TW201032436A - Impedance matching method as well as host device and energy transferring system using thererof - Google Patents

Impedance matching method as well as host device and energy transferring system using thererof Download PDF

Info

Publication number
TW201032436A
TW201032436A TW098106252A TW98106252A TW201032436A TW 201032436 A TW201032436 A TW 201032436A TW 098106252 A TW098106252 A TW 098106252A TW 98106252 A TW98106252 A TW 98106252A TW 201032436 A TW201032436 A TW 201032436A
Authority
TW
Taiwan
Prior art keywords
energy
circuit
impedance matching
signal
impedance
Prior art date
Application number
TW098106252A
Other languages
Chinese (zh)
Inventor
Chih-Lung Lin
Kuo-Chao Liao
Chih-Jung Chen
Original Assignee
Darfon Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Darfon Electronics Corp filed Critical Darfon Electronics Corp
Priority to TW098106252A priority Critical patent/TW201032436A/en
Priority to CN2009101287703A priority patent/CN101662170B/en
Publication of TW201032436A publication Critical patent/TW201032436A/en

Links

Abstract

An impedance matching method providing energy to M client devices includes the following steps, wherein M is a natural number. Firstly, an impedance matching circuit is tuned to having an equivalent impedance value for providing M energy signals to M respective client devices. Next, M response signals of the M respective client devices for indicating the received energy intensities of the corresponding client devices are received. Then, a table mapping the M response signals to the equivalent impedance value is recorded. Next, the equivalent impedance value is adjusted step by step and the up-mentioned steps are repeated for N times for recording N response signals corresponding to each of the M client devices. N is a natural number greater than 1. After that, a response signal among the N response signals, which are corresponded to each of the M client devices, indicating best received energy intensity is found.

Description

201032436 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種主控端裝置,且特別是有關於一 種應用在能量傳輸系統中用以調整能量主控端裝置與各 ' 受控端裝置間之阻抗匹配之主控端裝置。 【先前技術】 在現有技術中,用以將主控端裝置之能量無線地提供 0 至受控端裝置之能量傳輸系統係已存在。一般來說,能量 傳輸系統中之主控端裝置及受控端裝置分別設置有第一 阻抗匹配電路及第二阻抗匹配器。第一阻抗匹配電路接收 主控端裝置提供之能量以具有第一能量,而後第一阻抗匹 配器上之第一能量係耦合至第二阻抗匹配電路上,使第二 阻抗匹配器具有第二能量。受控端裝置係接收第二阻抗匹 • 配器上之第二能量。如此,主控端裝置之能量可無線地經 . 傳輸至受控端裝置。 Φ 然而,在實際應用場合中,一個主控端裝置時常對應 至兩個或兩個以上之受控端裝置。在這個情形中,如何設 計對應之能量傳輸方法以協調主控端裝置與多個受控端 裝置間之阻抗匹配關係乃業界不斷致力的方向之一。 【發明内容】 . 本發明係有關於一種能量傳輸方法,用以協調一個能 量傳輸系統中主控端裝置與多個受控端裝置間之阻抗匹 配關係,以使主控端裝置提供之能量可有效地提供至對應 201032436 之多個受控端裝置。如此,本實施例之能量傳輸方法可有 效地管理能量傳齡統巾之能4傳輸操作, 輪系統之能f龍料。 *心里傅 根據本發明提出一種阻抗匹配方法,應用在能量主$ 端裝置,以分別提供Μ筆能量至Μ個受控端裝置;其中二 為自然數,能量主控端裝置具有阻抗匹配電路。阻抗匹配 方法包括下列之步驟。首先控制阻抗匹配電路具有等效阻 抗值,以對應地透過能量耦合提供Μ筆能量訊號至μ個受 控端裝置。接著接收Μ個受控端裝置對應回傳之Μ筆迴授 訊號,Μ筆迴授訊號用以指示Μ個受控端裴置接收到之能又 量強度。然後記錄對照表對應Μ筆迴授訊號至 ^ ^阻抗值。接著判斷是否執行Ν次前述接 琥之步驟以對應各Μ個受控端裝置記錄Ν筆迴授訊號若 :番::地調整該阻抗匹配電路之電容或電感等又效阻抗: $複剛述接收及記錄Μ筆迴授訊號之步驟;—β, 對應各Μ個受控端裝置筆迴授訊號中指示田 等效度’授訊號對應之 = 本發明提出一種主控端裝置,用以提供Μ筆能量 源個受控端裝置,Μ為自然數。主控端裝置包括電 源3田阻抗匹配電路、通訊接收模組及處理器電路。電 灿=提供系統能量訊號。阻抗匹配電路回應於控制 量效阻抗值,阻抗匹配電路更心回應於系統能 別傳送Μ筆能量訊號至Μ個受控端震置。通訊接 模組用以接收Μ個受控端裝置對應回傳之μ筆迴授訊 201032436 號’ Μ筆迴授訊號用以指示M個受控料置接收到之能旦 強度。處理器電路記錄對照表,用以對應M筆迴授訊號1 阻抗匹配電路之等效阻抗值。處理器電路提供控制訊^更 时Ρ皆地調整阻抗匹配轉之等效喊值,㈣應各_ 嗳控端裝置記錄Ν筆迴授訊號,Ν為大於i之自然數 中處理器電路更找出對應各_受控端裝置之N筆迴授訊 號中指示最佳能量強度之迴授訊號,並選擇與最佳能^強201032436 VI. Description of the Invention: [Technical Field] The present invention relates to a master terminal device, and more particularly to an application in an energy transmission system for adjusting an energy master device and each of the 'controlled terminals The master device that matches the impedance between the devices. [Prior Art] In the prior art, an energy transfer system for wirelessly supplying the energy of the master device to the controlled terminal device has existed. Generally, the main control device and the controlled end device in the energy transmission system are respectively provided with a first impedance matching circuit and a second impedance matching device. The first impedance matching circuit receives the energy provided by the master device to have the first energy, and then the first energy on the first impedance matcher is coupled to the second impedance matching circuit, so that the second impedance matcher has the second energy . The controlled end device receives the second energy on the second impedance adapter. In this way, the energy of the master device can be transmitted wirelessly to the controlled device. Φ However, in practical applications, one master device often corresponds to two or more controlled terminal devices. In this case, how to design the corresponding energy transfer method to coordinate the impedance matching relationship between the master device and the plurality of controlled devices is one of the industries' persistent efforts. SUMMARY OF THE INVENTION The present invention relates to an energy transfer method for coordinating an impedance matching relationship between a master device and a plurality of controlled devices in an energy transfer system, so that the energy provided by the master device can be Effectively provided to multiple controlled end devices corresponding to 201032436. Thus, the energy transfer method of the present embodiment can effectively manage the energy transfer operation of the energy ageing towel, and the wheel system can be used. According to the present invention, an impedance matching method is proposed, which is applied to an energy main-end device to respectively provide Μ pen energy to one controlled end device; wherein two are natural numbers, and the energy main control device has an impedance matching circuit. The impedance matching method includes the following steps. First, the impedance matching circuit is controlled to have an equivalent impedance value to correspondingly provide the energy signal to the μ controlled device through the energy coupling. Then, the 受控 pen feedback signal corresponding to the backhaul of the controlled device is received, and the 回 pen feedback signal is used to indicate the strength of the received power received by the controlled terminals. Then record the comparison table corresponding to the 回 pen feedback signal to ^ ^ impedance value. Then, it is determined whether the step of performing the foregoing step is performed to record the 回 pen feedback signal corresponding to each of the controlled devices. If the capacitance or inductance of the impedance matching circuit is adjusted, the effective impedance is: The step of receiving and recording the 回 pen feedback signal; —β, corresponding to the field equivalent of each of the controlled device devices, indicating the field equivalent 'signal number corresponding to== The present invention proposes a master terminal device for providing The pen energy source is a controlled end device, which is a natural number. The main control device includes a power source impedance matching circuit, a communication receiving module and a processor circuit. Electric Can = provide system energy signal. The impedance matching circuit is responsive to the control of the measured impedance value, and the impedance matching circuit is more responsive to the system being able to transmit the 能量 pen energy signal to one of the controlled terminals. The communication module is configured to receive the corresponding feedback of the back-to-back device of the controlled device. The 201032436 Μ pen feedback signal is used to indicate the strength of the M controlled materials received. The processor circuit records a comparison table for the equivalent impedance value of the M-shaped feedback signal 1 impedance matching circuit. The processor circuit provides the equivalent of the impedance matching and the equivalent shouting value when the control signal is provided. (4) The _ 嗳 terminal device should record the 回 pen feedback signal, and the processor circuit is greater than the natural number of the i. The feedback signal indicating the best energy intensity in the N-pen feedback signal corresponding to each _controlled end device is selected and the best energy is selected

度之迴授㈣對應之等錄抗值為制之敎等效阻抗 值0 根據本發明提出-種能量傳輸系統,包括_受控端 裝置及主控端裝置,祕為自然數。主控端裝置用以提供Μ 筆能量訊號至Μ個受控端裝置,主控端裝置包括電源電 路、阻抗匹配電路、通訊接收模組及處理器電路。電源電 路用以提供系統能量訊號。阻抗匹配電路回應於控制訊號 決定等效阻抗值,阻抗匹配電路更㈣統能量訊 號刀別傳送Μ筆能量訊號至Μ個受控端裝置^通訊接收模 組用以接收Μ個受控端裝置對應回傳之Μ筆迴授訊號,μ、 筆迴授訊號用以指示Μ個受控端裝置接收到之能量強度。 處理器電路記錄對照表,用以對應Μ筆迴授訊號至阻抗四 配電路之等錄抗值。處㈣轉提供㈣訊號以更步階 地調整阻抗匹配電路之等效阻抗值,以對應各_受控端 裝置記錄Ν筆迴授訊號’ Ν為大於j之自然數。其中處理 器電路更找出對應各Μ個受控端裝置之1^筆迴授訊號中指 示最佳能量強度之迴授訊號,並選擇與最佳能量強度之迴 授訊號對應之等效阻抗值為對應之選定等效阻抗值。 5 201032436 為讓本發明之上述内容能更明顯易懂,下文特舉一較 佳實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 利用分時多工的方式,本實施例之能量傳輸方法可協 調主控端裝置與多個受控端裝置間之阻抗匹配關係。 請參照第1圖,其繪示依照本發明實施例之能量傳輸 系統的方塊圖。能量傳輸系統1包括主控端裝置12及Μ 個受控端裝置14_1、14_2、14_3…、14_Μ,其中Μ為大於 1之自然數。能量傳輸系統1用以分別提供能量訊號E_1、 E_2.....E_M至受控端裝置14_1-14_M,以驅動其執行對 應之操作。 受控端裝置14_;l-14_M為一般常見之電子裝置,其分 別受到能量訊號E_1-E_M之驅動以執行對應之操作。在一 個例子中,受控端裝置14_卜14_M可為行動電話、滑鼠、 數位個人助理裝置(Digital Personal Assistant,PDA) 等等。 請參照第2圖,其繪示乃第1圖之主控端裝置12的 詳細方塊圖。主控端裝置12包括電源電路12a、阻抗匹配 電路12b、處理器電路12c及通訊接收模組12d。電源電 路12a用以提供系統能量訊號Ses。在一個例子中,如第 3圖所示,電源電路12a包括市電模組12al、交流直流轉 換器(AC to DC Converter)12a2及振盪器12a3。市電模 組12al用以接收並提供交流能量訊號Sac,交流直流轉換 201032436 器12a2根據交流能量訊號sac提供直流能量訊號sdc。振 盪器12a3係根據直流能量訊號sdc振盪產生系統能量訊 號 Ses。 . 阻抗匹配電路12b接收系統能量訊號Ses,並對應地 產生Μ筆能量訊號Setl、Set2、Set3.....SetM。阻抗匹 • 配電路12b分別將μ筆能量訊號Setl-SetM傳送至受控端 裝置 14_1-14 M。 在一個例子中’如第4圖所示,阻抗匹配電路12b包 φ 括可變電容C及電感L。可變電容C係受控於控制訊號Sc 決定等效電容值,以對應地決定阻抗匹配電路Ub之等效 阻抗值。如此,阻抗匹配電路12b上之能量係對應地耗合 至受控端裝置,以對應地提供能量訊號 SeU-SetM至對應之受控端裝置i4j_14_M。 而受控峭裝置丨4_1-14_M更於接收到對應之能量訊號 • 後回傳Μ筆迴授訊號Sri、Sr2、Sr3.....SrM至主控端 裝置12。舉例來說,各迴授訊號srl-SrM用以指示對應之 φ 受控端裝置之身份資訊及其接收到之能量訊號之強度。各 受控端裝置14一 1-14_M具有相近之電路結構。接下來以受 控端裝置14—1-14_M中之受控端裝置14_j為例,對各受 控端裝置14—1-14_M之操作與電路結構作進一步的說明, 其他接收端電路電路操作與結構可根據接收 端裝置14_j之操作與結構類推得到。j為小於或等於M之 . 正整數。 . 請參照第5圖,其緣示依照本發明實施例之受控端裝 置的方塊圖。舉例來說,受控端裝置14_j包括阻抗匹配 201032436 i w^v^r/\ 電路14a、整流電路14b、處理器電路14c及通訊發送模 組14d。阻抗匹配電路l2b上之能量係耦合至阻抗匹配電 路14a,而阻抗匹配電路14a接收能量訊號Setj,以對應 地以提供接收能量訊號Serj。 " 整流電路14b用以對接收能量訊號Serj進行整流操 作,以提供整流能罝訊號Serct。處理器電路14C根據整 流能量訊號Serct,驅動通訊發送模組14d提供對應之迴 授訊號Srj至通訊接收模組i2d。 通訊接收模組12d用以接收並提供迴授訊號Sri_SrM 至處理器電路12c。處理器電路i2c記錄對應至阻抗匹配 電路12b之此等效阻抗值儲存對應之迴授訊號Sri-SrM。 而處理器電路12c更對應地在N次操作中,分別提供N個 指示不同數值之控制訊號Sc,以控制可變電容C具有對應 之N個等效電容值。如此,而阻抗匹配電路12b具有對應 之N個等效阻抗值,N為正整數。 在此N次操作中,阻抗匹配電路12b上之能量係對應 地輕合至受控端裝置14J-14_M,而受控端裝置14J-14JI 更於接收到對應之能量訊號後回傳Μ筆迴授訊號Sri、(4) Corresponding recording resistance value is equivalent to the equivalent value of the system. According to the invention, an energy transmission system, including a controlled end device and a main control device, is a natural number. The main control device is configured to provide the 能量 pen energy signal to the controlled end device, and the main control device includes a power supply circuit, an impedance matching circuit, a communication receiving module and a processor circuit. The power circuit is used to provide system energy signals. The impedance matching circuit determines the equivalent impedance value in response to the control signal, and the impedance matching circuit further transmits (4) the energy signal knife to transmit the energy signal to the controlled device. The communication receiving module receives the corresponding controlled device. After the return, the pen feedback signal, μ, pen feedback signal is used to indicate the energy intensity received by the controlled device. The processor circuit records a comparison table for corresponding recording resistance values of the 回 pen feedback signal to the impedance quadruple circuit. At (4), the (4) signal is provided to adjust the equivalent impedance value of the impedance matching circuit step by step to record the 回 pen feedback signal ' Ν is a natural number greater than j corresponding to each _ controlled end device. The processor circuit further finds a feedback signal indicating the optimal energy intensity in the corresponding feedback signal of each of the controlled devices, and selects an equivalent impedance value corresponding to the feedback signal of the optimal energy intensity. The equivalent impedance value is selected for the corresponding one. 5 201032436 In order to make the above content of the present invention more comprehensible, a preferred embodiment will be described below in detail with reference to the accompanying drawings. The energy transfer method can coordinate the impedance matching relationship between the host device and the plurality of controlled devices. Referring to Figure 1, a block diagram of an energy transfer system in accordance with an embodiment of the present invention is shown. The energy transfer system 1 includes a master device 12 and a plurality of controlled end devices 14_1, 14_2, 14_3, ..., 14_Μ, where Μ is a natural number greater than one. The energy transmission system 1 is configured to provide energy signals E_1, E_2.....E_M to the controlled end devices 14_1-14_M, respectively, to drive them to perform the corresponding operations. The controlled end devices 14_; l-14_M are generally common electronic devices that are driven by the energy signals E_1-E_M to perform corresponding operations. In one example, the controlled end device 14_b 14_M can be a mobile phone, a mouse, a Digital Personal Assistant (PDA), and the like. Referring to Figure 2, a detailed block diagram of the host device 12 of Figure 1 is shown. The master device 12 includes a power supply circuit 12a, an impedance matching circuit 12b, a processor circuit 12c, and a communication receiving module 12d. The power circuit 12a is used to provide the system energy signal Ses. In one example, as shown in Fig. 3, the power supply circuit 12a includes a mains module 12al, an AC to DC converter 12a2, and an oscillator 12a3. The mains module 12al is used to receive and provide the AC energy signal Sac, and the AC/DC conversion 201032436 12a2 provides the DC energy signal sdc according to the AC energy signal sac. The oscillator 12a3 generates a system energy signal Ses according to the DC energy signal sdc. The impedance matching circuit 12b receives the system energy signal Ses and correspondingly generates the pen energy signals Set1, Set2, Set3, ..., SetM. The impedance matching circuit 12b transmits the μ pen energy signals Setl-SetM to the controlled end devices 14_1-14 M, respectively. In one example, as shown in Fig. 4, the impedance matching circuit 12b includes a variable capacitance C and an inductance L. The variable capacitor C is controlled by the control signal Sc to determine an equivalent capacitance value to correspondingly determine the equivalent impedance value of the impedance matching circuit Ub. Thus, the energy on the impedance matching circuit 12b is correspondingly consumed to the controlled end device to correspondingly provide the energy signal SeU-SetM to the corresponding controlled end device i4j_14_M. The controlled squat device 丨4_1-14_M receives the corresponding energy signal later, and then returns the 回 pen feedback signal Sri, Sr2, Sr3.....SrM to the master device 12. For example, each feedback signal srl-SrM is used to indicate the identity information of the corresponding φ controlled device and the strength of the received energy signal. Each of the controlled end devices 14-1-14_M has a similar circuit configuration. Next, taking the controlled end device 14_j in the controlled end device 14-1-14_M as an example, the operation and circuit structure of each controlled end device 14-1-14_M are further explained, and the other receiving end circuit circuits operate and The structure can be derived from the operation and structure of the receiving device 14_j. j is less than or equal to M. A positive integer. Referring to Figure 5, there is shown a block diagram of a controlled end device in accordance with an embodiment of the present invention. For example, the controlled end device 14_j includes an impedance matching 201032436 i w^v^r/\ circuit 14a, a rectifying circuit 14b, a processor circuit 14c, and a communication transmitting module 14d. The energy on the impedance matching circuit 12b is coupled to the impedance matching circuit 14a, and the impedance matching circuit 14a receives the energy signal Setj to correspondingly provide the received energy signal Serj. " The rectifying circuit 14b is used for rectifying the received energy signal Serj to provide a rectifying energy signal Serct. The processor circuit 14C drives the communication transmitting module 14d to provide the corresponding feedback signal Srj to the communication receiving module i2d according to the rectifying energy signal Serct. The communication receiving module 12d is configured to receive and provide the feedback signal Sri_SrM to the processor circuit 12c. The processor circuit i2c records the equivalent feedback value corresponding to the impedance matching circuit 12b to store the corresponding feedback signal Sri-SrM. The processor circuit 12c further provides N control signals Sc indicating different values in the N operations to control the variable capacitor C to have corresponding N equivalent capacitance values. Thus, the impedance matching circuit 12b has corresponding N equivalent impedance values, and N is a positive integer. In the N operations, the energy on the impedance matching circuit 12b is correspondingly lightly coupled to the controlled end device 14J-14_M, and the controlled end device 14J-14JI is further returned after receiving the corresponding energy signal. Signal number Sri,

Sr2 ' Sr3.....SrM至主控端裝置12。如此,在控制訊號Sr2 'Sr3.....SrM to the master device 12. So, in the control signal

Sc之N次操作結束後,主控端裝置12係可接收到對應至 阻抗匹配電路12b之N個不同等效阻抗值之N組迴授訊 號’各組迴授訊號均包括Μ筆迴授訊號Sr卜SrM。換言之, 處理器電路12c係可得到NxM之對照表,對應至各受控端 裝置14J-14J1,此對照表對應地儲存對應至不同之N個 等效阻抗值之N筆迴授訊號。 201032436 處理器電路12c更於& NxM之對照表中找 個受控端裝置14_1-14_M之N筆迴授訊號中护」應各M 強度之迴授訊號,並選擇與此最佳能量二= 應之等效阻抗值騎叙—敎等效阻抗值。^號對After the N operations of Sc are completed, the master device 12 can receive N sets of feedback signals corresponding to N different equivalent impedance values of the impedance matching circuit 12b. Each group of feedback signals includes a pen feedback signal. Sr Bu SrM. In other words, the processor circuit 12c can obtain a comparison table of NxM corresponding to each of the controlled end devices 14J-14J1, and the lookup table correspondingly stores N pen feedback signals corresponding to different N equivalent impedance values. 201032436 The processor circuit 12c finds a feedback signal of the N-receiver signal of the controlled-end device 14_1-14_M in the comparison table of & NxM, and selects the feedback signal of each M intensity, and selects the best energy two = The equivalent impedance value should be used to ride the equivalent impedance value. ^号

舉例來說,對應至受控端裝置14jiN筆迴授訊號 中之第筆迴授訊號(阻抗匹配電路12b具有第—等效阻 抗值)指示最佳能量強度。換言之,在阻抗匹配電路 具有此第一等效阻抗值時受控端裝置14j可接收到強度 最高之能量訊號。如此,處理器電路12c係對應地選擇^匕 第一等效阻抗值為對應至受控端裝置14_1之選定等效阻 抗值。相似於前述對應至受控端裝置14—1之操作,處理 器電路12c係找出對應至各受控端裝置14—1-14—M之選定 等效阻抗值。 、 處理器電路12c更用以分時多工地,在Μ個操作期間 中透過提供控制訊號Sc調整阻抗匹配電路12b之等效阻 抗值’使阻抗匹配電路12b在此Μ個操作期間中具有分別 與Μ個受控端裝置14_1_14_]|1對應之選定等效阻抗值,以 分別於此Μ操作期間中傳輸能量訊號至Μ個受控端裝置 14J-14 Μ。 在一個例子中,處理器電路12c更用以回應偵測事件 以判斷是否有至少一台待供電之受控端裝置。舉例來說, 當欲判斷是否有待供電之受控端裝置時,處理器電路12c 係透過驅動阻抗匹配電路12b發出能量訊號。而此偵測事 件例如為處理器電路i2c經由訊號接收模組i2d接收到迴 授訊號之事件。如此,處理器電路12c可根據是否债測事 9 201032436 i wny〇^r/\ 件(即是接收到迴授訊號)之事件來判斷主控端裝置12周 圍是否有待供電之受控端裝置。 請參照第6A圖、第6B圖及第6C圖,第Μ圖繪示依 照本發明實施例之阻抗匹配方法的流程圖,第6B圖及第 6C圖分別繪示本發明實施例之阻抗匹配方法的部分流程 圖。本實施例之阻抗匹配方法之步驟係已經詳細地敘明於 前述說明書段落中,於此,並不再對其進行贅述。 在本實施例中雖僅以接收端裝置14j具有如第5圖 所繪示之結構的情形為例作說明,然,本實施例之接收端 裝置14_ j並不侷限於此。請參照第7圖,在另一個例子 中,接收端裝置14—j’更包括保護電路l4e及電池丨4f。 保護電路14e用以接收並根據整流能量訊號Serct’ 來對電池14f進行充電。而處理器電路,亦例如回應於 保護電路提供之整流能量訊號—Μ,來_通訊發送模 組14d’提供對應之迴授訊號Srj。 在本實施例中,雖僅以阻抗匹配電路12b中包括電容 值可調變之可變電容c與電感值不可調變之電感L的情形 為例作說月,然’本實施例之阻抗匹配電路挪並不偈眼 於此。 固例子中’ p且抗匹配電路12b亦可包括電; 可調變之可變電感與電容值不可調變之電容,如此,. 受控於處理器電路12。提供之控制訊號亦· 到調整阻抗匹配電路l2b之等效阻抗值 在再個例子中,阪抗匹配電路12b 可調變之可變電感及電容值可調變之可變::包括電 電容,如此 201032436 達到調變阻抗匹配電路12b之等效阻抗值之操作。 本實施例之能量傳輸方法應用於能量傳輸系統中,用 以協調主控端裝置與多個受控端裝置間之阻抗匹配關 係。如此,本實施例之能量傳輸方法可有效地管理能量傳 ' 輸系統中之能量傳輸操作,以提升能量傳輸系統之能量傳 ' 輸效率。 綜上所述,雖然本發明已以一較佳實施例揭露如上, φ 然其並非用以限定本發明。本發明所屬技術領域中具有通 常知識者,在不脫離本發明之精神和範圍内,當可作各種 之更動與潤飾。因此,本發明之保護範圍當視後附之申請 專利範圍所界定者為準。 【圖式簡單說明】 • 第1圖繪示依照本發明實施例之能量傳輸系統的方塊 - 圖。 φ 第2圖繪示乃第1圖之主控端裝置12的詳細方塊圖。 第3圖繪示乃第2圖之電源電路12a的詳細方塊圖。 第4圖繪示乃第2圖之阻抗匹配電路12b的詳細電路 圖。 第5圖繪示依照本發明實施例之受控端裝置的方塊 圖。 - 第6A圖繪示依照本發明實施例之阻抗匹配方法的流 程圖。 第6B圖及第6C圖分別繪示本發明實施例之阻抗匹配 11 201032436 里 νΥΗ!^0·5Γ/\ 方法的部分流程圖。 第7圖繪示依照本發明實施例之受控端裝置的另一方 塊圖。 【主要元件符號說明】 1 :能量傳輸系統 12 :主控端裝置 14 :受控端裝置 12a :電源電路 12b、14a、14a’ :阻抗匹配電路 12c、14c、14c’ :處理器電路 12d :通訊接收模組 12al :市電模組 12a2 :交流直流轉換器 12a3 :振盪器 C :電容 L :電感 14b、14b’ :整流電路 14d、14d’ :通訊發送模組 14e :保護電路 14f :電池 12For example, the first feedback signal corresponding to the controlled end device 14jiN pen feedback signal (the impedance matching circuit 12b has the first equivalent impedance value) indicates the optimum energy intensity. In other words, the controlled end device 14j can receive the highest intensity energy signal when the impedance matching circuit has this first equivalent impedance value. Thus, processor circuit 12c correspondingly selects a first equivalent impedance value corresponding to a selected equivalent impedance value of controlled end device 14_1. Similar to the foregoing operation corresponding to the controlled end device 14-1, the processor circuit 12c finds the selected equivalent impedance value corresponding to each of the controlled end devices 14-1-14-M. The processor circuit 12c is further configured to adjust the equivalent impedance value of the impedance matching circuit 12b by providing the control signal Sc during one operation period, so that the impedance matching circuit 12b has a difference in each of the operation periods. The selected equivalent impedance values corresponding to the controlled end devices 14_1_14_]|1 are respectively transmitted to the controlled end devices 14J-14 Μ during the operation period. In one example, the processor circuit 12c is further responsive to the detection event to determine if there is at least one controlled end device to be powered. For example, when it is determined whether there is a controlled-end device to be powered, the processor circuit 12c transmits an energy signal through the drive impedance matching circuit 12b. The detection event is, for example, an event that the processor circuit i2c receives the feedback signal via the signal receiving module i2d. In this way, the processor circuit 12c can determine whether there is a controlled end device to be powered around the main control device 12 according to whether the event is a debt detection device (ie, a feedback signal is received). Please refer to FIG. 6A, FIG. 6B and FIG. 6C. FIG. 6 is a flowchart of an impedance matching method according to an embodiment of the present invention, and FIGS. 6B and 6C respectively illustrate an impedance matching method according to an embodiment of the present invention. Part of the flow chart. The steps of the impedance matching method of this embodiment have been described in detail in the foregoing paragraphs of the specification, and will not be further described herein. In the present embodiment, the case where the receiving end device 14j has the structure as shown in Fig. 5 is taken as an example. However, the receiving end device 14_j of the present embodiment is not limited thereto. Referring to Figure 7, in another example, the receiving device 14-j' further includes a protection circuit 14e and a battery port 4f. The protection circuit 14e is for receiving and charging the battery 14f based on the rectified energy signal Serct'. The processor circuit, for example, in response to the rectified energy signal provided by the protection circuit, the communication transmission module 14d' provides a corresponding feedback signal Srj. In this embodiment, the impedance matching circuit 12b includes the variable capacitance c whose capacitance value is adjustable and the inductance L whose inductance value is not adjustable. For example, the impedance matching of the embodiment is as follows. Circuit shifting does not look at this. In the solid example, the 'p and anti-matching circuit 12b may also include electricity; the variable inductance and the capacitance whose capacitance value is not adjustable, and thus, are controlled by the processor circuit 12. The control signal provided is also adjusted to the equivalent impedance value of the impedance matching circuit l2b. In another example, the variable impedance and the capacitance value of the adjustable impedance circuit 12b can be varied: Thus, 201032436 achieves the operation of adjusting the equivalent impedance value of the impedance matching circuit 12b. The energy transfer method of the present embodiment is applied to an energy transfer system for coordinating the impedance matching relationship between the master device and the plurality of controlled devices. Thus, the energy transfer method of the present embodiment can effectively manage the energy transfer operation in the energy transfer system to improve the energy transfer efficiency of the energy transfer system. In view of the above, the present invention has been disclosed above in a preferred embodiment, and φ is not intended to limit the present invention. It will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS • FIG. 1 is a block diagram of an energy transfer system in accordance with an embodiment of the present invention. φ Fig. 2 is a detailed block diagram of the main control unit 12 of Fig. 1. Fig. 3 is a detailed block diagram of the power supply circuit 12a of Fig. 2. Fig. 4 is a detailed circuit diagram of the impedance matching circuit 12b of Fig. 2. Figure 5 is a block diagram of a controlled end device in accordance with an embodiment of the present invention. - Figure 6A is a flow chart showing an impedance matching method in accordance with an embodiment of the present invention. 6B and 6C are respectively a partial flow chart of the νΥΗ!^0·5Γ/\ method in the impedance matching 11 201032436 of the embodiment of the present invention. Figure 7 is a block diagram showing another embodiment of a controlled end device in accordance with an embodiment of the present invention. [Main component symbol description] 1 : Energy transmission system 12: Main control device 14: Controlled terminal device 12a: Power supply circuit 12b, 14a, 14a': impedance matching circuit 12c, 14c, 14c': processor circuit 12d: communication Receiving module 12al: mains module 12a2: AC-DC converter 12a3: Oscillator C: Capacitor L: Inductors 14b, 14b': Rectifier circuits 14d, 14d': Communication transmitting module 14e: Protection circuit 14f: Battery 12

Claims (1)

201032436 七、申請專利範圍: 1. 一種阻抗匹配方法,應用在一能量主控端裝 以:別提供Μ筆能量至M個受控端裝置,M為自然數該 月匕里主控端裝置具有一阻抗匹配電路,該阻抗匹配方法二 括: • (a)控制該阻抗匹配電路具有一等效阻抗值,以對雇 地透過能量輕合提供Μ筆能量訊號至該Μ個受控端跋置‘; ^ (b)接收該1^個受控端裝置對應回傳之Μ筆迴授訊 ®號’該Μ筆迴授訊號用以指示該Μ個受控端裝置接收到 能量強度; < (c) 圮錄一對照表對應該Μ筆迴授訊號至該阻 電路之一等效阻抗值; L•配 (d) 判斷是否重複執行N次步驟⑻及⑷以對應 Μ個受控端裝置記錄N筆迴授訊號,若否,步階地調整該 阻抗匹配3電路之電容或«等效阻抗值並錢執行步驟' ⑻右疋執仃步驟(e),N為大於(之自然數;以及 • 6旦出對應各該M個受控端裝置之該N筆迴授訊號 中指示-最佳能量強度之迴授訊號,並選擇與該最佳能量 強度之迴授訊號對應之等效阻抗值為-對應之選定等效 阻抗值。 2·如申請專利範圍第1項所述之阻抗匹配方法,更 包括·’ ' (f)分時多卫地在_操作期間中,使該阻抗匹配電 路具有分別與該祕個受控端裝置對應之選定等效阻抗值, 以分別於該,作期間中傳輪能量訊號至該Μ個受控端裝 201032436 i WH^OJr/A. 置。 3. 如申請專利範圍第1項所述之阻抗匹配方法,更 包括: (g)回應一偵測判斷事件判斷是否有至少一台待供 電之受控端裝置,若是,執行步驟(a)。 ^ 4. 一種主控端裝置,用以提供Μ筆能量訊號至Μ個 _ 受控端裝置,Μ為自然數,該主控端裝置包括: 一電源電路,用以提供一系統能量訊號; 一阻抗匹配電路,回應於一控制訊號決定一等效阻抗 ❹ 值,該阻抗匹配電路更用以回應於該系統能量訊號分別傳 送Μ筆能量訊號至該Μ個受控端裝置; 一通訊接收模組,用以接收該Μ個受控端裝置對應回 傳之Μ筆迴授訊號,該Μ筆迴授訊號用以指示該Μ個受控 端裝置接收到之能量強度;以及 一處理器電路,記錄一對照表,用以對應該Μ筆迴授 訊號至該阻抗匹配電路之一等效阻抗值,該處理器電路提 供該控制訊號以更步階地調整該阻抗匹配電路之該等效 ❹ 阻抗值,以對應各該Μ個受控端裝置記錄Ν筆迴授訊號, Ν為大於1之自然數; 其中,該處理器電路更找出對應各該Μ個受控端裝置 之該Ν筆迴授訊號中指示一最佳能量強度之迴授訊號,並 選擇與該最佳能量強度之迴授訊號對應之等效阻抗值為 對應之一選定等效阻抗值。 5. 如申請專利範圍第4項所述之主控端裝置,其中 . 該處理器電路更用以分時多工地在Μ個操作期間中調整該 14 201032436 阻抗匹配電路之該等效阻抗值,使該阻抗匹配電路具有分 別與該Μ個受控端裝置對應之選定等效阻抗值,以分別於 該Μ操作期間中傳輸能量訊號至該Μ個受控端裝置。 6. 如申請專利範圍第4項所述之主控端裝置,其中 該阻抗匹配電路包括: ' 一可調電容電路,受控於該控制訊號決定一等效電容 值,以對應地決定該阻抗匹配電路之該等效阻抗值。 7. 如申請專利範圍第4項所述之主控端裝置,其中 φ 該阻抗匹配電路包括: 一可調電感電路,受控於該控制訊號決定一等效電感 值,以對應地決定該阻抗匹配電路之該等效阻抗值。 8. —種能量傳輸系統,包括: Μ個受控端裝置,Μ為自然數;以及 一主控端裝置,用以提供Μ筆能量訊號至該Μ個受控 端裝置,Μ為自然數,該主控端裝置包括: - 一電源電路,用以提供一系統能量訊號; φ 一阻抗匹配電路,回應於一控制訊號決定一等效 阻抗值,該阻抗匹配電路更用以回應於該系統能量訊號分 別傳送Μ筆能量訊號至該Μ個受控端裝置; 一通訊接收模組,用以接收該Μ個受控端裝置對 應回傳之Μ筆迴授訊號,該Μ筆迴授訊號用以指示該Μ個 受控端裝置接收到之能量強度;及 - 一處理器電路,記錄一對照表,用以對應該Μ筆 . 迴授訊號至該阻抗匹配電路之一等效阻抗值,該處理器電 路提供該控制訊號以更步階地調整該阻抗匹配電路之該 15 201032436 i w*4V6jr/\ * 等效阻抗值,以對應各該M個受控端裝置記錄N筆迴授訊 號,N為大於1之自然數; 其中,該處理器電路更找出對應各該Μ個受控端裝置 之該Ν筆迴授訊號中指示一最佳能量強度之迴授訊號,並 選擇與該最佳能量強度之迴授訊號對應之等效阻抗值為 對應之一選定等效阻抗值。 · 9. 如申請專利範圍第8項所述之能量傳輸系統,其 中該處理器電路更用以分時多工地在Μ個操作期間中調整 該阻抗匹配電路之該等效阻抗值,使該阻抗匹配電路具有 ❹ 分別與該Μ個受控端裝置對應之選定等效阻抗值,以分別 於該Μ操作期間中傳輸能量訊號至該Μ個受控端裝置。 10. 如申請專利範圍第8項所述之能量傳輸系統,其 中該第一阻抗匹配電路包括: 一可調電容電路,受控於該控制訊號決定一等效電容 值,以對應地決定該阻抗匹配電路之該等效阻抗值。 11. 如申請專利範圍第8項所述之能量傳輸系統,其 - 中該第一阻抗匹配電路包括: ❹ 一可調電感電路,受控於該控制訊號決定一等效電感 值,以對應地決定該阻抗匹配電路之該等效阻抗值。 12. 如申請專利範圍第8項所述之能量傳輸系統,其 中各該Μ個受控端裝置包括: 一通訊發送模組; 一第二阻抗匹配電路,用以接收該第一阻抗匹配電路 提供之該Μ筆能量訊號其中之一,以提供一接收能量訊號; . 一整流電路,用以對該接收能量訊號進行整流操作, 16 201032436 以提供一整流能量訊號;及 一處理器電路,根據該整流能量訊號,驅動該通訊發 送模組提供對應之迴授訊號至該通訊接收模組。 13. 如申請專利範圍第12項所述之能量傳輸系統, 其中各該Μ個受控端裝置更包括: • 一電池;及 一保護電路,用以接收並根據該整流能量訊號來對該 電池進行充電。 14. 如申請專利範圍第13項所述之能量傳輸系統, ® 其中該處理器電路係回應於保護電路提供之該整流能量 訊號來驅動該通訊發送模組提供對應之迴授訊號。 17201032436 VII. Patent application scope: 1. An impedance matching method, applied to an energy master terminal: not to provide Μ pen energy to M controlled end devices, M is a natural number, the main control device in this month has An impedance matching circuit, the impedance matching method includes: • (a) controlling the impedance matching circuit to have an equivalent impedance value to provide a 能量 pen energy signal to the one of the controlled end devices '; ^ (b) receiving the corresponding back-to-back transmission of the 1^ controlled device, the 'receiver signal' indicating that the controlled end device receives the energy intensity; < (c) Record a comparison table corresponding to one of the equivalent impedance values of the feedback signal to the resistance circuit; L•match (d) to determine whether to perform N steps (8) and (4) repeatedly to correspond to one controlled end device Record the N stroke feedback signal, if not, adjust the capacitance of the impedance matching 3 circuit step by step or «equivalent impedance value and execute the step' (8) right 疋 仃 step (e), N is greater than (the natural number; And • the N-th feedback signal middle finger corresponding to each of the M controlled-end devices - a feedback signal of the best energy intensity, and selecting an equivalent impedance value corresponding to the feedback signal of the optimal energy intensity - corresponding to the selected equivalent impedance value. 2. As described in claim 1 The impedance matching method further includes: 'f (f) time-sharing and doubling during the _ operation period, causing the impedance matching circuit to have selected equivalent impedance values respectively corresponding to the secret controlled end device, respectively During the period, the energy signal is transmitted to the controlled end of the 201032436 i WH^OJr/A. 3. The impedance matching method described in claim 1 of the patent scope includes: (g) response one The detecting and determining event determines whether there is at least one controlled end device to be powered, and if so, performing step (a). 4. A master terminal device for providing the pen energy signal to the _ controlled end device The control device includes: a power supply circuit for providing a system energy signal; and an impedance matching circuit for determining an equivalent impedance 回应 value in response to a control signal, the impedance matching circuit is further used for Responding to the energy signal of the system Transmitting the stylus energy signal to the one of the controlled end devices respectively; a communication receiving module for receiving the 回 pen feedback signal corresponding to the backhaul of the controlled device, the 回 pen feedback signal for indicating The energy intensity received by the one of the controlled end devices; and a processor circuit that records a look-up table for responding to the equivalent feedback value of the impedance matching circuit to the impedance matching circuit, the processor circuit provides The control signal adjusts the equivalent ❹ impedance value of the impedance matching circuit step by step to record the 回 pen feedback signal corresponding to each of the controlled end devices, where Ν is a natural number greater than 1; wherein the processing The circuit further finds a feedback signal indicating an optimal energy intensity in the 回 pen feedback signal corresponding to each of the controlled end devices, and selects an equivalent impedance corresponding to the feedback signal of the optimal energy intensity The value is selected to correspond to one of the equivalent impedance values. 5. The master device according to claim 4, wherein the processor circuit is further configured to adjust the equivalent impedance value of the 14 201032436 impedance matching circuit during one operation period in a time-division manner. The impedance matching circuit is provided with selected equivalent impedance values respectively corresponding to the one of the controlled end devices to respectively transmit energy signals to the one of the controlled end devices during the operation. 6. The master device of claim 4, wherein the impedance matching circuit comprises: 'a tunable capacitor circuit controlled by the control signal to determine an equivalent capacitance value to correspondingly determine the impedance Match this equivalent impedance value of the circuit. 7. The master device of claim 4, wherein the impedance matching circuit comprises: an adjustable inductor circuit controlled by the control signal to determine an equivalent inductance value to correspondingly determine the impedance Match this equivalent impedance value of the circuit. 8. An energy transfer system comprising: a controlled end device, a natural number; and a master device for providing a pen energy signal to the controlled device, a natural number, The master device includes: - a power circuit for providing a system energy signal; φ an impedance matching circuit responsive to a control signal to determine an equivalent impedance value, the impedance matching circuit is further responsive to the system energy The signal transmits the 能量 pen energy signal to the controlled device; the communication receiving module is configured to receive the 回 pen feedback signal corresponding to the returned device, and the 回 pen feedback signal is used for Instructing the energy intensity received by the one of the controlled end devices; and - a processor circuit recording a look-up table for responding to the pen-receiving signal to an equivalent impedance value of the impedance matching circuit, the process The controller circuit provides the control signal to adjust the 15 201032436 iw*4V6jr/\* equivalent impedance value of the impedance matching circuit to record N stroke feedback signals corresponding to each of the M controlled end devices, where N is More than 1 The processor circuit further finds a feedback signal indicating an optimal energy intensity in the pen feedback signal corresponding to each of the controlled device devices, and selects a feedback with the optimal energy intensity The equivalent impedance value corresponding to the signal corresponds to one of the selected equivalent impedance values. 9. The energy transfer system of claim 8, wherein the processor circuit is further configured to adjust the equivalent impedance value of the impedance matching circuit during a plurality of operations in a time division and multiplexing manner to make the impedance The matching circuit has 选定 a selected equivalent impedance value corresponding to the one of the controlled end devices, respectively, to transmit an energy signal to the one of the controlled end devices during the Μ operation period, respectively. 10. The energy transfer system of claim 8, wherein the first impedance matching circuit comprises: a tunable capacitor circuit controlled by the control signal to determine an equivalent capacitance value to correspondingly determine the impedance Match this equivalent impedance value of the circuit. 11. The energy transfer system of claim 8, wherein the first impedance matching circuit comprises: 可调 a tunable inductor circuit controlled by the control signal to determine an equivalent inductance value to correspondingly The equivalent impedance value of the impedance matching circuit is determined. 12. The energy transfer system of claim 8, wherein each of the controlled end devices comprises: a communication transmitting module; and a second impedance matching circuit for receiving the first impedance matching circuit One of the energy signals of the pen to provide a receiving energy signal; a rectifying circuit for rectifying the received energy signal, 16 201032436 to provide a rectified energy signal; and a processor circuit according to the The rectified energy signal drives the communication sending module to provide a corresponding feedback signal to the communication receiving module. 13. The energy transfer system of claim 12, wherein each of the controlled end devices further comprises: • a battery; and a protection circuit for receiving and receiving the battery according to the rectified energy signal Charge it. 14. The energy transfer system of claim 13, wherein the processor circuit is responsive to the rectified energy signal provided by the protection circuit to drive the communication transmitting module to provide a corresponding feedback signal. 17
TW098106252A 2009-02-26 2009-02-26 Impedance matching method as well as host device and energy transferring system using thererof TW201032436A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW098106252A TW201032436A (en) 2009-02-26 2009-02-26 Impedance matching method as well as host device and energy transferring system using thererof
CN2009101287703A CN101662170B (en) 2009-02-26 2009-03-11 Impedance matching method, master controlling terminal device and energy transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW098106252A TW201032436A (en) 2009-02-26 2009-02-26 Impedance matching method as well as host device and energy transferring system using thererof
CN2009101287703A CN101662170B (en) 2009-02-26 2009-03-11 Impedance matching method, master controlling terminal device and energy transmission system

Publications (1)

Publication Number Publication Date
TW201032436A true TW201032436A (en) 2010-09-01

Family

ID=55072386

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098106252A TW201032436A (en) 2009-02-26 2009-02-26 Impedance matching method as well as host device and energy transferring system using thererof

Country Status (2)

Country Link
CN (1) CN101662170B (en)
TW (1) TW201032436A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223739A (en) * 2010-04-09 2011-11-04 Sony Corp Power supply device, power reception device, and wireless power supply system
CN102347640B (en) * 2011-06-09 2013-09-18 东南大学 Wireless energy transmission device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG54559A1 (en) * 1996-09-13 1998-11-16 Hitachi Ltd Power transmission system ic card and information communication system using ic card
CN101340113A (en) * 2008-08-08 2009-01-07 哈尔滨工业大学 Magnet coupled resonant type wireless energy transmission equipment having intensifier

Also Published As

Publication number Publication date
CN101662170B (en) 2012-01-25
CN101662170A (en) 2010-03-03

Similar Documents

Publication Publication Date Title
US10804729B2 (en) Wireless power transmitter and wireless power transmission method
KR102269323B1 (en) Charging target device, wireless charging device and its control method
US10396599B2 (en) Wireless power transmission apparatus and wireless power transmission method
US10396605B2 (en) Wireless power transmitter and receiver
WO2018184573A1 (en) Wireless charging apparatus, device to be charged and control method therefor
JP4572949B2 (en) Wireless communication apparatus, wireless communication system, wireless communication method, and program
CN106030957B (en) Impedance matching for inductive power transfer systems
US9130389B2 (en) Apparatus for wireless power transmission using multi antenna and method for controlling the same
CN104995849B (en) Wireless induction electric power transmits
KR102013688B1 (en) System and method for communication in wireless power supply systems
US10958109B2 (en) Wireless power transmitter and receiver
US20200044491A1 (en) Wireless Charging System With Multiple Communications Modes
TW201145751A (en) Battery with integrated wireless power receiver and/or RFID
JP2013009373A (en) Communication device using wireless power, system, and method
CN102844954A (en) System and method for regulating inductive power transmission
JP6493385B2 (en) Power receiving apparatus, power supply control method, and power supply system
CN103248403A (en) Converter and program
US20180069430A1 (en) Inductive wireless power transfer with time slotted communication
WO2015151709A1 (en) Power reception apparatus, method for controlling same, and power supply system
TW201032436A (en) Impedance matching method as well as host device and energy transferring system using thererof
WO2021179938A1 (en) Power supply device and charging control method
CN106160249A (en) Wireless power receives device and includes that wireless power receives the electronic installation of device
CN113131593A (en) Load modulation circuit and control method for wireless charging receiving end
JP2019536406A (en) Method for increasing data communication bandwidth between wireless power devices
WO2021179945A1 (en) Power supply device and charging control method