TW201029938A - Anaerobic biological treatment method and anaerobic biological treatment device - Google Patents

Anaerobic biological treatment method and anaerobic biological treatment device Download PDF

Info

Publication number
TW201029938A
TW201029938A TW98125088A TW98125088A TW201029938A TW 201029938 A TW201029938 A TW 201029938A TW 98125088 A TW98125088 A TW 98125088A TW 98125088 A TW98125088 A TW 98125088A TW 201029938 A TW201029938 A TW 201029938A
Authority
TW
Taiwan
Prior art keywords
biological treatment
water
salt
anaerobic
anaerobic biological
Prior art date
Application number
TW98125088A
Other languages
Chinese (zh)
Other versions
TWI424970B (en
Inventor
Masahiro Eguchi
Hiroshi Suzugaki
Shinichi Kusano
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009028788A external-priority patent/JP5250444B2/en
Priority claimed from JP2009130068A external-priority patent/JP5443057B2/en
Application filed by Organo Corp filed Critical Organo Corp
Publication of TW201029938A publication Critical patent/TW201029938A/en
Application granted granted Critical
Publication of TWI424970B publication Critical patent/TWI424970B/en

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

An objective of the invention is to reduce the equipment area of the treatment equipment for effluent containing polycarboxylic alkyl ammonium salts such as TMAH, while performing the anaerobic biological treatment for the effluent containing polycarboxylic alkyl ammonium salts such as TMAH, and meanwhile to provide an excellent biological treatment method and a biological treatment device to match economic benefit and environmental protection concerns. The invention is an anaerobic biological treatment method for treating the effluent containing polycarboxylic alkyl ammonium salts by means of an anaerobic biological treatment. While performing the foregoing biological treatment, the concentration of the polycarboxylic alkyl ammonium salts in the effluent containing polycarboxylic alkyl ammonium salts must be below 200000 mg/L.

Description

201029938 六、發明說明: 【發明所屬之技術領域】 本發明係有關生物處理法以及生物處理裝置,該生物 處理法以及裝置乃是採用厭氧性生物處理含TMAH、膽驗 等聚缓酸烧基錄鹽(Alkyl Ammonium Salt)之排放水,以及 含碳數少的有機物排放水等。 I 【先前技術】 9 過去半導體工廠、液晶工廠在排放使用過之含氫氧化 四曱錢(丁61^11^1^1牡111111〇1111111111;^(11:〇父1(16=丁%人11)廢水時, 對含聚羧酸烷基銨鹽之排放水(有時是因為含有若干來自 抗蝕劑樹脂的緣故)之分解處理與排放水回收處理,其方 法有生物處理、離子交換樹脂法處理和膜處理等各種方法 (例如,請參照專利文獻1〜4 ) 此外’過去在木漿製造排放水工程以及化學工廠排放 〇 含4個碳以下的廢水時,更具體來說’在進行主成份為醋 酸、乙醇、乙醛等含2個碳以下之有機物的排放水的厭氧 處理時,由於要讓顆粒(granular)污泥解體成更小的粒子, 因此污泥量減少,處理作業變得不穩定。 在一般的厭氧處理中,負責將分子較高的糖質、蛋白 質、脂質分解成低分子所用的厭氧性加水分解菌,以及生 成有機酸之酸生成菌的Bio-polimer等的架橋效果在顆粒的 生成、維持上扮演著重要角色。此外’曱烷生成細菌系狀 Methanosaeta屬可謂是形成顆粒的骨骼,對顆粒的形成十 201029938 分重要。 但若要分解含碳少的有機物時,反倒是加水分解菌與 酸生成細菌較少,而以曱烷生成細菌為主。而且非線狀的 甲燒生成細菌 Methanosarcina 屬以及 Methanobacteriumu 屬 會比甲醇、TMAH等曱烷生成細菌系狀Methanosaeta屬易 佔優勢,顆粒污泥的顆粒往往較易變細而崩潰。當顆粒污 泥變細崩潰時會導致反應槽内的污泥流出,導致處理變得 不穩定。 專利文獻5〜8所示之方法乃是過去為了解決前述問❹ 題所提出的具體對策。 先前技術文獻: 專利文獻1 :特公平8 — 2 3 5號公報。 專利文獻.2 :特開2001 — 27 6 825號公報。 專利文獻3 :特許第2 7 3 0 6 1 0號公報。 專利文獻4 :特開平1 1 — 2 6 2 7 6 5號公報。 專利文獻5 :特許第4 1 9 3 3 1 0號公報。 八 專利文獻6 :特開2 0 0 8 — 2 7 9 3 8 3號公報。 專利文獻7 :特許第2 5 6 3 0 〇 4號公報。 專利文獻8 :特開2 0 0 8 — 2 7 9 3 8 5號公報。 【發明内容】 在傳統的回收技術中,會將回收的TMAH重新利用在 TMAH等含聚羧酸烷基銨鹽濃度較高的排放水上,是一項 有效的方法’但卻有藥品純度、經濟效果的問題。 4 201029938 此外,傳統理化分解處理法雖然反應快、設備規模較 小,但處理成本很高,也是一個問題。 含TMAH等1叛酸烧基錄鹽之排放水之較低廉處理法 有生物學分解處理法等,但過去以好氧性生物處理法為主 流。好氧性生物處理一般是採用擔體法或浸潰膜活性污泥 法0 專利文獻5的方法是一種在投入顆粒污泥完成處理 後,添加高分子凝集劑以避免顆粒污泥崩潰的厭氧性生物 處理法。但若投入厭氧性污泥完成處理,並在厭氧性污泥 中形成顆粒污泥,這種方法有困難。且長期添加高分子凝 集劑可能會引發高分子凝集劑與高分子凝集劑的荷電相立 排斥’導致顆粒污泥分散。另外一個問題就是高分子凝集 劑的價格偏高。 專利文獻6的方法是一種添加硝酸、亞硝酸厭氧性生 物的處理法’由於這方法主動添加了本來須被處理的標的 物質一硝酸、亞硝酸’因此會發生原水變動、裝置毛病、 運轉管理等的問題’因此在排出處理過的水時也同時排出 氮,可能造成水質污染。此外,該方法必須讓脫氮細菌與 甲烷生成細菌共存’若脫氮反應引發厭氧反應時,則可能 造成原水變動’導致所處理的水質惡化,同時也會導致硝 酸等滲漏到處理水中。 專利文獻7的方法是在開始處理時,先添加處理物質 一甲醇4倍量醋酸的一種厭氧性處理法,但在實際敕置上 要添加比排放水更大量的醋酸是不切實際的做法。而且這 5 201029938 個方法在開始處理後就停纽人㈣,在停纽入醋酸一 段時間後會出現顆_定性、處理敎性的問題。 專利文獻8的方法是-轉用添加糖的厭氧性處理 法。這些糖是碳水化合物,包括單體的單糖類、複數縮合 體如奥利多糖、由多個單糖所構成的多糖類(澱粉、纖維 素(cellulose)等)。單糖有含3個碳的三碳糖(tri〇se),含4 個碳的四碳糖(tetrose),含5個碳的五碳糖以及含 6個碳的六碳糖(hexose)。這_加單财式㈣氧性生物 處理反而可能引發顆粒污泥的崩潰,因此添加糖反倒無法❹ 防止顆粒污泥的崩潰。這類方法只存在添加殿粉的加糖實 例。由於澱粉不易溶於水’若使用澱粉時必須先以熱水溶 解成澱粉液之後方能使用,如此會產生運轉管理方面的問 題。 正如上述,各種方法皆有其問題存在,因此很難實際 應用。此外,上述方法大多屬木漿製造過程中排放出含j 個石反之曱醇等有機物的排放例,並沒有使用純水、超純水❿ 工程等半導體工廠所排放含4個碳之TMAH排放水的聚羧 酸烷基銨鹽類排放水(有時會含抗蝕劑中的樹脂或含界面 活性劑)的厭氧性生物處理的案例。 所以本發明的目的乃是為了讓TMAH、膽驗等含聚羧 酸烷基銨鹽之排放水的厭氧性生物處理上,能縮小處理 TMAH、膽驗等含聚叛酸燒基錄鹽排放水處理設備的設備 面積,提供具有經濟效益以及環保的厭氧性生物處理法以 及厭氧性生物處理裝置,它同時能妥善處理含聚羧酸烷基 201029938 銨鹽之排放水以及含6個碳以下之有機物等的排放水,尤 其是從半導體卫鱗所排出之含TMAH、猶等之排放水 的厭氧性生物處理法以及厭氧性生物處理裝置。 解決課題的方法: 本發明係針對含聚羧酸烷基銨鹽之排放水所作之厭氧 性生物處理法’進行前狀生物處_,前述含聚幾酸炫 基銨鹽排放水中的聚羧酸烷基銨鹽濃度在2 〇 〇 〇 / L以下。 另外’本發明係為以厭氧性生物處理方式處理含聚叛 酸烧基銨㈣放水之處理法,在進行前述生物處理時,前 述含聚㈣烧基銨鹽排放水中的有機態氮以及氨氣氣氣 (AmmoniaNitrogen)的總濃度低於3 9 〇 。 在前賴氧性生物處料料,最好將岐經生物處 理過之處理水的-部份㈣放人前述含㈣魏基敍鹽排 放水中循環。 中’當進行前述生物處理 時’前述含《酸烧基㈣排放水中所含之聚魏烧基錢 鹽濃度最好低於10000mg/L。 本發明係為以厭氧性生物處理方式處理 銨鹽排放水的一種厭氧性生物處理法,乂‘ 土 灰理去’在前述含聚羧酸烷 基敍鹽排放水進行前述之生物處理時,pH__6 . 5 〜9 . 0之間。 本發=為=^性生物處理方式處理含㈣㈣基 銨鹽排放水的-種厭生物處科,麵述含聚誠烧 201029938 基銨鹽排放水進行前述之生物處理時,水温在2 〇 t以上。 本發明係為以厭氧性生物處理方式處理含聚叛酸炫基 録鹽排放水的一種厭氧性生物處理法,其條件須符合以下 任2項:(1 )在進行前述生物處理時,前述含賴酸炫基 銨鹽排放水中=聚鲮酸烷基銨鹽濃度必須低於2 〇 〇 〇 0 mg/L,同牯在進行前述生物處理時,前述含聚羧酸垸 基銨鹽排放水中的聚羧酸烷基銨鹽濃度須低於2 〇 〇 〇 〇 m g/L,同牯在完成前述生物處理後,部份處理水須再 度放入前述含聚羧酸烷基銨鹽排放水中循環;(2)在進行 前述生物處理時’前述含聚羧酸烷基銨鹽排放水中的有機 態氮以及氨氮的總濃度須低於3 gOOmg—N/L,同 時在進行刖述生物處理時,前述含琴身酸炫基敍鹽排放水 中的有機態氮R及氨氮的總濃度須低於3 9 〇 〇m g-N /L,且完成前述生物處理後,部份處理水須再度放入前 述含聚羧酸烷基銨鹽排放水中循環;(3 )前述含聚綾酸烷 基銨鹽排放水在進行前述生物處理時,pH的範圍在6 · ς ^ 〜9 . 0之間;(4 )前述含聚羧酸烷基銨鹽排放水在進行 前述生物處理時’水溫須在2 0 °C以上。 此外’在前述厭氧性生物處理法中,前述聚鲮酸燒基 銨鹽最好是氫氧化四曱銨(TMAH)。 本發明之厭氧性生物處理裝置擁有以厭氧方式進行含 聚緩酸烧基録鹽排放水之生物處理的生物處理方法’以及 調整聚叛酸烷基銨鹽濃度之方法以便讓排放水流入前述生 物處理方法時,前述含聚羧酸烷基銨鹽排放水中的聚羧酸 8 201029938 烷基銨鹽濃度能調整低於2 0〇〇〇mg/L。 本發明之厭氧性生物處理裝置擁有以厭氧方式進行含 聚缓酸烧基錢鹽排放水之生物處理方法,以及調整氮濃度 之方法以便讓排放水流入前述生物處理方法時,前述含聚 羧酸烷基銨鹽排放水中的有機態氮以及氨氮的濃度低於3 9 0 Omg—N/L。 在前述厭氧性生物處理裝置中,最好有一套循環方法 φ 以便讓經前述生物處理後的部份處理水能再度放入前述含 聚羧酸烷基銨鹽排放水循環。 在前述厭氧性生物處理裝置中,最好有一套調整聚幾 酸烷基銨鹽濃度之方法,以便在排放水流入前述生物處理 方法時’能夠調整前述含聚羧酸烷基銨鹽排放水中的聚幾 酸烧基銨鹽濃度,使其低於l〇〇〇〇mg/L。. 本發明之厭氧性生物處理裝置擁有一套以生物處理方 式處理含聚緩酸烧基敍鹽排放水的生物處理方法,以及一 〇 套PH調整方法’以便在進行前述之含聚羧酸烷基銨鹽排放 水的生物處理時能將pH調整到6 . 5〜9 . 0的範圍内。 本發明之厭氧性生物處理裝置擁有一套以生物處理方 式處理含聚羧酸烷基銨鹽排放水的生物處理方法,以及一 套在進行前述含聚羧酸烷基銨鹽排放水之前述生物處理 時’將前述生物處理方法内的水溫調整到2 0〇C以上的溫 度調節方法。 本發明之厭氧性生物處理裝置擁有以厭氧性生物處理 方式處理含聚羧酸烷基銨鹽排放水的生物處理方法,以及 201029938 以冷」〜(4)中任何2項以上之方法:(1 )在排放 μ述生物處理方法時,將前述含?嫌酸烧基録鹽排 放水中的㈣魏基錄鹽濃度調整到2 Q Q Q Qmg八 以下之讀酸烧基錢鹽濃度調整方法,以及經前述聚艘酸 烧基銨鹽濃度調整方法以及前述生物處理後,將部份處理 水再度放人前述含聚舰絲_排放水中循環的循環方 法,(2)在排放水流入前述生物處理方法時,將前述含聚 叛酸烧基銨鹽排放水中的有機態氮以及氨氮的總濃度調整 到3900mg-N/L以下之氮濃度調整方法,以及經© 刖述氮濃度調整方法以及前述生物處理後,將部份處理水 再度放入前述含聚羧酸烷基銨鹽排放水中循環的循環方 . 法;(3 )在進行前述含聚羧酸烷基銨鹽排放水的前述生物 處理時,將pH調整到6 · 5〜9 . 0範圍内之PH調整方. 法;(4)在進行前述含聚羧酸烷基銨鹽排放水的前述生物 處理時,將前述生物處理方法内的水溫調節到2 〇它以上 的溫度調整方法。 a 在前述厭氧性生物處理裝置中,前述聚羧酸烷基銨鹽 最好是氫氧化四曱銨(TMAH)。 本發明係以厭氧性生物處理方式處理含聚羧酸烧基錄 鹽排放水的一種厭氧性生物處理法’在進行前述生物處理 時,前述含聚羧酸烷基銨鹽排放水中的聚鲮酸烷基錄鹽濃 度低於2〇〇00mg/L。 ’ 本發明係以厭氧性生物處理方式處理含聚幾酸烧基敍 * 鹽排放水的一種厭氧性生物處理法’在進行前述生物處理 201029938 時,前述含聚羧酸烷基銨鹽排放水中的有機態氮以及氨氮 的總濃度在3900mg — ν/L以下。 本發明係以厭氧性生物處理方式處理含聚羧酸烷基銨 鹽排放水的一種厭氧性生物處理法,在對前述含聚叛酸燒 基銨鹽排放水進行前述之生物處理時,水溫在2 0°C以上。 本發明係為具備以厭氧性生物處理方式處理含聚羧酸 烷基銨鹽排放水之方法的一種生物處理裝置,在排放水流 • 入前述生物處理方法時,前述含聚羧酸烷基銨鹽排放水中 的聚缓酸烧基録鹽濃度在20000mg/L以下。 本發明係為具備以厭氧性生物處理方式處理含聚羧酸 烧基錄鹽排放水之方法的一種生物處理裝置’在排放水流 入前述生物處理方法時’前述含聚羧酸烷基銨鹽排放水中 的有機態氮與氨氮的總濃度在3 9 0 0 m g — N/L以 下。 本發明係為具備以厭氧性生物處理方式處理含聚羧酸 〇 烧基兹鹽排放水之方法的一種生物處理裝置,在以前述生 物處理方式處理前述含聚羧酸烷基銨鹽排放水時,前述生 物處理方法内的水溫在2 Ot:以上。 本發明係為以厭氧性生物處理方式處理含聚羧酸烷基 銨鹽之排放水的一種厭氧性生物處理法,會供給糖蜜給前 述排放水。 本發明係為一種以生物處理方式處理含6個碳以下有 機物排放水的厭氧性生物處理法,會供給糖蜜給前述排放 水0 11 201029938 在刖述厭氧性生物處理法中,在開始前述生物處理時 以及開始以後最好能供給前述糖蜜。 在丽述厭氧性生物處理法中,最好能將厭氧性污泥投 入進行前述生物處理的反應槽中開始前述的生物處理。 在前述厭氧性生物處理法中,前述排放水最好是從半 導體工廠排出。 在前述厭氧性生物處理法中,前述聚羧酸烷基銨鹽以 及刖述含6個碳以下的有機物最好是氫氧化四甲銨 (TMAH)。 ® 在月ί述厭氧性生物處理法中,在敗動前述之生物處理 時’最好能在進行前述生物處理之反應槽中填充擔體。 在本發明之厭氧性生物處理裝置中,具備有以厭氧性 生物處理方式處理含聚羧酸烷基銨鹽排放水的反應槽,以 及供應糖蜜給前述排放水的糖蜜供給方法。 本發明之厭氧性生物處理裝置中,具備有以厭氧性生 物處理方式處理含6個碳以下之有機物的反應槽,以及供❹ 應糖蜜給前述排放水的糖蜜供給方法。 在前述厭氧性生物處理裝置中,前述的糖蜜供給方法 最好能在前述生物處理啟動時以及啟動後供給糖蜜。 在前述厭氧性生物處理裝置中,在前述之生物處理啟 動時,最好能將厭氧性污泥投入到前述反應槽中。 在前述厭氧性生物處理裝置中,前述排放水最好是從 半導體工廠排出。 在前述厭氧性生物處理裝置中,前述聚羧酸烷基銨鹽 12 201029938 以及前述含6個碳以下的有機物最好是氫氧化四甲銨 (TMAH)。 在前述厭氧性生物處理裝置中,在啟動前述之生物處 理時’最好能在進行前述生物處理之反應槽中填充擔體。 發明效果: 根據本發明’在進行含TMAH、膽鹼等聚羧酸烷基銨 鹽之排放水的厭氧性生物處理時,能縮小處理含TMah、 ❺ 膽驗專聚缓酸烧基録鹽之排放水的處理設備的設置面積, 同時具備經濟效益以及環保效益,提供良好的生物處理法 以及生物處理裝置,同時也能良好地處理含聚羧酸炫基敍 鹽排放水以及含6個碳以下之有機物等的排放水,尤其是 從半導體工廠等排放出TMAH及膽鹼等的排放水。 【實施方式】 本發明的實施形態說明如下。本實施形態為本發明之 ❿ 一實施例’但本發明並不限定只有本實施形態而已。 <實施形態1> 第1圖為構成本實施形態之厭氧性生物處理裝置的一 模式圖例。如第1圖所示,厭氧性生物處理裝置1擁有原 水槽1 0、凋整槽1 2、厭氧性生物處理槽1 4、分離槽 1 6、氮處理槽1 8、處理水槽2 〇。調整槽} 2包括了 第一調螯槽1 2 a、第一調整槽1 2 b,但未必一定得是 多槽,亦可只有單槽。 原水槽1 0與調整槽1 2、調整槽1 2與厭氧性生物 13 201029938 處理槽1 4、厭氧性生物處理槽丄4與 槽1 6與氮處理槽丄8、氮處 二6 "刀離 間分別由配管22a〜22e連接。::處之 22^)上设有泵浦24a,24b。 a 第-調整槽i 2 a上連接著稀釋 =彳流入管路28、營養劑流入管路3〇二= 著Γ調整劑流人管路2 8及蒸氣二管^ 3 4相連。第-調整槽1 2 a以及第 b上裝㈣拌裝置36,38。 帛-槽1 2 厭氧性生物處理槽1 4只要能做聚藉 厭氧性生物處理即可,可使用UASB :基二: 的顆粒上向流污泥床式厭氧性生物處理槽 用擔體的固疋床式或流動床式的厭氧性生物處理槽等。應 用在厭氧性生物處理的舰種缝無特難制。例如魏 等的發泡擔體、聚乙烯醇(PVA)等的膠狀擔體、纖維狀擔體 二不織布成型品及聚丙烯製等的成型品。另外,使用於厭 氧性生物處理的種污泥並無特別限制,例如食品工廠、飲 料工廠、製紙工廠、化學工廠及畜產排放水處理等所使用 的厭氧處理污泥、顆粒或是下水處理場的消化污泥等等。 此外,在遇到運轉時顆粒量不増反減時,最好添加鐵、鈣 鹽及飛灰(fly ash)等核心物質,以及凝集劑和有機物等促進 顆粒形成物質。 根據本發明人所見,在厭氧性生物處理槽1 4中聚羧 201029938 酸烧基敍鹽(例如tmakq 炫、礙酸離子及氨離子等。 以下說明在本實施形態 作以及厭氧性生物處理法。 會因為厭氧性生物而分解成甲 中厭氧性生物處理裝置1的動 鲁201029938 VI. Description of the Invention: [Technical Field] The present invention relates to a biological treatment method and a biological treatment apparatus, which is an anaerobic biological treatment comprising a poly-acid-acid base such as TMAH or a biliary test. Discharged water from Alkyl Ammonium Salt and organic water discharged with a small amount of carbon. I [Prior Art] 9 In the past, the semiconductor factory and the liquid crystal factory were used to discharge the used tetrahydrogen hydroxide (Ding 61^11^1^1 oyster 111111〇1111111111; ^(11: 〇Father 1 (16=丁%人) 11) In the case of wastewater, the treatment of the discharge water containing polyalkylammonium salt of polycarboxylate (sometimes due to the presence of a plurality of resins from the resist) and the discharge of water, the method of biological treatment, ion exchange resin Various methods such as method processing and membrane treatment (for example, please refer to Patent Documents 1 to 4) In addition, in the past, when the wood pulp production discharge water project and the chemical plant discharge waste water containing less than 4 carbons, more specifically When the main component is anaerobic treatment of discharged water containing two or less organic substances such as acetic acid, ethanol, or acetaldehyde, the amount of sludge is reduced due to the disintegration of the granular sludge into smaller particles. It becomes unstable. In general anaerobic treatment, the anaerobic hydrolyzed bacteria used to decompose higher molecular weight saccharides, proteins, and lipids into low molecules, and Bio-polimer which produces acid-producing bacteria of organic acids. Bridge Fruit plays an important role in the formation and maintenance of granules. In addition, the genus-forming genus Methanosaeta is a granule-forming skeleton, which is important for the formation of granules. However, if the organic matter containing less carbon is decomposed, On the contrary, there are fewer hydrolyzed bacteria and acid-producing bacteria, but mainly decane-producing bacteria, and the non-linear snail-forming bacteria Methanosarcina and Methanobacterium genus are more susceptible to decane-producing genus Methanosaeta than methanol and TMAH. Predominantly, the particles of the granular sludge tend to become finer and collapse. When the granular sludge is crushed and collapsed, the sludge in the reaction tank will flow out, and the treatment becomes unstable. The methods shown in Patent Documents 5 to 8 It is a specific countermeasure proposed in the past in order to solve the above problems. PRIOR ART DOCUMENT: Patent Document 1: Special Fair 8 - 2 3 5 Patent Document 2: JP-A-2001- 27 6 825. Patent Literature 3: Japanese Patent No. 2 703 016. Patent Document 4: Japanese Patent Publication No. Hei 1 1 - 2 6 2 7 6 5 Patent Document 5: License No. 4 1 9 3 3 1 0 Patent Document 6: Japanese Laid-Open Patent Publication No. Hei 2 0 0 8 - 2 7 9 3 8 No. 3 Patent Document 7: Patent No. 2 5 3 3 0 No. 4 Patent Document 8: Special Opening 2 0 0 8-2 7 9 3 8 5 [Invention] In the traditional recycling technology, the recovered TMAH is reused in the discharge water containing a high concentration of polyalkylamine ammonium salts such as TMAH, which is an effective method. 'But there are problems with the purity and economic effects of the drug. 4 201029938 In addition, although the traditional physical and chemical decomposition treatment method has a fast response and a small equipment scale, the processing cost is high, which is also a problem. The lower-cost treatment method of the discharge water containing the TMAH and the like is a biological decomposition treatment method, but in the past, the aerobic biological treatment method was the main flow. The aerobic biological treatment is generally carried out by a bulk method or a dipped membrane activated sludge method. The method of Patent Document 5 is an anaerobic method in which a polymer aggregating agent is added to avoid collapse of the granular sludge after the granular sludge is processed. Sexual biological treatment. However, this method is difficult if the anaerobic sludge is put into treatment and the granular sludge is formed in the anaerobic sludge. Moreover, the long-term addition of the polymer flocculant may cause the polymer aggregating agent to collide with the charge of the polymer flocculant, resulting in dispersion of the granular sludge. Another problem is the high price of polymer agglutinators. The method of Patent Document 6 is a treatment method of adding nitric acid and nitrous acid anaerobic organisms. 'This method actively adds the target substance to be treated, nitric acid and nitrous acid, so that raw water fluctuation, device failure, and operation management occur. The problem of 'and therefore' also discharges nitrogen at the same time as the treated water is discharged, which may cause water pollution. In addition, this method must allow denitrifying bacteria to coexist with methane-producing bacteria. If the anaerobic reaction is initiated by the denitrification reaction, the original water may be changed, causing the treated water to deteriorate, and also causing leakage of nitrate and the like into the treated water. The method of Patent Document 7 is an anaerobic treatment method in which a treatment substance, methanol, 4 times the amount of acetic acid is added at the beginning of the treatment, but it is impractical to add a larger amount of acetic acid than the discharged water to the actual installation. . Moreover, the 5 201029938 methods will be stopped after the start of processing (4). After the time of stopping the acetic acid, there will be a problem of characterization and treatment. The method of Patent Document 8 is to switch to an anaerobic treatment method in which sugar is added. These sugars are carbohydrates, including monomeric monosaccharides, complex condensates such as oligosaccharides, polysaccharides composed of a plurality of monosaccharides (starch, cellulose, etc.). The monosaccharide has a tri-carbon (tri〇se) containing 3 carbons, a tetraether (tetrose) containing 4 carbons, a 5-carbon sugar containing 5 carbons, and a hexose containing 6 carbons. This _ plus single-funded (four) oxygen biological treatment may lead to the collapse of granular sludge, so the addition of sugar can not prevent the collapse of granular sludge. This type of method only has the addition of sugar to the temple powder. Since starch is not easily soluble in water, if starch is used, it must be dissolved in hot water to form a starch solution, which can cause problems in operation management. As mentioned above, various methods have their problems, so it is difficult to apply them practically. In addition, most of the above methods are emissions of organic matter containing j stone and sterol in the wood pulp manufacturing process, and do not use TMAH discharge water containing 4 carbons from semiconductor factories such as pure water and ultrapure water ❿ engineering. A case of anaerobic biological treatment of polycarboxyalkylammonium salts discharged water (sometimes containing a resin in a resist or a surfactant-containing agent). Therefore, the object of the present invention is to reduce the anaerobic biological treatment of the discharge water containing polyalkylamine ammonium salts such as TMAH, biliary test, etc., and to reduce the discharge of polyoxic acid-containing salt recorded in TMAH, bile test, etc. The equipment area of the water treatment equipment provides economical and environmentally friendly anaerobic biological treatment and anaerobic biological treatment equipment, which can also properly treat the discharge water containing polycarboxylate alkyl 201029938 ammonium salt and 6 carbons. The discharge water of the following organic substances and the like, in particular, an anaerobic biological treatment method and an anaerobic biological treatment apparatus containing discharged water containing TMAH and Hess, which are discharged from a semiconductor scale. Means for Solving the Problem: The present invention is directed to an anaerobic biological treatment method for discharging water containing a polyalkylamine alkylammonium salt, and a polycarboxylate in the water discharged from the above-mentioned polyoxosulfanyl ammonium salt. The acid alkyl ammonium salt concentration is below 2 〇〇〇 / L. In addition, the present invention is a treatment method for treating water containing poly (ortho-acidic ammonium) (IV) by anaerobic biological treatment, and the organic nitrogen and ammonia in the water discharged from the poly(tetra)alkylammonium salt are used in the above biological treatment. The total concentration of gas (Ammonia Nitrogen) is less than 3 9 〇. In the case of the former oxidizing biological material, it is preferable to circulate the part (4) of the treated water which has been treated by the biological treatment in the above-mentioned (4) Weijiyan salt discharge water. When the above-mentioned biological treatment is carried out, the concentration of the polyweiji-based money contained in the above-mentioned "acid-based base (4) discharged water is preferably less than 10000 mg/L. The present invention relates to an anaerobic biological treatment method for treating ammonium salt discharge water by anaerobic biological treatment, and when the above-mentioned biological treatment is carried out in the aforementioned polycarboxylate-containing alkyl salt discharge water , between pH__6 . 5 ~ 9. 0. The present invention is for the treatment of (4) (iv) quaternary ammonium salt discharge water-type anaerobes, for the treatment of the above-mentioned biological treatment, the water temperature is 2 〇t the above. The present invention relates to an anaerobic biological treatment method for treating polyhydric acid-containing sulphate discharge water by anaerobic biological treatment, and the conditions thereof must meet any of the following two items: (1) in carrying out the aforementioned biological treatment, The concentration of the polyalkyl phthalate salt in the above-mentioned lysine-containing ammonium salt discharge water must be less than 2 〇〇〇 0 mg / L, and the above-mentioned biological treatment of the carboxylic acid-containing ammonium amide is discharged in the same biological treatment. The concentration of polyalkylammonium salt in water shall be less than 2 〇〇〇〇mg/L. After completion of the above biological treatment, part of the treated water shall be placed again in the above-mentioned polyalkylammonium salt-containing discharge water. (2) When carrying out the aforementioned biological treatment, the total concentration of organic nitrogen and ammonia nitrogen in the above-mentioned polyalkylamine-containing ammonium salt-containing discharge water must be less than 3 gOOmg-N/L, and at the time of carrying out the biological treatment The total concentration of organic nitrogen R and ammonia nitrogen in the water discharged from the body containing the acid body of the body should be less than 3 〇〇m gN /L, and after the completion of the above biological treatment, part of the treated water must be placed in the foregoing Circulating water containing polyalkylammonium salt in discharged water; (3) the aforementioned polypyrene The alkylammonium salt discharged water has a pH ranging from 6 · ς ^ to 9.0 in the above biological treatment; (4) the above-mentioned polycarboxylic acid alkyl ammonium salt-containing water is subjected to the aforementioned biological treatment. The temperature must be above 20 °C. Further, in the aforementioned anaerobic biological treatment method, the above polyphosphonium amide is preferably tetraammonium hydroxide (TMAH). The anaerobic biological treatment device of the present invention has a biological treatment method for biological treatment of polyglycolic acid-containing salt discharge water in an anaerobic manner, and a method for adjusting the concentration of poly-alkalic acid alkyl ammonium salt to allow the discharge water to flow in. In the above biological treatment method, the concentration of the polycarboxylic acid 8 201029938 alkyl ammonium salt in the polyalkylamine-containing ammonium salt-containing water can be adjusted to be less than 20 〇〇〇 mg/L. The anaerobic biological treatment device of the present invention has a biological treatment method for performing polyanaerobic acid-based money salt discharge water in an anaerobic manner, and a method for adjusting nitrogen concentration to allow the discharge water to flow into the biological treatment method, the foregoing polycondensation The concentration of organic nitrogen and ammonia nitrogen in the water discharged from the alkylammonium carboxylate is lower than 390 mg-N/L. In the aforementioned anaerobic biological treatment apparatus, it is preferable to have a circulation method φ so that a part of the treated water subjected to the above biological treatment can be re-introduced into the above-mentioned polyalkylamine-containing ammonium salt-containing water discharge cycle. In the aforementioned anaerobic biological treatment device, it is preferred to have a method for adjusting the concentration of the polyalkylamine ammonium salt so as to be able to adjust the aforementioned polycarboxyalkylammonium salt-containing discharge water when the discharged water flows into the biological treatment method. The polyglycolic acid ammonium salt concentration is made lower than l〇〇〇〇mg/L. The anaerobic biological treatment device of the present invention has a biological treatment method for treating the water containing the polysodium sulphate salt by biological treatment, and a set of pH adjustment method for performing the aforementioned polycarboxylic acid-containing The range of the pH of the alkyl ammonium salt discharge water can be adjusted to a range of 6.5 to 9.0. The anaerobic biological treatment device of the present invention has a biological treatment method for treating the discharge water containing the polyalkylammonium salt of the polycarboxylic acid by biological treatment, and a set of the aforementioned water for discharging the polyalkylammonium salt containing polycarboxylate In the case of biological treatment, the temperature adjustment method of adjusting the water temperature in the above biological treatment method to 20 ° C or higher. The anaerobic biological treatment device of the present invention has a biological treatment method for treating effluent water containing polyalkylammonium salts of polycarboxylates by anaerobic biological treatment, and a method of any two or more of cold springs (~) in 201029938: (1) In the process of discharging the biological treatment method, the concentration of the (4) Weijilu salt in the discharged water containing the sulphuric acid-based salt is adjusted to 2 QQQ Qmg or less, and the acid acid-based salt concentration adjustment method is as follows After adjusting the concentration of the acid-saturated ammonium salt and the biological treatment, the partially treated water is again placed in the circulation method of the above-mentioned poly-soil-discharge water, and (2) when the discharged water flows into the biological treatment method, The nitrogen concentration adjustment method for adjusting the total concentration of the organic nitrogen and the ammonia nitrogen in the polyoxosulfate-containing ammonium salt discharge water to 3900 mg-N/L or less, and the nitrogen concentration adjustment method and the biological treatment described above are a part of the treated water is again placed in the circulation of the above-mentioned polyalkylamine ammonium salt-containing effluent water circulation; (3) in carrying out the aforementioned biological treatment of the polycarboxylic acid alkylammonium salt-containing water discharged , adjusting the pH to a pH adjustment range of 6 · 5 to 9 . 0; (4) in carrying out the aforementioned biological treatment of the polyalkylamine ammonium salt-containing water discharged, the biological treatment method described above The temperature is adjusted to 2 〇 above the temperature adjustment method. a In the aforementioned anaerobic biological treatment apparatus, the polyalkylamine ammonium salt is preferably tetraammonium hydroxide (TMAH). The present invention relates to an anaerobic biological treatment method for treating polylactic acid-based salt-containing salt discharge water by anaerobic biological treatment method, in the above-mentioned biological treatment, the above-mentioned polycarboxylate alkylammonium salt discharged water The concentration of alkyl citrate is less than 2 00 mg / L. 'The present invention is an anaerobic biological treatment method for treating polyhydric acid-containing salt discharge water by anaerobic biological treatment'. When performing the aforementioned biological treatment 201029938, the above-mentioned polycarboxylic acid alkyl ammonium salt is discharged. The total concentration of organic nitrogen and ammonia nitrogen in the water is below 3900 mg - ν / L. The present invention relates to an anaerobic biological treatment method for treating effluent water containing polyalkylammonium salts of polycarboxylates by anaerobic biological treatment, and when the above-mentioned biological treatment is carried out on the above-mentioned polyoxosulfate-containing ammonium salt discharged water, The water temperature is above 20 °C. The present invention relates to a biological treatment device comprising a method for treating a discharge water containing a polyalkylammonium salt of a polycarboxylic acid by an anaerobic biological treatment method, wherein the above-mentioned biological treatment method comprises a polyalkylammonium polycarboxylate. The concentration of the polyacid buffer in the salt discharge water is below 20,000 mg/L. The present invention relates to a biological treatment apparatus for treating a polycarboxylic acid-based salt-containing salt discharge water by an anaerobic biological treatment method, 'when the discharged water flows into the biological treatment method', the aforementioned polycarboxylic acid alkylammonium salt The total concentration of organic nitrogen and ammonia nitrogen in the discharged water is below 390 mg — N/L. The present invention relates to a biological treatment device comprising a method for treating a polycarboxylate-containing sulphate-containing effluent water by an anaerobic biological treatment method, and treating the polyalkylammonium-containing ammonium salt-containing water discharged by the biological treatment method described above In the case of the above biological treatment method, the water temperature is 2 Ot: or more. The present invention is an anaerobic biological treatment for treating effluent water containing a polyalkylammonium alkyl salt in an anaerobic biological treatment, which supplies molasses to the aforementioned effluent water. The present invention relates to an anaerobic biological treatment method for treating discharged water containing organic matter of 6 carbons or less by biological treatment, and supplies molasses to the aforementioned discharge water. 0 11 201029938 In the anaerobic biological treatment method, at the beginning It is preferable to supply the aforementioned molasses at the time of biological treatment and after the start. In the Lishu anaerobic biological treatment method, it is preferable to introduce the anaerobic sludge into the reaction tank for performing the above biological treatment to start the above biological treatment. In the aforementioned anaerobic biological treatment method, the aforementioned discharge water is preferably discharged from a semiconductor factory. In the above anaerobic biological treatment method, the polycarboxylic acid alkylammonium salt and the organic matter containing 6 or less carbon atoms are preferably tetramethylammonium hydroxide (TMAH). In the anaerobic biological treatment method, it is preferable to fill the carrier in the reaction vessel in which the biological treatment is carried out when the biological treatment described above is defeated. The anaerobic biological treatment apparatus of the present invention comprises a reaction tank for treating the discharge water containing the polyalkylammonium salt of the polycarboxylic acid by an anaerobic biological treatment method, and a method for supplying the molasses for supplying the molasses to the discharged water. The anaerobic biological treatment apparatus of the present invention comprises a reaction tank for treating an organic substance containing six or less carbons by an anaerobic biological treatment method, and a molasses supply method for supplying the molasses to the discharged water. In the above anaerobic biological treatment apparatus, the aforementioned molasses supply method preferably supplies molasses at the start of the biological treatment and after the start of the biological treatment. In the above anaerobic biological treatment apparatus, it is preferable that the anaerobic sludge is introduced into the reaction tank at the start of the biological treatment described above. In the aforementioned anaerobic biological treatment apparatus, the discharge water is preferably discharged from a semiconductor factory. In the above anaerobic biological treatment apparatus, the polycarboxylic acid alkylammonium salt 12 201029938 and the organic substance having 6 or less carbon atoms or less are preferably tetramethylammonium hydroxide (TMAH). In the above anaerobic biological treatment apparatus, it is preferable to fill the support in the reaction tank in which the biological treatment is carried out when the biological treatment described above is started. EFFECTS OF THE INVENTION According to the present invention, when anaerobic biological treatment of discharged water containing polyalkylamine ammonium salts such as TMAH or choline is carried out, it is possible to reduce the treatment of TMah-containing and bismuth-containing polycondensation The set-up area of the treatment equipment for the discharged water, at the same time has economic benefits and environmental benefits, provides good biological treatment methods and biological treatment devices, and can also well treat the polycarboxylate-containing salt-salted water and 6 carbons. In the discharge water such as the organic matter, the discharge water such as TMAH and choline is discharged from a semiconductor factory. [Embodiment] An embodiment of the present invention will be described below. This embodiment is an embodiment of the present invention, but the present invention is not limited to the embodiment. <Embodiment 1> Fig. 1 is a schematic view showing a mode constituting the anaerobic biological treatment apparatus of the present embodiment. As shown in Fig. 1, the anaerobic biological treatment device 1 has a raw water tank 10, a septic tank 1, an anaerobic biological treatment tank 14, a separation tank 16, a nitrogen treatment tank 18, and a treatment tank 2 . The adjustment groove} 2 includes the first adjustment groove 1 2 a and the first adjustment groove 1 2 b, but it does not necessarily have to be a multi-groove or a single groove. Raw water tank 1 0 and adjustment tank 1 2, adjustment tank 1 2 and anaerobic organism 13 201029938 treatment tank 1 4, anaerobic biological treatment tank 4 and tank 1 6 with nitrogen treatment tank 8 , nitrogen 2 6 &quot The cutters are connected by pipes 22a to 22e, respectively. There are pumps 24a, 24b on the 22^). a The first adjustment tank i 2 a is connected with dilution = 彳 inflow line 28, nutrient inflow line 3 Γ 2 = Γ adjuster flow line 2 8 and vapor 2 tube ^ 3 4 are connected. The first-adjusting tank 1 2 a and the b-th loading (four) mixing device 36, 38.帛-tank 1 2 Anaerobic biological treatment tank 1 4 As long as it can be used for anaerobic biological treatment, UASB: base 2: granules upflow sludge bed type anaerobic biological treatment tank can be used Body solid boring or fluidized bed anaerobic biological treatment tanks, etc. Ships used in anaerobic biological treatments are not particularly difficult to manufacture. For example, a foamed support such as Wei, a colloidal support such as polyvinyl alcohol (PVA), a fibrous support, a nonwoven fabric molded article, and a molded article such as polypropylene. In addition, the sludge used for anaerobic biological treatment is not particularly limited, and for example, anaerobic sludge, granules or sewage treatment used in food factories, beverage factories, paper factories, chemical factories, and livestock discharge water treatments. Field digested sludge and so on. In addition, it is preferable to add a core substance such as iron, calcium salt or fly ash, and a coagulant and an organic substance to promote the particle forming substance when the amount of the particles is not reduced in the operation. According to the present inventors, in the anaerobic biological treatment tank 14 polycarboxylate 201029938 acid-based salt (for example, tmakq 炫, acid ion and ammonia ion, etc.. The following description of the embodiment and anaerobic biological treatment It will be broken down into an anaerobic biological treatment device 1 in the armor due to anaerobic organisms.

啟動泵浦2 4 a,透過配管2 2 a將原水槽i 〇内的 含聚叛酸絲㈣触水供絲驢W 2。另外從稀釋 水流入管路2 6供應稀釋水給調整槽12。在排放水流入 厭氧性生物處理槽1 4時(進行生物處理時),含聚羧酸烷 基銨鹽排放水中的聚羧酸烷基銨鹽濃度必須在2 〇 〇 〇 〇 mg/L以下,最好在丄〇 〇 ◦ 〇mg八以下。尤其當 擔心會造成水質變動及對共存物質產生影響時,在排放水 流入厭氧性生物處理槽丄4時(進行生物處理時),含聚羧 酸烷基銨鹽排放水中的聚羧酸烷基銨鹽濃度最好低於5 〇 0 0 m g/L,更佳的情況是在在1〇〇〇〜3〇〇〇m g/L範圍内。在本實施形態中,含聚羧酸烷基銨鹽排放 水中的聚羧酸烷基銨鹽濃度若超過2〇α〇 〇mg/]L, 只需供應稀釋水將濃度稀釋到2 0 0 〇 〇 m g/L以下即 可。不過即使含聚缓酸烧基敍鹽排放水中的聚羧酸烧基録 鹽濃度低於2 0000mg/L以下(例如在丄〇 〇 〇 〇 m g/L以上),也可供應稀釋水,例如稀釋到χ 〇 〇 〇 〇 mg/L以下或1 000〜3000mg/L的範圍内亦 可。排放水在流入到厭氧性生物處理槽1 4時,含聚叛酸 烷基銨鹽排放水中的聚羧酸烷基銨鹽濃度若超過2 0 〇 〇 Omg/L,在進行生物處理時聚羧酸烧基敍鹽的分解反 15 201029938 應速度會變慢。 在本實施形態中,亦可在配管22c等位置安裝檢驗 經生物處理後處理水中氨離子濃度的感應器。而且也可從 檢驗出的氨離子濃度推算出聚羧酸烷基銨鹽的濃度,根據 該推斷値決定稀釋水的添加量,以使排放水在流入厭氧性 生物處理槽14時,聚羧酸烷基銨鹽濃度能在上述範圍内 。此外,亦可在調整槽1 2或配管2 2 a等位置安裝感應 聚羧酸烷基銨鹽濃度之感應器。然後根據所檢驗出之聚羧 酸燒基錢鹽漢度決定稀釋水的添加量’以使排放水在流入© 厭氧性生物處理槽14時,聚叛酸燒基銨鹽濃度能落在上 述範圍内。 當厭氧性生物處理槽14内的氨離子濃度超過5〇〇 0 m g/L時,分解反應速度會降低,因此厭氧性生物處 理槽1 4内的氨離子濃度必須低於5 0 〇 〇mg/L,最 好在1000mg/L以下。在厭氧性生物處理中,排放 水中硝酸、亞硝酸以外的氣成分幾乎全部都是氣離子,因❹ 此在本實施形態中,須透過稀釋水流入管路2 6供給稀釋 水給調整槽1 2,讓排放水在流入厭氧性生物處理槽1 4 時(進行生物處理時),含聚羧酸烷基錄鹽排放水中的有機 體氡以及氨氮的總濃度低於3 9 00mg—N/L以下, 最好在7 8 0mg—N/L以下,讓厭氧性生物處理槽1 4内的氨離子濃度落在上述範圍内。在本實施形態中’含 聚羧酸烷基銨鹽排放水中的有機體氮以及氨氮的總濃度若 超過3 9 0 Omg —N/L,必須供應稀釋水將濃度稀釋 16 201029938 到3 9 0 G m g - N/L以下。不過即使含聚叛酸炫基錢 鹽排放水中的有機體氮與氨氮的總濃度低於3 9 〇 〇mg _N/L ’亦可供給稀釋水稀釋。 本實施形態中所使用的稀釋水有工業用水、放流水、 或若工廠内有设備時可以是蒸顧氨廢液以及II>A廢液所得 的蒸餾處理水(冷凝水)等等。蒸餾處理水的水溫較高在 4 0 C,因此可為厭氧性生物處理槽1 4加溫,促進聚敌 酸烷基銨鹽的分解反應。 另外在本實施形態中可透過循環管路3 4將生物處理 後的部份處理水和稀釋水一起,或是取代稀釋水供應給調 整槽1 2。若排放水中的聚羧酸烷基銨鹽濃度過高,此時 為稀釋排放水而添加了稀釋水時,會增加從厭氧性生物處 理槽1 4排放出的水量。像這樣增加稀釋所需水量,以及 增加排出水量時,最好能將處理水加以循環稀釋排放水。 在本實施形態中可透過循環管路3 4將生物處理後的 部份處理水和稀釋水一起,或是取代稀釋水供應給調整槽 1 2。當流入厭氧性生物處理槽14時(進行生物處理時 )’含聚羧酸烷基銨鹽排放水中的聚羧酸烷基銨鹽濃度必須 在20000mg/L以下,最好在1 〇〇〇〇mg/L 以下,更佳的是低於5 〇 0 〇mg/L,再更進一步,最 好能在1 〇〇〇〜300〇mg/L的範圍内,或者含聚 羧酸烷基銨鹽排放水中的有機體氮與氨氮的總濃度低於3 900mg —N/L,最好在7 8 0mg —N/L以下亦 可。不過在經生物處理後的處理水中,由於含有分解聚緩 17 201029938 酸烧基錄鹽所生成的氨離子,因此只要含聚羧酸烷基銨鹽 排放水中的有機體氮與氨氮的總濃度低於3 9 〇 0 m g _ N/L,即可直接循環處理水不須使用稀釋水,最好能稀 釋排放水。此外即使含聚羧酸烷基銨鹽排放水中的有機體 氮與氨氮的總濃度低於3900mg — N/L,亦可供應 稀釋水(與處理水)稀釋排放水。 在本實施形態中,在進行含聚羧酸烷基銨鹽排放水的 生物處理時,須從pH調整劑流入管路2 8供應pH調整劑 給調整槽以使pH落在6 .5〜9.0範圍内,最好在7 ·❹ 0〜8 . 0之間。若含聚羧酸烷基銨鹽排放水的PH超出上 述範圍’會使生物處理中的聚羧酸烷基銨鹽的分解反應速 度減緩。此外,過去在進行厭氧性生物疼理時為了減少氨 的阻礙,pH最好在6 · 5〜7的弱酸性範圍,但是聚羧酸 烷基銨鹽的處理則須在pH7〜8的弱鹼程度才能達到最 佳處理效果。這是本發明人最早發現的狀況。這裡在進行 上述之本pH調整時,含聚羧酸烷基銨鹽排放水中的聚羧酸❹ 烷基銨鹽濃度最好在20000mg/L以下,有機體氮 與氨氮的總濃度最好在3 9 0 Omg—N/L以下。 本實施形態中所使用之pH調整劑並不特別限定只能 是鹽酸等的酸劑、氫化鈉等鹼性劑。此外pH調整劑亦可是 具有緩衝作用的重碳酸鈉、燐酸緩衝液等。 在本實施形態中,當進行含聚羧酸烷基銨鹽排放水的 生物處理時,厭氧性生物處理槽1 4内的水溫須做溫度調 整,最好在2 0 C以上,更進一步最好在2 8〜3 5¾的 18 201029938 辈Τη。厭氧性生物處理的聚幾酸炫基錄鹽分解也能在低 2 /的%境下奸,但是若低於2代分解反應速度 0此須將水溫調至上述範圍内。上述的溫度調整 仏古特別限制’例如可從蒸氣流入管路3 2供應蒸氣 :调日1 2 (如第二調整槽工2 b ),以調整厭氧性生物 處理槽1 4内的水溫,或者在厭氧性生物處理槽1 4上裝 加=’、利用加熱器的熱調整厭氧性生物處理槽1 4内的 ❺“或者可供應㉘加溫獅稀釋水來瓣厭氧性生物處 理槽1 4内的水/皿。或者在聚幾酸烧基錢鹽分解時會產生 甲烧瓦斯’在依照一般的厭氧處理進行脱硫處理後,可回 收甲燒鋼爐的熱能,將該熱能供應給厭氧性生物處理槽1 4 ’調.整水溫。在此將厭氧性生物處理槽丨4内的水溫調 正到上述範圍時’含聚幾酸燒基錄鹽排放水中的聚叛酸烧 基銨鹽濃度須低於2 〇 〇 〇 〇mg/L ’有機體氮與氨氣 的總濃度低於3 9 〇 〇 m g — N/L·。 藝在本實施形態中,為了維持厭氧性生物良好的分解活 性,最好能透過營養劑流入管路3〇添加營養劑給調整槽 1 2。營養劑的種類無特別限制,可使用炭素源、氣源、 其他無機鹽類等。 利用上述的各種方法,可在厭氧性生物處理槽工4中 將含聚竣酸烧基録鹽排放水中的聚竣酸烧基錢鹽分解 烷(氣體)、氨離子等。有關這一點,在本實施形態中利用 厭氧性生物處理分解聚缓酸烧基銨鹽,最好能採用前述説 明過的(1)調整聚繞酸燒基銨鹽濃度或調整將該濃度以 19 201029938 即將部份處理水加以循環;(2 )調整古拖 ^ M ^ & ’機體氮與氨氮的總 濃度或調整該總氮濃度以及讓部份處理水加以循w 調整含聚缓酸烧基錄鹽排放水的pH ^ w ^ 〈4)在調整含聚羧 酸烷基銨鹽排放水的水溫後;以上述方 /¾•的任兩種實施。 相對於好氧處理,過去可採用厭氣性生物處理的原水 種類比較有限’會採用厭氧性生物處理 〇 質、碳水化合物、㈣的生物可分解性2=: 及其所構成的物質,如含糖類、酒精類等的食品或飲料、 釀造工廠的排放水等。此外,由於厭氧性生物處理 水質無法達到好氧性生物處理的濃度,因此一般會在後段 設置好氧性生物處理設備。厭氧性生物處理的實用狀況如 上所述,但是本發明人等發現,針對好氧性生物處理也難 以分解的人工合成物.質TMAH、膽鹼等所含的聚羧酸烷基 銨鹽’採用前述說明過之(i )〜(4 )的厭氧性生物處 理實施形態方法,讓即使在厭氧處理條件下都能加以處理 ,而且處理速度比好氧性生物處理還快,而且在處理水質❹ 方面’也比過去所知的厭氧處理水質還要明顯良好,不再 需要在後段設置好氧性生物處理設備。同時也發現在一般 進行厭氧處理的水溫條件一一低於3 5 °c以下水溫、在2 0 °C〜3 5 °C的水溫條件下,也能良好地處理聚羧酸烷基銨 鹽。而且在半導體工廠顯像工程所排放的抗蝕劑與含界面 活性劑之含聚羧酸烷基銨鹽排放水的厭氧性生物處理中, 只要採用前述說明過之(1 )〜(4)的厭氧性生物處理 實施形態方法,就能在無明顯阻礙的情況下將聚羧酸烷基 20 201029938 銨鹽分解處理成TOC (總有機碳)。 本實施形態可處理之聚羧酸烷基銨鹽包括了氫氧化四 甲錄(Tetramethylammonium Hydroxide=TMAH)、Tetra ethylammonium Hydroxide ' Tetra propylammonium Hydroxide、Tetra Butylammonium Hydroxide、Methyl triethylammonium Hydroxide ' Trimethyl ethylammonium Hydroxide、Dimethyl diethylammonium Hydroxide、 Trimethyl(2-hydroxyethyl)ammonium Hydroxide (亦即膽絵: ❹ )、Triethyl(2-hydroxyethyl)ammonium Hydroxide、 Dimethyldi(2-hydroxyethyl)ammonium Hydroxide > Diethyldi(2-hydroxyethyl)ammonium Hydroxide ' Methyltris(2-hydroxyethyl)ammonium Hydroxide ' Ethyltris(2-hydroxyethyl)ammonium Hydroxide ' Tetra(2-hydroxyethyl)ammoniumHydroxid 以及該類鹽等。 本實施形態尤其適用於半導體工廠、液晶工廠所排放之 φ Tetra methylammonium Hydroxid(TMAH) >Start the pump 24 4 a, and pass the polyphenolic acid (4) in the raw water tank i to the wire W 2 through the pipe 2 2 a. Further, dilution water is supplied from the dilution water inflow line 26 to the adjustment tank 12. When the discharged water flows into the anaerobic biological treatment tank 14 (when biological treatment is carried out), the concentration of the polycarboxyalkylammonium salt in the polyalkylamine-containing ammonium salt-containing water must be below 2 〇〇〇〇mg/L. It is best to 丄〇〇◦ 〇mg eight or less. Especially when there is concern about changes in water quality and effects on coexisting substances, when the discharged water flows into the anaerobic biological treatment tank 4 (when biological treatment is carried out), the polycarboxylate containing water in the alkyl ammonium salt of polycarboxylate is discharged. The concentration of the quaternary ammonium salt is preferably less than 5 〇 0 0 mg/L, and more preferably in the range of from 1 〇〇〇 to 3 〇〇〇 mg/L. In the present embodiment, if the concentration of the polycarboxyalkylammonium salt in the polycarboxylate alkylammonium salt-containing water exceeds 2 〇α〇〇mg/]L, it is only necessary to supply dilution water to dilute the concentration to 200 〇. 〇mg/L or less. However, even if the concentration of the polycarboxylic acid sulphate in the water discharged from the polyacid buffer is less than 200 mg/L (for example, above 丄〇〇〇〇mg/L), dilution water can be supplied, for example, diluted. It is also possible to be in the range of χ 〇〇〇〇 mg/L or in the range of 1 000 to 3000 mg/L. When the discharged water flows into the anaerobic biological treatment tank 14 , the concentration of the polycarboxyalkylammonium salt in the polyoxoalkylammonium salt-containing water exceeds 20 〇〇Omg/L, and is collected during biological treatment. The decomposition of the carboxylic acid-based salt is reversed. 15 201029938 The speed should be slower. In the present embodiment, an inductor for inspecting the concentration of ammonia ions in the treated water after biological treatment may be installed at a position such as the pipe 22c. Further, the concentration of the polycarboxyalkylammonium salt can be estimated from the detected ammonia ion concentration, and the amount of the dilution water added can be determined based on the estimation, so that the discharged water flows into the anaerobic biological treatment tank 14, and the polycarboxylate The acid alkyl ammonium salt concentration can be within the above range. Further, an inductor for inducing a concentration of a polyalkylammonium salt of a polycarboxylate may be installed at a position such as the adjustment tank 12 or the pipe 2 2 a. Then, according to the polycarboxylate-based salt salt, the amount of dilution water is determined to be such that when the discharged water flows into the anaerobic biological treatment tank 14, the polyglycolic acid ammonium salt concentration can fall above Within the scope. When the ammonia ion concentration in the anaerobic biological treatment tank 14 exceeds 5 〇〇 0 mg/L, the decomposition reaction rate is lowered, so the ammonia ion concentration in the anaerobic biological treatment tank 14 must be lower than 50 〇〇. Mg/L, preferably below 1000 mg/L. In the anaerobic biological treatment, almost all of the gas components other than nitric acid and nitrous acid in the discharged water are gas ions. Therefore, in the present embodiment, the dilution water is supplied to the adjusting tank 1 through the dilution water inflow line 26. When the discharged water flows into the anaerobic biological treatment tank 14 (when biological treatment is carried out), the total concentration of the organic hydrazine and ammonia nitrogen in the polycarboxylate-containing salt-containing salt discharge water is less than 399 mg-N/L or less. Preferably, the concentration of ammonia ions in the anaerobic biological treatment tank 14 falls within the above range, preferably below 780 mg-N/L. In the present embodiment, if the total concentration of organic nitrogen and ammonia nitrogen in the water containing alkyl ammonium chloride salt exceeds 390 mg-N/L, it is necessary to supply dilution water to dilute the concentration 16 201029938 to 3 9 0 G mg. - N/L or less. However, even if the total concentration of organic nitrogen and ammonia nitrogen in the water discharged from the polyphenolic acid-based salt is less than 3 〇 〇mg _N/L ', it can be diluted with dilution water. The dilution water used in the present embodiment may be industrial water, discharged water, or distilled water (condensed water) obtained by steaming ammonia waste liquid and II>A waste liquid if equipment is present in the factory. The water temperature of the distilled water is higher at 40 C, so that the anaerobic biological treatment tank 14 can be warmed to promote the decomposition reaction of the polyalkylene salt. Further, in the present embodiment, the biologically treated partial treated water and the dilution water may be supplied to the conditioning tank 12 in place of the dilution water through the circulation line 34. If the concentration of the polycarboxyalkylammonium salt in the discharged water is too high, the amount of water discharged from the anaerobic biological treatment tank 14 is increased when the dilution water is added to dilute the discharged water. When increasing the amount of water required for dilution and increasing the amount of discharged water, it is best to recycle the treated water to dilute the discharged water. In the present embodiment, the biologically treated partial treated water may be supplied to the adjusting tank 1 2 together with the dilution water or the dilution water through the circulation line 34. When flowing into the anaerobic biological treatment tank 14 (when performing biological treatment), the concentration of the polycarboxylic acid alkylammonium salt in the polyalkylamine-containing ammonium salt-containing water must be below 20,000 mg/L, preferably at 1 Torr. 〇mg/L or less, more preferably less than 5 〇0 〇mg/L, and further, preferably in the range of 1 〇〇〇~300 〇mg/L, or containing polyalkylammonium phosphate The total concentration of organic nitrogen and ammonia nitrogen in the salt discharge water is less than 3 900 mg - N / L, preferably below 780 mg - N / L. However, in the treated water after biological treatment, the total concentration of organic nitrogen and ammonia nitrogen in the water discharged from the alkylammonium salt containing polycarboxylate is lower than that due to the ammonia ion generated by the decomposition of the acid buffer base salt. 3 9 〇0 mg _ N/L, you can directly recycle the water without using dilution water, it is best to dilute the discharge water. In addition, even if the total concentration of organic nitrogen and ammonia nitrogen in the water discharged from the alkylammonium salt of polycarboxylate is less than 3900 mg - N / L, dilution water (and treated water) may be supplied to dilute the discharged water. In the present embodiment, in the biological treatment of the polycarboxylate alkylammonium salt-containing water, the pH adjuster is supplied from the pH adjuster inflow line 28 to the conditioning tank to bring the pH to 6.5 to 9.0. Within the range, preferably between 7 · ❹ 0 ~ 8. 0. If the pH of the water discharged from the alkylammonium salt of the polycarboxylic acid exceeds the above range, the decomposition rate of the polyalkylamine ammonium salt in the biological treatment is slowed down. In addition, in the past, in order to reduce the hindrance of ammonia in the anaerobic biological treatment, the pH is preferably in the weakly acidic range of 6 · 5 to 7, but the treatment of the polyalkylamine ammonium salt must be weak in the pH of 7 to 8. The degree of alkali can achieve the best treatment effect. This is the first condition discovered by the inventors. Here, in the above pH adjustment, the concentration of the polycarboxylate alkylammonium salt in the polycarboxylate alkylammonium salt-containing water is preferably below 20,000 mg/L, and the total concentration of the organic nitrogen and ammonia nitrogen is preferably at 3 9 . 0 Omg—N/L or less. The pH adjuster used in the present embodiment is not particularly limited to an acid agent such as hydrochloric acid or an alkaline agent such as sodium hydride. Further, the pH adjuster may be a sodium bicarbonate or a buffer of citric acid having a buffering action. In the present embodiment, when the biological treatment of the polycarboxylate alkylammonium salt-containing water is carried out, the temperature of the water in the anaerobic biological treatment tank 14 must be adjusted, preferably at 20 C or more. Best at 2 8~3 53⁄4 of the 18 201029938 generation Τη. The anaerobic biological treatment of the polyacid acid sulphate can also be degraded at a low rate of 2%, but if the decomposition rate is lower than the 2nd generation, the water temperature must be adjusted to the above range. The above-mentioned temperature adjustment is particularly limited by the fact that, for example, steam can be supplied from the vapor inflow line 3 2: day 1 2 (such as the second adjustment tank 2 b ) to adjust the water temperature in the anaerobic biological treatment tank 14 Or, add = to the anaerobic biological treatment tank 14, use the heat of the heater to adjust the 厌 in the anaerobic biological treatment tank 14 or "can supply 28 warm lion dilution water to the anaerobic organism Treating the water/dish in the tank 14 or generating the burnt gas when the polyacid acid is decomposed. After the desulfurization treatment according to the general anaerobic treatment, the heat energy of the furnace can be recovered. The heat energy is supplied to the anaerobic biological treatment tank to adjust the water temperature. Here, when the water temperature in the anaerobic biological treatment tank 4 is adjusted to the above range, the water containing the polyacids is recorded in the discharge water. The concentration of polyglycolic acid amide must be less than 2 〇〇〇〇mg / L 'the total concentration of organic nitrogen and ammonia is less than 3 〇〇mg - N / L ·. In this embodiment, in order to To maintain good decomposition activity of anaerobic organisms, it is best to adjust the nutrient into the pipeline 3 to add nutrients. 1 2. The type of the nutrient is not particularly limited, and a carbon source, a gas source, other inorganic salts, etc. may be used. The various methods described above may be used in the anaerobic biological treatment tank 4 In the salt discharge water, polyarsenic acid is used to decompose an alkane (gas), an ammonia ion, etc. In this embodiment, in the present embodiment, the polyanaerobic ammonium salt is decomposed by anaerobic biological treatment, preferably using the foregoing. (1) Adjusting the concentration of the poly-acidic ammonium salt or adjusting the concentration to circulate part of the treated water at 19 201029938; (2) adjusting the total concentration of nitrogen and ammonia nitrogen in the body of M ^ & Or adjusting the total nitrogen concentration and allowing a portion of the treated water to adjust the pH of the polyglycolate-containing salt discharged water to adjust the water temperature of the water containing the polyalkylamine ammonium salt. It can be implemented in either of the above-mentioned ways. Compared with aerobic treatment, the type of raw water that can be treated with anaerobic biological treatment in the past is relatively limited. ' Anaerobic biological treatment of tannins, carbohydrates, and biomaterials can be used. Decomposability 2=: and the substances it constitutes, Foods or beverages containing sugars, alcohols, etc., water discharged from brewing plants, etc. In addition, since the water quality of anaerobic biological treatment cannot reach the concentration of aerobic biological treatment, aerobic biological treatment equipment is generally installed in the latter stage. The practical situation of the anaerobic biological treatment is as described above, but the present inventors have found that the artificial synthetic substance which is difficult to decompose for aerobic biological treatment, the polyalkylamine ammonium salt contained in the substance TMAH, choline, etc. The anaerobic biological treatment embodiment method of (i) to (4) described above is used to treat even under anaerobic treatment conditions, and the treatment speed is faster than that of aerobic biological treatment, and is processed. The water quality 方面 aspect is also significantly better than the anaerobic treatment water quality known in the past, and it is no longer necessary to set up aerobic biological treatment equipment in the latter stage. At the same time, it has been found that the water temperature conditions of the anaerobic treatment are generally lower than the water temperature below 35 ° C, and the polycarboxylate can be well treated under the water temperature of 20 ° C to 35 ° C. Alkalium salt. Moreover, in the anaerobic biological treatment of the resist discharged from the semiconductor factory development project and the surfactant-containing polyalkylammonium salt-containing water, the above description (1) to (4) are used. The anaerobic biological treatment embodiment method can decompose the polycarboxyalkyl group 20 201029938 ammonium salt into TOC (total organic carbon) without significant hindrance. The polycarboxyalkylammonium salt which can be treated in this embodiment includes Tetramethylammonium Hydroxide=TMAH, Tetra ethylammonium Hydroxide 'Tetra propylammonium Hydroxide, Tetra Butylammonium Hydroxide, Methyl triethylammonium Hydroxide 'Trimethyl ethylammonium Hydroxide, Dimethyl diethylammonium Hydroxide , Trimethyl(2-hydroxyethyl)ammonium Hydroxide (also known as cholesteric: ❹), Triethyl(2-hydroxyethyl)ammonium Hydroxide, Dimethyldi(2-hydroxyethyl)ammonium Hydroxide > Diethyldi(2-hydroxyethyl)ammonium Hydroxide 'Methyltris(2- Hydroxyethyl)ammonium Hydroxide 'Ethyltris(2-hydroxyethyl)ammonium Hydroxide 'Tetra(2-hydroxyethyl)ammoniumHydroxid and the like. This embodiment is particularly applicable to φ Tetra methylammonium Hydroxid (TMAH) > discharged from semiconductor factories and liquid crystal factories.

Trimethyl(2-hydroxyethyl)ammonium Hydroxid (亦即膽驗) 分離槽1 6與厭氧性生物處理槽1 4之間係由污泥回 送管路4 0相連,分離槽1 6所分離出之污泥,若有必要 最好回送到厭氧性生物處理槽1 4。含聚羧酸烷基銨鹽排 放水中若含有抗蝕劑、界面活性劑等的SS成分,最好在生 物處理槽的前段設置一個可以分離去除SS成分的分離槽 。當厭氧性生物處理槽14在處理含聚羧酸烷基銨鹽排放 21 201029938 水時’即使混有抗蝕劑或界面活性劑也不至於影響到生物 處理’沒有必要特別去做事前去除的處理,但是設置分離 槽可以防止ss成分導致處理裝置阻塞情形發生。分離槽可 以採用加壓浮上、沈澱處理等方式,沒有特別限制。此外 ’處理水若有明顯泡沫情形蝕’在供給給分離槽之前最好 能添加消泡劑。 在厭氧性生物處理槽1 4中,經生物處理之含聚羧酸 烧基鞍鹽排放水的處理水中由於含有氨氮,因此在厭氧性 生物處理槽1 4的後段最好設置氮處理槽1 8。氮處理槽 1 8可以採用一般所知的氮處理裝置,例如可採用硝化-脱 氮-再氧化處理、亞硝酸化—Anammox處理等的生物處理, 或是氨蒸餾、去除(stripping)處理等的理化處理等的裝置。 此外’將處理水部份循環與排放水混合,經去除(stripping) 處理後再做TMAH處理也能降低後段氮生物處理的負擔。 在這之後,再把經厭氧性生物處理、分離處理、氮處 理等的處理水儲存再處理水槽2 〇中。 ❹ <第2實施形態> 第2圖所示為本實施形態中構成厭氧性生物處理裝置 的另一個模式圖例。如第2圖所示,厭氧性生物處理裝置 2係由原水第一管路4 2、調整槽4 4、原水第二管路4 6、反應槽4 8、處理水排出管路5 〇、氣體排出管路5 2、處理水循環管路5 4、糖蜜供給方法、營養劑供給方 法、pH調整劑供給方法所構成。糖蜜供給方法係由糖蜜貯 槽5 6、糖蜜供給管路5 8所構成,營養劑供給方法是由 22 201029938 營養劑貯槽6 〇、營養劑供仏營 供給方法W 62所構成’阳調整劑 fi、:槿忠/,整劑貯槽64、阳調整劑供給管路6 水即可^各供給方㈣結狀魏將轉供應給排放 :=上述結構的限制。例如為了能任意調整溶 符抓里各供給管路上最好安裝栗浦。在調整槽* 4内 ==裝置攪拌裝置6 8,利用攪拌裝置6 8等讓 為均勻。 ❹ &調"£'槽4 4的原水導人σ (圖未示)連接著原水第- 官路4 2。糖蜜貯槽5 6的糖蜜排出口(圖未示)盘調整 槽44的糖蜜供給口(圖未示)之間透過糖蜜供給管路5 8相連,營養劑貯槽6 〇的營養劑排出口(圖未示)與調 整槽44的營養劑供給口(圓未示)之間透過營養劑供給 管路6 2連接,ΡΗ調整槽4 4的ρΗ調整劑排出口(圖未 示)與調整槽4 4的pH調整劑供給口(圖未示)之間透過 pH調整劑供給管路6 6相連。此外,調整槽4 4的原水排 ❿出口(圖未示)與反應槽4 8之間透過原水第二管路4 6 相連。另外反應槽4 8侧的原水第二管路4 6的連接位置 最好位於反應槽48下方。 反應槽4 8内設有氣固液分離裝置(以下或稱Gss) 。氣固液分離裝置上有朝相反方向傾斜的分隔板7 〇 a, 7 0 b ’在其上方内侧有固液分離部72。分隔板7〇a ,7 0 b下方乃是分隔開地構成連通路7 4,且分隔板7 0 a,7 0 b —侧下端下方覆蓋在另一侧的下端下方上, 這個結構可以組閣上飄的氣體從連通路7 4進入固液分離 23 201029938 部7 2内。在固液分離部7 2,設有溢流式處理水取出部 76,在處理水取出部76的處理水排出口(圖未示)連 接者處理水排出管路5 Q。此外,處理水取出部7 6的處 理水回送口(圖未示)與調整槽44的處理水供給口(圖 未示)之間透過處理水循環管路5 4相連。在反應槽4 8 的頂部則連接著氣體排出管路5 2。 反應槽4 8只要能以厭氧生物處理方式處理聚羧酸烷 基銨鹽即可,可採UASB式、EGSB方式等使用顆粒之上 向流污泥床式反應槽或使用擔體的固定床式、流動床式反 應槽等。 以下說明本實施形態之厭氧性生物處理裝置2的動作 以及厭氧性生物處理法。 將含聚幾酸烧基錢鹽排放水透過原水第一管路4 2供 應給調整槽4 4,同時透過糖蜜供給管路5 8將糖蜜貯槽 5 6内的糖蜜供應給調整槽4 4。然後將授拌裝置6 8混 合好的混合液(含聚羧酸烷基銨鹽排放水與糖蜜)透過原❿ 水第二管路4 6引到反應槽4 8内,向上流通。根據本發 明人的研究,在反應槽4 8中,聚羧酸烷基銨鹽(例如 TMAH)因厭氧性生物的關係會被分解成曱烷、碳酸離子 、氨離子等。應用在厭氧性生物處理上的種污泥並無特別 限制,一般食品工廠、飲料工廢、製紙工廠、化學工廠、 畜產排放水處理等會使用厭氧性污泥、顆粒,下水處理場 會使用消化污泥等。 在傳統技術的資料中顯示,含有厭氧性微生物的顆粒 24 201029938 污泥會在啟動生物處理時即開始投入到反應槽4 8内,進 灯厭乳性處理,但是在本實施形態中,由於添加了糖蜜可 ㈣厭氧性純賴獅科,目切直祕厭氧性污泥 才又入到反應槽4 8中展開生物處理。 本實施形態最好是在開始生物處理時以及開始以後供 給糖蜜。糖蜜供給量無特別限制,可以總有機礙比來計算 乂排放水0 5 2 〇%的比例供給糖蜜或以總有機 ❿碳比計算以排放水1〜1◦%的比例供給糖蜜。 本發明人發現在進行厭氧性生物處理時,添加糖蜜可 讓厭氧性污泥形成顆粒污泥,能抑制顆粒污泥變細,因而 導出本項發明。添加糖蜜之所以能產生上述效果,乃是因 為糖蜜為高分子有機物’能促進加水分解菌與酸生成細菌 繁殖,產生具備顆粒架橋結構的生物高分子(bi〇p〇lymer), 也可讓利用醉酸的曱烧生成細菌系狀Methanosaeta屬增殖 。此外,糖蜜含有有機物等微生物生長所需的微量元素, ❹ 該微量元素並能促進形成顆粒。半導體工廠等使用純水、 超純水,因此這類工廠的排放水中所含的上述微量元素不 足’添加蜜糖可以補充微生物生長所需的微量元素。 此外在開始生物處理時,為了增加顆粒的量也可添加 活性碳、鐵或妈鹽及飛灰等物質,或是添加凝集劑和有機 物等能促進顆粒形成的物質。 在本說明書中所謂的「糖蜜(含廢糖蜜)」是指以甘簾 (C a n e )糖汁製造原糖(粗糖)或是將原糖精製時、或是 以甜菜生產甜菜糖時等製造砂糖時所產生的副產物(比重 25 201029938 大有黏性的茶褐色液體)。糖蜜中含4 〇〜6 〇%的糖分, 且一般而言糖蜜是精製過程中的副產物,因此主成份是蔗 糖(sucrose)(葡萄糖與果糖2種糖)。而且糖蜜中含蛋白質 、脂肪、礦物質、氨基酸及維他命等。糖蜜的原料並無特 別限制,可以是甘蔗(蔗糖)、甘藷、黑糖、玉米、原糖及 甜菜等。本實施形態中所使用的糖蜜亦可採用廢糖蜜,從 成本面來看也以廢糖蜜為佳。另外在專利文獻4(特開2 00 8 — 279385號公報)中所使用的澱粉是D·葡萄 吡喃糖(Gluc〇Pyranose)係a-i · 4結合所連結成之葡萄糖❹ 聚合物的總稱。 正如前述說明所示,在反應槽4 8中,(主要在展開生 物處理後)聚羧酸烷基銨鹽(例如TMAH)會因為厭氧性生 物而分解成曱烷、碳酸難子和氨離子等。經厭氧性生物處 理過的排放水透過連通路74進入固液分離部7 2,固液 分離過的處理水會溢流流到處理水取出部7 6,從處理水 排出管路5 0流出。反應槽4 8所產生的曱烷等氣體被分❹ 隔板7 〇 a,7 Ob遮住,不會流入固液分離部7 2,而 從反應槽4 8往上升,從氣體排出管路5 2流出。 在本實施形態中,經生物處理過的處理水有部份會透 過處理水循環管路5 4供應到調整槽4 4,在流入反應槽 4 8時(進行生物處理時),含聚羧酸烷基銨鹽排放水中的 聚叛酸烧基敍鹽濃度最好低於2 Q Q Q 〇mg/L ’在1 0000mg/L以下範圍則更佳。尤其若擔心發生水質 變動、對共存物質產生影響的話,在流入反應槽4 8時( 26 201029938 進行生物處理時)’含聚羧酸烷基銨鹽排放水中的聚羧酸烷 基銨鹽濃度最好低於5000mg/L,在1000〜3 0 0 Omg/L的範圍内尤佳。在本實施形態中,含聚羧 酸烷基銨鹽排放水中的聚羧酸烷基銨鹽濃度若超過2 〇 〇 0 0 m g/L時,可供給處理水進行稀釋,使濃度低於2 ◦ 000mg/L·。不過即使含聚羧酸烷基銨鹽排放水中 的聚羧酸烷基銨鹽濃度低於2 0 〇 〇 〇mg/L以下(例 ❿ 如超過l〇〇〇〇mg/L)亦可供給處理水,稀釋到1 0000mg/L以下或1〇〇〇〜3〇〇〇mg/L範 圍内亦可。在流入反應槽4 8時,含聚羧酸烷基銨鹽排放 水中的聚羧酸烷基銨鹽濃度若超過2〇〇〇〇mg/L, 在進行生物處理時聚羧酸烷基銨鹽的分解反應速度有時會 變慢。 本實施形態亦可在處理水排出管路5 〇等上設置感應 生物處理後處理水中氨離子濃度的感應器。而且可從檢驗 G 出的氨離子濃度推算聚羧酸烷基銨鹽濃度,根據該推算値 決定處理水的添加量,以使流入反應槽48時的聚叛酸烧 基按鹽濃度能進入上述範圍内。此外,也可在調整槽44 或原水第一管路4 2等處裝設檢測聚叛酸烧基錄鹽濃度的 感應器。同時亦可根據檢驗出的聚羧酸烷基銨鹽濃度,決 定處理水的添加量,以使流入反應槽48時聚叛酸貌基敍 鹽濃度能進入上述範圍。 當反應槽4 8内的氨離子濃度超過5 0 0 〇mg/L 時’會導致分解反應速度變慢,此時可將部份經生物處理 27 201029938 後的處理水經處理水循環管路5 4供給給調整槽4 4 ’反 應槽4 8内的氨離子濃度最好低於5 〇〇〇mg/L ’甚 至10 0 〇mg/L以下。 除了上述經生物處理過的處理水外,也可使用工業用 水、.放流水、或右工廢内有設備者可使用將氨廢液以及IPA 廢液蒸餾過的蒸餾處理水(冷凝水)等作為稀釋水,來稀 釋含聚缓酸烧基錢鹽的排放水。蒸顧處理水的水溫高達4 〇°C能為反應槽4 8加溫,促進聚羧酸烷基銨鹽的分解反 應。 ❹ 本實施形態在進行含聚羧酸烷基銨鹽排放水的生物處 理時,pH最好在6 . 5〜9 · 0之間,若能達7 . 0〜8 • 0則更佳’取好能透過pH調整劑供給管路6 6供給pH 調整劑給調整槽4 4。若含聚羧酸烷基銨鹽排放水的pH不 在上述範圍内,在進行生物處理時有時聚羧酸烷基銨鹽的 分解反應速度會減緩。此外,過去在厭氧性生物處理時, 為了降低氨的阻礙,都儘量將pH控制在ρΗβ . 5〜7弱❹ 酸性的範圍,但是對於聚幾酸烧基錢鹽的處理則以pH7〜 8的弱臉性處理性能為佳。這一點是由本發明人首度確認 清楚。在調整pH到上述範圍時,含㈣舰絲鹽排放水 中的㈣酸錄朗濃度最好低於2 Q ao Qmg/L, 氨離子濃度最好在5〇〇0mg/L以下。 本實施形悲所採用的pH調整劑有鹽酸等的酸劑及氫 化納等的驗劑,並無特別限制。而且PH調整劑也可使用具 有緩衝作用的重碳酸鈉和燐酸緩衝液等。 28 201029938 巾’為了維持厭氧性生物良好的分解活 性,最好能透過營養劑供給管路6 2供給營養劑給調整槽 4 4。營制的_無特舰制,可以是炭素源、氣源及 其他無機鹽類等等。 本實施形態在進行含聚羧酸燒基兹鹽排放水的生物處 理日π,最好能將反應槽4 8内的水溫調到2 〇 °c以上,能 調到2 8〜3 5°C的範圍内尤佳。在以厭氧性生物分解聚 ❹紐餘難時,溫度可能低於2代,但是若溫度低於 2 0 C時’分解反應速度會變慢,因此最好能將水溫調到 上述fe圍。上述的溫度調整並無方法上的特別限制,例如 可以供應蒸氣給調整槽4 4以調整反應槽4 8内的水溫亦 可’或者在反應槽48内安襞加熱器,利用加熱器的熱來 凋整反應槽4 8内的水溫。此外,也可供應加溫過的稀釋 水來調整反應槽4 8内的水溫。在分解聚羧酸烷基銨鹽時 會產生甲烷氣體,此時可利用一般進行厭氧處理時相同的 〇 脱硫處理,然後將曱烷回收到甲烷鍋爐作為熱源使用,將 該熱源供應給反應槽4 8以調整水温。這裡在將4 8内的 水溫調整到上述範圍時,含聚羧酸烷基銨鹽排放水中的聚 羧酸烷基銨鹽濃度最好低於2 OOOOmg/L,氨離子 濃度最好在500〇mg/L以下。 本實施形態中厭氧性處理時的排放水問題乃是以含聚 羧酸烷基銨鹽排放水為例加以說明,但是含6個礙以下的 有機物排放水也可同樣地進行厭氧性處理。 半導體工廠等使用純水和超純水的工程等會排放含聚 29 201029938 叛酸炫基錄鹽的排放水’或者含6個碳以下的含有機物排 放水(如異丙醇、單乙醇胺等),這些排放水在經過處理之 後採用傳統的厭氧性生物處理法時’會發生處理開始時的 顆粒污泥生成、處理開始後的顆粒污泥維持(亦即抑制顆 粒污泥變細)、長期處理性能的維持等問題。除了傳統的厭 氧性生物處理法外’其他的處理法還有蒸餾濃縮處理、離 子交換樹脂處理、膜處理等各種處理方法,但都存在經濟 效益、營運管理以及環境方面的問題。但是本實施形態的 做法’即使是半導體工廠等使用純水、超純水的工程等會© 排放含聚缓酸烧基錄鹽的排放水,或者含6個碳以下的含 有機物排放水,只要添加糖蜜,處理開始時的顆粒污泥生 成、處理開始後的顆粒污泥維持、長期處理性能的維持都 .能獲得穩定的效果。不論在經濟效益、營運管理以及環境 方面都是一種良好的厭氧性生物處理。在本說明書中所导旨 的半導體工廠排放水也包括1C、LSI等半導體或液晶面板 等之製造工廠所排放出的排放水。 本實施形態可處理之聚羧酸烷基銨鹽包括氫氧化四甲 鈹(Tetramethylammonium Hydroxide=TMAH)、Tetra ethylammonium Hydroxide ' Tetra propylammonium Hydroxide、Tetra Butylammonium Hydroxide、Methyl triethylammonium Hydroxide、Trimethyl ethylammoniumTrimethyl(2-hydroxyethyl)ammonium Hydroxid (also known as bile test) Separation tank 16 is connected to anaerobic biological treatment tank 14 by sludge return line 40, and sludge separated by separation tank 16 It is best to return to the anaerobic biological treatment tank 14 if necessary. When the SS component containing a resist, a surfactant, or the like is contained in the polycarboxyalkylammonium salt discharge water, it is preferable to provide a separation tank capable of separating and removing the SS component in the front stage of the bioprocessing tank. When the anaerobic biological treatment tank 14 is treated with polyalkylamine ammonium salt discharge 21 201029938 water, even if it is mixed with a resist or a surfactant, it does not affect the biological treatment. Processing, but the provision of the separation tank prevents the ss component from causing the processing device to block. The separation tank may be a pressurized float, a precipitation treatment, or the like, and is not particularly limited. In addition, it is preferable to add an antifoaming agent to the treatment tank if it has a significant foaming condition. In the anaerobic biological treatment tank 14, the biologically treated treated water containing the polycarboxylate saddle salt discharge water contains ammonia nitrogen, so it is preferable to provide a nitrogen treatment tank in the latter stage of the anaerobic biological treatment tank 14. 1 8. The nitrogen treatment tank 18 can be a generally known nitrogen treatment apparatus, for example, biological treatment such as nitrification-denitrogenation-reoxidation treatment, nitrosation-Anammox treatment, or ammonia distillation, stripping treatment, or the like. A device such as physical and chemical treatment. In addition, mixing the treated water part with the discharged water, and performing the TMAH treatment after the stripping treatment can also reduce the burden of the nitrogen treatment in the latter stage. After that, the treated water subjected to anaerobic biological treatment, separation treatment, nitrogen treatment, and the like is stored and treated in the water tank. ❹ <Second Embodiment> Fig. 2 is a view showing another mode constituting the anaerobic biological treatment apparatus in the present embodiment. As shown in Fig. 2, the anaerobic biological treatment device 2 is composed of a raw water first line 4, an adjustment tank 44, a raw water second line 46, a reaction tank 48, a treated water discharge line 5, The gas discharge line 5, the treatment water circulation line 5.4, the molasses supply method, the nutrient supply method, and the pH adjuster supply method are comprised. The molasses supply method is composed of a molasses storage tank 56 and a molasses supply line 58. The nutrient supply method is composed of 22 201029938 nutrient storage tank 6 〇, nutrient supply camp supply method W 62 constitutes a positive adjustment agent fi, : 槿忠 /, the whole agent storage tank 64, the positive regulator supply line 6 water can be ^ each supply side (four) knot Wei will be supplied to the discharge: = the above structure restrictions. For example, it is preferable to install the Lipu in order to be able to adjust the supply lines of the solvent. In the adjustment tank * 4 = = the device stirring device 6 8 is made uniform by the stirring device 6 8 or the like. The original water guide σ (not shown) of ❹ &"£' slot 4 4 is connected to the raw water No. - Guan Lu 4 2 . The molasses discharge port of the molasses storage tank 56 (not shown) is connected to the molasses supply port (not shown) of the tray adjustment tank 44 through the molasses supply line 58 and the nutrient storage tank of the nutrient storage tank 6 (not shown) The nutrient supply port (not shown) of the adjustment tank 44 is connected to the nutrient supply line 6 2, and the Η adjuster discharge port (not shown) of the adjustment tank 44 is adjusted to the adjustment tank 44. The pH adjuster supply ports (not shown) are connected to each other through a pH adjuster supply line 66. Further, the raw water discharge port (not shown) of the adjustment tank 44 is connected to the reaction tank 48 through the raw water second line 4 6 . Further, the connection position of the raw water second line 46 on the side of the reaction tank 48 is preferably located below the reaction tank 48. A gas-solid liquid separation device (hereinafter referred to as Gss) is provided in the reaction tank 48. The gas-solid liquid separation device has a partition plate 7 〇 a, which is inclined in the opposite direction, and has a solid-liquid separation portion 72 on the inner side thereof. The partition plates 7〇a, 7 0 b are separated to form a communication path 74, and the partition plate 7 0 a, 7 0 b — the lower side of the lower side is covered under the lower end of the other side, this structure The gas that can be floated on the pavilion enters the solid-liquid separation 23 from the communication path 74 in 2010. The solid-liquid separation unit 7 2 is provided with an overflow-type treated water take-out unit 76, and the treated water discharge port (not shown) of the treated water take-out unit 76 processes the water discharge line 5 Q. Further, a treatment water return port (not shown) of the treatment water take-out portion 76 is connected to the treated water supply port (not shown) of the adjustment tank 44 through the treated water circulation line 54. A gas discharge line 52 is connected to the top of the reaction tank 48. As long as the reaction tank 48 can treat the polycarboxyalkylammonium salt by anaerobic biological treatment, it is possible to use a UASB type, an EGSB method or the like to use a particle-flowing sludge bed reactor or a fixed bed using a support. , flow bed reactor, etc. The operation of the anaerobic biological treatment device 2 of the present embodiment and the anaerobic biological treatment method will be described below. The polybasic acid-containing salt water discharge water is supplied to the adjustment tank 44 through the raw water first line 4 2, and the molasses in the molasses storage tank 56 is supplied to the adjustment tank 44 through the molasses supply line 58. Then, the mixed solution (containing polyalkylammonium salt discharge water and molasses) mixed with the mixing device 68 is introduced into the reaction tank 48 through the raw water second line 46, and is circulated upward. According to the study of the present inventors, in the reaction tank 48, the polycarboxyalkylammonium salt (e.g., TMAH) is decomposed into decane, carbonate ion, ammonia ion or the like due to the relationship of anaerobic organisms. The sludge used in anaerobic biological treatment is not particularly limited. In general food factories, beverage waste, paper mills, chemical plants, livestock discharge water treatment, etc., anaerobic sludge, granules, and sewage treatment sites will be used. Use digested sludge, etc. It is shown in the data of the conventional technology that the granules containing the anaerobic microorganisms 24 201029938 sludge will be put into the reaction tank 48 when the biological treatment is started, and the lamp is subjected to the atrophic treatment, but in the present embodiment, Added molasses (4) Anaerobic pure lion family, and then cut into the reaction tank 48 to carry out biological treatment. In this embodiment, it is preferable to supply the molasses at the time of starting the biological treatment and after the start of the biological treatment. The amount of molasses supplied is not particularly limited, and the ratio of 乂 乂 0 0 0 0 0 0 0 0 0 0 0 0 0 0 或 或 或 或 或 或 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The present inventors have found that the addition of molasses allows the anaerobic sludge to form granular sludge and suppresses the slimming of the granular sludge during the anaerobic biological treatment, and thus the present invention has been derived. The reason why the addition of molasses can produce the above-mentioned effects is because the molasses is a high-molecular organic substance, which promotes the proliferation of hydrolyzed bacteria and acid-producing bacteria, and produces a biopolymer (bi〇p〇lymer) having a particle bridge structure, and can also be utilized. Drunken acid smoldering produces a bacterial lineage of Methanosaeta. In addition, molasses contains trace elements required for the growth of microorganisms such as organic matter, and the trace elements promote the formation of particles. Pure water and ultrapure water are used in semiconductor factories, so the above-mentioned trace elements contained in the discharge water of such factories are insufficient. Adding honey can supplement the trace elements required for microbial growth. Further, at the time of starting the biological treatment, in order to increase the amount of the particles, a substance such as activated carbon, iron or a salt of a mother or a fly ash may be added, or a substance such as an aggregating agent or an organic substance which promotes the formation of particles may be added. The term "molasses (including waste molasses)" as used in the present specification refers to the production of sugar by making raw sugar (raw sugar) from sweet juice (Cane) or when making raw sugar or when producing beet sugar from sugar beet. By-products produced at the time (specific gravity 25 201029938 large viscous brownish liquid). Molasses contains 4 〇~6 〇% of sugar, and molasses is generally a by-product of the refining process, so the main ingredient is sucrose (glucose and fructose 2 kinds of sugar). And molasses contains protein, fat, minerals, amino acids and vitamins. The raw materials of the molasses are not particularly limited, and may be sugar cane (sucrose), sweet potato, brown sugar, corn, raw sugar, and sugar beet. The molasses used in the present embodiment may also be a waste molasses, and it is preferable to use the molasses from the viewpoint of cost. Further, the starch used in Patent Document 4 (Japanese Laid-Open Patent Publication No. Hei No. 2000-279385) is a generic term for a glucose ruthenium polymer to which D-glucopyranose (Gluc〇Pyranose)-a-i·4 is bonded. As shown in the foregoing description, in the reaction tank 48, (mainly after unfolding biological treatment) polyalkylammonium salts (for example, TMAH) are decomposed into decane, carbonic acid and ammonia ions by anaerobic organisms. Wait. The anaerobic biologically treated discharged water passes through the communication passage 74 to enter the solid-liquid separating portion 72, and the solid-liquid separated treated water overflows to the treated water take-out portion 76, and flows out from the treated water discharge line 50. . The gas such as decane generated in the reaction tank 48 is blocked by the partition plates 7 〇a, 7 Ob, does not flow into the solid-liquid separation portion 7.2, and rises from the reaction tank 48, from the gas discharge line 5 2 outflow. In the present embodiment, a part of the biologically treated treated water is supplied to the adjusting tank 44 through the treated water circulation line 54, and when it flows into the reaction tank 48 (when performing biological treatment), the polycarboxylate is contained. The concentration of the polyphenolic acid-based salt in the quaternary ammonium salt discharge water is preferably lower than 2 QQQ 〇 mg / L ' is more preferably in the range of less than 1 0000 mg / L. In particular, if there is concern about changes in water quality and effects on coexisting substances, the concentration of polyalkylammonium salts of polycarboxylates in the discharge water containing alkylammonium salts of polycarboxylates is the highest when flowing into the reaction tank (8: 26, 201029938 for biological treatment). It is preferably less than 5000 mg/L, and particularly preferably in the range of 1000 to 300 mg/L. In the present embodiment, when the concentration of the polycarboxyalkylammonium salt in the polycarboxylate alkylammonium salt-containing water exceeds 2 〇〇0 0 mg/L, the treated water may be supplied for dilution to a concentration lower than 2 ◦. 000mg/L·. However, even if the concentration of the polycarboxylic acid alkylammonium salt in the polycarboxylate alkylammonium salt-containing water is less than 20 〇〇〇mg/L (for example, more than l〇〇〇〇mg/L), it can be supplied to the treatment. Water, diluted to less than 1 0000 mg / L or 1 〇〇〇 ~ 3 〇〇〇 mg / L range. When flowing into the reaction tank 48, the concentration of the polycarboxyalkylammonium salt in the polycarboxylate alkylammonium salt-containing water exceeds 2 〇〇〇〇mg/L, and the polycarboxylic acid alkylammonium salt is subjected to biological treatment. The decomposition reaction rate sometimes becomes slower. In the present embodiment, an inductor for treating the concentration of ammonia ions in the water after inductive biological treatment may be provided on the treated water discharge line 5 or the like. Further, the concentration of the polycarboxyalkylammonium salt can be estimated from the ammonia ion concentration of the test G, and the amount of the treated water can be determined according to the estimated enthalpy, so that the polyphenolic acid burnt group which flows into the reaction tank 48 can enter the above according to the salt concentration. Within the scope. Further, an inductor for detecting the concentration of the polyphenolic acid salt may be installed in the adjustment tank 44 or the raw water first line 4 2 or the like. At the same time, the added amount of the treated water can be determined according to the concentration of the polyalkylamine ammonium salt which is detected, so that the concentration of the polyphenolic acid salt in the reaction tank 48 can enter the above range. When the concentration of ammonia ions in the reaction tank 48 exceeds 500 〇mg/L, the rate of decomposition reaction will be slowed down. At this time, part of the treated water after biological treatment 27 201029938 can be treated through the treated water circulation line 5 4 The concentration of the ammonia ion supplied to the adjustment tank 4 4 'reaction tank 48 is preferably less than 5 〇〇〇 mg / L ' or even 10 〇 mg / L or less. In addition to the above-mentioned biologically treated treated water, it is also possible to use industrial water, discharge water, or right-hand waste equipment to use distilled water (condensed water) such as ammonia waste liquid and IPA waste liquid. As the dilution water, the discharged water containing the poly-acid-acid base salt is diluted. The water temperature of the treated water is as high as 4 〇 ° C to warm the reaction tank 48 to promote the decomposition reaction of the polycarboxyalkylammonium salt. ❹ In the present embodiment, when the biological treatment of the polyalkylamine ammonium salt-containing water is carried out, the pH is preferably between 6. 5 and 9 · 0, and if it can reach 7. 0 to 8 • 0, it is better. It is preferable to supply the pH adjuster to the adjustment tank 44 through the pH adjuster supply line 66. If the pH of the water discharged from the alkylammonium salt of the polycarboxylic acid is not within the above range, the decomposition reaction rate of the alkylammonium salt of the polycarboxylic acid may be slowed down during the biological treatment. In addition, in the past, in the anaerobic biological treatment, in order to reduce the hindrance of ammonia, the pH was controlled as much as possible in the range of ρΗβ. 5~7 weak ❹ acidic, but the treatment of the polyacid sulphuric acid salt was pH7~8 The weak face processing performance is better. This was confirmed by the inventors for the first time. When the pH is adjusted to the above range, the concentration of (4) acid recording in the water discharged from the ship's salt is preferably less than 2 Q ao Qmg/L, and the ammonia ion concentration is preferably below 5 〇〇 0 mg/L. The pH adjuster used in the present embodiment is not particularly limited as long as it is an acid such as hydrochloric acid or a hydrogen fluoride. Further, the pH adjusting agent can also be used for buffering sodium bicarbonate and citric acid buffer. 28 201029938 Towels In order to maintain good decomposition activity of anaerobic organisms, it is preferable to supply nutrient to the adjustment tank 4 through the nutrient supply line 62. The _ system without a special ship can be a carbon source, a gas source and other inorganic salts. In the present embodiment, in the biological treatment day π containing the polycarboxylic acid-based sulphate-salted water, it is preferable to adjust the water temperature in the reaction tank 48 to 2 〇 ° C or more, and to adjust to 2 8 to 3 5 °. Especially within the scope of C. In the case of anaerobic biodegradation, the temperature may be lower than 2 generations, but if the temperature is lower than 20 C, the decomposition reaction rate will be slower, so it is better to adjust the water temperature to the above fe . The above temperature adjustment has no particular limitation on the method. For example, steam can be supplied to the adjustment tank 4 to adjust the water temperature in the reaction tank 48. Alternatively, the heater can be installed in the reaction tank 48, and the heat of the heater can be utilized. The temperature of the water in the reaction tank 48 is withered. In addition, warmed dilution water may be supplied to adjust the temperature of the water in the reaction tank 48. Methane gas is generated when the polycarboxyalkylammonium salt is decomposed. At this time, the same enthalpy desulfurization treatment in the anaerobic treatment is generally used, and then the decane is recovered to the methane boiler as a heat source, and the heat source is supplied to the reaction tank. 4 8 to adjust the water temperature. Here, when the water temperature in 48 is adjusted to the above range, the concentration of the polycarboxylic acid alkylammonium salt in the polycarboxylate alkylammonium salt-containing water is preferably less than 2 OOOOmg/L, and the ammonia ion concentration is preferably 500. 〇mg/L or less. The problem of the discharged water during the anaerobic treatment in the present embodiment is exemplified by the discharge of the polyalkylamine ammonium salt-containing water, but the organic discharge water containing six or less substances can be similarly subjected to anaerobic treatment. . Projects that use pure water and ultrapure water, such as semiconductor factories, emit emissions containing polychlorinated or hydrous-containing salt (or isopropanol, monoethanolamine, etc.) containing less than 6 carbons. When the conventional anaerobic biological treatment method is used after the treatment of the discharged water, the generation of the granular sludge at the start of the treatment, the maintenance of the granular sludge after the start of the treatment (that is, the suppression of the granular sludge), and the long-term Problems such as maintenance of processing performance. In addition to the conventional anaerobic biological treatment method, other treatment methods include distillation concentration treatment, ion exchange resin treatment, membrane treatment, and the like, but all have economical, operational, and environmental problems. However, in the case of the present embodiment, even if it is a project such as a semiconductor factory that uses pure water or ultrapure water, the discharge water containing the polyacid-base salt or the organic-containing water containing 6 carbon or less may be discharged. The addition of molasses produces granular sludge at the start of the treatment, maintenance of the granular sludge after the start of the treatment, and maintenance of the long-term treatment performance. A stable effect can be obtained. It is a good anaerobic biological treatment in terms of economic efficiency, operational management and environment. The semiconductor factory discharge water to be used in the present specification also includes discharge water discharged from a manufacturing plant such as a semiconductor such as 1C or LSI or a liquid crystal panel. The polycarboxyalkylammonium salt which can be treated in this embodiment includes Tetramethylammonium Hydroxide=TMAH, Tetra ethylammonium Hydroxide 'Tetra propylammonium Hydroxide, Tetra Butylammonium Hydroxide, Methyl triethylammonium Hydroxide, Trimethyl ethylammonium

Hydroxide、Dimethyl diethylammonium Hydroxide、 Trimethyl(2-hydroxyethyl)ammonium Hydroxide (亦即膽崎 )' Triethyl(2-hydroxyethyl)ammonium Hydroxide ' 30 201029938Hydroxide, Dimethyl diethylammonium Hydroxide, Trimethyl(2-hydroxyethyl)ammonium Hydroxide (also known as bilis) 'Triethyl(2-hydroxyethyl)ammonium Hydroxide ' 30 201029938

Dimethyldi(2-hydroxyethyl)ammonium Hydroxide、 Diethyldi(2-hydroxyethyl)ammonium Hydroxide 'Dimethyldi(2-hydroxyethyl)ammonium Hydroxide, Diethyldi(2-hydroxyethyl)ammonium Hydroxide '

Methyltris(2-hydroxyethyl)ammonium Hydroxide、 Ethyltris(2-hydroxyethyl)ammonium Hydroxide、 Tetra(2-hydroxyethyl)ammonium Hydroxid 以及該類鹽等。 本實施形態尤其適用於半導體工廠、液晶工廠所排放之 Tetra methylammonium Hydroxid(TMAH)、Methyltris (2-hydroxyethyl)ammonium Hydroxide, Ethyltris (2-hydroxyethyl)ammonium Hydroxide, Tetra(2-hydroxyethyl)ammonium Hydroxid, and the like. This embodiment is particularly applicable to Tetra methylammonium Hydroxid (TMAH) discharged from semiconductor factories and liquid crystal factories.

Trimethyl(2-hydroxyethyl)ammonium Hydroxid 亦即膽驗)。 本實施形態的處理也適用於含六個碳以下的有機物處 理,例如含六個碳以下的前述聚羧酸烷基銨鹽、異丙醇(IPA) 、曱醇、單乙醇胺、酢酸、丙二醇甲醚醋酸酯(PGME)、環 己酮、二甲基亞砜(DMSO)以及丙二醇甲醚醋酸酯(PGMEA) 等。 <實施形態3> 第3圖為本實施形態之厭氧性生物處理裝置的另一構 ❹ 成模式圖例。在如第3圖所示之厭氧性生物處理裝置3中 ’與第2圖所示之厭氧性生物處理裝置2同樣的結構處我 們採用相同記號’省略其說明。在第3圖所示之厭氧性生 物處理裝置3上,在反應槽48後段安裝有分離槽7 8, 視狀況將分離槽7 8所分離出的污泥回送到反應槽4 8去 ,因此有回送管路80。回送管路8 〇設置在分離槽7 8 與反應槽4 8之間。透過上述結構’當啟動生物處理時會 因為原水變動等而可將處理水所流出的污泥回收到分離槽 7 8,然後在透過回送管路8 〇送回反應槽4 8。分離槽 31 201029938 7 8可採M 凝集劑進行處理賴纽殿處理、加壓浮 上處理等’絲㈣_。此外,若有賴起泡情形時, 在供應給刀,槽7 8時最好能添加消泡劑。 、另外’右含聚竣酸烧基錄鹽排放水中含抗钱劑、界面 /舌U等SS成分時,在反應槽4 8前段最好再設置一個能 將SS成刀刀離去除的分離槽。含聚竣酸烧基敍鹽排放水在 反應槽4 8進行處理時,即使含有抗社劑或界面活性劑也 不會影響到生物處理,因此沒必要在事前坐去除處理等工 作,但是設置分離槽能防止SS成分造成處理裝置阻塞。❿ <實施形態4 > 第4圖所示為本實施形態中構成厭氧性生物處理裝置 的另-個模式圖例。在如第4圖所示之厭氧性生物處理裝 置4中’與第3圖所示之厭氧性生物處理裝置3相同結構 之處,我們採用相同記號,省略其說明。第4圖所示之厭 氧性生物處理裝置4的反應槽48内填充了擔體8 2。在 展開生物處理時,由於反應槽4 8内填充了擔體82,因❿ 此能縮短形成、保持顆粒污泥、以及啟動生物處理的時間 ,提高排放水處理的穩定性。本實施形態所採用的擔體種 類並無特別限制,可使用如聚氨酯等的發泡海綿擔體、聚 乙烯醇(PVA)等膠狀擔體、纖維狀擔體、不織布成型品及聚 丙烯製成型品等。成型品的形態也無特別限制,可以是蜂 巢狀、V字型等的網狀架構體、網狀厚墊狀、網狀管子型 以及網狀球形等各種形態。此外,圖中雖未顯示,但是最 好能在填充單體的反應槽上方設置氣固液分離裝置。 32 201029938 在反應槽4 8巾以生物方式處理敎含聚紐烧基録 鹽排放水的處理水中因為含有氨氮,因此在反應槽4 8後 段最好能設置-個氮處理槽。氮處理槽可採用―般常見的 減理裝置即可’例如可採用硝化_脱氮.再氧化處理、亞硝 酸化-Anammox處理等的生物處理,或是氨蒎餾、去除 (stripping)處理等裝置。此外,將處理水料循環與排放水 混合,經去除(stripping)處理後再做TMAH處理也能降低後 段氮生物處理的負擔。 實施例: 以下列舉實施例與比較例以進一步具體說明本發明, 但本發明並不拘泥只有以下之實施形態。 (實施例1 ) 在内容積1 0 0 m L的玻璃藥瓶中裝入含濃度5 〇 0 0 m g / L TMAH的排放水(ρΗ7,含微生物營養劑)4 7 · 5mL、厭氧性污泥(污泥濃度2 〇〇〇〇mg/L β ) 2 · 5 m L ’讓總液量達5 0 m L。在該玻璃藥瓶内填 充氮氣後以鋁蓋密封,以3 5 °C振動培養。表1為實施例 1在進行厭氧性生物處理前、後TMAH濃度的數據。由於 厭氧性生物處理將TMAH加以分解,因而產生了含甲烷的 氣體’因此我們也以針筒定期測量所產生的氣體量,將氣 體發生量與該氣體中的甲烷濃度彙整在表1中。 表1 TMAH濃名 1 Cmg/L] 氣體發生量 〔mL〕 氣體中的曱烷濃度[%] 處理前 處理後 實施例1 5000 121 227 88 33 201029938 由表1我們確認了如實施例1這樣的厭氧性生物處理 ,可以分解TMAH。在以下的實施中,我們將厭氧性生物 處理分解TMAH時’每單位污泥產生氣體的氣體產生速度 (L/gVSS/d)作為TMAH分解活性的指標(氣體產生速度越 咼代表TMAH分解活性越高)。 (實施例2 :初期TMAH濃度與最大氣體產生速度的 關係)Trimethyl(2-hydroxyethyl)ammonium Hydroxid is also a test. The treatment of the present embodiment is also applicable to treatment with an organic substance containing six carbons or less, for example, the above polycarboxyalkylammonium salt containing six carbons or less, isopropanol (IPA), decyl alcohol, monoethanolamine, citric acid, propylene glycol Ethyl acetate (PGME), cyclohexanone, dimethyl sulfoxide (DMSO), and propylene glycol methyl ether acetate (PGMEA). <Embodiment 3> Fig. 3 is a diagram showing another configuration of an anaerobic biological treatment apparatus according to the embodiment. In the anaerobic biological treatment apparatus 3 shown in Fig. 3, the same components as those of the anaerobic biological treatment apparatus 2 shown in Fig. 2 are denoted by the same reference numerals, and the description thereof will be omitted. In the anaerobic biological treatment apparatus 3 shown in Fig. 3, a separation tank 7 is attached to the rear stage of the reaction tank 48, and the sludge separated by the separation tank 78 is returned to the reaction tank 48 as the case arises. There is a return line 80. The return line 8 is disposed between the separation tank 7 8 and the reaction tank 48. Through the above structure, when the biological treatment is started, the sludge flowing out of the treated water can be recovered to the separation tank 7 8 due to fluctuations in the raw water or the like, and then returned to the reaction tank 48 through the return line 8 . Separation tank 31 201029938 7 8 The M agglutinating agent can be used for the treatment of the Lai Nian Dian, the pressurized floating treatment, etc. In addition, if it is dependent on the foaming situation, it is preferable to add an antifoaming agent when supplying the knife to the groove 78. In addition, when the SS component of the anti-money agent, interface/tongue U is contained in the discharge water of the poly-capric acid-based salt in the right, it is preferable to provide a separation tank which can remove the SS into a knife before the reaction tank 48. . When the polyhydric acid-containing salt-salted water is treated in the reaction tank 48, even if it contains an anti-agent or a surfactant, it does not affect the biological treatment, so it is not necessary to sit and remove the treatment beforehand, but the separation is set. The tank prevents the SS component from causing blockage of the processing unit. ❿ <Fourth Embodiment> Fig. 4 is a view showing another mode of the anaerobic biological treatment apparatus in the present embodiment. In the anaerobic biological treatment apparatus 4 shown in Fig. 4, the same structures as those of the anaerobic biological treatment apparatus 3 shown in Fig. 3 are denoted by the same reference numerals, and the description thereof will be omitted. The reaction tank 48 of the anaerobic biological treatment apparatus 4 shown in Fig. 4 is filled with a carrier 82. When the biological treatment is carried out, since the support tank 48 is filled with the support 82, the time for forming and retaining the granular sludge and starting the biological treatment can be shortened, and the stability of the discharge water treatment can be improved. The type of the carrier to be used in the present embodiment is not particularly limited, and a foamed sponge carrier such as urethane or a gel-like carrier such as polyvinyl alcohol (PVA), a fibrous carrier, a nonwoven fabric molded article, and a polypropylene resin can be used. Molded products, etc. The form of the molded article is not particularly limited, and may be in the form of a honeycomb structure such as a honeycomb or a V-shape, a mesh-like thick pad shape, a mesh tube type, or a mesh shape. Further, although not shown in the drawings, it is preferable to provide a gas-solid liquid separation device above the reaction tank in which the monomer is filled. 32 201029938 In the treatment tank, the biological treatment of the sulphide-containing salt-containing salt discharge water in the reaction tank is preferably provided with a nitrogen treatment tank in the latter stage of the reaction tank 48. The nitrogen treatment tank can be used as a general-purpose reduction device, for example, biological treatment such as nitrification, denitrification, reoxidation treatment, nitrosation-Anammox treatment, or ammonia distillation, stripping treatment, etc. Device. In addition, mixing the treated water cycle with the discharged water, and performing the TMAH treatment after stripping treatment can also reduce the burden of nitrogen treatment in the latter stage. EXAMPLES The following examples and comparative examples are given to further illustrate the present invention, but the present invention is not limited to the following embodiments. (Example 1) A glass vial having an internal volume of 100 m L was charged with a discharge water (ρΗ7, containing a microbial nutrient) having a concentration of 5 〇0 0 mg / L TMAH, 47.5 mL, anaerobic stain Mud (sludge concentration 2 〇〇〇〇mg/L β ) 2 · 5 m L 'to make the total liquid volume reach 50 m L. The glass vial was filled with nitrogen, sealed with an aluminum lid, and shake-cultured at 35 °C. Table 1 shows the data of TMAH concentration before and after anaerobic biological treatment in Example 1. Since anaerobic biological treatment decomposes TMAH, a methane-containing gas is produced. Therefore, we also periodically measure the amount of gas generated by a syringe, and integrate the amount of gas generated with the concentration of methane in the gas in Table 1. Table 1 TMAH concentration 1 Cmg/L] gas generation amount [mL] decane concentration in gas [%] After treatment treatment Example 1 5000 121 227 88 33 201029938 From Table 1, we confirmed as in Example 1 Anaerobic biological treatment can decompose TMAH. In the following implementation, we will use the anaerobic biological treatment to decompose TMAH when the gas production rate per unit sludge (L/gVSS/d) is used as an indicator of TMAH decomposition activity (the gas generation rate is more representative of TMAH decomposition activity). Higher). (Example 2: Relationship between initial TMAH concentration and maximum gas generation rate)

在内容積1 0 0 m L的玻璃藥瓶中裝入濃度1 4 〇 〇 5〇〇〇 , loooo , 20000 > 50000mg /[的含1^八11排放水(pH7、含微生物營養劑)4 7 .In a glass vial with an internal volume of 100 m L, a concentration of 1 4 〇〇 5 〇〇〇, loooo, 20000 > 50000 mg / [containing 1 ^ 8 11 discharged water (pH 7, containing microbial nutrient) 4 7 .

5 m L ’厭氧性污泥(污泥濃度2〇〇〇〇mg/L) 2 _ 5 m L ’讓總液量達到5 〇 m l。.在該玻璃藥瓶内填充 氣^後以麵蓋密封,以3 5。(:振動培養。我們以針筒定期 測I所產生的氣體量’測量每一污泥的氣體產生速度。此 我們為了確認污泥自我消化並不會產生氣體這一點, 此也以不添加TMAH (添加了微生物營養劑)的空白( ^ank)試驗。表2為初期TMAH濃度與最大氣體產生速度 在開始試驗後1 4 0小時内)的數據。5 m L 'anaerobic sludge (sludge concentration 2 〇〇〇〇 mg/L) 2 _ 5 m L 'to make the total liquid volume reach 5 〇 m l. Fill the glass vial with a gas cap and seal it with a face cap to 3 5 . (: Vibration culture. We measure the gas generation rate of each sludge by periodically measuring the amount of gas produced by the syringe.) In order to confirm that the sludge self-digests and does not generate gas, this does not add TMAH. Blank (^ank) test (with microbial nutrient added) Table 2 shows data for initial TMAH concentration and maximum gas production rate within 140 hours after the start of the test.

2-5 初期TMAH濃度 [mg/Ll 最大氣體產生速度 [L/gVSS/d] 0 0.00 1400 0.42 ----—---- 5000 0.47 10000 0.44 20000 0.25 — 50000 0.00 34 201029938 根據實施例2的結果顯示,在初期TMAH濃度5 〇 〇 Ο 0 m g/L中,並未發生伴隨著ΤΜΑΗ分解而產生氣體 的情形。而且根據表2的最大氣體產生速度的値顯示,在 ΤΜΑΗ的厭氧性生物處理上,在考量到初期τμαη濃度至 少須低於2 0 〇 〇 0mg/L,最好在工〇 〇 〇 L以下、水質變動等因素後,確認到TMAH濃度最好是在 1 4 0 0〜5 0 〇 〇mg/L的範圍内才能獲得更高速的 ❹ ΤΜΑΗ分解反應速度。另外,在實施例2-1.中,當試驗完 成測量水質時,並未檢驗出ΤΜΑΗ,氨離子濃度約3 〇 〇 m g/L。由此結果可知,ΤΜΑΗ經分解後,最後生成物 是氨離子與曱烷。 (實施例.3 ♦初期氛離子濃度與最大氣體產生速度的 關係) 在内容積100mL的玻璃藥瓶中裝入含濃度14〇 0 m g/LTMAH的排放水(PH7,含微生物營養劑)4 ❿ 7 · 5 m L,經含ΤΜΑΗ排放水刷養過的厭氧性污泥(污 泥濃度20000mg/L) 2 · 5mL ’然後添加氨離2-5 Initial TMAH concentration [mg/Ll maximum gas generation rate [L/gVSS/d] 0 0.00 1400 0.42 --------- 5000 0.47 10000 0.44 20000 0.25 — 50000 0.00 34 201029938 According to the embodiment 2 As a result, in the initial TMAH concentration of 5 〇〇Ο 0 mg/L, no gas was generated accompanying the decomposition of hydrazine. Moreover, according to the maximum gas generation rate of Table 2, in the anaerobic biological treatment of bismuth, the concentration of τμαη at the initial stage must be at least less than 20 〇〇0 mg/L, preferably below the work 〇〇〇L. After the water quality changes and other factors, it is confirmed that the TMAH concentration is preferably in the range of 1 400 to 5 0 〇〇mg/L to obtain a higher velocity of the ruthenium decomposition reaction. Further, in Example 2-1., when the measurement was completed, the enthalpy was not detected, and the ammonia ion concentration was about 3 〇 〇 m g/L. From this result, it is understood that after the decomposition of the hydrazine, the final product is ammonia ion and decane. (Example 3.3 ♦ Relationship between initial atmospheric ion concentration and maximum gas generation rate) A 100 mL inner glass vial was filled with a discharge water (pH 7 containing microbial nutrient) containing a concentration of 14 〇 0 mg/L TMAH. 7 · 5 m L, anaerobic sludge (sludge concentration 20000mg/L) treated with sputum-containing effluent water 2 · 5mL ' then add ammonia

子濃度為 0,1000, 2000, 3000, 5〇〇Q ,1 0 0 0 Omg/L的氨離子源一氯化氨(氨離子濃度 0 m g/L是指未添加氯化氨)。在該玻璃藥瓶内填充氮氣 後以鋁蓋密封,以3 5 °C振動培養。然後定期以針筒測量 所產生的氣體量,測量每一污泥的氣體產生速度。表3為 初期氨離子濃度與最大氣體產生速度(試驗開始後4 〇小 時以内)的數據。 35 201029938 表3 初期氨離子濃度 氨氮濃度 最大氣體產生速度 [mg/L] [mg-N/L] [L/gYSS/d] 實施例3 — 1 0 0 0.42 實施例3 — 2 1000 780 0.36 實施例3 — 3 2000 1560 0.41 實施例3 — 4 3000 2340 0.31 實施例3 — 5 5000 3900 0.25 實施例3 — 6 10000 7800 0.11 由實施例3的結果我們確認了初期氨離子濃度1 0 0 ❹ 0 0 m g / L時,氣體產生速度會急遽下滑,因此TMAH 的分解反應速度也急遽下滑。從表3的最大氣體產生速度 的値可得知,在TMAH的厭氧性生物處理中,初期氨離子 濃度至少須在5 0 0 〇mg/L以下(全氮濃度在3 9 0 0 m g — N/L以下),最好是在3000mg/L以下(The concentration of ions is 0, 1000, 2000, 3000, 5〇〇Q, 1 0 0 0 Omg / L ammonia ion source of ammonia chloride (ammonia ion concentration 0 m g / L means no added ammonia). The glass vial was filled with nitrogen, sealed with an aluminum lid, and shake cultured at 35 °C. Then, the amount of gas generated is measured periodically with a syringe to measure the gas generation rate of each sludge. Table 3 shows the data of the initial ammonia ion concentration and the maximum gas generation rate (within 4 hours after the start of the test). 35 201029938 Table 3 Initial ammonia ion concentration Ammonia nitrogen concentration Maximum gas generation rate [mg/L] [mg-N/L] [L/gYSS/d] Example 3 - 1 0 0 0.42 Example 3 - 2 1000 780 0.36 Implementation Example 3 - 3 2000 1560 0.41 Example 3 - 4 3000 2340 0.31 Example 3 - 5 5000 3900 0.25 Example 3 - 6 10000 7800 0.11 From the results of Example 3, we confirmed the initial ammonia ion concentration of 1 0 0 ❹ 0 0 At mg / L, the rate of gas generation will drop rapidly, so the decomposition rate of TMAH will also drop rapidly. From the maximum gas generation rate in Table 3, it can be known that in the anaerobic biological treatment of TMAH, the initial ammonia ion concentration must be at least 500 〇mg/L (the total nitrogen concentration is 390 mg). N/L or less), preferably below 3000mg/L (

全氮濃度在2 3 4 0 m g — N/L以下),若能達到1 〇 〇 〇mg/L以下(全氮濃度7 8〇mg — N/L以下)的 範圍尤佳,這樣就能獲得很高的TMAH分解反應速度。 W (實施例4 :含TMAH排放水的pH與最大氣體產生 速度的關係) 在内容積1 0 OmL的玻璃藥瓶内裝填濃度2 0 0 0 mg/L的含TMAH排放水(pH7、含微生物營養劑)4 7 · 5 m L,厭氧性污泥(污泥濃度2 0 0 0 0 m g/L )2 · 5 m L,在該玻璃藥瓶内填充氮氣後,添加鹽酸或 氫氧化納將pH調整為5,6,6 · 5,7,8,9。然後 36 201029938 在該玻璃藥瓶内再埴古 1The total nitrogen concentration is below 2 3 4 0 mg — N/L. If it can reach 1 〇〇〇mg/L or less (the total nitrogen concentration is 7 8 〇 mg — N/L or less), it is better. High TMAH decomposition reaction rate. W (Example 4: Relationship between pH of TMAH-containing water and maximum gas generation rate) Filled with a concentration of 2000 mg/L of TMAH-containing water (pH 7, containing microorganisms) in a glass vial with an internal volume of 10 mL Nutritional agent) 4 7 · 5 m L, anaerobic sludge (sludge concentration 2 0 0 0 mg / L) 2 · 5 m L, after the glass vial is filled with nitrogen, add hydrochloric acid or sodium hydroxide Adjust the pH to 5, 6, 6, 5, 7, 8, 9. Then 36 201029938 in the glass bottle again

^、充一二人虱氣,以鋁蓋密封,以3 5°C 一 γ妄a〔針同測罝所產生的氣體量,測量每 /T/匕氧 迷度。表4為ΡΗ與最大氣體產生速度( 試驗開始後40小時以内)的數據。氣產 表4 實施例4 一1 實施例4 — 2 實施例4 一 3 實施例4 一 4 實施例4 一 5 實施例4 一 6^, one or two people suffocating, sealed with an aluminum cover, measuring the gas per a / / / 匕 以 以 3 3 3 3 3 3 3 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Table 4 shows the data of enthalpy and maximum gas generation rate (within 40 hours after the start of the test). Gas production Table 4 Example 4 - 1 Example 4 - 2 Example 4 - 3 Example 4 - 4 Example 4 - 5 Example 4 - 6

❹ ❹ 會分解Jj時產生f、、'果’我們破認了 ΡΗ為5時,ΤΜΑΗ 信U口,在τ:體。而且從表4的最大氣體產生速度的 二二AB:的厭氧性生物處理中,TMAH分解反 應速度最快的敢隹PH是7〜8之間。 (貝=例5 ’水溫與最大氣體產生速度的關係) 在内今積1 · 6 L燒杯中裝填8 0%充填劑(2 2m m四方形的聚氨g旨擔體)的固定床式連續處理裝置中,添 加下水處理場的〉肖化污泥(污泥濃度2 5 1 7 8mg/L )作為m添加半個燒杯量後以5 k g — TMAH/m3 /d的負荷流通濃度2 0 0 〇mg/L的含TMAH排放水 (pH7,含微生物營養劑)。在實施例5將該水流通時的水 溫以35, 28,23, 20,17 eC做變化。表5為水 37 201029938 溫與含TMAH排放水中之TMAH濃度的數據。 表5 水溫 TMAH濃度 分解率 〔。。〕 [mg/L] [%] 實施例5 — 1 35 19 99 實施例5 — 2 28 36 98 實施例5 _ 3 23 94 95 實施例5 — 4 20 144 93 實施例5—5 17 341 84 實施例5的結果顯示’當水溫在2 〇 C以上時’分解❹ 率達g 〇 %以上,確認處理情況良好。相對地,當水溫在 1 7 °C時雖然也能TMAH也會分解’但是分解率降到9 〇 %以下,處理水質也惡化。因此可以確認,水溫必須在2 0 °C以上,最好在2 8〜3 5 °C的範圍間。 (實施例6)❹ ❹ will break down Jj and produce f, 'fruit'. We have broken it. When it is 5, it is U, and it is τ: body. Moreover, from the anaerobic biological treatment of the two-two AB: maximum gas generation rate in Table 4, the fastest reaction rate of TMAH decomposition is between 7 and 8. (Bei=Example 5 'Relationship between water temperature and maximum gas generation rate) Fixed bed type filled with 80% filler (2 2m m square polyurethane ion carrier) in the inner and inner 1 · 6 L beaker In the continuous treatment device, the >Slaughter sludge (sludge concentration 2 5 1 7 8 mg/L) of the sewage treatment plant was added as a load of 5 kg - TMAH/m3 /d and a flow concentration of 2 kg was added as a half of the beaker. 0 〇mg/L of TMAH-containing water (pH 7, containing microbial nutrient). The water temperature at the time of circulating the water in Example 5 was changed at 35, 28, 23, 20, 17 eC. Table 5 shows the water TM 37 201029938 temperature and TMAH concentration in TMAH-containing water. Table 5 Water temperature TMAH concentration Decomposition rate [. . ] [mg/L] [%] Example 5 - 1 35 19 99 Example 5 - 2 28 36 98 Example 5 - 3 23 94 95 Example 5 - 4 20 144 93 Example 5 - 5 17 341 84 Implementation The results of Example 5 show that 'when the water temperature is above 2 〇C, the decomposition rate is more than g 〇%, and the treatment is confirmed to be good. In contrast, when the water temperature is 1 7 °C, TMAH will also decompose', but the decomposition rate drops below 9 〇%, and the treated water quality also deteriorates. Therefore, it can be confirmed that the water temperature must be above 20 °C, preferably between 2 8 and 3 5 °C. (Example 6)

使用容積 2 . 8L((p6〇mm><l〇〇〇mmH)的 UASB (上向流厭氧性污泥系統)型反應器’以下列條件進 行含TMAH排放水的連續處理試驗。A continuous treatment test containing TMAH discharged water was carried out using a UASB (upflow anaerobic sludge system) type reactor having a volume of 2.08 ((p6 〇 mm >< l 〇〇〇 mmH) under the following conditions.

含TMAH排放水中的TMAH濃度:500〜2200 m g/LTMAH concentration in TMAH-containing water: 500~2200 m g/L

MLSS (污泥濃度):38626mg/L 流水溫度:3 5 °C 第五圖為流水日數與含TMAH排放水中之TOC濃度、 TMAH濃度、處理水中之TOC濃度與TMAH濃度之間的 關係。第六圖顯示流水曰數與TMAH負荷以及TMAH去除 38 201029938 速度之間的關係。 從第五圖與第六圖可得知,在冷 瞻AH/mVd的高負荷運轉了^1個月間以5k m 條件’可以獲得良好的處 理水質(TMAH低於檢驗限度,T〇c在5 〇瓜忌八以下 )。因此確定可做高速處理’這樣就能減少處縣置 空間與成本。 (實施例7) ❹ 將半導體工廠排放之含TMAH實際排放水調整為2 〇 〇 OmgTMAH/L,在内容積〇 · 8 L的燒杯中裝入厭 氧性污泥(污泥濃度2 5 1 4 8mg/L)作為種污泥, 添加半個燒杯之後,將上述實際排放水以5 k gTMAH/ / d的負荷流水通過。將通水時的溫度調整為35 °C ’ PH調整為7〜8,另外還添加營養劑(ORGANO (株) 公司製的ORGAMIN NP — 51)、微量元素((ORGANO (株)公司製 ORGAMIN10 1.2mL/L)、Ni、 ® C 〇 (各〇 . img/L)。此外還將廢糖蜜(原料為甘蔬與 甘藷)以20〇111忌/二(57111尽〇/1^、丁〇〇:比對 TMAH為5 · 3 %)的比例’在開始處理時連續添加到上述 的實際排放水中。實施例7所使用的廢糖蜜成分為糖度3 0〜4 0%以上,純糖率3 5%以上’還元糖1 5%以上 ,純糖分5 5 %以上。其他成分如表6所示。 201029938 表6 a 物中)粗成% 水分 26.8 粗蛋白 粗脂肪 粗織維 0-6 0.1 0.1 礦物質(%) 鈣 全燐 錤 鉀 鈉 氣 硫 1.19 0.11 0.47 3.17 0.37 - - 礦物質(mg/k g) 鐵 銅 鈷 鋅 鏟 氟 翻 硪 硒 300 79.4 - 43 56 - 0.1 - - 氨基酸(%) ❹ 精胺酸 (Arginine) 甘氨酸 (glycine) 組氨酸 (histidine) 異亮氨酸 (isoleucine) 亮氨酸 (leucine) 離氨基酸 (lysine)MLSS (sludge concentration): 38626mg/L Flow temperature: 3 5 °C The fifth graph shows the relationship between the number of flowing days and the TOC concentration in the TMAH-containing water, the TMAH concentration, the TOC concentration in the treated water, and the TMAH concentration. Figure 6 shows the relationship between the number of flow turns and the TMAH load and the speed of the TMAH removal 38 201029938. It can be seen from the fifth and sixth diagrams that good processing water quality can be obtained in the 5k m condition during the high-load operation of the cold-view AH/mVd (TMAH is lower than the inspection limit, T〇c is 5 〇 〇 忌 八 eight or less). Therefore, it is determined that high-speed processing can be done, which can reduce the space and cost of the county. (Example 7) 调整 Adjust the actual discharge water containing TMAH discharged from the semiconductor factory to 2 〇〇OmgTMAH/L, and add anaerobic sludge to the beaker of internal volume 〇·8 L (sludge concentration 2 5 1 4 8mg/L) As a seed sludge, after adding half a beaker, the above-mentioned actual discharged water was passed through a load of 5 k gTMAH/ /d. The temperature at the time of water supply was adjusted to 35 °C. The pH was adjusted to 7 to 8, and a nutrient (ORGAMIN NP-51, manufactured by ORGANO Co., Ltd.) and trace elements (ORGAMIN10 1.2 manufactured by ORGANO Co., Ltd.) were added. mL/L), Ni, ® C 〇 (each 〇. img/L). In addition, waste molasses (raw material for sweet vegetables and sweet potatoes) is 20〇111 bogey/two (57111 〇/1^, 〇〇 The ratio of the ratio of TMAH to 5.3 % is continuously added to the above-mentioned actual discharge water at the start of the treatment. The waste molasses used in Example 7 has a sugar content of 30 to 40% or more, and a pure sugar ratio of 3 5 More than %% of the sugar is more than 15%, and the pure sugar is more than 55%. The other ingredients are shown in Table 6. 201029938 Table 6 a) Crude % Moisture 26.8 Crude protein crude fat coarse weave 0-6 0.1 0.1 ore Substance (%) Calcium Total Sodium Potassium Sodium Sulfur 1.19 0.11 0.47 3.17 0.37 - - Mineral (mg/kg) Iron, Copper, Cobalt, Zinc, Shovel, Fluoride, Selenium 300 79.4 - 43 56 - 0.1 - - Amino Acid (%) ❹ Arginine glycine histidine isoleucine leucine from amino acid (ly Sine)

Metisinine 胱氨酸 (cystine) 苯丙氨酸 (phenylalanine) 0.01 0.04 0.01 0.03 0.04 0.01 0.01 0.03 0.03 酪氨酸 (Tyrosine)Metisinine cystine (phenylalanine) 0.01 0.04 0.01 0.03 0.04 0.01 0.01 0.03 0.03 Tyrosine (Tyrosine)

TributofenTributofen

BarinBarin

Serin 0.01 羥丁氨酸 (Threonine) 0.03 0.03Serin 0.01 hydroxybutyrate (Threonine) 0.03 0.03

全葉紅素 (mg/kg) 維他命A (IU/kg) 維他命D (IU/kg) 維他命E (mg/kg) 維他命K (mg/kg) - 110 維他命B6 Piotine 葉酸 膽鹼 維他命B12 (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 17.5 1.14 0.03 1.2 0.03 維他命Bi ^/kg) 維他命B2 _ (mg/kg) 泛酸 (mg/kg) 菸鹼酸 (mg/kg) 4.4 51.1 46 ❹ (比較例1)比較例1除了不添加糖蜜外, 理 其餘都比照實施例7處 40 201029938 (比較例2) 取代糖蜜 比較例2以氯化亞鐵(FeC12)(無機凝集劑 的條件添加,Total chlorophyll (mg/kg) Vitamin A (IU/kg) Vitamin D (IU/kg) Vitamin E (mg/kg) Vitamin K (mg/kg) - 110 Vitamin B6 Piotine Folic acid choline vitamin B12 (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 17.5 1.14 0.03 1.2 0.03 Vitamin Bi ^/kg) Vitamin B2 _ (mg/kg) Pantothenic acid (mg/kg) Nicotinic acid (mg /kg) 4.4 51.1 46 ❹ (Comparative Example 1) In Comparative Example 1, except that no molasses was added, the remainder was replaced by Example 40 at 2010 7938 (Comparative Example 2) instead of molasses Comparative Example 2 with ferrous chloride (FeC12) ( Conditional addition of inorganic aggregating agents,

以 19mg/L (鐵6 · 5mgFe/L 其餘都比照實施例7處理。 (比較例3 ) 比較例以Cation Polymer (高分子凝隹态The treatment was carried out in the same manner as in Example 7 at 19 mg/L (iron 6 · 5 mg Fe/L. (Comparative Example 3) Comparative Example with Cation Polymer (polymer condensed state)

錢栗劑.ORGANO (株)公司製OX—606)取代糖蜜,添 _ ^ υ * 5 m g e ⑩ /L,其餘比照實施例7處理。 第7圖為通水前與通水3 6曰後的污泥顆教直捏。第8 圖為實施例7以及比較例1〜3通水前的污泥、通水3 6— 曰後污泥的5 0倍放大照片。第9圖為通水前與通水5 5 曰後的燒杯内污泥濃度。第1圖為通水前盘通水$ $ 的燒杯内污泥界面商度_。 從第7圖與$ 8圖可得知,實施例7相較於比較例卜 〜3,污泥的顆粒直徑較大,確認具有促進形成顆粒的效 果。此外’從第9圖與第10圖可得知,實施例7相較於比 較例1〜3 ’污泥濃度、污泥界面高度都較高,可^認^ 燒杯内的污泥量增多了。尤其相較於過去採用甲醇進〜厭 氧處理時Cation Polymer的效果並不明確,但是在本實施 例7的效果十分清楚,確認對於促進、維持顆粒形成 有效。 吊 【圖式簡單說明】 第1圖為構成本實施形態之厭氧性生物處理裝置的一 201029938 模式圖例。 第2圖為構成本實施形態之厭氧性生物處理裝置的另 一個模式圖例。 第3圖為構成本實施形態之厭氧性生物處理裝置的另 一個模式圖例。 第4圖為構成本實施形態之厭氧性生物處理裝置的另 一個模式圖例。 第5圖為通水日數與含TMAH排放水中的TOC濃度、 TMAH濃度、處理水中的t〇c濃度以及與TMAH濃度的 關係圖。 第6圖為通水日數與TMAH負荷以及與去除TMAH速 度的關係圖。 胃7圖為通水前與通水日.數3 6日後的污泥顆粒直徑 圖。 第8圖為通水前的污泥、通水日數3 6日後實施例7 以及比較例1〜3的污泥50倍放大照片。 第9圖為通水前與通水日數5 5日後的圓筒内污泥濃 度圖。 第10圖為通水前與通水日數5 5日後的圓筒内污泥界 面1%度圖。 【主要元件符號說明】 1〜4厭氡性生物處理裝置 1 0原水槽 201029938 12,12a〜12b,4 4調整槽 14厭氧性生物處理槽 1 6分離槽 1 8氮處理槽 2 0處理水槽 22a〜22e配管 24a〜24b泵浦 ©2 6稀釋水流入管路 2 8pH調整劑流入管路 3 0營養劑流入管路 3 2蒸氣流入管路 3 4循環管路. 3 6,3 8攪拌裝置 4 0污泥回送管路 4 2原水第一管路 ⑩ 4 6原水第二管路 4 8反應槽 5 0處理水排出管路 5 2氣體排出管路 5 4處理水循環管路 5 6糖蜜貯槽 5 8糖蜜供給管路 6 0營養劑貯槽 6 2營養劑供給管路 43 201029938 6 4pH調整劑貯槽 6 6pH調整劑供給管路 6 8攪拌裝置 7 〇a * *701)分隔板 7 2固液分離部 7 4連通路 7 6處理水取出部 7 8分離槽 8 0回送管路 8 2擔體 44The OX-606, manufactured by Ogami Co., Ltd., was replaced by molasses, and _ ^ υ * 5 m g e 10 /L was added, and the rest was treated as in Example 7. Figure 7 shows the sludge of the sludge before the water is passed through the water. Fig. 8 is a 50-fold enlarged photograph of the sludge before the water passing through in Example 7 and Comparative Examples 1 to 3, and the water flowing through the sewage. Figure 9 shows the sludge concentration in the beaker before the water passing through and 5 5 通. Figure 1 shows the interface of the sludge in the beaker before the water passes through the water. As can be seen from Fig. 7 and Fig. 8, in Example 7, the particle diameter of the sludge was larger than that of Comparative Example 〜3, and it was confirmed that the effect of promoting the formation of particles was confirmed. In addition, it can be seen from Fig. 9 and Fig. 10 that the sludge concentration and the sludge interface height are higher in Example 7 than in Comparative Examples 1 to 3, and the amount of sludge in the beaker is increased. . In particular, the effect of Cation Polymer is not clear in comparison with the conventional methanol-to-anaerobic treatment, but the effect of the present Example 7 is clear, and it has been confirmed that it is effective for promoting and maintaining particle formation. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic diagram of a 201029938 pattern constituting the anaerobic biological treatment apparatus of the present embodiment. Fig. 2 is a view showing another mode constituting the anaerobic biological treatment apparatus of the present embodiment. Fig. 3 is a view showing another mode constituting the anaerobic biological treatment apparatus of the present embodiment. Fig. 4 is a view showing another mode constituting the anaerobic biological treatment apparatus of the present embodiment. Figure 5 is a graph showing the relationship between the number of water passing days and the concentration of TOC in TMAH-containing water, the concentration of TMAH, the concentration of t〇c in treated water, and the concentration of TMAH. Figure 6 is a plot of the number of passes through the water and the TMAH load and the removal of the TMAH speed. The stomach 7 is the diameter of the sludge particles after the passage of water and the water-passing day. Fig. 8 is a 50-fold enlarged photograph of the sludge before the water passing, the number of the water passing days, and the sludge of Example 7 and Comparative Examples 1 to 3 after 3 days. Figure 9 is a graph showing the concentration of sludge in a cylinder after 550 days before water passing and water passing days. Figure 10 is a 1% graph of the sludge interface in the cylinder after 5 days from the passing of water and the number of water passing days. [Main component symbol description] 1 to 4 anaesthetic biological treatment device 1 0 original water tank 201029938 12, 12a~12b, 4 4 adjustment tank 14 anaerobic biological treatment tank 1 6 separation tank 1 8 nitrogen treatment tank 2 0 treatment tank 22a to 22e piping 24a to 24b pumping © 2 6 dilution water inflow line 2 8 pH adjusting agent inflow line 3 0 nutrient inflow line 3 2 vapor inflow line 3 4 circulation line. 3 6, 3 8 stirring device 4 0 sludge return line 4 2 raw water first line 10 4 6 raw water second line 4 8 reaction tank 5 0 treatment water discharge line 5 2 gas discharge line 5 4 treatment water circulation line 5 6 molasses storage tank 5 8 Molasses supply line 60 0 nutrient storage tank 6 2 nutrient supply line 43 201029938 6 4 pH adjuster storage tank 6 6 pH adjuster supply line 6 8 stirring device 7 〇a * * 701) partition plate 7 2 solid-liquid separation unit 7 4 communication path 7 6 treatment water extraction part 7 8 separation tank 8 0 return line 8 2 carrier 44

Claims (1)

201029938 七 1 2 3 4 ❹5 6 申請專利範圍: 種以生物處理方式處理含聚羧酸烷基銨鹽排放水之厭 氧性生物處理法,此厭氧性生物處理法的特徵為在進行前 述生物處理時,前述含聚羧酸烷基銨鹽排放水中的聚鲮酸 院基叙鹽漢度在2 0 0 0 〇mg/L以下。 一種以生物處理方式處理含聚羧酸烷基銨鹽排放水之厭 氧性生物處理法,此厭氧性生物處理法的特徵為在進行前 述生物處理時,前述含聚羧酸烷基銨鹽排放水中的有機態 氮與氨氮的總濃度在3900mg — N/L以下。 如申請專利範圍第1或2項所述之厭氧性生物處理法,其 特徵為在前述生物處理後將部份處理水再度導入前述含 聚羧酸烷基銨鹽排放水中循環。 如申請專利範圍第3項所述之厭氧性生物處理法,其特徵 為在進行前述生物處理時,前述含聚羧酸燒基錄鹽排放水 中的聚羧酸烷基銨鹽濃度在l〇〇〇〇mg/L以下。 一種以厭氧的生物處理方式處理含聚羧酸烷基銨鹽排放 水的一種厭氧性生物處理法’其特徵為前述含聚羧酸烷基 銨鹽排放水在進行前述的生物處理時,pH的範圍控制在 6 · 5〜9 · 〇之間。 一種以厭氧的生物處理方式處理含聚羧酸烷基銨鹽排放 水的一種厭氧性生物處理法,其特徵為前述含聚缓酸炫基 錄鹽排放水在進行前述的生物處理時,水溫控制在2 〇 °C 以上。 一種以厭氧的生物處理方式處理含聚羧酸烷基銨鹽排放 45 7 201029938 水的-種厭氧性生物處理法,其特徵為具備以下任二者以 上的條件.(1 )在進行前述生物處理時,前述含聚羧酸 烷基銨鹽排放水中的聚羧酸烷基銨鹽濃度必須低於2 〇 0 0 0 m g/L,或者是在進行前述生物處理時前述含聚 羧酸烷基銨鹽排放水中的聚羧酸烷基銨鹽濃度須低於2 0 0 0 Omg/L ’同時將經過前述生物處理後的部份處 理水再度導入前述含聚羧酸烷基銨鹽排放水中循環,(2) 在進行前述生物處理時’前述含聚羧酸烷基銨鹽排放水中 的有機態氮與氨氮的總濃度須在39〇〇mg—N/]L © 以下’或者是在進行前述生物處理時前述含聚羧酸烷基銨 鹽排放水中的有機態氮與氨氮的總濃度須在3 9 〇 〇 m g — N/L以下,同時將經過前述生物處理後的部份處理 水再度導入前述含聚羧酸烷基銨鹽排放水中循環,(3 ) 前述含聚羧酸烷基銨鹽排放水在進行前述生物處理時,PH 必須控制在6 · 5〜9 · 0之間,(4 )前述含聚羧酸烷 基銨鹽排放水在進行前述生物處理時,水溫必須在2 (Tc q 以上。 8 ·如申請專利範圍第1〜7項任一項所述之厭氧性生物處 理法’其特徵為前述聚羧酸烷基銨鹽乃是氳氧化四曱銨 (TMAH)。 9·一種以厭氧性生物處理含聚羧酸烷基銨鹽排放水的一種 生物處理方法,而且該厭氧性生物處理裝置具備以下特 徵:擁有聚綾酸烷基銨鹽濃度調整方法,讓排放水在流入 前述生物處理方法時,能將前述含聚羧酸烷基銨鹽排放水 46 201029938 中的聚羧酸烷基銨鹽濃度調整到2 0 Ο 〇 〇mg/L以 下。 10·—種以厭氧性生物處理含聚羧酸烷基銨鹽排放水的一 種生物處理方法,而且該厭氧性生物處理裝置具備以下 特徵:擁有氮濃度調整方法’讓排放水在流入前述生物 處理方法時,能將前述含聚羧酸烷基銨鹽排放水中的有 機態氮與氨氮的總濃度調整到3900mg—N/L ^ 以下。 參 11·如申請專利範圍第9或10項所述之厭氧性生物處理 裝置,其特徵為擁有一循環方法,能將前述生物處理後 的部份處理水再度導入前述含聚羧酸烷基銨鹽排放水 中循 1 2 ·如申請專利範圍第1 1項所述之厭氧性生物處理裝 置,其特徵為擁有聚羧酸烷基銨鹽濃度調整方法,讓排 放水在流入前述生物處理方法時,能將前述含聚羧酸烷 ❿ 基銨鹽排放水中的聚羧酸烷基銨鹽濃度調整到1〇〇 0 0 m g/L· 以下。 13. —種以厭氧性生物處理含聚羧酸烷基銨鹽排放水的一 種生物處理方法,而且該厭氧性生物處理裝置具備以下 特徵:擁有一套pH調整方法,讓前述含聚羧酸燒基銨 鹽排放水在進行前述的生物處理時,能將pH調整到 6.5〜9·〇範圍内。 14. 一種以厭氧性生物處理含聚羧酸烷基銨鹽排放水的一 種生物處理方法,其特徵為該厭氧性生物處理裝置擁有 47 201029938 一套溫度調整方法,讓前述含聚羧酸烧基錢鹽排放水在 進行前述生物處理時,能將前述生物處理方法内的水溫 調整到2 (TC以上。 種以厭乳性生物處理含聚竣酸烧基録鹽排放水的一 種生物處理方法,其特徵為該厭氧性生物處理裝置擁有 以下(1 )〜(4)當中任二項以上的方法:(1 )擁 有一套聚羧酸烷基銨鹽濃度調整方法,讓前述含聚缓酸 烧基銨鹽排放水在流入前述生物處理方法時,能將前述 含聚羧酸烷基銨鹽排放水中的聚羧酸烷基銨鹽濃度調© 整到2 0 0 0 〇mg/L以下,或者是擁有一套前述的 聚羧酸烷基銨鹽濃度調整方法以及一套循環方法,讓經 刖述生物處理過的部份處理水再度循罐到前述聚緩酸 烷基銨鹽中;(2 ).擁有一套氮濃.度調整方法,讓前述 含聚羧酸烷基錄鹽排放水在流入前述生物處理方法 時’能將前述含聚羧酸烷基銨鹽排放水中的有機態氣與 氨氮的總濃度調整到390Omg—N/L以下,或者© 是擁有一套前述的氮濃度調整方法以及一套循環方 法,讓經前述生物處理過的部份處理水再度循環到前述 聚竣酸烧基敍鹽中,(3)擁有一套pH調整方法,讓 月1J述含1叛酸烧基銨鹽排放水在進行前述的生物處理 時,能將pH調整到6 . 5〜9 . 〇範圍内;(4 )擁 有一套溫度調整方法,讓前述含聚羧酸烷基銨鹽排放水 在進行刖述的生物處理時’能將前述生物處理方法内的 水溫調整到2 0 °C以上。 48 201029938 16·如中請專利範圍第9〜:5項任—項所述之厭氧性生 物處理裝置’係特徵為前述聚緩酸烧基鞍鹽乃是氫氧化 四曱銨(TMAH)。 1 7 · -種生物處理裝置,具備採用厭氧性生物方式處理含聚 鼓酸烧基㈣職水之生物處理方法,該厭氧性生物處 f裝置的特徵為在前述含聚m酸絲錄鹽排放水流入 别述生物處理方法時’前述含聚舰烧基銨鹽排放水中 魯的聚缓酸烧基錢鹽濃度在2 〇 〇 〇 〇mg/L以下。 1 8 · 一種生物處理裝置’具備採用厭氧性生物方式處理含聚 叛酸燒基㈣減水之生物處理方法,簡氧性生物處 j裝置的特徵為在前述含聚羧酸烷基銨鹽排放水流入 剷述生物處理方法時,前述含聚羧酸烷基銨鹽排放水中 的有機態氮與氨氮的總濃度在3 g〇〇mg_N/Ij 以下。 19 . 一種生物處理裝置,具備採用厭氧性生物方式處理含聚 ® 舰絲銨_放权生減财法,該縣性生物處 理裝置的特徵為在前述含聚羧酸烷基銨鹽排放水流入 刖述生物處理方法時,前述生物處理方法内的水溫在2 0°C以上。 20 一種以厭氧性生物處理含聚羧酸烷基銨鹽排放水的一 缝氧性生物處理法,該厭氧性生物處理法的特徵為供 給糖蜜給前述排放水。 2 1 · -種=厭氧性生物處理含六個碳以下有機物之排放水 的厭氧性生物處理法,該厭氧性生物處理法的特徵為供 49 201029938 給糖蜜給前述排放水。 2 2 •如申請專利範圍第2 ◦或2 !項所述之厭氧性生物處 理法,其特徵為在前述生物處理起動時與開始後供 述糖蜜。 23 ·如中請專利第2Q或2 所述之厭氧性生物處 理法,其特徵為會投入厭氧性污泥到進行前述生物處理 的反應槽内以展開前述的生物處理。 24 ·如申請專利範圍第2 〇或2工項所述之厭氧性生物處 理法其特徵為前述排放水乃是從半導體工廠排放 ◎ 排放水。 2 5 .如申請專利範圍第2 0或2 1項所述之厭氧性生物處 理法’其特徵為前述聚緩酸烧基銨鹽以及前述含6個碳 以下之有機物乃是氮氧化四曱銨(TMAH)。 2 6 ·如申請專利範圍第2 3項所述之厭氧性生物處理法,其 特徵為在展開前述生物處理時’會在進行前述生物處理 的反應槽中填充擔體。 2 7 · 一種厭氧性生物處理裝置,其中’該裝置擁有以厭氧性 生物處理含聚羧酸烷基銨鹽排放水之反應槽,以及供給 糖蜜給前述排放水之糖蜜供給方法。 2 8 · 一種厭氧性生物處理裝置,其中,該裝置擁有以厭氧性 生物處理含6個碳以下有機物的反應槽,以及供給糖蜜 給前述排放水之糖蜜供給方法。 2 9 ·如申請專利範圍第2 7或2 8項所述之厭氧性生物處 理裝置’其特徵為前述糖蜜供給方法乃是在前述生物處 50 201029938 理起動時與起動後供給前述糖蜜。 3 0 .如申請專利範圍第2 7或2 8項所述之厭氧性生物處 理裝置,其特徵為在起时述生祕㈣,會投入厭氧 性污泥到前述反應槽中。 3 1 .如申请專利範圍第2 7或2 8項所述之厭氧性生物處 理裝置,其特徵為前述排放水乃是從半導體工廒排放出 之排放水。 3 2 ❿ 3 3 •如申晴專利範®第2 7或2 8項所述之厭氧性生物處 理裝置,JL 4 ^ 、、特徵為前述之聚羧酸烷基銨鹽與前述含6個 奴以:有機物乃是氫氧化四甲銨(ΤΜΑΗ)。 如中%專利範圍第3 0項所述之厭氧性生物處理裝 〃特徵:為在起動前述生物處理時,會在前述反應槽 中填充擔髂。 51201029938 VII 1 2 3 4 ❹5 6 Patent application scope: An anaerobic biological treatment method for treating water discharged from a polyalkylammonium salt of a polycarboxylate by biological treatment, the anaerobic biological treatment method is characterized by performing the aforementioned organism During the treatment, the poly-tannic acid-containing salt in the polyalkylamine-containing ammonium salt-containing water is less than 2,000 mg/L. An anaerobic biological treatment method for treating a discharge water containing a polyalkylammonium salt of a polycarboxylic acid by a biological treatment method, wherein the anaerobic biological treatment method is characterized in that the polycarboxylic acid alkylammonium salt is contained in the foregoing biological treatment The total concentration of organic nitrogen and ammonia nitrogen in the discharged water is below 3900mg - N / L. The anaerobic biological treatment method according to claim 1 or 2, wherein a part of the treated water is recirculated into the discharge water containing the polyalkylammonium salt of the polycarboxylic acid after the biological treatment. The anaerobic biological treatment method according to the third aspect of the invention, characterized in that, in the biological treatment, the concentration of the polycarboxylic acid alkylammonium salt in the polycarboxylic acid-containing salt-containing salt discharge water is at 〇 〇〇〇mg/L or less. An anaerobic biological treatment method for treating effluent water containing polyalkylammonium salt of polycarboxylate by anaerobic biological treatment, characterized in that the above-mentioned biological treatment of the alkyl ammonium salt containing polycarboxylate is carried out, The pH range is controlled between 6 · 5 and 9 · 〇. An anaerobic biological treatment method for treating effluent water containing polyalkylammonium salt of polycarboxylate by anaerobic biological treatment, characterized in that the above-mentioned biological treatment of polyglycolic acid-containing salt The water temperature is controlled above 2 〇 °C. An anaerobic biological treatment method for treating water containing polyalkylamine ammonium salt of 45 7 201029938 by anaerobic biological treatment, which is characterized by having the following two or more conditions. (1) In the biological treatment, the concentration of the polycarboxylic acid alkylammonium salt in the above-mentioned polyalkylamine ammonium salt-containing discharge water must be less than 2 〇0 0 0 mg/L, or the above-mentioned polycarboxylate-containing alkane in the above biological treatment. The concentration of the polycarboxyalkylammonium salt in the quaternary ammonium salt discharge water shall be less than 200 mg / L ' while the part of the treated water after the above biological treatment is reintroduced into the aforementioned polycarboxylate alkyl ammonium salt discharged water Circulation, (2) The total concentration of organic nitrogen and ammonia nitrogen in the above-mentioned polyalkylamine ammonium salt-containing effluent water must be 39 〇〇mg-N/]L © below or during the above biological treatment In the foregoing biological treatment, the total concentration of organic nitrogen and ammonia nitrogen in the water discharged from the polyalkylammonium salt of the polycarboxylic acid shall be below 39 〇〇mg - N / L, and the treated water after the biological treatment is re-processed again. Introducing the aforementioned polycarboxylate alkylammonium salt discharge water Medium circulation, (3) The above-mentioned biological treatment of the polyalkylamine ammonium salt-containing water, the pH must be controlled between 6 · 5 and 9 · 0, (4) the above-mentioned polycarboxylic acid alkyl ammonium salt The effluent water is subjected to the aforementioned biological treatment, and the water temperature must be 2 (Tc q or more. 8) The anaerobic biological treatment method according to any one of claims 1 to 7 which is characterized by the aforementioned polycarboxylic acid The alkylammonium salt is tetraammonium ruthenium oxide (TMAH). 9. A biological treatment method for treating water containing polyalkylammonium salt of polycarboxylate by anaerobic biological treatment, and the anaerobic biological treatment device has the following Characteristics: The method for adjusting the concentration of polyalkyl phthalate ammonium salt allows the effluent water to flow the concentration of the polycarboxyalkylammonium salt in the above-mentioned polyalkylamine-containing ammonium salt discharge water 46 201029938 when flowing into the aforementioned biological treatment method Adjusted to below 20 Ο 〇〇 mg / L. 10 - A biological treatment method for treating water containing alkyl ammonium chloride salt of polycarboxylate by anaerobic biological treatment, and the anaerobic biological treatment device has the following characteristics: Have a nitrogen concentration adjustment method 'let the discharge water flow When the biological treatment method is used, the total concentration of organic nitrogen and ammonia nitrogen in the polyalkylamine-containing ammonium salt-containing water can be adjusted to 3900 mg-N/L^ or less. Ref. 11· Patent Application No. 9 or 10 The anaerobic biological treatment device of the present invention is characterized in that it has a circulation method capable of re-introducing the biologically treated part of the treated water into the water containing the polycarboxyalkylammonium salt as follows. The anaerobic biological treatment device according to the above aspect, characterized in that the polycarboxylic acid alkylammonium salt concentration adjustment method is provided, and the discharge water can flow the polycarboxylate containing polycarboxylate when flowing into the biological treatment method. The concentration of the polycarboxyalkylammonium salt in the quaternary ammonium salt discharge water is adjusted to 1.00 mg/L· or less. 13. A biological treatment method for treating water containing polyalkylammonium salt of polycarboxylate by anaerobic biological treatment, and the anaerobic biological treatment device has the following features: having a set of pH adjustment methods for allowing the aforementioned polycarboxylate The acid-saturated ammonium salt discharge water can adjust the pH to a range of 6.5 to 9 〇 when performing the above-described biological treatment. 14. A biological treatment method for treating effluent containing polyalkylammonium salt of polycarboxylate by anaerobic biological treatment, characterized in that the anaerobic biological treatment device has a temperature adjustment method of 47 201029938, allowing the aforementioned polycarboxylic acid to be contained When the above-mentioned biological treatment is carried out, the temperature of the water in the biological treatment method can be adjusted to 2 (TC or more. An organism which treats the water containing polyphosphonic acid-based salt discharge water by an anorectic biological treatment. The treatment method is characterized in that the anaerobic biological treatment device has the following two or more methods (1) to (4): (1) having a set of polycarboxylic acid alkyl ammonium salt concentration adjustment method, and the above-mentioned The poly-acid-acid-salt ammonium salt discharge water can adjust the concentration of the polycarboxylic acid alkylammonium salt in the polyalkylamine-containing ammonium salt-containing water to 200 mg/w when flowing into the aforementioned biological treatment method. L or less, or have a set of the above-mentioned polycarboxyalkylammonium salt concentration adjustment method and a set of recycling methods, so that the treated portion of the biologically treated portion of the treated water is recirculated to the aforementioned poly-acid-acid alkyl ammonium salt Medium; (2). own a set of nitrogen The degree adjustment method is such that the above-mentioned polycarboxylate-containing salt discharge water can be adjusted to the total concentration of the organic gas and the ammonia nitrogen in the water discharged from the polyalkylammonium salt-containing salt to 390Omg when flowing into the above biological treatment method. - N/L or less, or © is a set of the above-mentioned nitrogen concentration adjustment method and a set of circulation method, so that part of the treated water treated by the above biological treatment is recycled to the polypyrrolate salt, (3 ) has a set of pH adjustment method, so that the 1*1 containing the resole acid-based ammonium salt discharge water can adjust the pH to 6. 5~9 in the above biological treatment; (4) own one The temperature adjustment method allows the water containing the polyalkylammonium salt of the polycarboxylate to be adjusted to a temperature of 20 ° C or more in the biological treatment of the above-mentioned biological treatment. 48 201029938 16· The anaerobic biological treatment device described in the above-mentioned ninth aspect of the invention is characterized in that the poly-acid-saturated saddle salt is tetraammonium hydroxide (TMAH). The treatment device is provided with an anaerobic biological treatment The biological treatment method of the bubonic acid base (4), the anaerobic biological device f is characterized in that the above-mentioned polymethane-containing salt discharge water flows into the other biological treatment method. The concentration of poly-acidic acid in the discharge water is below 2 〇〇〇〇mg/L. 1 8 · A biological treatment device has the biological treatment of polyphenolic acid-containing (4) water reduction treatment by anaerobic biological means The method of the simple oxygen biological device is characterized in that the organic nitrogen and ammonia nitrogen in the water discharged from the polycarboxyalkylammonium salt are discharged when the polyalkylamine-containing ammonium salt-containing water is discharged into the delineated biological treatment method. The total concentration is below 3 g〇〇mg_N/Ij. 19. A biological treatment device comprising an anaerobic biological treatment of a polychlorinated ammonium sulphate-depleting method, wherein the county biological treatment device is characterized by the inflow of water from the aforementioned polyalkylamine-containing ammonium salt. When the biological treatment method is described in detail, the water temperature in the biological treatment method is 20 ° C or higher. An oxygen biological treatment method for treating water containing alkyl ammonium chloride salt of polycarboxylate by anaerobic biological treatment, the anaerobic biological treatment method characterized by supplying molasses to said discharged water. 2 1 · - = Anaerobic biological treatment of anaerobic biological treatment of discharged water containing organic matter of six carbons or less. The anaerobic biological treatment method is characterized by the supply of molasses to the aforementioned discharge water for 49 201029938. 2 2 • The anaerobic biological treatment method according to the scope of claim 2, or 2, wherein the molasses is supplied at the start of the biological treatment and after the start. The anaerobic biological treatment method according to the above-mentioned Patent No. 2Q or 2, wherein the anaerobic sludge is introduced into the reaction tank for performing the biological treatment to expand the biological treatment. 24 • The anaerobic biological treatment method described in the second or second application of the patent application is characterized in that the discharge water is discharged from a semiconductor factory ◎ discharged water. 2 5 . The anaerobic biological treatment method according to claim 20 or 21, wherein the polyaluminum sulphate ammonium salt and the organic substance having 6 or less carbon atoms are ruthenium oxynitride. Ammonium (TMAH). The anaerobic biological treatment method according to claim 23, wherein the carrier is filled with a carrier in the reaction vessel for performing the biological treatment when the biological treatment is carried out. An anaerobic biological treatment device, wherein the device has a reaction tank for treating water containing polyalkylammonium salt of polycarboxylate in an anaerobic biological treatment, and a method for supplying molasses for supplying the molasses to the discharged water. An anaerobic biological treatment apparatus, which comprises a reaction tank for treating an organic substance having 6 or less carbons by anaerobic biological treatment, and a method for supplying molasses to the aforementioned discharged water by supplying molasses. An anaerobic biological treatment device as described in claim 2 or claim 28, wherein the molasses supply method is the supply of the aforementioned molasses at the start of the aforementioned biological site 50 201029938 and after the start. An anaerobic biological treatment device according to the invention of claim 2, wherein the anaerobic sludge is introduced into the reaction tank. An anaerobic biological treatment device according to claim 27 or 28, wherein the discharge water is discharged water discharged from a semiconductor process. 3 2 ❿ 3 3 • An anaerobic biological treatment device as described in Shen Qing Patent Fan® No. 2-7 or 28, JL 4 ^, characterized by the aforementioned polycarboxyalkylammonium salt and 6 of the foregoing Slave: The organic matter is tetramethylammonium hydroxide (ΤΜΑΗ). The anaerobic biological treatment device according to the item of claim 30, wherein the biological reaction is carried out in the reaction tank. 51
TW98125088A 2009-02-10 2009-07-24 Anaerobic Biological Treatment and Anaerobic Biological Treatment TWI424970B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009028788A JP5250444B2 (en) 2009-02-10 2009-02-10 Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP2009130068A JP5443057B2 (en) 2009-05-29 2009-05-29 Anaerobic biological treatment method and anaerobic biological treatment apparatus

Publications (2)

Publication Number Publication Date
TW201029938A true TW201029938A (en) 2010-08-16
TWI424970B TWI424970B (en) 2014-02-01

Family

ID=44854173

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98125088A TWI424970B (en) 2009-02-10 2009-07-24 Anaerobic Biological Treatment and Anaerobic Biological Treatment

Country Status (1)

Country Link
TW (1) TWI424970B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI477455B (en) * 2013-09-17 2015-03-21 Leaderman & Associates Co Ltd Method and device for processing waste water containing tmah and ammonium nitrogen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3332722B2 (en) * 1996-05-28 2002-10-07 シャープ株式会社 Organic wastewater treatment method and organic wastewater treatment device
JP3958888B2 (en) * 1999-03-31 2007-08-15 株式会社神鋼環境ソリューション Method for treating wastewater containing dimethyl sulfoxide
TWI304796B (en) * 2006-02-13 2009-01-01 Archilife Res Foundation Treating method for biological waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI477455B (en) * 2013-09-17 2015-03-21 Leaderman & Associates Co Ltd Method and device for processing waste water containing tmah and ammonium nitrogen
US9670084B2 (en) 2013-09-17 2017-06-06 Leaderman & Associates Co., Ltd. Method for treating wastewater containing tetramethylammonium hydroxide and ammonium nitrogen

Also Published As

Publication number Publication date
TWI424970B (en) 2014-02-01

Similar Documents

Publication Publication Date Title
Li et al. Seawater-based wastewater accelerates development of aerobic granular sludge: A laboratory proof-of-concept
Show et al. Anaerobic granulation: A review of granulation hypotheses, bioreactor designs and emerging green applications
Ye et al. Insight into biological phosphate recovery from sewage
Tu et al. Performance and fouling characteristics in a membrane sequence batch reactor (MSBR) system coupled with aerobic granular sludge
Driessen et al. Experience on anaerobic treatment of distillery effluent with the UASB process
Lin et al. Phosphorus removal and recovery from digestate after biogas production
Cao et al. Understanding the granulation of partial denitrification sludge for nitrite production
Xiao et al. Evaluation and characterization during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor
JP2013537483A (en) Method for treating municipal wastewater and producing biomass having biopolymer production capacity
Nnaji A review of the upflow anaerobic sludge blanket reactor
Yu et al. Aerobic granular sludge treating low-strength municipal wastewater: Efficient carbon, nitrogen and phosphorus removal with hydrolysis-acidification pretreatment
JP6241187B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
Wang et al. Start-up of single-stage partial nitritation-anammox micro-granules system: Performance and microbial community dynamics
CN104843858B (en) A kind of sewage disposal system and operation method thereof
CN104817237A (en) Biological sludge zero-discharge sewage treatment plant and method
Cunha et al. Bulk pH and carbon source are key factors for calcium phosphate granulation
He et al. Advanced organic recovery from municipal wastewater with an enhanced magnetic separation (EMS) system: Pilot-scale verification
Liu et al. Formation characteristics of algal-bacteria granular sludge under low-light environment: From sludge characteristics, extracellular polymeric substances to microbial community
Roibás-Rozas et al. Strategies for the valorisation of a protein-rich saline waste stream into polyhydroxyalkanoates (PHA)
Hou et al. Response of nitrite accumulation to elevated C/NO–3-N ratio during partial denitrification process: Insights of extracellular polymeric substance, microbial community and metabolic function
Liu et al. Thermophilic bacteria combined with alkyl polyglucose pretreated mariculture solid wastes using as denitrification carbon source for marine recirculating aquaculture wastewater treatment
Cheng et al. Towards advanced simultaneous nitrogen removal and phosphorus recovery from digestion effluent based on anammox-hydroxyapatite (HAP) process: Focusing on a solution perspective
Li et al. Removal of antibiotics and antibiotic resistance genes in the synthetic oxytetracycline wastewater by UASB-A/O (MBR) process
Chen et al. Effect of pistachio shell as a carbon source to regulate C/N on simultaneous removal of nitrogen and phosphorus from wastewater
How et al. Effect of carbon-to-nitrogen ratio on high-rate nitrate removal in an upflow sludge blanket reactor for polluted raw water pre-treatment application