式。^及Dm計算過程亦可 =相同初始化模式下或在不同初始化模式下同時或連續地 若同時執行兩個過程,則相同測試驅動信號可用於 過私,其中該處理單元使用相同回返通道信號計算實 :广Η值兩者。若連續地執行兩個過程,則可 撼人序執行該等過程。另外,當偵測到一定向變化時,可根 據—函數或查找表(LUT)修改Dth值。 145778.doc •32· 201036320 在本文中具體說明及描述本發明之若干實施例。然而, 將瞭解,在不脫離本發明之精神及預期範疇的情況下,本 發明之修改及改變由上述教示涵蓋且在隨附之申請專利範 目之範圍内。另外’將瞭解,上文所說明之信號表示具有 瞬時回應之驅動信號之理想形式;實務上,可預期在實際 操作條件下來自馬達驅動器之一定量的迴轉。先前論述已 省略此等影響以不使本發明之原理含糊不清。 【圖式簡單說明】 〇 圖1為一適合本發明使用之例示性機械系統之方塊圖; 圖2為一例不性機械系統之頻率回應及在啟動期間可能 發生之振盪的圖; 圖3 s兒明用於機械系統之習知驅動信號; 圖4說明在一單式步階驅動信號下觀察到的一機械系統 之回應; 周5說明一根據本發明之一實施例之驅動信號; 〇 圖6為說明圖5之驅動信號之高度及位置的圖; 圖7為說明依據本發明之一驅動信號之頻率之能量分佈 的圖; 圖8說明在一諸如圖$中所示之驅動信號下觀察到的一機 械系統之回應; 圖9為一根據本發明之一實施例之系統的方塊圖; 圖10為說明依據本發明之另一驅動信號之頻率之能量分 佈的圖; 圖11為一根據本發明之一實施例之系統的方塊圖; 145778.doc -33- 201036320 圖12為說明根據本發明之一實施例之其他例示性驅動信 號的圖; 圖13為一根據本發明之一實施例之驅動信號產生器之簡 化方塊圖; 圖丨4為說明根據本發明之一實施例之另一例示性驅動信 號的圖; ° 圖15為說明一例示性濾波系統之頻率回應之圖; "圖1 6為—根據本發明之另一實施例之驅動信號產生器之 簡化方塊圖; 圖17為—根據本發明之另一實施例之驅動信號產生器之 簡化方塊圖; 圖18為說明-機械系統典型位移(在穩定之後)與一施加 之驅動信號之例示性關係圖; 圖1 9為說明—柄诚士 β 號的圖; Χ 卷明之另一實施例之例示性驅動信 圖20為—搞人 圖21或5本發明使用之另-機械系統之方塊圖; 圖21為—根據 化圖; 舍月之—声、轭例之MEMS開關系統之簡 圖22為-根據本發 簡化圖; 明之—實施例之MEMS鏡控制系統之 圖23為—根據本發明 圖; 之實施例之觸覺控制系統之簡化 圖24為―# 根據本發明之_香 圖; 之貫施例之碟片讀取器之簡化 145778.doc -34- 201036320 圖25為一根據本發明之另一實施例之驅動信號產生器之 簡化方塊圖; 圖26為说明根據本發明之一實施例之例示性驅動信號的 圖; 圖27為-適合本發明使用之馬達驅動系統之簡化圖; 圖28為-根據本發明之另__實施例之驅動信號產生器之 簡化方塊圖; ❹ 圖29展示-用於確定一譜振頻率之簡化處理流程; 圖30說明在一測試驅動信號下觀察到的一機械系統之回 圖31展示-用於更新—諧振頻率之簡化處理流程; 圖32⑷展示-用於調整一错振頻率之簡化處理流程 圖32(b)展示-用於調整一諸振頻率之簡化處理流程 器之 圖33為-根據本發明之另—實施例之驅動信號產生 簡化方塊圖; 〇 圖34展示一用於確定一臨限電壓之簡化處理流程;及 圖35說明在單位步階測試驅動信號 υ卜覲察到的一機械糸 統之回應。 $ 【主要元件符號說明】 110 成像晶片 120 馬達驅動器 130 音圈馬達 140 透鏡 910 P0LD暫存器 145778.doc . 201036320 920 Pnew暫存器 930 暫存器 940 減法器 950 步階信號產生器 960 累加器 970 乘法器 980 加法器 1110 驅動信號產生器 1120.1 陷波限制濾波器 1120.N 陷波限制濾波器 1300 信號產生器 1310 暫存器 1320 暫存器 1330 時序引擎 1340 分接頭暫存器 1350 乘法累加(MAC)單元 1360 數位至類比轉換器(DAC) 1600 驅動信號產生器 1610 暫存器 1620 暫存器 1630 分接頭暫存器 1640 累加器 1650 減法器 1660 除法器 145778.doc -36- 201036320 1670 乘法器 1680 加法器 1700 驅動信號產生器 1710 暫存器 1720 暫存器 1730 分接頭暫存器 1740 累加器 1750 減法器 Ο 1760 值暫存器 1780 數位至類比轉換器(DAC) 2000 系統/透鏡控制系統 2010 成像晶片 2010.1 感光表面/自動對焦控制 2010.2 運動彳貞測 2010.3 光學影像穩定(OIS) © 2020 馬達驅動器 2020.1 馬達驅動單元 2020.2 馬達驅動單元 2020.3 馬達驅動單元 2030 上下偏轉馬達 2040 左右偏轉馬達 2050 自動對焦馬達 2060 透鏡 2110 開關部件 145778.doc -37- 201036320 2120 可移動「樑」部分 2130 輸出端子 2140 控制端子 2150 開關驅動器 2200 光學系統 2210 光學發射器 2220 光學接收器 2230 MEMS 鏡 2240 鏡驅動器 2250 第二接收器 2300 裝置 2310 觸控螢幕面板 2320 觸控螢幕控制器 2330 觸覺馬達控制器/馬達驅動器 2340 觸覺效應馬達 2410 馬達驅動擺臂 2420 碟片表面 2430 馬達線圈 2440 讀取頭 2450 馬達驅動器 2500 驅動信號產生器 2510 輸入碼暫存器 2520 舊碼暫存器 2530 減法器 145778.doc -38- 201036320 2540 斜坡調變器 2550 累加器 2560 數位至類比轉換器(DAC) 2700 馬達驅動系統 2710 控制晶片 2720 馬達驅動器 2730 馬達 2740 機械糸統 Ο ^ 2750 機械結構 2800 驅動信號產生器 2810 暫存器 2820 累加器 2830 數位至類比轉換器(DAC) 2840 回返通道感測器 2850 處理單元 ^ 3300 Ο 驅動信號產生器 3320 累加器 3330 數位至類比轉換器(DAC) 3340 回返通道感測器 3350 處理單元 3360 位置感測器 fR 諧振頻率 145778.doc -39-According to an embodiment of the invention, the drive signal generator may further include a position sensor 3360 for storing the position and orientation of the mechanical system. The position sensor 3360 can be consuming to the accumulator 332A. Dth can be sensitive to the auxiliary system. For example, the lens mechanical system may have a lower Dth' in the face-down direction because the assist force of gravity is toward T, and conversely, the lens mechanical system may have a higher Dm when facing up, because gravity The reaction force is downward. The position sensor 336() can be a _ inclinometer, a gyroscope or any suitable position detecting device. Figure 34 is a flow diagram of a method 3400 for determining a mechanical system: DTH according to the embodiment of the present invention. The method side can perform a repetitive process for confirming DTH. The process can be estimated using the field stored in the known register. Generating a test drive signal (step. The test drive signal can be generated according to a unit step function. In a first iteration, the DTH estimate can be - a pre-programmed value, but after that, it can be borrowed ^ 145778.doc -30- 201036320 A previously repeated setting. According to an embodiment, the test drive signal may be generated when a change in orientation is detected. The test drive signal may also be generated according to the sensed orientation of the mechanical system. A motor that can be applied to the machine. If the value of the test drive signal is equal to or higher than the actual y, the motor moves the mechanical system. This creates a vibration in the mechanical system. The oscillation can induce an electrical signal in the return channel. However, if the value of the test = drive ❹ signal is lower than the actual dth, the mechanical system does not move, and therefore, the return channel signal is not induced. Method 3400 can monitor the return channel to obtain an oscillating condition (step Μ") and Determining if the return channel signal is present. If a return channel signal is not observed, method 3400 increments the test drive signal for another iteration (step The method can be repeated. If a return channel signal is observed, the processing unit checks that the current Dth value is within a predetermined accuracy level (step 3450). This check can be performed, for example, by determining - the value in the process Whether to change for a predetermined number of times. If the current DTH is not estimated to be within a precise level, the method reduces the test drive signal (step 344q). The method can be repeated. If the threshold value is known to be within the accuracy level' The processing unit then stores the current Dth value as a post-fetch estimate in the Du register (step 〇). Thereafter the "Hay method" may end. It may then be used in any embodiment of the invention using the expected Dm value. The stored Dm value may additionally be implemented by a loopback = search method to improve the convergence rate by calculating the amplitude of the unit step function based on the return parameter of the previous drive signal based on the return parameter. .doc -31 · 201036320 Figure 35 shows an example of the test drive signal in Figure 35(4) and the corresponding movement of the mechanical system in Figure 5 (1). The first step value test drive in Figure 35(a) Signal is A unit step drive signal corresponding to the estimated Dm value is applied to the motor 'this is caused in the mechanical system. ^ Figure 35 (b) shows the mechanical system in response to the first step The step value tests the displacement of the boat (4). The ringing effect is found at the beginning of the displacement map, wherein the displacement of the mechanical system first acts in two oscillations before stabilizing to its corresponding displacement value. The vibrating action is In the return channel, a 'the same resonance as the equal-magnet I in the mechanical system is induced'. The second-step test drive signal whose value is lower than the first-step test drive signal does not drive the motor, so The mechanical system does not move, because of the vibration | behavior in Figure 35. Therefore, the first: step value test drive =: TDth. The process may be performed by generating a third step value between the step-steps and the step values (not shown and x: 仃 until the DTH value is determined to be within the accuracy level. The fR&DTH value can be determined in the -initialization mode. When the mechanical system is turned on, or whenever the mechanical system is turned on, or at other = time, the initialization mode can be triggered. ^ and Dm calculation process can also be the same The same test drive signal can be used for over-privateness in the initialization mode or in two different processes simultaneously or continuously in different initialization modes, wherein the processing unit uses the same return channel signal to calculate the actual: wide value. If you perform two processes, you can perform these processes in order. In addition, when a certain change is detected, the Dth value can be modified according to the function or lookup table (LUT). 145778.doc •32· 201036320 In this paper The present invention has been described and described in detail with reference to the embodiments of the present invention. In addition, it will be understood that the signals described above represent an ideal form of drive signal with a transient response; in practice, a quantitative slewing from one of the motor drives under actual operating conditions can be expected. These effects are omitted so as not to obscure the principles of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an exemplary mechanical system suitable for use with the present invention; FIG. 2 is a frequency response of an example mechanical system. And a diagram of the oscillations that may occur during startup; Figure 3 shows a conventional drive signal for a mechanical system; Figure 4 illustrates the response of a mechanical system observed under a single step drive signal; Figure 6 is a diagram illustrating the height and position of the drive signal of Figure 5; Figure 7 is a diagram illustrating the energy distribution of the frequency of a drive signal in accordance with the present invention; A response of a mechanical system observed under a drive signal such as that shown in FIG. $ is illustrated; FIG. 9 is a block diagram of a system in accordance with an embodiment of the present invention; 0 is a diagram illustrating the energy distribution of the frequency of another drive signal in accordance with the present invention; FIG. 11 is a block diagram of a system in accordance with an embodiment of the present invention; 145778.doc -33 - 201036320 FIG. 12 is a diagram illustrating FIG. 13 is a simplified block diagram of a drive signal generator in accordance with an embodiment of the present invention; FIG. 4 is a block diagram illustrating another embodiment of the present invention. Figure 15 is a diagram illustrating the frequency response of an exemplary filtering system; " Figure 16 is a simplified block diagram of a driving signal generator in accordance with another embodiment of the present invention; -Simplified block diagram of a drive signal generator in accordance with another embodiment of the present invention; Figure 18 is an illustration showing an exemplary relationship between a typical displacement of a mechanical system (after stabilization) and an applied drive signal; - Figure of the stalk of the stalker; Χ Illustrative drive letter 20 of another embodiment of the invention is a block diagram of another mechanical system used in the present invention 21 or 5; ; Figure 22 is a simplified diagram of a MEMS switching system according to the present invention; Figure 23 of the MEMS mirror control system of the embodiment is a diagram of a haptic control system according to an embodiment of the present invention; Figure 24 is a simplified diagram of a disc reader according to the present invention; a simplified version of the disc reader of the embodiment 145778.doc - 34 - 201036320 Figure 25 is a driving signal generator according to another embodiment of the present invention Figure 26 is a diagram illustrating an exemplary drive signal in accordance with an embodiment of the present invention; Figure 27 is a simplified diagram of a motor drive system suitable for use with the present invention; Figure 28 is a further __ according to the present invention A simplified block diagram of a drive signal generator of an embodiment; ❹ Figure 29 shows a simplified process flow for determining a spectral frequency; Figure 30 illustrates a mechanical system viewed under a test drive signal. Simplified processing flow for update-resonant frequency; Figure 32(4) shows - simplified process for adjusting a wobble frequency. Flowchart 32(b) shows - Figure 33 for a simplified process flow for adjusting a vibration frequency - According to the invention In addition, the driving signal of the embodiment generates a simplified block diagram; FIG. 34 shows a simplified processing flow for determining a threshold voltage; and FIG. 35 illustrates a mechanical system that is detected in the unit step test driving signal. The response. $ [Main component symbol description] 110 imaging chip 120 motor driver 130 voice coil motor 140 lens 910 P0LD register 145778.doc . 201036320 920 Pnew register 930 register 940 subtractor 950 step signal generator 960 accumulator 970 Multiplier 980 Adder 1110 Drive Signal Generator 1120.1 Notch Limit Filter 1120.N Notch Limit Filter 1300 Signal Generator 1310 Register 1320 Register 1330 Timing Engine 1340 Tap Register 1350 Multiply Accumulate ( MAC) Unit 1360 Digital to Analog Converter (DAC) 1600 Drive Signal Generator 1610 Register 1620 Register 1630 Tap Register 1640 Accumulator 1650 Subtractor 1660 Divider 145778.doc -36- 201036320 1670 Multiplier 1680 Adder 1700 Drive Signal Generator 1710 Register 1720 Register 1730 Tap Register 7740 Accumulator 1750 Subtracter Ο 1760 Value Register 1780 Digital to Analog Converter (DAC) 2000 System / Lens Control System 2010 Imaging Wafer 2010.1 Photosensitive Surface / Auto Focus Control 2010.2 Motion Test 20 10.3 Optical Image Stabilization (OIS) © 2020 Motor Driver 2020.1 Motor Drive Unit 2020.2 Motor Drive Unit 2020.3 Motor Drive Unit 2030 Up and Down Deflection Motor 2040 Left and Right Deflection Motor 2050 Auto Focus Motor 2060 Lens 2110 Switch Parts 145778.doc -37- 201036320 2120 Movable "Beam" part 2130 output terminal 2140 control terminal 2150 switch driver 2200 optical system 2210 optical transmitter 2220 optical receiver 2230 MEMS mirror 2240 mirror driver 2250 second receiver 2300 device 2310 touch screen panel 2320 touch screen controller 2330 tactile Motor Controller / Motor Driver 2340 Tactile Effect Motor 2410 Motor Drive Swing Arm 2420 Disc Surface 2430 Motor Coil 2440 Read Head 2450 Motor Driver 2500 Drive Signal Generator 2510 Input Code Register 2520 Old Code Register 2530 Subtractor 145778 .doc -38- 201036320 2540 Ramp Modulator 2550 Accumulator 2560 Digital to Analog Converter (DAC) 2700 Motor Drive System 2710 Control Wafer 2720 Motor Driver 2730 Motor 2740 Mechanical System ^ 2750 Mechanical Structure 2800 Drive Signal Generator 2810 Register 2820 Accumulator 2830 Digital to Analog Converter (DAC) 2840 Return Channel Sensor 2850 Processing Unit ^ 3300 Ο Drive Signal Generator 3320 Accumulator 3330 Digital to Analog Converter (DAC) 3340 Return Channel Senser 3350 Processing Unit 3360 Position Sensor fR Resonant Frequency 145778.doc -39-

Claims (1)

201036320 七 、申請專利範®: I.—種用於產生—驅. 驅動機械系統之方 驅動信號至一 法,其包含: 馬達 以根據巴斯卡三角形之一琴… 動信號施加至該馬達驅:疋列之-系列步階將一驅 步階之數目等於來自巴斯;系:’其中: 的數目, 角形之該選定列之條目 Ο 0 每-步階具有—對應於 各別條目的步長,且 卞一角形之該選定列之一 該等步階根據一由下式 飞確'之時間常數tc彼此分隔: tcs-L 2fR 其申fR為該機械系统t 2 , ^ , ε 于、、无之—預期諸振頻率。 •如明求項1之方法,装由 TAIA 驅動信號在該預期諧振頻率 卜大體上具有零能量。 3. 如凊求項1之方法,甘士 # 應^ '、中邊驅動信號之一最後步階使該 機槭系統大體上I 、,县tL p ,,、、振盪地停留在該目的地位置。 4. 如請求項1之方法,其進一步包含: 二應於-識別該機械系統之一目的地位置之碼字,確 疋,、有表不以下各者之分量的該驅動信號之一振幅:a) S機械系統之-出發位置及b)該出發位置與該目的地位 置之間的一差, 八中對應於該差之該振幅分量分散在該驅動信號之該 等在時間上分隔之步階上。 5_如味求項1之方法’其中該碼字識別一在該機械系統之 145778.doc 201036320 一運動範圍内之可定址位置。 6. 如請求们之方法,其進一步包含’當該機械系統之一 出發位置為一停置位置時, 確定具有以下各者之該驅動信號之一振幅:句一對應 於一使該機㈣統自該停置位置移動所需之驅動信號位 準之第-分量;及b)一對應於該第一分量與一使該機械 系統移動至該目的地位置所需之驅動信號位準之間的一 差之差分分量, 其中該差分分量分散在該驅動信號之該等在時間上分 隔之步階上,且 其中該第一分量係在該驅動信號之該第一步階中施 加。 7. 如請求項1之方法,其中該等步階之一振幅係根據一由 衫像信號處理器產生之碼字確定,且該驅動信號施加 至一透鏡驅動馬達。 8. 士叫求項1之方法,其中該機械系統為一具有一多維運 動範圍之透鏡系統,該影像信號處理器產生對應於每一 維度之碼字,且該方法產生多個驅動信號,一個驅動信 號對應於該等碼字中之每一者。 如凊求項8之方法’其中存在三個維度及三個碼字,一 個碼字用於該透鏡系統之橫向移動,一個碼字用於該透 鏡系統之上下偏轉,且一個碼字用於該透鏡系統之左右 偏轉。 1 0.如明求項1之方法,其中該等步階之一振幅係根據一由 145778.doc 201036320 :觸^面板控制器產生之碼字衫,且該驅動信號施加 轉接至—觸控面板之觸覺效應馬達。 Η ·如請求項1之方法,其中矽笪 、^步^之一振幅係根據一由 一碟片控制器產生之碼字確定, 田 疋且5亥驅動k號施加至一 基於擺臂之碟片讀取器。 12 ·如請求項1之方法,並 一世u 八中°亥專步階之—振幅係根據一由 碟片控制器產生之碼字確$ 其# #I 子峥疋,且該驅動信號施加至一 Ο 基於滑板之碟片讀取器。 13.—種用於產生一 Μr 法,其包含:號至—馬達驅動機械系統之方 以根據巴斯卡三角形之一 動s斗 選疋列之一系列步階將一驅 動—至该馬達驅動機械系統,其中: 該等步階經分組成許多間 來自巴斯卡二^ 其中間隔之數目等於 自:斯卡二角形之該選定列之條目的數目, 每一步階具有一均勾步長, ❹ 每-間隔包括對應於一來自 列之各別條目的許多步階,I -角$之该選疋 該等間隔根據一由下式— 隔: 式確疋之時間常數tc彼此分 其中4為該機械系統之— 1 4 ‘咬= 谓朋谐振頻率〇 14·如4求項13之方法,其進一步包含, 回應於一識別該機械 定具有表示以下々土 目的地位置之碼字,確 〜八q衣不u下各者分 ^ 之刀里的該驅動信號之一振幅:a) 145778.doc 201036320 目的地位 該機械系統之一出發位置及…該出發位置與該 置之間的一差, ” 其中該步長係根據該差分量確定。 15.如請求項〗3之方法,其進一步 v ^ &田5亥機械系統之一 出發位置為一停置位置時, 系統移動至該目的地位置所需之驅動信 差之差分分量, 確定具有以下各者之該驅動信號之一振幅:勾一對應 於-使該機械系統自該停置位置移動所需之驅動传號: .準之第-分量;及b) 一對應於該第一分量與—使該機械 的 其中该步長係根據該差分量破定,且 其中該第一分量係在該驅動信號之該第一步階中施 加。 16.如請求項13之方法,纟中該等步階之一振幅係根據一由 一影像處理系統產生之碼字確^,且該驅動信號施加至 一透鏡驅動馬達。 17·㈣求項13之方法,其中該等步階之—振㈣根據—由 觸控面板控制器產生之碼字碟定,且該驅動信號施加 至一耦接至一觸控面板之觸覺效應馬達。 18. 如β月求項13之方法,其中該等步階之一振幅係根據一由 碟片控制器產生之竭字確定,且該驅動信號施加至一 基於擺臂之碟片讀取器。 19. 如明求項13之方法’其中該等步階之一振幅係根據一由 碟片控制器產生之碼字確定,且該驅動信號施加至一 145778.doc 201036320 基於滑板之碟片讀取器。 20. —種驅動信號產生器,其包含: 一分接頭暫存器’其儲存表示巴斯卡三角形之列且回 , 應於一識別一選定列之控制信號之圖案; 一時序引擎,其用於以對應於一時間常數^之時間間 隔驅動該分接頭暫存器: t ,-L c-2fR 〇 其中fR為一將由該驅動信號產生器驅動之機械系統之一 預期諧振頻率;及 一累加器,其回應於該分接頭暫存器及表示該機械系 統之一出發位置及一目的地位置之資料,產生一步階驅 動信號,其中: 步1¾之數目等於來自巴斯卡三角形之該選定列之條 目的數目, 每一步階具有一對應於該出發位置與該目的地位置 Ο 之間的一差且對應於巴斯卡三角形之該選定列之一各別 條目的步長,且 該等步階根據該時間常數tc彼此分隔;及 數位至類比轉換器’其用以產生該步階驅動信號 之一類比表示。 21 ·如请求項2〇之驅動信號產生器,其中該數位至類比轉換 器產生一類比電壓。 22.如清求項2〇之驅動信號產生器,其中該數位至類比轉換 器產生一類比電流。 145778.doc 201036320 23. 如請求項2〇之驅動信號產生器,1 Τ該驅動彳§唬在該預 振頻率下大體上具有零能量。 24. —種驅動信號產生器,其包含: —分接頭暫存器, 亲,w -儲存表不巴斯卡三角形之列之圖 之數目對廄於 有,、有“均勾步階的間隔,間隔 •^数a對應於巴斯卡二 的步階之數… 數目,每一間隔中 —加法器,其回應於來 值 示該機械系統之—出發位置Z騎存器之輸出及表 生一步階雜動作號,I 目的地位置之資料,產 自該分接㈣/ ❹階驅動信號具有—對應於 應二f步階之-累加數目且進-步對 -時序二Γ:::置之間的-差之振幅, 間隔彼此分隔輸出以間隔分隔之步階,該等 下式確定之時間常數tc: tc =」- 其中fR為該機械系 R 之步階彼此分隔_卜—預期譜振頻率’且每一間隔内 25 . 比⑴短之時間常數。 種動一馬達驅動機 回應於―嗲 械系統之方法,其包含: 每別該機械系餘 生一多步階驅動信號,二、,—目的地位置之碼字,產 tc : 母步階偏移一相鄰步階一時間 145778.doc 201036320 其中fR為該機械 其中每-步階之1 預期譜振頻率, 及該目的地位置 ^係自巴斯卡三角形之-選定列 从-種驅動…發位置之間的-差導出。 ―:達驅動機械系統之方法,其包含: :、::識别該機械系統之一目的 生 u歿數個間臨八M <·*/ Ο /、令為4機械系統之—預期諧振頻率, 之 其令每一步階具有一均句振幅且每 數目係自巴斯卡三角形之—選定列導出。 法,其包含: 2 7 ’種用於產生一驅動信號至一馬達驅動機械系統之方 以-系列步階將一驅動信號施加至該馬達驅動機械系 統,其中: ❹ 步階之數目取決於一將由該馬達驅動機械系統橫跨 之距離,且 該驅動信號使該馬達驅動機械系統在一與該 ϊ»»ν 關之預定時間tp内橫跨該距離。 28. —種驅動信號產生器,其包含: 一斜坡調變器 ',其回應於一步階時脈速率及一淨距 離,產生一步階回應信號; 一累加器,其回應於該步階回應信號,產生一步階驅 動信號;及 145778.doc •7- 201036320 玍王—驅動信號, 馬達馬區動機械系統纟一與該淨距 一數位至類比轉換器 其中該驅動信號使一 離無關之預定時間内橫跨該淨距離。 29. 如請求項28之驅動信號產生器,其進一步包含: 一第一暫存器,其用以儲存—舊位置; 一第二暫存器’其用以儲存一新位置;及 一減法器,其用以產生對應於該舊位置與該新位置之 間的差之該淨距離。 30.如請求項28之驅動信號產生器,其中該步階時脈速率對 應於該驅動信號中的步階之一數目,且該驅動信號中的 步階之該數目取決於該淨距離。 145778.doc201036320 VII. Patent Application: I.—A method for generating a drive-drive system to drive a mechanical drive signal to a method, comprising: a motor according to a bass card of a Baska triangle... a motion signal is applied to the motor drive : 疋列的-Series steps will number the number of steps to be equal to those from Bath; the system: 'where: the number of: the entry of the selected column of the angle Ο 0 per-step has - the step corresponding to the individual entry One of the selected columns of the long, and one of the selected columns is separated from each other by a time constant tc of the following formula: tcs-L 2fR whose fR is the mechanical system t 2 , ^ , ε Nothing—expected vibration frequencies. • The method of claim 1, wherein the TAIA drive signal has substantially zero energy at the expected resonant frequency. 3. If the method of item 1 is requested, Gans # should ^ ', one of the middle drive signals, the last step, so that the machine maple system is substantially I, the county tL p , , , , oscillatingly stay at the destination position. 4. The method of claim 1, further comprising: - identifying a codeword at a destination location of the mechanical system, confirming, having an amplitude of one of the drive signals representing a component of: a) the S-mechanical system - the starting position and b) the difference between the starting position and the destination position, the amplitude component of the eight corresponding to the difference being dispersed in the step of the driving signal On the order. 5_ The method of claim 1 wherein the codeword identifies an addressable location within a range of motion of the mechanical system 145778.doc 201036320. 6. The method of claimants, further comprising 'when one of the mechanical systems is in a parked position, determining one of the amplitudes of the drive signal having the following: sentence one corresponding to one (four) a first component of the drive signal level required to move from the parked position; and b) a correspondence between the first component and a drive signal level required to move the mechanical system to the destination position a differential component, wherein the differential component is spread over the temporally separated steps of the drive signal, and wherein the first component is applied in the first step of the drive signal. 7. The method of claim 1 wherein the amplitude of one of the steps is determined based on a codeword generated by the shirt image signal processor and the drive signal is applied to a lens drive motor. 8. The method of claim 1, wherein the mechanical system is a lens system having a multi-dimensional range of motion, the image signal processor generates a codeword corresponding to each dimension, and the method generates a plurality of drive signals, A drive signal corresponds to each of the code words. For example, the method of claim 8 wherein there are three dimensions and three codewords, one codeword is used for lateral movement of the lens system, one codeword is used for deflection of the lens system, and one codeword is used for The left and right deflection of the lens system. The method of claim 1, wherein the amplitude of one of the steps is based on a code shirt generated by the 145778.doc 201036320: touch panel controller, and the driving signal is applied to the touch-touch The haptic effect motor of the panel. Η The method of claim 1, wherein the amplitude of one of the steps is determined according to a code word generated by a disc controller, and the field number is applied to a disc based on the swing arm. Slice reader. 12. The method of claim 1, and the amplitude of the first phase is based on a codeword generated by the disc controller, and the driving signal is applied to A slide-based disc reader. 13. The method for generating a Μr method comprising: a number to the motor-driven mechanical system to drive one of the series of steps according to one of the Baska triangles to the motor-driven machine a system, wherein: the steps are grouped into a plurality of entries from the Baska II, wherein the number of intervals is equal to the number of entries from the selected column of the ska dimorph, each step having a mean step length, ❹ Each interval includes a plurality of steps corresponding to a respective entry from the column, and the interval of the I-corner $ is equal to each other according to a time constant tc determined by the following formula: The mechanical system - 1 4 'bite = the counter-resonant frequency 〇 14 · 4, the method of claim 13, further comprising, in response to a recognition that the machine has a code word indicating the location of the following bauxite destination, indeed ~ eight q One of the driving signals in the knife of the knife is: a) 145778.doc 201036320 The purpose of the mechanical system is one of the starting position and... the difference between the starting position and the setting," Which step According to the difference component, 15. The method of claim 3, further driving the system to the destination position when one of the starting positions of the field system is a parking position a difference component of the signal difference, determining an amplitude of the one of the drive signals having the following: a hook corresponding to the drive signal required to move the mechanical system from the parked position: a first component of the quasi-component; and b) Corresponding to the first component and - causing the step of the machine to be broken according to the difference, and wherein the first component is applied in the first step of the driving signal. In the method of claim 13, the amplitude of one of the steps is determined according to a code word generated by an image processing system, and the driving signal is applied to a lens driving motor. 17 (4) The method of claim 13, wherein The step (vibration) is determined according to the code word disc generated by the touch panel controller, and the driving signal is applied to a haptic effect motor coupled to a touch panel. Method in which the steps are oscillated The frame is determined based on a word produced by the disc controller, and the drive signal is applied to a disc reader based on the swing arm. 19. The method of claim 13 wherein one of the steps is amplitude Based on a codeword generated by the disc controller, and the drive signal is applied to a 145778.doc 201036320 skateboard based disc reader. 20. A drive signal generator comprising: a tap temporarily The memory 'stores a column representing the Baska triangle and returns, a pattern of control signals identifying a selected column; a timing engine for driving the tap at a time interval corresponding to a time constant ^ a register: t , -L c-2fR 〇 wherein fR is an expected resonant frequency of one of the mechanical systems to be driven by the drive signal generator; and an accumulator responsive to the tap register and representing the mechanical system A data of a starting position and a destination position, generating a step-by-step driving signal, wherein: the number of steps 126 is equal to the number of entries from the selected column of the Baska triangle, each step having one a step between the departure position and the destination location Ο and corresponding to a step size of each of the selected columns of the Baska triangle, and the steps are separated from each other according to the time constant tc; A digital to analog converter that is used to generate an analogy of the step drive signal. 21. The drive signal generator of claim 2, wherein the digital to analog converter produces an analog voltage. 22. The drive signal generator of claim 2, wherein the digital to analog converter produces an analog current. 145778.doc 201036320 23. The drive signal generator of claim 2, 1 Τ the drive 大体上§唬 has substantially zero energy at the pre-activation frequency. 24. A drive signal generator comprising: - a tap register, a pro, a w-storage table, a number of maps not in the Baska triangle, and a "height interval" , the interval ^^ number a corresponds to the number of steps of the Baska II... number, each interval - the adder, which responds to the value of the mechanical system - the position of the start position Z and the output of the watch The step-by-step miscellaneous action number, the data of the I destination location, is derived from the tap (four) / ❹ step drive signal has - corresponding to the two f steps - the cumulative number and the in-step pair - timing two Γ::: set The amplitude of the difference between the intervals, the intervals separating the output steps separated by intervals, the time constant tc determined by the following formula: tc = "- where fR is the step of the mechanical system R separated from each other The vibration frequency 'and a time constant shorter than (1) in each interval. The motor-driven machine responds to the method of the mechanical system, which comprises: each of the mechanical systems has a multi-step drive signal for the rest of the machine, and the code word of the destination position, producing tc: the mother step shift An adjacent step one time 145778.doc 201036320 where fR is the expected spectral frequency of the machine in each of the steps, and the destination position ^ is from the Baska triangle - the selected column is driven from - The difference between the locations is derived. ―: A method of driving a mechanical system, which comprises: :, :: identifying one of the mechanical systems, the number of the first occurrences, the number of the first, and the number of the mechanical systems - the expected mechanical frequency - 4 mechanical systems - the expected resonant frequency , which causes each step to have a mean sentence amplitude and each number is derived from the selected column of the Baska triangle. The method comprises: 2 7 'for generating a driving signal to a motor-driven mechanical system, applying a driving signal to the motor-driven mechanical system in a series of steps, wherein: 数目 the number of steps depends on The mechanical system will be driven by the motor to straddle the distance, and the drive signal causes the motor-driven mechanical system to traverse the distance within a predetermined time tp of the ϊ»»ν. 28. A drive signal generator comprising: a ramp modulator responsive to a one-step clock rate and a clear distance to generate a one-step response signal; an accumulator responsive to the step response signal , generating a step-by-step drive signal; and 145778.doc • 7- 201036320 玍王—drive signal, motor-to-motor mechanical system, and the net-to-digital distance to analog converter, wherein the drive signal makes a departure independent of predetermined time The net distance is crossed. 29. The drive signal generator of claim 28, further comprising: a first register for storing an old location; a second register for storing a new location; and a subtractor And for generating the net distance corresponding to the difference between the old location and the new location. 30. The drive signal generator of claim 28, wherein the step clock rate corresponds to a number of steps in the drive signal, and the number of steps in the drive signal is dependent on the net distance. 145778.doc
TW099103439A 2009-02-09 2010-02-04 Drive signal generator and method thereof TWI491167B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15095809P 2009-02-09 2009-02-09
US12/367,883 US8299744B2 (en) 2009-02-09 2009-02-09 Control techniques for motor driven systems
US12/367,938 US20100201302A1 (en) 2009-02-09 2009-02-09 Control techniques for motor driven systems

Publications (2)

Publication Number Publication Date
TW201036320A true TW201036320A (en) 2010-10-01
TWI491167B TWI491167B (en) 2015-07-01

Family

ID=42542605

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099103439A TWI491167B (en) 2009-02-09 2010-02-04 Drive signal generator and method thereof

Country Status (3)

Country Link
JP (1) JP5701507B2 (en)
TW (1) TWI491167B (en)
WO (1) WO2010090910A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6055645B2 (en) * 2012-10-19 2016-12-27 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device
TWI562530B (en) * 2015-11-17 2016-12-11 En Technologies Corp System and way for motor-driven spreading

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185186A (en) * 1983-04-01 1984-10-20 Fuji Xerox Co Ltd Speed controller of copying machine
US4649328A (en) * 1985-06-26 1987-03-10 General Electric Co. Method for automatic speed loop tune-up in a machine drive
JP3509413B2 (en) * 1995-10-30 2004-03-22 株式会社デンソー Motor control device
JP3575148B2 (en) * 1995-11-27 2004-10-13 日本精工株式会社 Automatic gain adjustment method and apparatus for servo mechanism
JP3701531B2 (en) * 2000-01-07 2005-09-28 富士通株式会社 Actuator control circuit for recording medium driving device and recording medium driving device
TW591883B (en) * 2003-01-24 2004-06-11 Delta Electronics Inc Method of instant estimation of rotor inertia of a load motor
KR100699854B1 (en) * 2005-07-25 2007-03-27 삼성전자주식회사 Method for suppressing resonance using an notch filter and appartus thereof
JP5330718B2 (en) * 2008-03-19 2013-10-30 シャープ株式会社 Camera system, voice coil motor driving device, and voice coil motor driving method

Also Published As

Publication number Publication date
JP2010183834A (en) 2010-08-19
JP5701507B2 (en) 2015-04-15
WO2010090910A3 (en) 2012-01-19
TWI491167B (en) 2015-07-01
WO2010090910A2 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
TWI491164B (en) Method of driving a motor-driven mechanical system
US10025276B2 (en) Control techniques for motor driven systems
JP7106670B2 (en) Adjustment of drive waveform to compensate for transducer resonance frequency
US8884573B2 (en) Control techniques for motor driven systems
US8222841B2 (en) VCM control circuit
US7697829B1 (en) Electronic damping for stage positioning
EP2216899B1 (en) Control techniques for motor driven systems
TW416028B (en) System for driving and controlling the motion of an oscillatory electromechanical system especially sutiable for use in an optical scanner
TW201036320A (en) Control techniques for motor driven systems
US20120063019A1 (en) Control method for a voice coil motor and lens focusing system using the same
US20060131988A1 (en) Drive calibration method and system
JP6584247B2 (en) Driving method of vibration type actuator, control method of driving device, driving device, imaging device and device
EP0913873A2 (en) Vibration motor control apparatus and method
JP2002277809A (en) Planar galvanomirror driving circuit
US20100201302A1 (en) Control techniques for motor driven systems
TWI513175B (en) Drive signal generator, motor-driven mechanical system and method for driving the same
JP6548408B2 (en) Imaging device, control method therefor, and computer program
JP2008225041A (en) Method of driving and controlling optical scanner, and driving and controlling apparatus
Joudrey et al. Design, modeling, fabrication and testing of a high aspect ratio electrostatic torsional MEMS micromirror