TW201033552A - Refrigeration air dryer - Google Patents

Refrigeration air dryer Download PDF

Info

Publication number
TW201033552A
TW201033552A TW098135077A TW98135077A TW201033552A TW 201033552 A TW201033552 A TW 201033552A TW 098135077 A TW098135077 A TW 098135077A TW 98135077 A TW98135077 A TW 98135077A TW 201033552 A TW201033552 A TW 201033552A
Authority
TW
Taiwan
Prior art keywords
refrigerant
air
temperature
pipe
reheater
Prior art date
Application number
TW098135077A
Other languages
Chinese (zh)
Inventor
Hideaki Aono
Original Assignee
Smc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smc Corp filed Critical Smc Corp
Publication of TW201033552A publication Critical patent/TW201033552A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Drying Of Gases (AREA)

Abstract

A refrigeration air dryer outputs dehumidified air dehumidified by a cooling operation using a low-temperature refrigerant after the temperature thereof has been raised by exchanging heat with a high-temperature refrigerant at a reheater. The refrigeration air dryer includes a temperature sensor which detects the temperature of secondary air in the outlet pipe, valve means which adjusts the flow rate of the dehumidified air or the flow rate of the refrigerant flowing through the reheater, and a temperature controller which adjusts the flow rate of the dehumidified air or the flow rate of the refrigerant by controlling the valve means based upon the detected temperature detected by the temperature sensor, thereby maintaining the temperature of the secondary air at a constant level.

Description

201033552 六、發明說明: 【發明所屬之技術領域】 本發明是關於:藉由冷卻壓縮空氣,並使該壓縮空氣 中的水分凝縮,而對該壓縮空氣予以除濕的冷凍式空氣乾 燥機。 【先前技術】 Φ 在採用電磁閥或氣壓缸之類的空壓機器的空壓系統中 ,爲了防止起因於被供給至上述裝置之壓縮空氣中的水分 所產生的問題,最好是預先去除該壓縮空氣中的水分,而 採用冷凍式空氣乾燥機去除該水分。而在該冷凍式空氣乾 燥機中,爲了防止因「經冷卻而除濕後的低溫壓縮空氣」 而使空氣乾燥機的二次側空氣配管結露,最好是:應使經 除濕後的壓縮空氣再次升溫,以控制空氣乾燥機出口之壓 縮空氣的溫度。 • 第3圖,是顯示習知的冷凍式空氣乾燥機中,可控制 上述空氣乾燥機出口之壓縮空氣的溫度之系統的冷媒系統 與空氣系統的迴路。該冷凍式空氣乾燥機中的冷媒系統具 有:冷媒壓縮機10;和冷凝器11,該冷凝器11是用來使高 溫的冷媒凝縮,而該高溫的冷媒是經該冷媒壓縮機10壓縮 並通過高溫冷媒配管22所輸送;和膨脹閥12,該膨脹閥12 是利用絕熱膨脹促使「被該冷凝器11所凝縮」的冷媒減壓 而形成低溫;及冷卻器13,該冷卻器13是利用來自於上述 膨脹閥12的低溫冷媒,對「從空氣系統之空氣入口 20流入 201033552 的潮濕壓縮空氣」除濕;並構成:來自於該冷卻器13的冷 媒,是通過回流冷媒配管26而回到上述冷媒壓縮機10。 另外,上述空氣系統是構成:在利用冷卻器13對「通 過上述空氣入口 20而從外部流入的潮濕壓縮空氣(一次空 氣)」予以冷卻後,利用除水器1 6予以除水分離而形成低 溫的除濕空氣,並藉由「利用電加熱器14對該除濕空氣再 加熱」的方式而形成二次空氣,並輸送至出口配管21。接 著,空氣乾燥機之出口的二次空氣之溫度的控制,是形成 以下述的方式執行:將溫度感應器40設於上述出口配管21 ,並將由該溫度感應器40所測得之二次空氣的溫度輸入至 溫度控制器4 1,並利用該溫度控制器4 1來控制電加熱器1 4 的輸出,而可更精準地執行溫度控制。而在用來執行上述 除水分離的除水器16設有:將所產生的水滴予以分離,並 排出至外部的排放閥15。 在上述習知的冷凍式空氣乾燥機中,由於是利用上述 的電加熱器1 4對「經由冷卻而除濕的低溫除濕空氣」再加 Q 熱,因此需要與冷凍機大致相同的大量電力。因爲這個緣 故,上述習知的冷凍式空氣乾燥機,即便能精準地執行溫 度控制,卻存有大量消耗電力的弱點。 相對於此,另一種技術也早爲大眾所熟知’該技術是 設置再熱器來取代上述電加熱器14,該再熱器可使從上述 空氣入口 20流入之溫熱的一次空氣、與經過上述冷卻器I3 之低溫的除濕空氣,各自利用兩者間的溫差而形成熱交換 ,且藉由上述熱交換而將上述一次空氣予以預先冷卻’並 -6- 201033552 使上述除濕空氣升溫而作爲二次空氣輸出。設有上述再熱 器的裝置’由於是在預先冷卻上述一次空氣後利用上述冷 卻器施以再冷卻,因此能減輕對冷凍迴路的負荷。此外, 也能藉由使「由空氣乾燥機所送出」的二次空氣升溫,而 防止空氣配管的結露。因此,有效地利用熱能。但是,上 述二次空氣的溫度是被一次空氣的溫度所影響,在來自於 空氣入口 2〇之一次空氣的溫度較低的場合中,有時來自於 φ 出口配管21之二次空氣的溫度,是無法升溫至「可防止該 出口配管2 1之結露」的溫度,而難以穩定地控制在所需的 溫度範圍內。 順帶一提,在上述的習知冷凍式空氣乾燥機中,通常 從冷媒壓縮機10通過高溫冷媒配管22而流入冷凝器11之高 溫冷媒的溫度約爲約90°C,而離開膨脹閥12且經絕熱膨脹 之後通過低溫冷媒配管23而流入冷卻器13之低溫冷媒的溫 度則約爲5 °C。此外,從空氣入口 20流入之一次空氣的溫 φ 度爲4(TC (額定),從冷卻器13經過除水器16而送入電加 熱器14之除濕空氣的溫度則約爲10°C。 而在冷凍式空氣乾燥機中,連結上述冷媒壓縮機1〇與 冷凝器11的高溫冷媒配管22、與連結膨脹閥12與冷卻器13 的低溫冷媒配管23,是由「具備可調整開度之容量調整閥 17」的旁通冷媒配管25所連通。該旁通冷媒配管25是如稍 後所述,爲了避免流入冷卻器13之冷媒的溫度過度地下降 而導致從空氣入口 20流入冷卻器13之一次空氣中的水分凍 結,而將「從冷媒壓縮機1〇流入冷凝器11之冷媒」的—部 201033552 分予以混入的構件。 【發明內容】 [發明欲解決之課題] 本發明的技術性課題,是與上述習知的冷凍式空氣乾 燥機不同,本發明的課題是提供一種:不必使用電加熱器 對出口配管中的二次空氣加熱,當該二次空氣於升溫,採 用「利用冷媒系統所產生之熱量」的再熱器,藉由調整流 經該再熱器的冷媒或空氣的流量,而與採用電加熱器的場 合相同,可精準地控制出口配管中之二次空氣的溫度的冷 凍式空氣乾燥機。 [解決課題之手段] 爲了解決上述課題,根據本發明,提供一種冷凍式空 氣乾燥機,該冷凍式空氣乾燥機具備冷媒系統及空氣系統 ,該冷媒系統具備:冷媒壓縮機;和冷凝器,該冷凝器是 用來使被該冷媒壓縮機所壓縮之高溫冷媒凝縮;和減壓機 構,該減壓機構是利用絕熱膨脹,促使被該冷凝器所凝縮 的冷媒減壓而形成低溫;和冷卻器,該冷卻器是藉由來自 於上述減壓機構的低溫冷媒,來冷卻從空氣系統之空氣入 口流入的潮濕壓縮空氣並予以除濕,且該冷媒系統構成: 來自於該冷卻器的冷媒回到上述冷媒壓縮機;而該空氣系 統具備:上述空氣入口,該上述空氣入口可供成爲除濕對 象的潮濕壓縮空氣,作爲一次空氣而流入;和上述冷卻器 -8 - 201033552 ,該上述冷卻器是用來冷卻從該空氣入口流入的_ 而形成低溫的除濕空氣;及再熱器,該再熱器是用 自於該冷卻器的低溫除濕空氣、與來自於上述冷媒 冷媒壓縮機的高溫冷踝形成熱交換,且該空氣系統 利用該再熱器的熱交換而升溫的除濕空氣,作爲二 而從出口配管輸出。接著’該空氣乾燥機具有:溫 器,該溫度感應器是用來偵測流經上述出口配管之 @ 氣的溫度;和閥手段’該閥手段是用來調節流經上 器的除濕空氣或者冷媒的流量;及溫度控制器,該 制器是藉由根據上述溫度感應器的偵測溫度來控制 手段,而調節上述除濕空氣或者冷媒的流量,進而 二次空氣的溫度保持成一定。 在本發明的空氣乾燥機中’最好是構成:上述 是連接於冷媒壓縮機與冷凝器之間’而來自於冷媒 的冷媒,是經由該再熱器而被送至上述冷凝器° • 此外,亦可構成:藉由以具備可調節開度之容 閥的旁通冷媒配管,將連結上述冷媒壓縮機與上述 的高溫冷媒配管,連通於連結上述減壓機構與上述 的低溫冷媒配管、或連結上述冷卻器與上述冷媒壓 回流冷媒配管予以連通,在上述冷卻器的負荷變小 中,使被上述冷媒壓縮機所壓縮之高溫冷媒的一部 接流入上述低溫冷媒配管或回流冷媒配管。 在本發明中,最好是構成:上述閥手段’是由 個入口埠與兩個出口埠的三方流量調整閥所形成’ 次空氣 來使來 系統之 ,是將 次空氣 度感應 二次空 述再熱 溫度控 上述閥 將上述 再熱器 壓縮機 量調整 再熱器 冷卻器 縮機的 的場合 分,直 具有一 並藉由 -9 - 201033552 該三方流量調整閥,使流向上述再熱器的除濕空氣或冷媒 的一部分,迂迴過該再熱器而流動。 在上述場合中,亦可將用來迂迴過該再熱器的迂迴配 管連接於:將來自於上述冷卻器的除濕空氣送至再熱器的 除濕空氣配管、及輸出來自於該再熱器之二次空氣的出口 配管,並將上述三方流量調整閥設在:使該迂迴配管與上 述除濕空氣配管分歧的分歧部、或者使該迂迴配管與上述 出口配管合流的合流部。 或者,亦可將用來迂迴過該再熱器的冷媒迂迴配管連 結於:連結上述冷媒壓縮機與再熱器的高溫冷媒配管、和 連結該再熱器與冷凝器的中繼冷媒配管,並將上述三方流 量調整閥設在:使該冷媒迂迴配管與上述高溫冷媒配管分 歧的分歧部、或使該冷媒迂迴配管與上述中繼冷媒配管合 流的合流部。 由於在具有上述構造之本發明的冷凍式空氣乾燥機中 ,送入再熱器之經除水分離的除濕空氣、或來自於冷媒壓 縮機之冷媒的流量,是根據流經上述出口配管之除濕空氣 的溫度,而將該溫度控制成一定,故相較於電氣性手段, 能更容易且正確地控制該流量,因此,儘管採用再熱器, 也能與採用電加熱器的場合相同,精準地控制出口配管之 壓縮空氣的溫度。 根據上述本發明的冷凍式空氣乾燥機,無須如上述習 知的冷凍式空氣乾燥機一般,採用電加熱器來加熱出口配 管的除濕空氣溫度,儘管該出口配管之壓縮空氣的升溫, -10- 201033552[Technical Field] The present invention relates to a refrigerating air dryer that dehumidifies compressed air by cooling compressed air and condensing moisture in the compressed air. [Prior Art] Φ In an air compressor system using an air compressor such as a solenoid valve or a pneumatic cylinder, in order to prevent problems caused by moisture in the compressed air supplied to the above device, it is preferable to remove the The moisture in the air is compressed, and the water is removed by a refrigerating air dryer. In the refrigerating air dryer, in order to prevent dew condensation of the secondary air piping of the air dryer by "low-temperature compressed air dehumidified by cooling", it is preferable that the decompressed compressed air should be again The temperature is raised to control the temperature of the compressed air at the outlet of the air dryer. • Fig. 3 is a circuit showing a refrigerant system and an air system of a system for controlling the temperature of the compressed air at the outlet of the air dryer in a conventional refrigerating air dryer. The refrigerant system in the refrigerating air dryer has a refrigerant compressor 10 and a condenser 11 for condensing a high-temperature refrigerant, and the high-temperature refrigerant is compressed and passed through the refrigerant compressor 10. The high-temperature refrigerant pipe 22 is transported; and an expansion valve 12 that uses adiabatic expansion to cause the refrigerant "condensed by the condenser 11 to decompress" to form a low temperature; and a cooler 13 that is utilized by the cooler 13 The low-temperature refrigerant of the expansion valve 12 dehumidifies "the humid compressed air flowing into the air inlet 20 of the air system 201033552", and the refrigerant from the cooler 13 is returned to the refrigerant through the return refrigerant pipe 26. Compressor 10. Further, the air system is configured to cool the "humidified compressed air (primary air) flowing in from the outside through the air inlet 20 by the cooler 13 and then remove water by the water eliminator 16 to form a low temperature. The dehumidified air is cooled by the "heating of the dehumidified air by the electric heater 14", and is sent to the outlet pipe 21. Next, the control of the temperature of the secondary air at the outlet of the air dryer is performed in such a manner that the temperature sensor 40 is provided to the outlet pipe 21 and the secondary air measured by the temperature sensor 40 is formed. The temperature is input to the temperature controller 4 1, and the temperature controller 4 1 is used to control the output of the electric heater 14 to perform temperature control more accurately. Further, the water eliminator 16 for performing the above-described water removal separation is provided by separating the generated water droplets and discharging them to the external discharge valve 15. In the above-described refrigerating air dryer, the above-mentioned electric heater 14 is used to add "Q" heat to "low-temperature dehumidification air dehumidified by cooling", so that a large amount of electric power is required in substantially the same amount as that of the refrigerator. For this reason, the conventional refrigerating air dryer described above has a large number of weaknesses in power consumption even if temperature control is accurately performed. In contrast, another technique has long been known to the public. The technique is to provide a reheater in place of the electric heater 14, which can allow the warm air to flow from the air inlet 20 and pass through. The dehumidified air of the low temperature of the cooler I3 is heat-exchanged by the temperature difference between the two, and the primary air is pre-cooled by the heat exchange, and the dehumidified air is heated up as two. Secondary air output. Since the apparatus for providing the above reheater is recooled by the above-described cooler after cooling the primary air in advance, the load on the refrigeration circuit can be reduced. Further, it is also possible to prevent dew condensation of the air piping by raising the temperature of the secondary air "sent by the air dryer". Therefore, the heat energy is effectively utilized. However, the temperature of the secondary air is affected by the temperature of the primary air, and when the temperature of the primary air from the air inlet 2 is low, the temperature of the secondary air from the φ outlet pipe 21 may be It is impossible to raise the temperature to "the condensation of the outlet pipe 21 can be prevented", and it is difficult to stably control the temperature within the required temperature range. Incidentally, in the above-described conventional refrigerating air dryer, the temperature of the high-temperature refrigerant that flows into the condenser 11 from the refrigerant compressor 10 through the high-temperature refrigerant pipe 22 is usually about 90 ° C, and leaves the expansion valve 12 and The temperature of the low-temperature refrigerant flowing into the cooler 13 through the low-temperature refrigerant pipe 23 after the adiabatic expansion is about 5 °C. Further, the temperature of the primary air flowing in from the air inlet 20 is 4 (TC (Nominal), and the temperature of the dehumidified air sent from the cooler 13 through the water remover 16 to the electric heater 14 is about 10 °C. In the refrigerating air dryer, the high-temperature refrigerant pipe 22 that connects the refrigerant compressor 1 and the condenser 11 and the low-temperature refrigerant pipe 23 that connects the expansion valve 12 and the cooler 13 are provided with "adjustable opening degree". The bypass refrigerant pipe 25 communicates with the bypass refrigerant pipe 25. The bypass refrigerant pipe 25 flows into the cooler 13 from the air inlet 20 in order to prevent the temperature of the refrigerant flowing into the cooler 13 from being excessively lowered as will be described later. In the primary air, the water in the air is frozen, and the components of the "refrigerant that flows from the refrigerant compressor 1 into the condenser 11" are mixed into the components. [Invention] [Technical Problem to be Solved] The technical aspect of the present invention The problem is that unlike the above-described conventional refrigerating air dryer, an object of the present invention is to provide a method in which the secondary air in the outlet pipe is not heated by using an electric heater, and when the secondary air is heated, By using a reheater that uses the heat generated by the refrigerant system, by adjusting the flow rate of the refrigerant or air flowing through the reheater, it is possible to precisely control the second of the outlet pipes as in the case of using the electric heater. [Resolved Problem] In order to solve the above problems, according to the present invention, a refrigerating air dryer including a refrigerant system and an air system, and the refrigerant system is provided Having a refrigerant compressor; and a condenser for condensing a high-temperature refrigerant compressed by the refrigerant compressor; and a pressure reducing mechanism for utilizing adiabatic expansion to cause condensation by the condenser The refrigerant is depressurized to form a low temperature; and a cooler that cools and dehumidifies the humid compressed air flowing from the air inlet of the air system by the low temperature refrigerant from the pressure reducing mechanism, and the refrigerant system is configured : the refrigerant from the cooler returns to the refrigerant compressor; and the air system includes: the air inlet, the a gas inlet for humidifying compressed air to be dehumidified, flowing as primary air; and the above cooler -8 - 201033552, the cooler being used to cool the inflow of water from the air inlet to form a low temperature dehumidified air; a reheater that uses a low-temperature dehumidified air from the cooler to form a heat exchange with a high-temperature cold enthalpy from the refrigerant refrigerant compressor, and the air system is heated by heat exchange of the reheater Dehumidified air is output from the outlet pipe as two. Then the air dryer has a temperature sensor for detecting the temperature of the @ gas flowing through the outlet pipe; and a valve means 'the valve means Is used to regulate the flow of dehumidified air or refrigerant flowing through the upper device; and a temperature controller that adjusts the flow rate of the dehumidified air or the refrigerant by controlling the temperature according to the temperature detected by the temperature sensor. Further, the temperature of the secondary air is kept constant. In the air dryer of the present invention, it is preferable that the refrigerant is connected between the refrigerant compressor and the condenser, and the refrigerant from the refrigerant is sent to the condenser via the reheater. Alternatively, the refrigerant compressor and the high-temperature refrigerant pipe connected to the refrigerant compressor may be connected to the low-pressure refrigerant pipe and the low-pressure refrigerant pipe, or may be connected to the high-temperature refrigerant pipe by a bypass refrigerant pipe having a valve having an adjustable opening degree, or The cooler is connected to the refrigerant pressure return refrigerant pipe, and a part of the high-temperature refrigerant compressed by the refrigerant compressor is introduced into the low-temperature refrigerant pipe or the return refrigerant pipe while the load of the cooler is reduced. In the present invention, it is preferable that the valve means "the air is formed by the three air flow regulating valves of the inlet port and the two outlet ports, and the secondary air is induced twice. The reheating temperature control valve is used to adjust the reheater compressor amount to adjust the reheater cooler to be retracted, and the three-way flow regulating valve is directly connected to the reheater by -9 - 201033552 Dehumidifying air or a portion of the refrigerant flows back through the reheater. In the above case, the bypass pipe for bypassing the reheater may be connected to: a dehumidified air pipe that sends dehumidified air from the cooler to the reheater, and an output from the reheater. The outlet pipe of the secondary air is provided in the branching flow regulating valve that is a branching portion that branches the bypass pipe and the dehumidifying air pipe, or a joining portion that merges the bypass pipe and the outlet pipe. Alternatively, the refrigerant bypass pipe for bypassing the reheater may be connected to a high-temperature refrigerant pipe connecting the refrigerant compressor and the reheater, and a relay refrigerant pipe connecting the reheater and the condenser, and The three-way flow rate adjustment valve is provided in a branching portion that separates the refrigerant bypass pipe from the high-temperature refrigerant pipe, or a junction portion that merges the refrigerant bypass pipe and the relay refrigerant pipe. In the refrigerating air dryer of the present invention having the above configuration, the flow rate of the dehumidified air separated from the water supplied to the reheater or the refrigerant from the refrigerant compressor is dehumidified according to the flow through the outlet pipe. The temperature of the air is controlled to be constant, so that the flow rate can be controlled more easily and correctly than the electrical means. Therefore, although the reheater is used, the same precision as in the case of using the electric heater can be achieved. The temperature of the compressed air of the outlet pipe is controlled. According to the above-described refrigerating air dryer of the present invention, it is not necessary to use an electric heater as described above for heating the dehumidified air temperature of the outlet pipe, although the temperature of the compressed air of the outlet pipe is increased, -10- 201033552

Ffli用冷媒系統所產生之熱量」的再熱器,但藉由 調整流經該再熱器之流體的流量,也能與採用電加熱器的 場合相同’精準地控制出口配管之壓縮空氣的溫度。 【實施方式】 胃’是顯示本發明中冷凍式空氣乾燥機的第i實施 例1 ’第2圖是顯示本發明中冷凍式空氣乾燥機的第2實施例 φ °在上述的實施例中,與第3圖所示之習知冷凍式空氣乾 '燥通的要件,是採用與第3圖所標示之圖號相同的圖 號予以標示。 上述第1圖之第丨實施例的冷凍式空氣乾燥機,大體上 具備:冷媒系統;和空氣系統;及控制系統,該控制系統 是藉由控制流經「連接於該冷媒系統與空氣系統之再熱器 18」的除濕空氣或冷媒的流量,而將「由冷凍式空氣乾燥 機所輸出之二次空氣」的溫度保持成一定。 Φ 上述冷媒系統具有:冷媒壓縮機10;和高溫冷媒配管 22,該高溫冷媒配管22是用來將「被該冷媒壓縮機1〇所壓 縮而形成高溫」的冷媒送至上述再熱器18;和冷凝器11, 該冷凝器11是用來凝縮「從該再熱器18通往中繼冷媒配管 27而輸送」的冷媒;和膨脹閥12,該膨脹閥12是利用絕熱 膨脹,而使「被該冷凝器11所凝縮的冷媒」減壓而形成低 溫;及冷卻器13’該冷卻器13是利用來自於該膨脹閥12的 低溫冷媒,來冷卻「從上述空氣系統之空氣入口 20流入」 的潮濕壓縮空氣並加以除濕,且上述冷媒系統是構成:來 -11 - 201033552 自於該冷卻器13的冷媒,是通過回流冷媒配管26而回到上 述冷媒壓縮機10。 而上述膨脹閥12,僅是作爲前述減壓機構的其中一例 ,亦可採用譬如毛細管等來取代該膨脹閥。 另外,該冷凍式空氣乾燥機的空氣系統具有:上述空 氣入口 20,該上述空氣入口 20是將「成爲除濕對象之溫熱 且潮濕的壓縮空氣(額定溫度)」當作一次空氣而從 外部流入;和上述冷卻器13,該上述冷卻器13是用來冷卻 「從該空氣入口 20流入的一次空氣」而使水分凝縮;和除 水器16,該除水器16是藉由除水分離而對「被該冷卻器13 所冷卻的壓縮空氣」除濕;及上述再熱器18,該上述再熱 器18是用來使「被該除水器16所除水分離」之低溫的除濕 空氣、與「被上述冷媒系統之冷媒壓縮機10所壓縮」之高 溫的冷媒形成熱交換,該冷凍式空氣乾燥機的空氣系統是 構成:藉由在該再熱器18的熱交換而使低溫的上述除濕空 氣升溫,並將已升溫的除濕空氣作爲二次空氣而送至上述 出口配管21。 因此,上述冷卻器13與再熱器18,是連接於上述冷媒 系統與空氣系統的雙方,而將上述冷媒系統與空氣系統予 以機能性結合的構件。 在執行上述除水分離的除水器16設有:將所產生的水 滴予以分離並排出至外部的排放閥15。 「將流經上述出口配管2 1之二次空氣的溫度保持成一 定」的上述控制系統’具有連接於「連結上述除水器16與 -12- 201033552 再熱器18之除濕空氣配管28中」的三方流量調整閥30。該 三方流量調整閥30,是具有一個入口埠30a與兩個出口埠 3 0b、30c ’且使「從入口埠30a流入」的除濕空氣,在厂 由兩個出口埠3 Ob、30 c分配流量」的狀態下輸出的構件, 在上述入口埠30a連接有:通往上述除水器16之上述除濕 空氣配管28的上游側部分28a,在其中一個出口埠30b連接 有:通往上述再熱器18之上述除濕空氣配管28的下游側部 φ 分2 8b,在分歧側的輸出埠30c與上述出口配管21連接有迂 迴配管29。 上述迂迴配管29,是用來使上述除濕空氣配管28中之 除濕空氣的一部份,迂迴過上述再熱器18而直接流向該再 熱器18之出口側的構件,藉由該迂迴配管29,可調節流經 該再熱器18之除濕空氣的流量。 此外,上述控制系統具有:連接於上述出口配管21, 用來偵測流動於該出口配管2 1中二次空氣之溫度的溫度感 • 應器4〇,該溫度感應器40及上述三方流量調整閥30是連接 於溫度控制器42。根據上述溫度感應器40所測得之二次空 氣的偵測溫度,而形成:藉由以溫度控制器42來控制上述 三方流量調整閥30,而可控制:通過上述再熱器18的除濕 空氣、與迂迴過該再熱器18的除濕空氣之間的流量。 上述溫度控制器42,是對「所設定的溫度目標値」、 及「由上述溫度感應器40所測得之實際偵測溫度」進行比 較,並使其差異値歸零的構件,換言之,是控制上述三方 流量調整閥30的開度,而控制流經上述迂迴配管29與再熱 -13- 201033552 器18之除濕空氣的流量’進而使上述出口配管21内之二次 空氣的溫度保持一定的構件。 而上述的三方流量調整閥30,並不侷限於單獨的閥’ 只要是能根據上述溫度控制器42的訊號來控制流經上述迂 迴配管31與再熱器18之除濕空氣的流量’也可以是組合有 複數個閥的組件。 在具有上述構造之上述第1實施例的冷凍式空氣乾燥 機中,是藉由上述溫度感應器40來偵測流經上述出口配管 21之二次空氣的溫度,並根據該偵測溫度來控制流經迂迴 配管29與再熱器18之除濕空氣的流量,儘管是採用再熱器 1 8,也能與採用習知電加熱器的場合相同’精準地控制從 上述出口配管21所輸出之二次空氣的溫度。 接著,針對第2圖所示之本發明第2實施例的冷凍式空 氣乾燥機,與上述第1實施例進行比對說明。該第2實施例 的冷媒系統,是在連結冷媒壓縮機10與再熱器18的高溫冷 媒配管22中,設有「被溫度控制器42所控制」的三方流量 調整閥32。該三方流量調整閥32,是與上述第1實施例中 的三方流量調整閥30相同,具有一個入口淖32a與兩個出 口埠32b、32c,在上述入口埠32a連接有:通往上述冷媒 壓縮機10之上述高溫冷媒配管22的上游側部分22a,在其 中一個出口埠3 2b連接有:通往上述再熱器18之上述高溫 冷媒配管22的下游側部分22b,位於分歧側的另一個輸出 埠32c則連接有冷媒迂迴配管31的其中一端,該冷媒迂迴 配管31的另一端則連接於:連結上述再熱器18的出口與冷 201033552 凝器11的中繼冷媒配管27。該冷媒迂迴配管31,是使上述 高溫冷媒配管22中之冷媒的一部份,迂迴過上述再熱器18 而直接流至該再熱器18之出口側的構件。 該第2實施例的冷凍式空氣乾燥機除了上述的構造以 外,實質上與第1實施例的冷凍式空氣乾燥機相同,因此 說明書中省略該共通部分的說明。 上述三方流量調整閥32,是被該溫度控制器42所控制 _ ,而使溫度感應器40所測得之出口配管21中的二次空氣的 溫度,與設定於溫度控制器42的目標値相等。該控制實質 上與第1實施例中三方流量調整閥30的控制相同。 此外,上述第2實施例中的三方流量調整閥32也與第1 實施例中的三方流量調整閥30相同,並不侷限於單獨的閥 ,只要是能根據上述溫度控制器42的訊號來控制流經上述 迂迴配管31與再熱器18之除濕空氣的流量’也可以是組合 有複數個閥的組件。 φ 另外,上述第2實施例中的空氣系統,與第1實施例之 冷凍式空氣乾燥機中的空氣系統不同,是使被除水器16除 水分離的低溫除濕空氣,通過除濕空氣配管28而全數流至 再熱器18。但是,除了這點以外,其他的構造實質上則與 上述第1實施例的冷凍式空氣乾燥機相同。 在該第2實施例中,如以上所述’在連結冷媒壓縮機 10與再熱器18的高溫冷媒配管22中設有三方流量調整閥32 ,藉由控制流經上述再熱器18之高溫冷媒的流量’而與第 1實施例的場合相同,可將溫度感應器40所測得之出口配 -15- 201033552 管21中二次空氣的溫度,控制成設定於溫度控制器42的目 標値。在顯示第2實施例的第2圖中,與第1實施例共通的 要件,是標示與第1實施例相同的圖號。 雖然在上述第1實施例中,是從「使除濕空氣流入再 熱器18」的除濕空氣配管28起使上述迂迴配管29分歧,並 在兩配管28、29的分歧部設有上述三方流量調整閥30,但 該三方流量調整閥30也可以設在「使上述迂迴配管29與出 口配管21合流」的合流部,來取代設於上述分歧部的配置 〇 此外,雖然在上述第2實施例中,是從「將冷媒從冷 媒壓縮機10送至再熱器18」的高溫冷媒配管22起使冷媒迂 迴配管31分歧,並在該分歧部設有上述三方流量調整閥32 ’但該三方流量調整閥32也能設在「使上述冷媒迂迴配管 3 1、與再熱器1 8之出口側的中繼冷媒配管2 7合流」的合流 部’來取代設於上述分歧部的配置。 接著,即使在上述將三方流量調整閥設在配管之合流 部的場合中,當然也能根據來自於溫度控制器42的控制訊 號’而控制流經上述再熱器18、與迂迴配管29或31的除濕 空氣或者冷媒的流量。 此外,設於上述合流部的三方流量調整閥,同樣不侷 限於單獨的閥,只要是能根據上述溫度控制器42的訊號來 控制流經上述再熱器18與迂迴配管29或31之除濕空氣或者 冷媒的流量,也可以是組合有複數個閥的組件。 而在上述第1及第2實施例中,連結冷媒壓縮機10與再 -16- 201033552 熱器18的高溫冷媒配管22、及連結膨脹閥12與冷卻器13的 低溫冷媒配管23,是由具備「可調結開度之容量調整閥17 」的旁通冷媒配管25所連通。該旁通冷媒配管25是用來達 成下述作用的構件:在上述冷卻器13的負荷變小的場合中 ,爲了避免因「從膨脹閥12通過低溫冷媒配管23而流入冷 卻器13」之冷媒的溫度過度下降,’而導致「從空氣入口 20 流至冷卻器13之潮濕的一次空氣中」的水分凍結,可使容 φ 量調整閥17開啓必要量,而令來自於冷媒壓縮機10之高溫 冷媒的一部份,迂迴過上述再熱器18、冷凝器11及膨脹閥 1 2,而混入低溫冷媒配管23中的低溫冷媒,進而將該低溫 冷媒的溫度保持成不會下降至一定溫度以下。因此,該旁 通冷媒配管2S是用來達成下述動作的構件:調節流經上述 再熱器18、和冷凝器11、及膨脹閥12之冷媒的流量。 上述旁通冷媒配管25亦可連接:上述高溫冷媒配管22 :及連結上述冷卻器13與上述冷媒壓縮機10的回流冷媒配 φ 管26。在該場合中,可藉由減少流經冷卻器13之冷媒的流 量,而獲得與上述場合相同的效果,也就是指:防止被該 冷卻器13所冷卻之空氣中的水分凍結的效果。 雖然在上述第1及第2實施例之冷凍式空氣乾燥機的冷 媒系統及空氣系統中,各部位的冷媒或壓縮空氣的溫度, 除了上述出口配管21之二次空氣的溫度以外,與前述第3 圖之習知冷凍式空氣乾燥機的場合幾乎相同,但由於在上 述各實施例中對出口配管21中二次空氣的溫度予以控制, 故可使該溫度安定化。不僅如此,由於送入再熱器18之經 -17- 201033552 除水分離的除濕空氣、或來自於冷媒壓縮機10之冷媒的流 量’是根據流經上述出口配管21之二次空氣的溫度,而將 該溫度控制成一定,因此相較於電氣性手段,可更容易且 正確地控制該流量,因此,儘管是使用再熱器18,也能與 採用電加熱器的場合相同,而精準地控制出口配管21之二 次空氣的溫度。 【圖式簡單說明】 _ 第1圖:爲本發明中冷凍式空氣乾燥機之第1實施例的 冷凍系統及空氣系統的迴路圖。 第2圖:爲本發明中冷凍式空氣乾燥機之第2實施例的 相同迴路圖。 第3圖:爲習知冷凍式空氣乾燥機的冷凍系統及空氣 系統的迴路圖。 【主要元件符號說明】 @ 10 :冷媒壓縮機 1 1 :冷凝器 12 :膨脹閥 1 3 :冷卻器 1 4 :電加熱器 1 5 :排放閥 1 6 :除水器 1 7 ··容量調整閥 -18 - 201033552 1 8 :再熱器 20 :空氣入口 21 :出口配管 22 :高溫冷媒配管 22a :上游側部分 23 :低溫冷媒配管 25 :旁通冷媒配管 26 :回流冷媒配管 27 :中繼冷媒配管 28 :除濕空氣配管 28a :上游側部分 28b :下游側部分 29 :迂迴配管 3 〇 :三方流量調整閥 30a :入口埠 30b :出口璋 30c :出口埠 3 1 :冷媒迂迴配管 3 2 :三方流量調整閥 32a :入口埠 3 2b :出口埠 32c :出口埠 40 :溫度感應器 41 :溫度控制器 42 :溫度控制器 -19Ffli uses the heat generated by the refrigerant system. However, by adjusting the flow rate of the fluid flowing through the reheater, it can also precisely control the temperature of the compressed air of the outlet pipe as in the case of using an electric heater. . [Embodiment] The stomach is the first embodiment of the refrigerating air dryer of the present invention. FIG. 2 is a second embodiment of the refrigerating air dryer according to the present invention. In the above embodiment, The requirements for the conventional refrigerated air drying as shown in Fig. 3 are indicated by the same reference numerals as those shown in Fig. 3. The refrigerating air dryer of the first embodiment of the first aspect of the present invention generally includes: a refrigerant system; and an air system; and a control system that is connected to the refrigerant system and the air system by control flow The flow rate of the dehumidified air or the refrigerant in the reheater 18" is kept constant at the temperature of the "secondary air output from the refrigerating air dryer". Φ The refrigerant system includes: a refrigerant compressor 10; and a high-temperature refrigerant pipe 22 for supplying a refrigerant that is "compressed by the refrigerant compressor 1 to form a high temperature" to the reheater 18; And a condenser 11 for condensing "a refrigerant that is sent from the reheater 18 to the relay refrigerant pipe 27"; and an expansion valve 12 that utilizes adiabatic expansion to cause " The refrigerant condensed by the condenser 11 is depressurized to form a low temperature; and the cooler 13' is cooled by the low-temperature refrigerant from the expansion valve 12 to "flow from the air inlet 20 of the air system" The humid compressed air is dehumidified, and the refrigerant system is configured to: -11 - 201033552 The refrigerant from the cooler 13 is returned to the refrigerant compressor 10 through the return refrigerant pipe 26. The expansion valve 12 is merely one example of the pressure reducing mechanism, and a capillary tube or the like may be used instead of the expansion valve. In addition, the air system of the refrigerating air dryer includes the air inlet 20 that flows in from the outside as "primary air that is heated and humidified by dehumidification" (primary temperature). And the cooler 13 described above, the cooler 13 is for cooling "primary air flowing in from the air inlet 20" to condense moisture; and the water eliminator 16 is separated by water removal. Dehumidifying the "compressed air cooled by the cooler 13"; and the reheater 18, the reheater 18 is a low-temperature dehumidifying air for "separating water removed by the water trap 16", The heat exchange is performed with a high-temperature refrigerant that is "compressed by the refrigerant compressor 10 of the refrigerant system". The air system of the refrigerating air dryer is configured such that the heat is exchanged by the reheater 18 to cause a low temperature. The dehumidified air is heated, and the dehumidified air that has been heated is sent to the outlet pipe 21 as secondary air. Therefore, the cooler 13 and the reheater 18 are connected to both the refrigerant system and the air system, and the refrigerant system and the air system are functionally coupled. The water eliminator 16 that performs the above-described water removal separation is provided with a discharge valve 15 that separates and discharges the generated water droplets to the outside. The control system 'the temperature of the secondary air flowing through the outlet pipe 2 1 is kept constant" is connected to the "dehumidifying air pipe 28 connecting the water eliminator 16 and the -12-201033552 reheater 18". The tripartite flow regulating valve 30. The three-way flow regulating valve 30 is dehumidified air having one inlet port 30a and two outlet ports 30b, 30c' and "flowing from the inlet port 30a", and the flow is distributed by the two outlet ports 3 Ob, 30 c at the factory. In the state of the output, the upstream side portion 28a of the dehumidifying air pipe 28 to the water eliminator 16 is connected to the inlet port 30a, and one of the outlet ports 30b is connected to the reheater. The downstream side portion φ of the dehumidified air pipe 28 of 18 is divided into 28b, and the bypass port 29 is connected to the outlet pipe 21 at the output port 30c on the branch side. The bypass pipe 29 is a member for returning a part of the dehumidified air in the dehumidifying air pipe 28 to the outlet side of the reheater 18 by the reheater 18, and the bypass pipe 29 is provided. The flow rate of the dehumidified air flowing through the reheater 18 can be adjusted. Further, the control system has a temperature sensor connected to the outlet pipe 21 for detecting the temperature of the secondary air flowing in the outlet pipe 21, the temperature sensor 40 and the above-described three-way flow adjustment Valve 30 is coupled to temperature controller 42. According to the detected temperature of the secondary air measured by the temperature sensor 40, the dehumidified air passing through the reheater 18 can be controlled by controlling the three-way flow regulating valve 30 by the temperature controller 42. And the flow rate between the dehumidified air that has passed back to the reheater 18. The temperature controller 42 compares the "set temperature target 値" and "the actual detected temperature measured by the temperature sensor 40", and causes the difference 値 to be zeroed, in other words, The opening degree of the three-way flow rate adjusting valve 30 is controlled, and the flow rate of the dehumidified air flowing through the bypass pipe 29 and the reheating-13-201033552 device 18 is controlled to further maintain the temperature of the secondary air in the outlet pipe 21 constant. member. The above-described three-way flow rate adjustment valve 30 is not limited to a single valve'. The flow rate of the dehumidified air flowing through the bypass pipe 31 and the reheater 18 can be controlled according to the signal of the temperature controller 42. A component that combines a plurality of valves. In the refrigerating air dryer of the first embodiment having the above-described configuration, the temperature of the secondary air flowing through the outlet pipe 21 is detected by the temperature sensor 40, and is controlled according to the detected temperature. The flow rate of the dehumidified air flowing through the bypass pipe 29 and the reheater 18 can be precisely controlled to be the same as that of the conventional electric heater, although the reheater 18 can be used. The temperature of the secondary air. Next, the refrigerating air dryer according to the second embodiment of the present invention shown in Fig. 2 will be described in comparison with the first embodiment. In the refrigerant system of the second embodiment, the high-temperature refrigerant pipe 22 that connects the refrigerant compressor 10 and the reheater 18 is provided with a three-way flow rate adjustment valve 32 that is "controlled by the temperature controller 42". The three-way flow rate adjustment valve 32 is the same as the three-way flow rate adjustment valve 30 of the first embodiment, and has one inlet port 32a and two outlet ports 32b and 32c, and the inlet port 32a is connected to the refrigerant compression. The upstream side portion 22a of the high-temperature refrigerant pipe 22 of the machine 10 is connected to the downstream side portion 22b of the high-temperature refrigerant pipe 22 to the reheater 18 at one of the outlet ports 32b, and the other output on the branch side. The crucible 32c is connected to one end of the refrigerant bypass pipe 31, and the other end of the refrigerant bypass pipe 31 is connected to an outlet of the reheater 18 and a relay refrigerant pipe 27 of the cold 201033552 condenser 11. The refrigerant bypass pipe 31 is a member that causes a part of the refrigerant in the high-temperature refrigerant pipe 22 to flow back to the reheater 18 and directly to the outlet side of the reheater 18. The refrigerating air dryer of the second embodiment is substantially the same as the refrigerating air dryer of the first embodiment except for the above-described configuration. Therefore, the description of the common portion will be omitted in the specification. The three-way flow rate adjustment valve 32 is controlled by the temperature controller 42 so that the temperature of the secondary air in the outlet pipe 21 measured by the temperature sensor 40 is equal to the target set in the temperature controller 42. . This control is substantially the same as the control of the three-way flow rate adjustment valve 30 in the first embodiment. Further, the three-way flow rate adjustment valve 32 in the second embodiment is also the same as the three-way flow rate adjustment valve 30 in the first embodiment, and is not limited to a single valve, and can be controlled based on the signal of the temperature controller 42. The flow rate of the dehumidified air flowing through the bypass pipe 31 and the reheater 18 may also be an assembly in which a plurality of valves are combined. In addition, the air system in the second embodiment is different from the air system in the refrigerating air dryer of the first embodiment in that the dehumidified air is separated from the water removed by the water eliminator 16 and passes through the dehumidifying air pipe 28 . All of the flow to the reheater 18. However, other configurations are substantially the same as those of the refrigerating air dryer of the first embodiment described above. In the second embodiment, as described above, the three-way flow rate adjustment valve 32 is provided in the high-temperature refrigerant pipe 22 that connects the refrigerant compressor 10 and the reheater 18, and the high temperature flowing through the reheater 18 is controlled. The flow rate of the refrigerant is the same as in the case of the first embodiment, and the temperature of the secondary air in the outlet -15-201033552 tube 21 measured by the temperature sensor 40 can be controlled to be set to the target of the temperature controller 42. . In the second drawing showing the second embodiment, the elements common to the first embodiment are denoted by the same reference numerals as those of the first embodiment. In the above-described first embodiment, the bypass pipe 29 is branched from the dehumidification air pipe 28 in which the dehumidified air flows into the reheater 18, and the above-described three-way flow rate adjustment is provided at the branching portions of the two pipes 28 and 29. In the valve 30, the three-way flow rate adjustment valve 30 may be provided in a merging portion that "concatenates the bypass pipe 29 and the outlet pipe 21", instead of the arrangement provided in the branch portion, in the second embodiment. In the high-temperature refrigerant pipe 22 that "sends the refrigerant from the refrigerant compressor 10 to the reheater 18", the refrigerant bypass pipe 31 is branched, and the three-way flow rate adjustment valve 32' is provided in the branch portion. The valve 32 may be disposed in the merging portion 'the merging of the refrigerant bypass pipe 31 and the relay refrigerant pipe 27 on the outlet side of the reheater 1 8 instead of the branch portion. Next, even when the three-way flow rate adjustment valve is provided in the junction portion of the piping, it is of course possible to control the flow through the reheater 18 and the bypass piping 29 or 31 based on the control signal from the temperature controller 42. The flow of dehumidified air or refrigerant. Further, the three-way flow rate adjustment valve provided in the merging portion is also not limited to a separate valve, and the dehumidified air flowing through the reheater 18 and the bypass pipe 29 or 31 can be controlled based on the signal of the temperature controller 42. Or the flow rate of the refrigerant may be a component in which a plurality of valves are combined. In the first and second embodiments, the high-temperature refrigerant pipe 22 that connects the refrigerant compressor 10 and the re--16-201033552 heater 18, and the low-temperature refrigerant pipe 23 that connects the expansion valve 12 and the cooler 13 are provided. The bypass refrigerant pipe 25 of the "capacity adjustment valve 17 of the adjustable opening degree" is connected. The bypass refrigerant pipe 25 is a member for achieving a function of reducing the refrigerant flowing into the cooler 13 from the expansion valve 12 through the low-temperature refrigerant pipe 23 when the load of the cooler 13 is small. The temperature is excessively lowered, and the water which is "in the moist first air flowing from the air inlet 20 to the cooler 13" is frozen, so that the capacity φ adjusting valve 17 can be opened by the necessary amount, and the refrigerant compressor 10 is supplied. A part of the high-temperature refrigerant bypasses the reheater 18, the condenser 11 and the expansion valve 12, and is mixed with the low-temperature refrigerant in the low-temperature refrigerant pipe 23, thereby maintaining the temperature of the low-temperature refrigerant so as not to fall to a certain temperature. the following. Therefore, the bypass refrigerant pipe 2S is a member for adjusting the flow rate of the refrigerant flowing through the reheater 18, the condenser 11, and the expansion valve 12. The bypass refrigerant pipe 25 may be connected to the high-temperature refrigerant pipe 22 and a return refrigerant refrigerant pipe 26 that connects the cooler 13 and the refrigerant compressor 10. In this case, the same effect as in the above case can be obtained by reducing the flow rate of the refrigerant flowing through the cooler 13, i.e., the effect of preventing the moisture in the air cooled by the cooler 13 from freezing. In the refrigerant system and the air system of the refrigerating air dryer according to the first and second embodiments, the temperature of the refrigerant or the compressed air in each portion is the same as the temperature of the secondary air in the outlet pipe 21, 3 Although the case of the conventional refrigerating air dryer is almost the same, since the temperature of the secondary air in the outlet pipe 21 is controlled in each of the above embodiments, the temperature can be stabilized. In addition, the flow rate of the dehumidified air to be separated from the refrigerant compressor 10 or the refrigerant from the refrigerant compressor 10, which is sent to the reheater 18 via -17-201033552, is based on the temperature of the secondary air flowing through the outlet pipe 21, The temperature is controlled to be constant, so that the flow rate can be controlled more easily and correctly than the electrical means, and therefore, although the reheater 18 is used, it can be identical to the case where the electric heater is used, and precisely The temperature of the secondary air of the outlet pipe 21 is controlled. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a circuit diagram of a refrigeration system and an air system according to a first embodiment of the refrigerating air dryer of the present invention. Fig. 2 is a view similar to the second embodiment of the refrigerating air dryer of the present invention. Fig. 3 is a circuit diagram of a refrigeration system and an air system of a conventional refrigerating air dryer. [Main component symbol description] @ 10 : Refrigerant compressor 1 1 : Condenser 12 : Expansion valve 1 3 : Cooler 1 4 : Electric heater 1 5 : Discharge valve 1 6 : Water eliminator 1 7 · Capacity adjustment valve -18 - 201033552 1 8 : Reheater 20 : Air inlet 21 : Outlet piping 22 : High temperature refrigerant piping 22 a : Upstream side part 23 : Low temperature refrigerant piping 25 : Bypass refrigerant piping 26 : Recirculating refrigerant piping 27 : Relay refrigerant piping 28: Dehumidified air pipe 28a: upstream side portion 28b: downstream side portion 29: bypass pipe 3 〇: three-way flow regulating valve 30a: inlet port 30b: outlet port 30c: outlet port 3 1 : refrigerant bypass pipe 3 2 : three-way flow adjustment Valve 32a: inlet 埠3 2b: outlet 埠32c: outlet 埠40: temperature sensor 41: temperature controller 42: temperature controller -19

Claims (1)

201033552 七、申請專利範团: 1. 一種冷凍式空氣乾燥機,是具備冷媒系統、及空氣 系統的冷凍式空氣乾燥機, 上述冷媒系統具備:冷媒壓縮機;和冷凝器,該冷凝 器是用來使被該冷媒壓縮機所壓縮的高溫冷媒凝縮;和減 壓機構,該減壓機構是利用絕熱膨脹,使被該冷凝器所凝 縮的冷媒形成低溫;及冷卻器,該冷卻器是利用來自於上 述減壓機構的低溫冷媒,來冷卻從空氣系統之空氣入口流 _ 入的潮濕壓縮空氣並予以除濕;且該冷媒系統是構成:使 來自於該冷卻器的冷媒回到上述冷媒壓縮機, 上述空氣系統具備:上述空氣入口,該上述空氣入口 是將成爲除濕對象的潮濕壓縮空氣,當成一次空氣而流入 ;和上述冷卻器,該上述冷卻器是用來冷卻從該空氣入口 流入的一次空氣而形成低溫的除濕空氣;及再熱器,該再 熱器是用來使來自於該冷卻器的低溫除濕空氣、與來自於 上述冷媒系統之冷媒壓縮機的高溫冷媒產生熱交換;且該 Q 空氣系統,是將利用在該再熱器的熱交換而升溫的除濕空 氣作爲二次空氣,並從出口配管輸出, 其特徵爲: 該空氣乾燥機具有:溫度感應器,該溫度感應器是用 來偵測流經上述出口配管之二次空氣的溫度;和閥手段, 該閥手段是用來調節流經上述再熱器之除濕空氣或冷媒的 流量;及溫度控制器,該溫度控制器是根據上述溫度感應 器的偵測溫度’並藉由控制上述閥手段來調節上述除濕空 -20- 201033552 氣或冷媒的流量’而將上述二次空氣的溫度保持成一定。 2如申請專利範圍第1項所記載的冷凍式空氣乾燥機 ,其中上述再熱器是連接於冷媒壓縮機與冷凝器之間’而 構成來自於冷媒壓縮機的冷媒’是經由該再熱器而送至1 述冷凝器。 3 .如申請專利範圍第2項所記載的冷凍式空氣乾燥機 ,其中是利用具有可調整開度之容量調整閥的旁通冷媒配 馨 管,使連結上述冷媒壓縮機與上述再熱器的高溫冷媒配管 ,連通於連結上述減壓機構與上述冷卻器的低溫冷媒配管 、或連結上述冷卻器與上述冷媒壓縮機的回流冷媒配管, 而構成:在上述冷卻器的負荷變小的場合中,使被上述冷 媒壓縮機所壓縮之高溫冷媒的一部份,直接流入上述低溫 冷媒配管或回流冷媒配管。 4. 如申請專利範圍第1、2或3項所記載的冷凍式空氣 乾燥機,其中上述閥手段,是由具有一個入口埠與兩個出 Φ 口埠的三方流量調整閥所形成,而構成:藉由該三方流量 調整閥’使朝向上述再熱器之除濕空氣或冷媒的一部份, 迂迴過該再熱器而流動。 5. 如申請專利範圍第4項所記載的冷凍式空氣乾燥機 ’其中在將來自於上述冷卻器的除濕空氣送至再熱器的除 濕空氣配管、及將來自於該再熱器的二次空氣予以輸出的 出口配管,連接有用來迂迴過該再熱器的迂迴配管,並在 使該S迴配管與上述除濕空氣配管分歧的分歧部、或使該 廷迴配管與上述出口配管合流的合流部,設有上述三方流 -21 - 201033552 量調整閥。 6.如申請專利範圍第4項所記載的冷凍式空氣乾燥機 ,其中在連結上述冷媒壓縮機與再熱器的高溫冷媒配管、 及連結該再熱器與冷凝器的中繼冷媒配管,連接有用來迂 迴過該再熱器的冷媒迂迴配管,並在使該冷媒迂迴配管與 上述高溫冷媒配管分歧的分歧部、或使該冷媒迂迴配管與 上述中繼冷媒配管合流的合流部,設有上述三方流量調整 閥。 -22-201033552 VII. Application for Patent Group: 1. A refrigerating air dryer is a refrigerating air dryer with a refrigerant system and an air system. The refrigerant system has a refrigerant compressor and a condenser. And condensing the high-temperature refrigerant compressed by the refrigerant compressor; and a pressure reducing mechanism that uses adiabatic expansion to cause the refrigerant condensed by the condenser to form a low temperature; and a cooler that is utilized by the cooler a low-temperature refrigerant of the pressure reducing mechanism to cool and dehumidify the humid compressed air flowing in from the air inlet of the air system; and the refrigerant system is configured to return the refrigerant from the cooler to the refrigerant compressor, The air system includes: the air inlet, which is a humid compressed air to be dehumidified, flows into the primary air; and the cooler, the cooler is used to cool the primary air flowing in from the air inlet And forming a low temperature dehumidified air; and a reheater for making the cooler a low-temperature dehumidified air exchanges heat with a high-temperature refrigerant from a refrigerant compressor of the refrigerant system; and the Q air system uses dehumidified air heated by heat exchange in the reheater as secondary air, and An outlet pipe output, characterized in that: the air dryer has: a temperature sensor for detecting a temperature of a secondary air flowing through the outlet pipe; and a valve means for adjusting a flow rate of dehumidified air or refrigerant flowing through the reheater; and a temperature controller that adjusts the dehumidification space -20- 201033552 according to the detected temperature of the temperature sensor The flow rate of the gas or the refrigerant is kept constant by the temperature of the secondary air. 2. The refrigerating air dryer according to claim 1, wherein the reheater is connected between the refrigerant compressor and the condenser and the refrigerant from the refrigerant compressor is passed through the reheater. And sent to the condenser. 3. The refrigerating air dryer according to claim 2, wherein the refrigerant compressor and the reheater are connected by a bypass refrigerant distribution pipe having a capacity adjustment valve having an adjustable opening degree. The high-temperature refrigerant pipe is connected to a low-temperature refrigerant pipe that connects the pressure reducing mechanism and the cooler, or a return refrigerant pipe that connects the cooler and the refrigerant compressor, and is configured such that when the load of the cooler is small, A part of the high-temperature refrigerant compressed by the refrigerant compressor is directly introduced into the low-temperature refrigerant pipe or the reflux refrigerant pipe. 4. The refrigerating air dryer according to claim 1, 2 or 3, wherein the valve means is formed by a three-way flow regulating valve having one inlet port and two outlet ports. : the portion of the dehumidified air or refrigerant that faces the reheater flows back through the reheater by the three-way flow regulating valve. 5. The refrigerating air dryer according to claim 4, wherein the dehumidified air pipe for sending the dehumidified air from the cooler to the reheater, and the second step from the reheater An outlet pipe for outputting air is connected to a bypass pipe for bypassing the reheater, and a converging portion that divides the S-back pipe from the dehumidification air pipe or a confluence of the merge pipe and the outlet pipe Department, with the above three-way flow -21 - 201033552 volume adjustment valve. 6. The refrigerating air dryer according to claim 4, wherein the high-temperature refrigerant pipe connecting the refrigerant compressor and the reheater and the relay refrigerant pipe connecting the reheater and the condenser are connected A refrigerant bypass pipe for bypassing the reheater, and a branching portion that makes the refrigerant bypass pipe and the high-temperature refrigerant pipe are branched, or a junction portion that merges the refrigerant bypass pipe and the relay refrigerant pipe, is provided. Three-way flow adjustment valve. -twenty two-
TW098135077A 2008-10-31 2009-10-16 Refrigeration air dryer TW201033552A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282011A JP2010104964A (en) 2008-10-31 2008-10-31 Refrigerating type air dryer

Publications (1)

Publication Number Publication Date
TW201033552A true TW201033552A (en) 2010-09-16

Family

ID=42129795

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098135077A TW201033552A (en) 2008-10-31 2009-10-16 Refrigeration air dryer

Country Status (6)

Country Link
US (1) US20100107674A1 (en)
JP (1) JP2010104964A (en)
KR (1) KR20100048887A (en)
CN (1) CN101721892A (en)
DE (1) DE102009051429A1 (en)
TW (1) TW201033552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112957882A (en) * 2021-02-03 2021-06-15 厦门艾欣特医用设备有限公司 Medical air cooling and drying machine

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101837452B1 (en) * 2010-10-28 2018-03-12 삼성전자주식회사 Refrigerator and dehumidification control method thereof
WO2012122323A1 (en) 2011-03-10 2012-09-13 Carrier Corporation Electric re-heat dehumidification
CN102961882B (en) * 2012-12-12 2014-12-17 李锦龙 Mixed type steam mechanical recompression evaporator
WO2015168755A1 (en) * 2014-05-09 2015-11-12 Atlas Copco Airpower, Naamloze Vennootschap Method and device for cool-drying a gas with circulating cooling liquid with bypass line
BE1021844B1 (en) * 2014-05-09 2016-01-22 Atlas Copco Airpower, Naamloze Vennootschap DEVICE AND METHOD FOR COOLING A GAS
BE1021900B1 (en) * 2014-05-09 2016-01-25 Atlas Copco Airpower, Naamloze Vennootschap METHOD FOR REFRIGERATING A GAS
JP6534510B2 (en) 2014-09-02 2019-06-26 川崎重工業株式会社 Heat exchanger
US10941968B2 (en) 2015-08-24 2021-03-09 Ingersoll-Rand Industrial U.S., Inc. Refrigerated dryer power saving controls
CN105605699B (en) * 2015-12-25 2019-03-22 珠海格力电器股份有限公司 Air handling system and its control method
KR101957260B1 (en) * 2017-03-27 2019-03-14 에스피엑스플로우테크놀로지 주식회사 Adsorption type air dryer
CN107376604A (en) * 2017-09-21 2017-11-24 重庆市商顺换热设备有限公司 A kind of industrial fermentation waste gas dehumanization method and device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3585808A (en) * 1969-02-17 1971-06-22 Deltech Eng Inc Method and apparatus for drying compressed gases
JPS5146364Y2 (en) * 1972-02-10 1976-11-09
JPS60148535U (en) * 1984-03-15 1985-10-02 エスエムシ−株式会社 constant temperature air dehumidifier
US6055818A (en) * 1997-08-05 2000-05-02 Desert Aire Corp. Method for controlling refrigerant based air conditioner leaving air temperature
US6321558B1 (en) * 2000-10-06 2001-11-27 American Standard International Inc. Water source heat pump with hot gas reheat
US7062930B2 (en) * 2002-11-08 2006-06-20 York International Corporation System and method for using hot gas re-heat for humidity control
US6826921B1 (en) * 2003-07-03 2004-12-07 Lennox Industries, Inc. Air conditioning system with variable condenser reheat for enhanced dehumidification
US7043930B2 (en) * 2004-01-30 2006-05-16 Carrier Corporation Two phase or subcooling reheat system
US7721560B2 (en) * 2004-07-20 2010-05-25 Carpenter Frank K Climate control and dehumidification system and method
US7823404B2 (en) * 2006-12-15 2010-11-02 Lennox Industries Inc. Air conditioning system with variable condenser reheat and refrigerant flow sequencer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112957882A (en) * 2021-02-03 2021-06-15 厦门艾欣特医用设备有限公司 Medical air cooling and drying machine

Also Published As

Publication number Publication date
DE102009051429A1 (en) 2010-06-24
US20100107674A1 (en) 2010-05-06
CN101721892A (en) 2010-06-09
KR20100048887A (en) 2010-05-11
JP2010104964A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
TW201033552A (en) Refrigeration air dryer
US10060663B2 (en) Cooling circuit, cold drying installation and method for controlling a cooling circuit
US10724771B2 (en) Ejector refrigeration circuit
AU2004267299B2 (en) Refrigeration system
US10393418B2 (en) Air-conditioning apparatus
US9003827B2 (en) Expansion unit for a vapour compression system
US20110146313A1 (en) Refrigeration circuit
JP4946948B2 (en) Heat pump air conditioner
CN103842743B (en) Heat pump
CN106016457B (en) Multi-line system and its control method for heating restricting element
KR101706865B1 (en) Air conditioning system
TW201020482A (en) Refrigeration air dryer
WO2006044281A2 (en) Refrigerant cycle with tandem compressors and multiple condensers
JP2005076933A (en) Refrigeration cycle system
WO2007102345A1 (en) Refrigeration device
KR100863284B1 (en) Apparatus for cooling and dehumidifying open air
WO2016013077A1 (en) Refrigeration cycle device
JP5531246B2 (en) Compressed air dehumidifier
CN104344599B (en) Air-conditioning system
US20060064997A1 (en) Cooling systems
WO2012127834A1 (en) Refrigeration cycle device
JP4989307B2 (en) Air conditioner
JPS5832300B2 (en) Heat pump type refrigeration equipment
JP2003185292A (en) Refrigeration circuit and air conditioner using the same
JPH05172435A (en) Air conditioning apparatus