TW201032881A - Indium recovery by supported liquid membrane with strip dispersion - Google Patents

Indium recovery by supported liquid membrane with strip dispersion Download PDF

Info

Publication number
TW201032881A
TW201032881A TW98121307A TW98121307A TW201032881A TW 201032881 A TW201032881 A TW 201032881A TW 98121307 A TW98121307 A TW 98121307A TW 98121307 A TW98121307 A TW 98121307A TW 201032881 A TW201032881 A TW 201032881A
Authority
TW
Taiwan
Prior art keywords
acid
solution
phosphoric acid
dispersion
liquid film
Prior art date
Application number
TW98121307A
Other languages
Chinese (zh)
Inventor
Ying-Ling Liu
Da-Ming Wang
Juin-Yih Lai
Winston Wen-Shou Ho
Chung-Ching Lee
Chih-Hsieh Lee
Original Assignee
Univ Chung Yuan Christian
Solar Applied Mat Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chung Yuan Christian, Solar Applied Mat Tech Corp filed Critical Univ Chung Yuan Christian
Publication of TW201032881A publication Critical patent/TW201032881A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/38Liquid-membrane separation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3846Phosphoric acid, e.g. (O)P(OH)3
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention provides a process for the removal and recovery of indium from waste waters and process streams. The process of the present invention utilizes a combination of a supported liquid membrane (SLM) and a strip dispersion to improve extraction of indium while increasing membrane stability and decreasing processing costs. This novel process selectively removes indium from the feed stream, provides the increased flexibility of aqueous strip/organic volume ratio, and produces a concentrated strip solution of indium.

Description

201032881 六、發明說明: 【發明所屬之技術領域】 * 本發明係關於一種從溶液中移除與回收銦的方法。本發明所使用的 ^ 方法係支撐式液膜技術;藉由支撐式液膜進行拿取分散以達回收銦之 目標。 【先前技術】 傳統萃取與分散步驟需以兩個程序完成,例如以複數種溶 液萃取’而液膜可將兩種程序合而為一。單一程序液膜為分離 ® 目標產物提供了最大的區動力,使該種類目標產物達到最大的 移除與回收能力(W_S. Winston Ho and Kamalesh K. Sirkar, eds., Membrane Handbook, Chapman & Hall, New York, 1992) ° 液膜可區分為兩種(1)支撐式液膜(supported liquid membranes ; SLMs)與(2)乳化液膜(emulsion liquid membranes ; ELMs)。在支撐式液膜中,液膜係一有機液體位 於微孔基材中(例如:微孔聚丙烯中空纖維)(W. S. Winston Ho 零 and Kamalesh K. Sirkar, eds., Membrane Handbook, Chapman &201032881 VI. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for removing and recovering indium from a solution. The method used in the present invention is a supported liquid membrane technique; the supported liquid membrane is used for dispersion to achieve the goal of recovering indium. [Prior Art] The conventional extraction and dispersion steps are carried out in two procedures, for example, extraction with a plurality of solutions, and the liquid film combines the two procedures into one. The single-programmed liquid membrane provides maximum zone power for the separation of the target product, maximizing the removal and recovery of the target product of this type (W_S. Winston Ho and Kamalesh K. Sirkar, eds., Membrane Handbook, Chapman & Hall , New York, 1992) ° Liquid membranes can be distinguished into two (1) supported liquid membranes (SLMs) and (2) emulsion liquid membranes (ELMs). In the supported liquid membrane, the liquid membrane is an organic liquid in a microporous substrate (for example, microporous polypropylene hollow fiber) (W. S. Winston Ho zero and Kamalesh K. Sirkar, eds., Membrane Handbook, Chapman &

Hall,New York,1992)。其基本原理為,有機溶液與微孔表面 接觸時,促使基材之孔洞潮濕以形成該支撐式液膜。 為了將目標產物萃取出,可將支撐式液膜至於含目標產物 溶液與分散液兩水溶液之間。支撲式液膜係一選擇性薄膜,藉 由支擇式液膜之選擇性,將含目標產物溶液中之目標產物轉換 至分散液。然而,支撐式液膜中之有機溶液無法溶於含目標產 物溶液中,亦無法溶於分散液中。上述之有機溶液包含萃取 3 201032881 劑、稀釋液(惰性有機溶液),有時更包含修飾劑(modifier)。 近期在科技界與工業界,支撐式液膜已經應用於移除含目 標產物水溶液中之金屬、物理放射性核種或烯土金屬元素》其 中’上述之可移除的金屬包含:銅、鋅、鑛與把。(N. Aouad,G. Miquel-Mercier, E. Bienvenue, E. Tronel-Peyroz, G. Jerninet, J. Juillard, and P. Seta, “Lasalocid (X537A) as a Selective CarrierHall, New York, 1992). The basic principle is that when the organic solution is in contact with the surface of the micropores, the pores of the substrate are caused to be wet to form the supported liquid film. In order to extract the target product, the supported liquid film may be contained between the target product solution and the dispersion aqueous solution. The puff liquid membrane is a selective film which converts the target product in the target product solution to the dispersion by the selectivity of the selective liquid film. However, the organic solution in the supported liquid film is insoluble in the solution containing the target product and is also insoluble in the dispersion. The above organic solution contains extraction 3 201032881, a diluent (inert organic solution), and sometimes a modifier. Recently, in the scientific and industrial circles, the supported liquid film has been applied to remove metals, physical radioactive nucleus or olefinic metal elements in aqueous solutions containing target products. The above removable metals include: copper, zinc, ore. With put. (N. Aouad, G. Miquel-Mercier, E. Bienvenue, E. Tronel-Peyroz, G. Jerninet, J. Juillard, and P. Seta, “Lasalocid (X537A) as a Selective Carrier

for Cd(II) in Supported Liquid Membranes/' J. Membrane Sci., 139, 167-174 (1998); J. A. Daoud, S. A. El-Reefy, and H. F. Aly, “Permeation of Cd(II) Ions through a Supported LiquidFor Cd(II) in Supported Liquid Membranes/' J. Membrane Sci., 139, 167-174 (1998); J. A. Daoud, S. A. El-Reefy, and H. F. Aly, “Permeation of Cd(II) Ions through a Supported Liquid

Membrane Containing Cyanex-302 in Kerosene,H Sep. Sci. Technol., 33, 537-549 (1998); J. Vander Linden and R. F. De Ketelaere, K Selective Recuperation of Copper by SupportedMembrane Containing Cyanex-302 in Kerosene, H Sep. Sci. Technol., 33, 537-549 (1998); J. Vander Linden and R. F. De Ketelaere, K Selective Recuperation of Copper by Supported

Liquid Membrane (SLM) Extraction,M J. Membrane Sci., 139, 125-135 (1998); Μ. E. Campderros, A. Acosta, and J. Marchese, “Selective Separation of Copper with LIX 864 in a HollowLiquid Membrane (SLM) Extraction, M J. Membrane Sci., 139, 125-135 (1998); Μ. E. Campderros, A. Acosta, and J. Marchese, “Selective Separation of Copper with LIX 864 in a Hollow

Fiber Module,” Talanta, 47, 19-24 (1998); M. Rovira and A. M.Fiber Module,” Talanta, 47, 19-24 (1998); M. Rovira and A. M.

Sastre, “Modelling of Mass Transfer in Facilitated Supported Liquid-Membrane Transport of Palladium(II) Using Di-(2-ethylhexyl) Thiophosphoric Acid,” J. Membrane Sci” 149, 241-250 (1998); J. C. Lee, J. Jeong, J. T. Park, I. J. Youn, and H. S. Chung, “Selective and Simultaneous Extractions of Zn and Cu Ions by Hollow Fiber SLM Modules Containing HEH(EHP) and LIX84,” Sep. Sci. Technol., 34, 1689-1701 (1999); F. Valenzuela, C. Basualto, C. Tapia, and J. Sapag, 4 201032881 “Application of Hollow-Fiber Supported Liquid Membranes Technique to the Selective Recovery of a Low Content of Copper from a Chilean Mine Water/' J. Membrane Sci., 155, 163-168 (1999)) 〇 針對移除物理放射性核種技術,多佐爾等人揭示了使用萃 取劑、芳杯單冠或雙冠物於支撐式液膜中,將鉋從高離子強度Sastre, "Modelling of Mass Transfer in Facilitated Supported Liquid-Membrane Transport of Palladium (II) Using Di-(2-ethylhexyl) Thiophosphoric Acid," J. Membrane Sci" 149, 241-250 (1998); JC Lee, J. Jeong, JT Park, IJ Youn, and HS Chung, “Selective and Simultaneous Extractions of Zn and Cu Ions by Hollow Fiber SLM Modules Containing HEH (EHP) and LIX84,” Sep. Sci. Technol., 34, 1689-1701 (1999) F. Valenzuela, C. Basualto, C. Tapia, and J. Sapag, 4 201032881 “Application of Hollow-Fiber Supported Liquid Membranes Technique to the Selective Recovery of a Low Content of Copper from a Chilean Mine Water/' J. Membrane Sci., 155, 163-168 (1999)) 〇In response to the removal of physical radionuclides, Dozol et al. revealed the use of extractants, aroma cups, or double crowns in supported liquid membranes. From high ionic strength

之酸性溶液(或鹼性溶液)中移除(J. F. Dozol,N. Simon,V. Lamaare, H. Rouquette, S. Eymard, B. Tournois, D. De Marc, and R. M. Macias, UA Solution for Cesium Removal from High-Salinity Acidic or Alkaline Liquid Waste: the Crown Calix arenes”,Sep. Sci. Technol” 34, 877-909 (1999))。另外,卡德 尼等人揭示藉由具有二(2-乙基已基)麟酸(Di(2-ethylhexyl) phosphoric acid, D2EHPA)為離子載體之支撐式液膜回收鈽 (plutonium (IV))(C. S. Kedari, S. S. Pandit, and A. Ramanujam, “Selective Permeation of Plutonium (IV) through Supported Liquid Membrane Containing 2-Ethylhexyl 2-Ethylhexyl Phosphonic Acid as Ion Carrier”,J· Membrane Sci” 156, 187-196 (1999))。 雅凡等人揭示了以支撐式液膜移除烯土金屬元素。其中, 上述之烯土金屬元素包含:銪(europium)、鋼(lanthanum)、敛 (neodymium)、镨(praseodymium)與釓(经&加1比比111)。(^11·Removed from acidic solution (or alkaline solution) (JF Dozol, N. Simon, V. Lamaare, H. Rouquette, S. Eymard, B. Tournois, D. De Marc, and RM Macias, UA Solution for Cesium Removal From High-Salinity Acidic or Alkaline Liquid Waste: the Crown Calix arenes", Sep. Sci. Technol" 34, 877-909 (1999)). In addition, Kadney et al. disclose the recovery of plutonium (IV) by a supported liquid membrane having di(2-ethylhexyl) phosphoric acid (D2EHPA) as an ionophore. (CS Kedari, SS Pandit, and A. Ramanujam, “Selective Permeation of Plutonium (IV) through Supported Liquid Membrane Containing 2-Ethylhexyl 2-Ethylhexyl Phosphonic Acid as Ion Carrier”, J· Membrane Sci” 156, 187-196 (1999 )). Yafan et al. disclose the removal of olefinic metal elements by a supported liquid film, wherein the above-mentioned olefinic metal elements include: europium, lanthanum, neodymium, praseodymium And 釓 (by & plus 1 to ratio 111). (^11·

Yaftian, M. Burgard, C. B. Dieleman and D. Matt, MRare-earth Metal-ion Separation Using a Supported Liquid Membrane 5 201032881Yaftian, M. Burgard, C. B. Dieleman and D. Matt, MRare-earth Metal-ion Separation Using a Supported Liquid Membrane 5 201032881

Mediated by a Narrow Rim Phosphorylated Calix[4]arene,M J. Membrane Sci., 144, 57-64 (1998)) 支撐式液膜缺點在於穩定性不佳。而支撐式液膜的穩定性 差,其原因與液膜組成及滲透壓有關。進料溶液與分散溶液中 不包含液膜組成成分(有機溶液、萃取液與修飾液),而造成 滲透壓差(A. J. B_ Kemperman,D. Bargeman,Th. Van Den Boomgaard, H. Strathmann, K Stability of Supported Liquid Membranes: State of the Art” , Sep. Sci. Technol., 31, 2733 (1996); T. M. Dreher and G. W Stevens, “InstabilityMediated by a Narrow Rim Phosphorylated Calix [4] arene, M J. Membrane Sci., 144, 57-64 (1998)) The disadvantage of supported liquid membranes is poor stability. The stability of the supported liquid membrane is poor, and the cause is related to the composition of the liquid membrane and the osmotic pressure. The feed solution and the dispersion solution do not contain liquid film components (organic solution, extract and modification solution), resulting in osmotic pressure difference (AJ B_ Kemperman, D. Bargeman, Th. Van Den Boomgaard, H. Strathmann, K Stability Of Supported Liquid Membranes: State of the Art", Sep. Sci. Technol., 31, 2733 (1996); TM Dreher and G. W Stevens, "Instability

Mechanisms of Supported Liquid Membranes”,Sep. Sci. Technol., 33, 835-853 (1998); J. F. Dozol, J. Casas, and A. Sastre, w Stability of Flat Sheet Supported Liquid Membranes in the Transport of Radionuclides from Reprocessing Concentrate Solutions”,J. Membrane Sci” 82, 237-246 (1993))。溫斯頓等 人為了嘗試解決此問題,使用了具有兩組中空纖維模組之支撐 式液膜,例如:中空纖維包含液膜(W. S. Winston Ho and Kamalesh K. Sirkar, eds., Membrane Handbook, Chapman & Hall,New York,1992)。在兩組微孔纖維薄膜結構中,一組是 用來攜帶含目標產物水溶液,而另一組是用來攜帶分散水溶 液。並且’藉由水溶液具有較高的壓力,使有機溶液位於兩組 套微孔纖維之間。另外,因為液膜會持續的補充,促使此中空 纖維液膜具有較高的穩定性。然而,此結構的缺點為需要兩組 纖維結構以達到低液膜濃度。 201032881 乳化液膜係以乳液(emulsion)作為產物選擇性分離液膜。乳 化液膜係由攪拌方式將乳液分散於外部連續相而成。其中,乳 I» 液的定義為兩種不互相溶的液體,以大小不同液滴方式分散於 另一液體中,例如:有機液體小液滴分散在水中稱為水中油相 型(water in oil)乳液。乳液係一油相液以分隔内部水滴與外部 連續相(W.S. Winston Ho and Kamalesh K. Sirkar, eds·, Membrane Handbook,Chapman & Hall, New York, 1992)。另 φ 外,乳液包含選擇性萃取劑,内部水滴包含分散劑。並且,可 藉由界面活性劑以增加乳液的穩定性。外部連續相係包含目標 產物溶液。因此’具有目標產物之溶液可萃取進入液膜中,之 後再將目標產物分散移入乳液之小水滴中。以靜電合併方式從 乳液中取出小水滴,接著進行沈澱或電鍍以得到該目標產物。 近年來科技界與工業界已經利用乳化液膜技術移除含有目 標產物水溶液中之金屬、烯土元素與物理放射性核種。其中, 以乳化液膜技術可移除之金屬包含:始、銅、辞、錄、采、錯、 録、銀。而以乳化液膜可移除之稀土元素包含:銪(europium)、 爛(lanthanum)與敛(neodymium) (W.S. Winston Ho and Kamalesh K. Sirkar, eds.9 Membrane Handbook, Chapman & Hall,New York,1992)。目前已經有大量的文獻報導以乳化液 膜移除始、錄、鑛、汞、船之技術(B. Raghuraman,N. Tirmizi, and J. M. Wiencek, M Emulsion Liquid Membranes for Wastewater Treatment. Equilibrium Models for Some Typical 7 201032881Mechanisms of Supported Liquid Membranes", Sep. Sci. Technol., 33, 835-853 (1998); JF Dozol, J. Casas, and A. Sastre, w Stability of Flat Sheet Supported Liquid Membranes in the Transport of Radionuclides from Reprocessing Concentrate Solutions", J. Membrane Sci" 82, 237-246 (1993). In order to try to solve this problem, Winston et al. used a supported liquid membrane with two sets of hollow fiber modules, for example: hollow fiber inclusion Liquid film (WS Winston Ho and Kamalesh K. Sirkar, eds., Membrane Handbook, Chapman & Hall, New York, 1992). In two sets of microporous fiber membrane structures, one set is used to carry an aqueous solution containing the target product, The other group is used to carry the dispersed aqueous solution, and 'the aqueous solution has a higher pressure, so that the organic solution is located between the two sets of microporous fibers. In addition, because the liquid film will continue to replenish, the hollow fiber liquid is promoted. The film has a high stability. However, this structure has the disadvantage of requiring two sets of fiber structures to achieve a low liquid film concentration. 201032881 Emulsion film is emulsion (emuls) Ion) as a product to selectively separate the liquid film. The emulsion film is obtained by dispersing the emulsion in the external continuous phase by stirring. Among them, the milk I» liquid is defined as two liquids which are not mutually soluble, and the droplets are different in size. Disperse in another liquid, for example: small droplets of organic liquid dispersed in water called water in oil emulsion. Emulsion is an oil phase liquid to separate internal water droplets from external continuous phase (WS Winston Ho and Kamalesh K. Sirkar, eds·, Membrane Handbook, Chapman & Hall, New York, 1992). In addition to φ, the emulsion contains a selective extractant, the internal water droplets contain a dispersing agent, and the surfactant can be used to increase the emulsion. Stability. The external continuous phase system contains the target product solution. Therefore, the solution with the target product can be extracted into the liquid film, and then the target product is dispersed and transferred into the small water droplets of the emulsion. The water droplets are taken out from the emulsion by electrostatic combination. Then, precipitation or electroplating is carried out to obtain the target product. In recent years, the chemical industry and the industry have used emulsion membrane technology to remove water containing the target product. The liquid metal, alkenyl earth elements and physical radionuclide. Among them, the metal removable by the emulsion film technology includes: beginning, copper, resignation, recording, mining, error, recording, silver. The rare earth elements removable with the emulsion film include: europium, lanthanum and neodymium (WS Winston Ho and Kamalesh K. Sirkar, eds.9 Membrane Handbook, Chapman & Hall, New York , 1992). A large number of literatures have been reported on the removal of precursors, recordings, minerals, mercury, and ship technology by emulsion membranes (B. Raghuraman, N. Tirmizi, and JM Wiencek, M Emulsion Liquid Membranes for Wastewater Treatment. Equilibrium Models for Some Typical 7 201032881

Metal-Extractant Systems,” Environ. Sci. Technol” 28, 1090-1098 (1994); T. Kakkoi, M. Goto, K. Sugimoto, K. Ohto, and F. Nakashio, “Separation of Cobalt and Nickel with Phenylphosphonic Acid Mono-4-tert-octylphenyl Ester by Liquid Surfactant Membranes," Sep. Sci. Technol., 30, 637-657 (1995);Metal-Extractant Systems, "Environ. Sci. Technol" 28, 1090-1098 (1994); T. Kakkoi, M. Goto, K. Sugimoto, K. Ohto, and F. Nakashio, "Separation of Cobalt and Nickel with Phenylphosphonic Acid Mono-4-tert-octylphenyl Ester by Liquid Surfactant Membranes," Sep. Sci. Technol., 30, 637-657 (1995);

R. S. Juang and J. D. Jiang, “Recovery of Nickel from a Simulated Electroplating Rinse Solution by Solvent Extraction and Liquid Surfactant Membrane,” J. Membrane Sci., 100, 163-170 (1995); H. Kasaini, F. Nakashio, and M. Goto, “Application of Emulsion Liquid Membranes to Recover Cobalt Ions from a Dual-component Sulphate Solution Containing Nickel Ions/* J. Membrane Sci., 146, 159-168 (1998); S. Y. B.RS Juang and JD Jiang, “Recovery of Nickel from a Simulated Electroplating Rinse Solution by Solvent Extraction and Liquid Surfactant Membrane,” J. Membrane Sci., 100, 163-170 (1995); H. Kasaini, F. Nakashio, and M Goto, “Application of Emulsion Liquid Membranes to Recover Cobalt Ions from a Dual-component Sulphate Solution Containing Nickel Ions/* J. Membrane Sci., 146, 159-168 (1998); SYB

Hu and J. M. Wiencek, “Emulsion-Liquid-Membrane Extraction of Copper Using a Hollow-Fiber Contactor,M AIChE J., 570-581 (1998))。 何與沙卡等人詳細的揭示了物理放射性核種移除技術。其 中,上述之物理放射性核種包含:銘(strontium)、絶(cesium)、 錯(technetium)與抽(uranium) (W.S. Winston Ho and Kamalesh K. Sirkar, eds., Membrane Handbook, Chapman & Hall, New York, 1992^另外,亦有其他文獻揭示以乳化液膜移除鋰技術 (I. Eroglu, R. Kalpakci, and G. Gunduz, “Extraction of Strontium Ions with Emulsion Liquid Membrane Technique” ,J. Membrane Sci.,80, 319-325 (1993))。 8 201032881 乳化液膜缺點在於液膜與含目標產物溶液長時間接觸時, 液膜產生膨脹現象。液膜膨脹造成分散劑在水滴中之濃度降 低’影響分散反應速率。另外,液膜膨脹降低了目標產物在水 " 滴中的濃度,影響了液膜的分離效果。此外,液膜膨脹造成膜 稀薄’影響了膜的穩定性《再者,液膜膨脹使液膜的黏度提高, 而高黏度液膜將提高乳液分解成非乳狀液之困難。乳化液膜另 一缺點在於液膜破裂現象,造成内部水滴進入含目標產物溶液 φ 中,降低了分離的效率。因此,拉古拉曼與威尼克揭示以微孔 中空纖維接觸器,降低膜膨脹現象與液漏現象。其中,乳化液 膜之缺點更包含製作與裂解乳液所必須的程序。 有鑑於此,一高穩定性支撐式液膜,並可達到從含該目標 產物溶液中移除並回收金屬、物理放射性核種、盤尼西林 (penicillin)與有機酸係一急需發展之技術。因此,何等人揭示 結合支撐性液膜與分散程序移除鉻(W.S. Winston Ho, 參 M Supported Liquid Membrane Process for Chromium Removal and Recovery”,U. S. Patent 6,171,563 (2001))、金屬(W.S.Hu and JM Wiencek, “Emulsion-Liquid-Membrane Extraction of Copper Using a Hollow-Fiber Contactor, M AIChE J., 570-581 (1998)). He and Shaka et al. reveal in detail the physical radioactive nuclear removal technology. Among them, the above physical radioactive nuclear species include: strontium, cesium, technetium and uranium (WS Winston Ho and Kamalesh K. Sirkar, eds., Membrane Handbook, Chapman & Hall, New York, 1992^ In addition, there are other literatures that disclose lithium removal by emulsion membranes (I. Eroglu, R. Kalpakci, and G. Gunduz, “Extraction of Strontium Ions with Emulsion Liquid Membrane Technique”, J. Membrane Sci ., 80, 319-325 (1993)). 8 201032881 The disadvantage of the emulsion membrane is that the liquid membrane swells when the liquid membrane is in contact with the target product solution for a long time. The liquid membrane swells to reduce the concentration of the dispersant in the water droplets. Influencing the rate of dispersion reaction. In addition, the liquid film expansion reduces the concentration of the target product in the water "drop, affecting the separation effect of the liquid film. In addition, the film expansion causes the film to be thin. The stability of the film is slammed. "Furthermore, the expansion of the liquid film increases the viscosity of the liquid film, and the high viscosity liquid film will increase the difficulty of decomposing the emulsion into a non-emulsion. Another disadvantage of the emulsion film is the rupture of the liquid film, resulting in The internal water droplets enter the target product solution φ, which reduces the efficiency of separation. Therefore, Lagulaman and Wynick reveal the use of microporous hollow fiber contactors to reduce the phenomenon of film expansion and liquid leakage. Among them, the disadvantage of emulsion film It also contains the necessary procedures for the preparation and lysis of the emulsion. In view of this, a highly stable supported liquid membrane, and can remove and recover metal, physical radioactive nucleus, penicillin and organic from the solution containing the target product. Acid is a technology that needs to be developed urgently. Therefore, how to disclose the combination of supporting liquid film and dispersion process to remove chromium (WS Winston Ho, 参 M Supported Liquid Membrane Process for Chromium Removal and Recovery), US Patent 6,171,563 ( 2001)), metal (WS

Winston Ho, M Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Radionuclides and Metals”,U. S. Patent 6,328,782 (2001); W.S.Winston Ho, M Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Radionuclides and Metals", U.S. Patent 6,328,782 (2001); W.S.

Winston Ho, “Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Metals”, U. S. Patent 6,350,419 (2002))、物理放射性核種(W.S. Winston 201032881Winston Ho, "Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Metals", U. S. Patent 6,350, 419 (2002)), Physical Radionuclide (W.S. Winston 201032881)

Ho, wCombined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Radionuclides and Metals1* , U. S. Patent 6,328,782 (2001); W.S. Winston Ho, “Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Radionuclides”,U. S. Patent 6,696,589 (2004))、盤尼西林(penicillin)與有機酸(W.S.Ho, wCombined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Radionuclides and Metals 1*, US Patent 6,328,782 (2001); WS Winston Ho, "Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Radionuclides", US Patent 6,696,589 (2004)), penicillin and organic acids (WS)

Winston Ho, “Combined Supported Liquid Membrane / .Strip Dispersion Process for the Removal and Recovery of Penicillin and Organic Acids”,U. S. Patent 6,433,163 (2002))。另外,關 於以二烴單硫代填酸萃取劑(dialkyl monothiophosphoric acid extractants)移除金屬技術亦被揭露。其中,二烴單硫代填酸 萃取劑應用於具分散程序之支撐性液膜中。(W.S. Winston Ho and Bing Wang, “Combined Supported Liquid Membrane / StripWinston Ho, "Combined Supported Liquid Membrane / .Strip Dispersion Process for the Removal and Recovery of Penicillin and Organic Acids", U.S. Patent 6, 433, 163 (2002)). In addition, techniques for removing metals with dialkyl monothiophosphoric acid extractants have also been disclosed. Among them, the dihydrocarbon monothioacidic acid extractant is applied to a supporting liquid film having a dispersion procedure. (W.S. Winston Ho and Bing Wang, “Combined Supported Liquid Membrane / Strip

Dispersion Process for the Removal and Recovery of Metals: Dialkyl Monothiophosphoric Acids and Their Use asDispersion Process for the Removal and Recovery of Metals: Dialkyl Monothiophosphoric Acids and Their Use as

Extractants”,U. S. Patent 6,291,705 (2001))目前為止,何等 人尚未揭示以具分散程序之支撐式液膜移除銦。 因此,一種可從工業生產製程以及廢水中移除與回收銦之 高穩定性且高效率之支撐式液膜,係亟欲發展之技術。 【發明内容】 本發明係關於一種從溶液中移除與回收銦的方法。本發明 所使用的方法係支撐式液膜技術;藉由支撐式液膜進行拿取分 散以達回收銦之目標。 201032881 於實施例中,本發明揭露一從進料溶液中移除與回收鋼 的程序。f先’-含有la的進料溶液通過支撐式液膜的一端, 其中液膜係包含至少—多孔性切材,並於支撑式液膜另1 使用一分散液作為拿取分散銦之^此拿取銦之分散液可由分 散一水相拿取溶液於有機液禮中製得;其中,财機液體可為 一混合液。其次’上述之拿取銦之分散液的全部或-部分經由 靜置刀相’使其分成-有機相與-水相拿取溶液。其中,水相 拿取溶液巾含有濃㈣姻。拿取銦之分散液其賴的有機相可 輕易/占濕多孔性切材的孔洞而形成—穩定的支撑式液膜。本 發月所揭露之程序與傳統支撑式液膜程序或係溶劑萃取 (extraction)程序相較,具有相當優勢。 本發明之一目的在提供一支撐式液膜程序來從溶液中移除 與回收銦’並提南薄膜與程序的穩定性。本發明之另—目的係 使用支撐式液膜程序達到高比例與高含量的銦移除與回Extractants", US Patent 6,291,705 (2001)) So far, no one has disclosed the removal of indium by a supported liquid film with a dispersion process. Therefore, a high stability can be removed and recovered from industrial processes and wastewater. The invention relates to a method for removing and recovering indium from a solution. The method used in the present invention is a supported liquid film technology; The target is recovered by a supported liquid film to achieve the goal of recovering indium. 201032881 In an embodiment, the present invention discloses a procedure for removing and recovering steel from a feed solution. f first '- a feed solution containing la One end of the supported liquid film, wherein the liquid film comprises at least a porous cutting material, and the supporting liquid film is further used as a dispersion to disperse the indium; the dispersion of the indium may be dispersed in the aqueous phase. Taking the solution in an organic liquid ritual; wherein, the liquid of the machine can be a mixed liquid. Secondly, all or part of the above-mentioned dispersion of indium is separated into - organic phase by means of a stationary knife phase - the aqueous phase takes the solution, wherein the aqueous phase takes the solution towel to contain a concentrated (four) marriage. The organic phase of the dispersion of indium can be easily formed/occupied by the pores of the wet porous material--stable support liquid Membrane. The procedure disclosed in this publication has considerable advantages over conventional supported liquid membrane procedures or solvent extraction procedures. One object of the present invention is to provide a supported liquid membrane procedure for removal from solution. And the recovery of indium' and the stability of the film and the program. Another object of the present invention is to use a supported liquid film program to achieve high proportion and high content of indium removal and back.

收。本發明之再-目的為❹_支樓魏膜程序提高銦回收效 能與效率,並㈣-高濃度的銦回收液。 【實施方式】 本發明在此揭不-種支樓式液膜拿取分散程序,以自進料 溶液中移除並回收銦。為了能徹底地瞭解本發明,將在下列的 描述中提出詳盡的步驟及其組成。顯然地 ,本發明的施行並未 限定於該領域之技藝者所熟㈣特殊細節。另 一方面,眾所周 去的組成或步驟並未梅迷於細節中,以避免造成本發明不必要 11 201032881 之限制。本發明的較佳實施例會詳細描述如下,然而除了這些 詳細插述之外’本發明還可以廣泛地施行在其他的實施例中, 且本發明的範圍不受限定,其以之後的專利範圍為準。 本發明係關於一種從溶液中移除與回收铟的方法。本發明 所使用的方法係支撐式液膜技術:藉由支撐式液膜進行拿取分 散以達回收銦之目標。適用的溶液可以來自工業生產製程以及 廢水。Received. A further object of the present invention is to improve the efficiency and efficiency of indium recovery by the ❹_支楼魏膜程序, and (iv) - a high concentration of indium recovery liquid. [Embodiment] The present invention discloses a method for taking a dispersion of a liquid crystal film to remove and recover indium from a feed solution. In order to thoroughly understand the present invention, detailed steps and compositions thereof will be set forth in the following description. Obviously, the practice of the invention is not limited to the specific details of those skilled in the art. On the other hand, the composition or steps of the public are not obsessed with the details to avoid the limitation of the present invention. The preferred embodiments of the present invention will be described in detail below, but the present invention may be widely practiced in other embodiments, and the scope of the present invention is not limited by the following detailed description. quasi. The present invention relates to a method of removing and recovering indium from a solution. The method used in the present invention is a supported liquid membrane technique: it is dispersed by a supported liquid membrane to achieve the goal of recovering indium. Suitable solutions can come from industrial processes and wastewater.

於一實施例中’本發明揭露一從進料溶液中移除與回收銦 的程序。首先’一含有銦的進料溶液通過支撐式液膜的一端, 其中液膜係包含一多孔性(微孔)支撐材,並於支撐式液膜另 一端使用一分散液作為拿取拿取銦之用。此拿取銦之分散液可 由分散一水相拿取溶液於有機液體中製得;其中,該有機液體 可為一混合液。其次,此拿取銦之分散液的全部或一部分可經 由靜置分相,使其分成一有機相與一水相拿取溶液。其中,水 相拿取溶液中含有濃縮的銦。 本發明可使用任何支撐式液膜架構。於一實施例中所採用 者係為中空纖維(hollow fiber)膜組。中空纖維膜組包含微孔 (miCroporous)中空纖維,以形成一殼管(shell_and_tube)結構。 本發明中,拿取分散液係流過該殼管結構中之殼端或係管端, 而進料溶液則流過另一端。採用中空纖維架構之支撐式液膜提 供了拿取分散液穩定的支撐,據此確保程序的穩定進行,如第 一圖所示 12 201032881 為達成本發明之目的(回收銦)’拿取回收程序係定義為產生 一混合液,其具有一水相與一有機相。其中,水相係包含一水 相拿取溶液(aqueous strip s〇luti〇n) ’而有機相係包含一或多種 ^ 萃取劑(eXtractant)存在於一有機液體中。分散液係藉由混合該 水相與該有機相而形成,如第一圖所示。此種組合令水相拿取 溶液得以液滴形式存在於連續的有機相中。在萃取過程中,拿 取分散液流過中空纖維膜膜組,使得拿取分散液得以維持。拿 • 取分散液的有機相極易沾濕多孔中空纖維的親水性孔洞,而形 成一穩定的液膜。 第二圖係為根據本發明之一實施例所建構,支撐式液膜結 合拿取分散作用以回收銦之裝置的放大示意圖。在程序進行 時,支撐式液膜的拿取分散液端的壓力為p〇。此時,在支撐 式液膜膜組的進料溶液端,施加一低壓Pa (通常在2 psi左 右)’其中壓力Pa大於壓力p。。此壓差可防止拿取分散液中 ® 的有機溶液滲過中空纖維的孔洞而到達液膜的進料溶液端。分 散於水相拿取溶液中的液滴其大小約為80至800微米 (micr〇meter)。此種尺寸已比微孔性支撐結構的孔洞尺寸大上 好幾個級數’因此,在支撐性液膜之拿取分散液端的液滴不會 穿過的孔洞而到達進料溶液端。 在本發明所揭露之支擇性液膜拿取分散系統中,有機膜溶 液,亦即拿取分散液的有機相,會持續被供給至支撐材的孔洞 中。此種持續性的供給可確保支撐性液膜的穩定持續運作。此 13 201032881 外,藉由有機相與拿取相(Strip phase)的直接接觸,也提供了 有效的質傳以供拿取程序進行。有機相與拿取相甚至可藉由混 合,例如高剪力向混合(high-shearing mixing)而增加兩者間的 * 接觸面積。 當銦被移除完成後’拿取分散液的混合器(例如:攪拌器) 就停止,分散液靜置分相直至其分成兩相為止。其中,所分成 兩相分別為一有機膜溶液與一濃縮拿取溶液(eoncentrated φ strip solution),而該濃縮拿取液即為本發明所揭露程序的產 物。 其中,進料溶液可包含來自於工業程序液或廢水,等含有 銦之溶液,不限於工業程序液及廢水。 本發明所採用之維孔洞支撐材可包含如微孔聚丙烯 (microporous polypropylene) 、 聚四 氟乙烯 【polytetrafluoroethylene(PTFE)】、聚乙稀(polyethylene)、 ❿ 聚礙(polysulfone)、聚 風(polyethersulfone)、.聚謎謎酮 (polyetheretherketone)、聚亞醯胺(polyimide)、聚醯胺 (polyamide)、環狀聚酿氨(polyaramide)等物質,或其混合物。 其中,較佳支撐材為微孔洞聚丙稀(polypropylene)以及聚四氟 乙稀中空纖維(polytetrafluoroethylene hollow fibers)。 拿取分散液的水相部份包含至少一種酸性水相溶液,例如 礦物酸。礦物酸可採用者包含:鹽酸(HC1)、硫酸(H2S04)、硝 酸(hno3),以及乙酸(CH3COOH)等,但不限於此。其中,酸 201032881 液的濃度約選擇為介於0.1 Μ至18 Μ間。較佳者,其可介於 1 Μ 至 6 Μ。 水相之拿取溶液係分散於連續有機相内,而該連續有機相 含有一或多種萃取劑(extractants)。萃取劑可萃取進料溶液中 的銦。許多萃取劑已被發現並公佈可從廢水或工業程序液中拿 取姻,並可應用於本發明中。In one embodiment, the present invention discloses a procedure for removing and recovering indium from a feed solution. First, a feed solution containing indium passes through one end of a supported liquid membrane, wherein the liquid membrane comprises a porous (microporous) support material, and a dispersion is taken at the other end of the supported liquid membrane for taking and taking. Indium. The indium dispersion can be obtained by dispersing an aqueous phase to take a solution in an organic liquid; wherein the organic liquid can be a mixed liquid. Next, all or a portion of the dispersion in which indium is taken may be subjected to static phase separation to separate into an organic phase and a liquid phase to take the solution. Among them, the aqueous take-up solution contains concentrated indium. Any supported liquid membrane architecture can be used with the present invention. The one used in one embodiment is a hollow fiber membrane group. The hollow fiber membrane group contains miCroporous hollow fibers to form a shell_and_tube structure. In the present invention, the take-up liquid is passed through the shell end or the end of the shell in the shell structure, and the feed solution flows through the other end. The supported liquid membrane with hollow fiber structure provides stable support for the dispersion, thereby ensuring the stability of the process, as shown in the first figure 12 201032881 for the purpose of the present invention (recovering indium) It is defined as producing a mixed liquid having an aqueous phase and an organic phase. Wherein, the aqueous phase comprises an aqueous strip s〇luti〇n and the organic phase comprises one or more extracting agents (eXtractant) present in an organic liquid. The dispersion is formed by mixing the aqueous phase with the organic phase, as shown in the first figure. This combination allows the aqueous take-up solution to be present in the form of droplets in a continuous organic phase. During the extraction process, the dispersion is passed through the hollow fiber membrane membrane group so that the take-up dispersion is maintained. The organic phase of the dispersion is easily wetted by the hydrophilic pores of the porous hollow fiber to form a stable liquid film. The second figure is an enlarged schematic view of a device constructed in accordance with an embodiment of the present invention in which a supported liquid film is combined to take a dispersion to recover indium. The pressure of the supported liquid film at the end of the dispersion is p〇 during the progress of the procedure. At this time, at the end of the feed solution of the supported liquid membrane membrane group, a low pressure Pa (usually around 2 psi) is applied, wherein the pressure Pa is greater than the pressure p. . This pressure difference prevents the organic solution in the dispersion from penetrating through the pores of the hollow fiber to reach the feed solution end of the liquid film. The droplets dispersed in the aqueous phase take-up solution are about 80 to 800 microns (micr〇meter). This size has been several orders of magnitude larger than the size of the pores of the microporous support structure. Therefore, the end of the feed solution is reached at the end of the supporting liquid film where the droplets at the end of the dispersion do not pass through. In the selective liquid film take-up dispersion system disclosed in the present invention, the organic film solution, that is, the organic phase from which the dispersion is taken, is continuously supplied into the pores of the support. This continuous supply ensures stable and continuous operation of the supporting liquid film. In addition to the direct contact between the organic phase and the strip phase, this also provides an effective quality for the acquisition process. The organic phase and the take-up phase can even increase the * contact area between the two by mixing, such as high-shearing mixing. When the indium is removed, the mixer (e.g., the agitator) that takes the dispersion stops, and the dispersion is allowed to stand for phase separation until it is separated into two phases. The two phases are respectively an organic membrane solution and a concentrating φ strip solution, and the concentrated extract is the product of the procedure disclosed in the present invention. Among them, the feed solution may include a solution containing indium from industrial process liquid or waste water, and is not limited to industrial process liquid and waste water. The pore support material used in the present invention may comprise, for example, microporous polypropylene, polytetrafluoroethylene (PTFE), polyethylene, polysulfone, polyethersulfone. ), polyetheretherketone, polyimide, polyamide, polyaramide, or the like, or a mixture thereof. Among them, preferred support materials are microporous polypropylene and polytetrafluoroethylene hollow fibers. The aqueous phase portion of the dispersion contains at least one acidic aqueous phase solution, such as a mineral acid. The mineral acid may include, but is not limited to, hydrochloric acid (HC1), sulfuric acid (H2S04), nitric acid (hno3), and acetic acid (CH3COOH). Among them, the concentration of acid 201032881 is about 0.1 Μ to 18 。. Preferably, it can be between 1 至 and 6 Μ. The aqueous phase take-up solution is dispersed in a continuous organic phase containing one or more extractants. The extractant extracts the indium from the feed solution. Many extractants have been discovered and published for use in wastewater or industrial process liquors and can be used in the present invention.

萃取劑包含·一烧基碟酸(dialkyl phosphoric acids)與燒基笨 亞磷酸(alkyl phenylphosphonic acids)。上述之二烷基碟酸 (dialkyl phosphoric acids)可選自下列族群之一者或其混合 物:二(2-乙基己基)碟酸【di(2-ethyl-hexyl) phosphoric acid (D2EHPA)】、二(2-丁基辛基)麟酸【di(2-butyl-octyl) phosphoric acid】、二(2-己基癸基)填酸【di(2-hexyl-decyl) phosphoric acid】、二(2-辛基癸基/2-己基十二烧基)碟酸 【di(2-octyl-decyl/2-hexyl-dodecyl) phosphoric acid】、二(2-辛 基·十二烧基)破酸【di(2-octyl-dodecyl) phosphoric acid】、二(己 基)填酸【di(hexyl) phosphoric acid】、二(庚基)鱗酸【di(heptyl) phosphoric acid】、二(辛基)填酸【di(octyl) phosphoric acid】、 二(壬基)填酸【di(nonyl) phosphoric acid】、二(癸基)鱗酸 【di(decyl) phosphoric acid】、二(-}--烧基)填酸【di(undecyl) phosphoric acid】.、二(十二烧基)鱗酸【di(dodecyl) phosphoric acid】、二(十三炫基)填酸【di(tridecyl) phosphoric acid】、二(十 四烧基)構酸【di(tetradecyl) phosphoric acid】、二(十五烧基) 15 201032881 磷酸【di(pentadecyl) phosphoric acid】、二(十六烷基)磷酸 [di(hexadecyl) phosphoric acid 】、二(十七烧基)碟酸 【di(heptadecyl) phosphoric acid 】、二(十八烷基)磷酸 • 【di(octadecyl) phosphoric acid 】、二(十九烧基)構酸 【di(nonadecyl) phosphoric acid 】、二(二十烧基)構酸 【di(decadecyl) phosphoric acid 】、二(二十一烧基)填酸 [di(undecadecyl) phosphoric acid ]、二(二十二烧基)填酸 ❹ 【 di(dodecadecyl) phosphoric acid ]、二(二十三烧基)雄酸 【di(tridecadecyl) phosphoric acid 】、二(二十四烧基)雄酸 【di(tetrdecadecyl) phosphoric acid】、二(二十五炫基)碗酸 【di(pentadadecyl) phosphoric acid】、二(二十六烧基)麟酸 【di(hexadecadecyl) phosphoric acid】。較佳者,其可為二(2-乙基己基)球酸【di(2-ethyl-hexyl) phosphoric acid (D2EHPA)】。 〇 上述之二烧基苯亞墙酸(alkyl phenylphosphonic acid)的 烧基(alkyl group)可為飽和者(paraffinic,or say saturated),可 包含6到26個碳原子。上述之烷基苯亞磷酸可選自下列族 群之一者或其混合物:(2-丁基-1-辛基)苯亞磷酸 【2-butyl-1 _octyl phenylphosphonic acid (ΒΟΡΡΑ)】、(2-己基 -1-癸基)苯亞填酸(2-hexyl-l-decyl phenylphosphonic acid) ' (2-辛基-1-癸基/2-己基-1-十二烷基)苯亞磷酸 (2-octyl-l-decyl/2-hexyl-l-dodecyl phenylphosphonic acid) ' (2- 16 201032881The extractant comprises dialkyl phosphoric acids and alkyl phenylphosphonic acids. The above dialkyl phosphoric acids may be selected from one of the following groups or a mixture thereof: di(2-ethyl-hexyl) phosphoric acid (D2EHPA), Di(2-butyl-octyl phosphoric acid), di(2-hexyl-decyl) phosphoric acid, di(2-hexyl-decyl) phosphoric acid -(octyl-decyl/2-hexyl-dodecyl phosphoric acid), di(2-octyl-12)-destroyed acid Di(2-octyl-dodecyl) phosphoric acid], di(hexyl) phosphoric acid, di(heptyl) phosphoric acid, di(octyl) acid [di(octyl) phosphoric acid], di(nonyl) phosphoric acid, di(decyl) phosphoric acid, di(-}--alkyl) Acid (di(undecyl) phosphoric acid], di(dodecyl) phosphoric acid, di(tridecyl) phosphoric acid, di(tridecyl) phosphoric acid Fourteen bases) acidity [di(t Etradecyl) phosphoric acid], two (five-firing) 15 201032881 phosphoric acid [di(pentadecyl) phosphoric acid], di(hexadecyl) phosphoric acid], two (seventeen-sodium) dish Acid [di(heptadecyl) phosphoric acid], bis(octadecyl)phosphoric acid, [di(octadecyl) phosphoric acid], di(nonadecyl) phosphoric acid, di (twenty) Di(decadecyl phosphoric acid), di(undecadecyl) phosphoric acid, di(docalcyl) phosphoric acid [di(dodecadecyl) phosphoric] Acid], di(tridecadecyl) phosphoric acid, di(tetrdecadecyl) phosphoric acid, di (twenty-five) Acid [di (pentadadecyl) phosphoric acid], di (hexadecadecyl) phosphoric acid [di (hexadecadecyl) phosphoric acid]. Preferably, it may be di(2-ethyl-hexyl) phosphoric acid (D2EHPA). 〇 The alkyl group of the above-mentioned alkyl phenylphosphonic acid may be a paraffinic (or say saturated) and may contain 6 to 26 carbon atoms. The above alkylbenzene phosphite may be selected from one of the following groups or a mixture thereof: (2-butyl-1-octyl)benzenephosphite [2-butyl-1 _octyl phenylphosphonic acid (ΒΟΡΡΑ)], (2- 2-hexyl-l-decyl phenylphosphonic acid '(2-octyl-1-indenyl-2-hexyl-1-dodecyl)phenylphosphoric acid (2) -octyl-l-decyl/2-hexyl-l-dodecyl phenylphosphonic acid) ' (2- 16 201032881

辛基-1-十二烧基)苯亞鱗酸(2-octyl-l-dodecyl phenylphosphonic acid)、己基苯亞碟酸(hexyl phenylphosphonic acid)、庚基苯亞填酸(heptyl phenylphosphonic acid)、辛基苯亞 鱗酸(octyl phenylphosphonic acid)、壬基苯亞填酸(nonyl phenylphosphonic acid)、癸基苯亞碟酸(decyl phenylphosphonic acid) ' -\—烧基苯亞填酸(undecyl phenylphosphonic acid)、十 二烧基苯亞填酸(dodecyl phenylphosphonic acid)、十三烧基苯 亞填酸(tridecyl phenylphosphonic acid)、十四燒基苯亞雄酸 (tetradecyl phenylphosphonic acid)、十五烧基苯亞構酸 (pentadecyl phenylphosphonic acid)、十六烧基苯亞填酸 (hexadecyl phenylphosphonic acid)、十七烧基苯亞雄酸 (heptadecyl phenylphosphonic acid)、十八烧基苯'亞填酸 (octadecyl phenylphosphonic acid)、十九烧基苯亞填酸 (nonadecyl phenylphosphonic acid)、二十烧基苯亞鱗酸 (decadecyl phenylphosphonic acid)、二十一院基苯亞破酸 (undecadecyl phenylphosphonic acid)、二十二烧基苯亞鱗酸 (dodecadecyl phenylphosphonic acid)、二十三烧基苯亞鱗酸 (tridecadecyl phenylphosphonic acid)、二十四烧基苯亞鱗酸 (tetrdecadecyl phenylphosphonic acid)、二十五烧基苯亞磷酸 (pentadadecyl phenylphosphonic acid)、二十六烧基苯亞麟酸 (hexadecadecyl phenylphosphonic acid)。其中,較佳者為(2·丁· 基-1·辛基)苯亞鱗酸【2-butyl-1-octyl phenylphosphonic acid 17 201032881 (ΒΟΡΡΑ)】。 本發明所使用之拿取分散液可選擇性更包含一碳水化合溶 劑或係混合物。此碳氫化合物溶劑或混合物其分子具有之碳原 子數目可為6到18個,較佳者為1〇到14個。碳氫化合物溶 劑包含:正癸烧(n-decane)、正]--烧(n-undecane)、正十二烧 (n_dodecane)、正十三烧(n_tridecane)、正十四烧 (n-tetradecane)、異癸烧(isodecane)、異十·一烧(isoundecane)、 ❹ 異十二烷(isododecane)、異十三烷(isotridecane)、異十四烷 (isotetradecane)、異烧烴溶劑(isoparaffinic hydrocarbon solvent) 【具有閃點92°C、彿點254°C、黏度3 cp(於25°C )、以及密度 0.791 g/ml (於15.6°C)】,或是其混合物。 本發明所提供之拿取分散液可包含一改性劑以加強其配位 性(complexation)以及/或對於目標物質的拿取性。改性劑可為 醇類(alcohol)、硝基苯貌基_(nitraphenyl_alkyl ether)、三烧基 〇 磷酸酯(trialkyl phosphate)或其混合物。其中,醇類可為如己醇 (hexanol)、庚醇(heptanol)、辛醇(octanol)、壬醇(nonanol)、正 癸醇(decanol)、十一醇(undecanol)、十二醇(dodecanol)、十三 醇(tridecanol)、十四醇(tetradecanol)、十五醇(pentadecanol)、 十六醇(hexadecanol)、十七醇(heptadacanol)、十八醇 (octadecanol)或其混合物。此外,硝基苯烷基醚(nitr〇phenyl alkyl ether)可為如:鄰硝基苯辛醚【0_nitr0phenyl octyl ether (o-NPOE)】、鄰硝基苯庚越(0_nit;r〇phenyl heptyl ether)、鄰确 18 201032881 基苯己醚(o-nitrophenyl hexyl ether)、鄰確基苯戊謎 【nitrophenyl pentyl ether (o-NPPE)】、鄰確基苯丁醚 (o-nitrophenyl butyl ether)、鄰硝基苯丙醚(〇-nitrophenyl propyl " ether) ’或其混合物。再者,填酸三烷酯(triaikyl phosphate) 可為如:鱗酸三丁醋(tributyl phosphate)、碟酸順(2-乙基己基) 酉旨【tris(2_ethylhexyl) phosphate】。 本發明所揭露之拿取分散液其有機液體包含體積百分比2 φ 至100(亦即莫耳體積濃度約0.05M至3M)的萃取劑,以及體 積百分比0至20的改性劑存在於碳氫化合物溶劑或其混合物 中。較佳者,拿取分散液其有機液體包含體積百分比5至4〇 的萃取劑,以及體積百分比丨至1〇的改性劑存在於碳氫化合 物溶劑或其混合物中。更佳者,拿取分散液其有機液體包含體 積百分比5至40的萃取劑,以及體積百分比1至1〇的十二醇 (deCan〇1)存在於脂肪族碳氫溶劑(isoparaffinic hydrocarbon ® S〇1Vent)或係正十二烷(n-dodecane)中。應注意者係為,上述 各百分比例若無特別指定,係為體積百分比。 相較於傳統支撐性液膜技術,本發明所揭露者在應用以自 進料/谷液中去除回收銦方面具有相當優勢。這些優勢包含較佳 之膜穩疋性、較低之成本、程序操作簡化、較佳之質傳通量 (flux)、以及較佳之銦回收率。 本發明所揭露之技術可穩定供給有機薄 膜溶液至中空纖維 支揮材的孔/同中,以供移除並回收銦自進料溶液中之用。此種 201032881 穩定供給使得本發明所揭露之支撐性液膜較傳統液膜稞定,使 . ㈣更為穩定闕進行。此外’本發料需㈣兩組薄棋膜組 以便輪流操作與重生(recharging”因此,本發明所 • β路之技術 可同時降低硬體與操作的成本。同時,本發明所揭露之移除技 術其操作較之傳統技術者更為簡便。 本發明所揭露之技術中,有機/萃取相可直接接觸拿取水 相。此兩相之混合使得除了原本中空纖維所提供之質傳表面 # 積外,更多之質傳表面積得以被利用,據此提升目標物質自有 機相拿取的效率。提升之拿取效率進而增進了銦被萃取時的質 傳通量。 本發明所揭露之技術提供了一種新型的支撐性液膜以移除 並回收姻之用’且其拿取水相與有機相的體積比較具彈性。此 種彈性使得本發明可採用較少體積之水相拿取溶液(aqueous stnp phase)以達到較高之回收銦溶液濃度。高濃度的回收銦溶 ® 液係高價值的產品可供再利用或係直接銷售。 本發明可藉由以下範例做較佳說明。應注意者係為,範例 並非用以限制本發明之範圍;相反的,範例係用以說明在發明 精神内’本發明所可被據以實施的各種方式,以及實施方式的 各種可能修改。本發明之範圍應由以下權力請求範圍定義。 範例 基本製備程序 在以下範例中,支撐性液膜技術結合一拿取分散液(strip 20 201032881 dispersion)將被用以自一水相進料溶液中萃取銦至一有機溶液 中。其中,一水相拿取液(strip solution)將被分散以持續拿取 * 被萃取的銦。支撐性液膜系統包含一中空纖維薄膜膜組 ' (Liquid-Cel,extra-flow 2.5x8, Membrana-Charlotte,USA)、一進 料溶液槽、一進料幫浦(model 7592-50, Cole-Parmer,USA)以將 進料傳輸至聚丙浠(polypropylene)中空纖維處、一拿取分散 液槽,該拿取分散槽附有一攪拌器(mixer, SS-NZ-1000, Eyela, φ Japan)以完全分散水相拿取溶液於有機溶液中。支撐性液膜系 統更包含另一幫浦(model 7553-70,Cole-Parmer,USA)以將包 含水相物質之油相物質傳輸至薄膜膜組的殼端(shell side)。中 空纖維膜組之直徑係為6.35公分(2.5英吋),其長度為20.3 公分(8英吋),並具有薄膜表面積1.4平方米。 以下之範例係於逆流(countercurrent)膜式中操作。進料溶液 流經微孔洞聚丙烯(polypropylene)中空纖維膜組的管端(tube φ side);被萃取的銦則被拿取至薄膜膜組以及分散槽中,被分散 的拿取溶液中。 含有銦的水相進料溶液被置於進料槽中並用磁性震盡棒以 300 rpm轉速震盪。拿取溶液係為5 Μ的鹽酸溶液,其係藉由 一雙刀片攪拌槳(直徑8.5公分)以300 rpm轉速而分散於—有 機溶液中。該有機溶液含有二(2-乙基己基)鱗酸 【di(2-ethyl-hexyl) phosphoric acid,D2EHPA】(Merck 提供)存 在於異構炫烴溶劑(Is〇par-L)(ExxonMobil提供)中以作為鋼的 21 201032881 萃取劑。 在以下大部分實驗中,除另外指定,二(2_乙基己基)碟酸 .(D2EHPA)在異構烷烴溶劑(〜ρ叫巾的濃度係為〇顧 (20.5vol%)。有機溶液並含有體積百分比2的十二醇 (1-dode⑽D (Merck提供)以作為萃取劑的改性刺(在以下範 例中,若無另外指定則皆以十二醇作為萃取劑的改性劑)。若 無特別指定,有機溶液的總體積約為〇9L(9〇〇mi),而拿取溶 ❹ 液的體積約為0.12L(120ml)。進料與分散槽的溫度維持於a 〇C。 Μ,進料溶液流經中空纖維膜組的管端,當中空織維膜 中充滿進料溶液後,包含水相物質之油相物質即被幫浦送至中 空纖維膜組的殼端。為防止有機相穿過中空纖維的孔洞而進人 進料溶液中,管端會被施以-正壓力,例如:約較殼端高4至 5 psi左右。於以下範例,若鱗別指定則祕將於此壓差下 • 讀。系統運作時’進料與分散溶液都係自槽中被幫浦送至薄 膜膜組,並再回送至槽中。幫浦運送流體的速度約為i L/min。 在實驗中,每隔一固定時間就取樣進料與拿取溶液。拿取 分散溶液所取出之樣品被靜置分相直至相分離出現為止。接 著’分析自拿取分散溶液以及進料溶液所取出的水相樣品以決 定其中銦的濃度。於以下各範例中,若無特別指定則分析係藉 由原子吸附分光先度 s十(atomic absorption spectrophotometer, GBC 906, GBC, Australia)完成。其他的分析方法可包含如電 22 2010328812-octyl-l-dodecyl phenylphosphonic acid, hexyl phenylphosphonic acid, heptyl phenylphosphonic acid, xin Octyl phenylphosphonic acid, nonyl phenylphosphonic acid, decyl phenylphosphonic acid '-\-undecyl phenylphosphonic acid, Dodecyl phenylphosphonic acid, tridecyl phenylphosphonic acid, tetradecyl phenylphosphonic acid, fifteen phenyl phthalate (pentadecyl phenylphosphonic acid), hexadecyl phenylphosphonic acid, heptadecyl phenylphosphonic acid, octadecyl phenylphosphonic acid, ten Nonadecyl phenylphosphonic acid, decadecyl phenylphosphonic acid, undecadecyl phenylphosphon Ic acid), dodecadecyl phenylphosphonic acid, tridecadecyl phenylphosphonic acid, tetrdecadecyl phenylphosphonic acid, Pentadadecyl phenylphosphonic acid, hexadecadecyl phenylphosphonic acid. Among them, preferred is (2-butyl-1-octyl phenylphosphonic acid 17 201032881 (ΒΟΡΡΑ)]. The take-up dispersion used in the present invention may optionally further comprise a carbohydrate hydrating solvent or a mixture. The hydrocarbon solvent or mixture may have from 6 to 18 carbon atoms, preferably from 1 to 14 carbon atoms. The hydrocarbon solvent includes: n-decane, n-undecane, n-dodecane, n-tridecane, n-tetradecane ), isodecane, isoundecane, isododecane, isotridecane, isotetradecane, isoparaffic hydrocarbon Solvent) [haves a flash point of 92 ° C, a point of 254 ° C, a viscosity of 3 cp (at 25 ° C), and a density of 0.791 g / ml (at 15.6 ° C)], or a mixture thereof. The take-up dispersion provided by the present invention may comprise a modifier to enhance its complexation and/or handleability to the target material. The modifier may be an alcohol, a nitraphenyl-alkyl ether, a trialkyl phosphate or a mixture thereof. Among them, the alcohol may be, for example, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanoyl ), tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadacanol, octadecanol or mixtures thereof. Further, the nitr〇phenyl alkyl ether may be, for example, o-nitrophenyloctyl ether [0_nitr0phenyl octyl ether (o-NPOE)], o-nitrophenyl hep-yet (0_nit; r〇phenyl heptyl ether) ), 邻为18 201032881 o-nitrophenyl hexyl ether, nitrophenyl pentyl ether (o-NPPE), o-nitrophenyl butyl ether, neighbor Nitrophenyl propyl "ether" or a mixture thereof. Further, the triaikyl phosphate may be, for example, tributyl phosphate or tris(2-ethylhexyl) phosphate. The extracting liquid disclosed in the present invention has an organic liquid containing an extractant having a volume percentage of 2 φ to 100 (that is, a molar volume concentration of about 0.05 M to 3 M), and a modifier having a volume percentage of 0 to 20 present in the hydrocarbon. Compound solvent or a mixture thereof. Preferably, the dispersion is taken from an organic liquid containing 5 to 4 liters of the extractant, and the modifier having a volume percentage of 丨 to 1 Torr is present in the hydrocarbon solvent or a mixture thereof. More preferably, the organic liquid containing the dispersion contains 5 to 40 parts by volume of the extractant, and the volume of 1 to 1 〇 of dodecyl alcohol (deCan〇1) is present in the aliphatic hydrocarbon solvent (isoparaffinic hydrocarbon ® S〇). 1Vent) or n-dodecane. It should be noted that the above percentages are percentages unless otherwise specified. Compared to conventional supported liquid film technology, the present inventors have considerable advantages in the application of self-feeding/gluten removal of recovered indium. These advantages include better film stability, lower cost, simplified process operation, better flux, and better indium recovery. The technique disclosed herein stabilizes the supply of the organic film solution to the pores/same of the hollow fiber support for removal and recovery of the indium from the feed solution. Such a stable supply of 201032881 makes the supporting liquid film disclosed in the present invention more stable than the conventional liquid film, so that (4) is more stable and carried out. In addition, the present invention requires (four) two sets of thin chess films for rotation operation and recharging. Therefore, the technique of the present invention can simultaneously reduce the cost of hardware and operation. Meanwhile, the invention discloses the removal. The technology is simpler to operate than the conventional technology. In the technique disclosed in the present invention, the organic/extracted phase can be directly contacted to take the aqueous phase. The mixing of the two phases makes the mass transfer surface provided by the original hollow fiber. More mass transfer surface area can be utilized, thereby increasing the efficiency of the target material from the organic phase. The improved extraction efficiency further enhances the mass transfer flux when the indium is extracted. The technology disclosed by the present invention provides A new type of supporting liquid film for removing and recovering the insult' and taking the water phase to be more elastic than the volume of the organic phase. This elasticity allows the invention to use a smaller volume of aqueous phase to take the solution (aqueous stnp Phase) to achieve a higher concentration of recovered indium solution. High concentration of recycled indium solution liquid high value products can be reused or sold directly. The present invention can be made by the following examples It should be noted that the examples are not intended to limit the scope of the invention; rather, the examples are intended to illustrate various ways in which the invention may be practiced, and various possibilities of embodiments. Modifications. The scope of the invention should be defined by the following claims. Example Basic Preparation Procedure In the following example, a supporting liquid film technique combined with a take-up dispersion (strip 20 201032881 dispersion) will be used to feed from one aqueous phase. The solution extracts indium into an organic solution, wherein an aqueous phase strip solution is dispersed to continuously take the extracted indium. The supporting liquid membrane system comprises a hollow fiber membrane membrane group' (Liquid -Cel, extra-flow 2.5x8, Membrana-Charlotte, USA), a feed solution tank, a feed pump (model 7592-50, Cole-Parmer, USA) to transfer the feed to polypropylene At the hollow fiber, a dispersion tank is taken, and the take-up dispersion tank is provided with a stirrer (SS, NZ-1000, Eyela, φ Japan) to completely disperse the aqueous phase and take the solution in the organic solution. membrane The system further contains another pump (model 7553-70, Cole-Parmer, USA) to transport the oil phase material containing the aqueous phase material to the shell side of the membrane membrane group. The diameter of the hollow fiber membrane group is 6.35 cm (2.5 inches) with a length of 20.3 cm (8 inches) and a film surface area of 1.4 square meters. The following example is operated in a countercurrent membrane. The feed solution flows through the micropores. The tube φ side of the polypropylene hollow fiber membrane group; the extracted indium is taken into the membrane membrane group and the dispersion tank, and is dispersed in the take-up solution. The aqueous phase feed solution containing indium was placed in a feed tank and oscillated at 300 rpm with a magnetic shock rod. The solution was taken as a 5 盐酸 hydrochloric acid solution which was dispersed in an organic solution at a speed of 300 rpm by a double blade stirring paddle (8.5 cm in diameter). The organic solution contains di(2-ethyl-hexyl)phosphic acid (D2EHPA) (supplied by Merck) in a heterogeneous hydrocarbon solvent (Is〇par-L) (provided by ExxonMobil) Used as a 21 201032881 extractant for steel. In most of the following experiments, unless otherwise specified, bis(2-ethylhexyl)disc. (D2EHPA) is in the isoparaffin solvent (the concentration of ~ρ 巾 towel is care (20.5 vol%). a modified thorn containing 12% by volume of dodecanol (1-dode(10)D (supplied by Merck) as an extractant (in the following examples, if not otherwise specified, dodecyl alcohol is used as a modifier for the extractant). Unless otherwise specified, the total volume of the organic solution is about L9L (9〇〇mi), and the volume of the solution is about 0.12L (120ml). The temperature of the feed and dispersion tank is maintained at a 〇C. The feed solution flows through the tube end of the hollow fiber membrane group. When the hollow fabric membrane is filled with the feed solution, the oil phase material containing the aqueous phase substance is sent to the shell end of the hollow fiber membrane group by the pump. The organic phase enters the feed solution through the pores of the hollow fiber, and the tube end is subjected to a positive pressure, for example, about 4 to 5 psi higher than the shell end. In the following example, if the scale is specified, the secret will be Under this pressure difference • Read. When the system is running, the 'feeding and dispersing solution is sent from the tank to the membrane membrane group. And then sent back to the tank. The speed of the pump transporting the fluid is about i L / min. In the experiment, the feed and the take-up solution are sampled at a fixed time. The sample taken by taking the dispersion solution is placed. The phase is until the phase separation occurs. Then, the aqueous phase sample taken from the dispersion solution and the feed solution is analyzed to determine the concentration of indium. In the following examples, the analysis is performed by atomic adsorption spectrometry unless otherwise specified. Completed by atomic absorption spectrophotometer (GBC 906, GBC, Australia). Other analytical methods may include, for example, electricity 22 201032881

浆感應光譜儀(inductively coupled plasma spectrometer,ICP spectrometer)。 • 實驗中測試了不同的進料溶液組成與體積以驗證本發明所 “ 揭露之支撐式液膜的性能。其中,此性能可表示為所回收銦在 進料與拿取溶液中的濃度。 範例一 進料浴液.15.5L ’ pH值1之硫酸(jj2S〇4)溶液,並含有初始 0 濃度200 ppm的三價銦(In3+)。 有機溶液.0.9 L,有機溶液係以異構烧烴溶劑(is〇par_L)為溶 劑’並含有〇·6 Μ之一(2·乙基己基)鱗酸【di(2-ethyl-hexyl) phosphoric acid,D2EHPA】以及體積百分比濃度(v〇l%)為2 之十二醇(dodecanol) 〇 拿取溶液:0.12 L的5 Μ鹽酸(HC1)溶液。 進料溶液為體積15.5 L ’ pH值1之硫酸(H2S04)溶液,並 φ 含有初始濃度200 ppm的三價銦(In3+)。有機溶液體積為0.9 1^,其係以異構烧烴溶劑(18(^&1>1^)為溶劑,並含有〇.6 1^1之二 (2_ 乙基己基)峨酸【di(2-ethyl-hexyl) phosphoric acid,D2EHPA】 以及艘積百分比激度(vol%)為2之十二醇(dodecanol)。拿取溶 液為體積0.12L的5 Μ鹽酸(HC1)溶液。拿取分散液係藉由混 合0.12L(12ml)的拿取溶液以及0.9L(900 ml)的有機溶液。製 備的細節如上述之“基本製備程序”該節所述,在此不再贅 述。 23 201032881 含有濃度200ppm之三價銦的進料溶液首先被幫浦輸入至 聚丙烯(polypropylene)中空纖維膜組的管端。拿取分散液則進 * 入中空纖維膜組的殼端。每過一段時間間隔,分別對進料溶液 _ 以及拿取溶液取樣並藉由原子吸附分光光度計進行分析,如上 述之“基本製備程序”該節所述。 進料溶液與拿取溶液中的銦濃度對時間變化記錄於表一 中,並據以繪製成第三圖。如表格與圖中所示,本發明所揭露 _ 之支撐式液膜拿取分散技術可以得到銦濃度超過20000 ppm 之高濃度拿取液。Inductively coupled plasma spectrometer (ICP spectrometer). • Different feed solution compositions and volumes were tested in the experiments to verify the performance of the disclosed supported liquid film of the present invention, wherein this property can be expressed as the concentration of recovered indium in the feed and take-up solution. A feed bath. 15.5L 'pH 1 sulfuric acid (jj2S〇4) solution, and contains an initial 0 concentration of 200 ppm of trivalent indium (In3+). Organic solution. 0.9 L, organic solution is isothermal burning hydrocarbon The solvent (is〇par_L) is a solvent' and contains one of di(2-ethyl-hexyl) phosphoric acid (D2EHPA) and a volume percent concentration (v〇l%). Take a solution of 2dodecanol: 0.12 L of 5 Μ hydrochloric acid (HC1) solution. The feed solution is a volume of 15.5 L 'pH 1 sulfuric acid (H2S04) solution, and φ contains an initial concentration of 200 ppm. Trivalent indium (In3+). The volume of the organic solution is 0.9 1^, which is an isocratic hydrocarbon solvent (18 (^&1>1^) as a solvent and contains 〇.6 1^1 bis (2_ Diethyl 2-hexylphosphoric acid (D2EHPA) and the percent atomicity (vol%) of dodecanol (dodecanol). The solution was a volume of 0.12 L of a 5 Μ hydrochloric acid (HC1) solution. The dispersion was taken by mixing 0.12 L (12 ml) of the take-up solution and 0.9 L (900 ml) of the organic solution. The details of the preparation were as described above. The preparation procedure is described in this section and will not be described here. 23 201032881 A feed solution containing trivalent indium at a concentration of 200 ppm is first introduced into the tube end of a polypropylene hollow fiber membrane group by a pump. Then enter into the shell end of the hollow fiber membrane group. Each time interval, the feed solution _ and the take-up solution are separately sampled and analyzed by an atomic adsorption spectrophotometer, as described in the "Basic Preparation Procedure" section above. The change in concentration of indium in the feed solution and the take-up solution is recorded in Table 1 and is drawn into a third figure. As shown in the table and the figure, the supported liquid film disclosed in the present invention A high concentration of the indium concentration of more than 20,000 ppm can be obtained by taking the dispersion technique.

表一 時間 分鐘(min) 進料溶液銦濃 度 (ppm) 時間 分鐘(min) 拿取液銦濃度 (ppm) 0 200.2 0 0 5 172.0 10 4459 10 141.5 20 8996 15 125.9 30 12191 20 105.9 40 15037 25 90.07 50 17364 30 79.76 60 18851 35 65.73 70 20580 40 49.63 80 21386 45 48.40 90 21100 50 41.26 100 22337 55 34.82 110 22641 60 29 120 23528 70 21.71 140 22808 80 14.62 160 22203 90 9.48 180 22758 100 5.09 200 21742 24 201032881 110 2.94 120 0.32 130 0 140 0 150 0 160 0 170 0 180 0 195 0 200 0 範例二 進料溶液:1 L,pH值1之硝酸(HN〇3)溶液,並含有初始濃度 180 ppm 的三價銦(In3+)。 有機溶液:0.9 L,有機溶液係以異構烷烴溶劑(Isopar-L)為溶 劑,並含有0.6 Μ之二(2-乙基己基)磷酸【di(2-ethyl-hexyl) phosphoric acid,D2EHPA】以及體積百分比濃度(vol%)為2 之十二醇(dodecanol)。 拿取溶液:0.12 L的5 Μ鹽酸(HC1)溶液。 本範例之實驗操作與範例一相同,所不同者僅為本範例 中,進料溶液為體積1L,pH值1之硝酸(ΗΝ〇3)溶液,並含有 初始濃度180 ppm的三價姻(Ιη3+),對照範例一中的進料溶液 為體積15.5 L,pH值1之硫酸(H2S04)溶液,並含有初始濃 度200 ppm的三價銦(In3+)。進料溶液與拿取溶液中的銦濃度 對時間變化記錄於表二中,並據以繪製成第四圖。 25 201032881Table 1 Time Minutes (min) Feed Solution Indium Concentration (ppm) Time Minutes (min) Take Indium Concentration (ppm) 0 200.2 0 0 5 172.0 10 4459 10 141.5 20 8996 15 125.9 30 12191 20 105.9 40 15037 25 90.07 50 17364 30 79.76 60 18851 35 65.73 70 20580 40 49.63 80 21386 45 48.40 90 21100 50 41.26 100 22337 55 34.82 110 22641 60 29 120 23528 70 21.71 140 22808 80 14.62 160 22203 90 9.48 180 22758 100 5.09 200 21742 24 201032881 110 2.94 120 0.32 130 0 140 0 150 0 160 0 170 0 180 0 195 0 200 0 Example two feed solution: 1 L, a pH 1 nitric acid (HN〇3) solution with an initial concentration of 180 ppm of trivalent indium ( In3+). Organic solution: 0.9 L, organic solution is isoparaffin solvent (Isopar-L) as solvent and contains 0.6 bis(2-ethyl-hexyl) phosphoric acid, D2EHPA And a volume percent concentration (vol%) of 2 dodecanols. Take the solution: 0.12 L of 5 Μ hydrochloric acid (HC1) solution. The experimental operation of this example is the same as that of the first example. The only difference is that in this example, the feed solution is a volume of 1 L, a pH 1 nitric acid (ΗΝ〇3) solution, and contains an initial concentration of 180 ppm of trivalent marriage (Ιη3+). The feed solution in Comparative Example 1 was a 15.5 L, pH 1 sulfuric acid (H2S04) solution and contained an initial concentration of 200 ppm of trivalent indium (In3+). The concentration of indium in the feed solution and the take-up solution is recorded in Table 2 as a function of time and is plotted as a fourth figure. 25 201032881

table

進料溶液:1 L ’ pH值1之硫酸⑴ (H2S〇4)溶液,並含有初始濃 度190 ppm的三價銦(In3+)。Feed solution: 1 L ′ of a sulfuric acid (1) (H2S〇4) solution of pH 1 and containing an initial concentration of 190 ppm of trivalent indium (In3+).

有機溶液:0.9 L,㈣溶液係以異構燒煙溶劑(is〇par L)為溶 劑’並含有0.6 Μ之二(2-乙基己基)磷酸【di(2 ethyl hexyl) phosphoric acid,D2EHPA】以及鱧積百分比濃度(vol%)為2 之十二醇(dodecanol)。 拿取溶液:0.12 L的5 Μ鹽酸(HC1)溶液。 本範例之實驗操作與範例一相同,所不同者僅為本範例 中,進料溶液為體積1 L,pH值1之硫酸(H2S〇4)溶液,並含 有初始濃度190 ppm的三價銦(In3+),對照範例一中的進料溶 液為體積15.5 L,pH值1之硫酸(H2S04)溶液’並含有初始 濃度200 ppm的三價銦(In3+)。進料溶液與拿取溶液中的銦濃 度對時間變化記錄於表三中,並據以繪製於第四圖中以供比 26 201032881 較。如圖與表所示,本範例與範例二的實驗結果類似。本範例 與範例二所不同者僅係為進料溶液,其餘實驗條件相同。本範 例之進料溶液為pH值1的硫酸(HJO4)溶液,而範例二之進 料溶液為pH值1的硝酸(HN〇3)溶液。 表三 時間 分鐘(min) 進料溶液銦濃 度 (ppm) 0 191.6 1 99.01 2 1---- 53.77 3 25.17 5 0 --------Organic solution: 0.9 L, (d) solution is based on isophthalic acid solvent (is〇par L) as solvent 'and contains 0.6 bis (2-ethylhexyl) phosphoric acid [di(2 ethyl hexyl) phosphoric acid, D2EHPA] And a hoarding percentage (vol%) of 2 dodecanols. Take the solution: 0.12 L of 5 Μ hydrochloric acid (HC1) solution. The experimental operation of this example is the same as that of the first example. The only difference is that in this example, the feed solution is a volume of 1 L, a pH 1 sulfuric acid (H2S〇4) solution, and contains an initial concentration of 190 ppm of trivalent indium ( In3+), the feed solution in Comparative Example 1 was a volume of 15.5 L, a pH 1 sulfuric acid (H2S04) solution and contained an initial concentration of 200 ppm of trivalent indium (In3+). The change in indium concentration in the feed solution and the take-up solution is reported in Table 3 and is plotted in Figure 4 for comparison to 26 201032881. As shown in the figure and table, this example is similar to the experimental results of Example 2. The difference between this example and the second example is only the feed solution, and the rest of the experimental conditions are the same. The feed solution of this example is a pH 1 sulfuric acid (HJO4) solution, and the sample feed solution of Example 2 is a pH 1 nitric acid (HN〇3) solution. Table 3 Time Minutes (min) Indium concentration of the feed solution (ppm) 0 191.6 1 99.01 2 1---- 53.77 3 25.17 5 0 --------

範例四 進料溶液:11^,1511值1之1^1溶液,並含有初始濃度16〇卯111 的三價銦(In 3+) 有機溶液:0.9 L,有機溶液係以異構烷烴溶劑(Is〇par L)為溶 劑,並含有0.6 Μ之二(2-乙基己基)磷酸【di(2 ethyl hexyl) phosphoric acid,D2EHPA】以及體積百分比濃度(v〇1%)為2 之十二醇(dodecanol)。 拿取溶液:0.12 L的5 Μ鹽酸(HC1)溶液 本範例之實驗操作與範例一相同,所不同者僅為本範例 中,進料溶液為艎積1 L,pH值丨之HC1溶液,並含有初始 濃度160 ppm的三價銦(In 3+),對照範例一中的進料溶液為體 27 201032881 積15.5L,pH值1之硫酸(ΗΑΟ4)溶液’並含有初始濃度2〇〇 ppm的三價銦(In3+)。進料溶液與拿取溶液中的銦濃度對時間 變化記錄於表四中,並據以繪製於第四圖中以供比較。如圖與 表所示,本範例與範例二、範例三的實驗結果類似。本範例與 範例二、三所不同者僅係為進料溶液,其餘實驗條件相同。本 範例之進料溶液為pH值1的HC1溶液’而範例二之進料溶液 為PH值1的硝酸(HNO3)溶液,且範例三之進料溶液為卩^值 ❹ 1的硫酸(h2so4)溶液。 Φ 範例五 表四 時間 分鐘(min) 進料溶液銦濃 度 (ppm) 0 156.6 1 87.98 3 29.48 5 8.27 7 0.72 10 0 — 進料溶液:1 L,pH值1之草酸(H2C204)溶液,其重量百分比 (wt%)為2並含有初始濃度200 ppm的三價銦(In3+)。 有機溶液:0.9 L,有機溶液係以異構烷烴溶劑(lS0par_L)為溶 劑,並含有0.2 Μ之二(2-乙基己基)磷酸【di(2-ethyl-hexyl) phosphoric acid,D2EHPA】以及體積百分比濃度(vol%)為2 之十二醇(dodecanol) 〇 28 201032881 拿取溶液:0.1L的5M鹽酸(HC1)溶液Example four feed solution: 11 ^, 1511 value 1 of 1 ^ 1 solution, and contains an initial concentration of 16 〇卯 111 of trivalent indium (In 3 +) organic solution: 0.9 L, the organic solution is an isoparaffin solvent ( Is〇par L) is a solvent and contains 0.6 bis (2-ethylhexyl) phosphoric acid [di(2 ethyl hexyl) phosphoric acid, D2EHPA] and a volume percentage concentration (v〇1%) of 2, dodecyl alcohol (dodecanol). Take the solution: 0.12 L of 5 Μ hydrochloric acid (HC1) solution The experimental operation of this example is the same as that of the first example, except that in the present example, the feed solution is a condensed 1 L, pH 丨 HC1 solution, and Containing trivalent indium (In 3+) at an initial concentration of 160 ppm, the feed solution in Comparative Example 1 is a body 27 201032881 with a volume of 15.5 L, a pH 1 sulfuric acid (ΗΑΟ4) solution and contains an initial concentration of 2 〇〇 ppm. Trivalent indium (In3+). The change in concentration of indium in the feed solution and the take-up solution is reported in Table 4 and is plotted in the fourth panel for comparison. As shown in the figure and table, this example is similar to the experimental results of Example 2 and Example 3. The difference between this example and the second and third examples is only the feed solution, and the rest of the experimental conditions are the same. The feed solution of this example is a pH 1 HCl solution' and the sample feed solution of Example 2 is a pH 1 nitric acid (HNO3) solution, and the sample feed solution of Example 3 is 硫酸^ value ❹ 1 of sulfuric acid (h2so4) Solution. Φ Example 5 Table 4 Time Minutes (min) Indium solution concentration (ppm) 0 156.6 1 87.98 3 29.48 5 8.27 7 0.72 10 0 — Feed solution: 1 L, pH 1 oxalic acid (H2C204) solution, its weight The percentage (wt%) is 2 and contains trivalent indium (In3+) at an initial concentration of 200 ppm. Organic solution: 0.9 L, organic solution with isoparaffin solvent (lS0par_L) as solvent, and containing 0.2 bis(2-ethyl-hexyl) phosphoric acid, D2EHPA and volume Percent concentration (vol%) is 2, dodecanos 〇28 201032881 Take solution: 0.1L of 5M hydrochloric acid (HC1) solution

本範例之實驗操作與範例一相同,所不同者僅為(1)本範 例中,進料溶液為體積1 L,pH值1之草酸(H2C204)溶液,其 重量百分比(wt°/〇)為2並含有初始濃度200 ppm的三價銦(In 3+),對照範例一中的進料溶液為體積15.5 L,pH值1之硫酸 (H2S04)溶液,並含有初始濃度200 ppm的三價銦(In3+);(2)本 範例中,有機溶液含有0.2 Μ之二(2-乙基己基)磷酸 (D2EHPA),對照範例一的0.6 Μ ;以及(3)本範例中,拿取溶 液的體積為0.1 L(100ml),對照範例一的0.12L(120ml)。進料 溶液與拿取溶液中的銦濃度對時間變化記錄於表五中,並據以 繪製於第五圖中。 表五 時間 分鐘(min) 進料溶液銦濃 度 (ppm) 0 208.0 1 194.9 3 189.7 5 183.8 7 176.5 10 167.2 15 150.0 20 128.7 25 124.2 30 111.7 40 87.16 50 69.80 60 55.66 72 40.14 80 30.03 90 21.90 29 201032881 100 16 110 13.48 120 10.98 130 9.58 140 8.35 155 7.05 160 6.11 170 4.67 190 2.89 進料溶液:1 L,pH值1之草酸(H2C2〇4)溶液,其重量百分比 (wt°/〇)為2並含有初始泼度200 ppm的三價銦(In3+)。 範例六The experimental operation of this example is the same as that of the first example, except that (1) in this example, the feed solution is a volume of 1 L, pH 1 of oxalic acid (H2C204) solution, the weight percentage (wt ° / 〇) is 2 and contains trivalent indium (In 3+) with an initial concentration of 200 ppm. The feed solution in the first example is a sulfuric acid (H2S04) solution with a volume of 15.5 L, pH 1, and contains trivalent indium at an initial concentration of 200 ppm. (In3+); (2) In this example, the organic solution contains 0.2 bis(2-ethylhexyl)phosphoric acid (D2EHPA), 0.6 Μ of Comparative Example 1, and (3) the volume of the solution taken in this example. 0.1 L (100 ml), 0.12 L (120 ml) of the control example 1. The change in concentration of indium in the feed solution and the take-up solution is reported in Table 5 and is plotted in Figure 5. Table 5 Time Minutes (min) Indium Solution Concentration (ppm) 0 208.0 1 194.9 3 189.7 5 183.8 7 176.5 10 167.2 15 150.0 20 128.7 25 124.2 30 111.7 40 87.16 50 69.80 60 55.66 72 40.14 80 30.03 90 21.90 29 201032881 100 16 110 13.48 120 10.98 130 9.58 140 8.35 155 7.05 160 6.11 170 4.67 190 2.89 Feed solution: 1 L, pH 1 oxalic acid (H2C2〇4) solution, the weight percentage (wt ° / 〇) is 2 and contains the initial 200 ppm of trivalent indium (In3+). Example six

有機溶液:0.9L,有機溶液係以異構烷烴溶劑(Isopar-L)為溶 劑,並含有〇.6 1^之二(2-乙基己基)磷酸【^(2-61^1-1^又71) phosphoric acid,D2EHPA】以及體積百分比濃度(vol%)為2 之十二醇(dodecanol)。 拿取溶液:0.1 L的5 Μ鹽酸(HC1)溶液Organic solution: 0.9L, the organic solution is isoparaffin solvent (Isopar-L) as solvent, and contains 〇.6 1^ bis(2-ethylhexyl)phosphoric acid [^(2-61^1-1^) 71) phosphoric acid, D2EHPA] and a volume percent concentration (vol%) of 2 dodecanols. Take the solution: 0.1 L of 5 Μ hydrochloric acid (HC1) solution

本範例之實驗操作與範例五相同’所不同者僅為本範例 中’有機》谷液含有〇·6 Μ之《一(2-乙基己基)碟酸(D2EHPA), 對照範例五的0.2 Μ。亦即,本範例之實驗操作顓似範例一。 進料溶液與拿取溶液中的銦濃度對時間變化記錄於表六中,並 據以緣製於第五囷中以供比較。如圖與表所示,本範例使用 0.6Μ之二(2-乙基己基)麟酸(D2EHPA),所得的實驗結果遠較 使用0.2Μ者(如範例五)為佳。 表六 時間丨進液銦澧1 30 201032881 分鐘(min) 度 (ppm)— 0 205.7 1 169.3 3 137.1 5 107.2 7 86.34 10 60.57 15 31.99 20 13.82 25 3.99 30 0 範例七The experimental operation of this example is the same as that of the fifth example. The only difference is that the 'organic' gluten solution contains 一·6 Μ of “one (2-ethylhexyl) disc acid (D2EHPA), and the comparison example 5 is 0.2 Μ. . That is, the experimental operation of this example is similar to the first example. The change in concentration of indium in the feed solution and the take-up solution is reported in Table 6 and is based on the fifth enthalpy for comparison. As shown in the figure and table, this example uses 0.6Μbis(2-ethylhexyl)linic acid (D2EHPA), and the experimental results obtained are much better than those with 0.2Μ (example 5). Table 6 Time infusion liquid indium strontium 1 30 201032881 minutes (min) degrees (ppm) - 0 205.7 1 169.3 3 137.1 5 107.2 7 86.34 10 60.57 15 31.99 20 13.82 25 3.99 30 0 Example 7

進料溶液:1 L,pH值1之草酸(H2C2〇4)溶液,其重量百分比 (wt%)為2並含有初始濃度200ppm的三償銦(In 3+)。 有機溶液:0.9 L,有機溶液係以異構烷烴溶劑(Isopar-L)為溶 劑,並含有1 Μ之二(2-乙基己基)填酸【di(2-ethyl-hexyl) phosphoric acid,D2EHPA】以及體積百分比濃度(vol%)為2 之十二醇(dodecanol)。 拿取溶液:0.1L的5M鹽酸(HC1)溶液。Feed solution: 1 L, a solution of oxalic acid (H2C2〇4) having a pH of 1, and having a weight percentage (wt%) of 2 and containing an indium indium (In 3+) having an initial concentration of 200 ppm. Organic solution: 0.9 L, organic solution with isoparaffin solvent (Isopar-L) as solvent and containing 1 (2-ethyl-hexyl) phosphoric acid, D2EHPA And a volume percent concentration (vol%) of 2 dodecanols. Take the solution: 0.1 L of 5M hydrochloric acid (HC1) solution.

本範例之實驗操作與範例五相同,所不同者僅為本範例中,有 機溶液含有1M之二(2-乙基己基)磷酸(D2EHPA),對照範例 五的0.2M。亦即,本範例之實驗操作顓似範例一。進料溶液 與拿取溶液中的銦濃度對時間變化記錄於表七中’並據以繪製 於第五圖中以供比較。如圖與表所示,本範例使用0.6M之二 (2-乙基己基)磷酸(D2EHPA),所得的實驗結果較使用0.6 Μ者 (如範例六)為佳’並遠較使用0.2Μ者(如範例五)為佳。此種結 31 201032881 果顯示若欲自含有草酸(oxalic acid)的進料溶液萃取出銦,則 二(2-乙基己基)磷酸(D2EHPA)之濃度的較佳選擇為〇.6Μβ 表七 時間 分鐘(min) 進料溶液銦濃 度 (ppm) 0 194.2 1 141.5 3 109.6 5 81.82 7 59.68 10 34.33 12.5 18.34 15 10.85 17.5 6.28 20 0The experimental procedure of this example is the same as that of Example 5. The only difference is that in this example, the organic solution contains 1M bis(2-ethylhexyl)phosphoric acid (D2EHPA), which is 0.2M of Comparative Example 5. That is, the experimental operation of this example is similar to the first example. The change in concentration of indium in the feed solution and the take-up solution is reported in Table VII' and is plotted in Figure 5 for comparison. As shown in the figure and table, this example uses 0.6M bis(2-ethylhexyl)phosphoric acid (D2EHPA), and the experimental results obtained are better than those using 0.6 ( (such as Example 6) and farther than those using 0.2 Μ. (as in example 5) is better. Such a junction 31 201032881 shows that if the indium is to be extracted from the feed solution containing oxalic acid, the preferred choice of the concentration of di(2-ethylhexyl)phosphoric acid (D2EHPA) is 〇.6Μβ. Minute (min) Indium concentration of the feed solution (ppm) 0 194.2 1 141.5 3 109.6 5 81.82 7 59.68 10 34.33 12.5 18.34 15 10.85 17.5 6.28 20 0

範例八 進料溶液M5.5L,pH值1之草酸(ΗΑβ4)溶液,其重量百分 比(wt%)為2並含有初始濃度200 ppm的三價銦(In3+)。 ® 有機溶液:〇.9L,有機溶液係以異構烷烴溶劑(lS0par_L)為溶 劑,並含有〇.6]^1之二(2-乙基己基)磷酸【(11(2_6也^_1^^1) Phosphoric acid,D2EHPA】以及體積百分比濃度~〇1%)為2 之十二醇(dodecanol)。 拿取溶液:0.12L的5 Μ鹽酸(HC1)溶液。 本範例之實驗操作與範例一相同,所不同者僅為本範例 中,進料溶液為ΡΗ值1,重量百分比(wt%)為2的草酸饵/…4) /合液並含有初始濃度2〇〇 ρρ^的三價銦(ιη 3+),對照範例一 32 201032881 中的進料溶液為pH值1的硫酸(H2S04)溶液,並含有初始濃 度200 ppm的三價銦(In3+)。進料溶液與拿取溶液中的銦濃 度對時間變化記錄於表八中,並據以繪製於第六圖中。如表格 與圖中所示,本發明所揭露之支撐式液膜拿取分散技術可以得 到銦濃度18000 ppm或更高的高濃度拿取液。 表八Example 8 A feed solution of M5.5L, a solution of oxalic acid (??4) having a pH of 1 and having a weight percentage (wt%) of 2 and containing an initial concentration of 200 ppm of trivalent indium (In3+). ® Organic solution: 〇.9L, organic solution with isoparaffin solvent (lS0par_L) as solvent and containing 6.6]^1 bis(2-ethylhexyl)phosphoric acid [(11(2_6也^_1^^) 1) Phosphoric acid, D2EHPA] and volume percent concentration ~ 〇 1%) are 2 dodecanols. Take the solution: 0.12L of 5 Μ hydrochloric acid (HC1) solution. The experimental operation of this example is the same as that of the first example. The only difference is that in this example, the feed solution is a limulus value of 1 and a weight percentage (wt%) of 2/4)/liquid mixture and contains an initial concentration of 2 The trivalent indium (ιη 3+) of 〇〇ρρ^, the feed solution in Comparative Example No. 32 201032881 is a sulfuric acid (H2S04) solution of pH 1, and contains trivalent indium (In3+) having an initial concentration of 200 ppm. The change in indium concentration in the feed solution and the take-up solution is reported in Table 8 and is plotted in Figure 6. As shown in the table and the figure, the supported liquid film take-up and dispersion technique disclosed in the present invention can obtain a high-concentration take-up solution having an indium concentration of 18,000 ppm or more. Table eight

時間 進料銦濃度 時間 拿取液銦濃度 分鐘(min) (ppm) 分鐘(min) (ppm) 0 200.1 0 0 5 196.6 10 1057 10 190.7 20 2209 15 185.5 30 3253 20 180.1 40 4399 25 179.0 50 5560 30 172.9 60 6399 35 169.3 70 7181 40 163.2 80 7965 45 158.6 90 8078 50 153.4 100 10162 55 148.9 110 10953 60 144.4 120 11491 70 137.6 140 12445 80 129.5 160 13741 90 124.9 180 14744 100 116.5 200 15453 110 112.0 220 16166 120 105.0 240 16762 130 99.03 270 17308 140 93.15 330 18200 150 88.31 360 17725 160 83.72 390 18258 170 80.51 420 18320 180 75.44 450 18342 195 70.85 480 18274 200 67.99 510 18272 33 201032881Time Feed Indium Concentration Time Take Liquid Indium Concentration Minutes (min) (ppm) Minutes (min) (ppm) 0 200.1 0 0 5 196.6 10 1057 10 190.7 20 2209 15 185.5 30 3253 20 180.1 40 4399 25 179.0 50 5560 30 172.9 60 6399 35 169.3 70 7181 40 163.2 80 7965 45 158.6 90 8078 50 153.4 100 10162 55 148.9 110 10953 60 144.4 120 11491 70 137.6 140 12445 80 129.5 160 13741 90 124.9 180 14744 100 116.5 200 15453 110 112.0 220 16166 120 105.0 240 16762 130 99.03 270 17308 140 93.15 330 18200 150 88.31 360 17725 160 83.72 390 18258 170 80.51 420 18320 180 75.44 450 18342 195 70.85 480 18274 200 67.99 510 18272 33 201032881

210 66.24 540 18662 220 62.07 570 17853 240 55.45 600 17168 255 51.75 630 17127 270 47.97 660 17305 285 43.52 300 39.39 315 36.43 330 34.09 345 31.97 360 29.08 375 26.32 390 24.23 405 21.68 420 20.54 435 17.99 450 17.01 465 15.19 480 14.16 500 11.97 510 12.21 540 9.74 560 8.23 570 7.57 600 6.16 630 5.98 660 4.48 ❷ 範例九 進料溶液:15·5 L,pH值0.9之氧化銦錫(IT〇)溶液,其含有 初始濃度140 ppm的三價銦(Ιη3+) 有機溶液,㈣溶液係以異構燒煙溶劑(Is〇parL)為溶 劑,並含有0.6M之二(2-乙基己基)碟酸【di(2_ethyi_hexyi) phosphoric acid,mEHPA】以及體積百分比濃度(¥〇1%)為2 之十二醇(dodecanol)。 34 201032881 拿取溶液:0.12 L的5 Μ鹽酸(11(^)溶液 本範例之實驗操作與範例一相同,所不同者僅為本範例 . 巾,進料溶液為阳值〇.9的氧化麵錫(ΙΤ0)溶液,並含有初始 . 淡度140鹏的三價她、對照範例-中的進料溶液為ρΗ 值1的硫酸邮〇4)溶液’並含有初始濃度2〇〇啊的三價麵 ο。進料溶液與拿取溶液中的銦濃度對時間變化記錄於表 九中,並據輯製於第七圖中。如表格與圖中所示,本發明所 ® 祕之支揮式液膜拿取分散技術可以自ITO進料溶液得到銦 壤度HOOOppm或更高的高濃度拿取液。表九中亦顯示在進料 溶液樣品巾錫㈣濃度料,變化,以及#實關始與結束 時’錫在拿取溶液中的濃度。第七圖中亦顯示在進料溶液樣品 中踢濃度對時間的變化。如圖所示’锡並沒有自進料溶液中被 萃取出來,在拿取溶液_也沒有被漢端的跡象。因此,可知本 發明所揭露之支魏膜拿取分散技術可有效自ITG進料溶液 Φ 中移除並回收銦。 表九 進料溶液 *—. 時間 分鐘丨miy 銦In濃度 (ppm) 錫Sn濃度 (ppm) 時f 分鎊 (mini 0 143.5 14.52 - 10 136.6 14.67 20 20 131.7 17.15 40、 30 124.8 16.11 60、 40 123.4 19.97 80、 50 113.4 15.79 120^ 拿取液 銦In濃度 锡Sn濃度 (Ppm) (ppm) -〇 ' 0 ^ 1240 ^ 2538 • ^ 3485 • 4564 . ^ 6222 - 35 201032881 60 109.5 17.28 180 8692 80 101.4 17.13 240 10532 100 92.53 19.39 300 11177 120 84.62 12.99 420 11631 140 75.69 18.2 480 11695 160 75.94 22.28 540 11606 180 59.28 18.81 600 11581 210 54.21 19.60 660 10932 240 45.84 16.17 720 11018 20 270 35.88 14.71 300 34.15 14.42 330 29.21 14.83 360 23.93 17.00 390 20.03 10.33 420 17.43 -------- 9.97 450 13.81 10.30 480 12.71 12.51 510 8.71 13.50 540 6.76 16.48 570 6.19 15.20 600 5.72 13.31 630 4.12 13.29 660 3.32 13.45 690 2.64 14.23 720 2.26 12.34 範例十 進料溶液 進料溶液 有機溶液 .0.5 L PH 值 0.9 之殘存電解質(residUal electrolyte) ,其含有初始濃度11 〇〇〇 ppm的三價銦(In 3+) • 0.9L,有機溶液係以異構燒煙溶劑(is〇par_L)為溶 劑’並含有0.6 Μ之—(2-乙基己基)麟酸【di(2-ethyl-hexyl) phosphoric acid, D2EHPA】以及體積百分比濃度(v〇i%)為2之 十二醇(dodecanol)。 拿取溶液:0.1 L的5 Μ鹽酸(HC1)溶液 36 201032881 本範例之實驗操作與範例一相同,所不同者僅為本範例 中,進料溶液為pH值0.9的殘存電解質進料溶液,並含有初 * 始濃度llOOOppm的三價銦(In3+),對照範例一中的進料溶液為 ' pH值1的硫酸(H2S04)溶液,並含有初始濃度200 ppm的三 價銦(In 3+)。進料溶液與拿取溶液中的銦濃度對時間變化記錄 於表十。注意在表十中係同時顯示經由計算與實驗所得之銦濃 度變化,並分別標示為拿取溶液(實驗值)以及拿取溶液(實 φ 驗值)曲線。其中,計算數據部份係對進料溶液進行質量平衡 計算而得。上述結果並繪製於第八圖中。如表格與圖中所示, 本發明所揭露之支撐式液膜拿取分散技術可以自殘存電解質 進料溶液中得到銦濃度超過25000 ppm之高濃度拿取液。 表十。 。 。 。 。 。 。 。 510 12.21 540 9.74 560 8.23 570 7.57 600 6.16 630 5.98 660 4.48 范例 Example 9 feed solution: 15·5 L, pH 0.9 indium tin oxide (IT〇) solution containing an initial concentration of 140 ppm of trivalent indium ( Ιη3+) organic solution, (4) solution using isomeric combustion solvent (Is〇parL) as solvent, and containing 0.6M bis(2-ethylhexyl) disc acid [di(2_ethyi_hexyi) phosphoric acid, mEHPA] and volume percentage The concentration (¥〇1%) is 2dodecanol. 34 201032881 Take the solution: 0.12 L of 5 Μ hydrochloric acid (11 (^) solution The experimental operation of this example is the same as the first example, the only difference is this example. The towel, the feed solution is the oxidation surface of the positive value 〇.9 Tin (ΙΤ0) solution, and contains the initial. The lightness of 140 Peng's trivalent she, the control sample - the feed solution is ρΗ value of 1 sulphuric acid postal 4) solution 'and contains the initial concentration of 2 〇〇 三 trivalent Face ο. The change in concentration of indium in the feed solution and the take-up solution is reported in Table IX and is compiled in the seventh chart. As shown in the table and the figure, the present invention can be used to obtain a high concentration take-up solution of indium soil HOOOppm or higher from the ITO feed solution. Table 9 also shows the concentration of tin (4) in the feed solution sample, the change, and the concentration of tin in the take-up solution at the beginning and end of the actual shutdown. The seventh plot also shows the change in kick concentration versus time in the feed solution sample. As shown in the figure, 'tin is not extracted from the feed solution, and the solution is taken from the _. Therefore, it can be seen that the Wei film take-up dispersion technique disclosed in the present invention can effectively remove and recover indium from the ITG feed solution Φ. Table 9 Feed Solution*—. Minutes 丨miy Indium In Concentration (ppm) Tin Sn concentration (ppm) f fp (mini 0 143.5 14.52 - 10 136.6 14.67 20 20 131.7 17.15 40, 30 124.8 16.11 60, 40 123.4 19.97 80, 50 113.4 15.79 120^ Take liquid indium In concentration tin Sn concentration (Ppm) (ppm) -〇' 0 ^ 1240 ^ 2538 • ^ 3485 • 4564 . ^ 6222 - 35 201032881 60 109.5 17.28 180 8692 80 101.4 17.13 240 10532 100 92.53 19.39 300 11177 120 84.62 12.99 420 11631 140 75.69 18.2 480 11695 160 75.94 22.28 540 11606 180 59.28 18.81 600 11581 210 54.21 19.60 660 10932 240 45.84 16.17 720 11018 20 270 35.88 14.71 300 34.15 14.42 330 29.21 14.83 360 23.93 17.00 390 20.03 10.33 420 17.43 -------- 9.97 450 13.81 10.30 480 12.71 12.51 510 8.71 13.50 540 6.76 16.48 570 6.19 15.20 600 5.72 13.31 630 4.12 13.29 660 3.32 13.45 690 2.64 14.23 720 2.26 12.34 Example ten feed solution Solution solution organic solution. 0.5 L PH value of 0.9 residual electrolyte residUal electrolyte), which contains trivalent indium (In 3+) • 0.9L at an initial concentration of 11 〇〇〇ppm, and the organic solution is treated with an isomeric smouldering solvent (is〇par_L) and contains 0.6 ——( 2-(2-ethyl-hexyl) phosphoric acid, D2EHPA, and a volume percent concentration (v〇i%) are 2dodecanol. Take solution: 0.1 L of 5 Μ hydrochloric acid (HC1) solution 36 201032881 The experimental operation of this example is the same as that of Example 1, except that in this example, the feed solution is a residual electrolyte feed solution with a pH of 0.9, and The trivalent indium (In3+) having an initial concentration of 10.0 ppm was used, and the feed solution in the first example was a pH 1 sulfuric acid (H2S04) solution and contained an initial concentration of 200 ppm of trivalent indium (In 3+). The change in the concentration of indium in the feed solution and the take-up solution is reported in Table 10. Note that in Table 10, the changes in indium concentration obtained through calculation and experiment are simultaneously displayed, and are respectively indicated as the take-up solution (experimental value) and the take-up solution (real φ test value) curve. Among them, the calculation data is obtained by mass balance calculation of the feed solution. The above results are plotted in the eighth figure. As shown in the table and the figure, the supported liquid film take-up and dispersion technique disclosed in the present invention can obtain a high concentration take-up solution having an indium concentration of more than 25,000 ppm from the residual electrolyte feed solution. Table ten

時間 分鐘(min) 進料溶液銦 濃度 (ppm) 理想值(計算 所得銦濃度) (ppm) 時間 分鐘(min) 實驗值(實驗 所得銦濃度) (Ppm) 0 11018 0 0 0 0.5 10798 1103 6 4738 1 10309 3545 10 7412 1.5 9966 5261 20 11440 2 9723 6476 30 12791 2.5 9690 6641 45 15170 3 9335 8414 60 18783 3.5 9154 9321 150 25206 4 9154 9321 5 8605 12068 6 8422 12981 7 8403 13076 8 8329 13448 10 8121 14488 12 7775 16214 37 201032881 15 7687 16658 20 7460 17789 25 7269 18745 30 7437 17908 40 7337 18404 50 7019 19998 60 6897 20606 100 6022 24980 150 5262 28779 範例一至範例十的結果顯示,選擇二(2-乙基己基)磷酸 (D2EHPA)為萃取劑時,藉由本發明所揭露之支撐式液膜拿取 分散技術自水相進料溶液中移除並回收銦,可得較佳之結果。 結果顯示,本發明與同樣採用支撐式液膜拿取分散技術回收金 屬與放射性同位素(radionuclides),並利用二(2_乙基己基)鱗酸 (D2EHPA)作為萃取劑之技術者明顯不同。在先前技術中二(2_ 乙基己基)磷酸(D2EHPA)之效用並不明顯。如何的美國專利(專 利號 6,291,705, 6,328,782, 6,350,419, 6,696,589)。因此,本發 明所揭露之技術實為先前技術所無法預期之效果(unexpected)。 範例十一 萃取劑:(2- 丁基-1-辛基)苯亞鱗酸【2_Butyl-l-Octyl Phenylphosphonic Acid (ΒΟΡΡΑ)】。 進料溶液:1L,pH值1之硫酸(ΗΘΟ4)溶液,並含有初始濃度 200 ppm 的三價銦(In 3+)。 有機溶液:0.8 L,有機溶液係以異構烷烴溶劑(Is〇par_L)為溶 劑,並含有〇.61^之(2-丁基-1_辛基)苯磷酸(8〇1)1)八)以及體積 38 201032881 濃度(vol%)為 2 之十二醇(dodecanol) 〇 拿取溶液:0.12 L的5 Μ鹽酸(HC1)溶液。 本範例之實驗操作與範例一相同,所不同者僅為本範例 中,萃取劑係選擇為0.6 Μ之(2-丁基-1-辛基)苯碟酸 (ΒΟΡΡΑ),對照範例一中的萃取劑為〇.6 Μ之二(2-乙基己基) 磷酸(D2EHPA)。進料溶液與拿取溶液中的銦濃度對時間變化 記錄於表十一中,並據以繪製成第九囷。如表格與圖中所示, ® 本發明所揭露之支推式液膜拿取分散技術可以自進料溶液中 得到銦濃度超過20000 ppm之高濃度拿取液。 表十一 時間 分鐘imin丨 進料溶液銦泼 度 τ (ppm)Time minutes (min) Feed solution Indium concentration (ppm) Ideal value (calculated indium concentration) (ppm) Time minute (min) Experimental value (indium concentration obtained experimentally) (Ppm) 0 11018 0 0 0 0.5 10798 1103 6 4738 1 10309 3545 10 7412 1.5 9966 5261 20 11440 2 9723 6476 30 12791 2.5 9690 6641 45 15170 3 9335 8414 60 18783 3.5 9154 9321 150 25206 4 9154 9321 5 8605 12068 6 8422 12981 7 8403 13076 8 8329 13448 10 8121 14488 12 7775 16214 37 201032881 15 7687 16658 20 7460 17789 25 7269 18745 30 7437 17908 40 7337 18404 50 7019 19998 60 6897 20606 100 6022 24980 150 5262 28779 The results of examples 1 to 10 show the choice of di(2-ethylhexyl)phosphoric acid (D2EHPA) When it is an extractant, better results can be obtained by removing and recovering indium from the aqueous phase feed solution by the supported liquid film take-up dispersion technique disclosed in the present invention. The results show that the present invention is significantly different from those skilled in the art of recovering metals and radioisotopes by using a supported liquid film take-up dispersion technique and using bis(2-ethylhexyl) squaric acid (D2EHPA) as an extractant. The utility of bis(2-ethylhexyl)phosphoric acid (D2EHPA) in the prior art is not apparent. US Patent No. 6,291,705, 6,328,782, 6,350,419, 6,696,589. Therefore, the techniques disclosed in the present invention are unexpected by the prior art. Example 11 Extractant: (2-Butyl-l-Octyl Phenylphosphonic Acid (ΒΟΡΡΑ)]. Feed solution: 1 L, a sulfuric acid (ΗΘΟ4) solution of pH 1, and containing trivalent indium (In 3+) at an initial concentration of 200 ppm. Organic solution: 0.8 L, the organic solution is an isoparaffin solvent (Is〇par_L) as a solvent, and contains (2-butyl-1 -octyl)benzene phosphate (8〇1)1) And volume 38 201032881 concentration (vol%) is 2 dodecanos (dodecanol) 〇 take solution: 0.12 L of 5 Μ hydrochloric acid (HC1) solution. The experimental operation of this example is the same as that of the first example. The only difference is that in this example, the extractant is selected as 0.6 Μ (2-butyl-1-octyl) benzoic acid (ΒΟΡΡΑ), which is compared with the sample one. The extractant is 〇.6 bis(2-ethylhexyl)phosphoric acid (D2EHPA). The change in concentration of indium in the feed solution and the take-up solution is reported in Table XI and is plotted as ninth. As shown in the table and the figure, the push-pull liquid film take-up and dispersion technique disclosed in the present invention can obtain a high-concentration take-up solution having an indium concentration of more than 20,000 ppm from the feed solution. Table 11 Time Minute imin丨 Indium solution of feed solution τ (ppm)

Time時間 (min)(分鐘)_g_ ίο 15 20 25 30 40 50 60 T20 拿取溶液銦濃 度 (ppm) 0 1044 — 1584 ~ 2207 — 2567 — 2849 — 3010 — 2940 — 3125 ~~ —3021 — 3130 ’、:也依”、、上面實施例中的描述,本發明可能有許多的 " 與差異。因此需要在其附加的權利要求項之範圍内加以理 &了上述詳細的描述外’本發明還可以廣泛地在其他的實 39 201032881 施例中施π上述儀為本發明之較佳實施例而已,並非用以限 疋本發明之申請專利範圍;凡其它未脫離本發明所揭示之精神 下所完成的等效改變或修飾,均應包含在下述 内。 【圖式簡單說明】 圖Time time (min) (minutes)_g_ ίο 15 20 25 30 40 50 60 T20 Take solution indium concentration (ppm) 0 1044 — 1584 ~ 2207 — 2567 — 2849 — 3010 — 2940 — 3125 ~~ —3021 — 3130 ', The invention is also described in the above embodiments, and the invention may be varied and varied. Therefore, it is necessary to recite the above detailed description within the scope of the appended claims. The above-described apparatus can be widely used in other embodiments of the present invention, and is not intended to limit the scope of the invention as claimed in the present invention; The equivalent changes or modifications to be completed shall be included in the following: [Simplified illustration]

第-圖係祕據本㈣之_實_所建構,結合切式液膜 (SLM)技術以及拿取分散技術以回收銦之裝置的示意 第-圖係為根據本發明之—實施例所建構,結合切式液膜 (SLM)技術以及拿取分散技術以回收姻之裝置的放大示意圖。 第三圖係线躲_拿取分散液中 ’銦濃度隨時間之變化示 意圖其中進料容液係為-硫酸(h2so4)溶液,其艎積為 15.5L,pH值為1,并▲丄 ^ 並含有初始濃度200 ppm的三價姻(ln3+) 〇 此外,拿取分料係為-混合液體,其係由 0.12 L(120 ml)的 5 M鹽酸(HC1)溶液作為拿取溶液(strip solution),並混合之與 一 0.9 L(900 ml)的有機溶液。其中,有機溶液係以異構烷烴 溶劑(Isopar-L)為溶劑,並含有〇·6 μ之二〇乙基己基)磷酸 【di(2-ethyl_hexyl) phosphoric acid,D2EHPA】,以及體積百分 比濃度(vol°/。)為 2 之十二醇(dodecanol)。 第四圖係為進料溶液中,銦濃度隨時間之變化示意圖。其中, 201032881The first diagram is based on the construction of the embodiment of the present invention. The schematic diagram of the apparatus for recovering indium in combination with the slit liquid film (SLM) technique and the method of taking the dispersion technique is constructed according to the embodiment of the present invention. , an enlarged schematic diagram of a combination of a slit liquid film (SLM) technique and a device for taking a dispersion technique to recover a marriage. The third figure is the line hiding _ take the dispersion in the 'indium concentration change with time. The feed liquid system is - sulfuric acid (h2so4) solution, the hoarding is 15.5L, the pH is 1, and ▲ 丄 ^ And contains an initial concentration of 200 ppm of trivalent (ln3+) 〇 In addition, the take-up system is a mixed liquid, which is a solution of 0.12 L (120 ml) of 5 M hydrochloric acid (HC1) as a strip solution. ) and mix it with a 0.9 L (900 ml) organic solution. Among them, the organic solution is an isoparaffin solvent (Isopar-L) as a solvent, and contains di(2-ethyl-hexyl) phosphoric acid, D2EHPA, and a volume percent concentration ( Vol ° /.) is 2 dodecanols. The fourth graph is a schematic representation of the change in indium concentration over time in the feed solution. Of which, 201032881

進料溶液係為一硝酸(HNO3)溶液,其體積為1 l,pH值為1, 並含有初始濃度180 ppm的三價銦(In 3+)。此外,拿取分散液 係為一混合液體,其係由0.12 L( 120 ml)的5 Μ鹽酸(HC1)溶液 作為拿取溶液(strip solution),並混合之與一 〇.9L(900ml)的有 機溶液。其中,有機溶液係以異構烷烴溶劑(Is〇par_L)為溶劑, 並含有0.6 Μ之·一(2-乙基己基)鱗酸【di(2-ethyl_hexyl) phosphoric acid, D2EHPA】以及體積百分比濃度(v〇i%)為2 〇 之十二醇(d〇decan〇l)。第四圖亦顯示了當進料溶液係為一 pH 值為1並含有初始濃度WOppm的三價銦(In3+)之硫酸(h2S〇4) 溶液,以及當進料溶液係為一 pH值為丨並含有初始濃度16〇 ppm的三價銦(In3+)之HC1溶液時,進料溶液中銦濃度隨時間 之變化示意圖。其中,進料體積為1L,且拿取分散液與第三 圖中所用者相同。 〇 第五圖係為進料溶液中,銦濃度隨時間之變化示意圖。其中, 進料溶液係為pH值為1,重量濃度(wt%)為2並含有初始濃度 200 ppm的二價銦(In3+)之硫酸(h2so4)溶液。第五圖中顯示了 當拿取分散液中二(2·乙基己基)磷酸(D2EHPA)濃度為 0.2 M, 0-6 Μ以及〗M時,銦濃度隨時間的變化情形。上述三種拿 取刀散液皆係混合液體,其係由0.1 L(l〇〇 ml)的5 Μ鹽酸(HC1) ♦液作為拿取溶液(stHp solution),並混合之與一 〇 9L(9〇〇ml) 機z容液。其中,有機溶液係以異構燒烴溶劑(Isopar-L)為 201032881 溶劑,並含有不同指定濃度(〇·2 Μ、0.6 Μ、1 Μ)之二(2-乙基 己基)填酸【di(2-ethyl-hexyl) phosphoric acid, D2EHPA】以及 體積百分比濃度(vol%)為2之十二醇(dodecanol) 〇 第六圖係為進料溶液與拿取溶液中,銦濃度隨時間之變化示意 圖。其中,進料溶液係為一重量濃度(wt。/。)為2的硫酸(H2S04) 溶液’其體積為15·5 L ’ pH值為1,並含有初始濃度200 ppm 0 的三價銦(In3+)。此外’拿取分散液係為一混合液體,其係由 0.12 L(l2〇 ml)的5 Μ鹽酸(HC1)溶液作為拿取溶液(strip solution),並混合之與一 〇_9 L(900 ml)的有機溶液。其中, 有機溶液係以異構烧烴溶劑(Is〇par-L)為溶劑,並含有〇.6 Μ之 一(2-乙基己基)填酸【di(2-ethyl-hexyl) phosphoric acid, D2EHPA】以及體積百分比濃度(vol%)為2之十二醇 (dodecanol) 〇 m 第七圖係為進料溶液與拿取溶液中,銦濃度隨時間之變化示意 圖。其中’進料溶液係為氧化銦錫(IT0)溶液,其體積為15.5 L, pH值為0.9’並含有初始濃度14〇ppm的三價銦(Ιη3+)β此外, 拿取分散液係為一混合液體,其係由0.12 L(120 ml)的5 Μ鹽 酸(HC1)’合液作為拿取溶液㈣办s〇iuti〇n),並混合之與一 〇9 L(900 ml)的有機溶液。其中,有機溶液係以異構烷烴溶劑 (Isopar-L)為溶劑,並含有〇6 μ之二(2_乙基己基)麟酸 42 201032881 【di(2-ethyl-hexyl) phosphoric acid,D2EHPA】以及體積百分 比濃度(vol%)為2之十二醇(dodecanol)。第七圖亦顯示了進料 溶液中,錫(tin)濃度隨時間之變化情形。 第八圖係為進料溶液與拿取溶液中,銦濃度隨時間之變化示意 圖。其中’進料i液係為一殘存電解質溶液(residual electrolyte feed solution),其艘積為〇.5L,pH值為1,並含有初始濃度 ❹ n000 PPm的三價銦(In3+)。此外,拿取分散液係為一混合液 體,其係由0.1 L(100 ml)的5 Μ鹽酸(HC1)溶液作為拿取溶液 (strip solution),並混合之與一 0.9 l(900 ml)的有機溶液。其 中,有機溶液係以異構烧烴溶劑(ISOpar_L)為溶劑,並含有〇 6 M 之一(2_乙基己基)鱗酸【di(2-ethyl-hexyl) phosphoric acid, D2EHPA】以及體積百分比濃度(vol%)為2 .之十二醇 (dodecanol)。本圖中同時顯示經由計算與實驗所得之銦濃度變 φ 化,並分別標示為拿取實驗以及拿取理想曲線《其中,計算數 據部份係對進料溶液進行質量平衡計算而得。 【主要元件符號說明】 43The feed solution was a nitric acid (HNO3) solution having a volume of 1 l, a pH of 1, and containing an initial concentration of 180 ppm of trivalent indium (In 3+). In addition, the take-up dispersion is a mixed liquid consisting of 0.12 L (120 ml) of a 5 Μ hydrochloric acid (HC1) solution as a strip solution, and mixed with a 〇.9L (900 ml). Organic solution. Among them, the organic solution is an isoparaffin solvent (Is〇par_L) as a solvent, and contains 0.6 di(2-ethyl-hexyl) phosphoric acid, D2EHPA, and a volume percent concentration. (v〇i%) is didecyl alcohol (d〇decan〇l). The fourth figure also shows that when the feed solution is a solution of trivalent indium (In3+) sulfuric acid (h2S〇4) having a pH of 1 and containing an initial concentration of WOppm, and when the feed solution is at a pH of 丨A schematic diagram showing the change of indium concentration in the feed solution over time when the HC1 solution of trivalent indium (In3+) having an initial concentration of 16 〇ppm is contained. Among them, the feed volume was 1 L, and the dispersion was taken up in the same manner as in the third figure.第五 The fifth figure is a schematic diagram of the change of indium concentration with time in the feed solution. Among them, the feed solution was a sulfuric acid (h2so4) solution having a pH of 1, a weight concentration (wt%) of 2, and an initial concentration of 200 ppm of divalent indium (In3+). The fifth graph shows the change of indium concentration with time when the concentration of di(2-ethylhexyl)phosphoric acid (D2EHPA) in the dispersion is 0.2 M, 0-6 Μ and M. The above three kinds of taking knife liquid are mixed liquids, which are 0.1 L (l〇〇ml) of 5 Μ hydrochloric acid (HC1) ♦ liquid as a take solution (stHp solution), and mixed with a 〇 9L (9 〇〇ml) Machine z liquid. Among them, the organic solution is an isomeric hydrocarbon solvent (Isopar-L) as a solvent of 201032881, and contains two (2-ethylhexyl) acid at different concentrations (〇·2 Μ, 0.6 Μ, 1 Μ). (2-ethyl-hexyl) phosphoric acid, D2EHPA] and volume percent concentration (vol%) is 2dodecanol (dodecanol). The sixth figure is the change of indium concentration with time in the feed solution and the take-up solution. schematic diagram. Wherein, the feed solution is a sulfuric acid (H2S04) solution having a weight concentration (wt%) of 2, which has a volume of 15·5 L′, a pH value of 1, and contains trivalent indium having an initial concentration of 200 ppm 0 ( In3+). In addition, 'take the dispersion liquid as a mixed liquid, which is a 0.12 L (l2 〇 ml) solution of 5 Μ hydrochloric acid (HC1) as a strip solution, and mix it with a 〇9 L (900 Ml) of organic solution. Among them, the organic solution is an isomerization hydrocarbon solvent (Is〇par-L) as a solvent, and contains one (2-ethylhexyl) phosphoric acid. D2EHPA] and the volume percentage concentration (vol%) is 2dodecanol (dodecanol) 〇m The seventh figure is a schematic diagram of the change of indium concentration with time in the feed solution and the take-up solution. The 'feed solution is an indium tin oxide (IT0) solution having a volume of 15.5 L, a pH of 0.9' and containing an initial concentration of 14 〇ppm of trivalent indium (Ιη3+)β. In addition, the dispersion is taken as a a mixed liquid consisting of 0.12 L (120 ml) of 5 Μ hydrochloric acid (HC1)' solution as a take-up solution (4) s〇iuti〇n), and mixed with a 9 L (900 ml) organic solution . Among them, the organic solution is an isoparaffin solvent (Isopar-L) as a solvent, and contains 〇6 μ bis (2-ethylhexyl) linic acid 42 201032881 [di(2-ethyl-hexyl) phosphoric acid, D2EHPA] And the volume percent concentration (vol%) is 2dodecanol. Figure 7 also shows the tin concentration in the feed solution as a function of time. The eighth figure is a graph showing the change of indium concentration with time in the feed solution and the take-up solution. The 'feeding liquid' is a residual electrolyte feed solution having a reservoir of L.5 L, a pH of 1, and containing trivalent indium (In3+) having an initial concentration of ❹ n000 PPm. In addition, the take-up dispersion is a mixed liquid consisting of 0.1 L (100 ml) of a 5 Μ hydrochloric acid (HC1) solution as a strip solution, and mixed with a 0.9 l (900 ml) Organic solution. Among them, the organic solution is an isoparaffinated hydrocarbon solvent (ISOpar_L) as a solvent, and contains 〇6 M (2-ethyl-hexyl) phosphoric acid, D2EHPA, and volume percentage The concentration (vol%) is 2. dodecanoyl. In this figure, the indium concentration and φ obtained by calculation and experiment are also shown, and are respectively labeled as taking the experiment and taking the ideal curve. Among them, the calculated data portion is calculated by mass balance of the feed solution. [Main component symbol description] 43

Claims (1)

201032881 七、申請專利範圍: 1. 一種支撐式液膜拿取分散程序,以自進料溶液中移除並回收 , 銦,包含: - (1)在一具有微孔洞支撐材之液膜的一端處理進料溶液,以便於在 液媒的另一端藉由拿取分散作用(strip dispersion)移除銦,其 中該拿取分散作用使用一拿取分散液,該拿取分散液係藉由一混 合器分散一水相拿取溶液於一有機液體中,且該有機液體含有一 萃取劑;以及 (2)令部份或係全部該拿取分散液分成一有機相與一水相,其中, 該水相係為水相拿取溶液,且該水相拿取溶液包含一濃縮的銦溶 液。 2. 如申請專利範圍第1項所述之支撐式液膜拿取分散程序,其中 上述之進料溶液係被處理以移除銦直至其濃度降至5 ppm或5 ppm以下。 參 3. 如申請專利範圍第1項所述之支撐式液膜拿取分散程序,其中 上述之拿取分散液的該水相拿取溶液包含至少一種酸(acid)。 4.如申請專利範圍第3項所述之支撐式液膜拿取分散程序,其中 上述之酸係選自下列族群之一者或其混合物:鹽酸(HC1)、硫酸 (h2so4)、硝酸(hno3),以及乙酸(CH3C00H)。 201032881 5. 如申請專利範圍第1項所述之支撐式液膜拿取分散程序’其中 上述之拿取分散液的有機液贌更包含一改性劑(modifier),且該改 ' 性劑存在於一碳氫化合物溶劑或一混合物中。 6. 如申請專利範圍第1項所述之支撐式液膜拿取分散程序,其中 上述之拿取分散液的有機液髏包含體積百分比約為2至100的萃 取劑,以及體積百分比約為0至20的改性劑’且該萃取劑與該 ^ 改性劑存在於一碳氫化合物溶劑或混合物中。 ❹ 7. 如申請專利範圍第6項所述之支撐式液膜拿取分散程序’其中 上述之拿取分散液的有機液體包含體積百分比約為5至40的萃 取劑,以及艎積百分比約為1至1 2 3的改性劑’該萃取劑與該改 性劑存在於一碳氫化合物溶劑或混合物中° 45 1 如申請專利範圍第5項所述之支撐式液膜拿取分散程序’其中 參 上述之改性劑係選自下列族群之一者或其混合物:醇類 (alcohol)、硝基苯烷基醚(nitrophenyl alkyl ether)、以及三烷基磷 酸輯(trialkyl phosphate)。 2 如申請專利範圍第8項所述之支撐式液膜拿取分散程序’其中 上述之醇類係選自下列族群之一者或其混合物:己醇(hexanol)、 3 庚醇(heptanol)、辛醇(octanoD、壬醇(nonano1)、癸醇(decan〇l)、 十一醇(undecanol)、十二酵(dodecano1)、十三醇(tridecano1)、十 201032881 四醇(tetradecanol)、十五醇(pentadecanol)、十六醇(hexadecanol)、 十七醇(heptadacanol)、十八醇(octadecanol)。 • 10.如申請專利範圍第8項所述之支撐式液膜拿取分散程序,其中 上述之硝基苯烧基醚(nitrophenyl alkyl ether)係選自下列族群之 一者或其混合物:鄰頌基苯辛醚【〇-nitrophenyl octyl ether (o-NPOE)】、鄰硝基苯庚醚(o-nitrophenyl heptyl ether)、鄰硝基 苯己謎(o-nitrophenyl hexyl ether)、鄰硝基苯戊醚【nitrophenyl ❹ pentyl ether (o-NPPE)】、鄰破基苯丁謎(〇-nitrophenyl butyl ether)、鄰硝基苯丙鍵(〇-nitr〇phenyl propyl ether)。 11.如申請專利範圍第8項所述之支撐式液膜拿取分散程序,其中 上述之三虎基填酸酯(trialkyl phosphate)係選自下列族群之一者 或其混合物:蛾酸三丁酯(tributyl phosphate)、碌酸順(2-乙基己 基)醋【tris(2-ethylhexyl) phosphate】。 12.如申請專利範圍第5項所述之支撐式液膜拿取分散程序,其中 上述之碳氫化合物溶劑係選自下列族群之一者或其混合物:正癸 炫(n-decane)、正十一烧(n-undecane)、正十二烧(n-dodecane)、正 十三炫(n-tridecane)、正十四烧(n-tetradecane)、異癸烧 (isodecane)、異 Ί —烧(isoundecane)、異十二烧(isododecane)、異 十三烧(isotridecane)、異十四烧(isotetradecane)、異烧烴溶劑 46 201032881 (isoparaffinic hydrocarbon solvent)【具有閃點 92°C、沸點 254°C、 黏度 3 cp(於 25°C)、以及密度 〇.791 g/ml (於 15.6°C)】。 • 13.如申請專利範圍第1項所述之支撐式液膜拿取分散程序,其中 上述之微孔洞支撐材係選自下列族群之一者或其混合物:聚丙烯 (polypropylene)、聚四氟乙烯【Poiytetrafluoroethylene (PTFE)】、 聚乙烯(polyethylene)、聚磯(polysulfone)、聚醚颯 巍 (polyethersulfone)、聚醚醚酮(P〇lyetheretherketone)、聚亞醯胺 (polyimide)、聚醯胺(polyamide)、環狀聚醯氨(polyaramide)。 14. 如申請專利範圍第1項所述之支撐式液膜拿取分散程序,其中 上述之微孔洞支撐材係為聚丙烯(polypropylene)。 15. 如申請專利範圍第1項所述之支撐式液膜拿取分散程序’其中 上述之萃取劑包含二烷基磷酸(dialkyl phosphoric acid)。 Ο 16. 如申請專利範圍第15項所述之支撐式液膜拿取分散程序,其 中上述之二烷基磷酸(dialkyl phosphoric acid)具有6至26個碳原 子並係為飽和狀態(paraffinic)。 17.如申請專利範圍第μ項所述之支撐式液膜拿取分散程序,其 中上述之二烷基磷酸(dialkyl phosphoric acids)可選自下列族群之 一者或其混合物:二(2-乙基-己基)磷酸【diG-dhykexy1) 201032881201032881 VII. Patent application scope: 1. A supported liquid film take-up dispersion process, which is removed and recovered from the feed solution, indium, comprising: - (1) a liquid film with a microporous support material The feed solution is treated at one end so as to remove indium at the other end of the liquid medium by strip dispersion, wherein the take-up dispersion uses a take-up dispersion, and the take-up dispersion is passed through a a mixer dispersing an aqueous phase to take a solution in an organic liquid, and the organic liquid contains an extracting agent; and (2) separating a part or all of the taken dispersion into an organic phase and an aqueous phase, wherein The aqueous phase is an aqueous phase take-up solution, and the aqueous phase take-up solution comprises a concentrated indium solution. 2. The supported liquid film take-up dispersion procedure of claim 1, wherein the feed solution is treated to remove indium until its concentration falls below 5 ppm or less. 3. The supported liquid film take-up dispersion process of claim 1, wherein the aqueous take-up solution for taking the dispersion comprises at least one acid. 4. The supported liquid film take-up dispersion process according to claim 3, wherein the acid is selected from one of the following groups or a mixture thereof: hydrochloric acid (HC1), sulfuric acid (h2so4), nitric acid (hno3) ), as well as acetic acid (CH3C00H). 201032881 5. The supported liquid film take-up dispersion process as described in claim 1, wherein the organic liquid obtained by taking the dispersion further comprises a modifier, and the modified agent is present. In a hydrocarbon solvent or a mixture. 6. The supported liquid film take-up dispersion process according to claim 1, wherein the organic liquid containing the dispersion contains the extractant having a volume percentage of about 2 to 100, and the volume percentage is about 0. The modifier to 20' and the extractant and the modifier are present in a hydrocarbon solvent or mixture. ❹ 7. The supported liquid film take-up dispersion procedure as described in claim 6 wherein the organic liquid from which the dispersion is taken contains an extractant having a volume percentage of about 5 to 40, and the percentage of accumulation is about 1 to 1 2 3 modifier 'The extractant and the modifier are present in a hydrocarbon solvent or mixture. 45 1 The supported liquid film take-off dispersion procedure as described in claim 5 of the patent application' The modifiers referred to above are selected from one of the following groups or a mixture thereof: alcohol, nitrophenyl alkyl ether, and trialkyl phosphate. 2 The supported liquid film take-up dispersion procedure of claim 8 wherein the alcohol is selected from one of the following groups or a mixture thereof: hexanol, heptanol, Octanol (octanoD, nonano1, decan〇l, undecanol, dodecano1, tridecano1, ten 201032881 tetradecanol, fifteen Alcohol (pentadecanol), hexadecanol (hexadecanol), heptadecanocanol, octadecanocan (octadecanol). 10. The supported liquid film take-up dispersion procedure of claim 8 wherein the above The nitrophenyl alkyl ether is selected from one of the following groups or a mixture thereof: 〇-nitrophenyl octyl ether (o-NPOE), o-nitrophenylheptyl ether ( O-nitrophenyl heptyl ether), o-nitrophenyl hexyl ether, nitrophenyl pentyl ether (o-NPPE), ortho-phenylphenyl butyl Ether), 〇-nitr〇phenyl propyl ether. 11. The supported liquid film take-up dispersion process of claim 8, wherein the above trialkyl phosphate is selected from one of the following groups or a mixture thereof: a tributyl phosphate, a tris(2-ethylhexyl) phosphate, and a supported liquid film take-up dispersion process as described in claim 5, wherein the above The hydrocarbon solvent is selected from one of the following groups or a mixture thereof: n-decane, n-undecane, n-dodecane, and thirteen (n-tridecane), n-tetradecane, isodecane, isoundecane, isododecane, isotridecane, isotetradecene Isotetradecane, isothermal hydrocarbon solvent 46 201032881 (isoparaffinic hydrocarbon solvent) [having a flash point of 92 ° C, a boiling point of 254 ° C, a viscosity of 3 cp (at 25 ° C), and a density of 791 791 g / ml (at 15.6 °C)]. 13. The supported liquid film take-up dispersion process of claim 1, wherein the microporous support material is selected from one of the following groups or a mixture thereof: polypropylene, polytetra Fluorinated tetrafluoroethylene (PTFE), polyethylene, polysulfone, polyethersulfone, polyetheretherketone, polyimide, polyamine (polyamide), cyclic polyaramide. 14. The supported liquid film take-up dispersion process of claim 1, wherein the microporous support material is polypropylene. 15. The supported liquid film take-up dispersion process of claim 1, wherein the extractant comprises a dialkyl phosphoric acid. Ο 16. The supported liquid film take-up dispersion process of claim 15, wherein the above-mentioned dialkyl phosphoric acid has 6 to 26 carbon atoms and is saturated (paraffinic). 17. The supported liquid film take-up dispersion process of claim 5, wherein the above-mentioned dialkyl phosphoric acids may be selected from one of the following groups or a mixture thereof: two (2-B) Base-hexyl phosphate [diG-dhykexy1) 201032881 phosphoric acid (D2EHPA)】、二(2· 丁基辛基)磷酸 【di(2-butyl-octyl) phosphoric acid 】、二(2-己基-癸基)填酸 【di(2_hexyl-decyl) phosphoric acid 】、二.(2-辛基-癸基/2·己基-十二烧基)碟酸【di(2-octyl-decyl/2-hexyl-dodecyl) phosphoric acid 】、二(2-辛基-十二烧基)填酸【di(2-octyl-dodecyl) phosphoric acid】、二(己基)填酸【di(hexyl) phosphoric acid 】、 二(庚基)鱗酸【di(heptyl) phosphoric acid】、二(辛基)填酸【di(octyl) phosphoric acid】、二(壬基)填酸【di(nonyl) phosphoric acid】、二 (癸基)磷酸【di(decyl) phosphoric acid 】、二(Η--烧基)麟酸 【di(undecyl) phosphoric acid】、二(十二炫基)雄酸【di(dodecyl) phosphoric acid 】、二(十三烧基)填酸【di(tridecyl) phosphoric acid】、二(十四院基)鱗酸【di(tetradecyl) phosphoric acid】、二(十 五烧基)填酸【di(pentadecyl) phosphoric acid】、二(十六烧基)填酸 【di(hexadecyl) phosphoric acid 】、二(十.七炫基)磷酸 【di(heptadecyl) phosphoric acid 】、二(十八烧基)雄酸 【di(octadecyl) phosphoric acid】、二(十九烧基)磷酸【di(nonadecyl) phosphoric acid】、二(二十烧基)填酸【di(decadecyl) phosphoric acid】、二(二Ί —烧基)填酸【di(undecadecyl) phosphoric acid】、 二(二十二烧基)麟酸【di(dodecadecyl) phosphoric acid】、二(二十 三烧基)墙酸【di(tridecadecyl) phosphoric acid】、二(二十四烧基) 麟酸【di(tetradecadecyl) phosphoric acid】、二(二十五烧基)填酸 【di(pentadadecyl) phosphoric acid 】、二(二十六烧基)填酸 48 201032881 【di(hexadecadecyl) phosphoric acid】。 * 18.如申請專利範圍第15項所述之支撐式液膜拿取分散程序,其 • 中上述之二烷基磷酸(dialkyl phosphoric acid)係為二(2-乙基-己 基)填酸【di(2-ethyl_hexyl) phosphoric acid (D2EHPA)】。 19.如申請專利範圍第1項所述之支撐式液膜拿取分散程序, 其中上述之萃取劑含有一貌基苯亞鱗酸(alkyl phenylphosphonic 參 acid)。 20.如申請專利範圍第19項所述之支撐式液膜拿取分散程序,其 中上述之烧基苯亞鱗酸(alkyl phenylphosphonic acid)的烧基 (alkyl group)具有6至26個破原子並係為飽和狀態(paraffinic) 〇 21.如申請專利範圍第19項所述之支撐式液膜拿取分散程序,其 〇 中上述之烷基苯亞磷酸可選自下列族群之一者或其混合物:(2_ 丁基-1-辛基)苯亞填酸【2-butyl_l-octyl phenylphosphonic acid (ΒΟΡΡΑ)】、(2·己基-1-癸基)苯亞磷酸(2-hexyl-1-decyl phenylphosphonic acid)、(2-辛基-1-癸基/2-己基-1-十二烧基)苯亞 填酸(2-octyl· l-decyl/2-hexyl-1-dodecyl phenylphosphonic acid)、 (2-辛基-1-十二烧基)苯亞麟酸(2-octyl-l-dodecyl phenylphosphonic acid)、己基苯亞填酸(hexyl phenylphosphonic acid)、庚基苯亞鱗酸(heptyl phenylphosphonic acid)、辛基苯亞鱗 49 201032881 酸(octyl phenylphosphonic acid) > 壬基苯亞填酸(nonyl phenylphosphonic acid)、癸基苯亞鱗酸(decyl phenylphosphonic ' acid) ' H 院基苯亞鱗酸(undecyl phenylphosphonic acid)、十二 * 院基苯亞填酸(dodecyl phenylphosphonic acid)、十三烧基苯亞雄 酸(tridecyl phenylphosphonic acid)、十四烧基苯亞碟酸(tetradecyl phenylphosphonic acid)、十五烧基苯亞礎酸(pentadecyl phenylphosphonic acid)、十六烧基苯亞構酸(hexadecyl ❿ phenylphosphonic acid)、十七烧基苯亞麟酸(heptadecyl phenylphosphonic acid)、十八烧基苯亞鱗酸(octadecyl phenylphosphonic acid)、十九院基苯亞填酸(nonadecyl phenylphosphonic acid)、二十燒基苯亞構酸(decadecyl phenylphosphonic acid)、二Η--烧基苯亞填酸(undecadecyl phenylphosphonic acid)、二十二烧基苯亞填酸(dodecadecyl phenylphosphonic acid)、二十三烧基苯亞填酸(tridecadecyl ⑩ phenylphosphonic acid)、二十四烧基苯亞鱗酸(tetradecadecyl phenylphosphonic acid)、二十五烧基苯亞麟酸(pentadadecyl phenylphosphonic acid)、二十六烧基苯亞麟酸(hexadecadecyl phenylphosphonic acid) ° 22.如申請專利範圍第19項所述之支撐式液膜拿取分散程序, 其中上述之烧基苯亞麟酸(alkyl phenylphosphonic acid)係為(2-丁 基-1-辛基)苯亞鱗酸【2-butyl-l-octyl phenylphosphonic acid 50 201032881 (ΒΟΡΡΑ)】。Phosphoric acid (D2EHPA)], di(2-butyl-octyl) phosphoric acid, di(2-hexyl-decyl) phosphoric acid 】, (2-octyl-fluorenyl-2-hexyl-dodecyl) phosphoric acid [di(2-octyl-decyl/2-hexyl-dodecyl) phosphoric acid], bis(2-octyl- Di(2-octyl-dodecyl phosphoric acid), di(hexyl) phosphoric acid, di(heptyl) phosphoric acid Di(octyl) phosphoric acid, di(nonyl) phosphoric acid, di(decyl) phosphoric acid, di((diyl) phosphoric acid) Di(undecyl) phosphoric acid, di(dodecyl) phosphoric acid, di(tridecyl) phosphoric acid, di(tridecyl) phosphoric Acid], di (tetradecyl phosphoric acid), di(pentadecyl) phosphoric acid, di(hexadecyl) phosphoric acid [di] (hexad Ecyl) phosphoric acid 】, di(heptadecyl) phosphoric acid, di(octadecyl) phosphoric acid, di(octadecyl)phosphoric acid [di(nonadecyl) phosphoric acid], di(decadecyl) phosphoric acid, di(undecadecyl) phosphoric acid, di (twenty) Di(dodecadecyl) phosphoric acid, di(decadelatelyl) phosphoric acid, di(quaternary) pyricic acid, di(tetradecadecyl) phosphoric Acid], two (25) base acid [di (pentadadecyl) phosphoric acid], two (26 burning base) acid 48 201032881 [di (hexadecadecyl) phosphoric acid]. * 18. The supported liquid film take-up dispersion procedure described in claim 15 wherein the above-mentioned dialkyl phosphoric acid is di(2-ethyl-hexyl) acid. Di(2-ethyl_hexyl) phosphoric acid (D2EHPA)]. 19. The supported liquid film take-up dispersion process of claim 1, wherein the extractant comprises an alkyl phenylphosphonic acid. 20. The supported liquid film take-up dispersion process of claim 19, wherein the alkyl group of the above alkyl phenylphosphonic acid has 6 to 26 broken atoms and Is a saturated state (paraffinic) 〇 21. The supported liquid film take-up dispersion procedure of claim 19, wherein the alkylbenzene phosphite described above may be selected from one of the following groups or a mixture thereof :(2_butyl-1-octyl)benzene acid acid [2-butyl_l-octyl phenylphosphonic acid (ΒΟΡΡΑ)], (2·hexyl-1-fluorenyl) phenylphosphite (2-hexyl-1-decyl phenylphosphonic) Acid, (2-octyl-1-indenyl-2-hexyl-1-dodecylphenylphosphonic acid), (2-octyl·l-decyl/2-hexyl-1-dodecyl phenylphosphonic acid), 2-octyl-l-dodecyl phenylphosphonic acid, hexyl phenylphosphonic acid, heptyl phenylphosphonic acid , octyl phenylphosphonic acid > octyl phenylphosphonic acid > nonyl phenylphosphonic acid Decyl phenylphosphonic 'acid' H undecyl phenylphosphonic acid, dodecyl phenylphosphonic acid, tridecyl benzoaric acid ( Tridecyl phenylphosphonic acid, tetradecyl phenylphosphonic acid, pentadecyl phenylphosphonic acid, hexadecyl phenyl phenylphosphonic acid, seventeen Heptadecyl phenylphosphonic acid, octadecyl phenylphosphonic acid, nonadecyl phenylphosphonic acid, decanoyl phthalic acid (decadecyl) Phenylphosphonic acid), undecadecyl phenylphosphonic acid, dodecadecyl phenylphosphonic acid, tridecadecyl 10 phenylphosphonic acid , tetradecadecyl phenylphosphonic acid, pentadadecyl phenyl Phosphonic acid), hexadecadecyl phenylphosphonic acid, 22. The supported liquid film take-up dispersion process as described in claim 19, wherein the above-mentioned pyridyl benzoic acid ( The alkyl phenylphosphonic acid) is (2-butyl-1-octyl phenylphosphonic acid 50 201032881 (ΒΟΡΡΑ)].
TW98121307A 2009-03-04 2009-06-25 Indium recovery by supported liquid membrane with strip dispersion TW201032881A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/397,818 US20100224030A1 (en) 2009-03-04 2009-03-04 Indium recovery by supported liquid membrane with strip dispersion

Publications (1)

Publication Number Publication Date
TW201032881A true TW201032881A (en) 2010-09-16

Family

ID=42677072

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98121307A TW201032881A (en) 2009-03-04 2009-06-25 Indium recovery by supported liquid membrane with strip dispersion

Country Status (2)

Country Link
US (1) US20100224030A1 (en)
TW (1) TW201032881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI646052B (en) * 2015-09-07 2019-01-01 中國科技大學 A method of recovery of rare earth lanthanum ions

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2537576A1 (en) 2011-06-24 2012-12-26 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Pertraction process
US9968887B2 (en) 2015-05-29 2018-05-15 Ut-Battelle, Llc Membrane assisted solvent extraction for rare earth element recovery
CN106702167B (en) * 2017-03-07 2018-06-01 北京工业大学 A kind of method of efficient impurity removal in pickle liquor from waste liquid crystal display
CN106868324B (en) * 2017-03-07 2018-08-21 北京工业大学 A method of using salting out from the pickle liquor enriching and purifying indium of waste material containing ITO
DE102017107097B4 (en) 2017-04-03 2024-02-08 Technische Universität Bergakademie Freiberg Process for separating indium from metal-containing aqueous solutions
DE102017213956B3 (en) 2017-08-10 2018-12-06 Technische Universität Bergakademie Freiberg Process for recovering indium from aqueous, metal-containing solutions
US11293078B2 (en) 2018-08-14 2022-04-05 Ut-Battelle, Llc Separation of rare earth elements using supported membrane solvent extraction

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292284A (en) * 1980-06-27 1981-09-29 Toho Aen Kabushiki Kaisha Solvent extraction recovery process for indium
JPS63206312A (en) * 1987-02-23 1988-08-25 Mitsubishi Kasei Corp Extraction of metallic ion
US4915919A (en) * 1987-09-29 1990-04-10 Cominco Ltd. Recovery of germanium from aqueous solutions by solvent extraction
US5277882A (en) * 1989-04-28 1994-01-11 Union Miniere S.A. Process for recovering germanium
DE3915586A1 (en) * 1989-05-12 1990-11-15 Henkel Kgaa METHOD FOR TWO-PHASE EXTRACTION OF METALIONS FROM PHASES CONTAINING SOLID METALOXIDES, AGENTS AND USE
JPH0813622B2 (en) * 1990-04-12 1996-02-14 豊田合成株式会社 Molding and connecting method for weather strip
US5114579A (en) * 1990-10-22 1992-05-19 The United States Of America As Represented By The United States Department Of Energy Separation of metals by supported liquid membrane
CA2077601A1 (en) * 1992-09-04 1994-03-05 William Andrew Rickelton Recovery of indium by solvent extraction using trialkyl-phosphine oxides
US6086769A (en) * 1996-09-16 2000-07-11 Commodore Separation Technologies, Inc. Supported liquid membrane separation
US6291705B1 (en) * 2000-02-04 2001-09-18 Commodore Separation Technologies, Inc. Combined supported liquid membrane/strip dispersion process for the removal and recovery of metals
US6521117B2 (en) * 2000-05-23 2003-02-18 National University Of Singapore Method for metal recovery from aqueous solutions
US20100226839A1 (en) * 2009-03-04 2010-09-09 Solar Applied Materials Technology Corp. Method For Recovery of Gallium
US20100329970A1 (en) * 2009-03-04 2010-12-30 Solar Applied Materials Technology Corp. Method for recovery of copper, indium, gallium, and selenium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI646052B (en) * 2015-09-07 2019-01-01 中國科技大學 A method of recovery of rare earth lanthanum ions

Also Published As

Publication number Publication date
US20100224030A1 (en) 2010-09-09

Similar Documents

Publication Publication Date Title
TW201032881A (en) Indium recovery by supported liquid membrane with strip dispersion
Zante et al. Lithium extraction from complex aqueous solutions using supported ionic liquid membranes
Mohapatra Actinide ion extraction using room temperature ionic liquids: opportunities and challenges for nuclear fuel cycle applications
Sastre et al. Improved techniques in liquid membrane separations: an overview
Baba et al. Recent advances in extraction and separation of rare-earth metals using ionic liquids
Almeida et al. Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs)
Ouadi et al. Solvent extraction of U (VI) by task specific ionic liquids bearing phosphoryl groups
Mohapatra et al. Liquid membrane based separations of actinides and fission products
Surucu et al. Selective separation of cobalt and nickel by flat sheet supported liquid membrane using Alamine 300 as carrier
Kolev et al. Polymer inclusion membranes
JP5625058B2 (en) Increased separation factor between americium and curium and / or lanthanides in liquid-liquid extraction operations
Bourgeois et al. Importance of weak interactions in the formulation of organic phases for efficient liquid/liquid extraction of metals
Amini et al. Supported liquid membrane in metal ion separation: An overview
KR19980071644A (en) Multistage Solvent Extraction Method for Metal Elements
Biswas et al. Carrier facilitated transport of uranium across supported liquid membrane using dinonyl phenyl phosphoric acid and its mixture with neutral donors
Rathore et al. Membrane assisted liquid extraction of actinides and remediation of nuclear waste: a review
Peydayesh et al. Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
He et al. Simultaneous removal and recovery of cadmium (II) and CN− from simulated electroplating rinse wastewater by a strip dispersion hybrid liquid membrane (SDHLM) containing double carrier
Misra et al. Studies on the simultaneous removal of dissolved DBP and TBP as well as uranyl ions from aqueous solutions by using Micellar-Enhanced Ultrafiltration Technique
Arabi et al. Recovery and transport of thorium (IV) through polymer inclusion membrane with D2EHPA from nitric acid solutions
Rzelewska-Piekut et al. Liquid membranes for separation of metal ions from wastewaters
US6328782B1 (en) Combined supported liquid membrane/strip dispersion process for the removal and recovery of radionuclides and metals
US6350419B1 (en) Combined supported liquid membrane/strip dispersion process for the removal and recovery of metals
Ansari et al. Performance of some extractants used for ‘actinide partitioning’in a comparative hollow fibre supported liquid membrane transport study using simulated high level nuclear waste
Vijayalakshmi et al. Studies on yttrium permeation through hollow fibre supported liquid membrane from nitrate medium using di-nonyl phenyl phosphoric acid as the carrier phase