TW201032391A - Antenna arrangement apparatus, reception apparatus and method reducing a common-mode signal - Google Patents

Antenna arrangement apparatus, reception apparatus and method reducing a common-mode signal Download PDF

Info

Publication number
TW201032391A
TW201032391A TW98137642A TW98137642A TW201032391A TW 201032391 A TW201032391 A TW 201032391A TW 98137642 A TW98137642 A TW 98137642A TW 98137642 A TW98137642 A TW 98137642A TW 201032391 A TW201032391 A TW 201032391A
Authority
TW
Taiwan
Prior art keywords
pole portion
common mode
length
antenna
coupled
Prior art date
Application number
TW98137642A
Other languages
Chinese (zh)
Inventor
Den Elzen Jan Johannes Maria Van
Original Assignee
Tomtom Int Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0820238A external-priority patent/GB0820238D0/en
Priority claimed from GB0820242A external-priority patent/GB0820242D0/en
Application filed by Tomtom Int Bv filed Critical Tomtom Int Bv
Publication of TW201032391A publication Critical patent/TW201032391A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Navigation (AREA)

Abstract

An antenna arrangement apparatus (162) comprises a dipole reception antenna (172) having a first pole portion (174) and a second pole portion (175). A length of coaxial cable (176) is provided and constitutes a feedline, the length of coaxial cable (176) having a proximal end (183) with respect to the first and second pole portions (174, 175) and a distal end (185) with respect to the first and second pole portions (174, 175). The distal end (185) of the length of coaxial cable (176) is coupled to a first common-mode filter (302) and the proximal end (183) of the length of coaxial cable (176) is coupled to the first and second pole portions (174, 175) via a second common-mode filter (170).

Description

201032391 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種(例如)用以接收用於電子器件(例如, 導航器件或通彳§ #件)之射頻信號的類型之天線配置裝 置。本發明亦係關於一種(例如)用以接收用於電子器件(例 如’導航器件或通信器件)之射頻信號的類型之接收器裝 置。本發明進一步係關於一種減少共模信號之方法,該方201032391 VI. Description of the Invention: [Technical Field] The present invention relates to an antenna configuration apparatus of the type, for example, for receiving radio frequency signals for electronic devices (e.g., navigation devices or devices). The present invention is also directed to a receiver device of the type, for example, for receiving radio frequency signals for use in electronic devices, such as 'navigation devices or communication devices. The invention further relates to a method of reducing common mode signals, the method

法係(例如)用以在存在由外部源所產生之共模電流的情況 下接收射頻信號的類型。 【先前技術】 包括GPS(全球定位系統)信號接收及處理功能性之攜帶 型計算器件(例如’攜帶型導航器件(pND))係熟知的且 廣泛地用作車内或其他車輛導航系統。 一般而言,現代PND包含處理器、記㈣及儲存於該記 憶體内之地圖資料。處理器與記憶體合作以提供可建立軟 體作業系統之執行環境,且料,#遍的係提供—或多個 額外軟體程式以使能夠控制聊之功能性且提供各種盆他 功能。 〃 通巾㈣$件進_步包含允許使用者與器件互動且控 1器件之或多個輪人介面’及可供以將資訊中繼至使用 。。或夕個輪出介面。輸出介面之說明性實例包括視覺 ::益Λ用於聽覺輸出之揚聲器。輸入介面之說明性實 例包括用以抑在丨丨gg Μ Ά 管㈣… 開/關操作或其他特徵之-或多個 右則牛係建置於車輛内,則該等按鈕未必需要 144456.doc 201032391 :器件自身上’而可在方向盤上),&用於偵測使用者話 。之麥克風。在一特定配置中’可將輸出介面顯示器組態 為觸敏顯示器(藉由觸敏覆蓋或以其他方式)以另外提供^ 供以使用者經由顯示器而操作器件之輸入介面。 此類型之器件亦將常常包括可供以將電力及(視情況)資 料信號傳輸至ϋ件及自^件接收電力及(視情況)資料信號 之或多個實體連接器介面,及(視情況)用以允許經由蜂 气電L以及其他號及資料網路(例如,藍芽、、The legal system (for example) is used to receive the type of radio frequency signal in the presence of a common mode current generated by an external source. [Prior Art] A portable computing device (e.g., a 'portable navigation device (pND)) including GPS (Global Positioning System) signal receiving and processing functionality is well known and widely used as an in-vehicle or other vehicle navigation system. In general, modern PNDs include a processor, a memory card, and map data stored in the memory. The processor cooperates with the memory to provide an execution environment in which the software operating system can be built, and the ##pass system provides - or a number of additional software programs to enable control of the functionality of the chat and provide various potting functions. 〃 Towel (4) $ Included to allow users to interact with the device and control 1 device or multiple wheel interfaces' and to relay information to use. . Or a round of the interface. Illustrative examples of output interfaces include the visual:Yiyi speaker for audible output. Illustrative examples of input interfaces include 丨丨 Μ Μ ( ( 四 四 四 ... ... 开 开 开 开 开 开 开 开 开 或 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 201032391: The device itself is 'on the steering wheel', & is used to detect user words. Microphone. In a particular configuration, the output interface display can be configured as a touch-sensitive display (by touch-sensitive overlay or otherwise) to additionally provide an input interface for the user to operate the device via the display. This type of device will also often include a physical connector interface for transmitting power and (as appropriate) data signals to and from the device and/or as appropriate, and (as appropriate) ) to allow the use of bee gas L and other numbers and data networks (eg, Bluetooth,

Wi-Max、GSM、UMTS及其類似者)而通信之一或多個無 線傳輸器/接收器。 此類型之PND亦包括可供以接收包括位置相關資料之衛 星廣播信號且隨後對其加以處理以判定器件之當前位置的 GPS天線。 PND亦可包括電子迴轉儀及加速計,其產生可經處理以 判定當前角加速度及線性加速度且又及結合自Gps信號所 導出之位置資訊判定器件之速度及相對位移且因此判定安 裝有器件之車輛之速度及相對位移的信號。通常,此等特 徵最常見地係提供於車輛内導航系統中,但亦可提供於 PND中(若如此進行係便利的)。 此等PND之效用主要表現在其判定第一位置(通常為出 發或當前位置)與第二位置(通常為目的地)之間的路線的能 力。此等位置可由器件之使用者藉由各種各樣不同方法中 之任一者加以輸入,例如,藉由郵政編碼、街道名稱及房 屋號瑪、先前儲存之「熟知」目的地(諸如,著名位置、 144456.doc 201032391 市政位置(諸如,體育場或游泳池)或其他名勝)及特別喜愛 或近來造訪之目的地。 通常,PND係藉由用於根據地圖資料來計算出發地址位 置與目的地地址位置之間的「最好」3戈「最佳」路線的軟 體加以致能。「最好」丨「最佳」路線係基於預定準則加 以判定且未必需要為最㈣最短路線。供以導引司機之路 線之選擇可係非常複雜的,且選定路線可考慮現有的、預One or more wireless transmitters/receivers communicate with Wi-Max, GSM, UMTS and the like. This type of PND also includes a GPS antenna that is available to receive satellite broadcast signals including location related data and then process it to determine the current location of the device. The PND may also include an electronic gyroscope and an accelerometer that generates a velocity and relative displacement that can be processed to determine the current angular acceleration and linear acceleration and that is derived from the position information derived from the GPS signal and thus determine that the device is mounted. The signal of the speed and relative displacement of the vehicle. Typically, these features are most commonly provided in the in-vehicle navigation system, but may also be provided in the PND (if this is convenient). The utility of such PNDs is primarily manifested in their ability to determine the route between the first location (usually the origin or current location) and the second location (usually the destination). Such locations may be entered by the user of the device by any of a variety of different methods, such as by postal code, street name and house number, previously stored "well known" destinations (such as famous locations) , 144456.doc 201032391 Municipal location (such as stadium or swimming pool) or other places of interest) and destinations that are particularly fond of or recently visited. Typically, the PND is enabled by software for calculating the "best" 3go "best" route between the starting address location and the destination address location based on the map data. The "best" and "best" routes are based on predetermined criteria and are not necessarily required to be the most (four) shortest route. The choice of route to guide the driver can be very complicated, and the selected route can be considered existing, pre-

測的及動態地及/或無線地接收的交通及道路資訊、關於 道路行駛速度之歷史資訊,及司機針對判定道路備選項之 因素的自身偏好(例如’司機可指定路線不應包括高速汽 車道或收費公路)。 此類5L之PND可女裝於車輛之儀錶板或擋風玻璃上,但 亦可形成為車_無線電之機上電腦之一部分或實際上形成 為車輛自身之控制系統之一部分。導航器件亦可為掌上型 系統之一部分,諸如,PDA(攜帶型數位助理)' 媒體播放 器*订動電話或其類似者,且在此等狀況下,掌上型系統 之規功能性係藉由將軟體安裝於器件上以執行路線計算 及沿著經計算路線之導航而加以擴展。 在PND之情形十,一曰p斗曾々ά —已汁异路線,使用者便與導航器 視情況自所提議路'㈣單選擇所要之經計算路 線視情況,使用者可干預或指導路線選擇過程,例如, 針對特定旅程應避免特定路線、道路、位置或準 則或其係必須遵循的。_之路線計算態樣形成一主要功 能,且沿著此路線之導航為另-主要功能。 J44456.doc 201032391 在沿著經計算路線之導航期間,常見的係使此等PND提 供視覺及/或聽覺指令以沿著選定路線將使用者導引至彼 路線之終點(亦即,所要目的地)。亦常見的係使PNd在導 航期間在螢幕上顯示地圖資訊,此資訊在螢幕上經定期地 更新,使得所顯示之地圖資訊表示器件之當前位置且因此 表示使用者或使用者之車輛之當前位置(若器件正用於車 輛内導航)。 顯示於螢幕上之圖符通常表示當前器件位置且居中,其 中亦顯示在當前器件位置附近之當前及周圍道路之地圖資 訊及其他地圖特徵。另外,視情況,可在經顯示地圖資訊 上方、下方或向其一側之狀態列中顯示導航資訊,導航資 讯之一實例包括自藉由使用者加以採取所需要之當前道路 至下一偏航的距離,彼偏航之性質可能係藉由表明特定類 型之偏航(例如,左轉或右轉)的另—圖符加以表示。導航 功能亦判定可供以沿著路線導引使用者之聽覺指令之内 容、持續時間及時序》可瞭解,諸如「1〇〇瓜後左轉」之 簡單指令需要大量處理及分析。#先前所提到,與器二之 使用者互動可係藉由觸控螢幕,或另外或或者係藉由操縱 柱安裝式遙控器、藉由語音啟動或藉由任何其他合適方 法。 雖然已知的係在使用者在導航期間偏離先前經計算路線 (偶然地或故意地)的情況下執行路線重新計算,但由器件 所提供之另-重要功能為在即時交通條件規定替代路線將 更便利的情況下的自動路線重新計算。器件經合適地致能 144456.doc 201032391 以自動地辨識此等條件,戎 〇 千干次在使用者由於任何原因而主動 地導致n件執行路線线計算時㈣此等條件。 在方φ H #可連續地監視道路及交通條#,且提供 或選擇歸因於與初始敎路線相關聯之已改變條件而改變 待供以進行旅程之剩餘部分的路線。基於各種技術(例 t ’行動電話資料交換、固以目機、GPS車隊追縱),即時 乂通監視系統正用以識別交通延遲a將資訊饋送至通知系Measured and dynamically and/or wirelessly received traffic and road information, historical information about road speeds, and driver's own preferences for factors that determine road alternatives (eg 'driver-designated routes should not include high-speed motorways Or toll road). Such a 5L PND can be worn on the dashboard or windshield of a vehicle, but can also be formed as part of a computer on a car-radio machine or actually formed as part of the vehicle's own control system. The navigation device can also be part of a handheld system, such as a PDA (portable digital assistant) 'media player* to subscribe to a telephone or the like, and under these conditions, the functionality of the handheld system is The software is mounted on the device to perform route calculations and to expand along the navigation of the calculated route. In the case of PND 10, a 曰 斗 々ά 々ά 々ά 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已The selection process, for example, should avoid specific routes, roads, locations or guidelines or lines that must be followed for a particular journey. The route calculation pattern of _ forms a major function, and the navigation along this route is another-main function. J44456.doc 201032391 During navigation along a calculated route, it is common for these PNDs to provide visual and/or audible instructions to guide the user along the selected route to the end of the route (ie, the desired destination) ). It is also common for the PNd to display map information on the screen during navigation, which information is periodically updated on the screen such that the displayed map information represents the current location of the device and thus represents the current location of the user or user's vehicle. (If the device is being used for in-vehicle navigation). The icon displayed on the screen usually indicates the current device location and is centered, which also displays map information and other map features for the current and surrounding roads near the current device location. In addition, depending on the situation, the navigation information may be displayed in a status column above, below or to one side of the displayed map information. An example of the navigation information includes the current road to the next bias required by the user. The distance of the voyage, the nature of the yaw, may be represented by another icon indicating a particular type of yaw (eg, left or right). The navigation function also determines the content, duration, and timing of the audible instructions that can be used to guide the user along the route. It can be understood that simple instructions such as "1 turn left and turn left" require a lot of processing and analysis. #Previously, user interaction with device 2 may be by touch screen, or alternatively or by a joystick mounted remote control, by voice activation or by any other suitable method. Although it is known that the route recalculation is performed when the user deviates from the previously calculated route (occasionally or intentionally) during navigation, the other important function provided by the device is to specify an alternative route in the immediate traffic condition. Automatic route recalculation in a more convenient situation. The device is suitably enabled 144456.doc 201032391 to automatically identify these conditions, 戎 千 thousands of times when the user actively causes n pieces of execution route line calculations for any reason (4). The road and traffic bar # can be continuously monitored at the square φ H # and the route to be provided for the remainder of the journey is changed or selected due to the changed conditions associated with the initial 敎 route. Based on various technologies (eg t 'mobile phone data exchange, fixed camera, GPS fleet tracking), the instant monitoring system is used to identify traffic delays a to feed information to the notification system

統内(例如,無線電資料系統(RDS)_交通訊息頻道(TMC)服 務)。 亦已知的係允許藉由使用者界定之準則來計算路線,例 如,使用者可能希望避開交通堵塞係报可能、被預期或當 刖占優之任何道路。器件軟體將接著使用指示特定道路上 之占優交通條件的經儲存資訊來計算各種路線,且按照很 可能的堵塞或因此之延遲的級別而對經計算路線排序。其 他基於交通資訊之路線計算及導航準則亦係可能的。 因此’可看出,交通相關資訊在計算路線且將使用者引 導至一位置時具有特定用途。在此方面,且如以上所提 到’已知的係使用由一些廣播裝置所支援之RDS-TMC設 施來廣播交通相關資訊。舉例而言,在英國,使用經分配 至被稱為「經典fm」(Classic fm)之電台的頻率來廣播一已 知交通相關資訊服務。當然,熟習此項技術者應暸解,不 同交通相關資訊服務提供者使用不同頻率。 具備用於接收RDS資料廣播之RDS-TMC接收器的PND可 解碼RDS資料廣播且擷取RDS資料廣播中所包括之TMC資 144456.doc 201032391 料。此等調頻(FM)接收器需要係敏感的。對於當前所出售 之許多PND而言,提供包含RDS-TMC調諧器之附件, RDS-TMC調諧器係在其一末端處耦合至天線且在其另一 末端處耦合至連接器以用於將RDS-TMC接收器耦合至PND 之輸入端。 使用上述天線的以上所描述之類型之器件(例如,由 TomTom International B.V.戶斤製造及供應之920 GO模型)支 援使使用者能夠自一位置導航至另一位置(特別係使用交 通相關資訊)之過程。當使用者不熟悉至此等器件正導航 至之目的地的路線時,此等器件具有極大效用。 然而,此等器件之有效性可有時視所使用之天線結構而 定。在此方面,在天線設計領域中,已知許多天線結構具 有關於RDS-TMC資料之接收的變化程度之合適性。一天 線結構為所謂的偶極天線結構,偶極天線結構具有其眾多 變體,例如,對稱偶極天線結構及不對稱偶極天線結構。 對稱偶極天線結構及不對稱偶極天線結構之有線變體包含 構成第一極及第二極之一對導線,例如,可撓性導線。對 稱天線結構最初經設計以用於對稱射頻(RF)輸入電路,對 稱天線結構僅包含連接至RF接收器之對稱雙絞電纜。將 RF變壓器提供於RF接收器中,以便將對稱天線信號轉換 成可藉由RF接收器中之合適RF放大器電路放大之不對稱 天線信號。隨著時間的過去,隨著此技術的發展,將所謂 的「饋電線」(feedline)引入至天線之設計内以用於高頻率 及/或弱信號應用,以便使天線極與天線結構待耦合至之 J44456.doc -10- 201032391 雜。Η*」(noisy)電路隔開。所使用的一類型之镇電線係以 一段同轴電纜的形式。然而,同轴電纜為具有相對於地面 電位的不相等阻抗之導體之傳輸線且因此被認為「不平 衡」。為了使極導線之對稱阻抗(平衡)匹配於饋電線之不對 稱阻抗,已知的係在極導線與饋電線之間線内置放所謂的 「平衡-不平衡轉換器」(balun),藉此使極導線之阻抗匹 配於饋電線之阻抗,且因此減少非吾人所樂見之共模電流 以免在饋電線中流動,該流動可導致極導線輻WRF能量。 不幸地,儘管由同軸饋電線所提供之極隔開,但包含上 述類型之極導線及同軸饋電線的天線結構仍易受到來自相 鄰電器件及/或電子器件(例如,PND及/或電力供應器或變 壓器,例如,點煙器轉接器(CLA))之電磁干擾(EMI)。在 此方面,不同於經整合至車輛(例如,汽車)内之電子系 統’ PND在射頻下相對於地面「漂浮」,且因此,經接收 信號不係對車輛之「EMI清潔」主體進行參考,而是對 PND之「雜訊」地面參考進行參考。此外,自pND之製造 商之觀點而言,不需要要求pND之使用者將天線連接至車 輛之主體以便獲得所要「清潔」地面參考。 即使考慮由同轴饋電線所提供之距離,然而,天線極仍 經定位成非常靠近EMI「雜訊」PND。此外,由於來自 PND及/或CLA之EMI發射,同軸饋電線亦易受到誘發性共 模電流。誘發性共模電流在同軸饋電線中流動朝向天線之 極,藉此藉由增加在由天線所產生之RF信號中雜訊之位準 而使天線之效能降級。 144456.doc -11 - 201032391 因此,在一些情況下,天線效能可不充分,從而導致 PND不接收任何資料或僅接收部分資料。自pND之使用者 之觀點而言,使用者僅察覺到無或不完全交通資訊係可用 的,且可錯誤地推斷出PND及/或TMC附件發生故障。 用以減少RF信號之外部干擾源之影響的其他解決方案係 已知的。舉例而言,可在特定頻率範圍方面屏蔽能夠發射 電磁輻射之外部源。然而,此等解決方案係昂貴的,且可 導致關於(例如)熱耗散之其他問題。另外,當電路設計改 變時’針料磁屏蔽所進行之提供可亦需要修改。因此, 設計成本及實施成本以及電磁輻射屏蔽解決方案之可再使 用性之缺乏使電磁輻射之外部源(例如,pND)之電磁屏蔽 不良。 歸因於上述非吾人所樂見之EMI的存I,在叩接收器之 輸入端處接收到所要之RF.號與非吾人所樂見之emi信號 的組合。雖然有可能增加汉?接收器之敏感度,但增加之敏 感度未用以增加RF接收器之信雜比(SNR),且因此,未輔 助區別吾人所樂見之信號與非吾人所樂見之信號的過程。 【發明内容】 根據本發明之第一態樣,提供一種天線配置裝置,其包 含:偶極接收天線,其具有第—極部分及帛二㈣分;— 段同轴電纜’其構成饋電線;第一共模濾波器及第二共模 濾波器4中該段同轴電纜具有相對於第一極部分及第二 極部分之近侧末端,及相對於第—極部分及第二極部分之 遠側末端’該段同轴電境(176)之近側末端係經由第二共棋 144456.doc 201032391 濾波器而耦合至第一極部分及第二極部分,且該段同轴電 纜(176)之遠側末端係耦合至第一共模濾波器。 第一極部分之長度可對應於在使用中時待接收之射頻 (RF)信號之預定波長的約三分之一與預定波長的約四分之 一之間。 第二極部分之長度可對應於在使用中時待接收之射頻 (RF)信號之預定波長的約三分之一與預定波長的約四分之 一之間。 裝置可進一步包含充當第一極部分的第一長度之單轴電 導體。 裝置可進一步包含充當第二極部分的第二長度之單軸電 導體。 第一極部分及第二極部分可經配置以形成對稱偶極接收 天線。 第一極部分之長度可在約50 cm與約75 cm之間。 第一極部分之長度可在約50 cm與約75 cm之間。 第一共模濾波器可具有在約1 〇〇〇 Ω與約4000 Ω之間的共 模阻抗。第一共模濾波器可具有約2200 Ω之共模阻抗。 第二共模濾波器可具有在約1 〇〇〇 Ω與約4000 Ω之間的共 模阻抗。第二共模濾波器可具有約22〇〇 Ω之共模阻抗。 裝置可進一步包含線内耦合於該段同軸電纜之近側末端 與第一極部分及第二極部分之間的放大器。放大器可耦合 於該段同軸電纜之近側末端與第二共模濾波器之間。 放大器可耦合於第二共模濾波器與第一極部分及第二極 144456.doc -13- 201032391 部分之間。 如=Γ第二態樣’提供—種接收裝置,其包含: 上關於本發明之第-態樣所閣明之天線配置裝置.及 調諧器’其絲合至第—共模澹波器。 調諧器可為調頻(FM)調諧器。 調諧器可為無線電資料系統R 調諧器。 呪卿S)_父通訊息頻道(TMC) 裝置可進—步包含用於將由調諧器所解碼之資料傳達至 器件的耦合電纔。 器件可為能夠處理由調諧器所解碼之資料的器件,例 如,導航器件、通信器件或任何其他合適電子器件諸 如’音樂或其他類型之媒體播放器。 根據本發明之第三態樣,提供—種攜帶型導航器件,其 包含如以上分別關於本發明之第一態樣或本發明之第二態 樣所闡明之天線配置裝置或接收裝置。 根據本發明之第四態樣,提供一種在天線配置裝置方面 減少共模信號之方法,方法包含:提供具有第一極部分及 第一極部分之偶極天線;提供具有相對於第一極部分及第 二極部分之近側末端及相對於第一極部分及第二極部分之 遠侧末端的一段同轴電纜;及將該段同軸電纜之遠側末端 搞合至第一共模濾波器且經由第二共模濾波器而將該段同 軸電纜之近側末端耦合至第一極部分及第二極部分。 該段同轴電纜可構成饋電線。 在下文中陳述此等實施例之優點,且在隨附附屬請求項 144456.doc -14- 201032391 中及在以下詳細描述中之其他處界定此等實施例令之每一 者之另外細節及特徵。 . 因此’有可能提供一種較不易感受到共模信號之裝置及 • 方法。因此’經改良信號接收係可能的,藉此導致資訊 (例如,交通相關資訊,諸如,RDS_TMC資料)之經改良接 收天線配置裝置之結構亦簡單且被經濟地製造。該對共 模濾波器之使用隔離天線之偶極與在調諧器和天線之極之 ㈣饋電線中所誘發的共模信號。可達成天線之極與其他 共模信號(例如,由裝置可耦合至之器件之寄生電容引起 的共模信號)或與電源的經改良隔離。此外,天線與車輛 之底盤之間的電流連接不係必要的。又,饋電線之同軸電 纜之屏蔽不為天線之一部分,且因此對EMI不敏感。因 此,饋電線增加EMI源與天線結構之間的距離。因此,提 供在安裝裝置方面之經改良靈活性,包括纏繞同轴饋電線 (必要時)之能力。另外,裝置及方法未必係應用特定的, φ 且因此針對不同1^接收應用提供靈活解決方案。由裝置及 方法所提供之經改良效能亦減少對製造商、經銷商及/或 零售商所進行的關於有故障設備之指控的使用者煩惱及錯 誤詢問之例項。 【實施方式】 現將參看隨附圖式而僅藉由實例來描述本發明之至少一 實施例。 貫穿以下描述’相同參考數字將用以識別相似部分。 現將特定地參考PND來描述本發明之實施例。然而,應 144456.doc •15- 201032391 記住,本發明之教示不限於PND,而是可普遍地適用於任 何類型之處理器件。在此方面,不需要以攜帶型或行動方 式來組態處理器件以執行導航軟體以便提供路線規劃及導 航功能性。在本文中所描述之導航相關實例的情形中,應 瞭解,導航器件意欲包括(但不限於)任何類型之路線規劃 及導航器件’而不管導航器件是體現為pND、是體現為諸 如汽車之車輛或是實際上體現為執行路線規劃及導航軟體 之攜帶型計算資源(例如,攜帶型個人電腦(PC)、行動電 話或個人數位助理(PDA))。 如以上所建議,自下文亦將顯而易見,本文中之教示甚 至在使用者不找尋關於如何自一點導航至另一點之指令而 僅僅希望被提供關於(例如)交通之資訊的情況下亦具有效 用。在此等情況下,由使用者所選擇之「目的地」位置不 需要具有供以使用者希望開始導航之對應出發位置,且因 此,不應將本文中對「目的地」位置或實際上對「目的 地」視圖之參考解釋為意謂路線之產生係必須的、意謂必 須發生至「目的地」之行進,或實際上意謂目的地之存在 需要對應出發位置之指明。 參看圖1 ’導航器件100位於外殼(未圖示)内。導航器件 100包含GPS接收器器件102或係經由連接104而耦合至Gps 接收器器件102,其中GPS接收器器件102可為(例如)GPS 天線/接收器。應理解,由參考數字1〇2所表示之天線與接 收器係出於說明起見而經示意性地組合,但天線與接收器 可為分離定位之組件’且天線可為(例如)GPS塊狀天線 144456.doc -16- 201032391 (patch antenna)或螺旋狀天線(heHcal antenna)。 導航器件100包括包含(例如)處理器106之處理資源,處 理器106係耦合至輸入器件1〇8及顯示器件(例如,顯示螢 * 幕110)。雖然此處以單數形式對輸入器件108進行參考, 但熟習此項技術者應瞭解,輸入器件108表示任何數目個 輸入器件,包括鍵盤器件、語音輸入器件、觸控面板及/ 或用以輸入資訊之任何其他已知輸入器件。同樣地,顯示 螢幕110可包括任何類型之顯示螢幕,例如,液晶顯示器 攀(LCD)。 在一配置中,輸入器件108之一態樣、觸控面板及顯示 螢幕110經整合成提供整合式輸入及顯示器件,包括觸控 墊或觸控螢幕輸入以使能夠既輸入資訊(經由直接輸入' 選單選擇,等等)又經由觸控面板螢幕而顯示資訊,使得 使用者僅需要觸控顯示螢幕110之一部分來選擇複數個顯 不備選項中之一者或啟動複數個虛擬或「軟」按鈕中之一 • 者。在此方面,處理器106支援結合觸控螢幕而操作之圖 形使用者介面(GUI)。 在導航器件100中,處理器106係經由連接112而操作性 地連接至輸入器件108且能夠經由連接112而自輸入器件 1〇8接收輸入資訊,且經由各別輸出連接ii6、而操作 性地連接至顯示螢幕i 1〇及輸出器件丨14中之至少一者(例 如,聽覺輸出器件(例如,擴音器))。因為輸出器件114可 針對導航器件100之使用者產生聽覺資訊,所以應同等地 理解,如以上所建議,輸入器件1〇8可包括用於接收輸入 144456.doc -17· 201032391 s吾音命令之麥克風及軟體。另外,導航器件丨〇〇亦可包括 任何額外輸入器件及/或任何額外輸出器件,例如,音訊 輸入/輸出器件。 處理器106係經由連接122而操作性地連接至記憶體資源 120(包含(例如)隨機存取記憶體(RAM)及數位記憶體(諸 如,快閃記憶體)),且經進一步配置以經由連接126而自輸 入/輸出(I/O)埠124接收資訊/將資訊發送至1/〇埠124,其中 I/O埠124可連接至在導航器件100外部之1/〇器件128。 外部I/O器件128可包括(但不限於)外部收聽器件,例 如,耳機。至I/O器件128之連接可進一步為至任何其他外 部器件(例如,汽車立體聲單元)之有線或無線連接,其用 於免持操作及/或用於語音啟動操作、用於至耳機或頭戴 式耳機之連接,及/或用於至行動電話之連接;行動電話 連接可用以在導航器件100與(例如)網際網路或任何其他網 路之間建立資料連接,及/或用以經由(例如)網際網路或某 其他網路而建立至伺服器之連接。 在需要時,導航器件100能夠經由行動通信器件(未圖 示)(例如,上述行動電話、PDA及/或具有行動電話技術之 任何器件)而建立與「行動」或電信網路之網路硬體的資 料會話,以便建立數位連接,例如,經由已知藍芽技術之 數位連接。此後,行動器件可經由其網路服務提供者而建 立與伺服器(未圖示)之網路連接(經由(例如)網際網路)。因 而,可在導航器件100(當其單獨地及/或在車輛中行進時, 其可係且時常係行動的)與伺服器之間建立「行動」網路 144456.doc -18- 201032391 ❹以向資訊提供「即時的」或至少非常「新式的」 器。 。。在此實例中’導航器件100亦包含操作性地耦合至處理 器106以用於接收交通相關資料之輸入埠丨。 *然’—般熟f此項技術者應理解,® 1中示意性地所 展示之電子單元係藉由一或多個電源(未圖示)以習知方式 加以供電。—般熟習此項技術者亦應理解,預期圖!所示 之單元之不同組態。舉例而言’圖W示之組件可經由有 線及/或無線連接及其類似者而相互通信。因此,本文中 所描述之導航器件100可為攜帶型或掌上型導航器件⑽。 亦應注意,上述導航器件刚之方塊圖不包括導航器件 100之所有組件,而僅代表許多實例組件。 轉至圖2,記憶體資源120儲存開機載入程式(未圖示卜 其係藉由處理器106執行,以便自記憶體資源12〇載入作業 系統132以用於藉由功能硬體組件13〇執行此提供可執行 • 應、用程式軟體134(實施上述路線規劃及導航功能性中之一 些或全部)之環境。作業系統132用以控制功能硬體組件 130,且駐留於應用程式軟體134與功能硬體組件1別之 間。應用程式軟體134提供支援導航器件1〇〇之核心功能 (例如Μ圖檢視、路線規劃、導航功能及與其相關聯之 任何其他功能)的包括GUI之作業環境。在此實例中,應用 私式軟體134之-部分包含接收及處理交通相關資料且向 使用者提供與地圖資訊整合之交通資訊的交通資料處理模 組⑶。因為此功能性獨自不為本文中所描述之實施例的 144456.doc -19- 201032391 核〜’所以本文中為了描述之簡明性及清晰性起見而將不 描述交通資料處理模組136之另外細節。 參看圖3 ’在此實例中’導航器件100能夠耦合至臂 140,臂140能夠使用吸盤142而緊固至(例如)車輛儀錶板或 窗戶。臂140為可供以擴充導航器件100之擴充底座之一實 例。舉例而言’可藉由將導航器件100搭扣連接至臂140而 將導航器件100擴充或以其他方式連接至擴充底座14〇。導 航器件100亦可在臂140上旋轉。為了釋放導航器件1〇〇與 擴充底座140之間的連接,提供且可按壓導航器件1〇〇上之 按鈕。或者,可提供用於將導航器件1〇〇耦合至擴充底座 及去搞導航器件1〇〇之其他同等合適配置。 轉至圖4,在此實例中,導航器件100位於車輛(例如, >飞車)中且連接至擴充底座14〇。擴充底座14〇係耦合至點 煙器轉接器(CLA)150 ’ CLA 150係插入至車輛之所謂的點 煙器(未圖示)内《在由電池152所提供之12 v直流(Dc)供應 之適當轉換之後,CLA 150至車輛之點煙器的耦合允許使 用車輛之電池152以對導航器件1〇〇供電(在此實例中,經 由擴充底座140)。電池152及CLA 15〇皆耦合至由車輛所提 供之地面153 ’通常為車輛之底盤或主體。 擴充底座140包含在擴充導航器件1〇〇時耦合至導航器件 100之輸入埠125的輸入埠154。接收裝置156係耦合至擴充 底座140。在此方面,接收裝置156包含用於耦合至輸入埠 154之耦合連接器(未圖示)(例如,插頭),連接器係經由耦 合電纜160而耦合至位於第一外殼157中之調諧器(圖4中未 144456.doc -20- 201032391 圖示)。當然’若不使用擴充底座U0,則可使用合適相容 連接器而將輕合連接器直接連接至導航器件1〇〇之輸入蜂 125 ° - 在此實例中,在第一外殼157内部之調諧器為調頻(FM) 調諧器,特別係RDS-TMC調諧器。藉由實例,合適接收 器可購自德國的GNS GmbH。除了調諧器以外,接收裝置 156亦包含天線配置裝置162,調諧器係耦合至天線配置裝 置 162。 參看圖5,外殼157包含調諧器164,調諸器164係輕合至 如以上所提到之天線配置裝置162。在此方面,天線配置 裝置162之第一丨慮波器3〇2之第一端子300係耗合至調諧器 164。第一濾波器302之第二端子304係耦合至天線配置裝 置162的一段同轴電纜176之核心180之第一端子166。該段 同轴電纜176充當饋電線。該段同轴電纜176具有待在本文 中稍後描述的相對於天線極之近側末端1 83及遠側末端 185。調諧器164亦係耦合至第一濾波器302之第三端子 306,濾波器302之第四端子308係耦合至該段同轴電纜176 之屏蔽178之第一端子168。第一濾波器302位於第一外殼 中。 在該段同軸電纜176之近侧末端183處,該段同軸電纜 176之核心180之第二端子182及該段同轴電缦176之屏蔽 178之第二端子184分別係耦合至第二濾波器170之第一端 子186及第二端子188。第二濾波器170位於第二外殼158 中。第一濾波器302及第二濾波器170為共模濾波器,例 H4456.doc -21 · 201032391 如,共模變壓器,諸如, 線圈或環形電感器或共模抗流器Within the system (for example, Radio Data System (RDS)_Traffic Message Channel (TMC) service). It is also known to allow the route to be calculated by criteria defined by the user, for example, the user may wish to avoid any roads that may be expected, expected or prevailed by the traffic jam. The device software will then use the stored information indicating the dominant traffic conditions on a particular road to calculate the various routes and rank the calculated routes according to the level of likely blockage or hence delay. Other route calculation and navigation guidelines based on traffic information are also possible. Therefore, it can be seen that traffic-related information has a specific purpose when calculating routes and directing users to a location. In this regard, and as mentioned above, it is known to broadcast traffic related information using RDS-TMC facilities supported by some broadcasters. For example, in the United Kingdom, a known traffic related information service is broadcast using a frequency assigned to a station called "Classic fm". Of course, those skilled in the art should be aware that different traffic-related information service providers use different frequencies. A PND with an RDS-TMC receiver for receiving RDS data broadcasts can decode the RDS data broadcast and extract the TMC 144456.doc 201032391 included in the RDS data broadcast. These frequency modulated (FM) receivers need to be sensitive. For many PNDs currently sold, an accessory is provided that includes an RDS-TMC tuner that is coupled to the antenna at one end and to the connector at the other end for RDS The TMC receiver is coupled to the input of the PND. Devices of the type described above using the above antennas (eg, the 920 GO model manufactured and supplied by TomTom International BV) support enabling users to navigate from one location to another (especially using traffic related information) process. These devices are extremely useful when the user is unfamiliar with the route to which the device is navigating to the destination. However, the effectiveness of such devices may sometimes depend on the antenna structure used. In this regard, in the field of antenna design, many antenna structures are known to have a suitability for varying degrees of reception of RDS-TMC data. The one-day line structure is a so-called dipole antenna structure, and the dipole antenna structure has many variations thereof, such as a symmetric dipole antenna structure and an asymmetric dipole antenna structure. The wired dimorph of the symmetric dipole antenna structure and the asymmetric dipole antenna structure includes a pair of conductors constituting one of the first pole and the second pole, for example, a flexible conductor. The symmetrical antenna structure was originally designed for use in a symmetric radio frequency (RF) input circuit, and the symmetrical antenna structure only included a symmetrical twisted pair cable connected to the RF receiver. An RF transformer is provided in the RF receiver to convert the symmetrical antenna signal into an asymmetrical antenna signal that can be amplified by a suitable RF amplifier circuit in the RF receiver. Over time, as this technology evolves, so-called "feedlines" are introduced into the design of the antenna for high frequency and/or weak signal applications in order to couple the antenna pole to the antenna structure. To J44456.doc -10- 201032391 mixed. Η*” (noisy) circuits are separated. One type of town electrical wire used is in the form of a length of coaxial cable. However, a coaxial cable is a transmission line of a conductor having unequal impedance with respect to ground potential and is therefore considered "unbalanced". In order to match the symmetrical impedance (balance) of the pole conductor to the asymmetrical impedance of the feeder, it is known to have a so-called "balun" built into the line between the pole conductor and the feeder. Matching the impedance of the pole wire to the impedance of the feeder, and thus reducing the common mode current that is not desired by the person to avoid flow in the feeder, which flow can cause the pole wire to radiate WRF energy. Unfortunately, antenna structures comprising pole wires and coaxial feeds of the type described above are still susceptible to from adjacent electrical devices and/or electronic devices (eg, PND and/or power, despite the extreme separation provided by the coaxial feed lines). Electromagnetic interference (EMI) from a supplier or transformer, such as a cigarette lighter adapter (CLA). In this respect, unlike an electronic system 'PND integrated into a vehicle (eg, a car) that "floats" relative to the ground at radio frequencies, and therefore, the received signal is not referenced to the "EMI Clean" body of the vehicle, Instead, reference the PND's "noise" ground reference. In addition, from the point of view of the manufacturer of the pND, there is no need for the user of the pND to connect the antenna to the body of the vehicle in order to obtain the desired "clean" ground reference. Even considering the distance provided by the coaxial feed, the antenna pole is still positioned very close to the EMI "noise" PND. In addition, coaxial feeders are also susceptible to induced common mode currents due to EMI emissions from PNDs and/or CLAs. The induced common mode current flows in the coaxial feed line towards the pole of the antenna, thereby degrading the performance of the antenna by increasing the level of noise in the RF signal generated by the antenna. 144456.doc -11 - 201032391 Therefore, in some cases, the antenna performance may be insufficient, resulting in the PND not receiving any data or receiving only part of the data. From the point of view of the user of the pND, the user only perceives that no or incomplete traffic information is available, and can erroneously conclude that the PND and/or TMC accessory has failed. Other solutions for reducing the effects of external sources of RF signals are known. For example, an external source capable of emitting electromagnetic radiation can be shielded in a particular frequency range. However, such solutions are expensive and can lead to other problems with, for example, heat dissipation. In addition, the provision of the magnetic shield of the needle material may also need to be modified when the circuit design changes. Therefore, design and implementation costs, as well as the lack of reusability of electromagnetic radiation shielding solutions, make electromagnetic shielding of external sources of electromagnetic radiation (e.g., pND) poor. Due to the above-mentioned EMI stored by the non-self, the combination of the desired RF. number and the emi signal that is not seen by the person is received at the input of the 叩 receiver. Although it is possible to increase Han? The sensitivity of the receiver, but the increased sensitivity is not used to increase the signal-to-noise ratio (SNR) of the RF receiver, and therefore, does not aid in the process of distinguishing between signals that are preferred by us and signals that are not readily available to us. SUMMARY OF THE INVENTION According to a first aspect of the present invention, an antenna configuration apparatus includes: a dipole receiving antenna having a first pole portion and a second (four) minute; a segment coaxial cable constituting a feeder; The first coaxial cable of the first common mode filter and the second common mode filter 4 has a proximal end with respect to the first pole portion and the second pole portion, and is opposite to the first pole portion and the second pole portion The distal end of the coaxial end (176) is coupled to the first pole portion and the second pole portion via a second common 144456.doc 201032391 filter, and the coaxial cable (176) The distal end is coupled to the first common mode filter. The length of the first pole portion may correspond to between about one third of a predetermined wavelength of a radio frequency (RF) signal to be received in use and about one quarter of a predetermined wavelength. The length of the second pole portion may correspond to between about one third of a predetermined wavelength of a radio frequency (RF) signal to be received in use and about one quarter of a predetermined wavelength. The apparatus can further include a first length of single axis electrical conductor that acts as a first pole portion. The apparatus can further include a second length of single-axis electrical conductor that acts as a second pole portion. The first pole portion and the second pole portion can be configured to form a symmetric dipole receiving antenna. The first pole portion can be between about 50 cm and about 75 cm in length. The first pole portion can be between about 50 cm and about 75 cm in length. The first common mode filter can have a common mode impedance between about 1 〇〇〇 Ω and about 4000 Ω. The first common mode filter can have a common mode impedance of about 2200 Ω. The second common mode filter can have a common mode impedance between about 1 〇〇〇 Ω and about 4000 Ω. The second common mode filter can have a common mode impedance of about 22 〇〇 Ω. The apparatus can further include an amplifier coupled in-line between the proximal end of the length of the coaxial cable and the first pole portion and the second pole portion. An amplifier can be coupled between the proximal end of the length of the coaxial cable and the second common mode filter. The amplifier can be coupled between the second common mode filter and the first pole portion and the second pole 144456.doc -13- 201032391 portion. For example, the second aspect of the invention provides a receiving device comprising: an antenna configuration device according to the first aspect of the present invention; and a tuner's wire-to-co-mode chopper. The tuner can be a frequency modulation (FM) tuner. The tuner can be a radio data system R tuner.呪 S S) The parent communication channel (TMC) device can include a coupling power for communicating the data decoded by the tuner to the device. The device can be a device capable of processing the data decoded by the tuner, such as a navigation device, a communication device, or any other suitable electronic device such as a 'music or other type of media player. According to a third aspect of the present invention, there is provided a portable navigation device comprising an antenna configuration device or receiving device as set forth above in relation to the first aspect of the invention or the second aspect of the invention, respectively. According to a fourth aspect of the present invention, there is provided a method of reducing a common mode signal in an antenna configuration apparatus, the method comprising: providing a dipole antenna having a first pole portion and a first pole portion; providing a relative polar portion relative to the first pole portion And a proximal end of the second pole portion and a length of coaxial cable relative to the distal ends of the first pole portion and the second pole portion; and engaging the distal end of the coaxial cable to the first common mode filter And coupling the proximal end of the length of the coaxial cable to the first pole portion and the second pole portion via the second common mode filter. This section of coaxial cable can constitute a feeder. Additional advantages and features of each of these embodiments are set forth in the accompanying claims. Therefore, it is possible to provide a device and method that is less susceptible to common mode signals. Therefore, the structure of the improved receiving antenna configuration device which is possible by the improved signal receiving system, thereby causing information (e.g., traffic related information such as RDS_TMC data), is also simple and economical to manufacture. The use of the common mode filter isolates the dipole of the antenna from the common mode signal induced in the (four) feed line at the tuner and antenna poles. The pole of the antenna can be achieved with other common mode signals (e.g., common mode signals caused by the parasitic capacitance of the device to which the device can be coupled) or improved isolation from the power supply. Furthermore, the current connection between the antenna and the chassis of the vehicle is not necessary. Also, the shield of the coaxial cable of the feeder is not part of the antenna and is therefore not sensitive to EMI. Therefore, the feeder increases the distance between the EMI source and the antenna structure. Thus, improved flexibility in mounting the device is provided, including the ability to wrap the coaxial feed (if necessary). In addition, the apparatus and method are not necessarily application specific, φ and thus provide a flexible solution for different receiving applications. The improved performance provided by the apparatus and method also reduces instances of user annoyance and erroneous inquiry by the manufacturer, distributor, and/or retailer regarding allegations of faulty equipment. [Embodiment] At least one embodiment of the present invention will now be described by way of example only with reference to the accompanying drawings. Throughout the description, the same reference numerals will be used to identify similar parts. Embodiments of the present invention will now be described with particular reference to PNDs. However, it should be noted that the teachings of the present invention are not limited to PNDs, but are generally applicable to any type of processing device. In this regard, there is no need to configure the processing device in a portable or mobile manner to execute the navigation software to provide route planning and navigation functionality. In the context of the navigation related examples described herein, it should be understood that the navigation device is intended to include, but is not limited to, any type of route planning and navigation device 'regardless the navigation device is embodied as a pND, embodied as a vehicle such as a vehicle. Or it is actually embodied as a portable computing resource that performs route planning and navigation software (for example, a portable personal computer (PC), a mobile phone, or a personal digital assistant (PDA)). As suggested above, it will be apparent from the following that the teachings herein are useful even if the user does not seek instructions on how to navigate from one point to another and only wishes to be provided with information about, for example, traffic. In such cases, the "destination" location selected by the user does not need to have a corresponding departure location for the user to desire to start navigation, and therefore, the "destination" location or the actual location in this document should not be The reference to the "destination" view is interpreted as meaning that the generation of the route is necessary, meaning that travel to the "destination" must occur, or actually means that the existence of the destination requires the corresponding location of the departure. Referring to Figure 1, the navigation device 100 is located within a housing (not shown). The navigation device 100 includes a GPS receiver device 102 or is coupled to the Gps receiver device 102 via a connection 104, which may be, for example, a GPS antenna/receiver. It should be understood that the antenna and receiver represented by reference numeral 1 经 2 are schematically combined for the sake of explanation, but the antenna and receiver may be separate components and the antenna may be, for example, a GPS block. Antenna 144456.doc -16- 201032391 (patch antenna) or helical antenna (heHcal antenna). The navigation device 100 includes processing resources including, for example, a processor 106 coupled to an input device 〇8 and a display device (e.g., display illuminator 110). Although reference is made herein to the input device 108 in the singular, those skilled in the art will appreciate that the input device 108 represents any number of input devices, including keyboard devices, voice input devices, touch panels, and/or for inputting information. Any other known input device. Likewise, display screen 110 can include any type of display screen, such as a liquid crystal display (LCD). In one configuration, one aspect of the input device 108, the touch panel, and the display screen 110 are integrated to provide an integrated input and display device, including a touch pad or touch screen input to enable input of information (via direct input) 'Menu selection, etc.' displays information via the touch panel screen, so that the user only needs to touch one of the screens 110 to select one of the plurality of display options or activate a plurality of virtual or "soft" buttons. One of them. In this regard, processor 106 supports a graphical user interface (GUI) that operates in conjunction with a touch screen. In the navigation device 100, the processor 106 is operatively coupled to the input device 108 via connection 112 and is capable of receiving input information from the input device 1 8 via connection 112 and operatively via respective output connections ii6 Connected to at least one of display screen i 1 〇 and output device 丨 14 (eg, an audible output device (eg, a loudspeaker)). Because the output device 114 can generate audible information for the user of the navigation device 100, it should be equally understood that, as suggested above, the input device 8.1 can include a command for receiving input 144456.doc -17 _ 201032391 s Microphone and software. In addition, the navigation device can also include any additional input devices and/or any additional output devices, such as audio input/output devices. The processor 106 is operatively coupled to the memory resource 120 (including, for example, random access memory (RAM) and digital memory (such as flash memory)) via connection 122, and is further configured to be Connection 126 receives information from/to the input/output (I/O) 124, and sends the information to 1/〇埠 124, where the I/O port 124 can be connected to the 1/〇 device 128 external to the navigation device 100. External I/O device 128 may include, but is not limited to, an external listening device, such as a headset. The connection to the I/O device 128 can further be a wired or wireless connection to any other external device (eg, a car stereo unit) for hands-free operation and/or for voice-activated operation, for headphone or head The connection of the headset, and/or the connection to the mobile phone; the mobile phone connection can be used to establish a data connection between the navigation device 100 and, for example, the Internet or any other network, and/or to Establish a connection to the server (for example) over the Internet or some other network. When needed, the navigation device 100 can establish a hard network with an "action" or telecommunications network via a mobile communication device (not shown) (eg, the above-described mobile phone, PDA, and/or any device with mobile phone technology) A data session in order to establish a digital connection, for example, via a digital connection known by Bluetooth technology. Thereafter, the mobile device can establish a network connection (via, for example, the Internet) with a server (not shown) via its network service provider. Thus, an "action" network 144456.doc -18-201032391 can be established between the navigation device 100 (when it is traveling separately and/or while traveling in the vehicle, which can be and often acts) with the server. Provide "instant" or at least very "new" devices to the information. . . In this example, the navigation device 100 also includes an input port operatively coupled to the processor 106 for receiving traffic related data. *Operally, it should be understood by those skilled in the art that the electronic units schematically shown in the ® 1 are powered by one or more power sources (not shown) in a conventional manner. As usual, those who are familiar with this technology should also understand the expected map! Different configurations of the units shown. For example, the components shown in Figure can communicate with each other via a wired and/or wireless connection and the like. Thus, the navigation device 100 described herein can be a portable or handheld navigation device (10). It should also be noted that the block diagram of the navigation device described above does not include all of the components of the navigation device 100, but only a number of example components. Turning to FIG. 2, the memory resource 120 stores a boot loader (not shown to be executed by the processor 106 to load the operating system 132 from the memory resource 12 for use by the functional hardware component 13 Execution of this provides an environment for executable, application software 134 (implementing some or all of the above described route planning and navigation functionality). Operating system 132 is used to control functional hardware component 130 and reside in application software 134. Between the functional hardware component 134, the application software 134 provides a GUI-enabled operating environment that supports the core functions of the navigation device (eg, map view, route planning, navigation functions, and any other functions associated therewith). In this example, the portion of the application private software 134 includes a traffic data processing module (3) that receives and processes traffic related information and provides the user with traffic information integrated with the map information. Because this functionality is not in this article alone. 144456.doc -19- 201032391 of the described embodiment nucleus~' so the traffic information will not be described for the sake of simplicity and clarity of the description herein. Additional details of the processing module 136. Referring to Figure 3 'in this example' the navigation device 100 can be coupled to an arm 140 that can be fastened to, for example, a vehicle dashboard or window using a suction cup 142. The arm 140 is available To expand one example of a docking station of the navigation device 100. For example, the navigation device 100 can be expanded or otherwise connected to the docking station 14 by snapping the navigation device 100 to the arm 140. The navigation device 100 is also Rotating on the arm 140. To release the connection between the navigation device 1A and the docking station 140, a button on the navigation device 1 is provided and can be pressed. Alternatively, it can be provided for coupling the navigation device 1 to The docking station and other equally suitable configurations for the navigation device 1 turn. Turning to Figure 4, in this example, the navigation device 100 is located in a vehicle (e.g., > speeding vehicle) and is coupled to the docking station 14A. The 14" coupling to the cigarette lighter adapter (CLA) 150' CLA 150 is inserted into the so-called cigarette lighter (not shown) of the vehicle "in the 12 v DC (Dc) supplied by the battery 152 Appropriate conversion Thereafter, the coupling of the CLA 150 to the cigarette lighter of the vehicle allows the battery 152 of the vehicle to be used to power the navigation device 1 (in this example, via the docking station 140). Both the battery 152 and the CLA 15 are coupled to the vehicle. The ground 153' provided is typically the chassis or body of the vehicle. The docking station 140 includes an input port 154 that is coupled to the input port 125 of the navigation device 100 when the navigation device 1 is extended. The receiving device 156 is coupled to the docking station 140. In this aspect, the receiving device 156 includes a coupling connector (not shown) (eg, a plug) for coupling to the input port 154, the connector being coupled to the tuner located in the first housing 157 via the coupling cable 160 (Fig. 4 is not 144456.doc -20- 201032391 icon). Of course 'if the docking station U0 is not used, the light fitting connector can be directly connected to the input device 125 of the navigation device 1 using a suitable compatible connector - in this example, the tuning inside the first housing 157 The device is a frequency modulation (FM) tuner, especially an RDS-TMC tuner. By way of example, a suitable receiver is available from GNS GmbH, Germany. In addition to the tuner, receiving device 156 also includes an antenna configuration device 162 that is coupled to antenna configuration device 162. Referring to Figure 5, housing 157 includes a tuner 164 that is coupled to antenna configuration device 162 as mentioned above. In this regard, the first terminal 300 of the first filter 3 〇 2 of the antenna configuration device 162 is consuming to the tuner 164. The second terminal 304 of the first filter 302 is coupled to the first terminal 166 of the core 180 of the length of the coaxial cable 176 of the antenna configuration device 162. This length of coaxial cable 176 acts as a feeder. The length of coaxial cable 176 has a proximal end 1 83 and a distal end 185 relative to the antenna pole to be described later herein. Tuner 164 is also coupled to third terminal 306 of first filter 302, and fourth terminal 308 of filter 302 is coupled to first terminal 168 of shield 178 of the length of coaxial cable 176. The first filter 302 is located in the first housing. At the proximal end 183 of the length of the coaxial cable 176, the second terminal 182 of the core 180 of the length of the coaxial cable 176 and the second terminal 184 of the shield 178 of the coaxial coil 176 are coupled to the second filter, respectively. The first terminal 186 and the second terminal 188 of the 170. The second filter 170 is located in the second housing 158. The first filter 302 and the second filter 170 are common mode filters, for example, H4456.doc -21 · 201032391 eg, a common mode transformer, such as a coil or a toroidal inductor or a common mode current transformer

需要為相同類型。 第一濾波器302及第二濾波器17〇具有各別共模阻抗及各 二濾波器170之共模阻抗 別差模阻抗。第一渡波器3〇2及第二 可為至少約1 k〇。共模阻抗可在約i kn與約4 kQ之間例Need to be the same type. The first filter 302 and the second filter 17A have respective common mode impedances and common mode impedance differential mode impedances of the respective two filters 170. The first waver 3〇2 and the second may be at least about 1 k〇. The common mode impedance can be between about kn and about 4 kQ.

kQ之間。在此實例中,第一濾波器3〇2及第二濾波器17〇具 有約2.2 kQ之各別共模阻抗。此顯著地超過一長度之電纜 之固有共模阻抗。第一濾波器302及/或第二濾波器17〇之 差模阻抗可在約1 Ω與約50 Ω之間,例如,在約i Ω與約2〇 Ω之間,諸如,在約5 ω與約1 5 Ω之間。在此實例中,濾波 器170之差模阻抗為約1 〇 Ω。第一濾波器3〇2及第二濾波器 170之共模阻抗及差模阻抗不需要相同。 天線配置裝置162亦包含第二共模濾波器i 7〇及偶極接收 天線172。偶極天線172包含由第一長度之導體(例如,單 轴導體)形成之第一極部分174,及由第二長度之導體(例 如’另一單軸導體)形成之第二極部分175。第二濾波器 170之第二端子190係麵合至第一極部分174之一末端,且 第二濾波器170之第四端子192係耦合至第二極部分175之 一末端。在使用中,偶極天線172之極係藉由使用者配置 成大體上或大致彼此遠離地擴展以確保天線配置裝置162 之適當操作。 第一極174之第一長度對應於需要接收之信號(例如,廣 144456.doc •22· 201032391 播信號,諸如,包含RDS-TMC資料之FM信號)之波長的四 分之一(λΜ)。因此,在此實例中,第一極部分174之長度 為約75 cm。類似地,第二極ι75之第二長度對應於需要接 收之信號之波長的四分之一(λ/4)。因此,在此實例中,偶 極天線1 72係對稱的,第二極部分1 75之長度亦為約75 cm。在上述實例中’極部分之長度大致相等。 在另一實施例中,偶極天線172係不對稱的。第一極部 分174之第一長度亦對應於需要接收之信號(例如,廣播信 號’諸如’包含RDS-TMC資料之FM信號)之波長的四分之 一(λ/4)。因此,在此實例中,第一極部分174之長度再次 為約75 cm。然而’第二極部分175之第二長度對應於需要 接收之信號之波長的三分之一(λ/3)。因此,在此實例中, 第二極部分175之長度為約5〇 cm。第一極174及第二極175 之長度可對應於在需要接收之信號之波長的約三分之一與 波長的約四分之一之間,且因此,熟習此項技術者應瞭 解’預期未在本文中加以描述之其他偶極組態。 在以上實施例中之任一者中,可在該段同轴電纜1 76之 近側末端1 83與第一極部分174及第二極部分175之間線内 提供放大器或放大器電路。因此,天線配置裝置162係 「主動的」。在一實施例(圖6)中,放大器可耦合於共模濾 波器170與第一極部分ι74及第二極部分ι75之間。在此方 面’第二共模濾波器170之第三端子19〇係耦合至RF放大器 電路202之輸出端2〇〇 ’ aRF放大器2〇2之輸入端2〇4係耦合 至第一極部分174。RF放大器202之接地端子206係耦合至 144456.doc -23- 201032391 共模濾波器170之第四端子192及第二極部分175。 在另一實施例(圖7)中,放大器202係耦合於第二共模濾 波器170與該段同軸電纜ι76之近側末端ι83之間。在此方 面’該段同軸電纜176之核心180之第二端子182係耦合至 RF放大器202之輪出端2〇〇,RF放大器202之輸入端2〇4係 耦合至第二共模濾波器Π0之第一端子186且因此係經由第 一渡波器170而耦合至第一極部分174。rF放大器2〇2之接 地端子206係搞合至該段同轴電纜176之屏蔽178及第二共 模渡波器170之第二端子i8s且因此係經由第二濾波器17〇 而耦合至第二極部分175。 當然,應瞭解,在以上所闡明之實例中,RF放大器電路 202可為任何合適RF放大器,例如,低雜訊放大器 (LNA) ’ 諸如’可購自 Infineon Technologies AG之RF電晶 體(例如,零件號:BFR 93)或Νχρ半導體。在使用RF放大 器202的情況下,可將第一極部分174及/或第二極部分之 長度縮短成(例如)小於約5〇 cm,例如,小於2〇 cm,諸 如,在約15 cm與約20 cm之間。參看圖8,為了補償由較 短極部分之使用引起的電容效應,可在第二濾波器170之 第三端子I90與第一極部分174或濾波器17〇之第四端子192 與第二極部分175之間線内提供補償電感,例如,線圈 310,諸如,! μΗ之線圈。視極部分174、175之各別長度 而定,補償電感之電感值可在約250 ηΗ與約i.25 μΗ之間。 返回參看圖4,在操作中,第一共模干擾電流分量 自CLA 150流動至擴充底座14〇且因此流動至導航器件 144456.doc -24- 201032391 100,第一共模干擾電流分量icm CLA係藉由CLA 150產生。 由於存在於地面153與導航器件1〇〇之間的寄生電容,第二 共模干擾電流分量iem pnd流動至麵合電缓160内。實際上, 第二共模干擾電流分量icm PND流動至耦合電镜160内,而不 管CLA 150是否耦合至車輛之點煙器及/或是否存在。另 外’第三共模電流分量icm EM係藉由自導航器件1 〇〇發出之 電磁輕射而在偶極天線172之極部分174.、175中誘發。第 一濾、波器1 70之存在用以將偶極接收天線172隔離於以上共 模電流分量,且因此’偶極接收天線172之效能得以顯著 地改良,例如,改良約20 dB。 在無第二濾波器170的情況下,耦合電纜161為所謂的 「熱電路」(hot circuit)或為「EMC熱」(EMC hot),且展 現輻射天線狀行為。由於傳導干擾及干擾麵合,第二渡波 器170之提供用以減少共模電流以免在饋電線176中流動。 然而,存在自電磁輻射發射(例如,自導航器件丨〇〇)耦合之 殘餘EM場’但由於來自導航器件ι〇〇之發射而在饋電線 170中流動之殘餘電流亦係藉由第二濾波器17〇而減少。 又’歸因於偶極接收天線172離電磁輻射源(即,導航器件 100)之距離及隨著離導航器件1〇〇之距離的電磁輻射功率 之衰減,在偶極接收天線丨72中流動之誘發性共模電流之 量顯著地最小化。 在接收天線172中所產生之差模電流信號因此係藉由接 收器164而與減少之共模電流分量一起被接收,且在經由 導航器件100之輸入埠125而傳達至導航器件1〇〇之前被解 144456.doc -25- 201032391 調變及解碼’以用於藉由應用程式軟體134之交通資料處 理模組136使用。差模電流幾乎不受第一共模濾波器3〇2及 第二共模滤波器17 0之存在的影響。 在另一實施例(圖8)中,可修改以上實施例中之任一 者’使得將接收器安置於擴充底座140之外殼内。在此實 施例中,在擴充底座14〇之外殼内含有第一濾波器3〇2。在 又一實施例中,亦將饋電線〗76、LNA電路、第二濾波器 170、任何可選電感以及第_極部分174及第二極部分175 安置於擴充底座140之外殼内。在另一實施例中,可結合 在(例如)第二極部分175之末端中之一者處耦合至第二極 175的極延伸部分來使用第一濾波器3〇2及第二濾波器 170 ° 應瞭解,雖然至此已描述本發明之各種態樣及實施例, 但本發明之範疇不限於本文中所陳述之特定配置,且實情 為,本發明之範疇擴展為包含屬於附加申請專利範圍之範 疇的所有配置以及對其之修改及更改。 舉例而言,雖然已關於FM信號(特別係RDS-TMC信號) 之接收而描述以上實施例,但熟習此項技術者應瞭解,可 在其他應用方面使用以上實施例,例如,數位音訊廣播 (DAB)接收,諸如,輸送協定專家團體(TpEG)資料流。實 情為’熟習此項技術者應瞭解,可使用天線配置裝置j 62 來接收承載音§fl資訊之信號,例如,fm音訊信號。因 此,可結合FM無線電應用(例如,關於其他電子器件(諸 如,通信器件)所使用之FM無線電應用)來使用天線配置裝 144456.doc • 26 - 201032391 置。一合適實例為包含整合式FM接收器或耦合至FM接收 器模組之行動電話手機。 應瞭解’雖然本文中已將天線配置裝置162描述為具有 由可撓性導線形成之極部分,但可以任何其他合適方式來 . φ成第極部刀及第一極部分,例如,剛性金屬部分,諸 如’所謂的婉蜒或分形極部分。 雖然在前述詳細描述中所描述之實施例參考GPS,但應 注意,導航器件可利用任何種類之位置感測技術以作為 GPS之替代例(或實際上,除了 Gps以外)。舉例而言,導 航器件可利用其他全球導航衛星系統,諸如,歐洲伽利略 (European Galile〇)系統。同等地,其不限於基於衛星,而 可容易使用基於地面之信標或使器件能夠判定其地理位置 的任何其他種類之系統起作用。 般熟習此項技術者亦應很好地理解,雖然較佳實施例 藉由軟體來實施特定功能性,但彼功能性可同等地僅僅以 φ 硬體(例如,藉由一或多個ASIC(特殊應用積體電路》加以 實施或實際上藉由硬體與軟體之混合物加以實施。因而, 不應將本發明之範疇解釋為僅限於以軟體加以實施。 , 最後’亦應注意,雖然隨附申請專利範圍陳述本文中所 指述之特徵的特定組合,但本發明之範疇不限於在下文中 所主張之特定組合,而實情為,本發明之範疇擴展為包含 本文中所揭示之特徵或實施例的任何組合,而不管此時是 否已在隨附申請專利範圍中特定地列舉彼特定組合。 【圖式簡單說明】 144456.doc -27- 201032391 圖1為導航器件之組件的示意性說明; 圖2為由圖1之導航器件所使用之架構堆疊的示意性表 示; 圖3為用於安裝及/或擴充圖1之導航器件之配置的示意 面 · 圍, 圖4為耦合至圖1之導航器件之天線配置裝置的示意圖; 圖5為更詳細的圖4之天線配置裝置的示意圖且構成本發 明之一實施例; 圖6為圖4中所使用之天線配置裝置之替代天線配置裝置 的示意圖且構成本發明之另一實施例; 圖7為圖6之天線配置裝置之另一替代天線配置裝置的示 意圖且構成本發明之另一實施例;及 圖8為另一天線配置裝置的示意圖且構成本發明之又一 實施例。 【主要元件符號說明】 100 導航器件 102 GPS接收器器件 104 連接 106 處理器 108 輸入器件 110 顯示螢幕 112 連接 114 輸出器件 116 輸出連接 144456.doc 201032391 118 輸出連接 120 記憶體資源 122 連接 124 輸入/輸出(I/O)埠 125 輸入蟀 126 連接 128 I/O器件 130 功能硬體組件 132 作業系統 134 應用程式軟體 136 交通資料處理模組 140 臂/擴充底座 142 吸盤 150 點煙器轉接器(CLA) 152 電池 153 地面 154 輸入埤· 156 接收裝置 157 第一外殼 158 第二外殼 160 耦合電纜 162 天線配置裝置 164 調諧器 166 核心180之第一端子 144456.doc ,29· 201032391 168 屏蔽178之第一端子 170 第二共模濾波器 172 偶極接收天線 174 第一極部分 175 第二極部分 176 一段同軸電纜 178 屏蔽 180 核心 182 核心180之第二端子 183 近側末端 184 屏蔽178之第二端子 185 遠側末端 186 第二共模濾波器170之第一端子 188 第二共模濾波器170之第二端子 190 第二共模濾波器170之第三端子 192 第二共模濾波器170之第四端子 200 輸出端 202 RF放大器電路 204 輸入端 206 接地端子 300 第一共模濾波器302之第一端子 302 第一共模濾波器 304 第一共模濾波器302之第二端子 306 第一共模濾波器302之第三端子 308 第一共模濾波器302之第四端子 144456.doc -30-Between kQ. In this example, the first filter 3〇2 and the second filter 17 have respective common mode impedances of about 2.2 kQ. This significantly exceeds the inherent common mode impedance of a cable of length. The differential mode impedance of the first filter 302 and/or the second filter 17〇 may be between about 1 Ω and about 50 Ω, for example between about i Ω and about 2 〇Ω, such as at about 5 ω Between approximately 1 5 Ω. In this example, filter 170 has a differential mode impedance of about 1 〇 Ω. The common mode impedance and the differential mode impedance of the first filter 3〇2 and the second filter 170 need not be the same. The antenna configuration device 162 also includes a second common mode filter i 7 〇 and a dipole receiving antenna 172. The dipole antenna 172 includes a first pole portion 174 formed of a conductor of a first length (e.g., a uniaxial conductor) and a second pole portion 175 formed of a conductor of a second length (e.g., another uniaxial conductor). The second terminal 190 of the second filter 170 is coupled to one end of the first pole portion 174, and the fourth terminal 192 of the second filter 170 is coupled to one end of the second pole portion 175. In use, the poles of the dipole antenna 172 are configured by the user to expand substantially or substantially away from one another to ensure proper operation of the antenna configuration device 162. The first length of the first pole 174 corresponds to a quarter (λ Μ) of the wavelength of the signal that needs to be received (e.g., a wide 144456.doc • 22· 201032391 broadcast signal, such as an FM signal containing RDS-TMC data). Thus, in this example, the length of the first pole portion 174 is about 75 cm. Similarly, the second length of the second pole ι 75 corresponds to a quarter (λ/4) of the wavelength of the signal that needs to be received. Thus, in this example, the dipole antenna 1 72 is symmetrical and the second pole portion 175 is also about 75 cm in length. In the above examples, the lengths of the 'pole portions are substantially equal. In another embodiment, the dipole antenna 172 is asymmetrical. The first length of the first pole portion 174 also corresponds to one-quarter (λ/4) of the wavelength of the signal (e.g., broadcast signal 'such as 'FM signal containing RDS-TMC data) to be received. Thus, in this example, the length of the first pole portion 174 is again about 75 cm. However, the second length of the second pole portion 175 corresponds to one-third (λ/3) of the wavelength of the signal that needs to be received. Thus, in this example, the second pole portion 175 has a length of about 5 〇 cm. The length of the first pole 174 and the second pole 175 may correspond to between about one-third of the wavelength of the signal that needs to be received and about one-quarter of the wavelength, and therefore, those skilled in the art should understand that Other dipole configurations not described in this document. In any of the above embodiments, an amplifier or amplifier circuit can be provided in-line between the proximal end 1 83 of the length of coaxial cable 1 76 and the first pole portion 174 and the second pole portion 175. Therefore, the antenna configuration device 162 is "active". In an embodiment (Fig. 6), an amplifier can be coupled between the common mode filter 170 and the first pole portion ι 74 and the second pole portion ι 75. In this aspect, the third terminal 19 of the second common mode filter 170 is coupled to the output terminal 2 of the RF amplifier circuit 202. The input terminal 2〇4 of the RF amplifier 2〇2 is coupled to the first pole portion 174. . The ground terminal 206 of the RF amplifier 202 is coupled to a fourth terminal 192 and a second pole portion 175 of the common mode filter 170 of 144456.doc -23-201032391. In another embodiment (Fig. 7), amplifier 202 is coupled between second common mode filter 170 and proximal end ι 83 of the length of coaxial cable ι76. In this regard, the second terminal 182 of the core 180 of the length of the coaxial cable 176 is coupled to the wheel terminal 2 of the RF amplifier 202, and the input terminal 2〇4 of the RF amplifier 202 is coupled to the second common mode filter Π0. The first terminal 186 and thus is coupled to the first pole portion 174 via the first ferrite 170. The ground terminal 206 of the rF amplifier 2〇2 is coupled to the shield 178 of the coaxial cable 176 and the second terminal i8s of the second common mode waveguide 170 and is thus coupled to the second via the second filter 17〇 Pole part 175. Of course, it should be understood that in the examples set forth above, the RF amplifier circuit 202 can be any suitable RF amplifier, such as a low noise amplifier (LNA), such as an RF transistor (eg, a part available from Infineon Technologies AG). No.: BFR 93) or Νχρ semiconductor. Where RF amplifier 202 is used, the length of first pole portion 174 and/or second pole portion can be shortened to, for example, less than about 5 〇cm, for example, less than 2 〇 cm, such as at about 15 cm. Between about 20 cm. Referring to FIG. 8, in order to compensate for the capacitive effect caused by the use of the shorter pole portion, the third terminal I90 of the second filter 170 and the fourth terminal 192 and the second terminal of the first pole portion 174 or the filter 17A may be A compensation inductance is provided within the line between portions 175, such as coil 310, such as! The coil of μΗ. Depending on the length of the field portions 174, 175, the inductance of the compensation inductance can be between about 250 η Η and about i. 25 μ 。. Referring back to FIG. 4, in operation, the first common mode interference current component flows from the CLA 150 to the docking station 14 and thus to the navigation device 144456.doc -24 - 201032391 100, the first common mode interference current component icm CLA system Produced by CLA 150. Due to the parasitic capacitance existing between the ground 153 and the navigation device 1 ,, the second common mode interference current component iem pnd flows into the surface power buffer 160. In effect, the second common mode interference current component icm PND flows into the coupled electron microscope 160 regardless of whether the CLA 150 is coupled to the cigarette lighter of the vehicle and/or is present. Further, the third common mode current component icm EM is induced in the pole portions 174., 175 of the dipole antenna 172 by electromagnetic light emitted from the navigation device 1. The presence of the first filter, waver 1 70 is used to isolate the dipole receiving antenna 172 from the above common mode current component, and thus the performance of the 'dipole receiving antenna 172 is significantly improved, for example, by about 20 dB. In the absence of the second filter 170, the coupling cable 161 is a so-called "hot circuit" or "EMC hot" and exhibits a radiating antenna-like behavior. Due to the conducted interference and interference surface, the second ferrite 170 is provided to reduce the common mode current from flowing in the feed line 176. However, there is a residual EM field coupled from the electromagnetic radiation emission (eg, from the navigation device ') but the residual current flowing in the feed line 170 due to the emission from the navigation device ι is also filtered by the second The device is reduced by 17 turns. Again, due to the distance of the dipole receiving antenna 172 from the electromagnetic radiation source (ie, the navigation device 100) and the attenuation of the electromagnetic radiation power as a function of the distance from the navigation device 1 ,, the dipole receiving antenna 丨 72 flows. The amount of induced common mode current is significantly minimized. The differential mode current signal generated in the receive antenna 172 is thus received by the receiver 164 along with the reduced common mode current component and before being communicated to the navigation device 1 via the input port 125 of the navigation device 100. The solution 144456.doc -25- 201032391 Modulation and Decoding is used for use by the traffic data processing module 136 of the application software 134. The differential mode current is hardly affected by the presence of the first common mode filter 3〇2 and the second common mode filter 170. In another embodiment (Fig. 8), any of the above embodiments may be modified such that the receiver is disposed within the outer casing of the docking station 140. In this embodiment, the first filter 3〇2 is contained within the outer casing of the docking station 14〇. In yet another embodiment, the feeder 76, the LNA circuit, the second filter 170, any optional inductance, and the _ pole portion 174 and the second pole portion 175 are also disposed within the housing of the docking station 140. In another embodiment, the first filter 3〇2 and the second filter 170 may be used in conjunction with a pole extension portion coupled to the second pole 175 at one of the ends of the second pole portion 175, for example. It should be understood that the various aspects and embodiments of the present invention have been described so far, but the scope of the present invention is not limited to the specific configuration set forth herein, and the scope of the present invention extends to include the scope of the appended claims. All configurations of the category and modifications and changes to it. For example, while the above embodiments have been described with respect to the reception of FM signals (especially RDS-TMC signals), those skilled in the art will appreciate that the above embodiments can be used in other applications, such as digital audio broadcasting ( DAB) receives, for example, a Transport Agreement Expert Group (TpEG) data stream. The fact is that those skilled in the art will appreciate that the antenna configuration device j 62 can be used to receive signals carrying §fl information, such as fm audio signals. Thus, antenna configuration can be used in conjunction with FM radio applications (e.g., for FM radio applications used by other electronic devices (e.g., communication devices)) 144456.doc • 26 - 201032391. A suitable example is a mobile phone handset that includes an integrated FM receiver or is coupled to an FM receiver module. It should be understood that although antenna configuration device 162 has been described herein as having a pole portion formed of a flexible wire, it may be in any other suitable manner. φ into a pole blade and a first pole portion, for example, a rigid metal portion. , such as 'the so-called 婉蜒 or fractal pole part. Although the embodiments described in the foregoing detailed description refer to GPS, it should be noted that the navigation device can utilize any kind of position sensing technology as an alternative to GPS (or indeed, in addition to Gps). For example, navigation devices may utilize other global navigation satellite systems, such as the European Galileo system. Equally, it is not limited to satellite-based, but can easily be used with ground-based beacons or any other kind of system that enables the device to determine its geographic location. It will be well understood by those skilled in the art that while the preferred embodiment implements a particular functionality by software, the functionality may equally be only φ hardware (eg, by one or more ASICs (eg, by one or more ASICs) The special application integrated circuit is implemented or actually implemented by a mixture of hardware and software. Therefore, the scope of the invention should not be construed as being limited to software implementation. Finally, it should be noted that although it is attached The scope of the patent application states a specific combination of the features recited herein, but the scope of the invention is not limited to the specific combinations claimed hereinafter, but the scope of the invention is extended to include the features or embodiments disclosed herein. Any combination of any of the above, regardless of whether or not the specific combination has been specifically listed in the accompanying claims. [Simplified Schematic] 144456.doc -27- 201032391 Figure 1 is a schematic illustration of the components of the navigation device; 2 is a schematic representation of a stack of architectures used by the navigation device of FIG. 1; FIG. 3 is a schematic view of a configuration for installing and/or augmenting the navigation device of FIG. 4 is a schematic diagram of an antenna configuration apparatus coupled to the navigation device of FIG. 1. FIG. 5 is a schematic diagram of an antenna configuration apparatus of FIG. 4 in more detail and constitutes an embodiment of the present invention; FIG. 6 is used in FIG. A schematic diagram of an alternative antenna configuration apparatus of an antenna configuration apparatus and constituting another embodiment of the present invention; FIG. 7 is a schematic diagram of another alternative antenna configuration apparatus of the antenna configuration apparatus of FIG. 6 and constituting another embodiment of the present invention; 8 is a schematic diagram of another antenna configuration device and constitutes another embodiment of the present invention. [Main Component Symbol Description] 100 Navigation Device 102 GPS Receiver Device 104 Connection 106 Processor 108 Input Device 110 Display Screen 112 Connection 114 Output Device 116 Output Connection 144456.doc 201032391 118 Output Connection 120 Memory Resource 122 Connection 124 Input/Output (I/O)埠125 Input蟀126 Connection 128 I/O Device 130 Functional Hardware Components 132 Operating System 134 Application Software 136 Traffic Information Processing Module 140 Arm / Expansion Base 142 Suction Cup 150 Cigarette Lighter Adapter (CLA) 152 Battery 1 53 Ground 154 Input 埤 · 156 Receiving device 157 First housing 158 Second housing 160 Coupling cable 162 Antenna configuration device 164 Tuner 166 First terminal of core 180 144456.doc , 29· 201032391 168 First terminal 170 of shielding 178 Second common mode filter 172 dipole receiving antenna 174 first pole portion 175 second pole portion 176 length of coaxial cable 178 shield 180 core 182 core 180 second terminal 183 proximal end 184 shield 178 second terminal 185 distal end 186 a first terminal 188 of the second common mode filter 170, a second terminal 190 of the second common mode filter 170, a third terminal 192 of the second common mode filter 170, and a fourth terminal 200 output of the second common mode filter 170 End 202 RF Amplifier Circuit 204 Input 206 Ground Terminal 300 First Terminal 302 of First Common Mode Filter 302 First Common Mode Filter 304 Second Terminal 306 of First Common Mode Filter 302 First Common Mode Filter 302 The third terminal 308 is the fourth terminal of the first common mode filter 302 144456.doc -30-

Claims (1)

201032391 七、申請專利範圍: 1. 一種天線配置裝置,其包含: 一偶極接收天線,其具有一第一極部分及一第二極部 分; 一段同轴電纜,其構成一饋電線; 一第—共模濾波器;及 一第二共模濾波器;其中 該段同轴電纜具有相對於該第一極部分及該第二極 部分之一近側末端’及相對於該第一極部分及該第二 極部分之一遠側末端,該段同軸電纜(176)之該近側末 端係經由該第二共模濾波器而耦合至該第一極部分及 該第二極部分,且該段同轴電纜76)之該遠側末端係 搞合至該第一共模濾波器。 2. 如請求項1之裝置,其中該第一極部分之一長度對應於 在使用中時待接收之一射頻(RF)信號之一預定波長的約 二分之一與一預定波長的約四分之一之間。 3·如請求項1之裝置,其中該第二極部分之一長度對應於 在使用中時待接收之一射頻(RF)信號之一預定波長的約 三分之一與該預定波長的約四分之/之間。 4·如請求項1或2或3之裝置,其進一步包含充當該第一極 部分的一第一長度之單轴電導體。 5·如請求項1或2或3之裝置,其進一少包含充當該第二極 部分的〜第二長度之單軸電導體。 6.如請求項1或2或3之裝置,其中該第〆極部分及該第二 144456.doc 201032391 極部分經配置以形成一對稱偶極接收天線^ 7_如請求項2之裝置,其中該第一極部分之長度係在約5〇 cm與約75 cm之間。 8_如請求項3之裝置,其中該第二極部分之長度係在約5〇 cm與約75 cm之間。 9·如請求項!或2或3之裝置,其中該第一共模濾波器具有 在約1000 Ω與約4000 Ω之間的一共模阻抗。 10.如請求項1或2或3之裝置,其中該第二共模濾波器具有 在約1000 Ω與約4000 Ω之間的一共模阻抗。 U.如所求項9之裝置,其中該第一共模濾波器具有約2200 Ω之一共模阻抗。 12·如請求項10之裝置,其中該第二共模濾波器具有約22〇〇 一共模阻抗。 13·如請求項13戈2或3之裝置’其進一步包含線内耦合於該 段同軸電境之該近側末端與該第—極部分及該第二極部 分之間的一放大器。 14. 如明求項13之裝置,其中該放大器係耗合於該第二共模 濾波器與該第一極部分及該第二極部分之間。 15. 如請求項13之裝置’其中該放大器係耦合於該段同轴電 纜之該近側末端與該第二共模遽波器之間。 16. —種接收裝置,其包含: 如前述請求項中任一項之天線配置裝置;及 1諧H ’其_合至第—共模渡波器。 月求項16之裝置’其中該調諧器為-調頻(FM)調諧 144456.doc 201032391 器。 18_如請求項16或17之裝置,其中該調諧器為—無線電資料 系統(RDS)-交通訊息頻道(TMC)調諧器。 19. 一種攜帶型導航器件,其包含如前述請求項中任一項之 天線配置裝置或接收裝置。 20•—種在一天線配置裝置方面減少一共模信號之方法該 方法包含: 提供具有-第一極部分及一第=極部分之一偶極天 線; 提供具有相對於該第—極部分及該第二極部分之一近 侧末端及相對於該第—極部分及該第二極部分之一遠側 末端的一段同軸電纜;及 /字該段同轴電境之該遠侧末端耗合至-第-共模滤波 ^里由第一共杈濾波器而將該段同軸電纜之該近側 末端輕合至該第一極部分及該第二極部分。 144456.doc201032391 VII. Patent application scope: 1. An antenna configuration device, comprising: a dipole receiving antenna having a first pole portion and a second pole portion; a length of coaxial cable constituting a feeder; a common mode filter; and a second common mode filter; wherein the length of the coaxial cable has a proximal end ' relative to the first pole portion and the second pole portion and relative to the first pole portion a distal end of the second pole portion, the proximal end of the length of the coaxial cable (176) being coupled to the first pole portion and the second pole portion via the second common mode filter, and the segment The distal end of the coaxial cable 76) is coupled to the first common mode filter. 2. The device of claim 1, wherein the length of one of the first pole portions corresponds to about one-half of a predetermined wavelength of one of radio frequency (RF) signals to be received in use and about four of a predetermined wavelength. Between one of the points. 3. The device of claim 1, wherein the length of one of the second pole portions corresponds to about one third of a predetermined wavelength of one of radio frequency (RF) signals to be received in use and about four of the predetermined wavelength In / between. 4. The device of claim 1 or 2 or 3, further comprising a first length of uniaxial electrical conductor acting as the first pole portion. 5. The device of claim 1 or 2 or 3, which further comprises a second length of uniaxial electrical conductor serving as the second pole portion. 6. The device of claim 1 or 2 or 3, wherein the first dipole portion and the second 144456.doc 201032391 pole portion are configured to form a symmetric dipole receiving antenna ^7_, such as the device of claim 2, wherein The length of the first pole portion is between about 5 〇 cm and about 75 cm. 8_ The device of claim 3, wherein the second pole portion has a length between about 5 〇 cm and about 75 cm. 9. If requested! Or the device of 2 or 3, wherein the first common mode filter has a common mode impedance between about 1000 Ω and about 4000 Ω. 10. The device of claim 1 or 2 or 3, wherein the second common mode filter has a common mode impedance between about 1000 Ω and about 4000 Ω. U. The apparatus of item 9, wherein the first common mode filter has a common mode impedance of about 2200 Ω. 12. The device of claim 10, wherein the second common mode filter has a common mode impedance of about 22 。. 13. The device of claim 13 or 2 or 3 further comprising an amplifier coupled in-line between the proximal end of the segment of the coaxial environment and the first pole portion and the second pole portion. 14. The apparatus of claim 13, wherein the amplifier is constrained between the second common mode filter and the first pole portion and the second pole portion. 15. The device of claim 13 wherein the amplifier is coupled between the proximal end of the length of coaxial cable and the second common mode chopper. 16. A receiving device comprising: the antenna configuration device of any of the preceding claims; and a harmonic H' coupled to the first common mode waver. The device of the monthly solution 16 wherein the tuner is - FM (FM) tuning 144456.doc 201032391. 18_ The device of claim 16 or 17, wherein the tuner is a Radio Data System (RDS)-Traffic Message Channel (TMC) tuner. A portable navigation device comprising an antenna configuration device or receiving device according to any of the preceding claims. 20: A method for reducing a common mode signal in an antenna configuration apparatus, the method comprising: providing a dipole antenna having a first pole portion and a first pole portion; providing a portion having a relative to the first pole portion a proximal end of the second pole portion and a length of coaxial cable relative to the distal end of the first pole portion and the second pole portion; and/or the distal end of the coaxial electrical region of the segment is consumable to - the first common mode filter is lightly coupled to the first pole portion and the second pole portion by the first common conjugate filter. 144456.doc
TW98137642A 2008-11-05 2009-11-05 Antenna arrangement apparatus, reception apparatus and method reducing a common-mode signal TW201032391A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0820238A GB0820238D0 (en) 2008-11-05 2008-11-05 Antenna arrangement apparatus, reception apparatus and method reducing a common-mode signal
GB0820242A GB0820242D0 (en) 2008-11-05 2008-11-05 Improvements in relation to an antenna

Publications (1)

Publication Number Publication Date
TW201032391A true TW201032391A (en) 2010-09-01

Family

ID=41651180

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98137642A TW201032391A (en) 2008-11-05 2009-11-05 Antenna arrangement apparatus, reception apparatus and method reducing a common-mode signal

Country Status (2)

Country Link
TW (1) TW201032391A (en)
WO (1) WO2010052206A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102956955A (en) * 2011-08-22 2013-03-06 华硕电脑股份有限公司 Portable electronic device
US8995507B2 (en) 2011-06-07 2015-03-31 Broadcom Corporation Transceiver self-diagnostics for electromagnetic interference (EMI) degradation in balanced channels

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944649A (en) * 2010-08-09 2011-01-12 洪国智 Antenna module
US9490542B1 (en) * 2014-01-17 2016-11-08 Stellenbosch University Multi-mode composite antenna

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE592184C (en) * 1932-05-31 1934-02-02 Lorenz Akt Ges C Power line for antennas
DE1943890C3 (en) * 1967-12-12 1985-05-09 Lindenmeier, Heinz, Prof. Dr.-Ing., 8033 Planegg Symmetrical antenna in the form of a conductor loop with an active three-pole connected between its input terminals
DE3504719A1 (en) * 1985-02-12 1986-08-14 Rohde & Schwarz GmbH & Co KG, 8000 München Active dipole antenna with a passive blocking circuit
US4672337A (en) * 1985-11-27 1987-06-09 The United States Of America As Represented By The Secretary Of The Navy VLF/HF EMI filter
JPH06310337A (en) * 1993-04-23 1994-11-04 Murata Mfg Co Ltd Antenna connector
JP2001196949A (en) * 2000-01-07 2001-07-19 Pioneer Electronic Corp Noise suppressor and audio unit
DE10322186B3 (en) * 2003-05-16 2004-12-02 Karl Fischer Short end-fed HF dipole antenna, e.g. for amateur radio communications, comprises folded dipole with balanced feed at one end and normal feed point open circuit
DE102004060676A1 (en) * 2004-12-15 2006-07-06 Siemens Ag Radio receiver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8995507B2 (en) 2011-06-07 2015-03-31 Broadcom Corporation Transceiver self-diagnostics for electromagnetic interference (EMI) degradation in balanced channels
TWI487300B (en) * 2011-06-07 2015-06-01 Broadcom Corp Transceiver self-diagnostics for electromagnetic interference (emi) degradation in balanced channels
CN102956955A (en) * 2011-08-22 2013-03-06 华硕电脑股份有限公司 Portable electronic device

Also Published As

Publication number Publication date
WO2010052206A1 (en) 2010-05-14

Similar Documents

Publication Publication Date Title
JP5646335B2 (en) Antenna device that reduces common-mode signals
US9225067B2 (en) Enhanced power cable arrangement apparatus and method of reducing a common-mode interference signal
TW201032391A (en) Antenna arrangement apparatus, reception apparatus and method reducing a common-mode signal
US20100105348A1 (en) Antenna arrangement apparatus, reception apparatus and method reducing a common mode signal
US8773316B2 (en) Docking station apparatus
US9584963B2 (en) Portable device with integrated radio receiver
EP2452440B1 (en) Antenna arrangement apparatus, reception apparatus and method reducing a common-mode interference signal
TW201104953A (en) Antenna arrangement apparatus, reception apparatus and method reducing a common-mode interference signal
WO2010052205A1 (en) Antenna arrangement apparatus
TW201123749A (en) Enhanced power cable arrangement apparatus and method of reducing a common-mode interference signal
TW201029343A (en) Antenna input adaptor device, communications system, portable electronic communications apparatus and method of communicating a radio frequency signal