TW201032316A - Light emitting diodes with plural lumiphors - Google Patents

Light emitting diodes with plural lumiphors Download PDF

Info

Publication number
TW201032316A
TW201032316A TW098104856A TW98104856A TW201032316A TW 201032316 A TW201032316 A TW 201032316A TW 098104856 A TW098104856 A TW 098104856A TW 98104856 A TW98104856 A TW 98104856A TW 201032316 A TW201032316 A TW 201032316A
Authority
TW
Taiwan
Prior art keywords
light
layer
emitting
emitting diodes
composite
Prior art date
Application number
TW098104856A
Other languages
Chinese (zh)
Other versions
TWI458074B (en
Inventor
Wen-Huang Liu
Trung-Tri Doan
Chuong-Anh Tran
Original Assignee
Semi Photonics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semi Photonics Co Ltd filed Critical Semi Photonics Co Ltd
Priority to TW098104856A priority Critical patent/TWI458074B/en
Publication of TW201032316A publication Critical patent/TW201032316A/en
Application granted granted Critical
Publication of TWI458074B publication Critical patent/TWI458074B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Landscapes

  • Led Device Packages (AREA)

Abstract

A lighting device comprising first and second groups of light-emitting diodes which emit light having peak wavelength in ranges of 360 nm to 490 nm, and a first group of lumiphors which emit light have dominant wavelength in the range of from 500 nm to 580 nm, and a second group of lumiphors which emit light have dominant wavelength in the range of from 590 nm to 650 nm.

Description

201032316 六、發明說明: . 【發明所屬之技術領域】 本發明係關於發光裝置,特別是關於具有發光二極體的發光 ' 裝置。 【先前技術】 近幾年來,藍光發光二極體(LED)常用於與螢光材料相結合而 產生可發出白光的發光裝置。此發光裝置常用於LED顯示器、背 光源、父通號諸、照明開關、指示器等。而且,此種發光裝置因 於其中作為發光源的發光二極體(LED)僅需要較低的電流即可運 φ 作,故相較於習知的白熾燈或螢光燈,其可大幅度地減少能耗。 此外,相較於習知的白熾燈或螢光燈的使用壽命,以發光二極體 為發光源的發光裝置可具有較長的使用壽命。 圖1係習知使用藍光發光二極體與混合螢光材料相結合之發 光裝置的示意圖。在基板101上設置有一藍光發光二極體1〇2,並 在藍光發光二極體102上連接一輸入端子105,用以提供該發光裝 置發光的電能。在藍光發光二極體102覆蓋一層混合螢光材料塗 層1〇3(内含能受藍光發光二極體1〇2激發而發出紅光的螢光材料 與發出綠光的螢光材料)。最後再覆蓋上透明半球形封裝罩1〇4以 保護内部藍光發光二極體102與混合螢光材料塗層103免於水氣 • 的影響。然而,如此設計的發光裝置常因螢光材料塗層1〇3中受 藍光發光二極體激發的綠光會再次被可發出紅色螢光的材料所吸 收而導致綠光發光效率(即每瓦可發出的流明,lumenS/r^·)降低,從 而影響整個裝置的發光效率。 — 針對綠光會被可發出紅色螢光之材料吸收的問題,美國專利 第7250715號將可發出黃綠光的螢光材料與可發出紅色螢光的材 料分開且同時覆蓋於同一藍光發光二極體上。如圖2所示,藍光 • 發光二極體202置於具有反射内面的反射杯200中,且可出黃 綠光的螢光材料層204與可發出紅色螢光的材料層206毗鄰地覆 - 蓋於藍光發光二極體202上。藉由螢光材料層204與206分別受 201032316 激而發出黃綠光與紅光’而tr解決上述綠光被吸收的問題。然而, • 因為螢光材料層204與206係覆蓋於同一藍光發光二極體202上, 常因,限於螢光材料層204與206彼此的牽制而無法將發光效率 ' 提至最兩。換言之,若為提高螢光材料層204的發光效率而選擇 =藍光發光二極體’此藍光發光二極體不一定可使螢光材料層2〇6 得到最佳的發光效率,反之亦然。 【發明内容】 考慮上述情況後而構思出本發明,其中本發明的主題在於將 習知混合螢光材料塗層分成至少兩組具有不同螢光主波長(即不同 顏色)的螢光材料塗層,其可個別地受至少兩組藍光發光二極體中 ® 對應的發光二極體之激發而發出具有不同螢光主波長的螢光。除 了可解決上述綠光被吸收的問題之外,可依使用上的需求與目的 分另y選擇發光二極體與螢光材料塗層的最佳搭配而使發光裝置的 發光效率最大,且配合適當的電路設計、操作IC與電源供應,使 此至少兩組藍光發光二極體通以相同或不相同電流,而各別激發 對應的螢光材料塗層,造成在單一發光裝置中可針對使用環境、 需求、時間等發出不同色溫的白光。 本申請案將說明一種具有複合螢光體層之發光二極體的發光 裝置,該發光裝置包括可發射360nm至490nm範圍内之光波峰值 波長的複數組發光二極體、以及此複數組發光二極體上所覆蓋的 複數組螢光體層。此複數組發光二極體中的至少兩組彼此具有不 同,發光峰值波長。此複數組螢光體層中的至少一組螢光體層的 螢光主波長係在500nm至580m的範圍内,而複數組螢光體層中, 的至少另一組螢光體層的螢光主波長係在590nm至650nm的範圍 内。熟悉本技藝者將理解到,依據眾所周知且所接受的意義,『主 波指光譜的感覺色,即產生最相似於可見光光源所察覺之 $感的單-光波長;*『峰值波長』意指在光源之光譜功率分布 •=帶有最大功率的光譜線。本發明的發光裝置藉由混合該複數組 發鋪所發出的*與該複數崎紐層受發光二極體所激發 的螢光而發出白乂 201032316 隨後之舉例說明及隨附之相對應 本發明之其他目的及優點由 圖式當可更加明白。 【實施方式】 詳細將參考隨關式來說明 ,且該圖式亦視作該 眚姑中’為提供本發明之徹底了解而_1多的具體 ==分減tr者’明賴是…這些特 ^着太ΐ 卩可實行本發明。在其他例子中,為了避免 心肴t發明,而不進—步詳述熟知的處理操作。 ΙΪΓΐ述’在下述實施例與隨_式中,均以兩組發光 ί光體層分別代表發絲置内之發光二極體組的組 _氺# Μ且的組數。然而,在本發明之實施例與隨附圖式中, ί ίϊ Ϊ内Ϊ兩組發光二極體與兩組螢光體層應被視為舉例性而 二in言之’在本發明之實施例中,發光裝置内之發光二 體層可ί二或多組以上,且位於發光二極體組上之榮光 體層組的組數可為二或多組以上。 ·Γ-3Α係依據本發明之實施例的發光裝置的橫剖面視圖。數字 irm 具有反射内面的内凹結構(以下通稱為反射杯)。在反射杯 0内設置第一組發光二極體3〇2與第二組發光二極體3〇4。第一 ❹組發光二極體302與第二組發光二極體304係選自下述由ιη_ν族 兀素所構成的化合物:氮化鎵(GaN)、氮化鋁(Α1Ν)、氮化銦(ΙηΝ)、 氮^鎵鋁(AlGaN)、以及I化銦鎵(inGaN),但不限於此。第一組 發,二極體302與第二組發光二極體304所發射的峰值波長可個 別分佈在360nm至490nm的範圍内,且此兩組發光二極體3〇2與 304可具有不同的峰值波長。 、 ★接著,使輸入端子(未顯示)分別連接至第一纟且發光二極體3〇2 與第二組發光二極體304,以提供第一組發光二極體3〇2與第二組 • 發光二極體304發光所需的電能。在第一組發光二極體3〇2與第 二組發光二極體304上分別覆蓋第一組螢光體層306與第二^且螢 " 光體層308,其中第一組螢光體層306與第二組螢光體^ 3〇8的重 201032316 疊部分較佳係減至最少,最好係毗鄰接觸而不重疊^第一組 • 體層306與第二組螢光體層308可為單一螢光層或為多重. 層,且第一組螢光體層360與第二組螢光體層3〇8的表面可為^ ' 球形、凸形、或平面。參照圖3B與3C,第一組螢光體層'會 因為第一組發光二極體302所發出的光而受到激發,進而發出I 波長在500nm至580m之範圍内的螢光;而第二組螢光體層3〇8 會因為第二組發光二極體304所發出的光而受到激發,進而發 主波長在590nm至650nm之範圍内的螢光。 接著再次參考圖3A,吾人可設置透明層31〇,以包覆第一組 發光二極體302、第二組發光二極體3〇4、第一組螢光體層3〇6二 ❹ 以及第二組螢光體層308,使該等元件免於受到水氣的影^。透明 層310可包括下列至少其中之一:例如環氧樹脂(ep〇xy)、a矽氧樹 脂(silicone)、聚亞醯胺樹脂(polyimide)、丙烯酸樹脂(acryl)、聚碳 酸酯(PC,polycarbonate)、或聚對二曱苯(parylene)的透明高分^材 料;以及例如石英或玻璃的透明材料。而且,透明層31〇可為單 一層或多層結構。最後在透明層310上覆蓋擴散層312,而使^一 組發光二極體302及第二組發光二極體3〇4所發出的光與第一組 螢光體層306及第一組螢光體層308受激發所發出的螢光更均勻 地混合而產生白光。再者,透明層310的另一個功能為:可使自 透明層310與其上層物質(例如,擴散層312)之介面因折射係數不 同或受層間粒狀分子影響而反射的光,具有較大的機率射向反射 杯300的反射内面,而非直接被第一組螢光體層3〇6與第二組螢 光體層308吸收,從而提高發光效率。此外,反射杯3〇〇可將自 發光二極體所發出的光或在此發光二極體之上的結構介面中所反 射的光折向出光方向(如箭頭所示),從而增加發光效率。 圖4係依據本發明之實施例之另一發光裝置的橫剖面視圖。 與圖3A之發光裝置的不同點在於透明層與擴散層312之間增 • 加抗反射塗層(ARC ’ anti-reflective coating)311。吾人可使用旋轉 塗佈法(spin-coating)、浸潰塗覆法(dip-coating)、化學氣相沈積法、 熱蒸鑛法、以及電子束蒸鑛法(e-beam evaporation)至少1中之一來 6 201032316 ,成抗反射塗層311。抗反射淦層311可例如包括但不限於下列至 少其中之一:硝化纖維素(nitrocellulose)、纖維素酯(Cellulose esters)、醋酸纖維素(celM〇se、醋酸丁酸纖維素_ ‘ acetate butyrate)、鐵氟龍(Tefl〇n)、氣樹脂(Cyt〇p)、別〇2、別他、201032316 VI. Description of the Invention: 1. Field of the Invention The present invention relates to a light-emitting device, and more particularly to a light-emitting device having a light-emitting diode. [Prior Art] In recent years, blue light-emitting diodes (LEDs) have been commonly used in combination with fluorescent materials to produce light-emitting devices that emit white light. This illuminating device is commonly used for LED displays, backlights, parent switches, lighting switches, indicators, and the like. Moreover, such a light-emitting device can operate as a light-emitting diode (LED) as a light-emitting source, so that it can be operated in a relatively large manner compared with a conventional incandescent lamp or a fluorescent lamp. Reduce energy consumption. In addition, the illuminating device using the illuminating diode as the illuminating source can have a longer service life than the conventional incandescent lamp or fluorescent lamp. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a conventional light-emitting device using a blue light-emitting diode in combination with a mixed fluorescent material. A blue light emitting diode 1〇2 is disposed on the substrate 101, and an input terminal 105 is connected to the blue light emitting diode 102 for providing electrical energy for the light emitting device to emit light. The blue light-emitting diode 102 is covered with a layer of mixed fluorescent material coating 1 〇 3 (containing a fluorescent material which is excited by the blue light-emitting diode 1 〇 2 to emit red light and a fluorescent material which emits green light). Finally, a transparent hemispherical encapsulation cover 1〇4 is covered to protect the internal blue light-emitting diode 102 and the mixed phosphor coating 103 from moisture. However, the illuminating device thus designed is often that the green light excited by the blue light emitting diode in the fluorescent material coating 1 〇 3 is again absorbed by the material capable of emitting red fluorescent light, resulting in green light illuminating efficiency (ie, per watt). The lumens that can be emitted, lumenS/r^·) are reduced, thereby affecting the luminous efficiency of the entire device. — For the problem that green light is absorbed by a material that emits red fluorescence, U.S. Patent No. 7,250,715 separates a yellow-green fluorescent material from a red fluorescent material and simultaneously covers the same blue light-emitting diode. . As shown in FIG. 2, the blue light-emitting diode 202 is placed in the reflective cup 200 having the reflective inner surface, and the yellow-green light-emitting material layer 204 is overlaid adjacent to the material layer 206 which emits red fluorescent light. The blue light emitting diode 202 is on. The fluorescent material layers 204 and 206 are respectively excited by the 201032316 to emit yellow-green light and red light, and tr solves the problem that the green light is absorbed. However, because the phosphor layers 204 and 206 are overlaid on the same blue LED 202, it is often limited to the fact that the phosphor layers 204 and 206 are pinned to each other and the luminous efficiency cannot be raised to the maximum. In other words, if the light-emitting efficiency of the phosphor layer 204 is increased to select = blue light-emitting diodes, the blue light-emitting diodes do not necessarily give the fluorescent material layers 2 to 6 an optimum luminous efficiency, and vice versa. SUMMARY OF THE INVENTION The present invention has been conceived in view of the above circumstances, wherein the subject matter of the present invention is to divide a conventional mixed fluorescent material coating into at least two sets of fluorescent material coatings having different fluorescent main wavelengths (i.e., different colors). It can be excited by the light-emitting diodes corresponding to at least two of the two blue light-emitting diodes to emit fluorescent light having different fluorescent main wavelengths. In addition to solving the above problem of absorption of green light, the best combination of the light-emitting diode and the fluorescent material coating can be selected according to the needs and purposes of use, so that the luminous efficiency of the light-emitting device is maximized and matched. Appropriate circuit design, operating IC and power supply enable the at least two sets of blue light-emitting diodes to pass the same or different currents, respectively, and respectively stimulate the corresponding phosphor material coating, resulting in the use of a single light-emitting device Environment, demand, time, etc. emit white light of different color temperatures. The present application will describe a light-emitting device having a light-emitting diode of a composite phosphor layer, the light-emitting device comprising a complex array of light-emitting diodes capable of emitting a peak wavelength of light waves in the range of 360 nm to 490 nm, and the complex array of light-emitting diodes A complex array of phosphor layers covered by the body. At least two of the plurality of complex array light-emitting diodes have different illumination peak wavelengths. The fluorescent main wavelength of at least one of the phosphor layers in the complex array phosphor layer is in the range of 500 nm to 580 m, and the fluorescent main wavelength of the at least another set of phosphor layers in the complex array phosphor layer In the range of 590 nm to 650 nm. Those skilled in the art will appreciate that, according to well-known and accepted meanings, "the dominant wave refers to the perceived color of the spectrum, i.e., produces a single-light wavelength that is most similar to the perceived sensitivity of the visible light source; * "peak wavelength" means Spectral power distribution at the source • = Spectral line with maximum power. The light-emitting device of the present invention emits white light by mixing the light emitted by the complex array and the fluorescent light excited by the light-emitting diode. The subsequent description and accompanying drawings of the present invention are provided. Other purposes and advantages will be more apparent from the drawings. [Embodiment] The description will be made in detail with reference to the closing mode, and the drawing is also regarded as the specificity of the present invention to provide a thorough understanding of the present invention. The present invention can be practiced by the present invention. In other instances, well-known processing operations are not described in detail in order to avoid inspiration. Describing 'In the following examples and the following formulas, the two sets of illuminating layers respectively represent the group number of the group of illuminating diode groups in the hairline set. However, in the embodiments of the present invention and the accompanying drawings, the two sets of light-emitting diodes and two sets of phosphor layers should be regarded as exemplified and in the following embodiments. The light-emitting two-layer layer in the light-emitting device may be two or more groups, and the number of groups of the glory layer groups on the light-emitting diode group may be two or more groups. Γ-3Α is a cross-sectional view of a light-emitting device according to an embodiment of the present invention. The digital irm has a concave structure that reflects the inner surface (hereinafter referred to as a reflective cup). A first group of light-emitting diodes 3〇2 and a second group of light-emitting diodes 3〇4 are disposed in the reflector cup 0. The first group of light emitting diodes 302 and the second group of light emitting diodes 304 are selected from the group consisting of the following compounds consisting of: GaN, GaN, and indium nitride. (ΙηΝ), nitrogen gallium aluminum (AlGaN), and indium gallium nitride (inGaN), but are not limited thereto. The peak wavelengths emitted by the first group of emitters 302 and the second group of LEDs 304 may be individually distributed in the range of 360 nm to 490 nm, and the two sets of LEDs 3〇2 and 304 may be different. Peak wavelength. And then, the input terminals (not shown) are respectively connected to the first 纟 and the LEDs 〇2 and the second group of LEDs 304 to provide the first group of LEDs 〇2 and 2 Group • The energy required to illuminate the LEDs 304. The first group of phosphor layers 306 and the second group of light-emitting diodes 304 respectively cover the first group of phosphor layers 306 and the second layer and the phosphor layer 308, wherein the first group of phosphor layers 306 The stack portion of the 201003316 with the second set of phosphors 3 3 is preferably minimized, preferably adjacent to each other without overlapping ^ the first set of body layers 306 and the second set of phosphor layers 308 may be a single firefly The light layer may be a multiple layer, and the surfaces of the first set of phosphor layers 360 and the second set of phosphor layers 3〇8 may be spherical, convex, or planar. 3B and 3C, the first set of phosphor layers 'is excited by the light emitted by the first group of LEDs 302, thereby emitting fluorescence having an I wavelength in the range of 500 nm to 580 m; and the second group The phosphor layer 3〇8 is excited by the light emitted by the second group of light-emitting diodes 304, and emits fluorescence having a wavelength in the range of 590 nm to 650 nm. Referring again to FIG. 3A, a transparent layer 31〇 may be disposed to cover the first group of LEDs 302, the second group of LEDs 3〇4, the first group of phosphor layers 3〇6, and the first layer. Two sets of phosphor layers 308 protect the elements from moisture. The transparent layer 310 may include at least one of the following: for example, epoxy resin (ep〇xy), a silicone resin, polyimide, acryl, polycarbonate (PC, Polycarbonate), or a transparent high-concentration material of parylene; and a transparent material such as quartz or glass. Moreover, the transparent layer 31 can be a single layer or a multilayer structure. Finally, the transparent layer 310 is covered with the diffusion layer 312, and the light emitted by the group of the LEDs 302 and the second group of LEDs 〇4 and the first group of phosphor layers 306 and the first group of phosphors are The body layer 308 is more uniformly mixed by the excitation of the fluorescent light to produce white light. Furthermore, another function of the transparent layer 310 is to allow the interface between the transparent layer 310 and the upper layer material (for example, the diffusion layer 312) to be reflected by the refractive index differently or affected by the interlayer granular molecules, and has a larger The probability is directed toward the reflective inner surface of the reflector cup 300 rather than being directly absorbed by the first set of phosphor layers 3〇6 and the second set of phosphor layers 308, thereby increasing luminous efficiency. In addition, the reflective cup 3〇〇 can deflect the light emitted by the self-luminous diode or the light reflected in the structural interface above the light-emitting diode to the light-emitting direction (as indicated by the arrow), thereby increasing the luminous efficiency. . 4 is a cross-sectional view of another light emitting device in accordance with an embodiment of the present invention. The difference from the light-emitting device of Fig. 3A is that an anti-reflective coating (311) is added between the transparent layer and the diffusion layer 312. We can use spin-coating, dip-coating, chemical vapor deposition, hot-steaming, and e-beam evaporation to at least 1. One comes to 6 201032316, which becomes an anti-reflective coating 311. The anti-reflective layer 311 may include, for example but not limited to, at least one of the following: nitrocellulose, Cellulose esters, cellulose acetate (celM〇se, cellulose acetate butyrate_' acetate butyrate) , Teflon (Tefl〇n), gas resin (Cyt〇p), don't worry, don't,

SlC>xNy、Ti〇2、Mg〇、或MgF2的透明層。抗反射塗層311可用以 使^射杯300内所產生的光(包括第一組發光二極體3〇2及第二組 發光二極體304戶斤發出的光、第-組螢光體層306及第二組螢光 體層308受激發所發出的螢光、以及自反射杯3〇〇所反射的光)通 過,且使擴散層312中受到層間粒狀分子影響而散射的光能夠在 擴散層f 12與抗反射塗層311之間的介面上再次折回出光方向(如 ❹ 箭頭所示)’從而增加發光裝置的發光效率。 如圖5所示’也可以將圖3A的透明層310與擴散層312整合 成,有包覆作用的擴散層314’以達到保護反射杯3〇〇内的第一組 發光^極體302、第二組發光二極體3〇4、第一組螢光體層3〇6、 以,第二組螢光體層3〇8的作用,同時將第一組發光二極體3〇2 及第二組發光二極體304所發出的光與第一組螢光體層3〇6及第 一組螢光體層308受激發所發出的螢光更均勻地混合而產生白光。 吾人應瞭解可依使用上的需求與目的,在本發明之發光裝置 的複數組發光二極體之每一組中設置一或多個發光二極體個體 (unit) 〇換言之,在此種複數組發光二極體之每一組中可各自具有 一個以上的發光二極體個體。圖6八係一橫剖面視圖,其顯示第一 與第二組發光二極體依據本發明之實施例各具有兩個 二極體 個體。圖6B係圖6A所述結構的俯視圖。如圖6A所示,在具有 反射内面的内凹結構(以下通稱為反射杯)4〇〇内設置第一組發光二 極體402與第二組發光二極體4〇4。第一組發光二極體4〇2與第二 組發光二極體404係選自下述由ni-V族元素所構成的化合物:氮 化鎵(GaN)、氮化鋁(A1N)、氮化銦(inN)、氮化鎵鋁(A1GaN)、以及 - 氮化銦鎵(InGaN),但不限於此。如圖6B所示,第一組發光二極 體402包括兩個發光二極體個體4〇2a與4〇2b;而第二組發光二極 • 體404包括兩個發光二極體個體404a與404b。第一組發光二極體 201032316 S與組發光二極體—所發射的峰值波長可個別分佈在 f腿至腿的範圍内,且此兩組發光二極體4〇2與4〇4可具 ^同的峰值波長。吾人應注意到,雖然在圖6八與紐中,發光 裝置内的从發光二極體僅顯示兩個發光二極體個體,但事實上 二不=此:即f組,光二極體可包括—或多個發光二極體個 卜’各發光二極體内的複數個發光二極體個體各個尺寸 可為相同,也可為不同。 Μ接f 輸入端子(未顯示)分別連接至第—組發光二極體_ ⑩ 、一、’且發光一極體404 ’以提供第一組發光二極體402與第二組 發光二極體404發光所需的電能。在第一組發光二極體搬與第 ❿ ΐίΐ光二極體404上分別覆蓋第一組螢光體層4G6與第二组螢 光體層408,其中第一組螢光體層概與第二組榮光體層的 疊部分較佳係減至最少,最好係毗鄰接觸而不重疊。第一組 f層406與第二組螢光體層可為單一螢光層或為多重勞光 ^且第-組螢光體層偏與第二組螢光體層柳的表面可為半 =、凸形、或平面。再者’第一組螢光體層槪與第二組榮光 體層撕也可依需求或目的而覆蓋數量不等的發光二極體個體。 例如,可依需求或目的使第一組發光二極體4〇2僅包含數個發光 二極體個體’且第-組螢光體層覆蓋其上;而使第二組發光 二極體404包含數量不等於第一組發光二極體4〇2中發光二極體 個體之數量的發光二極體個體,且第二組螢光體 參照圖犯與3C,第-組榮光體層406會因為 4〇2所發出的光而受到激發,進而發出主波長在5〇〇nm至58〇瓜之 範圍内的螢光;而第二組螢光體層4〇8會因為第二組發光二極體 4〇4所發出的光而受到激發,進而發出主波長在59〇nm至65〇nm 之範同内的螢光。 接著,再次參考圖6A,吾人可設置透明層41〇,以覆蓋第一 組發光二極體402、第二組發光二極體404、第一組螢光體層4〇6、 以及第二組螢光體層408 ’使該等元件免於受到水氣的影響。透明 層410可包括下列至少其中之一:例如環氧樹脂、矽氧樹脂、聚 201032316 · 亞醯胺樹脂、丙烯酸樹脂、糸碳酸酯、或聚對二甲笨的透明高分 子材料;以及例如石英或玻璃的透明材料。而且,透明層41〇可 為單一層或多層結構。最後在透明層410上覆蓋擴散層412,而使 - 第一組發光二極體402及第二組發光二極體404所發出的光與第 一組螢光體層406及第二組螢光體層408受激發所發出的路本亩 均勻地混合而產生白光。再者,透明層410的另一個功=為:可 使自透明層410與其上層物質(例如,擴散層412)之介面因折射係 數不同或受層間粒狀分子影響而反射的光,具有較大的機率射向 反射杯400的反射内面,而非直接被第一組螢光體層與第二 組螢光體層408吸收,從而提高發光效率。此外,反射杯4〇〇 ^ φ 將自發光二極體所發出的光或在此發光二極體之上的結構介面中 所反射的光折向出光方向(如箭頭所示),從而增加發光效率。 此外,可依使用目的或需求,而以串聯或並聯方式連接發光 裝置内的複數組發光二極體,且可配合適當的電路設計、操作IC、 以及電源供應,以相同或不同的操作電流,同時或分別對此複數 組發光二極體進行操作。在各組發光二極體中的複數個發光二極 體個體也可依使用目的或需求以串聯或並聯方式相連接,及配合 適當的電路設計、操作1C、以及電源供應,以相同或不同的操^ 電流’同時或分別對此複數個發光二極體個體進行操作。 本發明也可應用於表面黏附型發光二極體的發光裝置。圖7A ❹ 係依據本發明之實施例在一基底表面上黏置發光二極體之發光裝 置的橫剖面視圖。在基底500上黏置第一組發光二極體502與第 二組發光二極體504,其中此基底可為半導體、金屬、陶瓷 (ceramic) ’ 或金屬基複合材料(metal matrix composites, MMCs ); 而第一組發光二極體502與第二組發光二極體504係選自下述由 ιπ-ν族元素所構成的化合物:氮化鎵(GaN)、氮化鋁(A1N)、氮化 銦(InN)、氮化鎵鋁(AlGaN)、以及氮化銦鎵(inGaN),但不限於此。 在基底500與第一組發光二極體502以及與第二組發光二極體5〇4 之間的黏置處設有一反射面(未顯示),如上文所述,此反射面可將 - 自發光二極體所發出的光或在發光二極體之上的結構介面中所反 9 201032316 „折向出光方向(如箭頭所示),從而增加發光效率。第一組發 * 體502與第二組發光二極體5〇4所發射的峰值波長可分佈 ^6〇nm至490nm的範圍内,且此兩組發光二極體5〇2盥5〇4可 -的峰值波長。如上文所述,為上的需求與目的,第 、·且發光一極體502與第二組發光二極體5〇4可各自具有一個以 栖體個體,且第一組發光二極體502所具有的發光二 不一定等於第二組發光二極體5〇42戶斤具有的發光二 二=體數量。此外,各組發光二極體内之複數個發光二極體個 體的各個尺寸可為相同,也可為不同。 ❹ 接著,使輸入端子501分別連接至第一組發光二極體5〇2盥 第二組發光二極體5〇4’以提供第一組發光二極體5〇2與 名务 光二極體504發光所需的電能。在第一組發光二極體5〇2鱼第二 2體5G4的上方設置透明層5G6,以覆蓋第—組發^二極 與第二組發光二極體5G4,而使其免於受到水氣的影響。透 =層篤可包括下列至少其中之一:例如環氧樹脂、石夕氧樹脂、 f亞醯胺樹脂、丙烯酸樹脂、聚碳酸酯、或聚對二甲苯的透明高 分子材料;以及例如玻璃或石英的透明材料。此外,透明層 可為單一層或多層結構,且透明層506的外型可為半球形、凸形、 錐形,或為菲涅耳透鏡(Fresnel lens)形,並依使用上的需求與目 的,擇其一適合外型使第一組發光二極體5〇2與此第二組^二 極體504所發出的光能得到最佳萃取。 ’ 一 接著,在透明層506上之相對於第一組發光二極體5〇2與 一組發光二極體504的位置處,使第一組螢光體層5〇8與 螢光體層510分別覆蓋第一組發光二極體5〇2與第二組‘炻 體504 ’其中第一組螢光體層508與第二組螢光體層510重疊;^ 較佳係減至最少,最好係毗鄰接觸而不重疊。再者,透明層5〇6 的另一個功能為:可使自透明層506與其上層物質(例如,第一 ,光體層508以及第二組螢光體層51〇)之介面因折射係數不同或 爻層間粒狀分子影響而反射的光,具有較大的機率射向基底5⑻ 的反射面,而非直接被第一組發光二極體502與第二組發光二極 201032316 體504吸收,從而提尚發光效率。 - 如上文所述,第一組螢光體層508與第二組螢光體層51〇 7 依需求或目的而覆蓋數量不等的發光二極體個體。參照圖: 3C ’第-組螢光體層508會因為第一組發光二極體5〇 的 光而受到激發,進而發出主波長在5GGnm至·m之範圍内= 光,而第二組螢光體層510會因為第二組發光二極體5〇 2 的光而受到激發,進而發出主波長在59〇nm至65〇nm 螢光。第-組螢光體層508與第二組螢光體層51〇可為單,= 鲁 層或為多重螢紐,且第-組螢光體層5()8與第二組榮光體^ 的表面可為半球形、凸形,或平面。 巧,設置透明封裝層516,以覆蓋第—組發光二極體 第^發光二極體5。4、透明層、第—組螢光體層5。8 組螢光體層51G、以及輸人端子5()1,而使第—_光二 ,- 第二組發光二極體5。4、透明層5。6、第—組榮光鑫二、二2一、 Ϊί 3ί,、以及輸入端子5〇1免於受到水氣的影響 ^月封裝層516的形狀可依使用上的需求與目的而包括 或為菲科透鏡形。射之,吾人可設計透明封f Γ到/大^且榮光體層508、以及第二組榮光體層510所發出的ί S I,提高發光裝置的發光效率。透明封裝層516 ΐ 中之—:例如環氧樹脂、魏樹脂、聚亞醜胺樹 月曰、丙烯酸樹脂、聚碳酸_、或聚對二甲苯的透明高分 樹 石英的透明材料。而且,透明封裝層516可為單 7ΑΛ3ίΓΕ係橫剖面視圖,顯示依據本發明之實施例以圖 7Α所、1·、ίί置結構為基礎的衍生型發光I置。在圖7Β中,於圖 ί4崎光體層’及第二組螢光體層51G上先行覆ί ϋ以透明封裝層516覆蓋第—組發光二極體⑽、第 ϊΠΐ 4、透明層506、第一組螢光體層,、第二: 螢先體層510、擴散層514、以及輸入端子5(η,而使第—g光 201032316 二極體502、第二組發光二極體504、透明層506、第一組螢光體 層508、第二組螢光體層510、擴散層514、以及輸入端子501免 於受到水氣的影響。擴散層512的功用為:使第一組發光二極體 ' 502及第二組發光二極體5〇4所發出的光與第一姐螢光體層5〇8 及第二組螢光體層510受激發所發出的螢光更均勻地混合而產生 白光。 在圖7C中,顯示在覆蓋透明層506之後與覆蓋第一組螢光體 層508及第二組榮光體層51〇之前,可以旋轉塗布法、浸潰塗覆 法、化學氣相沈積法、熱蒸鍵法、以及電子束蒸鑛法至少其中之 一’在透明層506上形成抗反射塗層505。抗反射塗層505可例如 φ 包括但不限於下列至少其中之一:硝化纖維素、纖維素酯、醋酸 纖維素、醋酸丁酸纖維素、鐵氟龍、I樹脂、Si〇2、SiNx、si〇xNy、 Ti〇2、Mg〇 ’或MgF2的透明層。抗反射塗層505可用以使其覆蓋 區域内所發出的光(包括第一組發光二極體5〇2及第二組發光二極 體504所發出的光,以及自具有反射面之基底5〇〇反射的光)通 過,;且使第一組螢光體層508與第二組螢光體層51〇中受到層 間粒狀分子影響而散射的光能夠在第一組螢光體層5〇8及第二組 螢光#體層5_10與抗反射塗層505之間的介面上再次折回出光方向 (如箭頭所示)’從而增加發光裝置的發光效率。 圖7D描述在上文所述之第一組螢光體層508及第二組螢光體 • 層510與擴散層514之間覆蓋透明層512。透明層512除了可增強 保護第一組螢光體層508、第二組螢光體層510、以及該兩組^光 體層底下之結構免於水氣的影響之外,也可使自透明層512與其 上層物質(例如’擴散層514)之介面因折射係數不同或受層間粒狀 分子影響而反射的光,具有較大的機率射向基底5〇〇的反射面, 而非芒接被第-組螢光體層5。8與第二組螢光體層別吸收,從 ,提高發光效率。透明層512可包括下列至少其中之_ :例如環 • 氧樹脂、石夕氧樹脂、聚亞醯胺樹脂、丙烯酸樹脂、聚碳酸醋、或 聚對-甲笨的透明而分子材料;以及例如玻璃或石英的透明材 • 料。此外,透明層512可為單一層或多層結構,且透明層512的 12 201032316 可為半球形、凸形、錐形,搞雜耳透娜,並依使用上 與目的,擇其一適合外型使第一組發光二極體502、第二組 發光二極體504、第一組螢光體層508、以及第二組螢光體層510 所發出的光能得到最佳萃取。 圖7E插述在上文所述之透明層5〇6與第一組螢光體層5〇8及 ,一組螢光體層510之間形成空心層5〇7。空心層5〇7可包含空 氣二基於可靠度的考量,空心層5〇7更可包含]^2、Ar、或其它惰 陡=體。空心層507的厚度約在〇 〇1 mm至1〇 mm的範圍内。由 於空心層507的折射率約為1(因為空氣、N2、Ar,或其它惰性氣 體的折射率約為丨),而螢光體層的折射率約為1.5,故熟悉本技藝 彆 者應可理解’當光自空心層507進入第-組螢光體層508與第二 組螢光體層510時不會發生全反射。因此,空心層507的作用在 於:使第一組發光二極體502及第二組發光二極體504所發出的 光實質完全穿過空心層507與第一組螢光體層508及第二組螢光 體層510之間的介面。另一方面,自第一組螢光體層5〇8及第二 組螢光體層510散射回來的光也會因為空心層507與螢光體層之 間的折射率差異而易形成全反射,進而減少直接被第一組螢光體 層508、第二組螢光體層510與透明層506吸收的機率,從而提昇 發光裝置的整體發光效率。 魯 熟悉本技藝者當可理解圖7B-圖7E所述之空心層507、透明 層512、擴散層514,可依使用上的需求與目的而設置或省略。換 言之,不應把具體說明所描述的順序理解為暗示這些結構係必定 同時存在於本發明之發光裝置。 圖8A與8B係分別顯示本發明與習知使用藍光發光二極體及 混合螢光材料(YAG或矽酸鹽(Silicate)的螢光體層)相結合之發光 裝置的光譜及演色性指數(CRI)比較。藉由本發明的組態而讓藍光 (360_490nm)、綠色螢光(500-580nm)、以及紅色螢光(59〇-65〇nm) • 得到最佳出光’從而獲得較習知發光裝置更優化的光譜及演色性 指數(CRI)。 、 再者,參照表1,假設皆使用兩組1公釐見方的GaN發光二 13 201032316 im,主 極體(具有不同的峰值波長)、綠光螢光材料(峰值波長=521niu + 波長=534nm)、以及紅光螢光材料(峰值波長= 635nm,主波長 =611nm) ’則本發明在亮度上較先前技藝高出約26 7%。其中,本 • 發明之組態係如上文所述之,即以綠光螢光材料的螢光體層覆蓋 照圖1) 表1 樣式 色溫(CCT) 演色性指 數(CRI) 總通量 (lumens) 增亮比 (%) 本發明 5500Κ 92.1 91.3 126.7 先刖技藝(帶有混合螢 光材料的螢光體層) 5500Κ 91.2 72.1 100 ’ 〜丄入<貝他例所挽到或隨附之圖式中的第一組 此兩組1公釐見方的GaN發光二極體中的一組,與以紅光螢光材 料的螢光體層覆蓋此兩組】公釐見方的GaN發光二極體中的另一‘ 組(參照圖7A);而先前技藝係以綠光螢光材料與紅光螢光材料混 合成螢光體層後,覆蓋於此兩組1公釐見方的GaN發光二極體(參 昭圃1、。 9 極體、第二組發*二極體、第―組螢光體層以及第二組螢 層彼此間無_對侧係,即第—_紐料—定非得與 -i 二極體相配合,而第二組螢光體層也不一定非得與第 二且極體相配合。故具體說明中所描述及隨附之圖式所標 極體組(第—組發光二極體與第二組發光二極體)與螢 (第—組螢光體層與第二域光體序號僅用 性目的且不應理解為限制性。 發明已藉由數個實關敘述,應轉熟悉本技藝者研 及研細式時可在其中做各種錢·、增加、變更 因此,意味著本發明包含落入本發明的真實精神及 關内之所有如替代、增加、變更及等價動作。 【圖式簡單說明】 ^將可藉由上述詳細說明及隨附之相對應圖式而容易理 解’且相_參缝字代餘_結構元件。 圖1係習知使雜光發光二嫌無錢光材料相結合之發 201032316 光裝置的示意圖。 、圖2係習知使用藍光發光二極體與黃綠色螢光塗料層及紅色 螢光塗料層相結合之發光裝置的示意圖。 圖3A係依據本發明之實施例的發光裝置的橫剖面視圖。 圖3B與3C係依據本發明之實施例的分別具有綠色螢光體層 與具有紅色螢光體層之藍光LED的光譜。 圖4係依據本發明之實施例之另一發光裝置的橫剖面視圖。 圖5係依據本發明之實施例之結合擴散層與透明層之另一發 光裝置的橫剖面視圖。 圖6A係一橫剖面視圖,顯示第一與第二組發光二極體依據本 φ 發明之實施例各具有兩個發光二極體個體。 圖6B係圖6A所述結構的俯視圖。 圖7A係依據本發明之實施例在基底表面上黏置 極體 之發光裝置的橫剖面視圖。 圖7B至圖7E係橫剖面視圖,顯示依據本發明之實施例以圖 7A之發光裝置結構為基礎的衍生型發光裝置。 圖8A與8B分別係本發明與習知商用發光裝置(使用γΑ(5或 矽酸鹽的螢光體層)的光譜及演色性指數比較。 【主要元件符號說明】 101 基板 102 藍光發光二極體 103 勞光材料塗層 104 透明半球形封裝罩 105 輸入端子 200 反射杯 202 藍光發光二極體 204 螢光材料層 206 螢光材料層 300 反射杯 302 第一組發光二極體 15 201032316A transparent layer of SlC>xNy, Ti〇2, Mg〇, or MgF2. The anti-reflective coating 311 can be used to make the light generated in the cup 300 (including the light emitted by the first group of light-emitting diodes 3〇2 and the second group of light-emitting diodes 304, the first group of phosphor layers). The 306 and the second set of phosphor layers 308 are excited by the fluorescent light emitted by the excitation and the light reflected from the reflective cup 3, and the light scattered by the interlayer granular molecules in the diffusion layer 312 can be diffused. The interface between the layer f 12 and the anti-reflective coating 311 is again folded back into the light-emitting direction (as indicated by the arrow ' arrow) to increase the luminous efficiency of the light-emitting device. As shown in FIG. 5, the transparent layer 310 of FIG. 3A and the diffusion layer 312 may be integrated into a coated diffusion layer 314' to protect the first group of light-emitting bodies 302 in the reflective cup 3? The second group of light-emitting diodes 3〇4, the first group of phosphor layers 3〇6, and the second group of phosphor layers 3〇8, and the first group of light-emitting diodes 3〇2 and the second The light emitted by the group of LEDs 304 is more uniformly mixed with the phosphors emitted by the first set of phosphor layers 3〇6 and the first group of phosphor layers 308 to produce white light. It should be understood that one or more light-emitting diode units may be disposed in each group of the complex array of light-emitting diodes of the light-emitting device of the present invention in accordance with the needs and purposes of use, in other words, in such a plurality Each of the group of light-emitting diodes may each have more than one individual of the light-emitting diodes. Figure 6 is a octave cross-sectional view showing the first and second sets of light emitting diodes each having two diode bodies in accordance with an embodiment of the present invention. Figure 6B is a top plan view of the structure of Figure 6A. As shown in Fig. 6A, a first group of light-emitting diodes 402 and a second group of light-emitting diodes 4 are provided in a concave structure (hereinafter referred to as a reflecting cup) having a reflecting inner surface. The first group of light-emitting diodes 4〇2 and the second group of light-emitting diodes 404 are selected from the following compounds consisting of ni-V elements: gallium nitride (GaN), aluminum nitride (A1N), nitrogen Indium (inN), aluminum gallium nitride (A1GaN), and - indium gallium nitride (InGaN), but are not limited thereto. As shown in FIG. 6B, the first group of light-emitting diodes 402 includes two light-emitting diode bodies 4〇2a and 4〇2b; and the second group of light-emitting diodes 404 includes two light-emitting diode bodies 404a and 404b. The first group of light-emitting diodes 201032316 S and the group of light-emitting diodes - the peak wavelengths emitted can be individually distributed in the range of the legs to the legs, and the two sets of light-emitting diodes 4 〇 2 and 4 〇 4 can have ^ Same peak wavelength. It should be noted that although in Figure 8 and New Zealand, the light-emitting diodes in the light-emitting device only display two light-emitting diodes, but in fact, the two are not: this is the f-group, and the photodiode can include — or a plurality of light-emitting diodes—the plurality of light-emitting diodes in each of the light-emitting diodes may have the same size or different sizes. The input terminals (not shown) are respectively connected to the first group of light emitting diodes _ 10 , one, and the light emitting body 404 ′ to provide the first group of light emitting diodes 402 and the second group of light emitting diodes 404 illuminates the required electrical energy. The first group of phosphor layers 4G6 and the second group of phosphor layers 408 are respectively covered on the first group of LEDs and the second layer of photodiodes 404, wherein the first group of phosphor layers is substantially associated with the second group of phosphor layers The stack portions are preferably minimized, preferably adjacent to each other without overlapping. The first group of f layers 406 and the second group of phosphor layers may be a single phosphor layer or a multi-layered light beam, and the surface of the first group of phosphor layers and the second group of phosphor layers may have a half =, convex shape Or plane. Furthermore, the first group of phosphor layers and the second group of glory layers can also cover a plurality of light-emitting diode bodies according to needs or purposes. For example, the first group of light-emitting diodes 4〇2 may only include a plurality of light-emitting diode bodies' and the first group of phosphor layers are covered thereon according to requirements or purposes; and the second group of light-emitting diodes 404 are included The number of light-emitting diodes is not equal to the number of light-emitting diodes in the first group of light-emitting diodes 4〇2, and the second set of phosphors is referenced to 3C, and the first-group glory layer 406 is due to 4 The light emitted by 〇2 is excited to emit fluorescence having a dominant wavelength in the range of 5 〇〇 nm to 58 〇 瓜; and the second group of phosphor layers 4 〇 8 is due to the second group of luminescent diodes 4 The light emitted by 〇4 is excited to emit fluorescence with a dominant wavelength ranging from 59 〇 nm to 65 〇 nm. Next, referring again to FIG. 6A, a transparent layer 41A may be disposed to cover the first group of LEDs 402, the second group of LEDs 404, the first group of phosphor layers 4〇6, and the second group of The light body layer 408' protects the components from moisture. The transparent layer 410 may include at least one of the following: for example, an epoxy resin, a enamel resin, a poly phthalocyanine resin, an acrylic resin, a phthalic carbonate, or a polyparaphenyl phthalate transparent polymer material; and, for example, quartz Or a transparent material for glass. Moreover, the transparent layer 41 can be a single layer or a multilayer structure. Finally, the transparent layer 410 is covered with the diffusion layer 412, and the light emitted by the first group of the LEDs 402 and the second group of the LEDs 404 is combined with the first group of phosphor layers 406 and the second group of phosphor layers. The roads that are excited by the 408 are evenly mixed to produce white light. Furthermore, another function of the transparent layer 410 is that the light from the interface between the transparent layer 410 and the upper layer material (for example, the diffusion layer 412) may be reflected by the difference in refractive index or by the intergranular granular molecules. The probability of being directed toward the reflective inner surface of the reflective cup 400 is not directly absorbed by the first set of phosphor layers and the second set of phosphor layers 408, thereby increasing luminous efficiency. In addition, the reflective cup 4〇〇^ φ folds the light emitted from the light emitting diode or the light reflected in the structural interface above the light emitting diode toward the light emitting direction (as indicated by an arrow), thereby increasing the light emission. effectiveness. In addition, the multi-array light-emitting diodes in the light-emitting device can be connected in series or in parallel according to the purpose or demand, and can be matched with appropriate circuit design, operation IC, and power supply, with the same or different operating currents. The complex array of light-emitting diodes is operated simultaneously or separately. The plurality of light-emitting diodes in each group of light-emitting diodes may also be connected in series or in parallel according to the purpose or need of use, and with appropriate circuit design, operation 1C, and power supply, the same or different The operation current 'operates simultaneously or separately for the plurality of individual light-emitting diodes. The present invention is also applicable to a light-emitting device of a surface-adhesive light-emitting diode. Figure 7A is a cross-sectional view of a light-emitting device with a light-emitting diode attached to a substrate surface in accordance with an embodiment of the present invention. A first group of light emitting diodes 502 and a second group of light emitting diodes 504 are adhered to the substrate 500, wherein the substrate can be a semiconductor, a metal, a ceramic or a metal matrix composites (MMCs). The first group of light-emitting diodes 502 and the second group of light-emitting diodes 504 are selected from the following compounds consisting of elements of the ιπ-ν group: gallium nitride (GaN), aluminum nitride (A1N), nitrogen Indium (InN), aluminum gallium nitride (AlGaN), and indium gallium nitride (inGaN), but are not limited thereto. A reflective surface (not shown) is disposed between the substrate 500 and the first group of light emitting diodes 502 and the second group of light emitting diodes 5?4. As described above, the reflecting surface can be - The light emitted by the self-luminous diode or the structural interface above the light-emitting diode is reversed by the direction of the light-emitting direction (as indicated by the arrow), thereby increasing the luminous efficiency. The first set of body 502 and The peak wavelengths emitted by the second group of light-emitting diodes 5〇4 can be distributed in the range of 6 〇 nm to 490 nm, and the peak wavelengths of the two sets of light-emitting diodes 5〇2盥5〇4 can be as above. For the above requirements and purposes, the first and second light-emitting diodes 502 and the second group of light-emitting diodes 5 to 4 may each have an individual, and the first group of light-emitting diodes 502 have The illuminating two is not necessarily equal to the number of illuminating dioxins of the second group of light-emitting diodes 5 〇 42 jin. In addition, the individual illuminating diodes of each group of illuminating diodes may have the same size. It can also be different. ❹ Next, the input terminals 501 are respectively connected to the first group of light-emitting diodes 5〇2盥Two sets of light-emitting diodes 5〇4' provide the electric energy required for the first group of light-emitting diodes 5〇2 and the light-emitting diodes 504 to emit light. In the first group of light-emitting diodes 5〇2 fish second 2 A transparent layer 5G6 is disposed above the body 5G4 to cover the first group of the second electrode and the second group of the light emitting diodes 5G4, so as to be protected from moisture. The layer may include at least one of the following : a transparent polymer material such as an epoxy resin, an anthraquinone resin, a f-liminamide resin, an acrylic resin, a polycarbonate, or a parylene; and a transparent material such as glass or quartz. Further, the transparent layer may be A single layer or a multi-layer structure, and the transparent layer 506 may have a hemispherical shape, a convex shape, a conical shape, or a Fresnel lens shape, and may be adapted to the needs and purposes of use. The light energy of the first group of light-emitting diodes 5〇2 and the second group of diodes 504 is optimally extracted. 'One then, on the transparent layer 506 relative to the first group of light-emitting diodes At a position of the body 5〇2 and a group of the light-emitting diodes 504, the first group of phosphor layers 5〇8 and the phosphor 510 respectively covering the first group of light-emitting diodes 5〇2 and the second group of 'body 504', wherein the first group of phosphor layers 508 and the second group of phosphor layers 510 overlap; ^ is preferably minimized, preferably The other functions of the transparent layer 5〇6 are: the self-transparent layer 506 and its upper layer material (for example, the first, the light body layer 508 and the second group of phosphor layers 51) The light reflected by the interface due to the difference of the refractive index or the influence of the granular molecules between the layers has a greater probability of being directed toward the reflective surface of the substrate 5 (8) instead of being directly used by the first group of light-emitting diodes 502 and the second group of light-emitting diodes 201032316 Body 504 absorbs, thereby enhancing luminous efficiency. - As described above, the first set of phosphor layers 508 and the second set of phosphor layers 51A 7 cover a varying number of light-emitting diode bodies as needed or intended. Referring to the figure: 3C 'the first group of phosphor layers 508 will be excited by the light of the first group of light-emitting diodes 5 ,, and then the main wavelength is in the range of 5 GGnm to · m = light, and the second group of fluorescent light The bulk layer 510 is excited by the light of the second group of light-emitting diodes 5〇2, thereby emitting fluorescence having a dominant wavelength of 59 〇 nm to 65 〇 nm. The first set of phosphor layers 508 and the second set of phosphor layers 51 can be single, = layer or multiple layers, and the surface of the first group of phosphor layers 5 () 8 and the second group of glomerates can be It is hemispherical, convex, or flat. The transparent encapsulation layer 516 is provided to cover the first group of light-emitting diodes, the light-emitting diodes 5. 4, the transparent layer, the first group of phosphor layers 5. The 8 sets of phosphor layers 51G, and the input terminal 5 () 1, and the first - _ light two, - the second group of light-emitting diodes 5.4, the transparent layer 5.6, the first group of glory Xin 2, 2 2, Ϊί 3,, and the input terminal 5 〇 1 Except for the influence of moisture The shape of the monthly encapsulation layer 516 may include or be a Fico lens shape depending on the needs and purposes of use. Shot, we can design the transparent seal f Γ to / large ^ and the glory layer 508, and the second set of glory layer 510 issued by ί S I, improve the luminous efficiency of the illuminating device. The transparent encapsulating layer 516 ΐ is: a transparent material of transparent high-density quartz crystal such as epoxy resin, Wei resin, polyurethane tree, yttrium resin, acrylic resin, polycarbonate or polyparaxylene. Moreover, the transparent encapsulation layer 516 can be a single cross-sectional view, showing a derivative illumination I based on the structure of the present invention in accordance with an embodiment of the present invention. In FIG. 7A, the first group of light-emitting diodes (10), the fourth layer, the transparent layer 506, and the first layer are covered by a transparent encapsulation layer 516 on the surface of the Suzuki body layer and the second group of phosphor layers 51G. a phosphor layer, a second: a phosphor precursor layer 510, a diffusion layer 514, and an input terminal 5 (n, such that the first-g light 201032316 diode 502, the second group of light-emitting diodes 504, the transparent layer 506, The first set of phosphor layers 508, the second set of phosphor layers 510, the diffusion layer 514, and the input terminal 501 are protected from moisture. The function of the diffusion layer 512 is to make the first group of LEDs 502 and The light emitted by the second group of light-emitting diodes 5〇4 is more uniformly mixed with the fluorescent light emitted by the first phosphor layer 5〇8 and the second group of phosphor layers 510 to generate white light. In the process of covering the transparent layer 506 and covering the first group of phosphor layers 508 and the second group of glomer layers 51, the spin coating method, the dip coating method, the chemical vapor deposition method, the hot steam bonding method, And at least one of the electron beam evaporation methods forms an anti-reflective coating 505 on the transparent layer 506. The shot coating 505 may, for example, φ include, but is not limited to, at least one of the following: nitrocellulose, cellulose ester, cellulose acetate, cellulose acetate butyrate, Teflon, I resin, Si 〇 2, SiNx, si 〇 a transparent layer of xNy, Ti〇2, Mg〇' or MgF2. The anti-reflective coating 505 can be used to cover the light emitted in the region (including the first group of light-emitting diodes 5〇2 and the second group of light-emitting diodes) The light emitted by the body 504 and the light reflected from the substrate 5〇〇 having the reflective surface pass through; and the first set of phosphor layers 508 and the second set of phosphor layers 51 are affected by the interlayer granular molecules. The scattered light can be folded back into the light exit direction (as indicated by the arrow) on the interface between the first set of phosphor layers 5〇8 and the second set of phosphorescent body layers 5_10 and the anti-reflective coating 505, thereby increasing the illumination device. Luminous efficiency. Figure 7D depicts a transparent layer 512 overlying the first set of phosphor layers 508 and the second set of phosphor layers 510 and diffusion layer 514 described above. The transparent layer 512 provides enhanced protection for the first group. a phosphor layer 508, a second set of phosphor layers 510, and the bottom of the two layers The structure is free from the influence of moisture, and the light from the interface between the transparent layer 512 and the upper layer material (for example, the 'diffusion layer 514') may be reflected by the difference in refractive index or the influence of the intergranular granular molecules. The probability is directed to the reflective surface of the substrate 5〇〇, and the non-mantle is absorbed by the first group of phosphor layers 5. 8 and the second group of phosphor layers, thereby improving the luminous efficiency. The transparent layer 512 may include at least the following _ : transparent, molecular materials such as rings, oxy-resin, diabase resin, polyamido resin, acrylic resin, polycarbonate, or poly-p-stack; and transparent materials such as glass or quartz. In addition, the transparent layer 512 may be a single layer or a multi-layer structure, and the 12 201032316 of the transparent layer 512 may be hemispherical, convex, or conical, and may be suitable for the appearance according to the purpose and purpose. The light energy emitted by the first group of light-emitting diodes 502, the second group of light-emitting diodes 504, the first group of phosphor layers 508, and the second group of phosphor layers 510 is optimally extracted. Figure 7E illustrates the formation of a hollow layer 5〇7 between the transparent layer 5〇6 described above and the first set of phosphor layers 5〇8 and a set of phosphor layers 510. The hollow layer 5〇7 may contain air two based on reliability considerations, and the hollow layer 5〇7 may further comprise ^2, Ar, or other idling = body. The thickness of the hollow layer 507 is approximately in the range of 〇 1 mm to 1 〇 mm. Since the refractive index of the hollow layer 507 is about 1 (because air, N2, Ar, or other inert gas has a refractive index of about 丨), and the refractive index of the phosphor layer is about 1.5, it should be understood by those skilled in the art. 'When light enters the first set of phosphor layers 508 and the second set of phosphor layers 510 from the hollow layer 507, total reflection does not occur. Therefore, the function of the hollow layer 507 is to make the light emitted by the first group of the light-emitting diodes 502 and the second group of light-emitting diodes 504 substantially completely through the hollow layer 507 and the first group of phosphor layers 508 and the second group. The interface between the phosphor layers 510. On the other hand, the light scattered from the first group of phosphor layers 5〇8 and the second group of phosphor layers 510 is also likely to form total reflection due to the difference in refractive index between the hollow layer 507 and the phosphor layer, thereby reducing The probability of being directly absorbed by the first set of phosphor layers 508, the second set of phosphor layers 510 and the transparent layer 506, thereby improving the overall luminous efficiency of the illumination device. Lu is familiar to those skilled in the art. It can be understood that the hollow layer 507, the transparent layer 512, and the diffusion layer 514 described in Figs. 7B-7E can be set or omitted depending on the needs and purposes of use. In other words, the order in which the specific description is described should not be construed as implying that these structures are necessarily present in the light-emitting device of the present invention. 8A and 8B are respectively showing the spectrum and color rendering index (CRI) of the light-emitting device of the present invention combined with a conventional blue light-emitting diode and a mixed fluorescent material (YAG or a phosphor layer of a silicate). ) Comparison. By the configuration of the present invention, blue light (360_490 nm), green fluorescent light (500-580 nm), and red fluorescent light (59 〇-65 〇 nm) are optimally emitted to obtain a more optimized light-emitting device. Spectral and color rendering index (CRI). Furthermore, referring to Table 1, it is assumed that two sets of 1 mm square GaN light emitting diodes 13 201032316 im, main body (having different peak wavelengths), green fluorescent materials (peak wavelength = 521 niu + wavelength = 534 nm) are used. ), and red fluorescent material (peak wavelength = 635 nm, dominant wavelength = 611 nm) 'The present invention is about 26 7% higher in brightness than the prior art. Among them, the configuration of the invention is as described above, that is, the phosphor layer of the green fluorescent material is covered as shown in Fig. 1) Table 1 Color temperature (CCT) Color rendering index (CRI) Total flux (lumens) Brightening ratio (%) 5500Κ 92.1 91.3 126.7 of the present invention (first embodiment) (fluorescent layer with mixed fluorescent material) 5500Κ 91.2 72.1 100 '~Intrusion< The first group of the two sets of 1 mm square GaN light-emitting diodes, and the phosphor layer of the red light fluorescent material cover the two groups of the square GaN light-emitting diodes a 'group (refer to FIG. 7A); and the prior art is a mixture of a green fluorescent material and a red fluorescent material into a phosphor layer, and covers the two sets of 1 mm square GaN light-emitting diodes.圃1. The 9th polar body, the second group of hairpins, the first group of phosphor layers, and the second group of layers of fluorescing layers have no _ contralateral system, that is, the first - _ _ _ _ _ _ _ The polar body is matched, and the second set of phosphor layers does not have to be matched with the second and the polar body. Therefore, the description and accompanying drawings are described in the detailed description. The polar body group (the first group of light-emitting diodes and the second group of light-emitting diodes) and the firefly (the first group of phosphor layers and the second domain light body number are for sexual purposes only and should not be construed as limiting. By means of a number of practical statements, it is necessary to make a variety of money, additions, and changes in the research and development of the skilled person. Therefore, the present invention encompasses all the true spirits and limitations of the present invention. Such as substitutions, additions, changes, and equivalent actions. [Simple description of the drawings] ^ It will be easy to understand by the above detailed description and the accompanying corresponding drawings, and the phase-separation word _ structural elements. 1 is a schematic diagram of a light-emitting device that combines the use of stray light and a light-free light-emitting material. Figure 2 is a conventional use of a blue light-emitting diode and a yellow-green fluorescent paint layer and a red fluorescent paint layer. Figure 3A is a cross-sectional view of a light-emitting device in accordance with an embodiment of the present invention. Figures 3B and 3C show a green phosphor layer and a blue light having a red phosphor layer, respectively, in accordance with an embodiment of the present invention. The spectrum of the LED. Figure 4 is the basis A cross-sectional view of another illuminating device in accordance with an embodiment of the present invention. Figure 5 is a cross-sectional view of another illuminating device incorporating a diffusion layer and a transparent layer in accordance with an embodiment of the present invention. Figure 6A is a cross-sectional view showing The first and second sets of light-emitting diodes each have two light-emitting diode bodies in accordance with an embodiment of the present invention. Figure 6B is a top plan view of the structure of Figure 6A. Figure 7A is a substrate surface in accordance with an embodiment of the present invention. Figure 7B to Figure 7E are cross-sectional views showing a derivative type of light-emitting device based on the structure of the light-emitting device of Figure 7A in accordance with an embodiment of the present invention. Figures 8A and 8B, respectively The present invention is compared to conventional commercial light-emitting devices (using a gamma-ray (5 or a phosphoric acid layer of a phthalate) spectrum and color rendering index. [Main component symbol description] 101 substrate 102 blue light emitting diode 103 light material coating 104 transparent hemispherical encapsulation 105 input terminal 200 reflective cup 202 blue light emitting diode 204 fluorescent material layer 206 fluorescent material layer 300 reflection Cup 302 first group of light-emitting diodes 15 201032316

304 第二組發光二極體 306 第一組螢光層 308 第二組螢光層 310 透明層 311 抗反射塗層 312 擴散層 314 擴散層 400 反射杯 402 第一組發光二極體 402a 發光二極體個體 402b 發光二極體個體 404 第二組發光二極體 404a 發光二極體個體 404b 發光二極體個體 406 第一組螢光層 408 第二組螢光層 410 透明層 412 擴散層 500 基底 501 輸入端子 502 第一組發光二極體 504 第二組發光二極體 505 抗反射塗層 506 第一透明層。 507 空心層 508 第一組螢光層 510 第二組螢光層 512 第二透明層 514 擴散層 516 透明封裝層304 second group of light-emitting diodes 306 first group of phosphor layers 308 second group of phosphor layers 310 transparent layer 311 anti-reflection coating 312 diffusion layer 314 diffusion layer 400 reflective cup 402 first group of light-emitting diodes 402a light two Polar body 402b light-emitting diode body 404 second group light-emitting diode 404a light-emitting diode body 404b light-emitting diode body 406 first group of phosphor layers 408 second group of phosphor layers 410 transparent layer 412 diffusion layer 500 Substrate 501 Input Terminal 502 First Group of Light Emitting Diodes 504 Second Group of Light Emitting Diodes 505 Anti-Reflective Coating 506 First transparent layer. 507 hollow layer 508 first set of phosphor layers 510 second set of phosphor layers 512 second transparent layer 514 diffusion layer 516 transparent encapsulation layer

Claims (1)

201032316 七、申請專利範圍: L 一種具有複合螢光體層之發光二極體的發光裝置,包括: 複數組發光二極體’該複數組發光二極體中的至少兩組彼此 • 具有不同的發光峰值波長; 複數組螢光體層,分別覆蓋在該複數組發光二極體中所對應 的各組發光二極體上,該複數組螢光體層中的至少一組螢光體層 能夠受到該對應的發光二極體所發出之部分光的激發,而發出主 波長約在500nm至580m之範圍内的光;以及該複數組螢光體層 中的至少另一組螢光體層能夠受到該對應的發光二極體所發出之 部分光的激發’而發出主波長約在590nm至650nm之範圍内的 ❹ 光;及 一輸入端子,連接該發光裝置,並且用以對該發光裝置提供 能量而使該發光裝置發光。 2. 如申請專利範圍第1項之具有複合螢光體層之發光二極體的發 光裝置,其中該複數組發光二極體的發光峰值波長係在36〇nm至 490nm範圍内。 3. 如申請專巧圍第1項之具有複合榮光體層之發光二極體的發 光裝置,其中'•玄複數組發光一極體中的任一組包括至少一丰導 發光個體。 4. 如申請專利範圍第1項之具有複合螢光體層之發光二極 光裝置,其中该複數組發光二極體係並聯連接。 赞 5. 如申請專利範圍第1項之具有複合螢光體層之發光二極 光裝置’其中s玄複數組發光二極體係串聯連接。 6. 如申請專利範圍帛3項之具有複合螢光體層 光裝置,其找獅陳爾 17 201032316 連接。 ϋ申請Λ利範圍第3項之具魏合螢紐層之發光二極體的發 連^。,.、中该複數組發光二極體中的該發光二極體個體係串聯 8样如罢申請Λ利範圍第3項之具有複合螢光體層之發光二極體的發 =個體=發光二鋪中之至少兩組所包括的該發光 之具有複合妓制之發光二極想的發 個二極财之至少她所包括的該發光 10.如申請專利制第3項之具有複合螢 發 =置,射職_光:晴的繼 利ϋ第3項之具有複合螢光體層之發光二極體的發 g置’其中_組發光二極體中的該發光二極體個體= 如署申言1專m第3f之具有複合榮光體層之發光二極體的發 制中該複數組發光二極體中的該發光二極體個體能夠被 认如申請專利範圍第i項之具有複合螢光體層之發光二極體的發 201032316 光裝置,其中該複數組螢光體層中的任—組包括至少—層勞光層。 -光裝置申;專中工圍仏::二:光體層之發光二極體的發 平坦表面。 、、、螢先體層具有半球形表面、凸形表面、或 16.如申請專利範圍笛 光裝置,其中脑^ f之具有複合螢光體層之發光二極體的發 量為相等,ί為it且榮光體層戶斤覆蓋之該發光二極體個體的數 ❹ 光裝置Ψ 1項之具有複合螢光體層之發光二極體的發 、中^複數組螢光體層彼此毗鄰接觸而不重疊。 1狀職她象陳滅的發 體係設置於該结構,該複數組發光二極 内面能热_ 的掀射内面上,且該凹型結構的該反射 加以反射。^複數赠光二極體與該複數組螢光體層所發出的光 ❿ H申請/m帛1項之具魏錢細層讀光二極體的發 先裝置,更包括覆纽該複數組螢光體層之上的_透明層。 i0#如範圍第19項之具有複合勞光體層之發光二極體的 ’〜透明層包括下列至少其中之—透明材料:環氧樹脂、 =月曰、聚亞醯胺樹脂、玻璃、石英、丙烯酸樹脂、聚碳酸酯、 双取對一甲苯。 ϋ申請專利範圍第19項之具有複合$細層之發光二極體的 發光裝置,其中該透明層包括一或多層結構。 201032316 22.如申請專利範圍第19項之具有複合螢光體層之發光二極體的 發光裝置,更包括覆蓋於該透明層之上的一抗反射塗層。 • 23.如申請專利範圍第22項之具有複合螢光體層之發光二極體的 發光裝置’該抗反射塗層包括下列至少其中之一透明材料:硝化 纖維素、纖維素酯、醋酸纖維素、醋酸丁酸纖維素、鐵氟龍、氟 樹脂、Si02、SiNx、SiOxNy、Ti02、MgO、或 MgF2。 24.如申請專利範圍第22項之具有複合螢光體層之發光二極體的 發光裝置,其中該抗反射塗層係使用下列至少其中一種方法所形 ® 成:旋轉塗布法、浸潰塗覆法、化學氣相沈積法、熱蒸鍍法、以 及電子束蒸鍍法。 25. 如申請專利範圍第1項之具有複合螢光體層之發光二極體的發 光裝置,更包括: 一擴散層,覆蓋於該複數組螢光體層之上,使該複數組螢光 體層與該複數組發光二極體所發出的光更均勻地混合。 26. —種具有複合螢光體層之發光二極體的發光裝置,包括201032316 VII. Patent application scope: L A light-emitting device having a light-emitting diode of a composite phosphor layer, comprising: a complex array of light-emitting diodes; at least two of the two complex light-emitting diodes have different illuminations a peak array wavelength; a complex array of phosphor layers respectively covering respective groups of light-emitting diodes corresponding to the complex array of light-emitting diodes, wherein at least one of the phosphor layers of the complex array of phosphor layers can be subjected to the corresponding Exciting a portion of the light emitted by the light emitting diode to emit light having a dominant wavelength in the range of about 500 nm to 580 m; and at least another set of phosphor layers in the complex array of phosphor layers being capable of receiving the corresponding light emitting a portion of the light emitted by the polar body emits a light having a dominant wavelength in a range of approximately 590 nm to 650 nm; and an input terminal coupled to the light emitting device and configured to provide energy to the light emitting device to cause the light emitting device Glowing. 2. The light-emitting device of the light-emitting diode having a composite phosphor layer according to claim 1, wherein the complex array light-emitting diode has an emission peak wavelength in the range of 36 〇 nm to 490 nm. 3. For example, a light-emitting device having a composite luminescent layer of a light-emitting diode of the first item is applied, wherein any one of the '•Xuan Fu array light-emitting diodes includes at least one fluorescent light-emitting individual. 4. The illuminating two-pole device having a composite phosphor layer according to claim 1, wherein the complex array of light-emitting diode systems are connected in parallel. 5. The light-emitting diode device with a composite phosphor layer as claimed in claim 1 wherein the s-plex array of light-emitting diodes are connected in series. 6. If the patent application scope 帛3 has a composite phosphor layer light device, it is connected to Lion Chen 17 201032316. ϋ Apply for the connection of the LEDs of the Weihe Firefly layer in item 3 of the profit-making range. In the complex array of light-emitting diodes, the light-emitting diode system is connected in series with 8 kinds of light-emitting diodes having the composite phosphor layer in the third item of the profit-making range. At least two groups included in the shop include the illuminating illuminating diode with a composite enthalpy, and at least one of the illuminates that she included. 10. If the patent application system has a composite fluorescing = Set, the post _ light: the second step of the illuminating diode of the third layer of the phosphor with a composite phosphor layer, the light-emitting diode in the _ group of light-emitting diodes = In the production of the light-emitting diode having the composite luminescent layer of the third aspect, the light-emitting diode of the complex array of light-emitting diodes can be recognized as having the compound fluorescent light of the i-th aspect of the patent application. The light-emitting diode of the bulk layer is a 201032316 optical device, wherein any one of the complex array phosphor layers includes at least a layer of a working layer. - Light device application; Specialized workmanship:: 2: The flat surface of the light-emitting diode of the light body layer. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, And the light-emitting diodes covered by the glory body layer are light-emitting devices, and the light-emitting diodes having the composite phosphor layer are adjacent to each other without overlapping. In the 1st position, her hair system is arranged in the structure, and the inner surface of the complex array of light-emitting diodes is hot, and the reflection of the concave structure is reflected. ^Multiple light-emitting diodes and the light emitted by the complex array of phosphor layers H application /m帛1 of the Weiqian fine-layer readout diodes, including the complex array of phosphor layers _ transparent layer above. I0# The transparent layer of the light-emitting diode having the composite working layer as in the 19th item of the range includes at least one of the following: transparent material: epoxy resin, yue, polytheneamine resin, glass, quartz, Acrylic resin, polycarbonate, double-p-toluene. A light-emitting device having a composite thin layer light-emitting diode according to claim 19, wherein the transparent layer comprises one or more layers. A light-emitting device having a light-emitting diode of a composite phosphor layer according to claim 19, further comprising an anti-reflective coating overlying the transparent layer. • 23. A light-emitting device having a light-emitting diode of a composite phosphor layer as claimed in claim 22, wherein the anti-reflective coating comprises at least one of the following transparent materials: nitrocellulose, cellulose ester, cellulose acetate , cellulose acetate butyrate, Teflon, fluororesin, SiO 2 , SiNx, SiOxNy, TiO 2 , MgO, or MgF 2 . 24. A light-emitting device having a light-emitting diode of a composite phosphor layer according to claim 22, wherein the anti-reflective coating is formed by at least one of the following methods: spin coating, dip coating Method, chemical vapor deposition, thermal evaporation, and electron beam evaporation. 25. The illuminating device of the illuminating diode having the composite phosphor layer of claim 1, further comprising: a diffusion layer overlying the complex array of phosphor layers to cause the complex array of phosphor layers to The light emitted by the complex array of light-emitting diodes is more evenly mixed. 26. A light-emitting device having a light-emitting diode of a composite phosphor layer, comprising —基底; 複數組發光二極體,該複數組發光二極體中的至少兩组彼此 具有不同的發光峰值波長; 了透明層,覆蓋於該複數組發光二極體上; 組榮光體層,覆蓋於該透明層上,且分別對應於該複數 ί發^二極體中的各組發光二極體,該複數組螢光體層中的至少 二組勞光體層㈣受到賴應的發光二極體所發出之部分光的激 ^ ’ =出主波長約在5〇〇腿至58〇111之範圍内的光;以及該複 ίίΐΐ?層中的至少另一組螢光體層能夠受到該對應的發光二 出之部分光的激發,而發出主波長約在59Gnm至650nm 之把圍内的光;及 201032316 一輸入端子,連接該發光裝置,並且用以對該發光裝置提供 能量而使該發光裝置發光。 '27.如申請專利範圍第26項之具有複合螢光體層之發光二極體的 發光裝置,其中該基底具有一反射面,該複數組發光二極體係設 置於該基底的該反射面上,該反射面能夠將該複數組發光二極體 與該複數組螢光體層所發出的光加以反射。 28. 如申凊專利範圍第26項之具有複合螢光體層之發光二極體的 發光裝置,其中該複數組發光二極體的發光峰值波長係在36〇nm _ 至490nm範圍内。 29. 如申請專利範圍帛20項之具有複合螢光體層之發光二極體的 發光裝置,其中該複數組發光二極體中的任一組包括至 導 體發光個體。 30. 如申請專利範圍第26項之具有複合螢光體層之發光二極 發光裝置,其中該複數組發光二極體係並聯連接。a substrate; a plurality of light-emitting diodes, at least two of the plurality of light-emitting diodes having different emission peak wavelengths; a transparent layer overlying the complex array of light-emitting diodes; On the transparent layer, and corresponding to each group of light-emitting diodes in the plurality of diodes, at least two groups of the light-emitting layer (four) in the complex array of phosphor layers are subjected to the light-emitting diodes The portion of the emitted light emits light having a dominant wavelength in the range of about 5 legs to 58 inches 111; and at least another set of phosphor layers in the layer of the complex layer is capable of receiving the corresponding light. Exciting part of the light, and emitting light having a dominant wavelength of about 59Gnm to 650nm; and an input terminal of 201032316, connecting the light emitting device, and providing energy to the light emitting device to cause the light emitting device to emit light . [27] The light-emitting device of the light-emitting diode of the composite phosphor layer of claim 26, wherein the substrate has a reflective surface, and the complex array of light-emitting diodes is disposed on the reflective surface of the substrate, The reflective surface is capable of reflecting the light emitted by the complex array of light-emitting diodes and the complex array of phosphor layers. 28. A light-emitting device having a composite phosphor layer light-emitting diode according to claim 26, wherein the complex array light-emitting diode has an emission peak wavelength in the range of 36 〇 nm _ to 490 nm. 29. A light-emitting device having a composite phosphor layer of a light-emitting diode according to claim 20, wherein any one of the plurality of complex light-emitting diodes comprises a light-emitting individual to the conductor. 30. The illuminating two-pole illuminating device having a composite phosphor layer according to claim 26, wherein the complex array illuminating two-pole system is connected in parallel. 31. 如申請專利範圍第26項之具有複合螢光體層之 發光裝置,其中該複數組發光二極體係串聯連接。 32·如申請專利範圍第29項之具有複合螢賴層之魏二極 發光裝置,其中該複數組發光二極體中的該發光二極體^ 磁碴接。 33.如申請專利範圍第29項之具有複合螢光體層之發光二極體的 發光裝置,其中該複數組發光二極體巾的該發光二極體個體 躺榼接。 21 201032316 具f複合螢光體層之發光二極體的 發光二極體中之至少兩組所包括的該發 35.如申請專利範圍第29項之具有複合螢光體層之發 發光裝置’其t该複數組發光二極體令之至少 的發 光二極體健數目為不相等。 ㈣括的,亥發 36·如申請專利範圍第29項之具有複合螢光體層之發 置’其中該複數組發光二極體中的該發光二極體個體ί相 圍第29項之具有複合榮光體層之發光二極體的 Ϊΐί 複數組發光二極體中的該發光二極體個體為Ϊ 光, 22 201032316 42.如申請專利範圚 =專其Τ:層4=31. A light-emitting device having a composite phosphor layer as claimed in claim 26, wherein the complex array of light-emitting diode systems are connected in series. 32. The Wei two-pole illuminating device having a composite fluorescing layer according to claim 29, wherein the illuminating diode of the complex array of light-emitting diodes is magnetically coupled. 33. A light-emitting device having a composite phosphor layer of a light-emitting diode according to claim 29, wherein the light-emitting diode of the complex array of light-emitting diodes is spliced. 21 201032316 The hair light emitting device comprising at least two of the light-emitting diodes of the light-emitting diode of the f-composite phosphor layer 35. The light-emitting device having the composite phosphor layer of claim 29 The complex array of light-emitting diodes causes at least the number of healthy LEDs to be unequal. (4) Enclosed, Haifa 36. If the composite phosphor layer is issued in the 29th article of the patent application scope, the light-emitting diode in the complex array of light-emitting diodes has a composite of the 29th item The illuminating diode of the glory body layer Ϊΐ ί ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ 如壯申^糊細第26項之射複合s光㈣之發光二極體的 發光裝置,更包括設置於該透明層與該複數組螢光體 、 抗反射塗層。 間的一 48. 如申請專利範圍第47項之具有複合螢光體層之發光二 發光裝置,該抗反射塗層包括下列至少其中之一透明材料.$的 纖維素、纖維素酯、醋酸纖維素、醋酸丁酸纖維素、鐵氟麓硝^ 樹脂、Si02、SiNx、SiOxNy、Ti02、MgO、或 MgF2。 鼠 49. 如申請專利範圍第47項之具有複合螢光體層之發光二 發光裝置’其中該抗反射塗層係使用下列至少其中一種^法 23 201032316 成:旋轉塗布法、浸潰塗覆法、化學氣相沈積法、私 ^ 及電子束蒸鍍法。 …祭鳃沄、u • 圍第%項之具有複錢光騎之發光二極體的 一空心層,介設於該透明層與該複數組螢光體層之 心層的厚度介於0.1mm與10mm之間。 °^二 51.如申請專利顧第5G項之具有複合螢紐 發光裝置,其巾触心層包含空I 料-極體的 魯 範圍第1〇項之具有複合勞光體層之發光二極體的 毛先農置’其中該空心層包含N2、Ar、或其它惰性氣體。 %項之具有複合螢光體層之發光二極體的 一擴散層,覆蓋於該複數組螢光體層之上 二極體與該減組螢规騎發_光更均桃;t减組發光 一透明層,置於該擴散層與該複數組螢光體層之間以辦 g護該複數_層無螢光_钉之結構免於水氣= 55.、如申請專利範圍第54項之具有複合螢光體層之發光二極體的 發,裝置,該透明層包括下列至少其中之一透明材料:環氧樹脂、 矽氧樹脂、聚亞醯胺樹脂、玻璃、石英、丙烯酸樹脂、聚碳酸酯、 或聚對二甲苯。 24 201032316 56.如申請專利範圍第@ '極體的 發光裝置,其中該透=括之= 發4申置'專其利中 = 月以 形。 層斜_凸形、錐形、麵淫耳透^ 58.如申請專利範圍第仏項之具有 發光裝置’更包域跡賴触螢細層之上的 專^範圍第58項之具有複合螢光體層之發光-㉞ ϋ裳置,該透明封料包括下舰少其 極體的 ,、石夕氧樹脂、聚亞醯胺樹脂、破璃、石英、料:環氧 碳酸酯、或聚對二甲笨。、丙埽酸樹脂、聚 6〇.如申請專利範圍帛58項之具有複 =裝置,其中該透明封裝層為半球形、$層=光,體的 透鏡形。 錐形、或菲涅耳 61.如申請專利範圍第58項之具有 發光裝置,其中該透簡裝層包括—或多層結構。之發光二極體的 =如申請專利範圍帛26項之具有複 發光裝置,絲底可為金屬基複合獅^謂敎私二極體的 八、圖式: 25For example, the light-emitting device of the light-emitting diode of the composite s-light (4) of the splicing of the second item is further provided on the transparent layer and the complex array of phosphors and anti-reflective coatings. A light-emitting two-light-emitting device having a composite phosphor layer as claimed in claim 47, the anti-reflective coating comprising at least one of the following transparent materials. Cellulose, cellulose ester, cellulose acetate , cellulose acetate butyrate, ferric fluorene nitrate resin, SiO 2 , SiNx, SiOxNy, Ti02, MgO, or MgF2. Mouse 49. A light-emitting two-light-emitting device having a composite phosphor layer as claimed in claim 47, wherein the anti-reflective coating layer is formed by at least one of the following methods: 2010, the method of spin coating, dipping coating, Chemical vapor deposition, private and electron beam evaporation. ...sacrificial, u • a hollow layer of the light-emitting diode of Fuqian Guangqi, the thickness of the core layer of the transparent layer and the complex array of phosphor layers is between 0.1 mm and Between 10mm. °^二51. If the patented Gu 5G item has a composite fluorescent light-emitting device, the towel touch layer includes the light-emitting diode of the composite working layer of the first dimension of the empty material I-pole. The wool layer contains N2, Ar, or other inert gas. a diffusion layer of the light-emitting diode having a composite phosphor layer covering the diode of the complex array of phosphor layers and the light-reducing phoenix _ light more uniform peach; t minus group light-emitting a transparent layer disposed between the diffusion layer and the complex array of phosphor layers to protect the complex layer from the structure of the phosphor-free nails from water vapor = 55. The light emitting diode of the phosphor layer, the transparent layer comprising at least one of the following transparent materials: epoxy resin, epoxy resin, polyimide resin, glass, quartz, acrylic resin, polycarbonate, Or parylene. 24 201032316 56. If the application of the patent range @ 'polar body of the illuminating device, which is included in the = = 4 application of 'special interest in the month = month to shape. The layer is inclined _ convex, conical, and fascinating. 58. As in the scope of the patent application, the illuminating device has a composite genre of the 58th item of the above-mentioned range. The light layer of the light body - 34 ϋ 置 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Dimethyst. , a propionate resin, poly 6 〇. As claimed in the scope of the 58 item has a complex = device, wherein the transparent encapsulation layer is hemispherical, $ layer = light, the shape of the lens. Conical, or Fresnel 61. The illuminating device of claim 58 wherein the permeable layer comprises - or a multilayer structure. The light-emitting diode = as claimed in the scope of the 帛26 item has a complex light-emitting device, the wire bottom can be a metal-based composite lion ^ said the private diode of the eight. Figure: 25
TW098104856A 2009-02-16 2009-02-16 Light emitting diodes with plural lumiphors TWI458074B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098104856A TWI458074B (en) 2009-02-16 2009-02-16 Light emitting diodes with plural lumiphors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098104856A TWI458074B (en) 2009-02-16 2009-02-16 Light emitting diodes with plural lumiphors

Publications (2)

Publication Number Publication Date
TW201032316A true TW201032316A (en) 2010-09-01
TWI458074B TWI458074B (en) 2014-10-21

Family

ID=44854851

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098104856A TWI458074B (en) 2009-02-16 2009-02-16 Light emitting diodes with plural lumiphors

Country Status (1)

Country Link
TW (1) TWI458074B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI477718B (en) * 2012-03-01 2015-03-21 Advanced Optoelectronic Tech Led source device
TWI490832B (en) * 2010-12-16 2015-07-01 Hon Hai Prec Ind Co Ltd Self-luminous display and method for manufacturing same
US9228726B2 (en) 2013-11-13 2016-01-05 Lediamond Opto Corporation Globular illuminant device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577073B2 (en) * 2000-05-31 2003-06-10 Matsushita Electric Industrial Co., Ltd. Led lamp
TWI224873B (en) * 2003-06-20 2004-12-01 Lambda Opto Technology Co Ltd LED light-emitting module
TWI226795B (en) * 2003-09-24 2005-01-11 Sampo Corp Image transferring apparatus for connecting a display
US20060067073A1 (en) * 2004-09-30 2006-03-30 Chu-Chi Ting White led device
JP2007027421A (en) * 2005-07-15 2007-02-01 Harison Toshiba Lighting Corp Led package and lighting device
KR100771772B1 (en) * 2006-08-25 2007-10-30 삼성전기주식회사 White light led module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490832B (en) * 2010-12-16 2015-07-01 Hon Hai Prec Ind Co Ltd Self-luminous display and method for manufacturing same
TWI477718B (en) * 2012-03-01 2015-03-21 Advanced Optoelectronic Tech Led source device
US9228726B2 (en) 2013-11-13 2016-01-05 Lediamond Opto Corporation Globular illuminant device

Also Published As

Publication number Publication date
TWI458074B (en) 2014-10-21

Similar Documents

Publication Publication Date Title
TWI374996B (en) Light emitting device with high cri and high luminescence efficiency
US8835953B2 (en) Lighting device comprising LEDs with phosphor layers
US20120286701A1 (en) Light Emitting Diode Light Source With Layered Phosphor Conversion Coating
TWI364858B (en) Photoelectric semiconductor device capable of generating uniform compound lights
JP5558483B2 (en) LED assembly
TWI239659B (en) Light emitting apparatus
EP2417219B1 (en) Luminescent converter for a phosphor- enhanced light source comprising organic and inorganic phosphors
US20170241598A1 (en) Led filament and led light bulb
TW201108471A (en) Lighting devices with discrete lumiphor-bearing regions on remote surfaces thereof
TWI352438B (en) Semiconductor light-emitting device
JP5491867B2 (en) Lighting device, in particular lighting device with luminescent ceramic
JP2009538532A (en) Lighting device
TW201102584A (en) Solid state lighting devices having remote luminescent material-containing element, and lighting methods
JP2020129684A (en) Indoor light source and lighting system
TW201030283A (en) Light emitting diode lamp with phosphor coated reflector
US9755117B2 (en) Phosphor-enhanced lighting device, retrofit light bulb and light tube with reduced color appearance
TW200935376A (en) LED display
TW201114070A (en) Light-emitting device
TW200522396A (en) Light emitting devices with enhanced luminous efficiency
TW201132740A (en) Wavelength converting particle, wavelength converting member including same, and light-emitting device
JP2010267571A (en) Lighting device
CN113811996A (en) LED filament and lamp with same
KR20130032110A (en) Lighting device
US11781714B2 (en) LED-filaments and LED-filament lamps
JP5658462B2 (en) Lighting device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent