TW201030191A - Optical semiconductor device lead frame and manufacturing method thereof - Google Patents

Optical semiconductor device lead frame and manufacturing method thereof Download PDF

Info

Publication number
TW201030191A
TW201030191A TW098143567A TW98143567A TW201030191A TW 201030191 A TW201030191 A TW 201030191A TW 098143567 A TW098143567 A TW 098143567A TW 98143567 A TW98143567 A TW 98143567A TW 201030191 A TW201030191 A TW 201030191A
Authority
TW
Taiwan
Prior art keywords
alloy
silver
layer
lead frame
semiconductor device
Prior art date
Application number
TW098143567A
Other languages
Chinese (zh)
Other versions
TWI465614B (en
Inventor
Yoshiaki Kobayashi
Kazuhiro Koseki
Shin Kikuchi
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Publication of TW201030191A publication Critical patent/TW201030191A/en
Application granted granted Critical
Publication of TWI465614B publication Critical patent/TWI465614B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

Disclosed is a lead frame for use in optical semiconductor devices which has excellent reflection characteristics with respect to visible light and excellent corrosion resistance, and wherein a pure silver layer composed of pure silver is formed on a substrate. The arithmetic mean height Ra of said pure silver layer is 0.001-0.2 μm, and on the surface thereof is formed a film with an average thickness of 0.001-0.2 μm composed of a metal material having excellent corrosion resistance.

Description

i 201030191 六、發明說明: 【發明所屬之技術領域】 本發明係有關於二種光半導體裝置用導線架及其製造 方法。 【先前技術】 光半導體裝置用導線架先前被廣泛利用作將led元件 等用於光源之各種顯示用、照明用光源。該光半導體裝置 ❿例如係於基板上配設導線架,於該導線架上安裝發光元件 之後,為防止熱、濕氣、氧化等造成之光源劣化或其周邊 部位之劣化,而以密封樹脂將上述光源及其周圍予以密封。 又,於該光源正下方,多形成有光之反射特性優異之 銀或銀合金之層,例如於專利文獻i等中揭示有將鑛銀層 形成於反射板附近,於專利文獻2等中揭示有:藉由將銀 或銀合金皮膜之結晶粒徑設為〇5 〜30以爪,以提高反 射特性等。進而,於專利文獻2中揭示有如下方法:於形 ^成銀膜後以200度以上進行熱處理30秒以上,藉此製造上 述結晶粒徑之銀膜。 另方面,作為提高耐蝕性之方法,例如,如專利文 獻3般揭示有如下方法:於鎳基底層上形成0.005〜〇15〆 m之鈀,於最表層形成〇 〇〇3〜〇 〇5 之铑。 然而,如專利文獻丨所揭示之技術般,僅單純地形成 銀或其合金皮膜之情形時,紫外區之波長之下降特別大, 無法避免可見光區之約_ nm附近至300 nm附近之反射 3 201030191 率下降。 又’若如專利文獻2所揭示之技術般將結晶粒徑形成 為0.5 //m以上’則雖可見光區中之反射率確實有稍許之 改善,但對400 nm以下之波長會看到與專利文獻1所揭示 之技術相同之現象,無法避免紫外區中之反射率下降。又, 若藉由熱處理調整為上述結晶粒徑,則可推測到:因殘留 氧之影響造成銀發生氧化’反而會導致反射率下降,從而 在反射率改善方面無法獲得充分之效果。 進而,於專利文獻2中揭示有針對表層銀膜之基底材 料之表面粗糖度將最大高度Ry設為〇5 以上者,但構 成光之反射現象者並非基底部分之粗度’最表層附近之粗 度會造成影響。因此,於基體或基底電鍍之上以構成反射 層之電鍍或蒸鍍等形成銀膜,因此有可能即使界定基底之 粗梭度亦無意義。χ ’ Ry係指粗輪度之最大值與最小值之 差八很可此會表示僅表面某特定部位之凹凸,例如形成 為線狀之劃痕等微小部之數值,而並非表示取決於反射之 整體範圍之粗度’因而Ry有時並不適合作為表示反射層特 性之參數。 進而在將根據該等文獻中揭示之技術所製作之導線 架:於LED來使用時,隨時間經過會出現亮度下降。調查 :、、°果可知’由於密封之樹脂中含有微量之硫成分,其使 ,一表面之銀發生硫化,因而銀會變為黑色而使亮度下 降。又,純銀易發生遷移。 又’於專利文獻3所揭示之導線架中,與銀相比,姥 201030191 t使料光半導體裝置而言較重要之反射特性,尤其重要 之包含可見光區的例如波長彻〜800 nm之反射率降低2〇% 以上,故而若僅單純地被覆較薄之姥,則藍色系或白色系 之光半導體裝置無法滿足反射率之要求特性。 、 專利文獻1 ·曰本專利特開昭6丨_丨48883號公報 專利文獻2 .曰本專利特開2〇〇8 〇16674號公報 專利文獻3:日本專利特開2〇〇5·12997〇號公報 ❹ 【發明内容】 本發明提供-種光之波長為紫外區之扇咖至近紅外 區之800 nm中之反射特性良好的導線架,進而散熱性、耐 蚀性(尤其對硫化轻之耐㈣)、反射率之長期穩定性優異 之導線架及其製造方法。 鑒於上述問題進行努力研究之結果可知,若為〇2"爪 以下厚度之金屬層,則紫外區至近紅外區之波長範圍的光 之反射率或多或少會受到下層金屬之影響。且可知,為進 -步提高耐蝕性’若將形成反射層之純銀層表面之算術平 均高度Ra控制在請丨七^之範圍内,則可形成上述 耐钱性皮膜而不會造成純銀層露出。該等之結果獲得以下 見解,即,-種光半導體裝置用導線架,其係於基體上形 成有由純銀構成之純銀層者,該純銀層之算術平均高度“ 為請1〜0.2 _,且於其表面設置請卜以㈣之耐钱 性優異之金屬$,藉此’可提供_種既可保持純銀層之高 反射率特性之效果’且對硫化腐钱之耐钱性優異,從而反 5 201030191 射率之長期穩定性優異之光半導體用導線架。 亦即,本發明提供: ⑴-種光半導體裝置用導線架,其係於基體上形成有 由純銀構成之純銀層者,其特徵在於,該純銀層之算術平 均高度Ra為0.001〜0.2 〃m,且於其表面形成有由對硫化 腐蝕之耐蝕性優異之金屬材料構成之平均膜厚〇〇〇1以爪 以上、0_2 // m以下之皮膜; (2) 如第(1)項之光半導體裝置用導線架,其中上述基體 係由選自由銅、銅合金、鋁及鋁合金組成之群中之金屬或 .合金構成; (3) 如第(1)項或第(2)項之光半導體裝置用導線架,其中 於上述基體及上述純銀層之間,至少形成有i層由選自由 鎳鎳0金、鈷、鈷合金、銅及銅合金組成之群中之金屬 或合金構成之中間層; (4) 如第(1)項至第(3)項中任一項之光半導體裝置用導 線架,其中上述純銀層之厚度為〇 2〜5 〇 "①; (5) 如第(1)項至第(4)項中任一項之光半導體裝置用導 線架’其中形成上述皮膜之金屬材料係選自由金、金合金、 銀《金鉑、鉑合金、鍺、铑合金、銦及銦合金組成之群 中之金屬或合金; (6) 如第(1)項至第(5)項中任一項之光半導體裝置用導 線架,其中形成上述皮膜之金屬材料係選自由銀_銅合金、 銀銦〇金、銀-铑合金及銀-金合金組成之群中之銀合金; ()種如第(1)項至第(6)項中任一項之光半導體裝置 201030191 · « « 肖導線架之製造方法,其特徵在於,上述純銀層及上述皮 膜係藉由電鐘法而形成;以及 (8)—種如第(3)項至第(6)項中任一項之光半導體裝置 用導線架之製造方法,其特徵在於,上述純銀層、上述中 間層及上述皮臈係藉由電鍍法而形成。 本發明之光半導體裝置用導線架係於形成有純銀層之 光半導體用導線架中,該純銀層之表面之算術平均高度“ 為0.001〜0.2 之範圍,且於其表層以〇〇〇1 以上、 © 〇.2 以下之厚度(平均膜厚)形成耐蝕性優異之金屬層, 藉此既可發揮銀之優異反射特性,亦可提高耐蝕性(尤其對 硫化腐蝕之耐蝕性),還可防止遷移。進而,由於銀無法避 免400 nm以下之紫外區中之反射率下降,因此,藉由使尤 其300 nm之紫外區之反射率為數個百分比左右被銀以外之 金屬或其合金較薄地覆蓋,可將反射率提高至數十百分比 之等級,從而可用作廣泛覆蓋紫外區至近紅外區之反射特 性良好的光半導體裝置之導線架。 又本發明之製造方法可製造適於作為用於LED、光 電耦合器、光續斷器等之光半導體裝置用導線架且於光之 波長為紫外區之300 nm至近紅外區之8〇〇 nm中之反射特 性良好,進而散熱性、耐蝕性(尤其對硫化腐蝕之耐蝕性)、 反射率之長期穩定性優異之導線架。 本發明之上述及其他特徵及優點可適當參照附圖並由 下述之揭示而明碟。 7 201030191 【實施方式】 圖1係表示本發明之光半導體裝置用導線架之一實施 態樣之概略剖面圖。其中’圖1中表示於導線架上养載有 光半導體晶片4之狀態(以下之圖3〜8亦同樣)。 如圖1所示,本實施態樣之導線架係於基體1上形成 有由純銀構成之純銀層2,於該純銀層2之表層,形成有由 耐#性優異之金屬材料構成之皮膜3。於本發明中,純銀層 2之算術平均高度Ra係形成為0.001〜0·2 //m,皮膜3之 厚度為0.001 " m以上、0.2 μ m以下。本發明之導線架 成為可見光區之反射特性優異,且耐蝕性(尤其對硫化腐餘 之财蚀性)及耐遷移性優異之光半導體裝置用導線架。 基艘1例如可使用銅或銅合金、鋁或鋁合金、鐵或鐵 α金4,較佳為選自由銅、銅合金、銘及銘合金構成之群 中之金屬或合金。 藉由將基體1設為銅或銅合金、銘或銘合金,可提供 種容易形成皮膜且亦有助於成本降低之導線架。又,該 等導線架之與導電率良好相關之特性即熱傳導率良好,因 此散熱特性優異,可將發光體發光時產生之熱能經由導線 架而順利地放出至外部,從而可預料到發光S件之長壽命 化及反射特性之長期穩定化。 又’於本發明中,「反射特性良好」係表示反射率於 波長300〜400 nm中為3〇%以上,且於波長4〇〇〜8〇〇 nm中 為70%以上。 純銀層2之厚度較佳為0.2〜5.0 // m,進而較佳為 201030191 〇·5〜4.0 //m,更佳兔 ·3Λ ·〜.从m。若純銀層之厚度過薄, 則有助於反射率之厚度有時會不&,另-方面,雖過厚可 =果飽和’但會造成成本變高。藉由將純料2之被覆 厚度设為上述範圍卜可無需使用超出需要量之貴金屬而 廉價地製造。形成純銀層之銀濃度(純度)較佳為%質量% 以上,更佳為98質量%以上。i 201030191 VI. Description of the Invention: [Technical Field] The present invention relates to a lead frame for two types of optical semiconductor devices and a method of manufacturing the same. [Prior Art] A lead frame for an optical semiconductor device has been widely used as a light source for various display and illumination for use in a light source. In the optical semiconductor device, for example, a lead frame is disposed on the substrate, and after the light-emitting element is mounted on the lead frame, the sealing resin is used to prevent deterioration of the light source caused by heat, moisture, oxidation, or the like, or deterioration of the peripheral portion thereof. The above light source and its surroundings are sealed. Further, a layer of silver or a silver alloy having excellent light reflection characteristics is formed in the direct vicinity of the light source. For example, Patent Document 1 or the like discloses that a mineral silver layer is formed in the vicinity of a reflector, and is disclosed in Patent Document 2 or the like. There is a method in which the crystal grain size of the silver or silver alloy film is set to 〇5 to 30 to improve the reflection characteristics and the like. Further, Patent Document 2 discloses a method of producing a silver film having the above crystal grain size by subjecting it to a silver film and then heat-treating at 200 degrees or more for 30 seconds or more. On the other hand, as a method of improving the corrosion resistance, for example, as disclosed in Patent Document 3, a method of forming palladium of 0.005 to 15 μm on the nickel base layer and forming 〇〇〇3 to 〇〇5 on the outermost layer is disclosed. rhodium. However, as in the case of the technique disclosed in the patent document, when the film of silver or its alloy film is simply formed, the wavelength of the ultraviolet region is particularly dripped, and reflection near the vicinity of the visible light region to around 300 nm cannot be avoided. 201030191 rate dropped. Further, if the crystal grain size is formed to be 0.5 // m or more as in the technique disclosed in Patent Document 2, although the reflectance in the visible light region does have a slight improvement, the wavelength of 400 nm or less is seen and patented. The phenomenon of the same technique disclosed in Document 1 cannot avoid the decrease in reflectance in the ultraviolet region. Further, when the crystal grain size is adjusted by the heat treatment, it is estimated that oxidation of silver due to the influence of residual oxygen causes a decrease in reflectance, and a sufficient effect cannot be obtained in terms of improvement in reflectance. Further, Patent Document 2 discloses that the surface roughness of the base material of the surface silver film has a maximum height Ry of 〇5 or more, but the reflection phenomenon of the light is not the thickness of the base portion and the thickness near the outermost layer. Degree will have an impact. Therefore, a silver film is formed on the substrate or the substrate plating to form a reflective layer by electroplating or vapor deposition, etc., so that it is meaningless even if the roughness of the substrate is defined. χ ' Ry is the difference between the maximum and minimum values of the coarse wheel. This is a good value for a specific part of the surface, for example, the value of a minute part such as a line-shaped scratch, and does not mean that it depends on the reflection. The thickness of the overall range 'and thus Ry is sometimes not suitable as a parameter indicating the characteristics of the reflective layer. Further, in the lead frame manufactured according to the technique disclosed in the above documents, when used in an LED, a decrease in luminance occurs over time. Investigation: , , ° ° It is known that the sealed resin contains a trace amount of sulfur, which causes the silver on one surface to vulcanize, so the silver turns black and the brightness decreases. Also, sterling silver is prone to migration. Further, in the lead frame disclosed in Patent Document 3, compared with silver, 姥201030191t is an important reflection characteristic for an optical semiconductor device, and particularly important, a reflectance including a wavelength of ~800 nm including a visible light region. When the thickness is reduced by 2% or more, the blue or white-based optical semiconductor device cannot satisfy the required characteristic of the reflectance if it is simply covered with a thinner germanium. Patent Document 1 曰 专利 丨 丨 883 883 883 883 883 883 883 883 883 883 883 883 883 883 883 883 883 883 883 883 883 674 674 674 674 674 674 674 674 674 674 674 674 674 674 674 674 674 674 674 674 674 674 674 674 674 674 674 SUMMARY OF THE INVENTION The present invention provides a lead frame having a good reflection characteristic in a range of 800 nm from a fan to a near-infrared region of an ultraviolet region, and further has heat dissipation and corrosion resistance (especially for light vulcanization) (4)) A lead frame excellent in long-term stability of reflectance and a method of manufacturing the same. In view of the above-mentioned problems, it has been found that the reflectance of light in the wavelength range from the ultraviolet region to the near-infrared region is more or less affected by the underlying metal if it is a metal layer having a thickness of 〇2" below the claw. It can be seen that, in order to improve the corrosion resistance in advance, if the arithmetic mean height Ra of the surface of the pure silver layer forming the reflective layer is controlled within the range of 丨七丨, the above-mentioned resistant film can be formed without causing the sterling silver layer to be exposed. . The result of the above-mentioned results is that a lead frame for an optical semiconductor device is formed by forming a pure silver layer made of pure silver on a substrate, and the arithmetic mean height of the pure silver layer is "1 to 0.2 _, and On the surface of the surface, please select (4) the metal with excellent resistance to money, which can provide the effect of maintaining the high reflectivity of the pure silver layer, and the excellent resistance to vulcanization and rot. 5 201030191 A lead frame for optical semiconductors having excellent long-term stability of the incident rate. That is, the present invention provides: (1) A lead frame for an optical semiconductor device, which is formed by forming a pure silver layer made of pure silver on a substrate, and is characterized by In the pure silver layer, the arithmetic mean height Ra is 0.001 to 0.2 〃m, and an average film thickness 〇〇〇1 composed of a metal material excellent in corrosion resistance against sulphide corrosion is formed on the surface thereof to be more than a claw, 0_2 // (2) The lead frame for an optical semiconductor device according to Item (1), wherein the base system is composed of a metal or an alloy selected from the group consisting of copper, copper alloy, aluminum, and aluminum alloy; 3) As in item (1) The lead frame for an optical semiconductor device according to Item (2), wherein at least the i layer is formed between the substrate and the pure silver layer, and is composed of a group selected from the group consisting of nickel nickel, cobalt, cobalt alloy, copper, and copper alloy. (4) The lead frame for an optical semiconductor device according to any one of the items (1) to (3), wherein the thickness of the sterling silver layer is 〇2 to 5 〇" (5) The lead frame for an optical semiconductor device according to any one of the items (1) to (4), wherein the metal material forming the film is selected from the group consisting of gold, gold alloy, silver, gold platinum, platinum A lead frame for an optical semiconductor device according to any one of the above items (1) to (5), wherein the above-mentioned metal or alloy is used in the group of the present invention. The metal material of the film is selected from the group consisting of silver-copper alloy, silver-indium-gold alloy, silver-bismuth alloy and silver-gold alloy; () species are as in items (1) to (6) Any of the optical semiconductor devices 201030191. « «The manufacturing method of the XI lead frame, characterized in that the sterling silver layer and The method of manufacturing a lead frame for an optical semiconductor device according to any one of the items (3) to (6), wherein the sterling silver is formed by the method of the present invention. The layer, the intermediate layer, and the skin layer are formed by a plating method. The lead frame for the optical semiconductor device of the present invention is attached to a lead frame for an optical semiconductor in which a pure silver layer is formed, and an arithmetic mean height of a surface of the pure silver layer is " It is in the range of 0.001 to 0.2, and a metal layer having excellent corrosion resistance is formed on the surface layer of 〇〇〇1 or more and 厚度.2 or less (average film thickness), whereby excellent reflection properties of silver can be exhibited. It can improve corrosion resistance (especially corrosion resistance to sulphide corrosion) and prevent migration. Furthermore, since silver cannot avoid the decrease in reflectance in the ultraviolet region below 400 nm, the reflectance of the ultraviolet region, especially 300 nm, can be covered by a metal other than silver or an alloy thereof by a thin percentage. The reflectance is increased to a level of tens of percent, so that it can be used as a lead frame for an optical semiconductor device having excellent reflection characteristics covering the ultraviolet region to the near-infrared region. Further, the manufacturing method of the present invention can be used as a lead frame for an optical semiconductor device for an LED, a photocoupler, a photointerrupter, etc., and the wavelength of light is 300 nm to the near infrared region of the ultraviolet region. A lead frame excellent in reflection characteristics, heat dissipation, corrosion resistance (especially corrosion resistance against sulfidation corrosion), and long-term stability of reflectance. The above and other features and advantages of the present invention will be apparent from the description and appended claims. [Embodiment] FIG. 1 is a schematic cross-sectional view showing an embodiment of a lead frame for an optical semiconductor device according to the present invention. Here, the state in which the optical semiconductor wafer 4 is carried on the lead frame is shown in Fig. 1 (the same applies to Figs. 3 to 8 below). As shown in FIG. 1, the lead frame of the present embodiment is formed with a pure silver layer 2 made of pure silver on the substrate 1. On the surface layer of the pure silver layer 2, a film 3 made of a metal material excellent in resistance is formed. . In the present invention, the arithmetic mean height Ra of the pure silver layer 2 is 0.001 to 0·2 //m, and the thickness of the film 3 is 0.001 " m or more and 0.2 μm or less. The lead frame of the present invention is a lead frame for an optical semiconductor device which is excellent in reflection characteristics in the visible light region, and has excellent corrosion resistance (especially, the corrosion resistance of the vulcanization residue) and migration resistance. The base vessel 1 may, for example, be copper or a copper alloy, aluminum or aluminum alloy, iron or iron alpha gold 4, preferably a metal or alloy selected from the group consisting of copper, copper alloys, and alloys. By using the substrate 1 as a copper or copper alloy, an inscription or an alloy, it is possible to provide a lead frame which is easy to form a film and which contributes to cost reduction. Moreover, since the characteristics of the lead frame which are excellent in electrical conductivity, that is, the thermal conductivity is good, the heat dissipation characteristics are excellent, and the heat energy generated when the illuminant emits light can be smoothly discharged to the outside through the lead frame, so that the illuminating S piece can be expected. Long life and stable long-term reflection characteristics. Further, in the present invention, "the reflection property is good" means that the reflectance is 3% or more in the wavelength of 300 to 400 nm, and is 70% or more in the wavelength of 4 〇〇 to 8 〇〇 nm. The thickness of the layer 2 of sterling silver is preferably 0.2 to 5.0 // m, and more preferably 201030191 〇·5 to 4.0 //m, more preferably rabbit · 3 Λ ·~. from m. If the thickness of the pure silver layer is too thin, the thickness which contributes to the reflectance may not be & in other respects, although it is too thick, it may be saturated, but the cost will become high. By setting the coating thickness of the pure material 2 to the above range, it is possible to inexpensively manufacture without using a precious metal exceeding a required amount. The silver concentration (purity) for forming the pure silver layer is preferably % by mass or more, and more preferably 98% by mass or more.

圖2係於基體i上層形成有純銀層2,並於其上層形成 有作為最表層之皮冑3之部分之示意放大剖面圖。如圖所 示,純銀層2之表面具有凹凸形狀,表示表面之粗糖度之 指數即算術平均高度Rajfe佳為請丨邊2 _,進而較佳 為〇·〇1〜0.15 "m,更佳為〇.〇5〜〇.15 。再者,上述算 術平均高度Ra係根據日本工業規格(JIS)之表面粗糙度-定 義及表示(Β0601·2〇〇1)而測得之值。 藉由將純銀層2之算術平均高度汉&設為上述範圍内, 可緻密地形成最表層所形成之由耐蝕性(尤其對硫化腐蝕之 耐敍性)優異之金屬材料構成之皮膜3。因此,可有效地防 止开> 成皮膜3時易產生之針孔或非被覆部之形成,因此可 形成對各種原因之耐蝕性優異之皮膜。又,若Ra過大,則 易因表層之凹凸而導致隨後之晶片搭載步驟或接合步驟產 生故障,且無法藉由作為最表層之皮膜3穩定且均勻地覆 蓋純銀層2之表層,導致形成純銀層2之露出部分之可能 性較高。其結果,於作為光半導體用導線架而使用之過程 中,純銀層2主要會因硫成分而硫化變色,導致反射率下 降。為改善該問題,必須使最表層厚度更厚,以賦予耐钱 9 201030191 性,因此會造成成本變高,因而並不理想。 再者,作為Ra之控制方沐,·^姑丄、t 了藉由添加至純銀電鍍液 中之添加劑或電鍍時之電流密度來適當調整。 如上所冑於基艘1上之最表層形成由可防止因純銀 層2硫化所致之變色(腐姓)之金屬材料所構成之皮膜3,藉 此確保純銀層2之銀的長期可靠性。又,皮膜3之厚度(平 均膜厚:於皮膜之任意、1〇4測得之厚度的算術平均值)係設 為0.001 /zm以上、0.2心以下。若最表層之厚度過薄 則無法獲得充分之耐姓性效果,相W,若過厚則無法發 揮有助於光反射之銀之反射率,因此會導致反射率於整個 區域中急遽下降。若亦考慮到算術平均高度之影響,則反 射率實質上開始下降者係皮膜3之平均膜厚厚於〇1 “爪 左右時,但若為直至0.2 為止之厚度,則為可充分^ 揮下層(純銀層2)之銀之反射率的厚度’若被覆厚度超過〇 2 Am,則會呈現出反射率急遽下降之臨界點般之變化。因 此,於本發明中,更為重要的是以〇 〇〇1〜〇 2 "瓜之被覆厚 度而緻密且均勻地被覆。為將純銀層2之反射率保持為較 高狀態,皮膜3之厚度較佳為〇·0〇5〜〇 ! ,更佳 0.005〜0.05βηι。 作為最表層之由耐蝕性優異之金屬材料構成之皮媒 較佳為由難以與硫、碳或氧等發生反應且難以發生變色 具有耐#性之金屬材料所構成之層,作為金屬材料例如η 列舉選自由金、金合金、銀合金、鉑、始合金、錯、鎮° 金、鎳、鎳合金、鈷、鈷合金、鈀、鈀合金、釕、釘人金 201030191 姥姥合金、銀、鼓合金、銦及銦合金組成之群中之金屬 材料,更佳為使用選自由金、金合金、銀合金、始、銘合 錢錢。金、銦及銦合金+ 於形成作為最表層之皮膜3之耐蝕性優異之金屬 材料為銀口金之情形時,該銀合金較佳為選自由銀-錫合 金、銀-銅合金、銀-銦合金、銀,合金、銀·舒合金、銀· 金口金銀-把合金、銀_錦合金等組成之群中之銀合金,進 ⑩ 而’尤佳為選自由銀·銅合金、銀·銦合金、銀-鍺合金及銀― 金合金組成之群中之銀合金。 可更有效地活用銀之反射率者為銀合金,其可相對較 廉價地製造。尤其,带$ μ、+、& i α 、形成上述口金相對較容易,防銹處理 效果較而且反射特性亦良好。 成為最表層之皮膜3只要為上述範圍内之厚度(平均膜 厚)即可,層數並無規定。例如可將Au層設為〇〇〇5心, 於其上層將卜層設為㈣5 然而1考慮到生產性 或成本等’則較佳為2層以内。 本發明之導線架搭載光半導體晶片4,且適#地連接外 部配線以自外部對光半導體4供給電力,並以樹脂對光半 導體晶片4及其周圍進行鑄模而形成光半導體裝置。 皮膜3之形成部位必須至少形成於搭載光半導體晶片* 之部位。換言之’搭載光半導體晶片4之場所以外:需形 成皮膜3。其原因在於,若藉由僅於光半導體晶片4之搭載 部形成皮膜3便可防止具有反射板作用之純銀層2 ^變 色,則不會對反射特性造成較大影響,4列如鑄模樹脂之部 11 201030191 ^亦可為最表層之純銀層3。因此,所形成之皮膜3 1¾可部 形成例如亦可利用條狀電锻或點狀電链等之部分電 鍍來形成。製造局部形成之導線架可削減成為多餘部分之 金屬使用4,因此可提供對於環境溫和且省成本之光 體用導線架。 又,作為半導體晶片4,可使用LED元件等任意光半 圖3係本發明之光半導體裝置用導線架之另一實施態Fig. 2 is a schematic enlarged cross-sectional view showing a portion in which the pure silver layer 2 is formed on the upper layer of the substrate i, and a portion of the skin layer 3 as the outermost layer is formed on the upper layer. As shown in the figure, the surface of the pure silver layer 2 has a concave-convex shape, indicating that the index of the gross sugar content of the surface, that is, the arithmetic mean height Rajfe is preferably 2 _, and more preferably 〇·〇1 to 0.15 " m, more preferably For 〇.〇5~〇.15. Further, the arithmetic average height Ra is a value measured in accordance with the surface roughness-definition and expression (Β0601·2〇〇1) of the Japanese Industrial Standard (JIS). By setting the arithmetic mean height of the pure silver layer 2 to the above range, the film 3 composed of the metal material excellent in corrosion resistance (especially, the resistance to sulfide corrosion) formed by the outermost layer can be densely formed. Therefore, it is possible to effectively prevent the formation of pinholes or non-covered portions which are likely to occur when the film 3 is formed, and therefore it is possible to form a film excellent in corrosion resistance for various reasons. Further, if Ra is too large, the subsequent wafer mounting step or bonding step is liable to be broken due to the unevenness of the surface layer, and the surface layer of the pure silver layer 2 cannot be stably and uniformly covered by the film 3 as the outermost layer, resulting in formation of a sterling silver layer. The possibility of the exposed part of 2 is higher. As a result, in the process of being used as a lead frame for an optical semiconductor, the pure silver layer 2 is mainly vulcanized and discolored by the sulfur component, resulting in a decrease in reflectance. In order to improve this problem, it is necessary to make the thickness of the outermost layer thicker, so as to give the money, and thus the cost is high, which is not preferable. Further, as the control method of Ra, the amount of the additive added to the pure silver plating solution or the current density at the time of plating is appropriately adjusted. The outermost layer on the base boat 1 as described above forms the film 3 composed of a metal material which prevents discoloration (stagnation) caused by the vulcanization of the pure silver layer 2, thereby ensuring long-term reliability of the silver of the pure silver layer 2. Further, the thickness of the film 3 (the average film thickness: the arithmetic mean value of the thickness measured at 1 〇 4 in the film) is 0.001 / zm or more and 0.2 or less. If the thickness of the outermost layer is too thin, a sufficient resistance to the surname effect cannot be obtained, and if the thickness is too large, the reflectance of the silver which contributes to the light reflection cannot be performed, and thus the reflectance is drastically lowered in the entire region. If the influence of the arithmetic mean height is also taken into consideration, the average film thickness of the film 3 is thicker than that of the 〇1 "claw" when the reflectance starts to decrease substantially. However, if the thickness is up to 0.2, the layer can be sufficiently lowered. (Thickness of the reflectance of silver in the layer of pure silver 2) If the thickness of the coating exceeds 〇2 Am, it will exhibit a change like the critical point at which the reflectance drops sharply. Therefore, in the present invention, it is more important that 被〇〇1~〇2 "The cover of the melon is densely and uniformly coated. In order to keep the reflectance of the pure silver layer 2 high, the thickness of the film 3 is preferably 〇·0〇5~〇! Preferably, the skin medium composed of a metal material having excellent corrosion resistance as the outermost layer is preferably a layer composed of a metal material which is hard to react with sulfur, carbon or oxygen, and which is less likely to cause discoloration and has a resistance to metal. As a metal material such as η, it is selected from the group consisting of gold, gold alloy, silver alloy, platinum, alloy, gold, nickel, nickel alloy, cobalt, cobalt alloy, palladium, palladium alloy, rhodium, nail man gold 201030191 姥姥Alloy, silver, drum alloy, And a metal material in the group consisting of indium alloys, more preferably selected from the group consisting of gold, gold alloys, silver alloys, and money, gold, indium, and indium alloys + for forming the corrosion resistance of the film 3 as the outermost layer. When the excellent metal material is silver mouth gold, the silver alloy is preferably selected from the group consisting of silver-tin alloy, silver-copper alloy, silver-indium alloy, silver, alloy, silver sulphide alloy, silver gold gilt a silver alloy in a group consisting of an alloy, a silver alloy, and the like, and is preferably a silver alloy selected from the group consisting of silver, copper alloy, silver indium alloy, silver-bismuth alloy, and silver-gold alloy. The silver reflectance can be more effectively utilized as a silver alloy, which can be manufactured relatively inexpensively. In particular, it is relatively easy to form the above-mentioned gold with the addition of $μ, +, & i α, and the anti-rust treatment effect and reflection The film 3 which is the outermost layer may have a thickness (average film thickness) within the above range, and the number of layers is not defined. For example, the Au layer may be a 〇〇〇5 core, and the upper layer may be a layer. Set to (4) 5 However, 1 is considered to be productive or cost-like. The lead frame of the present invention is equipped with an optical semiconductor wafer 4, and is connected to an external wiring to supply electric power to the optical semiconductor 4 from the outside, and molds the optical semiconductor wafer 4 and its surroundings with a resin to form an optical semiconductor device. The formation portion of the film 3 must be formed at least in the portion where the optical semiconductor wafer* is mounted. In other words, the film 3 is formed in addition to the place where the optical semiconductor wafer 4 is mounted. This is because the mounting portion of the optical semiconductor wafer 4 is used only. The formation of the film 3 prevents the discoloration of the pure silver layer 2 having the function of the reflecting plate, and does not greatly affect the reflection characteristics, and the four columns such as the portion 11 of the mold resin can be the outermost layer of the pure silver layer 3. Therefore, The formed film 3 13⁄4 can be formed, for example, by partial plating such as strip-shaped electric forging or point-shaped electric chain. The manufacture of a partially formed lead frame can reduce the use of metal as an excess, thus providing a light guide for light and environmentally friendly. Further, as the semiconductor wafer 4, any light half such as an LED element can be used. FIG. 3 is another embodiment of the lead frame for an optical semiconductor device of the present invention.

樣之概略剖面圖’對於圖1所示之態樣之導線架,於基體二 及純銀層2之間形成有中間層5。再者,於圖中關於未特 別言及之符號,係表示與圖i中之符號相同之含義(以下之 圖中亦同樣)。 中間層5較佳為由選自由錄、錄合金、銘、銘合金、 銅、銅合金組成之群中之金屬或合金構成。 藉由於純銀層2與基體i之間設置由錄或錄合金、钻 或钻合金、銅或銅合金構成之中間層5,可防止因發光元件A schematic cross-sectional view of the present invention has an intermediate layer 5 formed between the base 2 and the sterling silver layer 2 for the lead frame of the aspect shown in FIG. In addition, in the drawings, the symbols which are not specifically mentioned are the same as the symbols in the figure i (the same applies to the following figures). The intermediate layer 5 is preferably made of a metal or alloy selected from the group consisting of recording, recording alloys, alloys, alloys, copper, and copper alloys. The light-emitting element can be prevented by providing an intermediate layer 5 composed of a recorded or recorded alloy, a drilled or drilled alloy, copper or a copper alloy between the pure silver layer 2 and the substrate i.

之發熱導致基趙之擴散所造成之反射特性之劣化,從而使 反射特性長期之可靠性更高。 1於中間層5之厚度,並無特別限定,但若考慮到々 ^ f生成本、生產性、耐熱性,較佳為0.2〜2 // m,更佳^ 0.5〜1 # m較為適當。層數亦無特別規^,但若亦考慮到』 產性,則通常為1層。 又一實施態 4之部分形 圖4係本發明之光半導體裝置用導線架之 樣之概略剖面圖,表示僅於搭載光半導體晶片 12 201030191 有由耐蝕性優異之金屬材料構成之皮膜3之情形。 圖5係本發明之光半導體裝置用導線架之又—實施態 樣之概略剖面圖,僅於搭載光半導體晶# 4之部分形成有 由耐钱性優異之金屬材料構成之皮膜3,還形成有中間層5。 圖6係與圖3所示之態樣同樣之光半導體裝置用導線 架之概略剖面圖’於導線架兩面搭載有光半導體晶片4。如 本‘“樣所示’亦可不僅使用單面而使用兩面構成光半導體 裝置。 ⑩ ® 7係、本發明之光半$體裝置用#線架之又一實施態 樣之概略剖面圖,係於基體1上設置凹部並於該凹部内侧 搭載光半導體晶片4者。如該形狀般,本發明之光半導體 裝置用導線架當然亦可適應於設置凹部以提高聚光性之導 線架形狀。 圖8係本發明之光半導體裝置用導線架之剖面圖例, 係於基體1上設置凹部並於該凹部内側搭載光半導體者, 且僅於該凹部形成有最表層3。如此,藉由僅對有助於光半 導體所發出之光的反射之部分施以最表層,從而亦可適當 地利用於僅提高反射部之耐蝕性。 光半導體裝置用導線架之製造可使用任意方法,但純 銀層2、由耐姓性優異之金屬材料構成之皮膜3、中間層5 較佳為藉由電鍍法而形成。電鍍法與包層法或濺鍍法相 比’可容易調整厚度,且成本亦較低。 [實施例] 以下’根據實施例更詳細地說明本發明,但本發明並 13 201030191 不限定於此。「基底層」與上述「中間層」為同義。 實施例1 對厚度0·3 mm、寬度50 mm之表1所示之基體進行下 述前處理之後’藉由下述電鍍處理,獲得纟1所示之構成 之本發明例1〜39、先前例i及比較例i、2之導線架。 各導線架之層構成於本發明例i〜6中依基體、純銀層、 最表層皮膜之順序所形成者,先前例丨係依基體、基底層、 純銀層之順序所形成者,本發明例7〜39及比較例i、2係 依基體、基底層、純銀層、最表層皮膜之順序所形成者。❹ 又,純銀層係藉由下述Ag電鍍條件而於所有例中形成為工 以以之厚度者,於最表層皮膜形成前,以接觸式表面粗糙度 計(SURFCORDER SE_3〇H(商品名):(股)小阪研究所製)測定 表面粗糙度之結果為’算術平均高度尺&=〇12 Vm。 又,用於基體之材料中,「C11000」、「C26800」、 「C52100」、「C77000」及「C19400」係表示銅或銅合金 基體’ C之後之數值係表示基於cDA(Copper DevelopmentThe heat generation causes deterioration of the reflection characteristics caused by the diffusion of the base Zhao, so that the reflection characteristics are more reliable in the long term. The thickness of the intermediate layer 5 is not particularly limited, but it is preferably 0.2 to 2 // m, more preferably 0.5 to 1 # m, in consideration of 々 生成 f generation, productivity, and heat resistance. There is no special rule for the number of layers, but if it is also considered to be productive, it is usually 1 layer. 4 is a schematic cross-sectional view of a lead frame for an optical semiconductor device according to the present invention, and shows a case where only the film 3 composed of a metal material having excellent corrosion resistance is mounted on the optical semiconductor wafer 12 201030191. . Fig. 5 is a schematic cross-sectional view showing another embodiment of a lead frame for an optical semiconductor device according to the present invention, and a film 3 made of a metal material excellent in resistance to money is formed only in a portion where the optical semiconductor crystal #4 is mounted, and is formed. There is an intermediate layer 5. Fig. 6 is a schematic cross-sectional view of a lead frame for an optical semiconductor device similar to that shown in Fig. 3. The optical semiconductor wafer 4 is mounted on both surfaces of the lead frame. As shown in the 'samples', it is also possible to use not only one side but also two sides to form an optical semiconductor device. 10 ® 7 series, a light cross-section of the present invention, a schematic cross-sectional view of another embodiment of the wire frame, The optical semiconductor wafer 4 is mounted on the base 1 and the optical semiconductor wafer 4 is mounted on the inside of the recess. As the shape, the lead frame for the optical semiconductor device of the present invention can of course be adapted to the recessed portion to improve the shape of the concentrating lead frame. Fig. 8 is a cross-sectional view showing a lead frame for an optical semiconductor device according to the present invention, in which a concave portion is provided in a base 1 and a photo-semiconductor is mounted on the inside of the concave portion, and only the outermost layer 3 is formed only in the concave portion. The portion that contributes to the reflection of the light emitted by the photo-semiconductor is applied to the outermost layer, and can be suitably used to improve the corrosion resistance of the reflective portion. The lead frame for the optical semiconductor device can be manufactured by any method, but the sterling silver layer 2 The film 3 and the intermediate layer 5 composed of a metal material excellent in resistance to the surname are preferably formed by electroplating. The electroplating method can be easily adjusted in thickness and cost compared with the cladding method or the sputtering method. [Embodiment] Hereinafter, the present invention will be described in more detail based on the examples, but the present invention is not limited thereto. The "base layer" is synonymous with the above "intermediate layer". Example 1 After the following pretreatment was carried out on the substrate shown in Table 1 having a thickness of 0.3 mm and a width of 50 mm, the present invention was carried out by the following plating treatment to obtain Examples 1 to 39 of the present invention having the constitution shown in FIG. Example i and lead frames of comparative examples i and 2. The layers of the lead frames are formed in the order of the substrate, the pure silver layer, and the outermost layer in the examples i to 6 of the present invention, and the conventional examples are formed by the order of the substrate, the base layer, and the pure silver layer. 7 to 39 and Comparative Examples i and 2 are formed in the order of the substrate, the underlayer, the sterling silver layer, and the outermost layer film. ❹ Further, the pure silver layer is formed into a thickness in all cases by the following Ag plating conditions, and is contacted with a surface roughness meter before the formation of the outermost layer film (SURFCORDER SE_3〇H (trade name) : (Stock) Kosaka Research Institute) The result of measuring the surface roughness is 'arithmetic average height gauge &=〇12 Vm. Further, among the materials used for the substrate, "C11000", "C26800", "C52100", "C77000", and "C19400" indicate copper or copper alloy bases. The numerical value after C is based on cDA (Copper Development).

Association ’銅業發展協會)規格之種類。又,r EFteC-3」 Ο 係古河電氣工業(股)製之銅合金,係CDA規格中以 「C14410」所示之銅合金。 又,「A1100」、「A2014」、「A3003」及「A5052」 係表示銘或铭合金基體,A之後之數值係表示基於JIS之種 類。 又,「SUS3 04」及「42合金」係表示鐵合金基體, 「SUS304」係表示JIS規定之相應種類之不鏽鋼,「42合 14 201030191 金」係表示含42%之Ni之鐵合金。 作為前處理係對於基體中之銅基體、銅合金基體及鐵 合金基體’進行下述電解脫脂,繼而進行下述酸洗。又, 對於鋁基體及鋁合金基體,進行下述電解脫脂,繼而進行 下述酸洗’然後進行下述鋅取代。再者,在形成純鍍銀層 之前’以厚度0_01 //m實施預鍍銀。 以下表示前處理條件。 (前處理條件) Φ [電解脫脂] 脫脂液:NaOH60 g/升 脫脂條件:2·5 A/dm2,溫度6(TC,脫脂時間60秒 [酸洗] 酸洗液:10%硫酸 酸洗條件:3 〇秒浸潰,室溫 [鋅取代]當基體為鋁時使用 鋅取代液:NaOH 500 g/升,ZnO 100 g/升,酒石酸 φ (C:4H606) 10 g/升,FeCl2 2 g/升 處理條件:3 〇秒浸潰,室溫 [Ag預電鍍]被覆厚度〇.〇1以m 電鑛液:KAg(CN)2 5 g/升,KCN 60 g/升, 電鑛條件:電流密度2 A/dm2,電鍍時間4秒,溫度25Association 'Bronze Development Association' specifications. Further, r EFteC-3" is a copper alloy manufactured by Furukawa Electric Co., Ltd., which is a copper alloy shown by "C14410" in the CDA specification. Further, "A1100", "A2014", "A3003", and "A5052" indicate the base of the Ming or Ming alloy, and the numerical values after A indicate the types based on JIS. In addition, "SUS3 04" and "42 alloy" are ferroalloy bases, "SUS304" is a stainless steel of the corresponding type specified by JIS, and "42-in 14 201030191 gold" is a ferroal alloy containing 42% of Ni. The pretreatment is carried out by electrolytic degreasing of the copper substrate, the copper alloy substrate and the iron alloy substrate ' in the substrate, followed by the following pickling. Further, the aluminum base and the aluminum alloy base were subjected to the following electrolytic degreasing, followed by the following pickling, and then the following zinc substitution was carried out. Further, pre-plating of silver is performed at a thickness of 0_01 //m before the formation of the pure silver plating layer. The preprocessing conditions are indicated below. (Pre-treatment conditions) Φ [Electrolytic degreasing] Degreasing liquid: NaOH 60 g / liter Degreasing conditions: 2·5 A/dm2, temperature 6 (TC, degreasing time 60 seconds [acid washing] Pickling liquid: 10% sulfuric acid pickling conditions :3 leptosecond impregnation, room temperature [zinc substitution] When the matrix is aluminum, use zinc substitution solution: NaOH 500 g / liter, ZnO 100 g / liter, tartaric acid φ (C: 4H606) 10 g / liter, FeCl2 2 g / liter treatment conditions: 3 leap seconds impregnation, room temperature [Ag pre-plating] coating thickness 〇. 〇 1 to m electro-mineral: KAg (CN) 2 5 g / liter, KCN 60 g / liter, ore conditions: Current density 2 A/dm2, plating time 4 seconds, temperature 25

°C 以下表示所使用之各電鍍之電鍍液組成及電鍍條件。 [Ag電鍍]被覆厚度!,〇私m 15 201030191 電鍍液:AgCN 50 g/升,KCN 100 g/升,K2C〇3 3〇 g/ 升 電鍛條件:電流密度i A/dm2,溫度3(rc,處理時間 96秒 [Ni電鍍] 電鍍液:Ni(S03NH2)2 · 4H20 500 g/升,NiCl2 3〇 g/升, H3B〇3 30 g/升 電鍍條件:電流密度5 A/dm2,溫度50°c [Co電鍍] 電鍍液:Co(S03NH2)2· 4H20 500 g/升,c〇Cl2 30 g/ 升,H3B〇3 30 g/升 電鍍條件:電流密度5 A/dm2,溫度5〇°C [Cu電鍍] 電鍍液:CuS04 · 5H20 250 g/升,H2S04 50 g/升,NaCl 〇·1 g/升 電鍍條件:電流密度6 A/dm2,溫度4〇。〇 [In電鍍] 電鍍液:InCl3 45 g/升,KCN 150 g/升,KOH 35 g/升, 糊精35 g/升 電鑛條件:電流密度2 A/dm2,溫度20°C [Au電鍍] 電鍍液:KAu(CN)2 14.6 g/升,c6H8〇7 150 g/升, K2C6H4〇7 180 g/升°C The following shows the plating composition and plating conditions of each plating used. [Ag plating] coating thickness! , 〇 m m 15 201030191 Plating solution: AgCN 50 g / liter, KCN 100 g / liter, K2C 〇 3 3 〇 g / liter electric forging conditions: current density i A / dm2, temperature 3 (rc, processing time 96 seconds [ Ni plating] Plating solution: Ni(S03NH2)2 · 4H20 500 g/L, NiCl2 3〇g/L, H3B〇3 30 g/L Plating conditions: current density 5 A/dm2, temperature 50°c [Co plating] Plating solution: Co(S03NH2)2· 4H20 500 g/liter, c〇Cl2 30 g/liter, H3B〇3 30 g/liter plating conditions: current density 5 A/dm2, temperature 5 〇 ° C [Cu plating] plating Liquid: CuS04 · 5H20 250 g / liter, H2S04 50 g / liter, NaCl 〇 · 1 g / liter plating conditions: current density 6 A / dm2, temperature 4 〇. 〇 [In plating] plating solution: InCl3 45 g / liter , KCN 150 g / liter, KOH 35 g / liter, dextrin 35 g / liter electro-minening conditions: current density 2 A / dm2, temperature 20 ° C [Au plating] plating solution: KAu (CN) 2 14.6 g / liter , c6H8〇7 150 g/liter, K2C6H4〇7 180 g/liter

電鍍條件:電流密度i A/dm2,溫度4(TC 201030191 [Au-Co 電鍍]Au-0.3%Co 電鍍液:KAu(CN)2 14.6 g/升,c6H8〇7 15〇 g/升, K2C6H407 180 g/升,EDTA_Co(II) 3 g/升,哌嗪 2 g/升 電鍵條件:電流密度1 A/dm2,溫度4〇t [Ag-Cu 合金電鍍]Ag-20%Cu 電魏液:AgCN 2.5 g/升,CuCN 70 g/升,KCN 6〇 g/升, K2CO3 20 g/升 電鍍條件:電流密度0.5 A/drn2,溫度5〇〇c 〇 [Ag-In 合金電鍍]Ag-10%In 電鍍液:KCN 100 g/升,NaOH 50 g/升 ’ AgCN 10 g/ 升,I11CI3 20 g/升 電鑛條件:電流密度2 A/dm2,溫度3〇°c [Pt電鍍] 電鍵液:Pt(N02)2(NH3)2 10 g/升,NaN02 10 g/升, nh4no3 100 g/升,NH3 50 毫升/升 電鐘條件:電流密度5 A/dm2,溫度90°C ® [Rh電鐘] 電鍛液.RHODEX(商品名,Japan Electroplating Engineers(股)製) 電鍍條件:1.3 A/dm2,溫度50。〇 [Sn電鍍]Plating conditions: current density i A/dm2, temperature 4 (TC 201030191 [Au-Co plating] Au-0.3% Co plating bath: KAu (CN) 2 14.6 g / liter, c6H8 〇 7 15 〇 g / liter, K2C6H407 180 g / liter, EDTA_Co (II) 3 g / liter, piperazine 2 g / liter electric bond conditions: current density 1 A / dm2, temperature 4 〇 t [Ag-Cu alloy plating] Ag-20%Cu electric fluid: AgCN 2.5 g / liter, CuCN 70 g / liter, KCN 6 〇 g / liter, K2CO3 20 g / liter plating conditions: current density 0.5 A / drn2, temperature 5 〇〇 c 〇 [Ag-In alloy plating] Ag-10% In plating solution: KCN 100 g / liter, NaOH 50 g / liter ' AgCN 10 g / liter, I11CI3 20 g / liter electro-minening conditions: current density 2 A / dm2, temperature 3 〇 ° c [Pt plating] Keychain: Pt(N02)2(NH3)2 10 g/L, NaN02 10 g/L, nh4no3 100 g/L, NH3 50 ml/L electric clock Condition: Current density 5 A/dm2, temperature 90 °C ® [Rh electricity Clock] Electric forging liquid. RHODEX (trade name, manufactured by Japan Electroplating Engineers Co., Ltd.) Plating conditions: 1.3 A/dm2, temperature 50. 〇 [Sn plating]

電鍍液:SnS04 80 g/升 ’ H2S04 80 g/升 電鑛條件:電流密度2 A/dm2,溫度30°C [Ni-P合金電鍍]Ni-3%P 17 201030191 電鍍液· NiS〇4 20 g/升,NaH2P〇2 25 g/升,C3H603 25 g/升 ’ C3H6〇2 3 g/升 電錄條件:無電解電鑛,溫度9〇。〇 [Pd電鍍] 電鑛液:Pd(NH3)2Cl2 45 g/升,NH4OH 90 毫升/升, (NH4)2S04 50 g/升 電鍍條件:電流密度1 A/dm2,溫度30°C [Pd-Ni 合金電鍍]Pd-20%Ni 電鍍液· Pd(NH3)2Cl2 40 g/升,NiS〇4 45 g/升,NH4OH 90 毫升 /升,(NH4)2S04 50 g/升 電鍍條件:電流密度1 A/dm2,溫度3(TC [Ag-Pd 合金電鍍]Ag-10°/〇Pd 電鍍液:KAg[CN]2 20 g/升,PdCl2 25 g/升,Κ407Ρ2 60 g/升,KSCN 150 g/升 電鍍條件:電流密度〇·5 A/dm2,溫度40°C [Ru電鍍]Plating solution: SnS04 80 g / liter ' H2S04 80 g / liter of electro-minening conditions: current density 2 A / dm2, temperature 30 ° C [Ni-P alloy plating] Ni-3%P 17 201030191 plating solution · NiS 〇 4 20 g / liter, NaH2P 〇 2 25 g / liter, C3H603 25 g / liter ' C3H6 〇 2 3 g / liter record conditions: electroless mine, temperature 9 〇. 〇[Pd plating] Electron ore: Pd(NH3)2Cl2 45 g/L, NH4OH 90 ml/L, (NH4)2S04 50 g/L Plating conditions: Current density 1 A/dm2, temperature 30 °C [Pd- Ni alloy plating] Pd-20%Ni plating solution · Pd(NH3)2Cl2 40 g/liter, NiS〇4 45 g/liter, NH4OH 90 ml/liter, (NH4)2S04 50 g/liter plating conditions: current density 1 A/dm2, temperature 3 (TC [Ag-Pd alloy plating] Ag-10°/〇Pd plating bath: KAg[CN]2 20 g/liter, PdCl2 25 g/liter, Κ407Ρ2 60 g/liter, KSCN 150 g / Li plating conditions: current density 〇 · 5 A / dm2, temperature 40 ° C [Ru plating]

電鍍液:RuNOC13 · 5H20 l〇 g/升,nH2s〇3H 15 g/升 電鍍條件:電流密度1 A/dm2,溫度5〇°C 對於所得之本發明例、比較例及先前例之導線架,藉 由下述測試及基準進行評價。 (1)反射率:於分光光度計((股)HitachiPlating solution: RuNOC13 · 5H20 l〇g / liter, nH2s 〇 3H 15 g / liter plating conditions: current density 1 A / dm2, temperature 5 〇 ° C For the obtained lead frame of the present invention, comparative examples and previous examples, Evaluation was performed by the following tests and benchmarks. (1) Reflectance: in spectrophotometer ((share) Hitachi

High-Technologies 製,商品名:υ-4100)中,自 300 nm 直 至800 nm對全反射率實施連續測定。其中,將3〇〇 nm、500 nm及800 nm中之反射率(%)示於表2。此處,將波長3〇〇 ηηι 201030191 之反射率為30%以上、波長500 nm及800 nm之反射率為 70%以上判斷為實用等級。 (2)耐蝕性:對於硫化測試(JIS η 8502揭示),H2S 3 ppm ’ 24 h後之腐触狀態’實施分級(Rating Number,RN) 評價。將結果示於表2。此處’作為耐蝕性良好之等級,RN 為9以上時判斷為長期可靠性良好。 (3)散熱性(熱傳導性):將基材之導電率依 IACS(International Annealed Copper standard,國際退火銅 ❹標準)為1G%以上者視為熱傳導性較高而標&「〇」,將未 達1 0%者視為熱傳導性鲂你1 ^ rThe total reflectance was continuously measured from 300 nm to 800 nm in the product of High-Technologies, trade name: υ-4100). Among them, the reflectance (%) in 3 〇〇 nm, 500 nm, and 800 nm is shown in Table 2. Here, the reflectance of the wavelength 3 〇〇 ηηι 201030191 is 30% or more, and the reflectance of the wavelengths of 500 nm and 800 nm is 70% or more, which is judged to be a practical grade. (2) Corrosion resistance: For the vulcanization test (JIS η 8502), the corrosion state of the H2S after 3 ppm ' 24 h was evaluated by Rating Number (RN). The results are shown in Table 2. Here, 'is a good grade of corrosion resistance, and when RN is 9 or more, it is judged that long-term reliability is good. (3) Heat dissipation (thermal conductivity): When the conductivity of the substrate is 1 G% or more in accordance with IACS (International Annealed Copper Standard), it is considered to be high in thermal conductivity and will be "&". Less than 10% are considered as thermal conductivity 鲂 you 1 ^ r

並非否定其實用性。It is not a denial of its practicality.

Xj ’並示於表2»其 卜比例關係,依IACS具有 I導性較好而散熱性亦較 ’即使熱傳導性較低者亦 201030191 [表i] 基體 基底層 基底層厚度(μ m) 最表層皮膜 最表層厚度(μ m) 本發明例1 EFTEC-3 — — In 0.0015 本發明例2 EFTEC-3 — — In 0.009 本發明例3 EFTEC-3 — — In 0.025 本發明例4 EFTEC-3 — — In 0.048 本發明例5 EFTEC-3 — — In ·* 0.1 本發明例6 EFTEC-3 — — In 0.19 本發明例7 EFTEC-3 Ni 0.51 In 0.054 本發明例8 EFTEC-3 Co 0.55 In 0.049 本發明例9 EFTEC-3 Cu 0.48 In 0.052 本發明例10 C11000 Ni 0.54 In 0.053 本發明例11 C26800 Ni 0.49 In 0.051 本發明例12 C52100 Ni 0.49 In 0.048 本發明例13 C77000 Ni 0.57 In 0.049 本發明例14 C19400 Ni 0.52 In 0.048 本發明例15 EFTEC-3 Ni 0.53 Au 0.051 本發明例16 EFTEC-3 Ni 0.53 Au-Co 0.053 本發明例17 EFTEC-3 Ni 0.54 Ag-Cu 0.054 本發明例18 EFTEC-3 Ni 0.51 Ag-In 0.052 本發明例19 EFTEC-3 Ni 0.52 Pt 0.0013 本發明例20 EFTEC-3 Ni 0.55 Pt 0.008 本發明例21 EFTEC-3 Ni 0.5 Pt 0.021 本發明例22 EFTEC-3 Ni 0.51 Pt 0.053 本發明例23 EFTEC-3 Ni 0.52 Pt 0.097 本發明例24 EFTEC-3 Ni 0.55 Pt 0.195 本發明例25 A1100 Ni 0.51 Au 0.048 本發明例26 A2014 Ni 0.52 Au 0.048 本發明例27 A3003 Ni 0.52 Au 0.046 本發明例28 A5052 Ni 0.51 Au 0.051 本發明例29 EFTEC-3 Ni 0.52 Rh 0.05 本發明例30 EFTEC-3 Ni 0.56 Sn 0.052 本發明例31 EFTEC-3 Ni 0.46 Ni 0.05 本發明例32 EFTEC-3 Ni 0.51 Ni-P 0.052 本發明例33 EFTEC-3 Ni 0.47 Co 0.05 本發明例34 EFTEC-3 Ni 0.5 Pd 0.048 本發明例35 EFTEC-3 Ni 0.53 Pd-Ni 0.051 本發明例36 EFTEC-3 Ni 0.53 Ag-Pd 0.051 本發明例37 EFTEC-3 Ni 0.48 Ru 0.054 本發明例38 SUS304 Ni 0.46 Pt 0.11 本發明例39 42合金 Ni 0.49 Pt 0.13 比較例1 EFTEC-3 Ni 0.51 Pd 0.0005 比較例2 EFTEC-3 Ni 0.55 Pd 0.21 先前例1 EFTEC-3 Ni 2.05 — — 20 201030191 [表2]Xj ' is also shown in Table 2»The ratio of the ratio of I, IACS has better I conductivity and heat dissipation is better than 'even if the thermal conductivity is lower. 201030191 [Table i] Base substrate layer thickness (μ m) Surface layer film top layer thickness (μm) Inventive Example 1 EFTEC-3 - In 0.0015 Inventive Example 2 EFTEC-3 - In Inventive Example 3 EFTEC-3 - In 0.025 Inventive Example 4 EFTEC-3 - - In 0.048 Inventive Example 5 EFTEC-3 - In · * 0.1 Inventive Example 6 EFTEC-3 - In 0.19 Inventive Example 7 EFTEC-3 Ni 0.51 In 0.054 Inventive Example 8 EFTEC-3 Co 0.55 In 0.049 Inventive Example 9 EFTEC-3 Cu 0.48 In 0.052 Inventive Example 10 C11000 Ni 0.54 In 0.053 Inventive Example 11 C26800 Ni 0.49 In 0.051 Inventive Example 12 C52100 Ni 0.49 In 0.048 Inventive Example 13 C77000 Ni 0.57 In 0.049 Inventive Example 14 C19400 Ni 0.52 In 0.048 Inventive Example 15 EFTEC-3 Ni 0.53 Au 0.051 Inventive Example 16 EFTEC-3 Ni 0.53 Au-Co 0.053 Inventive Example 17 EFTEC-3 Ni 0.54 Ag-Cu 0.054 Inventive Example 18 EFTEC-3 Ni 0.51 Ag-In 0.052 Inventive Example 19 EFTEC-3 Ni 0.52 Pt 0.0013 EXAMPLE 20 EFTEC-3 Ni 0.55 Pt 0.008 Inventive Example 21 EFTEC-3 Ni 0.5 Pt 0.021 Inventive Example 22 EFTEC-3 Ni 0.51 Pt 0.053 Inventive Example 23 EFTEC-3 Ni 0.52 Pt 0.097 Inventive Example 24 EFTEC-3 Ni 0.55 Pt 0.195 Inventive Example 25 A1100 Ni 0.51 Au 0.048 Inventive Example 26 A2014 Ni 0.52 Au 0.048 Inventive Example 27 A3003 Ni 0.52 Au 0.046 Inventive Example 28 A5052 Ni 0.51 Au 0.051 Inventive Example 29 EFTEC-3 Ni 0.52 Rh 0.05 Inventive Example 30 EFTEC-3 Ni 0.56 Sn 0.052 Inventive Example 31 EFTEC-3 Ni 0.46 Ni 0.05 Inventive Example 32 EFTEC-3 Ni 0.51 Ni-P 0.052 Inventive Example 33 EFTEC-3 Ni 0.47 Co 0.05 Inventive Example 34 EFTEC-3 Ni 0.5 Pd 0.048 Inventive Example 35 EFTEC-3 Ni 0.53 Pd-Ni 0.051 Inventive Example 36 EFTEC-3 Ni 0.53 Ag-Pd 0.051 Inventive Example 37 EFTEC-3 Ni 0.48 Ru 0.054 Inventive Example 38 SUS304 Ni 0.46 Pt 0.11 Inventive Example 39 42 Alloy Ni 0.49 Pt 0.13 Comparative Example 1 EFTEC-3 Ni 0.51 Pd 0.0005 Comparative Example 2 EFTEC-3 Ni 0.55 Pd 0.21 Previous Example 1 EFTEC-3 Ni 2.05 — — 20 201030191 [Table 2]

@300 nm @500 nm @800 nm RN 散熱性 本發明例1 35 89 91 9.3 〇 本發明例2 39 86 88 9.5 〇 本發明例3 42 83 88 9.8 〇 本發明例4 48 82 87 10 〇 本發明例5 55 79 88 10 〇 本發明例6 65 77 85 10 〇 本發明例7 48 80 86 9.8 〇 本發明例8 48 81 85 10 〇 本發明例9 49 78 87 10 〇 本發明例10 47 83 88 9.8 〇 本發明例11 48 83 86 10 〇 本發明例12 46 83 87 9.8 〇 本發明例13 46 84 86 10 〇 本發明例14 48 84 87 10 〇 本發明例15 43 80 90 9.8 〇 本發明例16 44 81 90 9.5 〇 本發明例17 36 78 88 9.8 〇 本發明例18 45 83 90 9.8 〇 本發明例19 32 90 92 9 〇 本發明例20 37 88 90 9.5 〇 本發明例21 40 84 88 10 〇 本發明例22 43 82 85 9.8 〇 本發明例23 46 80 81 10 〇 本發明例24 50 77 79 10 〇 本發明例25 40 82 88 9.8 〇 本發明例26 38 82 87 9.5 〇 本發明例27 39 83 87 9.8 〇 本發明例28 40 81 86 9.8 〇 本發明例29 50 78 84 10 〇 本發明例30 56 76 78 9.8 〇 本發明例31 40 73 79 9.8 〇 本發明例32 38 73 79 9.8 〇 本發明例33 40 72 78 9.8 〇 本發明例34 45 70 75 10 〇 本發明例35 40 72 74 9.8 〇 本發明例36 33 73 77 9.8 〇 本發明例37 40 70 72 9.8 〇 本發明例38 46 79 81 9.8 X 本發明例39 46 80 81 9.8 X 比較例1 25 80 85 5 〇 比較例2 47 51 66 10 〇 先前例1 8 93 98 2 〇 21 201030191 再者’表1所示之基底層厚度、最表層厚度係作為平 均值(任意10處之測定值之算術平均)之厚度。 由表2所示之結果可明確’於銅或銅合金、鋁或鋁合 金上設置純銀;I’於其上&,於本發明所規定之厚度之範 圍内設置由耐飯性優異之金屬材料構成之皮膜,藉此可將 反射特性’尤其將300 nm處之反射率由先前之銀之數個百 分比之等級改善至數十個百分比之等級。該情形可適用於 藉由紫外區之反射率提高而利用該等波長之光半導體。並 且可知’若最表層之皮膜之厚度過厚,則光將無法到達純 銀層’因此最表層之光學特性較強,故而純銀之可見光㊄ 中之良好之反射特性將會消失,從而低於作為實用等級之 70% 〇 關於散熱特性,若利用導電率良好之金屬或其合金作 為導線架基體,與鐵或鐵合金(本發明例38、39)等相比則 較為良好。再者,本發明例38、39之導線架適合於較散熱 性更要求機械強度之用途。 實施例2 ^ 於厚度0.15 mm、寬度30 mm之由C19400構成之銅合 金上,以1.0 μιη之厚度形成作為基底層之鎳電鍍層,於 其上層形成純銀層,並以表3所示之厚度形成作為最表層 之Pt電鍍層’獲得本發明例40〜63及比較例3〜7之導線架。 各電鍍程序或液組成與實施例1之程序為同樣,對於純銀 層之形成,使用光澤銀電鍍及無光澤銀電鍍。又,當調整 純銀層之Ra及電鍍厚度時,於光澤銀電鍍及無光澤銀電鍍 22 201030191 中,以0.1〜10 A/dm2之條件調整電流密度。又,純銀層之 Ra係與實施例丨同樣地藉由接觸式表面粗糙度計 (SURFCORDER SE-30H(商品名):(股)小阪研究所製)而測 定。 [光澤Ag電鍍] 電鑛液:AgCN 50 g/升,KCN 1〇〇 g/升,k2C03 30 g/ 升 ’ Na2S203 5 g/升 電鍍條件:電流密度2〜l〇 A/dm2,溫度30t: ❹ [無光澤Ag電鍵] 電鑛液:AgCN 50 g/升,KCN 1〇〇 g/升,k2C03 30 g/ 升 電鍵條件:電流密度〇1〜5 A/dm2,溫度3〇χ: 對於所獲得之發明例及比較例之導線架,與實施例1 同樣地測疋反射率及耐姓性。將該等結果一併示於表3。@300 nm @500 nm @800 nm RN Heat dissipation Example 1 of the invention 35 89 91 9.3 〇 Inventive Example 2 39 86 88 9.5 〇 Inventive Example 3 42 83 88 9.8 〇 Inventive Example 4 48 82 87 10 〇 The present invention Example 5 55 79 88 10 〇 Inventive Example 6 65 77 85 10 〇 Inventive Example 7 48 80 86 9.8 〇 Inventive Example 8 48 81 85 10 〇 Inventive Example 9 49 78 87 10 〇 Inventive Example 10 47 83 88 9.8 〇 Inventive Example 11 48 83 86 10 〇 Inventive Example 12 46 83 87 9.8 〇 Inventive Example 13 46 84 86 10 〇 Inventive Example 14 48 84 87 10 〇 Inventive Example 15 43 80 90 9.8 〇 Inventive Example 16 44 81 90 9.5 〇 Inventive Example 17 36 78 88 9.8 〇 Inventive Example 18 45 83 90 9.8 〇 Inventive Example 19 32 90 92 9 〇 Inventive Example 20 37 88 90 9.5 〇 Inventive Example 21 40 84 88 10发明 Inventive Example 22 43 82 85 9.8 〇 Inventive Example 23 46 80 81 10 〇 Inventive Example 24 50 77 79 10 〇 Inventive Example 25 40 82 88 9.8 〇 Inventive Example 26 38 82 87 9.5 〇 Inventive Example 27 39 83 87 9.8 〇 Inventive Example 28 40 81 86 9.8 〇 Inventive Example 29 50 78 84 10 〇 Inventive Example 30 56 76 78 9.8 〇 Inventive Example 31 40 73 79 9.8 〇 Inventive Example 32 38 73 79 9.8 〇 Inventive Example 33 40 72 78 9.8 〇 Inventive Example 34 45 70 75 10 〇 Inventive Example 35 40 72 74 9.8 〇 Inventive Example 36 33 73 77 9.8 〇 Inventive Example 37 40 70 72 9.8 〇 Inventive Example 38 46 79 81 9.8 X Inventive Example 39 46 80 81 9.8 X Comparative Example 1 25 80 85 5 〇 Comparative Example 2 47 51 66 10 〇Previous Example 1 8 93 98 2 〇21 201030191 The thickness of the base layer and the thickness of the outermost layer shown in Table 1 are the average values (the arithmetic mean of the measured values at any 10 points). From the results shown in Table 2, it can be clarified that 'pure silver is provided on copper or copper alloy, aluminum or aluminum alloy; I' is on it and is provided with a metal having excellent resistance to rice in the range of thickness specified by the present invention. A film of material composition whereby the reflectivity characteristic, in particular the reflectance at 300 nm, is improved from the previous percentage of silver to a tens of percent. This case can be applied to the use of optical semiconductors of such wavelengths by an increase in the reflectance of the ultraviolet region. Moreover, it can be seen that if the thickness of the film on the outermost layer is too thick, the light will not reach the pure silver layer. Therefore, the optical properties of the outermost layer are strong, so that the good reflection characteristics of the visible light of pure silver will disappear, and thus it is lower than practical. 70% of the grade 〇 Regarding the heat dissipation characteristics, when a metal having a good electrical conductivity or an alloy thereof is used as a lead frame base, it is preferable to iron or an iron alloy (Examples 38 and 39 of the present invention). Further, the lead frames of Inventive Examples 38 and 39 are suitable for applications requiring more mechanical strength than heat dissipation. Example 2 ^ On a copper alloy composed of C19400 having a thickness of 0.15 mm and a width of 30 mm, a nickel plating layer as a base layer was formed to a thickness of 1.0 μm, and a pure silver layer was formed on the upper layer, and the thickness was as shown in Table 3. The lead frame of Examples 40 to 63 and Comparative Examples 3 to 7 of the present invention was formed as the Pt plating layer as the outermost layer. The plating procedure or liquid composition was the same as that of the procedure of Example 1, and for the formation of a pure silver layer, gloss silver plating and matt silver plating were used. Further, when the Ra of the sterling silver layer and the plating thickness are adjusted, the current density is adjusted under the conditions of 0.1 to 10 A/dm 2 in the gloss silver plating and the matte silver plating 22 201030191. In addition, the Ra of the pure silver layer was measured by a contact surface roughness meter (SURFCORDER SE-30H (trade name): manufactured by Kosaka Research Institute) in the same manner as in the example. [Gloss Ag plating] Electron ore: AgCN 50 g / liter, KCN 1 〇〇 g / liter, k2C03 30 g / liter ' Na2S203 5 g / liter plating conditions: current density 2 ~ l 〇 A / dm2, temperature 30t: ❹ [matte Ag key] Electron ore: AgCN 50 g / liter, KCN 1 〇〇 g / liter, k2C03 30 g / liter Key conditions: current density 〇 1~5 A / dm2, temperature 3 〇χ: The lead frame of the obtained invention examples and comparative examples was measured for reflectance and resistance to the surname in the same manner as in the first embodiment. These results are shown together in Table 3.

23 201030191 [表3] 純銀層被覆厚度 (/zm) Ra(/m) 最表層厚度 (㈣ 反射率(%) 财性 RN @300 nm @500 nm @800 nm 本發明例40 0.21 0.120 0.008 38 82 87 9.5 本發明例41 0.52 0.126 0.009 37 87 89 9.5 本發明例42 0.98 0.124 0.008 38 88 90 9.5 本發明例43 2.95 0.128 0.009 37 88 89 9.5 本發明例44 3.90 0.124 0.008 38 87 90 9.5 本發明例45 4.80 0.125 0.008 38 88 89 9.5 本發明例46 1.06 0.002 0.009 38 88 90 10 本發明例47 0.98 0.009 0.008 37 88 90 10 本發明例48 1.01 0.048 0.009 38 87 89 10 本發明例49 1.03 0.095 0.008 37 88 90 9.5 本發明例50 0.98 0.148 0.008 38 87 89 9.3 本發明例51 1.10 0.197 0.009 37 88 89 9 本發明例52 2.45 0.048 0.001 32 90 92 9.5 本發明例53 2.53 0.050 0.009 35 86 90 9.8 本發明例54 2.52 0.047 0.048 43 82 85 10 本發明例55 2.50 0.049 0.149 48 80 82 10 本發明例56 2.49 0.050 0.197 50 ΊΊ 79 10 本發明例57 2.54 0.195 0.001 31 90 91 9 本發明例58 2.47 0.199 0.010 33 84 89 9.3 本發明例59 2.51 0.200 0.046 41 82 85 9.5 本發明例60 2.50 0.198 0.146 48 80 82 9.8 本發明例61 2.52 0.196 0.191 50 76 78 10 本發明例62 0.08 0.123 0.048 40 73 79 9.8 本發明例63 5.51 0.122 0.050 42 79 83 9.8 比較例3 1.10 0.231 0.001 32 88 89 7 比較例4 1.05 0.230 0.008 33 84 89 7 比較例5 1.08 0.235 0.047 41 82 95 7 比較例6 0.98 0.233 0.148 48 80 82 8 比較例7 1.00 0.230 0.196 50 76 78 8 由表3所示之結果可明確了解,若Ra處於本發明所規 定之範圍内,則反射特性良好且耐蚀性亦優異。然而,若 Ra過大,則無法以最表層完全覆蓋該凹凸部而純銀部分會 露出,可認為耐蝕性將下降。因此,Ra處於本發明所規定 之範圍内對於搭載光半導體導線架之部位更為有用。 24 201030191 與該實施態樣一同說明了本發明,但只要我等未特別 才曰疋’則於說明之任何細節中均未打算限定我等之發明, 應當不背離隨附之申請專利範圍所示之發明之精神及範圍 而廣義地解釋本發明。 本申請案主張於2008年12月19曰在曰本申請之特願 2008-324716之優先權,本文參照此申請案並引起其内容作 為本說明書之内容之一部分。 ❹ 【圖式簡單說明】 圖1係本發明之光半導體裝置用導線架之一實施態樣 之概略剖面圖。 圖2係於基體之上層形成有純銀層2,於其上層形成有 成為最表層之皮膜3之部分之示意性放大剖面圖。 圖3係本發明之光半導體裝置用導線架之另一實施態 樣之概略剖面圖。 圖4係本發明之光半導體裝置用導線架之又一實施態 樣之概略剖面圖。 圖5係本發明之光半導體裝置用導線架之又一實施態 樣之概略剖面圖。 圖6係本發明之光半導體裝置用導線架之又一實施態 樣之概略剖面圖。 顧 係本發明之光半導體裝置用導線架之又一實施態 樣之概略剖面圖。 圖8係本發明之光半導體裝置用導線架之又一實施態 25 201030191 樣之概略剖面圖。 【主要元件符號說明】 1 基體 2 純銀層 3 由耐蝕性優異之金屬材料構成之皮膜 4 光半導體晶片 5 中間層 2623 201030191 [Table 3] Thickness of pure silver layer coating (/zm) Ra(/m) Thickness of the outermost layer ((iv) Reflectance (%) Financial RN @300 nm @500 nm @800 nm Inventive Example 40 0.21 0.120 0.008 38 82 87 9.5 Inventive Example 41 0.52 0.126 0.009 37 87 89 9.5 Inventive Example 42 0.98 0.124 0.008 38 88 90 9.5 Inventive Example 43 2.95 0.128 0.009 37 88 89 9.5 Inventive Example 44 3.90 0.124 0.008 38 87 90 9.5 Inventive Example 45 4.80 0.125 0.008 38 88 89 9.5 Inventive Example 46 1.06 0.002 0.009 38 88 90 10 Inventive Example 47 0.98 0.009 0.008 37 88 90 10 Inventive Example 48 1.01 0.048 0.009 38 87 89 10 Inventive Example 49 1.03 0.095 0.008 37 88 90 9.5 Inventive Example 50 0.98 0.148 0.008 38 87 89 9.3 Inventive Example 51 1.10 0.197 0.009 37 88 89 9 Inventive Example 52 2.45 0.048 0.001 32 90 92 9.5 Inventive Example 53 2.53 0.050 0.009 35 86 90 9.8 Inventive Example 54 2.52 0.047 0.048 43 82 85 10 Inventive Example 55 2.50 0.049 0.149 48 80 82 10 Inventive Example 56 2.49 0.050 0.197 50 ΊΊ 79 10 Inventive Example 57 2.54 0.195 0.001 31 90 91 9 Inventive Example 58 2.47 0.199 0.010 33 84 89 9.3 This hair Example 59 2.51 0.200 0.046 41 82 85 9.5 Inventive Example 60 2.50 0.198 0.146 48 80 82 9.8 Inventive Example 61 2.52 0.196 0.191 50 76 78 10 Inventive Example 62 0.08 0.123 0.048 40 73 79 9.8 Inventive Example 63 5.51 0.122 0.050 42 79 83 9.8 Comparative Example 3 1.10 0.231 0.001 32 88 89 7 Comparative Example 4 1.05 0.230 0.008 33 84 89 7 Comparative Example 5 1.08 0.235 0.047 41 82 95 7 Comparative Example 6 0.98 0.233 0.148 48 80 82 8 Comparative Example 7 1.00 0.230 0.196 50 76 78 8 It is clear from the results shown in Table 3 that if Ra is within the range specified by the present invention, the reflection characteristics are good and the corrosion resistance is also excellent. However, if Ra is too large, the uneven portion cannot be completely covered with the outermost layer, and the pure silver portion is exposed, and the corrosion resistance is considered to be lowered. Therefore, Ra is more useful for mounting a portion of the optical semiconductor lead frame within the range defined by the present invention. 24 201030191 The present invention has been described in connection with this embodiment, but it is not intended to limit the invention in any detail as long as it is not specifically described, and should not deviate from the scope of the attached patent application. The invention is broadly construed in the spirit and scope of the invention. The present application claims priority to Japanese Patent Application No. 2008-324. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing an embodiment of a lead frame for an optical semiconductor device according to the present invention. Fig. 2 is a schematic enlarged cross-sectional view showing a portion in which a pure silver layer 2 is formed on the upper layer of the substrate, and a portion of the film 3 which becomes the outermost layer is formed on the upper layer. Fig. 3 is a schematic cross-sectional view showing another embodiment of a lead frame for an optical semiconductor device of the present invention. Fig. 4 is a schematic cross-sectional view showing still another embodiment of the lead frame for an optical semiconductor device of the present invention. Fig. 5 is a schematic cross-sectional view showing still another embodiment of the lead frame for an optical semiconductor device of the present invention. Fig. 6 is a schematic cross-sectional view showing still another embodiment of the lead frame for an optical semiconductor device of the present invention. A schematic cross-sectional view showing still another embodiment of the lead frame for an optical semiconductor device of the present invention. Fig. 8 is a schematic cross-sectional view showing another embodiment of the lead frame for an optical semiconductor device according to the present invention. [Main component symbol description] 1 Base 2 Pure silver layer 3 Film made of metal material with excellent corrosion resistance 4 Optical semiconductor wafer 5 Intermediate layer 26

Claims (1)

201030191 七、申請專利範圍: 純銀=種1半導體裝置料、㈣,其隸基體上形成有由 !:構成之純銀層者,其特徵在於,該純银層之算術平均 向度Ra為0.001〜〇 7 . m,且於其表面形成有由對硫化腐 姓之耐餘性優異之金屈分丄 金屬材枓構叙平均膜厚G.GG1心以 上、〇.2 e m以下之皮膜。 ^如中請專利範圍第丨項之光半導體裝置时線架,其 ο ο X基體係由選自由鋼、銅合金、鋁及鋁合金組成之群 中之金屬或合金構成。 如申明專利範圍第1項或第2項之光半導體裝置用導 線架其中’於該基體及該純銀層之間至少形成有丄層 、自由鎳、鎳合金、鈷、鈷合金、銅及銅合金組成之群 中之金屬或合金構成之中間層。 4’如申請專㈣圍第1項至第3項中任-項之光半導體 裝置用導線架’其中’該純銀層之厚度為G.2~5.0 μ m。 如申請專利範圍第1項至第4項中任一項之光半導體 裝置用導綠*〇 〇+ . 緣衆’其中,形成該皮膜之金屬材料係選自由金、 金0金、銀合金、鉑、鉑合金、鍺、鍺合金、銦及銦合金 組成之群中之金屬或合金。 6.如申請專利範圍第1項至第5項中任一項之光半導體 裝置用導续& ^ , t 莱’其中’形成該皮膜之金屬材料係選自由銀_ 銅合金、& A 跟-銦合金、銀-鍺合金及銀-金合金組成之群中 銀合金。 7·種光半導體裝置用導線架之製造方法,其係用以製 27 201030191 造如申請專利範圍第1項至第6項中任一項之光半導體裝 i用導線架’其特徵在於該純銀層及該皮膜係由電鍵法 所形成。 4 8.*~種光半導體裝置用導線架之製造方法,其係用以製 申請專利範圍第3項至第6項中任一項之光半導體裝 用導線架,其特徵在於,該純銀層、該中間層及該皮膜 係由電鍍法所形成。 八、201030191 VII. Patent application scope: sterling silver=species 1 semiconductor device material, (4), which has formed a pure silver layer composed of !: on the base body, characterized in that the arithmetic mean latitude Ra of the sterling silver layer is 0.001~〇 7 m, and formed on the surface thereof, a gold-based bismuth metal material excellent in durability to vulcanized rot, and a film having an average film thickness of G.GG1 or more and 〇.2 em or less. For example, in the optical semiconductor device of the patent scope of the present invention, the wire base frame is composed of a metal or alloy selected from the group consisting of steel, copper alloy, aluminum and aluminum alloy. A lead frame for an optical semiconductor device according to claim 1 or 2, wherein at least a tantalum layer, free nickel, nickel alloy, cobalt, cobalt alloy, copper and copper alloy is formed between the substrate and the pure silver layer. An intermediate layer of a metal or alloy in the group. 4' The thickness of the sterling silver layer in the lead frame of the optical semiconductor device of the first to the third item of the application (4) is G.2 to 5.0 μm. The invention relates to a green semiconductor device for use in an optical semiconductor device according to any one of claims 1 to 4, wherein the metal material forming the film is selected from the group consisting of gold, gold, gold, and silver alloy. A metal or alloy in a group consisting of platinum, platinum alloys, rhodium, ruthenium alloys, indium, and indium alloys. 6. The guide for optical semiconductor devices according to any one of claims 1 to 5, wherein the metal material forming the film is selected from the group consisting of silver-copper alloy, & A A silver alloy in a group consisting of an indium alloy, a silver-bismuth alloy, and a silver-gold alloy. 7. A method of manufacturing a lead frame for a light semiconductor device, which is used for manufacturing a lead frame for an optical semiconductor device according to any one of claims 1 to 6 of the invention, characterized in that the sterling silver The layer and the film are formed by a bonding method. 4. The method of manufacturing a lead frame for a light semiconductor device, which is used for manufacturing the lead frame for optical semiconductors according to any one of claims 3 to 6, characterized in that the silver layer is The intermediate layer and the film are formed by electroplating. Eight, (如次頁)(such as the next page) 2828
TW098143567A 2008-12-19 2009-12-18 Lead frame for optical semiconductor device and method for manufacturing the same TWI465614B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324716 2008-12-19

Publications (2)

Publication Number Publication Date
TW201030191A true TW201030191A (en) 2010-08-16
TWI465614B TWI465614B (en) 2014-12-21

Family

ID=42268851

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098143567A TWI465614B (en) 2008-12-19 2009-12-18 Lead frame for optical semiconductor device and method for manufacturing the same

Country Status (5)

Country Link
JP (1) JP4763094B2 (en)
KR (1) KR101267718B1 (en)
CN (1) CN102257647B (en)
TW (1) TWI465614B (en)
WO (1) WO2010071182A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403437A (en) * 2010-09-16 2012-04-04 日立电线株式会社 Substrate for carrying semiconductor light-emitting element and semiconductor light-emitting device using the substrate
TWI514629B (en) * 2010-09-16 2015-12-21 Sh Materials Co Ltd A semiconductor light-emitting element mounting substrate, and a semiconductor light-emitting device using the same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106067511A (en) 2010-03-30 2016-11-02 大日本印刷株式会社 Resin lead frame, semiconductor device and manufacture method thereof
JP5839861B2 (en) * 2010-07-09 2016-01-06 古河電気工業株式会社 Optical semiconductor device lead frame, optical semiconductor device lead frame manufacturing method, and optical semiconductor device
JP5896302B2 (en) 2010-11-02 2016-03-30 大日本印刷株式会社 Lead frame for mounting LED element, lead frame with resin, manufacturing method of semiconductor device, and lead frame for mounting semiconductor element
JP2012107263A (en) * 2010-11-15 2012-06-07 Kyowa Densen Kk Plating structure and coating method
JP5736770B2 (en) * 2010-12-27 2015-06-17 大日本印刷株式会社 LED substrate, method of manufacturing the same, and semiconductor device
JP2012151289A (en) * 2011-01-19 2012-08-09 Furukawa Electric Co Ltd:The Optical semiconductor mounting board, manufacturing method of the same and optical semiconductor device
JP5985201B2 (en) 2012-02-20 2016-09-06 シャープ株式会社 Light emitting device and lighting device
JP5881501B2 (en) * 2012-03-29 2016-03-09 株式会社Neomaxマテリアル Light emitting element substrate and light emitting module
CN102709267A (en) * 2012-05-23 2012-10-03 顺德工业(江苏)有限公司 Lead frame in semiconductor
CN104685108B (en) * 2012-10-05 2017-09-29 古河电气工业株式会社 The manufacture method of silver-colored reflectance coating, light reflecting member and light reflecting member
JP6085536B2 (en) * 2013-08-05 2017-02-22 株式会社Shカッパープロダクツ Copper strip, plated copper strip, lead frame and LED module
JP6187201B2 (en) * 2013-11-29 2017-08-30 日亜化学工業株式会社 Reflective film for light emitting device, and lead frame, wiring board, wire, and light emitting device including the same
CN104022295B (en) * 2014-05-07 2016-10-19 南通大学 A kind of DMFC PdAg/TiO2the preparation method of nanotube electrode
DE102014111895A1 (en) * 2014-08-20 2016-02-25 Infineon Technologies Ag Metallized electrical component
JP5851000B1 (en) * 2014-08-22 2016-02-03 株式会社神戸製鋼所 Copper alloy strip for LED lead frame
JP6398541B2 (en) * 2014-09-29 2018-10-03 日亜化学工業株式会社 Lead frame and light emitting device
JP6411320B2 (en) * 2015-12-17 2018-10-24 シャープ株式会社 Light emitting device and lighting device
JP7011142B2 (en) * 2016-09-30 2022-01-26 日亜化学工業株式会社 Manufacturing method of light emitting device, package for light emitting device and light emitting device
EP3618129B1 (en) * 2017-04-27 2023-03-29 KYOCERA Corporation Circuit board and light-emitting device provided with same
JP6744020B1 (en) * 2019-03-22 2020-08-19 大口マテリアル株式会社 Lead frame
JP6733941B1 (en) * 2019-03-22 2020-08-05 大口マテリアル株式会社 Substrate for mounting semiconductor elements
JP6741356B1 (en) * 2019-03-22 2020-08-19 大口マテリアル株式会社 Lead frame
JP6733940B1 (en) * 2019-03-22 2020-08-05 大口マテリアル株式会社 Lead frame
JP6736716B1 (en) * 2019-03-22 2020-08-05 大口マテリアル株式会社 Lead frame
JP6736719B1 (en) * 2019-03-28 2020-08-05 大口マテリアル株式会社 Semiconductor element mounting parts, lead frame and semiconductor element mounting substrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101059361B1 (en) * 2003-01-16 2011-08-24 파나소닉 주식회사 Lead frame and semiconductor light emitting device
JP4172770B2 (en) * 2003-03-26 2008-10-29 京セラ株式会社 Light emitting element storage package and light emitting device
JP4480407B2 (en) * 2004-01-29 2010-06-16 京セラ株式会社 Light emitting element storage package and light emitting device
JP2006269667A (en) * 2005-03-23 2006-10-05 Sumitomo Electric Ind Ltd Light reflecting film and package for light emitting diode using the same
JP2006303069A (en) * 2005-04-19 2006-11-02 Sumitomo Metal Electronics Devices Inc Package for mounting light emitting element
JP5226323B2 (en) * 2006-01-19 2013-07-03 株式会社東芝 Light emitting module and backlight and liquid crystal display device using the same
JP2008091818A (en) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Lead frame for optical semiconductor device, optical semiconductor device using it, and these manufacturing methods
JP2008192635A (en) * 2007-01-31 2008-08-21 Matsushita Electric Ind Co Ltd Semiconductor device, lead frame and process for fabricating optical semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403437A (en) * 2010-09-16 2012-04-04 日立电线株式会社 Substrate for carrying semiconductor light-emitting element and semiconductor light-emitting device using the substrate
TWI514629B (en) * 2010-09-16 2015-12-21 Sh Materials Co Ltd A semiconductor light-emitting element mounting substrate, and a semiconductor light-emitting device using the same

Also Published As

Publication number Publication date
WO2010071182A1 (en) 2010-06-24
CN102257647A (en) 2011-11-23
KR101267718B1 (en) 2013-05-24
JP4763094B2 (en) 2011-08-31
TWI465614B (en) 2014-12-21
KR20110100281A (en) 2011-09-09
JPWO2010071182A1 (en) 2012-05-31
CN102257647B (en) 2014-07-23

Similar Documents

Publication Publication Date Title
TW201030191A (en) Optical semiconductor device lead frame and manufacturing method thereof
CN102265417B (en) Lead frame for optical semiconductor device, method for manufacturing same, and optical semiconductor device
CN102473830B (en) Lead frame for optical semiconductor device, manufacturing method of lead frame for optical semiconductor device, and optical semiconductor device
TW201108377A (en) Lead frame for optical semiconductor device, process for manufacturing lead frame for optical semiconductor device, and optical semiconductor device
KR101718575B1 (en) Leadframe for optical semiconductor device, method for manufacturing leadframe for optical semiconductor device, and optical semiconductor device
CN102471895B (en) Electrolytically silver plated and/or electrolytically silver alloy plated article having oxide layer on surface
JP5578960B2 (en) Lead frame for optical semiconductor device and manufacturing method thereof
JP5695841B2 (en) LED lead frame
JP6025026B2 (en) LED lead frame or substrate and manufacturing method thereof, and semiconductor device and manufacturing method thereof
JP6448986B2 (en) Lead frame manufacturing method
JP5767521B2 (en) Lead frame for optical semiconductor device and manufacturing method thereof
JP5481282B2 (en) Electronic component materials
JP2013174865A (en) Lamination structure having indium-silver alloy layer on copper or copper alloy layer, and manufacturing method thereof
JP2017005224A (en) Lead frame for optical element and manufacturing method therefor
JP5472969B2 (en) Light reflecting material and light emitting diode device using the same
WO2013001673A1 (en) Laminate structure provided with silver alloy layer having oxide layer
JP2013173347A (en) Lamination structure having indium silver-cobalt alloy layer on copper or copper alloy layer, and method of manufacturing the lamination structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees