TW201033626A - Optical fiber testing and monitoring apparatus for passive optical network and method thereof - Google Patents

Optical fiber testing and monitoring apparatus for passive optical network and method thereof Download PDF

Info

Publication number
TW201033626A
TW201033626A TW98106617A TW98106617A TW201033626A TW 201033626 A TW201033626 A TW 201033626A TW 98106617 A TW98106617 A TW 98106617A TW 98106617 A TW98106617 A TW 98106617A TW 201033626 A TW201033626 A TW 201033626A
Authority
TW
Taiwan
Prior art keywords
optical
fiber
routing
monitoring
test
Prior art date
Application number
TW98106617A
Other languages
Chinese (zh)
Other versions
TWI387765B (en
Inventor
Hsiu-Jung Chuang
si-chong Chen
Sheng-Fwu Lin
Fwu-Yuan Tsai
Lai-Ming Hsieh
Original Assignee
Chunghwa Telecom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Telecom Co Ltd filed Critical Chunghwa Telecom Co Ltd
Priority to TW98106617A priority Critical patent/TWI387765B/en
Publication of TW201033626A publication Critical patent/TW201033626A/en
Application granted granted Critical
Publication of TWI387765B publication Critical patent/TWI387765B/en

Links

Abstract

The present invention discloses an optical fiber testing and monitoring apparatus for passive optical network (PON) and a method thereof. A tunable optical time domain reflectometer and division multiplexers with various pass band widths are used to constitute various testing and monitoring apparatuses and the testing and monitoring method using thereof based on the testing or monitoring requirements of the passive optical network system. By the special wavelength light sent from the tunable optical time domain reflectometer, it can prevent from being passed through the optical splitter of the PON system with a high loss, rather it is guided to a to-be-tested optical fiber route through the optical fiber for testing or the optical fiber route of the PON system and various division multiplexers. Because each the specific wavelength of the tunable optical time domain reflectometer is only used for testing of a branched optical fiber route corresponding to the wavelength thereof, thus, the problem that individual situation of each the branched optical fiber route can't be recognized can be solved, which is caused by test signal superposition when using the traditional optical time domain reflectometer to test each the branched optical fiber route of the PON.

Description

201033626 Λ 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種被動式光網路之光纖測試與監測裝置 及其方法,特別係指一種可由光線路終端(Optical Line Termination, OLT)端’以可調式光時域反射器測試主幹線光 纖與各分支光纖路由之光纖光損失、長度,光纖事件點之位 置、光損失、光反射損失以及障礙點位置之被動式光網路之 © 光纖測試與監測裝置及其方法。 【先前技術】 被動式光網路由於使用光分歧器之樹狀架構緣故,進行 光纖監測向來有其困難度,傳統上使用光時域反射器 (Optical Time Domain Reflectometer, OTDR)的測試方式,但 所有分支路由的信號均疊加在一起,在光時域反射器軌跡圖 上不僅無法進行一般光時域反射器的光纖與事件點光特性 β 刀析甚至無法識別出任何分支光纖路由。為了解決識別問 題,有在分支光纖路由末端加裝主動識別組件,但需配合通 信網路與機房端的控制電腦互動’往往增加監測系統複雜 度;亦有用調整各分支光纖路由長度並且增加光反射單元做 為識別組件,但因分支光纖路由長短不一,於設計與安裝時 均有其困難性;此外,光時域射器有動態範圍(Dynamic尺时#) 與盲區(Dead Z_)限制之故,在分支光纖路由數目增多時, 將使得監測目標難以實現。 201033626 , 本案發明人鑑於上述習用方式的各項缺點,乃亟思加以 改良創新,並經多年苦心孤詣潛心研究後,終於成功研發完 成本件被動式光網路之光纖測試與監測裝置及其方法。 【發明内容】 本發明之目的即在於提供一種利用一組低成本、架構簡 早且〜響通彳s系統性能極微的被動式元件,配合可調式光時 域反射器的使用,以達到可由光線路終端(〇LT)端即可進行 ❿被動式光網路(Ρ〇Ν)之主幹線光纖與各分支光纖路由之光纖 光損失、長度,光纖事件點之位置、光損失、光反射損失以 及障礙點位置之被動式光網路之光纖測試與監測裝置及其 方法。 本發月之次目的即在於提供一種以此架構測試被動式 光網路其測試方式與測試結果分析幾乎與傳統點對點光纖 _路由測試相同,由此可解決被動式光網路維護與障礙查測試 須遠赴用戶端測試的問題,可大幅降低維護與障礙查測成本 與增加時效。 本發月之另-目的即在於提供一種由於不經由高光損失 動式光網路光分歧器,使用可調式光時域反射器測試 僅可大幅提向測試距離亦可以較窄脈波寬度(pub width)測試以提高漁丨g叙 J试解析度、減少盲區(Dead Zone)大小。 達成上述發明目的之被動式光網路之光纖測試與監測裝 、方法係以可調式光時域反射器(Tunable OTDR)以及 201033626 , 各種寬度通帶(Pass band)之分波多工器’可依據PON系統測 試或監測需求架構出各種測試與監測裝置及使用該裝置之 測試與監測方法,其所使用分波多工器包括高密度分波多工 器 (Dense Wavelength Division Multiplexer, DWDM)、粗分 波多工器(Coarse Wavelength Division Multiplexer,CWDM) 以及寬頻帶分波多工器(Wide pass band Wavelength Division Multiplexer, WWDMP其方法為於光線路終端(OLT)端,使 ® 用可調式光時域反射器發送出之特定波長測試光以避開通 過PON系統高光損失之光分歧器(Optical splitter)方式經由 測試用光纖或PON系統光纖路由與各種分波多工器的引導 至待測分支光纖路由。前所述可調式光時域反射器可輸出窄 波譜寬度測試光只通過高密度分波多工器(Dense Wavelength Division Multiplexer)其中一波道而且可調整其 測試光波長以測試連接於高密度分波多工器各波道之分支 ❹ 光纖路由(Branched optical Hber loop)。對於連接光線路終端 (OLT)之主光纖路由可由寬頻帶分波多工器(Wideband Wavelength Division Multiplexer)將通信服務光與可調式 OTDR測試光合併於主光纖路由傳送。至於由光線路終端 (OLT)至光網路單元(〇pticai Network Unit,ONU)須經過兩個 光分歧器之PON系統,於寬頻帶分波多工器與高密度分波多 工器之間以粗分波多工器(Coarse .wavelength division multiplexer)將連接同一光分歧器之用戶端次分支光纖之測 201033626 -式波長使用粗分波多卫器同—波道。由此可調式〇徹經由 調整其輸出波長可測試或監測刚系統所有主分支光纖路 由與次分支光纖路由並可對^幹線分支光纖路由測試或監 測。可調❹鼠口、要調整其測試波編密度分波多工器 某-通道的特定波長時即可針對該對應分支光纖路由測試201033626 Λ VI. Description of the Invention: [Technical Field] The present invention relates to a passive optical network optical fiber testing and monitoring device and method thereof, and in particular to an optical line termination (OLT) end Fiber Optic Loss, Length, Location of Fiber Event Points, Optical Loss, Light Reflection Loss, and Passive Optical Network at the Point of Obstacle Point with Included Adjustable Optical Time Domain Reflectors © Fiber Test and Monitoring device and method therefor. [Prior Art] Passive optical networks Because of the tree structure using optical splitters, fiber monitoring has always been difficult. Traditionally, optical time domain reflectometer (OTDR) testing methods have been used, but all The signals of the branch routes are superimposed together. On the optical time domain reflector trajectory map, not only the optical and event point optical characteristics of the general optical time domain reflector can be performed, but even any branch fiber routing cannot be identified. In order to solve the identification problem, there is an active identification component installed at the end of the branch fiber routing, but the communication network needs to cooperate with the control computer at the computer terminal to increase the complexity of the monitoring system; it is also useful to adjust the length of each branch fiber and increase the light reflection unit. As a recognition component, but because of the length of the branch fiber routing, it is difficult to design and install; in addition, the optical time domain has a dynamic range (Dynamic time #) and dead zone (Dead Z_) limit When the number of branch fiber routes increases, the monitoring target will be difficult to achieve. 201033626, in view of the shortcomings of the above-mentioned conventional methods, the inventor of the present invention has improved and innovated, and after years of painstaking research, finally succeeded in researching and developing the optical fiber testing and monitoring device and method for the passive optical network. SUMMARY OF THE INVENTION It is an object of the present invention to provide a passive component that utilizes a set of low-cost, short-term architectures and extremely low-performance systems, with the use of an adjustable optical time domain reflector to achieve an optically visible line. The terminal (〇LT) terminal can perform the optical fiber optical loss and length of the main line fiber and the branch fiber routing of the passive optical network (Ρ〇Ν), the position of the fiber event point, the optical loss, the light reflection loss, and the obstacle point. Positional passive optical network fiber testing and monitoring apparatus and method therefor. The purpose of this month is to provide a test for passive optical networks. The test method and test results are almost the same as the traditional point-to-point fiber-route test, which can solve the problem of passive optical network maintenance and obstacle detection. The problem of going to the client test can greatly reduce the cost of maintenance and obstacle detection and increase the timeliness. Another purpose of this month is to provide a light-duplex optical splitter that does not pass high-light loss. The adjustable optical time domain reflector test can only be used to greatly increase the test distance and narrower pulse width (pub). Width) Test to improve the resolution of the fisherman's test and reduce the size of the Dead Zone. The optical fiber test and monitoring device for the passive optical network that achieves the above object is a tunable optical time domain reflector (Tunable OTDR) and 201033626, and various width passband multiplexers are available in accordance with PON. System Test or Monitoring Requirements A variety of test and monitoring devices and test and monitoring methods using the devices are used. The split multiplexers used include Dense Wavelength Division Multiplexers (DWDM) and coarse split multiplexers. (Coarse Wavelength Division Multiplexer, CWDM) and Wide Pass Band Wavelength Division Multiplexer (WWDMP) is implemented at the optical line termination (OLT) end, which enables the transmission of the specific optical time domain reflector The wavelength test light is routed to the branch fiber to be tested guided by the test optical fiber or the PON system fiber route by avoiding the optical splitter of the PON system with high optical loss. The adjustable light is described above. The time domain reflector can output a narrow spectral width test light only through a high density demultiplexer (Dense Wavelength Division Multiplexer) One of the channels and the wavelength of the test light can be adjusted to test the Branched optical Hber loop connected to each channel of the high-density demultiplexer. For the main optical line terminal (OLT) The fiber routing can be combined with the tunable OTDR test light by the Wideband Wavelength Division Multiplexer on the main fiber routing. As for the optical line terminal (OLT) to the optical network unit (〇pticai Network Unit) , ONU) must pass through two PON systems of optical splitters, and a coarse splitter multiplexer (Coarse.wavelength division multiplexer) will be connected to the same optical splitter between the broadband demultiplexer and the high-density demultiplexer User-side sub-branch fiber test 201033626 - The type of wavelength uses a coarse split-wave multi-guard with the same channel. This adjusts the output wavelength to test or monitor all the main branch fiber routing and sub-branch fiber routing of the system. It can test or monitor the branch fiber branch route. Adjust the mouse mouth, adjust its test wave code density and split the wave. The specific branch wavelength of a certain channel can be tested for the corresponding branch fiber routing

而不受其他分支光纖路由的影響。為了避免測試或監測光影 響通信系統,於光網路單元(0ptica〗 Network Unit, 〇nu)前裝 置有光濾波器以阻止測試或監測光進入光網路單元(〇NU)但 允許被動式光網路(PON)系統通訊光通過。 【實施方式】 請參閱圖一所示,為本發明所使用高密度分波多工器1〇〇 示意圖。各波長光λΐ、λ2、 λ3、…、λη 103符合高密度分 波多工器之波道間隔、通帶與中心波長’並由高密度分波多 工器100之共同琿(Common Port)101進入時被分波解多工由 各相對波道埠102輸出’以符合符合高密度分波多工器某特 定波道之通帶與中心波長之波長光104。各波道之波道間隔 (Channel spacing)、通帶(Passband)與中心波長(Center wavelength)視分支光纖路由數而定。前述各種不同波長光 λΐ、λ2、λ3、…、λη 103 所屬波帶(Wavelength band)須避免 與PON通信系統之通訊光波段重疊。 請參閱圖二所示,為本發明所使用寬頻帶分波多工器200 示意圖。不同波帶之PON系統通信光XS 205與各波長光λ卜 201033626 广 λ2、λ3、…、λη 204 —起進入寬頻帶分波多工器的共同埠 (Common Port)20 1,ΡΟΝ系統通信光XS205被分波解多工至 通過埠(Pass Port)203輸出,其他於同一波帶之各波長光λΐ、 λ2 λ3、…、λη 204則被分波解多工由輸出埠(Express port)202 輸出。 請參閱圖三所示,為為本發明所使用粗分波多工器 (CWDM)300示意圖。其各波道通帶寬度(Channel pass band © width)允許多個DWDM波道光通過。當多組DWDM波道光 λΐΐ、λ12、...、ληιη303進入粗分波多工器(CWDM)llO的共 同埠30 1時,會依據其所屬波道波長範圍由各波道輸出。如 λΗ、λ12、...、λ1ιη304會由各波道埠302中之相對波道輸出。 請參閱圖四所示,為本發明裝置使用於測試或監測ΡΟΝ 系統之分支光纖路由之架構圖,包含測試或監測儀器、ΡΟΝ 系統分支光纖路由及連接以上兩者之模組A 50。其中該模組 ® A 50由高密度分波多工器10、PON系統光分歧器(Optical Splitter)72與至少一個寬頻帶分波多工器20組成,並由高密 度分波多工器1〇連接一測試埠51以連接可調式光時域反射 器(OTDR)40,由 PON 系統光分歧器(Optical Splitter)72 連接 一通信埠52以連接光網路單元(〇LT)70,由寬頻帶分波多工 器20連接至少一個分歧埠53以連接PON系統分支光纖路由 60。該模組A 50之高密度分波多工器1〇具有前述圖一高密 度分波多工器1〇〇功能特性,而寬頻帶分波多工器2〇具有 201033626 / 前述圖二寬頻帶分波多工器200功能特性。其中高密度分波 多工器10各波道以光纖42連接寬頻帶分波多工器20的輸 出埠(Express port),PON系統之光分歧器72之各分支埠以 光纖43連接至寬頻帶分波多工器20通過埠(Pass Port),P0N 系統之分支光纖路由60連接至寬頻帶分波多工器20的共同 埠(Common Port)。依據前述圖一高密度分波多工器1〇〇與前 述圖二寬頻帶分波多工器200的特性,可調式光時域反射器 ❹ 40以符合高密度分波多工器100中任一波道的波長光經由測 試或監測用光纖路由41連接模組a 5 0之測試埠5 1以連接 局密度分波多工器10的共同埠。由於可調式光時域反射器 4〇測試光只會被傳送到該波道經由寬頻帶分波多工器1 〇所 連接之分支光纖路由60,因此可調式光時域反射器4〇只會 顯不前述之分支光纖路由6〇與測試或監測用光纖路由41之 # 測試曲線而不會有所有分支光纖路由測試曲線重疊現象。此 外可調式光時域反射器40測試之光纖路由不經p〇N系統 光刀歧器72,可大幅提高測試距離亦可以較窄脈波寬度 (Ρ*心叫測試以提高測試解析度、減少盲區(Dead Zone) 大小〇 *月參閱圖S與圖六所*,為使用圖四測試架構分別對不 同光纖長度之分支光纖路由6Q進行測試的結果’顯示測試 、、’°果的曲線不會有所有分支光織路由測試曲線重疊現象。 6月參閱圖七所示,為本發明裝置使用於測試或監測單— 201033626 , 光分歧器PON系統之主光纖路由與各分支光纖路由之架構 圖’係將PON系統之光網路單元70與可調式光時域反射器 40以一個寬頻帶分波多工器22連接’使測試或監測光與pon 系統通信光可使用PON系統之主幹線光纖路由61,以連接 模組B 54之共同埠55。該模組B 54為將模組a 50中之光 分歧器72與高密度分波多工器1〇之前使用另一個寬頻帶分 波多工器21連接,形成模組B 54之共同埠55,由此不但可 ® 分別對各分支光纖路由60進行測試或監測並可對p〇N系統 主幹線光纖路由61進行測試或監測《其中,該高密度分波 多工器10係透過光纖32與寬頻帶分波多工器20進行連接。 請參閱圖八所示,為本發明裝置使用於測試或監測二階 段光分歧器PON系統之主分支光纖路由之架構圖,係在圖四 之模組A 50與PON系統分支光纖路由60之間加入主分支 光纖路由62及另一光分歧器74,其中主分支光纖路由62連 應 接模組A 50之分歧埠53及光分歧器74之共同埠,再由光 分歧器74連接PON系統分支光纖路由60 ’以形成具兩階光 分歧器架構之PON通信系統。由此可調式光時域反射器4〇 可分別對主分支光纖路由62進行測試或監測,而所有次分 支光纖路由60之可調式光時域反射器測試曲線的信號會疊 加在一起。 請參閱圖九所示,為本發明裝置使用於測試或監測二階 段光刀歧器PON系統之幹線光纖路由、主分支光纖路由之架 201033626 ,‘構圖’係在圖七之模組B 54與PON系統分支光纖路由6〇 之間加入主分支光纖路由62 A另一光分歧器74,其中主分 支光纖路由62連接模組B 54之分歧埠56及光分歧器74之 共同槔,再由光分歧器74連接PON系統分支光纖路由6〇, 以形成使用兩階光分歧器架構之P〇N通信系統。由此可調式 光時域反射器40可分別對幹線光纖61與主分支光纖路由62 進行測試或監測,而所有次分支光纖路由6〇之光時域反射 ® 器測試曲線的信號會叠加在一起。 請參閱圖十所示,為本發明裝置使用於測試或監測二階 段光分歧器PON系統之單一主分支光纖路由與各分支光纖 路由之架構圖,係在圖七之模組B 54與光網路單元7〇之間 加入光分歧器73,使得光網路單元7〇以主幹線光纖路由6ι 連接光分歧器73’再由光分歧器73中的分歧埠76與可調式 光時域反射器40連接一個寬頻帶分波多工器23〇該寬頻 論 分波多工器23以主分支光纖路由62與模組B 54連接,以 形成兩階光分歧器架構之PON通信系統測試或監測,此架構 使可調式光時域反射器40可對其所連接之主分支光纖路由 62與各個此分支光纖路由60進行測試或監測。 請參閱圖十一所示,為本發明裝置使用於測試或監測二 階段光分歧器PON系統各分支光纖路由之架構圖,係將可調 式OTDR 40以測試用光纖路由41連接粗分波多工器3〇,再 由粗分波多工器30各波道分別以光纖42連接複數個模組a 201033626 "50之測試埠5卜而各分支光纖路由60連接複數個模組A 5〇 之分歧埠53。光網路單元70以主幹線光纖路由61連接至第 1階段光分歧器73,前述之光分歧器73由主分支光纖路由 62連接至模組A 50之通信埠52。各模組A5〇中高密度分波 多工器分別使用粗分波多工器3〇不同波道且高密度分波多 工器所有波道光皆可由該粗分波多工器3〇之同一波道通 過,由此可調式光時域反射器40可經由調整其輸出波長逐 ® 一測試PON系統所有次分支光纖路由60。 請參閱圖十二所示,為本發明裝置使用於測試或監測二 階段光分歧器PON系統之各主分支光纖路由與各分支光纖 路由之架構圖,使用粗分波多工器3〇、寬頻帶分波多工器 24與模組B 54於兩階光分歧器架構之p〇N通信系統測試或 監測。可調式OTDR 40以測試用測試或監測用光纖路由41 連接粗分波4多工器30,粗分波多工器30各波道與第ip皆 曰 段光分歧器73各分歧埠分別連接寬頻帶分波多工器24,寬 頻帶分波多工器24以PON系統主分支光纖路由62連接至模 組B 54。PON系統之各次分支光纖路由6〇連接至模組b 54 之各分歧埠56。由此經由可調式〇TDr可經由調整其輸出波 長逐一測試PON系統所有主分支光纖路由62與所有次分支 光纖路由60。 請參閱圖十三所示,為本發明裝置使用於測試或監測二 階段光分歧器PON系統之主幹線光纖路由與各分支光纖路 12 201033626 -* 由之架構圖’使用寬頻帶分波多工器22、25、粗分波多工器 30與模組A 50於兩階光分歧器架構之pon通信系統測試或 監測。可調式光時域反射器40與光網路單元70連接寬頻帶 分波多工器22’前述之寬頻帶分波多工器22以PON系統之 主幹線光纖路由61連接另一寬頻帶分波多工器25。前述之 寬頻帶为波多工器25之輸出埠(Express port)與通過埠(Pass port)分別連接粗分波多工器3〇與第1階段光分歧器73共同 ® 埠。粗分波多工器30各波道與第1階段光分歧器73各分歧 璋分別連接模組A 50測試埠5 1與通信埠52。P0N系統之各 次分支光纖路由60連接至模組A 50之各分歧埠53。由此經 由可調式光時域反射器40可經由調整其輸出波長可逐一測 試或監測PON系統所有次分支光纖路由6〇並可對主幹線光 纖路由61測試或監測。 請參閱圖十四所示,為本發明裝置使用於測試或監測二 階段光分歧器PON系統之主幹線光纖路由、各主分支光纖路 由與各分支光纖路由之架構圖,使用寬頻帶分波多工器 22/24/25、粗分波多工器3〇與模組b 54於兩階光分歧器架 構之PON通信系統測試或監測。可調式光時域反射器4〇與 光網路單元70連接寬頻帶分波多工器22之輸出埠(£邛^88 port)與通過埠(Pass p〇rt) ’前述之寬頻帶分波多工器22以 PON系統之幹線光纖路由61連接另一寬頻帶分波多工器 25述之寬頻帶分波多工器25之輸出蟑(Express p0rt)與 13 201033626 , 通過埠(PaSSp〇rt)分別連接粗分波多工器30與第1階段光分 歧器73共同埠。粗分波多工器30各波道與第1階段光分歧 器73各分歧埠分別連接至寬頻帶分波多工器24之輸出璋 (Express port)與通過埠(Pass port)。前述之寬頻帶分波多工 器24之共同埠以pon系統之各主分支光纖路由62連接至模 組B 54共同埠55。p〇n系統之各次分支光纖路由6〇連接至 模組B 54之各分歧埠56。由此經由可調式光時域反射器4〇 ® 可經由調整其輸出波長可逐一測試或監測PON系統所有主 分支光纖路由62與次分支光纖路由60並可對主幹線分支光 纖路由6 1測試或監測_。 請參閱圖十五所示’為本發明裝置使用光路選擇器與控 制電腦於具有測試與監測功能P0N系統之架構圖,使用光路 選擇器(Optical Channel Selector,0CS) 43,除可依據測試與 監測需求經由控制電腦44切換不同光路以選擇待測P〇N系 統以及控制可調式光時域反射器40調整測試或監測波長以 選擇測試分支光纖路由’由此提高測試或監測裝置的使用效 益’降低監測的單位成本。其中,該高密度分波多工器J 〇 係透過光纖32與寬頻帶分波多工器20進行連接。 本發明所提供之被動式光網路之光纖測試與監測裝置及 其方法,與其他習用技術相互比較時,更具有下列之優點: 1.本發明係在於提供一種可消除了傳統光時域反射器測 試被動式光網路各分支光纖路由測試訊號重疊所造成無法 14 201033626 辨識各分支光纖路由的個別狀況的問題》 2.本發明係在於提供一種可大幅提高測試距離亦可以較 窄脈波寬度(Pulse width)測試以提高測試解析度、減少盲區 (Dead Zone)大小。由此可解決被動式光網路維護與障礙查測 s式須遠赴用戶端測試的問題,可大幅降低維護與障礙查測成 本與增加時效。 上列詳細說明係針對本發明之一可行實施例之具體說 •明’惟該實施例並非用卩限制本發明之專利制,凡未脫離 本發明技藝精神所為之等效實施或變更,均應包含於本案之 專利範圍中。 綜上所述,本案不但在技術思想上確屬創新,並能較習 用物品增進上述多項功效,應已充分符合新穎性及進步性之 法定發明專利要件,爰依法提出申請,懇請貴局核准本件 發明專利申請案,以勵發明,至感德便。 【圖式簡單說明】 請參閱以下有關本發明一較佳實施例之詳細說明及其附 圖,將可進一步瞭解本發明之技術内容及其目的功效;有關 該實施例之附圖為: 圖一為本發明所提供之被動式光網路之光纖測試與監測 裝置及其方法之使用高密度分波多工器示意圖; 圖二A、B為該被動式光網路之光纖測試與監測裝置及 其方法之使用寬頻帶分波多工器示意圖; 15 201033626 圖三為該被動式光網路之光纖測試與監測裝置及其方法 之使用粗分波多工器示意圖; 圖四為該被動式光網路之光纖測試與監測裝置及其方法 之使用於測試或監測單一光分歧器PON系統之各分支光纖 路由之架構圖; 圖五、六為該被動式光網路之光纖測試與監測裝置及其 方法之使用圖四測試架構分別對不同光纖長度之分支光纖 ® 路由進行測試的結果圖; 圖七為該被動式光網路之光纖測試與監測裝置及其方法 之使用於測試或監測單一光分歧器PON系統之主光纖路由 與各分支光纖路由之架構圖; 圖八為該被動式光網路之光纖測試與監測裳置及其方法 之使用於測試或監測二階段光分歧器PON系統之主分支光 纖路由之架構圖; 圖九為該被動式光網路之光纖測試與監測裳_置及其方法 之使用於測試或監測二階段光分歧器P〇N系統之幹線光纖 路由、主分支光纖路由之架構圖; 圖十為該被動式光網路之光纖測試與監測裝置及其方法 之使用於測試或監測二階段光分歧器PON系統之單—主八 支光纖路由與各分支光纖路由之架構圖; 圖十一為該被動式光網路之光纖測試與監剩裝置及其方 法之使用於測試或監測二階段光分歧器PON系統各分支光 201033626 -· 纖路由之架構圖; 圖十二為該被動式光網路之光纖測試與監測裝置及其方 法之使用於硎試或監測二階段光分歧器PON系統之各主分 支光纖路由與各分支光纖路由之架構圖; 圖十三為該被動式光網路之光纖測試與監測裝置及其方 法之使用於測試或監測二階段光分歧器PON系統之主幹線 光纖路由與各分支光纖路由之架構圖; ® 圖十四為該被動式光網路之光纖測試與監測裝置及其方 法之使用於測試或監測二階段光分歧器PON系統之主幹線 光纖路由、各主分支光纖路由與各分支光纖路由之架構圖; 以及 圖十五為該被動式光網路之光纖測試與監測裝置及其方 法之使用光路選擇器與控制電腦於具有測試與監測功能 PON系統之架構圖。 ❹ r 【主要元件符號說明】 100高密度分波多工器 101共同埠 102波道埠 103波長光 104波長光 200寬頻帶分波多工器 201共同埠 17 201033626 202輸出埠 203通過埠 204波長光 205 PON系統通信光 3〇〇粗分波多工器 301共同埠 302波道埠 303波長光 304波長光 10高密度分波多工器 20寬頻帶分波多工器 21寬頻帶分波多工器 22寬頻帶分波多工器 23寬頻帶分波多工器 24寬頻帶分波多工器 30粗分波多工器 32光纖 40可調式光時域反射器 41測試或監測用光纖路由 42光纖 43光路選擇器 44控制電腦 18 201033626It is not affected by other branch fiber routes. In order to avoid testing or monitoring the light-affected communication system, an optical filter is installed in front of the optical network unit (0ptica Network Unit, 〇nu) to prevent testing or monitoring light from entering the optical network unit (〇NU) but allowing passive optical network Road (PON) system communication light passes. [Embodiment] Referring to Figure 1, there is shown a schematic diagram of a high-density demultiplexer multiplexer used in the present invention. Each of the wavelength lights λ ΐ, λ2, λ3, ..., λη 103 conforms to the channel spacing of the high-density demultiplexer, the pass band and the center wavelength 'and is entered by the Common Port 101 of the high-density demultiplexer 100. The split-wave multiplex is output by each of the opposite channels 102 to conform to the wavelength band 104 of the passband and center wavelength of a particular channel of the high-density demultiplexer. The channel spacing, the passband, and the center wavelength of each channel depend on the number of branch fiber routes. The wavelength band of the aforementioned various wavelengths of light λ ΐ, λ2, λ3, ..., λη 103 must be avoided to overlap with the communication optical band of the PON communication system. Please refer to FIG. 2, which is a schematic diagram of a broadband demultiplexing multiplexer 200 used in the present invention. The PON system communication light XS 205 of different wavelength bands and the respective wavelengths of light λ Bu 201033626 wide λ2, λ3, ..., λη 204 enter the common port of the broadband demultiplexer (Common Port) 20 1, ΡΟΝ system communication light XS205 It is demultiplexed and multiplexed to output via Pass Port 203. The other wavelengths of the same wavelength, λ ΐ, λ2 λ3, ..., λη 204, are demultiplexed by the output port (Express port 202). . Please refer to FIG. 3, which is a schematic diagram of a coarse split-wave multiplexer (CWDM) 300 used in the present invention. Its channel pass band © width allows multiple DWDM channel lights to pass. When a plurality of sets of DWDM channel lights λ ΐΐ, λ12, ..., ληιη 303 enter the common 埠 30 1 of the coarse wavelength division multiplexer (CWDM) 110, they are output from the respective channels according to the wavelength range to which they belong. For example, λΗ, λ12, ..., λ1ιη304 will be output from the opposite channels in each channel 302. Please refer to FIG. 4, which is a structural diagram of the branch fiber routing used in the test or monitoring system of the present invention, including a test or monitoring instrument, a system branch fiber routing, and a module A 50 connecting the two. The module® A 50 is composed of a high-density demultiplexer 10, a PON system optical splitter 72 and at least one broadband demultiplexer 20, and is connected by a high-density demultiplexer 1〇. The test port 51 is connected to an adjustable optical time domain reflector (OTDR) 40, and a communication splitter 72 is connected by a PON system optical splitter 72 to connect the optical network unit (〇LT) 70, which is divided by a wide frequency band. The worker 20 is coupled to at least one of the branch ports 53 to connect to the PON system branch fiber route 60. The high-density demultiplexer multiplexer of the module A 50 has the above-mentioned function of the high-density demultiplexer 1 图, and the wide-band multiplexer 2 〇 has 201033626 / the above-mentioned FIG. 2 broadband demultiplexing 200 features. The high-density demultiplexer 10 channels are connected to the output port of the broadband demultiplexer 20 by the optical fiber 42, and the branches of the optical splitter 72 of the PON system are connected to the broadband demultiplexing by the optical fiber 43. The worker 20 is connected to the common port of the wideband demultiplexer 20 via a Pass Port, the branch fiber route 60 of the P0N system. According to the characteristics of the high-density demultiplexer 1200 of the foregoing FIG. 1 and the broadband demultiplexing multiplexer 200 of the foregoing FIG. 2, the adjustable optical time domain reflector ❹ 40 is adapted to conform to any of the channels of the high-density demultiplexer 100. The wavelength light is connected to the test module 5 of the module a 50 via the test or monitoring fiber route 41 to connect the commons of the local density splitting multiplexer 10. Since the adjustable optical time domain reflector 4 〇 test light is only transmitted to the branch via the branch fiber routing 60 connected by the broadband demultiplexer 1 ,, the adjustable optical time domain reflector 4 〇 only The above-mentioned branch fiber routing is not the same as the test curve of the test or monitoring fiber routing 41 without overlapping of all the branch fiber routing test curves. In addition, the optical path of the adjustable optical time domain reflector 40 is tested without the p〇N system optical knife 64, which can greatly improve the test distance and narrow pulse width (Ρ* heart test to improve test resolution and reduce dead zone) (Dead Zone) size 〇 * month see Figure S and Figure 6 *, the results of testing the branch fiber routing 6Q of different fiber lengths using the test structure of Figure 4 'show test, '° fruit curve will not have All branch optical woven routing test curve overlap phenomenon. See the figure 7 in June, which is used for testing or monitoring the device of the present invention - 201033626, the main fiber routing of the optical splitter PON system and the architecture diagram of each branch fiber routing Connecting the optical network unit 70 of the PON system to the tunable optical time domain reflector 40 in a broadband demultiplexer 22 enables communication of test or monitoring light with the PON system to use the backbone fiber routing 61 of the PON system, To connect the common 埠 55 of the module B 54. The module B 54 connects the optical splitter 72 in the module a 50 with the high-density demultiplexer 1 〇 before using another broadband demultiplexer 21 . The common 埠55 of the module B 54 can not only test or monitor each branch fiber route 60, but also test or monitor the p〇N system trunk fiber route 61. Among them, the high density split wave The device 10 is connected to the broadband demultiplexer 20 through the optical fiber 32. Please refer to FIG. 8 , which is a structural diagram of the main branch fiber route used for testing or monitoring the two-stage optical splitter PON system according to the device of the present invention. A main branch fiber route 62 and another optical splitter 74 are added between the module A 50 of FIG. 4 and the branch fiber path 60 of the PON system, wherein the main branch fiber route 62 is connected to the module A 50. The optical splitter 74 is connected to the PON system branch fiber routing 60' to form a PON communication system having a two-order optical splitter architecture. The adjustable optical time domain reflector 4 can be respectively The primary branch fiber routing 62 is tested or monitored, and the signals of the adjustable optical time domain reflector test curves of all secondary branch fiber routings 60 are superimposed. Referring to Figure 9, the device of the present invention is used for testing. Or monitor the trunk fiber routing of the two-stage optical knife PON system, the main branch fiber routing rack 201033626, 'composition' is to add the main branch fiber routing between the module B 54 of Figure 7 and the branch fiber routing of the PON system. A further optical splitter 74, wherein the main branch fiber routing 62 is connected to the common 槔 56 of the module B 54 and the optical splitter 74, and then the optical splitter 74 is connected to the PON system branch fiber routing 6 〇 to form a use A two-stage optical splitter architecture P〇N communication system. The tunable optical time domain reflector 40 can test or monitor the trunk fiber 61 and the primary branch fiber route 62, respectively, and all the secondary branches are routed to the light of 6 The signals from the Time Domain Reflector test curve are superimposed. Please refer to FIG. 10 , which is a structural diagram of a single main branch fiber route and each branch fiber route used for testing or monitoring a two-stage optical splitter PON system according to the device of the present invention, which is in the module B 54 and the optical network of FIG. 7 . An optical splitter 73 is added between the circuit units 7〇 such that the optical network unit 7 is connected to the optical splitter 73' by the main line optical fiber and then by the divergence 埠76 and the adjustable optical time domain reflector in the optical splitter 73. 40 is connected to a broadband demultiplexing multiplexer 23. The wideband multiplexer 23 is connected to the module B 54 by the main branch fiber routing 62 to form a PON communication system test or monitoring of the two-order optical splitter architecture. The tunable optical time domain reflector 40 can be tested or monitored for its associated primary branch fiber routing 62 and each of the branch fiber routings 60. Please refer to FIG. 11 , which is an architectural diagram of the device for testing or monitoring the branch fiber routing of the two-stage optical splitter PON system according to the device of the present invention. The adjustable OTDR 40 is connected to the coarse multiplexer by using the optical fiber route 41 for testing. 3〇, then each channel of the coarse splitting multiplexer 30 is connected to a plurality of modules by the optical fiber 42 respectively. 201033626 "50 test 埠5 卜 and each branch fiber routing 60 is connected to a plurality of modules A 5 〇 埠53. The optical network unit 70 is coupled to the first stage optical splitter 73 by a trunk fiber routing 61 which is coupled by the primary branch fiber routing 62 to the communication port 52 of the module A 50. Each module A5〇 high-density demultiplexer uses a coarse-wavelength multiplexer 3〇 different channels and a high-density demultiplexer multiplexer can pass all the channel of the coarse-wavelength multiplexer 3〇, The tunable optical time domain reflector 40 can test all of the secondary branch fiber routes 60 of the PON system by adjusting its output wavelength. Please refer to FIG. 12, which is a structural diagram of the main branch fiber routing and each branch fiber routing used in the test or monitoring of the two-stage optical splitter PON system according to the device of the present invention, using a coarse splitting multiplexer 3〇, a wide band The split multiplexer 24 and the module B 54 are tested or monitored in a p〇N communication system of a two-stage optical splitter architecture. The adjustable OTDR 40 is connected to the coarse-wavelength 4 multiplexer 30 by the test test or monitoring fiber route 41, and the coarse-wavelength multiplexer 30 channels and the ip-segment optical splitter 73 are respectively separated and connected to the broadband. The split multiplexer 24, the wideband split multiplexer 24, is coupled to the module B 54 by the PON system master branch fiber routing 62. Each branch fiber route of the PON system is connected to each of the branches 56 of the module b 54. Thus, all of the primary branch fiber routes 62 and all secondary branch fiber routes 60 of the PON system can be tested one by one via the adjustable 〇TDr by adjusting its output wavelength. Referring to FIG. 13 , the device of the present invention is used for testing or monitoring the trunk fiber routing of the two-stage optical splitter PON system and the branch fiber path 12 201033626 -* Architecture diagram using the broadband demultiplexer 22, 25, the coarse splitting multiplexer 30 and the module A 50 are tested or monitored in the PON communication system of the two-order optical splitter architecture. The adjustable optical time domain reflector 40 is connected to the optical network unit 70 to the broadband demultiplexing multiplexer 22'. The broadband demultiplexing multiplexer 22 is connected to another broadband demultiplexer by the trunk optical fiber route 61 of the PON system. 25. The aforementioned wide band is the output port of the wave multiplexer 25 and the coarse branching multiplexer 3 is connected to the first stage optical splitter 73 by the port (Pass port) respectively. Each channel of the coarse splitting multiplexer 30 and the first stage optical splitter 73 are respectively diverged. The module A 50 test 埠 5 1 and the communication port 52 are respectively connected. Each branch fiber route 60 of the P0N system is connected to each of the partitions 53 of the module A 50. Thus, the tunable optical time domain reflector 40 can test or monitor all of the secondary branch fiber routes of the PON system one by one by adjusting its output wavelength and can test or monitor the backbone fiber route 61. Please refer to FIG. 14 for the architecture diagram of the main line fiber routing, the main branch fiber routing, and the branch fiber routing used for testing or monitoring the two-stage optical splitter PON system according to the apparatus of the present invention, using broadband demultiplexing. The 22/24/25, coarse splitter multiplexer 3〇 and module b 54 are tested or monitored in a PON communication system of a two-stage optical splitter architecture. The adjustable optical time domain reflector 4 is connected to the optical network unit 70 to connect the output of the broadband demultiplexer 22 (邛 88 88 88 port) and pass 埠 (Pass p 〇 rt) 'the aforementioned broadband demultiplexing multiplex The device 22 is connected to the output 蟑 (Express p0rt) of the wide-band demultiplexer 25 described by the other broadband demultiplexing multiplexer 25 in the PON system and 13 201033626, and is connected by 埠 (PaSSp〇rt) respectively. The wavelength division multiplexer 30 is co-located with the first stage optical splitter 73. Each of the coarse splitting multiplexer 30 channels and the first stage optical splitter 73 are connected to an output port and a pass port of the wideband demultiplexer 24, respectively. The aforementioned wideband splitting multiplexer 24 is coupled to the modular B 54 common 埠 55 by each of the primary branch fiber routes 62 of the PON system. Each branch fiber routing of the p〇n system is connected to each of the partitions 56 of the module B 54. Thus, through the adjustable optical time domain reflector 4〇®, all of the main branch fiber routing 62 and the secondary branch fiber routing 60 of the PON system can be tested or monitored one by one by adjusting its output wavelength and can be tested on the trunk branch fiber routing 61 or monitor_. Please refer to the architecture diagram of the P0N system with test and monitoring function using the optical path selector and control computer for the device of the present invention, using the optical channel selector (0CS) 43, in addition to the test and monitoring. The demand switches the different optical paths via the control computer 44 to select the P〇N system to be tested and controls the adjustable optical time domain reflector 40 to adjust the test or monitor wavelength to select the test branch fiber routing 'thus improving the use efficiency of the test or monitoring device' The unit cost of monitoring. The high-density demultiplexer J is connected to the wide-band demultiplexer 20 through the optical fiber 32. The optical fiber test and monitoring device and method thereof for passive optical network provided by the present invention have the following advantages when compared with other conventional technologies: 1. The present invention provides a conventional optical time domain reflector which can eliminate the traditional optical time domain reflector Test the passive optical network, the branch fiber routing test signal overlap caused by the failure of 14 201033626 to identify the individual conditions of each branch fiber routing. 2. The present invention is to provide a greatly improved test distance can also be narrow pulse width (Pulse Width) Test to improve test resolution and reduce dead zone size. This solves the problem that the passive optical network maintenance and obstacle detection s type must go to the user end test, which can greatly reduce the maintenance and obstacle detection cost and increase the aging time. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S) The detailed description of the present invention is not intended to limit the scope of the present invention. It is included in the patent scope of this case. To sum up, this case is not only innovative in terms of technical thinking, but also able to enhance the above-mentioned multiple functions compared with conventional articles. It should fully comply with the statutory invention patent requirements of novelty and progressiveness, and apply in accordance with the law. I urge you to approve this article. Invention patent application, in order to invent invention, to the sense of virtue. BRIEF DESCRIPTION OF THE DRAWINGS The technical contents of the present invention and the effects of the objects of the present invention will be further understood from the following detailed description of the preferred embodiments of the invention and the accompanying drawings. A schematic diagram of a high-density demultiplexer using a fiber optic test and monitoring device and a method thereof for a passive optical network provided by the present invention; FIG. 2A and B are optical fiber test and monitoring devices and methods thereof for the passive optical network Schematic diagram of the use of a broadband demultiplexer; 15 201033626 Figure 3 is a schematic diagram of the use of a coarse-wavelength multiplexer for the fiber-optic test and monitoring device of the passive optical network; and Figure 4 is a fiber test and monitoring of the passive optical network. The device and method thereof are used to test or monitor the architecture diagram of each branch fiber route of a single optical splitter PON system; Figure 5 and 6 show the use of the optical fiber test and monitoring device and method thereof for the passive optical network. Results of testing the branch fiber ® routing of different fiber lengths; Figure 7 shows the fiber testing and monitoring of the passive optical network The apparatus and method thereof are used for testing or monitoring the main fiber routing of a single optical splitter PON system and the architecture diagram of each branch fiber routing; FIG. 8 is a use of the optical fiber testing and monitoring skirt of the passive optical network and the method thereof Test or monitor the architecture diagram of the main branch fiber routing of the two-stage optical splitter PON system; Figure 9 shows the optical fiber test and monitoring of the passive optical network and its method for testing or monitoring the two-stage optical splitter P架构N system trunk fiber routing, main branch fiber routing architecture diagram; Figure 10 is the passive optical network fiber testing and monitoring device and its method for testing or monitoring the two-stage optical splitter PON system single-master Eight fiber-optic routing and architecture diagrams of each branch fiber routing; Figure 11 is the optical fiber testing and monitoring device and its method for the passive optical network used in testing or monitoring the two-stage optical splitter PON system branches light 201033626 - · Architecture diagram of fiber routing; Figure 12 is the optical fiber testing and monitoring device of the passive optical network and its method for testing or monitoring the two-stage light The architecture diagram of each main branch fiber routing of the PON system and the branch fiber routing; Figure 13 is the optical fiber testing and monitoring device of the passive optical network and the method thereof for testing or monitoring the two-stage optical splitter PON system Schematic diagram of trunk fiber routing and branch fiber routing; ® Figure 14 shows the fiber optic test and monitoring device of the passive optical network and its method for testing or monitoring the backbone fiber of the two-stage optical splitter PON system Routing, main branch fiber routing and architecture diagram of each branch fiber routing; and Figure 15 is the passive optical network fiber testing and monitoring device and method thereof using optical path selector and control computer for testing and monitoring functions PON The architecture diagram of the system. ❹ r [Main component symbol description] 100 high-density demultiplexer 101 common 埠 102 channel 埠 103 wavelength light 104 wavelength light 200 wide-band multiplexer 201 common 埠 17 201033626 202 output 埠 203 through 埠 204 wavelength light 205 PON system communication light 3 〇〇 coarse multiplexer 301 common 埠 302 channel 埠 303 wavelength light 304 wavelength light 10 high density multiplexer 20 wideband multiplexer 21 wideband multiplexer 22 wide band Wave multi-worker 23 wide-band splitter multiplexer 24 wide-band splitter multiplexer 30 coarse split-wave multiplexer 32 fiber 40 adjustable optical time domain reflector 41 test or monitoring with fiber routing 42 fiber 43 optical path selector 44 control computer 18 201033626

、· 50模組A 51測試埠 52通信埠 53分歧埠 54模組B 55共同琿 56分歧埠 9 60分支光纖路由 61主幹線光纖路由 62主分支光纖路由 70光線路終端 71光網路單元 72 PON系統光分歧器, · 50 module A 51 test 埠 52 communication 埠 53 differences 埠 54 module B 55 common 珲 56 differences 埠 9 60 branch fiber routing 61 trunk line fiber routing 62 main branch fiber routing 70 optical line terminal 71 optical network unit 72 PON system light splitter

73 PON系統光分歧器 I 74 PON系統光分歧器 75光濾波器 76分歧埠 1973 PON system optical splitter I 74 PON system optical splitter 75 optical filter 76 divergence 埠 19

Claims (1)

201033626 .. 七、申請專利範圍: 1 · 一種被動式光網路之光纖測試與監測裝置,包括. 一可調式光時域反射器,可輪出多種所需波譜寬度與波 長之測§式光’以量測光纖之光損失、長度與光反射損失. 一由高密度分波多工器、P〇N系統光分歧器連接複數個 寬頻帶分波多工器所組成之模組A,以使可調式光時域 反射器只對PON系統之某一分支光纖路由進行測試; • 一由寬頻帶分波多工器連接高密度分波多工器、!>(^系 統光分歧器再連接複數個寬頻帶分波多工器所組成之模 ’’且B可刀別對pon系統各分支光纖路由進行測試或監 測並可對主幹線光纖路由進行測試或監測; 一組寬頻帶分波多工器,將可調式光時域反射器與p〇N 系統通信光由不同光纖多工合併入同一光纖或由杻同光 纖解多工分配至不同光纖;一組粗分波多工器,將多個 験 同您度分波多工器波道光依據其所屬波道波長範圍由各 波道輸出; 控制電腦’控制可調式光時域反射器調整測試波長以 選擇測試分支光纖路由; 一光路選擇器,切換不同光路以選擇待測PON系統。 2·如申睛專利範圍第1項所述之被動式光網路之光纖測試 與I測裝置’其中可調式光時域反射器可由光時域反射 器、光路選擇器或光纖跳接線與高密度分波多工器所組 20 201033626 成。該光時域反射器用以輸出具寬頻譜寬度之脈波光並 測試分析脈波光所產生之回散射光。光路選擇器或光纖 跳接線用以選擇連接至高密度分波多工器的特定波長通 道。咼密度分波多工器用以將光時域反射器輸出脈波光 調整為特定中心波長與波譜寬度之輸出脈波光。 3.如申凊專利範圍第1項所述之被動式光網路之光纖測試 與監測裝置,其十該模組A之組成係由高密度分波多工 器、PON系統光分歧器與至少一個寬頻帶分波多工器所 組成,由高密度分波多工器之共同埠連接可調式光時域 反射器’將其所發射之測試光分波解多工由各相對波道 輸出至複數個寬頻帶分波多工器,再由其連接各分支光 纖路由,再經由PON系統光分歧器連接光線路終端,將 其所發射之通彳g光由各相對波道輸出至複數個寬頻帶分 波多工器,再由其連接各分支光纖路由· 4·如申請專利範圍第1項所述之被動式光網路之光纖測試 與監測裝置,其中該模組B之組成係將模組A之高密度 分波多工器之共同埠及P〇N系統光分歧器之共同埠連 接於另一個寬頻帶分波多工器之輸出埠,該寬頻帶分波 多工器之共同埠則連接主幹線光纖路由。 5.如申請專利範圍第1項所述之被動式光網路之光纖測試 與監測裝置,其中該光網路單元使用光濾波器用以過濾 可調式光時域反射器之輸出脈波光,以避免影響被動式 21 201033626 -* 光網路之通信並允許被動式光網路之下行與上行之通信 光通過。 6. 一種被動式光網路之光纖測試與監測方法,係使用被動 式光網路測試與監測裝置對各分支光纖路由、主分支光 纖路由及主幹線光纖路由進行測試或監測的方法,其包 含: 步驟一:測試或監測單一光分歧器PON系統之各分支光 •«織路由的方法; 步驟二:測試或監測單一光分歧器P〇N系統之主幹線光 纖路由與各分支光纖路由的方法; 步驟三:測試或監測二階段光分歧器PON系統之主分支 光纖路由的方法; 步驟四:測試或監測二階段光分歧器PON系統之主幹線 光纖路由及主分支光纖路由的方法; , 牛 步驟五.測試或監測二階段光分歧器PON系統之單一主 分支光纖路由與各分支光纖路由的方法; 步驟六·挪試或監測二階段光分歧器p〇N系統之各主分 支光纖路由與各分支光纖路由的方法; 步驟七.測試或監測二階段光分歧器PON系統各分支光 纖路由的方法· 步驟八’測試或監測二階段光分歧器PON系統之主幹線 光纖路由與各分支光纖路由的方法;及 22 201033626 -· 步驟九:測試或監測二階段光分歧器PON系統之主幹線 光纖路由、各主分支光纖路由與各分支光纖路由的方法^ 7. 如申睛專利範圍第6項所述之被動式光網路之光纖測試 與監測方法,其中該測試或監測單一光分歧器p〇N系統 之各分支光纖路由的方法包含: 步驟一:將模組A之高密度分波多工器之共同埠連接可 調式光時域反射器; ® 步驟二:將模組A之複數個寬頻帶分波多工器之輸出埠 連接各分支光纖路由; 步驟三:將模組A之p 〇 N系統光分歧器連接光線路終端。 8. 如申請專利範圍第6項所述之被動式光網路之光纖測試 與監測方法,其中該測試或監測單一光分歧器p〇N系統 之主幹線光纖路由與各分支光纖路由的方法包含: _ 步驟一:將光線路終端與可調式光時域反射器以一個寬 頻帶刀波多工器連接’使測試或監測光與通信光可同時 使用主幹線光纖路由; 步驟二:將主幹線光纖路由連接模組B之共同埠; 步驟三:將模組3之之複數個寬頻帶分波多工器之輸出 埠連接各分支光纖路由。 9. 如申5青專利範圍第6項所述之被動式光網路之光纖測試 與'測方法,其中該測試或監測二階段光分歧器PON系 統之主分支光纖路由的方法包含: 23 201033626 步驟一:將模組A之高密度分波多工器之共同埠連接可 調式光時域反射器; 步驟二:將模組A之PON系統光分歧器連接光線路終端; 步驟三:將模組A之複數個寬頻帶分波多工器之輸出埠 各連接一個光分歧器,以形成主分支光纖路由;201033626 .. VII. Patent application scope: 1 · A passive optical network fiber testing and monitoring device, including: an adjustable optical time domain reflector, which can rotate a variety of required spectral widths and wavelengths of §-type light' To measure the optical loss, length and light reflection loss of the optical fiber. A module A consisting of a high-density demultiplexer and a P〇N system optical splitter connected to a plurality of broadband demultiplexers to make the adjustable The optical time domain reflector tests only one branch fiber route of the PON system; • A high-bandwidth splitter multiplexer is connected by a broadband demultiplexer! > (^ system optical splitter is connected to a plurality of broadband demultiplexer multiplexer '' and B can test or monitor the fiber routing of each branch of the pon system and can test the trunk fiber routing or Monitoring; a set of broadband demultiplexing multiplexers that combine tunable optical time domain reflectors with p〇N system communication light into different fibers by different fiber multiplexes or by multiplexed fiber multiplexed to different fibers; A coarse-split multiplexer that outputs multiple wavelengths of the multiplexer channel according to its wavelength range from each channel; the control computer's controllable optical time domain reflector adjusts the test wavelength to select the test branch Optical fiber routing; an optical path selector for switching different optical paths to select the PON system to be tested. 2. The optical fiber test and I measuring device of the passive optical network as described in claim 1 of the scope of the patent application, wherein the adjustable optical time domain reflection The device can be formed by an optical time domain reflector, an optical path selector or a fiber jumper and a high density demultiplexer set 20 201033626. The optical time domain reflector is used for outputting a wide spectral width. Wave and test the backscattered light generated by the pulse wave. The optical path selector or fiber patch cord is used to select the specific wavelength channel connected to the high-density demultiplexer. The density-wavelength multiplexer is used to output the optical time domain reflector. The wave light is adjusted to the output pulse wave of a specific center wavelength and the spectral width. 3. The optical fiber test and monitoring device of the passive optical network described in claim 1 of the patent scope, wherein the module A is composed of a high density The split-wave multiplexer, the PON system optical splitter and the at least one wide-band split-wave multiplexer are composed of a high-density demultiplexer multiplexer connected to the adjustable optical time domain reflector to split the test light emitted by the test The multiplexing is output from each of the relative channels to a plurality of broadband demultiplexing multiplexers, and then connected to each branch fiber routing, and then connected to the optical line terminal via the PON system optical splitter, and the transmitted 彳g light is Each of the relative channels is outputted to a plurality of broadband demultiplexing multiplexers, and then connected to each branch fiber routing. 4. The optical fiber measurement of the passive optical network as described in claim 1 And the monitoring device, wherein the module B is connected to the common 埠 of the high-density demultiplexer of the module A and the common 埠 of the P〇N system optical splitter to the output of another broadband demultiplexer 埠The common mode of the broadband demultiplexing multiplexer is connected to the trunk fiber routing. 5. The optical fiber testing and monitoring device of the passive optical network according to claim 1, wherein the optical network unit uses optical filtering The device filters the output pulse wave of the adjustable optical time domain reflector to avoid affecting the communication of the passive 21 201033626 -* optical network and allows the communication light of the passive optical network to pass through and the uplink. 6. A passive optical network The optical fiber testing and monitoring method is a method for testing or monitoring each branch fiber routing, main branch fiber routing, and trunk fiber routing using a passive optical network testing and monitoring device, which includes: Step 1: Testing or monitoring a single light Branching light of the PON system of the differentiator _ system routing method; Step 2: testing or monitoring the main optical fiber of the single optical splitter P〇N system Routing and routing method of each branch fiber; Step 3: Testing or monitoring the method of master branch fiber routing of the two-stage optical splitter PON system; Step 4: testing or monitoring the trunk fiber routing of the two-stage optical splitter PON system and the main Branch fiber routing method; , cattle step 5. Test or monitor the single main branch fiber routing of the two-stage optical splitter PON system and the method of each branch fiber routing; Step 6: Move or monitor the two-stage optical splitter p〇N Method for fiber routing and branch fiber routing of each main branch of the system; Step 7. Test or monitor the method of fiber branch routing of each branch of the PON system of the two-stage optical splitter. Step 8 'Test or monitor the master of the PON system of the two-stage optical splitter Method for trunk fiber routing and branch fiber routing; and 22 201033626 -· Step 9: Testing or monitoring the trunk fiber routing of the two-stage optical splitter PON system, the method of each main branch fiber routing and each branch fiber routing ^ 7. An optical fiber test and monitoring method for a passive optical network as described in claim 6 of the scope of the patent application, wherein the test Or the method for monitoring the routing of each branch fiber of the single optical splitter p〇N system includes: Step 1: connecting the common 埠 of the high-density demultiplexing multiplexer of the module A to the adjustable optical time domain reflector; Step 2: The output of the plurality of broadband demultiplexing multiplexers of the module A is connected to each branch fiber routing; Step 3: connecting the p 〇N system optical splitter of the module A to the optical line terminal. 8. The method for testing and monitoring an optical fiber of a passive optical network according to claim 6, wherein the method for testing or monitoring a trunk optical fiber route and a branch fiber routing of a single optical splitter p〇N system comprises: _ Step 1: Connect the optical line terminal and the adjustable optical time domain reflector to a wide-band multiplexer to enable the test or monitoring optical and communication light to be routed simultaneously using the backbone fiber; Step 2: Connect the backbone fiber routing Module B is common; Step 3: The output of the plurality of broadband demultiplexing multiplexers of the module 3 is connected to each branch fiber routing. 9. The optical fiber test and the measurement method of the passive optical network described in claim 6 of the 5th patent scope, wherein the method for testing or monitoring the main branch fiber route of the two-stage optical splitter PON system includes: 23 201033626 One: connect the high-density demultiplexer of module A to the adjustable optical time domain reflector; Step 2: connect the PON system optical splitter of module A to the optical line terminal; Step 3: Module A The outputs of the plurality of broadband demultiplexing multiplexers are each connected to an optical splitter to form a main branch fiber routing; 步驟四:再由各光分歧器分別連接各分支光纖路由。 10.如申請專利範圍第6項所述之被動式光網路之光纖測試 與監測方法,其中該測試或監測二階段光分歧器PON系 .統之主幹線光纖路由及主分支光纖路由的方法包含: 步驟一:將光線路終端與可調式光時域反射器以一個寬 頻帶分波多工器連接,使測試或監測光與通信光可同時 使用主幹線光纖路由; 步驟二:將主幹線光纖路由連接模組B之共同埠; 步驟三:將模組B之之複數個寬頻帶分波多工器之輸出 辞·各連接一個光分歧器,以形成主分支光纖路由; 四·再由各光分歧器分別連接各分支光纖路由。 &中°青專利範圍第6項所述之被動式光網路之光纖測試 與監測方法,t 4 μ 〃中該測試或監測二階段光分歧器PON系 統之單—Φ八士 1 土刀又光纖路由與各分支光纖路由的方法包 含: 步驟一 歧器, •將光、線路終端以主幹線光纖路由連接一個光分 該刀歧器之輸出再與可調式光時域反射器以一個 24 201033626 -* 寬頻帶分波多工器連接; 步驟二··將該寬頻帶分波多工器之共同埠連接模組 共同埠’以形成主分支光纖路由; 步驟三:將模組B之複數個寬頻帶分波多工器之輸出缚 連接各分支光纖路由。 12.如申請專利範圍第6項所述之被動式光網路之光纖測試 與監測方法,其中該測試或監測二階段光分歧器P〇N系 統之各主分支光纖路由與各分支光纖路由的方法包含: 步驟一:將可調式光時域反射器以測試用光纖連接粗分 波多工器’粗分波多工器各波道分別連接複數個寬頻帶 分波多工器; 步驟二:將光線路終端以主幹線光纖路由連接一個光分 歧器’該分歧器之輸出分別連接複數個寬頻帶分波多工 器; 步驟二:將該複數個寬頻帶分波多工器分別連接複數個 模組B之共同埠,以形成各主分支光纖路由; 步驟四:將模組B之複數個寬頻帶分波多工器之輸出埠 連接各分支光纖路由。 13·如申請專利範圍第6項所述之被動式光網路之光纖測試 與監測方法,其中該測試或監測二階段光分歧器PON系 絲*各分支光纖路由的方法包含: 步驟一:將可調式光時域反射器以測試用光纖連接粗分 25 201033626 波多工器,該粗分波多工器之輸出分別連接各模組入之 高密度分波多工器之共同埠; 步驟二:將光線路終端以主幹線光纖路由連接一個光分 歧器》亥为歧器之輸出分別連接各模組A之系統光 分歧器’以形成各主分支光纖路由; 步驟三:將各模組Α之複數個寬頻帶分波多工器之輸出 琿連接各分支光纖路由。 ❿I4·如申請專利範圍第ό項所述之被動式光網路之光纖測試 與監測方法,其中該測試或監測二階段光分歧器Ρ〇Ν系 統之主幹線光纖路由與各分支光纖路由的方法包含: 步驟一:將可調式光時域反射器與光線路終端連接寬頻 帶分波多工器’再以主幹線光纖路由連接另一寬頻帶分 波多工器; 步驟二:將前述之寬頻帶分波多工器之輸出埠與通過崞 分別連接粗分波多工器與光分歧器之共同埠; 步驟三:將粗分波多工器各波道分別連接各模組A之高 密度分波多工器之共同埠; 步驟四:將光分歧器各分歧埠分別連接各模組A之p〇N 系統光分歧器; 步驟五:將各模組A之複數個寬頻帶分波多工器之輸出 埠連接各分支光纖路由。 15.如申請專利範圍第6項所述之被動式光網路之光纖測試 26 201033626 與監測方法,其中該測試或監測二階段光分歧器PON系 統之主幹線光纖路由、各主分支光纖路由與各分支光纖 路由的方法包含: 步驟一:將可調式光時域反射器與光線路終端連接寬頻 帶分波多工器,再以主幹線光纖路由連接另一寬頻帶分 波多工器; 步驟二:將前述步驟一之寬頻帶分波多工器之輸出埠與 ® 通過埠分別連接粗分波多工器與光分歧器之共同埠; 步驟三:將前述步驟二之粗分波多工器各波道分別連接 另複數個寬頻帶分波多工器之輸出埠;前述步驟二之光 分歧器各分歧埠分別連接另複數個寬頻帶分波多工器之 通過埠; 步驟四:將前述步驟三之寬頻帶分波多工器之共同埠以 主分支光纖路由連接至模組B共同埠; 參 步驟五:將將模組B之複數個寬頻帶分波多工器之輸出 埠連接各分支光纖路由。 27Step 4: Each of the optical splitters is connected to each branch fiber route. 10. The optical fiber test and monitoring method for a passive optical network according to claim 6, wherein the method for testing or monitoring the two-stage optical splitter PON system trunk line fiber routing and main branch fiber routing includes Step 1: Connect the optical line terminal to the adjustable optical time domain reflector in a wide-band splitter multiplexer so that the test or monitoring light and communication light can be routed simultaneously using the backbone fiber; Step 2: Route the backbone fiber Connect the common 埠 of the module B; Step 3: Connect the output words of the plurality of broadband multiplexers of the module B to each of the optical splitters to form a main branch fiber route; The routers are connected to each branch fiber route. & The optical fiber test and monitoring method of the passive optical network described in item 6 of the ICP patent scope, t 4 μ 〃 in the test or monitoring of the two-stage optical splitter PON system - Φ 八士 1 刀The method of fiber routing and branch fiber routing includes: Step 1 a manifold, • connecting the optical and line terminals to the main line fiber route to connect a light splitting the output of the knife manifold to the adjustable optical time domain reflector to a 24 201033626 -* Broadband demultiplexer connection; Step 2··Common to connect the common-band connection module of the broadband demultiplexer to form the main branch fiber routing; Step 3: Multiple broadband of module B The output of the split-wave multiplexer is connected to each branch fiber route. 12. The method for testing and monitoring an optical fiber of a passive optical network according to claim 6, wherein the method for testing or monitoring the main branch fiber routing of the two-stage optical splitter P〇N system and the method of each branch fiber routing The method includes the following steps: Step 1: connecting the adjustable optical time domain reflector to the test fiber-optic connection coarse-wavelength multiplexer, the coarse-wavelength multiplexer, respectively, connecting the plurality of broadband demultiplexing multiplexers; Step 2: connecting the optical line terminal Connecting a light splitter with a trunk fiber routing route's output of the splitter is respectively connected to a plurality of broadband demultiplexing multiplexers; Step 2: connecting the plurality of broadband demultiplexing multiplexers to a plurality of modules B respectively To form each main branch fiber routing; Step 4: Connect the output of the plurality of broadband demultiplexing multiplexers of module B to each branch fiber routing. 13. The method for testing and monitoring an optical fiber of a passive optical network according to claim 6 of the patent application scope, wherein the method for testing or monitoring the two-stage optical splitter PON cable* each branch fiber routing comprises: Step 1: The modulated optical time domain reflector is connected to the test fiber by a coarse division 25 201033626 wave multiplexer, and the output of the coarse demultiplexing multiplexer is respectively connected to the common enthalpy of each module into the high density demultiplexing multiplexer; Step 2: the optical line The terminal connects to an optical splitter by using a trunk fiber route. The output of the splitter is connected to the system optical splitter of each module A to form each main branch fiber route. Step 3: Multiple broadband of each module The output with a split-wave multiplexer is connected to each branch fiber route. ❿I4· The optical fiber testing and monitoring method of the passive optical network as described in the scope of the patent application, wherein the method for testing or monitoring the trunk fiber routing of the two-stage optical splitter system and the method of each branch fiber routing comprises Step 1: Connect the tunable optical time domain reflector to the optical line terminal to the broadband demultiplexer multiplexer and then connect the main line fiber to another broadband multiplexer; Step 2: Multiply the aforementioned wideband The output 埠 of the tool is connected with the 分 粗 multiplexer and the optical splitter by 崞; Step 3: Connect the channels of the coarse multiplexer to the high-density multiplexer of each module A.埠; Step 4: Connect the divergence of the optical splitter to the p〇N system optical splitter of each module A; Step 5: Connect the outputs of the plurality of broadband demultiplexers of each module A to each branch Fiber routing. 15. The fiber optic test 26 201033626 and the monitoring method of the passive optical network according to claim 6 of the patent application scope, wherein the test or monitoring of the trunk fiber routing of the two-stage optical splitter PON system, each main branch fiber routing and each The method for branching fiber routing includes: Step 1: connecting the adjustable optical time domain reflector to the optical line terminal to the broadband demultiplexing multiplexer, and then connecting the other broadband demultiplexing multiplexer with the main fiber routing; Step 2: The output 埠 and о of the broadband demultiplexing multiplexer in the first step are respectively connected to the common 埠 of the coarse multiplexer and the optical splitter through the 埠; Step 3: respectively connect the channels of the coarse splitting multiplexer in the second step The output 埠 of the plurality of broadband demultiplexers; the divergence of the optical splitter in the second step is respectively connected to the pass of the plurality of broadband demultiplexers; Step 4: splitting the broadband in the foregoing step three The common 埠 of the tool is connected to the module B by the main branch fiber routing; Step 5: The plurality of broadband multiplexers of the module B will be input. Connecting each branch fiber port routing. 27
TW98106617A 2009-03-02 2009-03-02 Passive Optical Network Fiber Test and Monitoring Device and Method TWI387765B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98106617A TWI387765B (en) 2009-03-02 2009-03-02 Passive Optical Network Fiber Test and Monitoring Device and Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98106617A TWI387765B (en) 2009-03-02 2009-03-02 Passive Optical Network Fiber Test and Monitoring Device and Method

Publications (2)

Publication Number Publication Date
TW201033626A true TW201033626A (en) 2010-09-16
TWI387765B TWI387765B (en) 2013-03-01

Family

ID=44855230

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98106617A TWI387765B (en) 2009-03-02 2009-03-02 Passive Optical Network Fiber Test and Monitoring Device and Method

Country Status (1)

Country Link
TW (1) TWI387765B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI474635B (en) * 2012-02-08 2015-02-21 Broadcom Corp An optical line terminal (olt) for performing in-band and out-band otdr measurements
TWI622280B (en) * 2016-08-11 2018-04-21 Chunghwa Telecom Co Ltd Dual-wavelength optical network barrier diagnosis method
CN114915335A (en) * 2021-02-10 2022-08-16 深南电路股份有限公司 Polarity testing method and device based on wavelength division multiplexing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI474635B (en) * 2012-02-08 2015-02-21 Broadcom Corp An optical line terminal (olt) for performing in-band and out-band otdr measurements
TWI622280B (en) * 2016-08-11 2018-04-21 Chunghwa Telecom Co Ltd Dual-wavelength optical network barrier diagnosis method
CN114915335A (en) * 2021-02-10 2022-08-16 深南电路股份有限公司 Polarity testing method and device based on wavelength division multiplexing
CN114915335B (en) * 2021-02-10 2023-11-10 深南电路股份有限公司 Polarity test method and device based on wavelength division multiplexing

Also Published As

Publication number Publication date
TWI387765B (en) 2013-03-01

Similar Documents

Publication Publication Date Title
US9847832B2 (en) Testing a passive optical network
CN102244538B (en) System and method for detecting sub-optical fibers, ODN (optical distribution network) and optical splitter
CN105451840B (en) A kind of optical time domain reflectometer realization device and system
WO2020135849A1 (en) Optical switching apparatus and system, and power calculation method
ES2417954B1 (en) METHOD AND SYSTEM FOR SUPERVISING PASSIVE TO MULTIPOINT OPTICAL NETWORKS BASED ON REFLECTOMETRY SYSTEMS
TW201033626A (en) Optical fiber testing and monitoring apparatus for passive optical network and method thereof
JP6024634B2 (en) Optical line fault detection device and optical line fault detection method
CN102916740A (en) Bidirectional optical power measurement device and method for multi-wavelength passive optical network
CN106506069A (en) Optical line terminal, optical transceiver module, system and optical fiber detecting method
JP5066555B2 (en) Optical line fault search device
US9025957B2 (en) Upgradeable passive optical fiber circuit
US9544669B2 (en) Routing in a WDM-based PON
US11424825B2 (en) Multi-wavelength power sensing
US11863295B2 (en) Identifying and monitoring connections in an optical system
JP2005091160A (en) Device for monitoring optical path
JP5315466B1 (en) Wavelength monitoring system
CN103281637A (en) Multi-wavelength passive optical network system
Keiser et al. Status monitoring concept for a WDM PON
CN103297873A (en) Multi-wavelength passive optical network system
CN103281619A (en) Multi-wavelength passive optical network system
CN103281623A (en) Multi-wavelength passive optical network system
CN103281617A (en) Multi-wavelength passive optical network system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees