TW201034530A - Neutron beam rotary irradiation apparatus - Google Patents

Neutron beam rotary irradiation apparatus Download PDF

Info

Publication number
TW201034530A
TW201034530A TW098106833A TW98106833A TW201034530A TW 201034530 A TW201034530 A TW 201034530A TW 098106833 A TW098106833 A TW 098106833A TW 98106833 A TW98106833 A TW 98106833A TW 201034530 A TW201034530 A TW 201034530A
Authority
TW
Taiwan
Prior art keywords
neutron
target
ion beam
irradiation
rotating
Prior art date
Application number
TW098106833A
Other languages
Chinese (zh)
Inventor
Toshinori Mitsumoto
Original Assignee
Sumitomo Heavy Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries filed Critical Sumitomo Heavy Industries
Priority to TW098106833A priority Critical patent/TW201034530A/en
Publication of TW201034530A publication Critical patent/TW201034530A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Abstract

This invention provides a neutron beam rotary irradiation apparatus capable of being miniaturized. The neutron beam rotary irradiation apparatus (1) includes: a neutron generating part (2) having a target (7) for generating neutrons when irradiated with an ion beam; a moderator (9) for moderating the neutrons; a collimator (3) arranged on the emission side of the neutron generating part (2); two deflection electromagnets (4, 5) for deflecting the ion beam; and a beam duct (6) for transporting the ion beam. A communication port (10a) for communication between a target storage part (10) and the beam duct (6C) is arranged at a position lower than the top part (10b) of the target storage part (10). An angle [alpha] is 90[deg.], which is made by the irradiation direction (F1) of the ion beam to the target (7) and a neutron taking-out direction (F2).

Description

201034530 六、發明說明 【發明所屬之技術領域】 本發明係關於中子束旋轉照射裝置。 【先前技術】 關於用來治療患者體內的癌症的裝置,直接照射質子 射線或重粒子射線等的帶電粒子束裝置(例如參照專利文 φ 獻1)是已知的。該裝置,是具備前段加速器、同步型加 速器、旋轉照射裝置以及控制裝置,控制裝置是用來控 制:從前段加速器朝同步型加速器的射出,以及旋轉照射 裝置之帶電粒子束的輸送等。然而,在該旋轉照射裝置, 必須將從加速器取出的帶電粒子束藉由第一個偏向電磁鐵 往旋轉半徑方向的外側偏向後,再藉由第二個偏向電磁鐵 往旋轉半徑方向的內側呈銳角偏向,因此裝置的最大旋轉 半徑變大,而導致裝置變得大型化。 φ 〔專利文獻1〕曰本特開平9-223600號公報 【發明內容】 近年來,中子捕捉療法(BNCT療法),由於可選擇性 地破壞癌細胞且副作用極少,是受到矚目的治療法。作爲 該BNCT療法所使用的中子束旋轉照射裝置,使用構造與 上述帶電粒子束裝置相同的裝置的提案曾被提出。然而, 若BNCT療法之中子束旋轉照射裝置是採用這種相同的構 造,必然會造成裝置整體變得大型化,而難以謀求小型 -5- 201034530 化。 本發明之目的,是爲了提供—種可謀求小型化之中子 束旋轉照射裝置。 本發明之中子束旋轉照射裝置’是相對於被照射體設 置成旋轉自如且用來對被照射體照射中子束之中子束旋轉 照射裝置,其特徵在於:係具備:受離子束照射而產生中 子之靶體、用來將從靶體產生的中子予以減速之減速材 料、將經由減速材料減速後之中子在被照射體側取出之取 n 出口、使照射於靶體的離子束偏向之偏向電磁鐵、用來將 離子束輸送至靶體之射束導管;離子束朝靶體的照射方向 和中子的取出方向不同。 本發明之中子束旋轉照射裝置,由於離子束朝靶體的 照射方向和中子的取出方向不同,可縮短中子取出方向上 的裝置長度。因此,可縮小中子束旋轉照射裝置的旋轉半 徑,而能謀求中子束旋轉照射裝置的小型化。201034530 VI. Description of the Invention [Technical Field of the Invention] The present invention relates to a neutron beam rotating illumination device. [Prior Art] With regard to a device for treating cancer in a patient, a charged particle beam device that directly irradiates a proton beam or a heavy particle beam or the like (for example, refer to Patent Document 1) is known. The device is provided with a front accelerator, a synchronous accelerator, a rotary illumination device, and a control device for controlling the injection from the front accelerator to the synchronous accelerator and the delivery of the charged particle beam of the rotary illumination device. However, in the rotary irradiation device, the charged particle beam taken out from the accelerator must be deflected outward by the first biasing electromagnet in the direction of the radius of rotation, and then the inner side of the rotating radius by the second biasing electromagnet. The acute angle is biased, so the maximum radius of rotation of the device becomes large, which causes the device to become large. φ 专利 9 9 9 9 9 9 9 9 9 9 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 A proposal to use the same device as the above-described charged particle beam device as the neutron beam rotation irradiation device used in the BNCT therapy has been proposed. However, if the BNCT therapy sub-beam rotation irradiation apparatus adopts the same configuration, the entire apparatus is inevitably enlarged, and it is difficult to achieve a small size. SUMMARY OF THE INVENTION An object of the present invention is to provide a sub-beam rotating illumination device which can be miniaturized. The beamlet rotating irradiation device of the present invention is a device for rotating a neutron beam in a neutron beam with respect to an object to be irradiated, and is characterized in that it is provided with an ion beam irradiation. a neutron-producing target, a decelerating material for decelerating the neutron generated from the target, and a n-out which is taken out from the side of the object to be irradiated by the decelerating material, and is irradiated to the target. The ion beam is deflected toward the electromagnet, and the beam guide for transporting the ion beam to the target; the direction of irradiation of the ion beam toward the target is different from the direction in which the neutron is taken out. In the sub-beam rotating irradiation device of the present invention, since the irradiation direction of the ion beam toward the target and the direction in which the neutron is taken out are different, the length of the device in the neutron extraction direction can be shortened. Therefore, the radius of rotation of the neutron beam rotation irradiation device can be reduced, and the neutron beam rotation irradiation device can be downsized.

本發明之中子束旋轉照射裝置較佳爲,進一步具備: G 連通於射束導管且收容靶體之靶體收容部;用來連通靶體 收容部和射束導管的連通口,是配置在比靶體收容部的頂 部更接近旋轉半徑方向內側。 依據此構造,不須像習知那樣藉由偏向電磁鐵將帶電 粒子束往旋轉半徑方向內側進行銳角偏向,因此可縮小裝 置的旋轉半徑,而能謀求中子束旋轉照射裝置的小型化。 本發明的中子束旋轉照射裝置較佳爲,離子束朝靶體 的照射方向和中子取出方向的夾角在45~150。的範圍。 _ 6 - 201034530 依據此構造,能使照射離子束所產生的中子當中能量 較低的中子射入減速材料,因此可縮短減速材料的必要長 度。結果,可進一步促進中子束旋轉照射裝置的小型化。 本發明的中子束旋轉照射裝置較佳爲,偏向電磁鐵爲 單一個。 依據此構造,可謀求中子束旋轉照射裝置的小型化, 同時能降低中子束旋轉照射裝置的成本。 φ 依據本發明,可提供一種能謀求小型化之中子束旋轉 照射裝置。 【實施方式】 以下,參照圖式來說明本發明的中子束旋轉照射裝置 之較佳實施形態。 〔第1實施形態〕 如第1圖所示,中子束旋轉照射裝置1(以下簡稱裝 置1),是相對於治療台8上的患者(被照射體)P設置成旋 轉自如而用來對患者P體內的癌細胞T照射中子束的裝 置。該裝置1係具備:具有靶體7(受離子束照射而產生 中子)之中子產生部2、設置於中子產生部2的出射側的 準直儀3、用來使照射靶體7的離子束偏向之第1、第2 偏向電磁鐵4、5、用來將離子束輸送至中子產生部2之 射束導管6(6 A〜6C)。中子產生部2和第1、第2偏向電磁 鐵4、5和射束導管6A〜6C分別固定於旋轉架24。在旋轉 201034530 架24的外周配置環體25。該環體25,是被設置於地板 28上的滾子26、27所支承,且能以射束導管6A的中心 軸爲旋轉軸來進行旋轉。藉此,裝置1能以射束導管6A 的中心軸爲旋轉軸來進行旋轉,以調整朝向患者P的癌細 胞T的照射方向。治療台8,是被固定於地板25之支承 台29所支承,且能沿著箭頭F5方向往裝置1的內部插入 或離開裝置1。 如第2圖所示’中子產生部2主要具備··呈圓柱形且 @ 沿中心軸L方向延伸的圓筒狀的靶體收容部10、配置於 中央位置且沿中心軸L方向延伸的減速材料9、包圍減速 材料9和靶體收容部10的周圍之反射材料11。 靶體收容部1〇的一端抵接於減速材料9,另一端連 通於射束導管6C。該靶體收容部1〇是被反射材料11的 反射層11A包覆。射束導管6連通於靶體收容部10,且 從射束導管6輸送的離子束朝靶體7的照射方向F1,是 和後述中子的取出方向F2(中心軸L方向)不同。亦即, ❹ 如第2圖所示,連通口 10a(用來連通靶體收容部1〇和射 束導管6C)附近的射束導管6C的長邊方向,是和中子的 取出方向F2不同。在本實施形態,射束導管6C是以和 中子取出方向F2正交的方式連通於靶體收容部10。在中 心軸L方向,用來連通靶體收容部10和射束導管6C之 連通口 10a,是配置在比靶體收容部10的頂部10b更低 的位置(亦即旋轉半徑方向的內側)。 平板狀的靶體7,是收容在靶體收容部10的內部, -8- 201034530 且設置成使該靶體7的平面與離子束朝靶體7的照射方向 F1正交。該靶體7,可使用鈹、鋰、钽、鎢等的材質,若 受到從射束導管6C輸送來的離子束照射,會朝所有的方 向產生中子。所產生的中子當中的一部分射入減速材料 9。作爲離子束可列舉質子、重質子等。 減速材料9是具備:由不同材料構成的第1減速層 12、 第2減速層13、第3減速層14、第4減速層15,可 參 將靶體7所產生之具有高能量的中子當中射入減速材料的 中子,減速成熱中子或超熱中子等的低能量中子。該等減 速層分別形成圓板狀,沿著中心軸L方向從中子的入射側 至出射側,是依序配置著第1減速層12、第2減速層 13、 第3減速層14、第4減速層15。 第1減速層12是由鉛構成,第2減速層13是由鐵構 成。第2減速層13的外徑是形成比第1減速層12更大。 第3減速層14是由金屬鋁所構成,是形成比第2減速層 Φ 13的外徑更大。第4減速層15,是將含有氟化鈣的原料 熔融而製得,是具有和第3減速層14相同尺寸的外徑。 採用這種構造之減速材料9的外徑,沿著中心軸L方向從 中子入射側往出射側逐漸變大,因此是對應於和減速材料 9發生衝撞所造成之中子散射範圍的擴大而加大減速材料 9的截面積,故能提昇中子的減速效果。 反射材料11是由鉛構成,係具備:包覆靶體收容部 10且形成圓筒狀之反射層11A、分別形成圓環狀之四個 反射層11B〜11E。該反射材料11,是讓中子在內部反射 201034530 而防止其洩漏到外部。反射層11B~1 1E,是沿著中心軸L 方向從中子的入射側往出射側依序配置,相鄰的反射層 11A~11E彼此是密合固定在一起。 反射層11A~11E,爲了使相鄰的反射層11A~11E彼 此互相嵌合而形成凹凸狀。例如,在反射層11C,在與反 射層11B鄰接側設置用來嵌合反射層11B的凸部之凹 部,在與反射層11D鄰接側設置用來嵌合反射層UD的 凹部之凸部。依據此構造,在進行反射層11 A〜11E的組 裝時,容易進行相鄰反射層11A-11E彼此間的定位,而 能簡化組裝作業。再者,藉由如此般形成凹凸狀,由於相 鄰反射層11A〜11E彼此的邊界是形成凹凸狀,比起邊界 是形成直線狀的情況,可更確實地防止中子通過邊界而往 外部漏出。 在中子產生部2的出射端設置:由含氟化鋰的聚乙烯 所構成之遮蔽材料16、由鉛構成的遮蔽材料17。遮蔽材 料16是形成圓環狀且密合固定於第4減速層15,是用來 遮蔽不需要的中子。遮蔽材料17是形成圓板狀,配置於 遮蔽材料16的外側且固定於遮蔽材料16。該遮蔽材料17 的作用,是用來遮蔽從靶體2產生的γ射線等。 在遮蔽材料17的外側設置準直儀3。該準直儀3,是 由含氟化鋰的聚乙烯構成且形成矩形,在其中央位置形成 貫穿孔(取出口)3a。 準直儀3’是用來將中子收斂後朝向患者p的癌細胞 T取出’經由減速材料9減速而具有低能量之中子,藉由 201034530 準直儀3收斂後,沿著取出方向F2輸出而集中照射在患 者P的癌細胞Τ»如第2圖所示,離子束朝靶體7的照射 方向F1和中子的取出方向F2的夾角α爲90°。 依據此構造的裝置1’離子束通過射束導管6Α’經 由第1偏向電磁鐵6Α而相對於射束導管6Α進行鈍角彎 曲後,經由第2偏向電磁鐵6Β而相對於射束導管6Β進 一步進行鈍角彎曲,而射入與射束導管6Α平行的射束導 φ 管6C,然後輸送至用來產生中子的靶體7。而且,若對靶 體7照射離子束,靶體7會產生中子,所產生的中子經由 減速材料9減速後,藉由準直儀3予以收斂而從與患者Ρ 體軸垂直的方向往癌細胞Τ照射。而且,由於離子束朝靶 體7的照射方向F1和中子的取出方向F2的夾角α爲90 。,可縮短中子取出方向F2上的裝置長度。因此,可縮小 裝置1的最大旋轉半徑,而能謀求裝置1的小型化。另 外,用來連通靶體收容部10和射束導管6C的連通口 Φ l〇a,由於配置成比靶體收容部1〇的頂部l〇b更接近旋轉 半徑方向內側,因此不須像習知那樣藉由偏向電磁鐵將帶 電粒子束往旋轉半徑方向內側進行銳角偏向,而更容易謀 求裝置1的小型化。 另外’由於角度α爲90。,例如相較於離子束朝靶體 7的照射方向F1和中子的取出方向F2 —致的情況(亦 即,角度α爲(Γ的情況),能使受離子束照射所產生之中 子當中能量較低的中子射入減速材料9。藉此,可縮短減 速材料9的必要長度,而能進一步促進裝置丨的小型化。 -11 - 201034530 〔第2實施形態〕 如第3圖及第4圖所示,第2實施形態之中子束旋轉 照射裝置18和第1實施形態的裝置1的不同點在於:離 子束朝靶體7的照射方向F3和中子的取出方向F2的夾角 α爲1 3 5 °,且僅設有一個偏向電磁鐵2 1。其他的構造由 於是和裝置1的構造相同,故賦予相同符號而省略其重複 ,月° @ 如第3圖所示,中子束旋轉照射裝置18係具備··具 有靶體7(受離子束照射而產生中子)之中子產生部19、設 置於中子產生部19的出射側的準直儀3、用來使照射靶 體7的離子束偏向之一個偏向電磁鐵21、用來將離子束 輸送至中子產生部19之射束導管20(2 0Α、20Β)。偏向電 磁鐵21是和裝置1的第1、第2偏向電磁鐵4、5的構造 相同,射束導管20是和射束導管6的構造相同。 如第4圖所示,中子產生部19的靶體收容部22,是 H 形成圓筒形且在其側壁插通用來輸送離子束的射束導管 20Β。射束導管20Β是傾斜插通於靶體收容部22,以使離 子束朝靶體7的照射方向F3和中子的取出方向F2的夾角 α成爲135。。而且,在中心軸L方向’用來連通靶體收 容部22和射束導管20Β的連通口 22a,是配置在比靶體 收容部22的頂部22b更接近旋轉半徑方向內側。 依據此構造,中子束旋轉照射裝置18除了可獲得和 第1實施形態的裝置1同樣的效果以外’由於角度α爲 -12- 201034530 13 5°,比起第1實施形態(亦即角度α爲90。的情況),由 於能使照射離子束所產生的中子當中能量更低的中子射入 減速材料9,因此可縮短減速材料9的必要長度。結果, 可進一步謀求中子束旋轉照射裝置18的小型化。另外, 由於用來使離子束偏向的偏向電磁鐵21僅設置一個,可 降低中子束旋轉照射裝置18的成本。另外,可進一步縮 小中子束旋轉照射裝置18的裝置最大旋轉半徑。 〔第3實施形態〕 如第5圖所示,第3實施形態之中子束旋轉照射裝置 2 3和第1實施形態的裝置1的不同點在於:是從與患者ρ 的體軸傾斜的方向對癌細胞Τ照射中子束,離子束朝靶體 7的照射方向F4和中子的取出方向F2的夾角α爲45°。 其他的構造由於是和裝置1的構造相同,故賦予相同符號 而省略其重複說明。依據此構造,中子束旋轉照射裝置 ® 23除了能獲得和第丨實施形態的裝置i同樣的效果以 外’由於可從與患者P的體軸傾斜的方向對癌細胞T照射 中子束,例如在從與患者P的體軸垂直的方向對癌細胞T 進行照射可能會損害周邊正常組織的情況,藉由如此般進 行傾斜照射,可避開正常組織而對癌細胞T進行照射。結 果’可提昇中子束旋轉照射裝置23的應用性。 本發明並不侷限於上述實施形態。例如,射束導管 6、20也能使用離子束收斂用的四極電磁鐵、螺線管電磁 鐵等’另外,在上述實施形態,爲了防止對患者P進行非 -13- 201034530 必要的放射線照射,亦可在治療台8的周圍設置放射線遮 蔽板。 【圖式簡單說明】 第1圖係顯示本發明的中子束旋轉照射裝置的第1實 施形態之槪略圖。 第2圖係第1圖所示的中子束旋轉照射裝置的局部截 面圖。 典 第3圖係顯示本發明的中子束旋轉照射裝置的第2實 施形態之槪略圖》 第4圖係第3圖所示的中子束旋轉照射裝置的局部截 面圖。 第5圖係顯示本發明的中子束旋轉照射裝置的第3實 施形態之槪略圖。 【主要元件符號說明】 ❿ 1、18、23:中子束旋轉照射裝置 3 :準直儀 4、5、21 :偏向電磁鐵 6、20 :射束導管 7 :靶體 9 :減速材料 10、22 :靶體收容部 1 0a、22a :連通口 -14- 201034530Preferably, the neutron beam rotating irradiation device of the present invention further includes: G a target accommodating portion that communicates with the beam ray and accommodates the target body; and a communication port for connecting the target accommodating portion and the beam conduit, and is disposed at It is closer to the inner side in the radius of gyration than the top of the target housing portion. According to this configuration, it is possible to reduce the radius of rotation of the device by reducing the radius of rotation of the device without causing the charged particle beam to be deflected at an acute angle in the direction of the radius of curvature by the deflection electromagnet as in the prior art, and it is possible to reduce the size of the neutron beam rotation irradiation device. Preferably, the neutron beam rotating illumination device of the present invention has an angle between the irradiation direction of the ion beam toward the target body and the neutron extraction direction of 45 to 150. The scope. _ 6 - 201034530 According to this configuration, the neutron having a lower energy among the neutrons generated by the irradiation of the ion beam can be incident on the decelerating material, so that the necessary length of the decelerating material can be shortened. As a result, the miniaturization of the neutron beam rotating irradiation device can be further promoted. Preferably, the neutron beam rotating illumination device of the present invention has a single electromagnet. According to this configuration, it is possible to reduce the size of the neutron beam rotation irradiation device and reduce the cost of the neutron beam rotation irradiation device. According to the present invention, it is possible to provide a sub-beam rotating irradiation device which can be miniaturized. [Embodiment] Hereinafter, a preferred embodiment of the neutron beam rotating irradiation device of the present invention will be described with reference to the drawings. [First Embodiment] As shown in Fig. 1, the neutron beam rotation irradiation device 1 (hereinafter referred to as the device 1) is provided to be rotatable with respect to the patient (illuminated body) P on the treatment table 8. A device in which a cancer cell T in a patient P irradiates a neutron beam. The apparatus 1 includes a neutron generating unit 2 having a target body 7 (neutron generated by ion beam irradiation) 2, and a collimator 3 provided on the exit side of the neutron generating unit 2 for illuminating the target body 7. The first and second deflecting electromagnets 4, 5 of the ion beam are deflected, and the beam guides 6 (6A to 6C) for transporting the ion beam to the neutron generating unit 2. The neutron generating unit 2, the first and second deflecting electromagnetic irons 4, 5, and the beam guides 6A to 6C are fixed to the revolving frame 24, respectively. The ring body 25 is disposed on the outer circumference of the frame 24 at the time of rotation 201034530. The ring body 25 is supported by rollers 26 and 27 provided on the floor panel 28, and is rotatable about the central axis of the beam guide 6A. Thereby, the device 1 can be rotated with the central axis of the beam catheter 6A as a rotation axis to adjust the irradiation direction of the cancer cells T toward the patient P. The treatment table 8 is supported by a support table 29 fixed to the floor panel 25, and can be inserted into or away from the device 1 in the direction of the arrow F5. As shown in Fig. 2, the neutron generating unit 2 mainly includes a cylindrical target housing portion 10 having a cylindrical shape and extending in the central axis L direction, and is disposed at a central position and extending in the central axis L direction. The decelerating material 9 surrounds the decelerating material 9 and the reflective material 11 around the target housing portion 10. One end of the target housing portion 1A is in contact with the decelerating material 9, and the other end is connected to the beam conduit 6C. The target housing portion 1 is covered with a reflective layer 11A of the reflective material 11. The beam guide 6 communicates with the target housing portion 10, and the irradiation direction F1 of the ion beam transmitted from the beam guide 6 toward the target 7 is different from the extraction direction F2 (the direction of the central axis L) of the neutron which will be described later. That is, as shown in Fig. 2, the longitudinal direction of the beam guide 6C in the vicinity of the communication port 10a (for connecting the target housing portion 1A and the beam conduit 6C) is different from the neutron extraction direction F2. . In the present embodiment, the beam guide 6C communicates with the target housing portion 10 so as to be orthogonal to the neutron extraction direction F2. In the center axis L direction, the communication port 10a for connecting the target housing portion 10 and the beam conduit 6C is disposed at a position lower than the top portion 10b of the target housing portion 10 (i.e., inside the radius of gyration). The flat target body 7 is housed inside the target housing portion 10, -8-201034530, and is disposed such that the plane of the target body 7 and the ion beam are orthogonal to the irradiation direction F1 of the target body 7. The target 7 can be made of a material such as ruthenium, lithium, ruthenium or tungsten. When it is irradiated with an ion beam transmitted from the beam conduit 6C, neutrons are generated in all directions. A part of the generated neutrons is injected into the retarding material 9. Examples of the ion beam include protons, heavy protons, and the like. The decelerating material 9 includes a first deceleration layer 12 made of a different material, a second deceleration layer 13, a third deceleration layer 14, and a fourth deceleration layer 15, and can have a high energy neutron generated by the target body 7. The neutrons that are injected into the retarding material are decelerated into low-energy neutrons such as thermal neutrons or superheated neutrons. Each of the decelerating layers is formed in a disk shape, and the first deceleration layer 12, the second deceleration layer 13, the third deceleration layer 14, and the fourth are sequentially arranged from the incident side to the emission side of the neutron in the central axis L direction. Deceleration layer 15. The first retardation layer 12 is made of lead, and the second retardation layer 13 is made of iron. The outer diameter of the second retardation layer 13 is formed to be larger than that of the first retardation layer 12. The third retardation layer 14 is made of metallic aluminum and is formed to have a larger outer diameter than the second retardation layer Φ 13 . The fourth retardation layer 15 is obtained by melting a raw material containing calcium fluoride, and has an outer diameter of the same size as that of the third retardation layer 14. The outer diameter of the decelerating material 9 having such a configuration gradually increases from the neutron incident side toward the exit side in the direction of the central axis L, and therefore corresponds to the expansion of the sub-scattering range caused by the collision with the decelerating material 9. The cross-sectional area of the large deceleration material 9 can improve the deceleration effect of the neutron. The reflective material 11 is made of lead, and includes four reflective layers 11B to 11E which are formed by covering the target storage portion 10 and forming a cylindrical reflective layer 11A. The reflective material 11 is such that the neutrons internally reflect 201034530 to prevent it from leaking to the outside. The reflective layers 11B to 1 1E are arranged in this order from the incident side of the neutron to the exit side in the direction of the central axis L, and the adjacent reflective layers 11A to 11E are closely adhered to each other. The reflection layers 11A to 11E are formed in a concavo-convex shape in order to fit the adjacent reflection layers 11A to 11E to each other. For example, in the reflective layer 11C, a concave portion for fitting the convex portion of the reflective layer 11B is provided on the side adjacent to the reflective layer 11B, and a convex portion for fitting the concave portion of the reflective layer UD is provided on the side adjacent to the reflective layer 11D. According to this configuration, when the reflective layers 11A to 11E are assembled, the positioning of the adjacent reflective layers 11A to 11E can be easily performed, and the assembly work can be simplified. In addition, since the boundary between the adjacent reflection layers 11A to 11E is formed in a concavo-convex shape, and the boundary is formed linearly, it is possible to more reliably prevent the neutron from leaking to the outside through the boundary. . At the exit end of the neutron generating unit 2, a shielding material 16 made of a polyethylene containing lithium fluoride and a shielding material 17 made of lead are provided. The masking material 16 is formed in an annular shape and is closely attached to the fourth retardation layer 15 to shield unnecessary neutrons. The shielding material 17 is formed in a disk shape, and is disposed outside the shielding material 16 and fixed to the shielding material 16. The shielding material 17 functions to shield gamma rays or the like generated from the target body 2. A collimator 3 is disposed outside the shielding material 17. The collimator 3 is made of a polyethylene fluoride-containing polyethylene and has a rectangular shape, and a through hole (takeout port) 3a is formed at a central portion thereof. The collimator 3' is used to take out the cancer cells T that are convected toward the patient p after convergence. The deceleration by the decelerating material 9 has a low-energy neutron, which is converged by the 201034530 collimator 3, along the take-out direction F2. The cancer cells that are concentrated and irradiated on the patient P are as shown in Fig. 2, and the angle α between the irradiation direction F1 of the ion beam toward the target 7 and the extraction direction F2 of the neutron is 90°. The device 1' ion beam according to this configuration is bent at an obtuse angle with respect to the beam tube 6A via the first deflection electromagnet 6Α via the beam tube 6Α, and then further advanced to the beam tube 6Β via the second deflection electromagnet 6Β. The obtuse angle is curved, and the beam which is incident in parallel with the beam guide 6A is guided to the φ tube 6C, and then delivered to the target body 7 for generating neutrons. Further, when the target beam 7 is irradiated with the ion beam, the target body 7 generates neutrons, and the generated neutrons are decelerated by the decelerating material 9, and then condensed by the collimator 3 from the direction perpendicular to the patient's body axis. Cancer cells are irradiated. Further, the angle α between the irradiation direction F1 of the ion beam toward the target 7 and the extraction direction F2 of the neutron is 90. The length of the device in the neutron take-out direction F2 can be shortened. Therefore, the maximum radius of rotation of the apparatus 1 can be reduced, and the size of the apparatus 1 can be reduced. Further, the communication port Φ l〇a for connecting the target accommodating portion 10 and the beam conduit 6C is disposed closer to the inner side in the radius of gyration than the top portion 〇b of the target accommodating portion 1〇, so that it is not necessary to be like It is known that the charged particle beam is deflected at an acute angle toward the inner side in the direction of the radial direction by the deflecting electromagnet, and the size of the device 1 can be further reduced. In addition, the angle α is 90. For example, compared with the case where the ion beam is directed toward the irradiation direction F1 of the target 7 and the neutron extraction direction F2 (that is, the angle α is (the case of Γ), the neutron generated by the ion beam irradiation can be generated. The neutron having a lower energy is injected into the decelerating material 9. Thereby, the necessary length of the decelerating material 9 can be shortened, and the size of the device can be further reduced. -11 - 201034530 [Second Embodiment] As shown in Fig. 4, the beamlet rotation irradiation device 18 of the second embodiment differs from the device 1 of the first embodiment in the angle between the irradiation direction F3 of the ion beam toward the target body 7 and the extraction direction F2 of the neutron. α is 1 3 5 °, and only one biasing electromagnet 2 1 is provided. Since the other structures are the same as those of the device 1, the same reference numerals are given and the repetition is omitted, as shown in Fig. 3, The sub-beam rotation irradiation device 18 includes a sub-generator 19 having a target body 7 (neutron generated by ion beam irradiation) and a collimator 3 provided on the emission side of the neutron generation unit 19, The ion beam irradiated to the target body 7 is biased toward the electromagnet 21 for use in The beamlets are transported to the beam conduits 20 (20 Α, 20 Β) of the neutron generating portion 19. The deflecting electromagnets 21 have the same structure as the first and second deflecting electromagnets 4, 5 of the apparatus 1, and the beam conduit 20 is The configuration of the beam guide 6 is the same as that of the beam guide 6. As shown in Fig. 4, the target housing portion 22 of the neutron generating portion 19 is a beam conduit 20 that is formed in a cylindrical shape by H and is inserted into the side wall to transport the ion beam. The beam tube 20A is obliquely inserted into the target housing portion 22 such that the angle α between the irradiation direction F3 of the ion beam toward the target body 7 and the extraction direction F2 of the neutron is 135. Further, in the direction of the central axis L The communication port 22a that connects the target housing portion 22 and the beam tube 20A is disposed closer to the inner side in the radius of gyration than the top portion 22b of the target housing portion 22. According to this configuration, the neutron beam rotation irradiation device 18 can be obtained. In addition to the same effect as the device 1 of the first embodiment, the angle α is -12-201034530 13 5°, and the ion beam can be irradiated compared to the first embodiment (that is, the angle α is 90). The lower energy neutron in the generated neutron is injected into the retarding material 9, because The necessary length of the decelerating material 9 can be shortened. As a result, the size of the neutron beam rotating illumination device 18 can be further reduced. Further, since only one deflection electromagnet 21 for deflecting the ion beam is provided, the neutron beam rotation can be reduced. The cost of the device 18. Further, the maximum rotation radius of the device of the neutron beam rotation irradiation device 18 can be further reduced. [Third Embodiment] As shown in Fig. 5, the beamlet rotation irradiation device 2 and the third embodiment are The device 1 of the first embodiment differs in that the cancer cell is irradiated with a neutron beam from a direction oblique to the body axis of the patient ρ, and the ion beam is directed toward the irradiation direction F4 of the target body 7 and the neutron extraction direction F2. The angle α is 45°. Since the other configurations are the same as those of the device 1, the same reference numerals are given and the repeated description thereof is omitted. According to this configuration, the neutron beam rotating irradiation device® 23 can obtain the same effect as the device i of the second embodiment, since the neutron beam can be irradiated to the cancer cell T in a direction inclined from the body axis of the patient P, for example. Irradiation of the cancer cells T from a direction perpendicular to the body axis of the patient P may impair the surrounding normal tissues, and by performing oblique irradiation in this manner, the cancer cells T can be irradiated while avoiding the normal tissues. As a result, the applicability of the neutron beam rotating illumination device 23 can be improved. The present invention is not limited to the above embodiment. For example, the beam conduits 6 and 20 can also use a quadrupole electromagnet for ion beam convergence, a solenoid electromagnet, etc. In addition, in the above embodiment, in order to prevent radiation irradiation necessary for the patient P from non-13 to 201034530, A radiation shielding plate may be provided around the treatment table 8. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a first embodiment of a neutron beam rotating irradiation device according to the present invention. Fig. 2 is a partial cross-sectional view showing the neutron beam rotating irradiation device shown in Fig. 1. 3 is a schematic cross-sectional view showing a second embodiment of the neutron beam rotating irradiation device of the present invention. Fig. 4 is a partial cross-sectional view showing the neutron beam rotating irradiation device shown in Fig. 3. Fig. 5 is a schematic view showing a third embodiment of the neutron beam rotary irradiation apparatus of the present invention. [Description of main component symbols] ❿ 1, 18, 23: neutron beam rotation irradiation device 3: collimator 4, 5, 21: deflection electromagnet 6, 20: beam conduit 7: target body 9: deceleration material 10, 22: target housing portion 1 0a, 22a: communication port-14- 201034530

10b、22b :頂部 α :角度 FI、F3、F4:離子束朝靶體的照射方向 F2:中子的取出方向 -15-10b, 22b: Top α: Angle FI, F3, F4: Irradiation direction of the ion beam toward the target F2: Direction of removal of the neutron -15-

Claims (1)

201034530 七、申請專利範圍 1· 一種中子束旋轉照射裝置,是相對於被照射體設 置成旋轉自如且用來對前述被照射體照射中子束之中子束 旋轉照射裝置,其特徵在於:係具備: 受離子束照射而產生中子之靶體、 用來將從前述靶體產生的中子予以減速之減速材料、 將經由前述減速材料減速後之中子在被照射體側取出 $ 之取出口、 使照射於前述靶體的離子束偏向之偏向電磁鐵、 / 用來將離子束輸送至前述靶體之射束導管; 離子束朝前述靶體的照射方向和中子的取出方向不 同。 2.如申請專利範圍第1項記載的中子束旋轉照射裝 置’係進一步具備:連通於前述射束導管且收容前述靶體 之靶體收容部; φ 用來連通前述靶體收容部和前述射束導管的連通口, 是配置在比前述靶體收容部的頂部更接近旋轉半徑方向內 側。 3-如申請專利範圍第1項記載的中子束旋轉照射裝 寘’其中,離子束朝前述靶體的照射方向和中子取出方向 的夾角在45〜15〇°的範圍。 4.如申請專利範圍第1至3項中任一項記載的中子 束旋轉照射裝置,其中,前述偏向電磁鐵爲單一個。 -16-201034530 VII. Patent Application No. 1. A neutron beam rotating illumination device is a device for rotating a neutron beam in a neutron beam with respect to an object to be irradiated, and is characterized in that: The present invention includes: a target that generates neutrons by irradiation with an ion beam, a decelerating material for decelerating neutrons generated from the target, and a decelerated material that is decelerated by the decelerating material; Taking an exit, deflecting the ion beam irradiated to the target body toward the electromagnet, / a beam conduit for transporting the ion beam to the target; the ion beam is directed toward the target and the direction of the neutron is taken out . 2. The neutron beam rotation irradiation device according to the first aspect of the invention, further comprising: a target body accommodating portion that communicates with the beam guide and houses the target; φ is configured to communicate with the target accommodating portion and the The communication port of the beam conduit is disposed on the inner side in the radius of gyration direction from the top of the target housing portion. The neutron beam rotating irradiation apparatus according to the first aspect of the invention, wherein the angle between the irradiation direction of the ion beam toward the target body and the neutron extraction direction is in the range of 45 to 15 〇. 4. The neutron beam rotating irradiation device according to any one of claims 1 to 3, wherein the deflecting electromagnet is a single one. -16-
TW098106833A 2009-03-03 2009-03-03 Neutron beam rotary irradiation apparatus TW201034530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098106833A TW201034530A (en) 2009-03-03 2009-03-03 Neutron beam rotary irradiation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098106833A TW201034530A (en) 2009-03-03 2009-03-03 Neutron beam rotary irradiation apparatus

Publications (1)

Publication Number Publication Date
TW201034530A true TW201034530A (en) 2010-09-16

Family

ID=44855538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098106833A TW201034530A (en) 2009-03-03 2009-03-03 Neutron beam rotary irradiation apparatus

Country Status (1)

Country Link
TW (1) TW201034530A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480892B (en) * 2010-07-28 2015-04-11 Sumitomo Heavy Industries Neutron line irradiation device, neutron line dose measurement method and control method of neutron beam irradiation device
TWI556850B (en) * 2010-09-01 2016-11-11 Sumitomo Heavy Industries Neutron beam irradiation system
TWI558434B (en) * 2012-03-29 2016-11-21 三菱電機股份有限公司 Rotating gantry and particle line therapy apparatus
CN108156742A (en) * 2016-12-02 2018-06-12 财团法人工业技术研究院 Neutron beam source generator and filter screen thereof
CN111905275A (en) * 2019-05-07 2020-11-10 禾荣科技股份有限公司 Neutron beam generating device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480892B (en) * 2010-07-28 2015-04-11 Sumitomo Heavy Industries Neutron line irradiation device, neutron line dose measurement method and control method of neutron beam irradiation device
TWI556850B (en) * 2010-09-01 2016-11-11 Sumitomo Heavy Industries Neutron beam irradiation system
TWI558434B (en) * 2012-03-29 2016-11-21 三菱電機股份有限公司 Rotating gantry and particle line therapy apparatus
US9504854B2 (en) 2012-03-29 2016-11-29 Mitsubishi Electric Corporation Rotating gantry and particle beam therapy system
CN108156742A (en) * 2016-12-02 2018-06-12 财团法人工业技术研究院 Neutron beam source generator and filter screen thereof
US10791618B2 (en) 2016-12-02 2020-09-29 Heron Neutron Medical Corp. Neutron beam source generator and filter
US11109476B2 (en) 2016-12-02 2021-08-31 Heron Neutron Medical Corp. Filter
CN111905275A (en) * 2019-05-07 2020-11-10 禾荣科技股份有限公司 Neutron beam generating device
EP3736020A1 (en) * 2019-05-07 2020-11-11 Heron Neutron Medical Corp. Neutron beam generating device
US11510308B2 (en) 2019-05-07 2022-11-22 Heron Neutron Medical Corp. Neutron beam generating device

Similar Documents

Publication Publication Date Title
US8653473B2 (en) Charged particle beam irradiation device
CN109499019B (en) Compact proton therapy system with energy selection onboard a rotatable gantry
CN101829409B (en) Neutron ray rotary irradiation device
US8779393B2 (en) Charged particle beam irradiation system and neutron beam irradiation system
JP2009189643A (en) Neutron beam rotary irradiation apparatus
EP2353648B1 (en) Particle beam treatment apparatus and irradiation nozzle apparatus
WO2018006551A1 (en) Neutron therapy device
TW201034530A (en) Neutron beam rotary irradiation apparatus
WO2015034058A1 (en) Neutron regulation apparatus and neutron irradiation apparatus
EP3666337B1 (en) Neutron capture therapy system
US8878142B2 (en) Charged particle beam irradiation apparatus
KR20130110994A (en) Target for generating ion and treatment apparatus using the same
CN111888664A (en) Neutron capture treatment system based on superconducting cyclotron
JP2015073783A (en) Neutron capture therapy device
CN110496321B (en) Neutron capture treatment system and carrying table
JP2016164519A (en) Neutron ray detection device
US20240172354A1 (en) Target material for particle beam generation apparatus
TWI771964B (en) Charged particle beam irradiation device
KR101079627B1 (en) Neutron rotational irradiation apparatus
JP7169163B2 (en) Particle beam irradiation system
US20220165446A1 (en) Beam target and beam target system
US11510308B2 (en) Neutron beam generating device
EP4029562A1 (en) Particle beam irradiation system and particle beam irradiation facility
WO2020246393A1 (en) Charged particle beam irradiation equipment
WO2024093887A1 (en) Animal irradiation device and animal irradiation system